repo_name
stringlengths
6
92
path
stringlengths
4
191
copies
stringclasses
322 values
size
stringlengths
4
6
content
stringlengths
821
753k
license
stringclasses
15 values
Eniac-Xie/faster-rcnn-resnet
tools/train_svms.py
16
13480
#!/usr/bin/env python # -------------------------------------------------------- # Fast R-CNN # Copyright (c) 2015 Microsoft # Licensed under The MIT License [see LICENSE for details] # Written by Ross Girshick # -------------------------------------------------------- """ Train post-hoc SVMs using the algorithm and hyper-parameters from traditional R-CNN. """ import _init_paths from fast_rcnn.config import cfg, cfg_from_file from datasets.factory import get_imdb from fast_rcnn.test import im_detect from utils.timer import Timer import caffe import argparse import pprint import numpy as np import numpy.random as npr import cv2 from sklearn import svm import os, sys class SVMTrainer(object): """ Trains post-hoc detection SVMs for all classes using the algorithm and hyper-parameters of traditional R-CNN. """ def __init__(self, net, imdb): self.imdb = imdb self.net = net self.layer = 'fc7' self.hard_thresh = -1.0001 self.neg_iou_thresh = 0.3 dim = net.params['cls_score'][0].data.shape[1] scale = self._get_feature_scale() print('Feature dim: {}'.format(dim)) print('Feature scale: {:.3f}'.format(scale)) self.trainers = [SVMClassTrainer(cls, dim, feature_scale=scale) for cls in imdb.classes] def _get_feature_scale(self, num_images=100): TARGET_NORM = 20.0 # Magic value from traditional R-CNN _t = Timer() roidb = self.imdb.roidb total_norm = 0.0 count = 0.0 inds = npr.choice(xrange(self.imdb.num_images), size=num_images, replace=False) for i_, i in enumerate(inds): im = cv2.imread(self.imdb.image_path_at(i)) if roidb[i]['flipped']: im = im[:, ::-1, :] _t.tic() scores, boxes = im_detect(self.net, im, roidb[i]['boxes']) _t.toc() feat = self.net.blobs[self.layer].data total_norm += np.sqrt((feat ** 2).sum(axis=1)).sum() count += feat.shape[0] print('{}/{}: avg feature norm: {:.3f}'.format(i_ + 1, num_images, total_norm / count)) return TARGET_NORM * 1.0 / (total_norm / count) def _get_pos_counts(self): counts = np.zeros((len(self.imdb.classes)), dtype=np.int) roidb = self.imdb.roidb for i in xrange(len(roidb)): for j in xrange(1, self.imdb.num_classes): I = np.where(roidb[i]['gt_classes'] == j)[0] counts[j] += len(I) for j in xrange(1, self.imdb.num_classes): print('class {:s} has {:d} positives'. format(self.imdb.classes[j], counts[j])) return counts def get_pos_examples(self): counts = self._get_pos_counts() for i in xrange(len(counts)): self.trainers[i].alloc_pos(counts[i]) _t = Timer() roidb = self.imdb.roidb num_images = len(roidb) # num_images = 100 for i in xrange(num_images): im = cv2.imread(self.imdb.image_path_at(i)) if roidb[i]['flipped']: im = im[:, ::-1, :] gt_inds = np.where(roidb[i]['gt_classes'] > 0)[0] gt_boxes = roidb[i]['boxes'][gt_inds] _t.tic() scores, boxes = im_detect(self.net, im, gt_boxes) _t.toc() feat = self.net.blobs[self.layer].data for j in xrange(1, self.imdb.num_classes): cls_inds = np.where(roidb[i]['gt_classes'][gt_inds] == j)[0] if len(cls_inds) > 0: cls_feat = feat[cls_inds, :] self.trainers[j].append_pos(cls_feat) print 'get_pos_examples: {:d}/{:d} {:.3f}s' \ .format(i + 1, len(roidb), _t.average_time) def initialize_net(self): # Start all SVM parameters at zero self.net.params['cls_score'][0].data[...] = 0 self.net.params['cls_score'][1].data[...] = 0 # Initialize SVMs in a smart way. Not doing this because its such # a good initialization that we might not learn something close to # the SVM solution. # # subtract background weights and biases for the foreground classes # w_bg = self.net.params['cls_score'][0].data[0, :] # b_bg = self.net.params['cls_score'][1].data[0] # self.net.params['cls_score'][0].data[1:, :] -= w_bg # self.net.params['cls_score'][1].data[1:] -= b_bg # # set the background weights and biases to 0 (where they shall remain) # self.net.params['cls_score'][0].data[0, :] = 0 # self.net.params['cls_score'][1].data[0] = 0 def update_net(self, cls_ind, w, b): self.net.params['cls_score'][0].data[cls_ind, :] = w self.net.params['cls_score'][1].data[cls_ind] = b def train_with_hard_negatives(self): _t = Timer() roidb = self.imdb.roidb num_images = len(roidb) # num_images = 100 for i in xrange(num_images): im = cv2.imread(self.imdb.image_path_at(i)) if roidb[i]['flipped']: im = im[:, ::-1, :] _t.tic() scores, boxes = im_detect(self.net, im, roidb[i]['boxes']) _t.toc() feat = self.net.blobs[self.layer].data for j in xrange(1, self.imdb.num_classes): hard_inds = \ np.where((scores[:, j] > self.hard_thresh) & (roidb[i]['gt_overlaps'][:, j].toarray().ravel() < self.neg_iou_thresh))[0] if len(hard_inds) > 0: hard_feat = feat[hard_inds, :].copy() new_w_b = \ self.trainers[j].append_neg_and_retrain(feat=hard_feat) if new_w_b is not None: self.update_net(j, new_w_b[0], new_w_b[1]) print(('train_with_hard_negatives: ' '{:d}/{:d} {:.3f}s').format(i + 1, len(roidb), _t.average_time)) def train(self): # Initialize SVMs using # a. w_i = fc8_w_i - fc8_w_0 # b. b_i = fc8_b_i - fc8_b_0 # c. Install SVMs into net self.initialize_net() # Pass over roidb to count num positives for each class # a. Pre-allocate arrays for positive feature vectors # Pass over roidb, computing features for positives only self.get_pos_examples() # Pass over roidb # a. Compute cls_score with forward pass # b. For each class # i. Select hard negatives # ii. Add them to cache # c. For each class # i. If SVM retrain criteria met, update SVM # ii. Install new SVM into net self.train_with_hard_negatives() # One final SVM retraining for each class # Install SVMs into net for j in xrange(1, self.imdb.num_classes): new_w_b = self.trainers[j].append_neg_and_retrain(force=True) self.update_net(j, new_w_b[0], new_w_b[1]) class SVMClassTrainer(object): """Manages post-hoc SVM training for a single object class.""" def __init__(self, cls, dim, feature_scale=1.0, C=0.001, B=10.0, pos_weight=2.0): self.pos = np.zeros((0, dim), dtype=np.float32) self.neg = np.zeros((0, dim), dtype=np.float32) self.B = B self.C = C self.cls = cls self.pos_weight = pos_weight self.dim = dim self.feature_scale = feature_scale self.svm = svm.LinearSVC(C=C, class_weight={1: 2, -1: 1}, intercept_scaling=B, verbose=1, penalty='l2', loss='l1', random_state=cfg.RNG_SEED, dual=True) self.pos_cur = 0 self.num_neg_added = 0 self.retrain_limit = 2000 self.evict_thresh = -1.1 self.loss_history = [] def alloc_pos(self, count): self.pos_cur = 0 self.pos = np.zeros((count, self.dim), dtype=np.float32) def append_pos(self, feat): num = feat.shape[0] self.pos[self.pos_cur:self.pos_cur + num, :] = feat self.pos_cur += num def train(self): print('>>> Updating {} detector <<<'.format(self.cls)) num_pos = self.pos.shape[0] num_neg = self.neg.shape[0] print('Cache holds {} pos examples and {} neg examples'. format(num_pos, num_neg)) X = np.vstack((self.pos, self.neg)) * self.feature_scale y = np.hstack((np.ones(num_pos), -np.ones(num_neg))) self.svm.fit(X, y) w = self.svm.coef_ b = self.svm.intercept_[0] scores = self.svm.decision_function(X) pos_scores = scores[:num_pos] neg_scores = scores[num_pos:] pos_loss = (self.C * self.pos_weight * np.maximum(0, 1 - pos_scores).sum()) neg_loss = self.C * np.maximum(0, 1 + neg_scores).sum() reg_loss = 0.5 * np.dot(w.ravel(), w.ravel()) + 0.5 * b ** 2 tot_loss = pos_loss + neg_loss + reg_loss self.loss_history.append((tot_loss, pos_loss, neg_loss, reg_loss)) for i, losses in enumerate(self.loss_history): print((' {:d}: obj val: {:.3f} = {:.3f} ' '(pos) + {:.3f} (neg) + {:.3f} (reg)').format(i, *losses)) # Sanity check scores_ret = ( X * 1.0 / self.feature_scale).dot(w.T * self.feature_scale) + b assert np.allclose(scores, scores_ret[:, 0], atol=1e-5), \ "Scores from returned model don't match decision function" return ((w * self.feature_scale, b), pos_scores, neg_scores) def append_neg_and_retrain(self, feat=None, force=False): if feat is not None: num = feat.shape[0] self.neg = np.vstack((self.neg, feat)) self.num_neg_added += num if self.num_neg_added > self.retrain_limit or force: self.num_neg_added = 0 new_w_b, pos_scores, neg_scores = self.train() # scores = np.dot(self.neg, new_w_b[0].T) + new_w_b[1] # easy_inds = np.where(neg_scores < self.evict_thresh)[0] not_easy_inds = np.where(neg_scores >= self.evict_thresh)[0] if len(not_easy_inds) > 0: self.neg = self.neg[not_easy_inds, :] # self.neg = np.delete(self.neg, easy_inds) print(' Pruning easy negatives') print(' Cache holds {} pos examples and {} neg examples'. format(self.pos.shape[0], self.neg.shape[0])) print(' {} pos support vectors'.format((pos_scores <= 1).sum())) print(' {} neg support vectors'.format((neg_scores >= -1).sum())) return new_w_b else: return None def parse_args(): """ Parse input arguments """ parser = argparse.ArgumentParser(description='Train SVMs (old skool)') parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]', default=0, type=int) parser.add_argument('--def', dest='prototxt', help='prototxt file defining the network', default=None, type=str) parser.add_argument('--net', dest='caffemodel', help='model to test', default=None, type=str) parser.add_argument('--cfg', dest='cfg_file', help='optional config file', default=None, type=str) parser.add_argument('--imdb', dest='imdb_name', help='dataset to train on', default='voc_2007_trainval', type=str) if len(sys.argv) == 1: parser.print_help() sys.exit(1) args = parser.parse_args() return args if __name__ == '__main__': # Must turn this off to prevent issues when digging into the net blobs to # pull out features (tricky!) cfg.DEDUP_BOXES = 0 # Must turn this on because we use the test im_detect() method to harvest # hard negatives cfg.TEST.SVM = True args = parse_args() print('Called with args:') print(args) if args.cfg_file is not None: cfg_from_file(args.cfg_file) print('Using config:') pprint.pprint(cfg) # fix the random seed for reproducibility np.random.seed(cfg.RNG_SEED) # set up caffe caffe.set_mode_gpu() if args.gpu_id is not None: caffe.set_device(args.gpu_id) net = caffe.Net(args.prototxt, args.caffemodel, caffe.TEST) net.name = os.path.splitext(os.path.basename(args.caffemodel))[0] out = os.path.splitext(os.path.basename(args.caffemodel))[0] + '_svm' out_dir = os.path.dirname(args.caffemodel) imdb = get_imdb(args.imdb_name) print 'Loaded dataset `{:s}` for training'.format(imdb.name) # enhance roidb to contain flipped examples if cfg.TRAIN.USE_FLIPPED: print 'Appending horizontally-flipped training examples...' imdb.append_flipped_images() print 'done' SVMTrainer(net, imdb).train() filename = '{}/{}.caffemodel'.format(out_dir, out) net.save(filename) print 'Wrote svm model to: {:s}'.format(filename)
mit
lepy/phuzzy
docs/examples/ssb/ssb_approx.py
1
4225
# -*- coding: utf-8 -*- import phuzzy as ph import phuzzy.approx.doe import phuzzy.mpl.plots from phuzzy.mpl import mix_mpl import matplotlib.pyplot as plt def calc_w(P, L, W, H, E): I = W * H** 3 / 12. w = P * L ** 3 / (48 * E * I) return w number_of_alpha_levels = 31 # load P P0 = 5000. # N dP = 0.01 * P0 # N P = ph.Triangle(alpha0=[P0 - dP, P0 + dP], alpha1=[P0], name="P", number_of_alpha_levels=number_of_alpha_levels) # dimensions L, W, H W0 = 50 # mm H0 = 100 # mm L0 = 2000 # mm dW = 0.01 * W0 # mm dH = 0.01 * H0 # mm dL = 0.01 * L0 # mm L = ph.Triangle(alpha0=[L0 - dL, L0 + dL], alpha1=[L0], name="L", number_of_alpha_levels=number_of_alpha_levels) W = ph.Triangle(alpha0=[W0 - dW, W0 + dW], alpha1=[W0], name="W", number_of_alpha_levels=number_of_alpha_levels) H = ph.Triangle(alpha0=[H0 - dH, H0 + dH], alpha1=[H0], name="H", number_of_alpha_levels=number_of_alpha_levels) # material E0 = 30000. # N/mm2 dE = 0.1 * E0 # N/mm2 E = ph.TruncNorm(alpha0=[E0 - dE, E0 + dE], alpha1=[E0], name="E", number_of_alpha_levels=number_of_alpha_levels) I0 = W0 * H0 ** 3 / 12. w0 = P0 * L0 ** 3 / (48 * E0 * I0) print("I0 = {:.4g} mm^4".format(I0)) # I0 = 4.167e+06 mm^4 print("w0 = {:.4g} mm".format(w0)) # w0 = 6.667 mm I = W * H** 3 / 12. I.name = "I" w = P * L ** 3 / (48 * E * I) w.name = r"P L^3 / (48 EI)" print("I = {} mm^4".format(I)) # I = FuzzyNumber(W*H^3/12.0:[[4002483.375, 4335850.041666667], [4166666.6666666665, 4166666.6666666665]]) mm^4 print("w = {} mm".format(w)) # w = FuzzyNumber(P*L^3/E*48*W*H^3/12.0:[[5.594629603627992, 8.024370049019725], [6.666666666666667, 6.666666666666667]]) mm w_mean = w.mean() dw_l = w_mean - w.min() dw_r = w.max() - w_mean print("w = {:.4g} mm (- {:.4g}|+ {:.4g})".format(w_mean, dw_l, dw_r)) # w = 6.703 mm (- 1.109|+ 1.321) print("w = {:.4g} mm [{:.4g},{:.4g}]".format(w_mean, w.min(), w.max())) # w = 6.703 mm [5.595,8.024] # create Expression object expr = phuzzy.approx.doe.Expression(designvars=[P, L, W, H, E], function=calc_w, name="w_a") # expr.generate_training_doe(name="train", n=30, method="lhs") expr.generate_training_doe(name="train", n=30, method="cc") expr.eval() w_a = expr.get_fuzzynumber_from_results(name="w_a") expr.fit_model(model="knn") print(expr.model) expr.generate_prediction_doe(name="prediction", n=100000, method="lhs") # expr.generate_prediction_doe(name="prediction", n=100, method="meshgrid") w_b = expr.predict(name="w_b") print(w_b) mix_mpl(w_b) fig, axs = phuzzy.mpl.plots.plot_xyz(w, w_a, w_b) mix_mpl(w) w.plot(axs[1], labels=False) w.plot(axs[2], labels=False) samples = expr.results_training axs[1].scatter(samples.res, samples.alpha, s=3) axs[1].set_title("%d training samples" % len(expr.results_training)) axs[2].scatter(samples.res, samples.alpha, s=3) axs[2].set_title("%d training samples" % len(expr.results_training)) fig.tight_layout() plt.show() mix_mpl(I) mix_mpl(w) H_ = 100. # mm B_ = 300. # mm fig, axs = plt.subplots(1, 2, dpi=90, facecolor='w', edgecolor='k', figsize=(B_ / 25.4, H_ / 25.4)) axs[0].axvline(I0, lw=2, alpha=.4, c="r", label="$I_0$") axs[1].axvline(w0, lw=2, alpha=.4, c="r", label="$w_0 = {:.4g}\,mm$".format(w0)) I.plot(ax=axs[0]) w.plot(ax=axs[1]) axs[0].set_title("area moment of inertia $I$") axs[1].set_title("deflection $w$") axs[0].set_xlabel(r"area moment of inertia $I=\frac{WH^3}{12}$") axs[1].set_xlabel(r"deflection $w=\frac{PL^3}{48EI}$" + "$ = {:.4g}\,mm\,[{:.4g},{:.4g}]$".format(w_mean, w.min(), w.max())) axs[0].legend() axs[1].legend() fig.tight_layout(pad=1.18, h_pad=1.1) fig.savefig("ssb.png") H_ = 250. # mm B_ = 300. # mm fig, axs = plt.subplots(3, 2, dpi=90, facecolor='w', edgecolor='k', figsize=(B_ / 25.4, H_ / 25.4)) A = W * H ys = [P, L, W, H, E, A] P.title = r"load $P$" L.title = r"length $L$" W.title = r"width $W$" H.title = r"height $H$" E.title = r"young's modulus $E$" A.title = r"cross section area $A$" for i, y in enumerate(ys): mix_mpl(y) ax = axs.ravel()[i] y.plot(ax=ax) if hasattr(y, "title"): ax.set_title(y.title) fig.tight_layout() fig.savefig("ssb_parameter.png") plt.show()
mit
kerrpy/kerrpy
kerrpy/geodesics.py
1
5257
from .utils.draw import drawScene, drawGeodesic from math import gcd import numpy as np from matplotlib import pyplot as plt SPHERE = 0 DISK = 1 HORIZON = 2 class Geodesic: def __init__(self, status, coordinates, colour='royalBlue'): self.status = SPHERE self.coordinates = coordinates # Detect if the ray collided with the disk, remove the following steps # and change its colour indicesDisk = np.where(status == DISK)[0] if indicesDisk.size > 0: self.status = DISK firstCollision = indicesDisk[0] self.coordinates = coordinates[:firstCollision, :] # Detect if the ray entered the horizon, remove the following steps # and change its colour indicesCollision = np.where(status == HORIZON)[0] if indicesCollision.size > 0: self.status = HORIZON firstCollision = indicesCollision[0] self.coordinates = coordinates[:firstCollision, :] # Set colour if self.status == SPHERE: self.colour = 'royalBlue' elif self.status == HORIZON: self.colour = 'maroon' else: self.colour = 'darkolivegreen' def plot(self, ax=None): showPlot = False if not ax: showPlot = True # Start figure fig = plt.figure() # Start 3D plot ax = fig.gca(projection='3d') ax.set_axis_off() # Set axes limits ax.set_xlim3d(-25, 25) ax.set_ylim3d(-25, 25) ax.set_zlim3d(-25, 25) # Draw the scene drawScene(ax) drawGeodesic(ax, self.coordinates, self.colour) if showPlot: # Show the plot plt.show() class CongruenceSnapshot: def __init__(self, status, coordinates, texels=None): self.status = status self.coordinates = coordinates self.texels = texels self.congruenceMatrixRows = self.status.shape[0] self.congruenceMatrixCols = self.status.shape[1] self.dpi = gcd(self.status.shape[0], self.status.shape[1]) self.imageSize = (self.status.shape[0] / self.dpi, self.status.shape[1] / self.dpi) self.numPixels = self.congruenceMatrixRows * self.congruenceMatrixCols self.colors = [ [1, 1, 1], # Sphere [1, 0, 0], # Disk [0, 0, 0] # Horizon ] def plot(self): fig = plt.figure(frameon=False) fig.set_size_inches(self.congruenceMatrixCols, self.congruenceMatrixRows) ax = plt.Axes(fig, [0., 0., 1., 1.]) ax.set_axis_off() fig.add_axes(ax) if self.texels is None: image = np.empty((self.congruenceMatrixRows, self.congruenceMatrixCols, 3)) for row in range(self.congruenceMatrixRows): for col in range(self.congruenceMatrixCols): status = self.status[row, col] image[row, col, :] = self.colors[status] ax.imshow(image) else: ax.imshow(self.texels) plt.show() def save(self, path): fig = plt.figure(frameon=False) fig.set_size_inches(self.imageSize[1], self.imageSize[0]) ax = plt.Axes(fig, [0., 0., 1., 1.]) ax.set_axis_off() fig.add_axes(ax) if self.texels is None: image = np.empty((self.congruenceMatrixRows, self.congruenceMatrixCols, 3)) for row in range(self.congruenceMatrixRows): for col in range(self.congruenceMatrixCols): status = self.status[row, col] image[row, col, :] = self.colors[status] ax.imshow(image) else: ax.imshow(self.texels) fig.savefig(path, dpi=self.dpi) plt.close(fig) class Congruence: def __init__(self, status, coordinates): self.status = status self.coordinates = coordinates self.congruenceMatrixRows = status.shape[0] self.congruenceMatrixCols = status.shape[1] self.numPixels = self.congruenceMatrixRows * self.congruenceMatrixCols self.numSlices = status.shape[2] self.colors = [ [1, 1, 1], # Sphere [1, 0, 0], # Disk [0, 0, 0] # Horizon ] def snapshot(self, instant): return CongruenceSnapshot(self.status[:, :, instant], self.coordinates[:, :, :, instant]) def geodesic(self, row, col): return Geodesic(self.status[row, col, :], np.transpose(self.coordinates[row, col, :, :])) def plot(self): # Start figure fig = plt.figure() # Start 3D plot ax = fig.gca(projection='3d') ax.set_axis_off() # Set axes limits ax.set_xlim3d(-25, 25) ax.set_ylim3d(-25, 25) ax.set_zlim3d(-25, 25) # Draw the scene drawScene(ax) # Draw the rays for row in range(0, self.congruenceMatrixRows): for col in range(0, self.congruenceMatrixCols): self.geodesic(row, col).plot(ax) # Add a legend # ax.legend() # Show the plot plt.show()
gpl-3.0
mjgrav2001/scikit-learn
examples/ensemble/plot_gradient_boosting_oob.py
230
4762
""" ====================================== Gradient Boosting Out-of-Bag estimates ====================================== Out-of-bag (OOB) estimates can be a useful heuristic to estimate the "optimal" number of boosting iterations. OOB estimates are almost identical to cross-validation estimates but they can be computed on-the-fly without the need for repeated model fitting. OOB estimates are only available for Stochastic Gradient Boosting (i.e. ``subsample < 1.0``), the estimates are derived from the improvement in loss based on the examples not included in the bootstrap sample (the so-called out-of-bag examples). The OOB estimator is a pessimistic estimator of the true test loss, but remains a fairly good approximation for a small number of trees. The figure shows the cumulative sum of the negative OOB improvements as a function of the boosting iteration. As you can see, it tracks the test loss for the first hundred iterations but then diverges in a pessimistic way. The figure also shows the performance of 3-fold cross validation which usually gives a better estimate of the test loss but is computationally more demanding. """ print(__doc__) # Author: Peter Prettenhofer <[email protected]> # # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import ensemble from sklearn.cross_validation import KFold from sklearn.cross_validation import train_test_split # Generate data (adapted from G. Ridgeway's gbm example) n_samples = 1000 random_state = np.random.RandomState(13) x1 = random_state.uniform(size=n_samples) x2 = random_state.uniform(size=n_samples) x3 = random_state.randint(0, 4, size=n_samples) p = 1 / (1.0 + np.exp(-(np.sin(3 * x1) - 4 * x2 + x3))) y = random_state.binomial(1, p, size=n_samples) X = np.c_[x1, x2, x3] X = X.astype(np.float32) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5, random_state=9) # Fit classifier with out-of-bag estimates params = {'n_estimators': 1200, 'max_depth': 3, 'subsample': 0.5, 'learning_rate': 0.01, 'min_samples_leaf': 1, 'random_state': 3} clf = ensemble.GradientBoostingClassifier(**params) clf.fit(X_train, y_train) acc = clf.score(X_test, y_test) print("Accuracy: {:.4f}".format(acc)) n_estimators = params['n_estimators'] x = np.arange(n_estimators) + 1 def heldout_score(clf, X_test, y_test): """compute deviance scores on ``X_test`` and ``y_test``. """ score = np.zeros((n_estimators,), dtype=np.float64) for i, y_pred in enumerate(clf.staged_decision_function(X_test)): score[i] = clf.loss_(y_test, y_pred) return score def cv_estimate(n_folds=3): cv = KFold(n=X_train.shape[0], n_folds=n_folds) cv_clf = ensemble.GradientBoostingClassifier(**params) val_scores = np.zeros((n_estimators,), dtype=np.float64) for train, test in cv: cv_clf.fit(X_train[train], y_train[train]) val_scores += heldout_score(cv_clf, X_train[test], y_train[test]) val_scores /= n_folds return val_scores # Estimate best n_estimator using cross-validation cv_score = cv_estimate(3) # Compute best n_estimator for test data test_score = heldout_score(clf, X_test, y_test) # negative cumulative sum of oob improvements cumsum = -np.cumsum(clf.oob_improvement_) # min loss according to OOB oob_best_iter = x[np.argmin(cumsum)] # min loss according to test (normalize such that first loss is 0) test_score -= test_score[0] test_best_iter = x[np.argmin(test_score)] # min loss according to cv (normalize such that first loss is 0) cv_score -= cv_score[0] cv_best_iter = x[np.argmin(cv_score)] # color brew for the three curves oob_color = list(map(lambda x: x / 256.0, (190, 174, 212))) test_color = list(map(lambda x: x / 256.0, (127, 201, 127))) cv_color = list(map(lambda x: x / 256.0, (253, 192, 134))) # plot curves and vertical lines for best iterations plt.plot(x, cumsum, label='OOB loss', color=oob_color) plt.plot(x, test_score, label='Test loss', color=test_color) plt.plot(x, cv_score, label='CV loss', color=cv_color) plt.axvline(x=oob_best_iter, color=oob_color) plt.axvline(x=test_best_iter, color=test_color) plt.axvline(x=cv_best_iter, color=cv_color) # add three vertical lines to xticks xticks = plt.xticks() xticks_pos = np.array(xticks[0].tolist() + [oob_best_iter, cv_best_iter, test_best_iter]) xticks_label = np.array(list(map(lambda t: int(t), xticks[0])) + ['OOB', 'CV', 'Test']) ind = np.argsort(xticks_pos) xticks_pos = xticks_pos[ind] xticks_label = xticks_label[ind] plt.xticks(xticks_pos, xticks_label) plt.legend(loc='upper right') plt.ylabel('normalized loss') plt.xlabel('number of iterations') plt.show()
bsd-3-clause
fengzhyuan/scikit-learn
examples/semi_supervised/plot_label_propagation_digits_active_learning.py
294
3417
""" ======================================== Label Propagation digits active learning ======================================== Demonstrates an active learning technique to learn handwritten digits using label propagation. We start by training a label propagation model with only 10 labeled points, then we select the top five most uncertain points to label. Next, we train with 15 labeled points (original 10 + 5 new ones). We repeat this process four times to have a model trained with 30 labeled examples. A plot will appear showing the top 5 most uncertain digits for each iteration of training. These may or may not contain mistakes, but we will train the next model with their true labels. """ print(__doc__) # Authors: Clay Woolam <[email protected]> # Licence: BSD import numpy as np import matplotlib.pyplot as plt from scipy import stats from sklearn import datasets from sklearn.semi_supervised import label_propagation from sklearn.metrics import classification_report, confusion_matrix digits = datasets.load_digits() rng = np.random.RandomState(0) indices = np.arange(len(digits.data)) rng.shuffle(indices) X = digits.data[indices[:330]] y = digits.target[indices[:330]] images = digits.images[indices[:330]] n_total_samples = len(y) n_labeled_points = 10 unlabeled_indices = np.arange(n_total_samples)[n_labeled_points:] f = plt.figure() for i in range(5): y_train = np.copy(y) y_train[unlabeled_indices] = -1 lp_model = label_propagation.LabelSpreading(gamma=0.25, max_iter=5) lp_model.fit(X, y_train) predicted_labels = lp_model.transduction_[unlabeled_indices] true_labels = y[unlabeled_indices] cm = confusion_matrix(true_labels, predicted_labels, labels=lp_model.classes_) print('Iteration %i %s' % (i, 70 * '_')) print("Label Spreading model: %d labeled & %d unlabeled (%d total)" % (n_labeled_points, n_total_samples - n_labeled_points, n_total_samples)) print(classification_report(true_labels, predicted_labels)) print("Confusion matrix") print(cm) # compute the entropies of transduced label distributions pred_entropies = stats.distributions.entropy( lp_model.label_distributions_.T) # select five digit examples that the classifier is most uncertain about uncertainty_index = uncertainty_index = np.argsort(pred_entropies)[-5:] # keep track of indices that we get labels for delete_indices = np.array([]) f.text(.05, (1 - (i + 1) * .183), "model %d\n\nfit with\n%d labels" % ((i + 1), i * 5 + 10), size=10) for index, image_index in enumerate(uncertainty_index): image = images[image_index] sub = f.add_subplot(5, 5, index + 1 + (5 * i)) sub.imshow(image, cmap=plt.cm.gray_r) sub.set_title('predict: %i\ntrue: %i' % ( lp_model.transduction_[image_index], y[image_index]), size=10) sub.axis('off') # labeling 5 points, remote from labeled set delete_index, = np.where(unlabeled_indices == image_index) delete_indices = np.concatenate((delete_indices, delete_index)) unlabeled_indices = np.delete(unlabeled_indices, delete_indices) n_labeled_points += 5 f.suptitle("Active learning with Label Propagation.\nRows show 5 most " "uncertain labels to learn with the next model.") plt.subplots_adjust(0.12, 0.03, 0.9, 0.8, 0.2, 0.45) plt.show()
bsd-3-clause
equialgo/scikit-learn
sklearn/svm/tests/test_sparse.py
63
13366
import numpy as np from scipy import sparse from numpy.testing import (assert_array_almost_equal, assert_array_equal, assert_equal) from sklearn import datasets, svm, linear_model, base from sklearn.datasets import make_classification, load_digits, make_blobs from sklearn.svm.tests import test_svm from sklearn.exceptions import ConvergenceWarning from sklearn.utils.extmath import safe_sparse_dot from sklearn.utils.testing import (assert_raises, assert_true, assert_false, assert_warns, assert_raise_message, ignore_warnings) # test sample 1 X = np.array([[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]]) X_sp = sparse.lil_matrix(X) Y = [1, 1, 1, 2, 2, 2] T = np.array([[-1, -1], [2, 2], [3, 2]]) true_result = [1, 2, 2] # test sample 2 X2 = np.array([[0, 0, 0], [1, 1, 1], [2, 0, 0, ], [0, 0, 2], [3, 3, 3]]) X2_sp = sparse.dok_matrix(X2) Y2 = [1, 2, 2, 2, 3] T2 = np.array([[-1, -1, -1], [1, 1, 1], [2, 2, 2]]) true_result2 = [1, 2, 3] iris = datasets.load_iris() # permute rng = np.random.RandomState(0) perm = rng.permutation(iris.target.size) iris.data = iris.data[perm] iris.target = iris.target[perm] # sparsify iris.data = sparse.csr_matrix(iris.data) def check_svm_model_equal(dense_svm, sparse_svm, X_train, y_train, X_test): dense_svm.fit(X_train.toarray(), y_train) if sparse.isspmatrix(X_test): X_test_dense = X_test.toarray() else: X_test_dense = X_test sparse_svm.fit(X_train, y_train) assert_true(sparse.issparse(sparse_svm.support_vectors_)) assert_true(sparse.issparse(sparse_svm.dual_coef_)) assert_array_almost_equal(dense_svm.support_vectors_, sparse_svm.support_vectors_.toarray()) assert_array_almost_equal(dense_svm.dual_coef_, sparse_svm.dual_coef_.toarray()) if dense_svm.kernel == "linear": assert_true(sparse.issparse(sparse_svm.coef_)) assert_array_almost_equal(dense_svm.coef_, sparse_svm.coef_.toarray()) assert_array_almost_equal(dense_svm.support_, sparse_svm.support_) assert_array_almost_equal(dense_svm.predict(X_test_dense), sparse_svm.predict(X_test)) assert_array_almost_equal(dense_svm.decision_function(X_test_dense), sparse_svm.decision_function(X_test)) assert_array_almost_equal(dense_svm.decision_function(X_test_dense), sparse_svm.decision_function(X_test_dense)) if isinstance(dense_svm, svm.OneClassSVM): msg = "cannot use sparse input in 'OneClassSVM' trained on dense data" else: assert_array_almost_equal(dense_svm.predict_proba(X_test_dense), sparse_svm.predict_proba(X_test), 4) msg = "cannot use sparse input in 'SVC' trained on dense data" if sparse.isspmatrix(X_test): assert_raise_message(ValueError, msg, dense_svm.predict, X_test) def test_svc(): """Check that sparse SVC gives the same result as SVC""" # many class dataset: X_blobs, y_blobs = make_blobs(n_samples=100, centers=10, random_state=0) X_blobs = sparse.csr_matrix(X_blobs) datasets = [[X_sp, Y, T], [X2_sp, Y2, T2], [X_blobs[:80], y_blobs[:80], X_blobs[80:]], [iris.data, iris.target, iris.data]] kernels = ["linear", "poly", "rbf", "sigmoid"] for dataset in datasets: for kernel in kernels: clf = svm.SVC(kernel=kernel, probability=True, random_state=0, decision_function_shape='ovo') sp_clf = svm.SVC(kernel=kernel, probability=True, random_state=0, decision_function_shape='ovo') check_svm_model_equal(clf, sp_clf, *dataset) def test_unsorted_indices(): # test that the result with sorted and unsorted indices in csr is the same # we use a subset of digits as iris, blobs or make_classification didn't # show the problem digits = load_digits() X, y = digits.data[:50], digits.target[:50] X_test = sparse.csr_matrix(digits.data[50:100]) X_sparse = sparse.csr_matrix(X) coef_dense = svm.SVC(kernel='linear', probability=True, random_state=0).fit(X, y).coef_ sparse_svc = svm.SVC(kernel='linear', probability=True, random_state=0).fit(X_sparse, y) coef_sorted = sparse_svc.coef_ # make sure dense and sparse SVM give the same result assert_array_almost_equal(coef_dense, coef_sorted.toarray()) X_sparse_unsorted = X_sparse[np.arange(X.shape[0])] X_test_unsorted = X_test[np.arange(X_test.shape[0])] # make sure we scramble the indices assert_false(X_sparse_unsorted.has_sorted_indices) assert_false(X_test_unsorted.has_sorted_indices) unsorted_svc = svm.SVC(kernel='linear', probability=True, random_state=0).fit(X_sparse_unsorted, y) coef_unsorted = unsorted_svc.coef_ # make sure unsorted indices give same result assert_array_almost_equal(coef_unsorted.toarray(), coef_sorted.toarray()) assert_array_almost_equal(sparse_svc.predict_proba(X_test_unsorted), sparse_svc.predict_proba(X_test)) def test_svc_with_custom_kernel(): kfunc = lambda x, y: safe_sparse_dot(x, y.T) clf_lin = svm.SVC(kernel='linear').fit(X_sp, Y) clf_mylin = svm.SVC(kernel=kfunc).fit(X_sp, Y) assert_array_equal(clf_lin.predict(X_sp), clf_mylin.predict(X_sp)) def test_svc_iris(): # Test the sparse SVC with the iris dataset for k in ('linear', 'poly', 'rbf'): sp_clf = svm.SVC(kernel=k).fit(iris.data, iris.target) clf = svm.SVC(kernel=k).fit(iris.data.toarray(), iris.target) assert_array_almost_equal(clf.support_vectors_, sp_clf.support_vectors_.toarray()) assert_array_almost_equal(clf.dual_coef_, sp_clf.dual_coef_.toarray()) assert_array_almost_equal( clf.predict(iris.data.toarray()), sp_clf.predict(iris.data)) if k == 'linear': assert_array_almost_equal(clf.coef_, sp_clf.coef_.toarray()) def test_sparse_decision_function(): #Test decision_function #Sanity check, test that decision_function implemented in python #returns the same as the one in libsvm # multi class: svc = svm.SVC(kernel='linear', C=0.1, decision_function_shape='ovo') clf = svc.fit(iris.data, iris.target) dec = safe_sparse_dot(iris.data, clf.coef_.T) + clf.intercept_ assert_array_almost_equal(dec, clf.decision_function(iris.data)) # binary: clf.fit(X, Y) dec = np.dot(X, clf.coef_.T) + clf.intercept_ prediction = clf.predict(X) assert_array_almost_equal(dec.ravel(), clf.decision_function(X)) assert_array_almost_equal( prediction, clf.classes_[(clf.decision_function(X) > 0).astype(np.int).ravel()]) expected = np.array([-1., -0.66, -1., 0.66, 1., 1.]) assert_array_almost_equal(clf.decision_function(X), expected, 2) def test_error(): # Test that it gives proper exception on deficient input # impossible value of C assert_raises(ValueError, svm.SVC(C=-1).fit, X, Y) # impossible value of nu clf = svm.NuSVC(nu=0.0) assert_raises(ValueError, clf.fit, X_sp, Y) Y2 = Y[:-1] # wrong dimensions for labels assert_raises(ValueError, clf.fit, X_sp, Y2) clf = svm.SVC() clf.fit(X_sp, Y) assert_array_equal(clf.predict(T), true_result) def test_linearsvc(): # Similar to test_SVC clf = svm.LinearSVC(random_state=0).fit(X, Y) sp_clf = svm.LinearSVC(random_state=0).fit(X_sp, Y) assert_true(sp_clf.fit_intercept) assert_array_almost_equal(clf.coef_, sp_clf.coef_, decimal=4) assert_array_almost_equal(clf.intercept_, sp_clf.intercept_, decimal=4) assert_array_almost_equal(clf.predict(X), sp_clf.predict(X_sp)) clf.fit(X2, Y2) sp_clf.fit(X2_sp, Y2) assert_array_almost_equal(clf.coef_, sp_clf.coef_, decimal=4) assert_array_almost_equal(clf.intercept_, sp_clf.intercept_, decimal=4) def test_linearsvc_iris(): # Test the sparse LinearSVC with the iris dataset sp_clf = svm.LinearSVC(random_state=0).fit(iris.data, iris.target) clf = svm.LinearSVC(random_state=0).fit(iris.data.toarray(), iris.target) assert_equal(clf.fit_intercept, sp_clf.fit_intercept) assert_array_almost_equal(clf.coef_, sp_clf.coef_, decimal=1) assert_array_almost_equal(clf.intercept_, sp_clf.intercept_, decimal=1) assert_array_almost_equal( clf.predict(iris.data.toarray()), sp_clf.predict(iris.data)) # check decision_function pred = np.argmax(sp_clf.decision_function(iris.data), 1) assert_array_almost_equal(pred, clf.predict(iris.data.toarray())) # sparsify the coefficients on both models and check that they still # produce the same results clf.sparsify() assert_array_equal(pred, clf.predict(iris.data)) sp_clf.sparsify() assert_array_equal(pred, sp_clf.predict(iris.data)) def test_weight(): # Test class weights X_, y_ = make_classification(n_samples=200, n_features=100, weights=[0.833, 0.167], random_state=0) X_ = sparse.csr_matrix(X_) for clf in (linear_model.LogisticRegression(), svm.LinearSVC(random_state=0), svm.SVC()): clf.set_params(class_weight={0: 5}) clf.fit(X_[:180], y_[:180]) y_pred = clf.predict(X_[180:]) assert_true(np.sum(y_pred == y_[180:]) >= 11) def test_sample_weights(): # Test weights on individual samples clf = svm.SVC() clf.fit(X_sp, Y) assert_array_equal(clf.predict([X[2]]), [1.]) sample_weight = [.1] * 3 + [10] * 3 clf.fit(X_sp, Y, sample_weight=sample_weight) assert_array_equal(clf.predict([X[2]]), [2.]) def test_sparse_liblinear_intercept_handling(): # Test that sparse liblinear honours intercept_scaling param test_svm.test_dense_liblinear_intercept_handling(svm.LinearSVC) def test_sparse_oneclasssvm(): """Check that sparse OneClassSVM gives the same result as dense OneClassSVM""" # many class dataset: X_blobs, _ = make_blobs(n_samples=100, centers=10, random_state=0) X_blobs = sparse.csr_matrix(X_blobs) datasets = [[X_sp, None, T], [X2_sp, None, T2], [X_blobs[:80], None, X_blobs[80:]], [iris.data, None, iris.data]] kernels = ["linear", "poly", "rbf", "sigmoid"] for dataset in datasets: for kernel in kernels: clf = svm.OneClassSVM(kernel=kernel, random_state=0) sp_clf = svm.OneClassSVM(kernel=kernel, random_state=0) check_svm_model_equal(clf, sp_clf, *dataset) def test_sparse_realdata(): # Test on a subset from the 20newsgroups dataset. # This catches some bugs if input is not correctly converted into # sparse format or weights are not correctly initialized. data = np.array([0.03771744, 0.1003567, 0.01174647, 0.027069]) indices = np.array([6, 5, 35, 31]) indptr = np.array( [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4]) X = sparse.csr_matrix((data, indices, indptr)) y = np.array( [1., 0., 2., 2., 1., 1., 1., 2., 2., 0., 1., 2., 2., 0., 2., 0., 3., 0., 3., 0., 1., 1., 3., 2., 3., 2., 0., 3., 1., 0., 2., 1., 2., 0., 1., 0., 2., 3., 1., 3., 0., 1., 0., 0., 2., 0., 1., 2., 2., 2., 3., 2., 0., 3., 2., 1., 2., 3., 2., 2., 0., 1., 0., 1., 2., 3., 0., 0., 2., 2., 1., 3., 1., 1., 0., 1., 2., 1., 1., 3.]) clf = svm.SVC(kernel='linear').fit(X.toarray(), y) sp_clf = svm.SVC(kernel='linear').fit(sparse.coo_matrix(X), y) assert_array_equal(clf.support_vectors_, sp_clf.support_vectors_.toarray()) assert_array_equal(clf.dual_coef_, sp_clf.dual_coef_.toarray()) def test_sparse_svc_clone_with_callable_kernel(): # Test that the "dense_fit" is called even though we use sparse input # meaning that everything works fine. a = svm.SVC(C=1, kernel=lambda x, y: x * y.T, probability=True, random_state=0) b = base.clone(a) b.fit(X_sp, Y) pred = b.predict(X_sp) b.predict_proba(X_sp) dense_svm = svm.SVC(C=1, kernel=lambda x, y: np.dot(x, y.T), probability=True, random_state=0) pred_dense = dense_svm.fit(X, Y).predict(X) assert_array_equal(pred_dense, pred) # b.decision_function(X_sp) # XXX : should be supported def test_timeout(): sp = svm.SVC(C=1, kernel=lambda x, y: x * y.T, probability=True, random_state=0, max_iter=1) assert_warns(ConvergenceWarning, sp.fit, X_sp, Y) def test_consistent_proba(): a = svm.SVC(probability=True, max_iter=1, random_state=0) with ignore_warnings(category=ConvergenceWarning): proba_1 = a.fit(X, Y).predict_proba(X) a = svm.SVC(probability=True, max_iter=1, random_state=0) with ignore_warnings(category=ConvergenceWarning): proba_2 = a.fit(X, Y).predict_proba(X) assert_array_almost_equal(proba_1, proba_2)
bsd-3-clause
xuewei4d/scikit-learn
examples/linear_model/plot_sparse_logistic_regression_20newsgroups.py
18
4240
""" ==================================================== Multiclass sparse logistic regression on 20newgroups ==================================================== Comparison of multinomial logistic L1 vs one-versus-rest L1 logistic regression to classify documents from the newgroups20 dataset. Multinomial logistic regression yields more accurate results and is faster to train on the larger scale dataset. Here we use the l1 sparsity that trims the weights of not informative features to zero. This is good if the goal is to extract the strongly discriminative vocabulary of each class. If the goal is to get the best predictive accuracy, it is better to use the non sparsity-inducing l2 penalty instead. A more traditional (and possibly better) way to predict on a sparse subset of input features would be to use univariate feature selection followed by a traditional (l2-penalised) logistic regression model. """ import timeit import warnings import matplotlib.pyplot as plt import numpy as np from sklearn.datasets import fetch_20newsgroups_vectorized from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split from sklearn.exceptions import ConvergenceWarning print(__doc__) # Author: Arthur Mensch warnings.filterwarnings("ignore", category=ConvergenceWarning, module="sklearn") t0 = timeit.default_timer() # We use SAGA solver solver = 'saga' # Turn down for faster run time n_samples = 10000 X, y = fetch_20newsgroups_vectorized(subset='all', return_X_y=True) X = X[:n_samples] y = y[:n_samples] X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42, stratify=y, test_size=0.1) train_samples, n_features = X_train.shape n_classes = np.unique(y).shape[0] print('Dataset 20newsgroup, train_samples=%i, n_features=%i, n_classes=%i' % (train_samples, n_features, n_classes)) models = {'ovr': {'name': 'One versus Rest', 'iters': [1, 2, 4]}, 'multinomial': {'name': 'Multinomial', 'iters': [1, 3, 7]}} for model in models: # Add initial chance-level values for plotting purpose accuracies = [1 / n_classes] times = [0] densities = [1] model_params = models[model] # Small number of epochs for fast runtime for this_max_iter in model_params['iters']: print('[model=%s, solver=%s] Number of epochs: %s' % (model_params['name'], solver, this_max_iter)) lr = LogisticRegression(solver=solver, multi_class=model, penalty='l1', max_iter=this_max_iter, random_state=42, ) t1 = timeit.default_timer() lr.fit(X_train, y_train) train_time = timeit.default_timer() - t1 y_pred = lr.predict(X_test) accuracy = np.sum(y_pred == y_test) / y_test.shape[0] density = np.mean(lr.coef_ != 0, axis=1) * 100 accuracies.append(accuracy) densities.append(density) times.append(train_time) models[model]['times'] = times models[model]['densities'] = densities models[model]['accuracies'] = accuracies print('Test accuracy for model %s: %.4f' % (model, accuracies[-1])) print('%% non-zero coefficients for model %s, ' 'per class:\n %s' % (model, densities[-1])) print('Run time (%i epochs) for model %s:' '%.2f' % (model_params['iters'][-1], model, times[-1])) fig = plt.figure() ax = fig.add_subplot(111) for model in models: name = models[model]['name'] times = models[model]['times'] accuracies = models[model]['accuracies'] ax.plot(times, accuracies, marker='o', label='Model: %s' % name) ax.set_xlabel('Train time (s)') ax.set_ylabel('Test accuracy') ax.legend() fig.suptitle('Multinomial vs One-vs-Rest Logistic L1\n' 'Dataset %s' % '20newsgroups') fig.tight_layout() fig.subplots_adjust(top=0.85) run_time = timeit.default_timer() - t0 print('Example run in %.3f s' % run_time) plt.show()
bsd-3-clause
madjelan/scikit-learn
examples/applications/plot_outlier_detection_housing.py
243
5577
""" ==================================== Outlier detection on a real data set ==================================== This example illustrates the need for robust covariance estimation on a real data set. It is useful both for outlier detection and for a better understanding of the data structure. We selected two sets of two variables from the Boston housing data set as an illustration of what kind of analysis can be done with several outlier detection tools. For the purpose of visualization, we are working with two-dimensional examples, but one should be aware that things are not so trivial in high-dimension, as it will be pointed out. In both examples below, the main result is that the empirical covariance estimate, as a non-robust one, is highly influenced by the heterogeneous structure of the observations. Although the robust covariance estimate is able to focus on the main mode of the data distribution, it sticks to the assumption that the data should be Gaussian distributed, yielding some biased estimation of the data structure, but yet accurate to some extent. The One-Class SVM algorithm First example ------------- The first example illustrates how robust covariance estimation can help concentrating on a relevant cluster when another one exists. Here, many observations are confounded into one and break down the empirical covariance estimation. Of course, some screening tools would have pointed out the presence of two clusters (Support Vector Machines, Gaussian Mixture Models, univariate outlier detection, ...). But had it been a high-dimensional example, none of these could be applied that easily. Second example -------------- The second example shows the ability of the Minimum Covariance Determinant robust estimator of covariance to concentrate on the main mode of the data distribution: the location seems to be well estimated, although the covariance is hard to estimate due to the banana-shaped distribution. Anyway, we can get rid of some outlying observations. The One-Class SVM is able to capture the real data structure, but the difficulty is to adjust its kernel bandwidth parameter so as to obtain a good compromise between the shape of the data scatter matrix and the risk of over-fitting the data. """ print(__doc__) # Author: Virgile Fritsch <[email protected]> # License: BSD 3 clause import numpy as np from sklearn.covariance import EllipticEnvelope from sklearn.svm import OneClassSVM import matplotlib.pyplot as plt import matplotlib.font_manager from sklearn.datasets import load_boston # Get data X1 = load_boston()['data'][:, [8, 10]] # two clusters X2 = load_boston()['data'][:, [5, 12]] # "banana"-shaped # Define "classifiers" to be used classifiers = { "Empirical Covariance": EllipticEnvelope(support_fraction=1., contamination=0.261), "Robust Covariance (Minimum Covariance Determinant)": EllipticEnvelope(contamination=0.261), "OCSVM": OneClassSVM(nu=0.261, gamma=0.05)} colors = ['m', 'g', 'b'] legend1 = {} legend2 = {} # Learn a frontier for outlier detection with several classifiers xx1, yy1 = np.meshgrid(np.linspace(-8, 28, 500), np.linspace(3, 40, 500)) xx2, yy2 = np.meshgrid(np.linspace(3, 10, 500), np.linspace(-5, 45, 500)) for i, (clf_name, clf) in enumerate(classifiers.items()): plt.figure(1) clf.fit(X1) Z1 = clf.decision_function(np.c_[xx1.ravel(), yy1.ravel()]) Z1 = Z1.reshape(xx1.shape) legend1[clf_name] = plt.contour( xx1, yy1, Z1, levels=[0], linewidths=2, colors=colors[i]) plt.figure(2) clf.fit(X2) Z2 = clf.decision_function(np.c_[xx2.ravel(), yy2.ravel()]) Z2 = Z2.reshape(xx2.shape) legend2[clf_name] = plt.contour( xx2, yy2, Z2, levels=[0], linewidths=2, colors=colors[i]) legend1_values_list = list( legend1.values() ) legend1_keys_list = list( legend1.keys() ) # Plot the results (= shape of the data points cloud) plt.figure(1) # two clusters plt.title("Outlier detection on a real data set (boston housing)") plt.scatter(X1[:, 0], X1[:, 1], color='black') bbox_args = dict(boxstyle="round", fc="0.8") arrow_args = dict(arrowstyle="->") plt.annotate("several confounded points", xy=(24, 19), xycoords="data", textcoords="data", xytext=(13, 10), bbox=bbox_args, arrowprops=arrow_args) plt.xlim((xx1.min(), xx1.max())) plt.ylim((yy1.min(), yy1.max())) plt.legend((legend1_values_list[0].collections[0], legend1_values_list[1].collections[0], legend1_values_list[2].collections[0]), (legend1_keys_list[0], legend1_keys_list[1], legend1_keys_list[2]), loc="upper center", prop=matplotlib.font_manager.FontProperties(size=12)) plt.ylabel("accessibility to radial highways") plt.xlabel("pupil-teacher ratio by town") legend2_values_list = list( legend2.values() ) legend2_keys_list = list( legend2.keys() ) plt.figure(2) # "banana" shape plt.title("Outlier detection on a real data set (boston housing)") plt.scatter(X2[:, 0], X2[:, 1], color='black') plt.xlim((xx2.min(), xx2.max())) plt.ylim((yy2.min(), yy2.max())) plt.legend((legend2_values_list[0].collections[0], legend2_values_list[1].collections[0], legend2_values_list[2].collections[0]), (legend2_values_list[0], legend2_values_list[1], legend2_values_list[2]), loc="upper center", prop=matplotlib.font_manager.FontProperties(size=12)) plt.ylabel("% lower status of the population") plt.xlabel("average number of rooms per dwelling") plt.show()
bsd-3-clause
nrhine1/scikit-learn
sklearn/linear_model/tests/test_theil_sen.py
234
9928
""" Testing for Theil-Sen module (sklearn.linear_model.theil_sen) """ # Author: Florian Wilhelm <[email protected]> # License: BSD 3 clause from __future__ import division, print_function, absolute_import import os import sys from contextlib import contextmanager import numpy as np from numpy.testing import assert_array_equal, assert_array_less from numpy.testing import assert_array_almost_equal, assert_warns from scipy.linalg import norm from scipy.optimize import fmin_bfgs from nose.tools import raises, assert_almost_equal from sklearn.utils import ConvergenceWarning from sklearn.linear_model import LinearRegression, TheilSenRegressor from sklearn.linear_model.theil_sen import _spatial_median, _breakdown_point from sklearn.linear_model.theil_sen import _modified_weiszfeld_step from sklearn.utils.testing import assert_greater, assert_less @contextmanager def no_stdout_stderr(): old_stdout = sys.stdout old_stderr = sys.stderr sys.stdout = open(os.devnull, 'w') sys.stderr = open(os.devnull, 'w') yield sys.stdout.flush() sys.stderr.flush() sys.stdout = old_stdout sys.stderr = old_stderr def gen_toy_problem_1d(intercept=True): random_state = np.random.RandomState(0) # Linear model y = 3*x + N(2, 0.1**2) w = 3. if intercept: c = 2. n_samples = 50 else: c = 0.1 n_samples = 100 x = random_state.normal(size=n_samples) noise = 0.1 * random_state.normal(size=n_samples) y = w * x + c + noise # Add some outliers if intercept: x[42], y[42] = (-2, 4) x[43], y[43] = (-2.5, 8) x[33], y[33] = (2.5, 1) x[49], y[49] = (2.1, 2) else: x[42], y[42] = (-2, 4) x[43], y[43] = (-2.5, 8) x[53], y[53] = (2.5, 1) x[60], y[60] = (2.1, 2) x[72], y[72] = (1.8, -7) return x[:, np.newaxis], y, w, c def gen_toy_problem_2d(): random_state = np.random.RandomState(0) n_samples = 100 # Linear model y = 5*x_1 + 10*x_2 + N(1, 0.1**2) X = random_state.normal(size=(n_samples, 2)) w = np.array([5., 10.]) c = 1. noise = 0.1 * random_state.normal(size=n_samples) y = np.dot(X, w) + c + noise # Add some outliers n_outliers = n_samples // 10 ix = random_state.randint(0, n_samples, size=n_outliers) y[ix] = 50 * random_state.normal(size=n_outliers) return X, y, w, c def gen_toy_problem_4d(): random_state = np.random.RandomState(0) n_samples = 10000 # Linear model y = 5*x_1 + 10*x_2 + 42*x_3 + 7*x_4 + N(1, 0.1**2) X = random_state.normal(size=(n_samples, 4)) w = np.array([5., 10., 42., 7.]) c = 1. noise = 0.1 * random_state.normal(size=n_samples) y = np.dot(X, w) + c + noise # Add some outliers n_outliers = n_samples // 10 ix = random_state.randint(0, n_samples, size=n_outliers) y[ix] = 50 * random_state.normal(size=n_outliers) return X, y, w, c def test_modweiszfeld_step_1d(): X = np.array([1., 2., 3.]).reshape(3, 1) # Check startvalue is element of X and solution median = 2. new_y = _modified_weiszfeld_step(X, median) assert_array_almost_equal(new_y, median) # Check startvalue is not the solution y = 2.5 new_y = _modified_weiszfeld_step(X, y) assert_array_less(median, new_y) assert_array_less(new_y, y) # Check startvalue is not the solution but element of X y = 3. new_y = _modified_weiszfeld_step(X, y) assert_array_less(median, new_y) assert_array_less(new_y, y) # Check that a single vector is identity X = np.array([1., 2., 3.]).reshape(1, 3) y = X[0, ] new_y = _modified_weiszfeld_step(X, y) assert_array_equal(y, new_y) def test_modweiszfeld_step_2d(): X = np.array([0., 0., 1., 1., 0., 1.]).reshape(3, 2) y = np.array([0.5, 0.5]) # Check first two iterations new_y = _modified_weiszfeld_step(X, y) assert_array_almost_equal(new_y, np.array([1 / 3, 2 / 3])) new_y = _modified_weiszfeld_step(X, new_y) assert_array_almost_equal(new_y, np.array([0.2792408, 0.7207592])) # Check fix point y = np.array([0.21132505, 0.78867497]) new_y = _modified_weiszfeld_step(X, y) assert_array_almost_equal(new_y, y) def test_spatial_median_1d(): X = np.array([1., 2., 3.]).reshape(3, 1) true_median = 2. _, median = _spatial_median(X) assert_array_almost_equal(median, true_median) # Test larger problem and for exact solution in 1d case random_state = np.random.RandomState(0) X = random_state.randint(100, size=(1000, 1)) true_median = np.median(X.ravel()) _, median = _spatial_median(X) assert_array_equal(median, true_median) def test_spatial_median_2d(): X = np.array([0., 0., 1., 1., 0., 1.]).reshape(3, 2) _, median = _spatial_median(X, max_iter=100, tol=1.e-6) def cost_func(y): dists = np.array([norm(x - y) for x in X]) return np.sum(dists) # Check if median is solution of the Fermat-Weber location problem fermat_weber = fmin_bfgs(cost_func, median, disp=False) assert_array_almost_equal(median, fermat_weber) # Check when maximum iteration is exceeded a warning is emitted assert_warns(ConvergenceWarning, _spatial_median, X, max_iter=30, tol=0.) def test_theil_sen_1d(): X, y, w, c = gen_toy_problem_1d() # Check that Least Squares fails lstq = LinearRegression().fit(X, y) assert_greater(np.abs(lstq.coef_ - w), 0.9) # Check that Theil-Sen works theil_sen = TheilSenRegressor(random_state=0).fit(X, y) assert_array_almost_equal(theil_sen.coef_, w, 1) assert_array_almost_equal(theil_sen.intercept_, c, 1) def test_theil_sen_1d_no_intercept(): X, y, w, c = gen_toy_problem_1d(intercept=False) # Check that Least Squares fails lstq = LinearRegression(fit_intercept=False).fit(X, y) assert_greater(np.abs(lstq.coef_ - w - c), 0.5) # Check that Theil-Sen works theil_sen = TheilSenRegressor(fit_intercept=False, random_state=0).fit(X, y) assert_array_almost_equal(theil_sen.coef_, w + c, 1) assert_almost_equal(theil_sen.intercept_, 0.) def test_theil_sen_2d(): X, y, w, c = gen_toy_problem_2d() # Check that Least Squares fails lstq = LinearRegression().fit(X, y) assert_greater(norm(lstq.coef_ - w), 1.0) # Check that Theil-Sen works theil_sen = TheilSenRegressor(max_subpopulation=1e3, random_state=0).fit(X, y) assert_array_almost_equal(theil_sen.coef_, w, 1) assert_array_almost_equal(theil_sen.intercept_, c, 1) def test_calc_breakdown_point(): bp = _breakdown_point(1e10, 2) assert_less(np.abs(bp - 1 + 1/(np.sqrt(2))), 1.e-6) @raises(ValueError) def test_checksubparams_negative_subpopulation(): X, y, w, c = gen_toy_problem_1d() TheilSenRegressor(max_subpopulation=-1, random_state=0).fit(X, y) @raises(ValueError) def test_checksubparams_too_few_subsamples(): X, y, w, c = gen_toy_problem_1d() TheilSenRegressor(n_subsamples=1, random_state=0).fit(X, y) @raises(ValueError) def test_checksubparams_too_many_subsamples(): X, y, w, c = gen_toy_problem_1d() TheilSenRegressor(n_subsamples=101, random_state=0).fit(X, y) @raises(ValueError) def test_checksubparams_n_subsamples_if_less_samples_than_features(): random_state = np.random.RandomState(0) n_samples, n_features = 10, 20 X = random_state.normal(size=(n_samples, n_features)) y = random_state.normal(size=n_samples) TheilSenRegressor(n_subsamples=9, random_state=0).fit(X, y) def test_subpopulation(): X, y, w, c = gen_toy_problem_4d() theil_sen = TheilSenRegressor(max_subpopulation=250, random_state=0).fit(X, y) assert_array_almost_equal(theil_sen.coef_, w, 1) assert_array_almost_equal(theil_sen.intercept_, c, 1) def test_subsamples(): X, y, w, c = gen_toy_problem_4d() theil_sen = TheilSenRegressor(n_subsamples=X.shape[0], random_state=0).fit(X, y) lstq = LinearRegression().fit(X, y) # Check for exact the same results as Least Squares assert_array_almost_equal(theil_sen.coef_, lstq.coef_, 9) def test_verbosity(): X, y, w, c = gen_toy_problem_1d() # Check that Theil-Sen can be verbose with no_stdout_stderr(): TheilSenRegressor(verbose=True, random_state=0).fit(X, y) TheilSenRegressor(verbose=True, max_subpopulation=10, random_state=0).fit(X, y) def test_theil_sen_parallel(): X, y, w, c = gen_toy_problem_2d() # Check that Least Squares fails lstq = LinearRegression().fit(X, y) assert_greater(norm(lstq.coef_ - w), 1.0) # Check that Theil-Sen works theil_sen = TheilSenRegressor(n_jobs=-1, random_state=0, max_subpopulation=2e3).fit(X, y) assert_array_almost_equal(theil_sen.coef_, w, 1) assert_array_almost_equal(theil_sen.intercept_, c, 1) def test_less_samples_than_features(): random_state = np.random.RandomState(0) n_samples, n_features = 10, 20 X = random_state.normal(size=(n_samples, n_features)) y = random_state.normal(size=n_samples) # Check that Theil-Sen falls back to Least Squares if fit_intercept=False theil_sen = TheilSenRegressor(fit_intercept=False, random_state=0).fit(X, y) lstq = LinearRegression(fit_intercept=False).fit(X, y) assert_array_almost_equal(theil_sen.coef_, lstq.coef_, 12) # Check fit_intercept=True case. This will not be equal to the Least # Squares solution since the intercept is calculated differently. theil_sen = TheilSenRegressor(fit_intercept=True, random_state=0).fit(X, y) y_pred = theil_sen.predict(X) assert_array_almost_equal(y_pred, y, 12)
bsd-3-clause
dingocuster/scikit-learn
sklearn/datasets/mlcomp.py
289
3855
# Copyright (c) 2010 Olivier Grisel <[email protected]> # License: BSD 3 clause """Glue code to load http://mlcomp.org data as a scikit.learn dataset""" import os import numbers from sklearn.datasets.base import load_files def _load_document_classification(dataset_path, metadata, set_=None, **kwargs): if set_ is not None: dataset_path = os.path.join(dataset_path, set_) return load_files(dataset_path, metadata.get('description'), **kwargs) LOADERS = { 'DocumentClassification': _load_document_classification, # TODO: implement the remaining domain formats } def load_mlcomp(name_or_id, set_="raw", mlcomp_root=None, **kwargs): """Load a datasets as downloaded from http://mlcomp.org Parameters ---------- name_or_id : the integer id or the string name metadata of the MLComp dataset to load set_ : select the portion to load: 'train', 'test' or 'raw' mlcomp_root : the filesystem path to the root folder where MLComp datasets are stored, if mlcomp_root is None, the MLCOMP_DATASETS_HOME environment variable is looked up instead. **kwargs : domain specific kwargs to be passed to the dataset loader. Read more in the :ref:`User Guide <datasets>`. Returns ------- data : Bunch Dictionary-like object, the interesting attributes are: 'filenames', the files holding the raw to learn, 'target', the classification labels (integer index), 'target_names', the meaning of the labels, and 'DESCR', the full description of the dataset. Note on the lookup process: depending on the type of name_or_id, will choose between integer id lookup or metadata name lookup by looking at the unzipped archives and metadata file. TODO: implement zip dataset loading too """ if mlcomp_root is None: try: mlcomp_root = os.environ['MLCOMP_DATASETS_HOME'] except KeyError: raise ValueError("MLCOMP_DATASETS_HOME env variable is undefined") mlcomp_root = os.path.expanduser(mlcomp_root) mlcomp_root = os.path.abspath(mlcomp_root) mlcomp_root = os.path.normpath(mlcomp_root) if not os.path.exists(mlcomp_root): raise ValueError("Could not find folder: " + mlcomp_root) # dataset lookup if isinstance(name_or_id, numbers.Integral): # id lookup dataset_path = os.path.join(mlcomp_root, str(name_or_id)) else: # assume name based lookup dataset_path = None expected_name_line = "name: " + name_or_id for dataset in os.listdir(mlcomp_root): metadata_file = os.path.join(mlcomp_root, dataset, 'metadata') if not os.path.exists(metadata_file): continue with open(metadata_file) as f: for line in f: if line.strip() == expected_name_line: dataset_path = os.path.join(mlcomp_root, dataset) break if dataset_path is None: raise ValueError("Could not find dataset with metadata line: " + expected_name_line) # loading the dataset metadata metadata = dict() metadata_file = os.path.join(dataset_path, 'metadata') if not os.path.exists(metadata_file): raise ValueError(dataset_path + ' is not a valid MLComp dataset') with open(metadata_file) as f: for line in f: if ":" in line: key, value = line.split(":", 1) metadata[key.strip()] = value.strip() format = metadata.get('format', 'unknow') loader = LOADERS.get(format) if loader is None: raise ValueError("No loader implemented for format: " + format) return loader(dataset_path, metadata, set_=set_, **kwargs)
bsd-3-clause
coolralf/KaggleTraining
Titanic/titanic.py
1
3377
#%% import pandas as pd import numpy as np import os from pandas import Series,DataFrame path = os.getcwd() data_train = pd.read_csv(r"Titanic/train.csv") #data_info... from sklearn.ensemble import RandomForestRegressor def set_missing_ages(df): age_df = df[['Age','Fare','Parch','SibSp','Pclass']] known_age = age_df[age_df.Age.notnull()].as_matrix() unknown_age = age_df[age_df.Age.isnull()].as_matrix() y = known_age[:,0] X = known_age[:,1:] rfr = RandomForestRegressor(random_state=0,n_estimators=2000,n_jobs=-1) rfr.fit(X,y) predictedAges = rfr.predict(unknown_age[:,1::]) df.loc[(df.Age.isnull()),'Age'] = predictedAges return df,rfr def set_Cabin_type(df): df.loc[(df.Cabin.notnull()),'Cabin'] = 'Yes' df.loc[(df.Cabin.isnull()),'Cabin'] = 'No' return df data_train, rfr = set_missing_ages(data_train) data_train = set_Cabin_type(data_train) dummies_Cabin = pd.get_dummies(data_train["Cabin"],prefix='Cabin') dummies_Embarked = pd.get_dummies(data_train['Embarked'],prefix='Embarked') dummies_Sex = pd.get_dummies(data_train['Sex'],prefix='Sex') dummies_Pclass = pd.get_dummies(data_train['Pclass'],prefix='Pclass') df = pd.concat([data_train,dummies_Cabin,dummies_Embarked,dummies_Pclass,dummies_Sex],axis = 1) df.drop(['Cabin','Pclass','Sex','Name','Ticket','Embarked'],axis = 1,inplace=True) #scaling import sklearn.preprocessing as preprocessing scaler = preprocessing.StandardScaler() age_scale_param = scaler.fit(df['Age']) df['Age_scaled'] = scaler.fit_transform(df['Age'],age_scale_param) fare_scale_param = scaler.fit(df['Fare']) df['Fare_scaled']= scaler.fit_transform(df['Fare'],fare_scale_param) #modelling from sklearn import linear_model train_df = df.filter(regex='Survived|Age_.*|SibSp|Parch|Fare_.*|Cabin_.*|Embarked_.*|Sex_.*|Pclass_.*') train_np = train_df.as_matrix() y = train_np[:,0] X = train_np[:,1:] clf = linear_model.LogisticRegression(C=1.0,penalty='l2',tol=1e-4) clf.fit(X,y) # model save from sklearn.externals import joblib joblib.dump(clf,"Titanic/clf.model") #processing test_data data_test= pd.read_csv(r"Titanic/test.csv") data_test.loc[(data_test.Fare.isnull()),'Fare']= 0 tmp_df = data_test[['Age','Fare','Parch','SibSp','Pclass']] null_age = tmp_df[data_test.Age.isnull()].as_matrix() X = null_age[:,1:] predictedAges = rfr.predict(X) data_test.loc[(data_test.Age.isnull()),'Age'] = predictedAges data_test = set_Cabin_type(data_test) dummies_Cabin = pd.get_dummies(data_test["Cabin"],prefix='Cabin') dummies_Embarked = pd.get_dummies(data_test['Embarked'],prefix='Embarked') dummies_Sex = pd.get_dummies(data_test['Sex'],prefix='Sex') dummies_Pclass = pd.get_dummies(data_test['Pclass'],prefix='Pclass') df_test = pd.concat([data_test,dummies_Cabin,dummies_Embarked,dummies_Pclass,dummies_Sex],axis = 1) df_test.drop(['Cabin','Pclass','Sex','Name','Ticket','Embarked'],axis = 1,inplace=True) df_test['Age_scaled'] = scaler.fit_transform(df_test['Age'],age_scale_param) df_test['Fare_scaled']= scaler.fit_transform(df_test['Fare'],fare_scale_param) test = df_test.filter(regex='Survived|Age_.*|SibSp|Parch|Fare_.*|Cabin_.*|Embarked_.*|Sex_.*|Pclass_.*') predictions = clf.predict(test) result = pd.DataFrame({'PassengerId':data_test['PassengerId'].as_matrix(),'Survived':predictions.astype(np.int32)}) result.to_csv("Titanic/result.csv",index=False)
mit
alexeyum/scikit-learn
benchmarks/bench_sample_without_replacement.py
397
8008
""" Benchmarks for sampling without replacement of integer. """ from __future__ import division from __future__ import print_function import gc import sys import optparse from datetime import datetime import operator import matplotlib.pyplot as plt import numpy as np import random from sklearn.externals.six.moves import xrange from sklearn.utils.random import sample_without_replacement def compute_time(t_start, delta): mu_second = 0.0 + 10 ** 6 # number of microseconds in a second return delta.seconds + delta.microseconds / mu_second def bench_sample(sampling, n_population, n_samples): gc.collect() # start time t_start = datetime.now() sampling(n_population, n_samples) delta = (datetime.now() - t_start) # stop time time = compute_time(t_start, delta) return time if __name__ == "__main__": ########################################################################### # Option parser ########################################################################### op = optparse.OptionParser() op.add_option("--n-times", dest="n_times", default=5, type=int, help="Benchmark results are average over n_times experiments") op.add_option("--n-population", dest="n_population", default=100000, type=int, help="Size of the population to sample from.") op.add_option("--n-step", dest="n_steps", default=5, type=int, help="Number of step interval between 0 and n_population.") default_algorithms = "custom-tracking-selection,custom-auto," \ "custom-reservoir-sampling,custom-pool,"\ "python-core-sample,numpy-permutation" op.add_option("--algorithm", dest="selected_algorithm", default=default_algorithms, type=str, help="Comma-separated list of transformer to benchmark. " "Default: %default. \nAvailable: %default") # op.add_option("--random-seed", # dest="random_seed", default=13, type=int, # help="Seed used by the random number generators.") (opts, args) = op.parse_args() if len(args) > 0: op.error("this script takes no arguments.") sys.exit(1) selected_algorithm = opts.selected_algorithm.split(',') for key in selected_algorithm: if key not in default_algorithms.split(','): raise ValueError("Unknown sampling algorithm \"%s\" not in (%s)." % (key, default_algorithms)) ########################################################################### # List sampling algorithm ########################################################################### # We assume that sampling algorithm has the following signature: # sample(n_population, n_sample) # sampling_algorithm = {} ########################################################################### # Set Python core input sampling_algorithm["python-core-sample"] = \ lambda n_population, n_sample: \ random.sample(xrange(n_population), n_sample) ########################################################################### # Set custom automatic method selection sampling_algorithm["custom-auto"] = \ lambda n_population, n_samples, random_state=None: \ sample_without_replacement(n_population, n_samples, method="auto", random_state=random_state) ########################################################################### # Set custom tracking based method sampling_algorithm["custom-tracking-selection"] = \ lambda n_population, n_samples, random_state=None: \ sample_without_replacement(n_population, n_samples, method="tracking_selection", random_state=random_state) ########################################################################### # Set custom reservoir based method sampling_algorithm["custom-reservoir-sampling"] = \ lambda n_population, n_samples, random_state=None: \ sample_without_replacement(n_population, n_samples, method="reservoir_sampling", random_state=random_state) ########################################################################### # Set custom reservoir based method sampling_algorithm["custom-pool"] = \ lambda n_population, n_samples, random_state=None: \ sample_without_replacement(n_population, n_samples, method="pool", random_state=random_state) ########################################################################### # Numpy permutation based sampling_algorithm["numpy-permutation"] = \ lambda n_population, n_sample: \ np.random.permutation(n_population)[:n_sample] ########################################################################### # Remove unspecified algorithm sampling_algorithm = dict((key, value) for key, value in sampling_algorithm.items() if key in selected_algorithm) ########################################################################### # Perform benchmark ########################################################################### time = {} n_samples = np.linspace(start=0, stop=opts.n_population, num=opts.n_steps).astype(np.int) ratio = n_samples / opts.n_population print('Benchmarks') print("===========================") for name in sorted(sampling_algorithm): print("Perform benchmarks for %s..." % name, end="") time[name] = np.zeros(shape=(opts.n_steps, opts.n_times)) for step in xrange(opts.n_steps): for it in xrange(opts.n_times): time[name][step, it] = bench_sample(sampling_algorithm[name], opts.n_population, n_samples[step]) print("done") print("Averaging results...", end="") for name in sampling_algorithm: time[name] = np.mean(time[name], axis=1) print("done\n") # Print results ########################################################################### print("Script arguments") print("===========================") arguments = vars(opts) print("%s \t | %s " % ("Arguments".ljust(16), "Value".center(12),)) print(25 * "-" + ("|" + "-" * 14) * 1) for key, value in arguments.items(): print("%s \t | %s " % (str(key).ljust(16), str(value).strip().center(12))) print("") print("Sampling algorithm performance:") print("===============================") print("Results are averaged over %s repetition(s)." % opts.n_times) print("") fig = plt.figure('scikit-learn sample w/o replacement benchmark results') plt.title("n_population = %s, n_times = %s" % (opts.n_population, opts.n_times)) ax = fig.add_subplot(111) for name in sampling_algorithm: ax.plot(ratio, time[name], label=name) ax.set_xlabel('ratio of n_sample / n_population') ax.set_ylabel('Time (s)') ax.legend() # Sort legend labels handles, labels = ax.get_legend_handles_labels() hl = sorted(zip(handles, labels), key=operator.itemgetter(1)) handles2, labels2 = zip(*hl) ax.legend(handles2, labels2, loc=0) plt.show()
bsd-3-clause
EPAENERGYSTAR/epathermostat
docs/conf.py
1
9869
# -*- coding: utf-8 -*- # # thermostat documentation build configuration file, created by # sphinx-quickstart on Mon May 18 15:25:28 2015. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys import os import shlex from mock import Mock as MagicMock class Mock(MagicMock): @classmethod def __getattr__(cls, name): return Mock() MOCK_MODULES = [ 'pandas', 'eemeter', 'eemeter.consumption', 'eemeter.weather', 'eemeter.weather.location', 'eemeter.location', 'eemeter.evaluation', 'eeweather.cache', 'scipy', 'scipy.optimize', 'scipy.stats', ] sys.modules.update((mod_name, Mock()) for mod_name in MOCK_MODULES) # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. #sys.path.insert(0, os.path.abspath('.')) # -- General configuration ------------------------------------------------ # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.todo', 'sphinx.ext.mathjax', 'sphinx.ext.viewcode', 'sphinx.ext.napoleon', 'sphinx.ext.autosectionlabel', ] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # source_suffix = ['.rst', '.md'] source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'thermostat' copyright = u'2015-2016, Open Energy Efficiency, Inc.' author = u'Open Energy Efficiency, Inc.' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = '1.7' # The full version, including alpha/beta/rc tags. release = '1.7.3' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ['_build'] # The reST default role (used for this markup: `text`) to use for all # documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # If true, keep warnings as "system message" paragraphs in the built documents. #keep_warnings = False # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = True # -- Options for HTML output ---------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'alabaster' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. #html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. #html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. #html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # Add any extra paths that contain custom files (such as robots.txt or # .htaccess) here, relative to this directory. These files are copied # directly to the root of the documentation. #html_extra_path = [] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_domain_indices = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. #html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. #html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Language to be used for generating the HTML full-text search index. # Sphinx supports the following languages: # 'da', 'de', 'en', 'es', 'fi', 'fr', 'hu', 'it', 'ja' # 'nl', 'no', 'pt', 'ro', 'ru', 'sv', 'tr' #html_search_language = 'en' # A dictionary with options for the search language support, empty by default. # Now only 'ja' uses this config value #html_search_options = {'type': 'default'} # The name of a javascript file (relative to the configuration directory) that # implements a search results scorer. If empty, the default will be used. #html_search_scorer = 'scorer.js' # Output file base name for HTML help builder. htmlhelp_basename = 'thermostatdoc' # -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). #'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). #'pointsize': '10pt', # Additional stuff for the LaTeX preamble. #'preamble': '', # Latex figure (float) alignment #'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, 'thermostat.tex', u'thermostat Documentation', u'Open Energy Efficiency, Inc.', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, 'thermostat', u'thermostat Documentation', [author], 1) ] # If true, show URL addresses after external links. #man_show_urls = False # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'thermostat', u'thermostat Documentation', author, 'thermostat', 'One line description of project.', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. #texinfo_appendices = [] # If false, no module index is generated. #texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. #texinfo_show_urls = 'footnote' # If true, do not generate a @detailmenu in the "Top" node's menu. #texinfo_no_detailmenu = False
mit
sunzhxjs/JobGIS
lib/python2.7/site-packages/pandas/msgpack/__init__.py
9
1180
# coding: utf-8 from pandas.msgpack._version import version from pandas.msgpack.exceptions import * from collections import namedtuple class ExtType(namedtuple('ExtType', 'code data')): """ExtType represents ext type in msgpack.""" def __new__(cls, code, data): if not isinstance(code, int): raise TypeError("code must be int") if not isinstance(data, bytes): raise TypeError("data must be bytes") if not 0 <= code <= 127: raise ValueError("code must be 0~127") return super(ExtType, cls).__new__(cls, code, data) import os from pandas.msgpack._packer import Packer from pandas.msgpack._unpacker import unpack, unpackb, Unpacker def pack(o, stream, **kwargs): """ Pack object `o` and write it to `stream` See :class:`Packer` for options. """ packer = Packer(**kwargs) stream.write(packer.pack(o)) def packb(o, **kwargs): """ Pack object `o` and return packed bytes See :class:`Packer` for options. """ return Packer(**kwargs).pack(o) # alias for compatibility to simplejson/marshal/pickle. load = unpack loads = unpackb dump = pack dumps = packb
mit
leungmanhin/opencog
opencog/python/attic/spatiotemporal/temporal_events/__init__.py
33
9273
from scipy.stats.distributions import rv_frozen from spatiotemporal.temporal_events.relation_formulas import FormulaCreator, RelationFormulaGeometricMean, BaseRelationFormula, RelationFormulaConvolution from spatiotemporal.temporal_events.util import calculate_bounds_of_probability_distribution from spatiotemporal.time_intervals import check_is_time_interval, TimeInterval from spatiotemporal.temporal_events.membership_function import MembershipFunction, ProbabilityDistributionPiecewiseLinear from spatiotemporal.unix_time import UnixTime from utility.generic import convert_dict_to_sorted_lists from utility.functions import FunctionPiecewiseLinear, FUNCTION_ZERO __author__ = 'keyvan' class TemporalEvent(list, TimeInterval): _distribution_beginning = None _distribution_ending = None _beginning = None _ending = None _dict = None def __init__(self, distribution_beginning, distribution_ending, bins=50, relation_formula=None): if not isinstance(distribution_beginning, rv_frozen): raise TypeError("'distribution_beginning' should be a scipy frozen distribution") if not isinstance(distribution_ending, rv_frozen): raise TypeError("'distribution_ending' should be a scipy frozen distribution") self._distribution_beginning = distribution_beginning self._distribution_ending = distribution_ending a, beginning = calculate_bounds_of_probability_distribution(distribution_beginning) ending, b = calculate_bounds_of_probability_distribution(distribution_ending) self._beginning = UnixTime(beginning) self._ending = UnixTime(ending) self.membership_function = MembershipFunction(self) bins_beginning = bins / 2 bins_ending = bins - bins_beginning self.interval_beginning = TimeInterval(a, beginning, bins_beginning) self.interval_ending = TimeInterval(ending, b, bins_ending) list.__init__(self, self.interval_beginning + self.interval_ending) TimeInterval.__init__(self, a, b, bins) if relation_formula is None: relation_formula = RelationFormulaConvolution() elif not isinstance(relation_formula, BaseRelationFormula): raise TypeError("'relation_formula' should be of type 'BaseRelationFormula'") relation_formula.bounds[distribution_beginning] = self.a, self.beginning relation_formula.bounds[distribution_ending] = self.ending, self.b self._formula_creator = FormulaCreator(relation_formula) def degree(self, time_step=None, a=None, b=None, interval=None): """ usage: provide 'time_step' or 'a' and 'b' or 'interval' """ if time_step is not None: return self.membership_function(time_step) if interval is None: if (a, b) == (None, None): interval = self else: interval = TimeInterval(a, b) else: check_is_time_interval(interval) return integral(self.membership_function, interval.a, interval.b) def temporal_relations_with(self, other): return self._formula_creator.temporal_relations_between(self, other) def instance(self): return TemporalInstance(self.distribution_beginning.rvs(), self.distribution_ending.rvs()) def to_dict(self): if self._dict is None: self._dict = {} for time_step in self.to_list(): self._dict[time_step] = self.membership_function(time_step) return self._dict # def plot(self, show_distributions=False): # import matplotlib.pyplot as plt # plt.plot(self.to_datetime_list(), self.membership_function()) # if show_distributions: # if hasattr(self.distribution_beginning, 'plot'): # self.distribution_beginning.plot() # else: # plt.plot(self.interval_beginning.to_datetime_list(), # self.distribution_beginning.pdf(self.interval_beginning)) # if hasattr(self.distribution_ending, 'plot'): # self.distribution_ending.plot() # else: # plt.plot(self.interval_ending.to_datetime_list(), # self.distribution_ending.pdf(self.interval_ending)) # return plt def plot(self, plt=None, show_distributions=False): if plt is None: import matplotlib.pyplot as plt plt.plot(self.to_float_list(), self.membership_function()) if show_distributions: if hasattr(self.distribution_beginning, 'plot'): self.distribution_beginning.plot() else: plt.plot(self.interval_beginning.to_float_list(), self.distribution_beginning.pdf(self.interval_beginning)) if hasattr(self.distribution_ending, 'plot'): self.distribution_ending.plot() else: plt.plot(self.interval_ending.to_float_list(), self.distribution_ending.pdf(self.interval_ending)) return plt @property def distribution_beginning(self): return self._distribution_beginning @property def distribution_ending(self): return self._distribution_ending @property def beginning(self): return self._beginning @property def ending(self): return self._ending def __getitem__(self, portion_index): if portion_index not in [0, 1]: raise IndexError("TemporalEvent object only accepts '0' or '1' as index") if portion_index == 0: return self.distribution_beginning return self.distribution_ending def __mul__(self, other): return self.temporal_relations_with(other) def __str__(self): return repr(self) # use TemporalEventTrapezium instead class TemporalEventPiecewiseLinear(TemporalEvent): def __init__(self, dictionary_beginning, dictionary_ending, bins=50): input_list_beginning, output_list_beginning = convert_dict_to_sorted_lists(dictionary_beginning) for i in xrange(1, len(input_list_beginning)): if not dictionary_beginning[input_list_beginning[i]] > dictionary_beginning[input_list_beginning[i - 1]]: raise TypeError("values of 'dictionary_beginning' should be increasing in time") input_list_ending, output_list_ending = convert_dict_to_sorted_lists(dictionary_ending) for i in xrange(1, len(input_list_ending)): if not dictionary_ending[input_list_ending[i]] < dictionary_ending[input_list_ending[i - 1]]: raise TypeError("values of 'dictionary_ending' should be decreasing in time") dictionary_ending = {} for i, time_step in enumerate(input_list_ending): dictionary_ending[time_step] = output_list_ending[len(input_list_ending) - i - 1] input_list_ending, output_list_ending = convert_dict_to_sorted_lists(dictionary_ending) distribution_beginning = ProbabilityDistributionPiecewiseLinear(dictionary_beginning) distribution_ending = ProbabilityDistributionPiecewiseLinear(dictionary_ending) TemporalEvent.__init__(self, distribution_beginning, distribution_ending, bins=bins) self._list = sorted(set(input_list_beginning + input_list_ending)) self.membership_function = FunctionPiecewiseLinear(self.to_dict(), FUNCTION_ZERO) def __getitem__(self, index): return self._list.__getitem__(index) def __len__(self): return len(self._list) def __iter__(self): return iter(self._list) def __reversed__(self): return reversed(self._list) def __repr__(self): pairs = ['{0}: {1}'.format(self[i], self.membership_function[i]) for i in xrange(len(self))] return '{0}({1})'.format(self.__class__.__name__, ', '.join(pairs)) class TemporalInstance(TimeInterval): def __init__(self, a, b): TimeInterval.__init__(self, a, b, 1) def plot(self): import matplotlib.pyplot as plt from spatiotemporal.unix_time import UnixTime plt.plot([UnixTime(self.a).to_datetime(), UnixTime(self.b).to_datetime()], [1, 1]) return plt if __name__ == '__main__': from utility.functions import integral from scipy.stats import norm import matplotlib.pyplot as plt #event = TemporalInstance(datetime(2010, 1, 1), datetime(2011, 2, 1)) #plt = event.plot() #plt.show() events = [ # TemporalEvent(norm(loc=10, scale=2), norm(loc=30, scale=2), 100), # TemporalEvent(norm(loc=5, scale=2), norm(loc=15, scale=4), 100), TemporalEventPiecewiseLinear({1: 0, 2: 0.1, 3: 0.3, 4: 0.7, 5: 1}, {6: 1, 7: 0.9, 8: 0.6, 9: 0.1, 10: 0}), TemporalEventPiecewiseLinear({1: 0, 2: 0.1, 3: 0.3, 4: 0.7, 5: 1}, {3.5: 1, 4.5: 0.9, 8: 0.6, 9: 0.1, 10: 0}) ] print type(events[0]) print events[0] * events[1] for event in events: plt = event.plot() print integral(event.distribution_beginning.pdf, event.a, event.beginning) print event.distribution_beginning.rvs(10) plt.ylim(ymax=1.1) #plt.figure() plt.show()
agpl-3.0
mlyundin/scikit-learn
sklearn/neighbors/tests/test_kd_tree.py
159
7852
import numpy as np from numpy.testing import assert_array_almost_equal from sklearn.neighbors.kd_tree import (KDTree, NeighborsHeap, simultaneous_sort, kernel_norm, nodeheap_sort, DTYPE, ITYPE) from sklearn.neighbors.dist_metrics import DistanceMetric from sklearn.utils.testing import SkipTest, assert_allclose V = np.random.random((3, 3)) V = np.dot(V, V.T) DIMENSION = 3 METRICS = {'euclidean': {}, 'manhattan': {}, 'chebyshev': {}, 'minkowski': dict(p=3)} def brute_force_neighbors(X, Y, k, metric, **kwargs): D = DistanceMetric.get_metric(metric, **kwargs).pairwise(Y, X) ind = np.argsort(D, axis=1)[:, :k] dist = D[np.arange(Y.shape[0])[:, None], ind] return dist, ind def test_kd_tree_query(): np.random.seed(0) X = np.random.random((40, DIMENSION)) Y = np.random.random((10, DIMENSION)) def check_neighbors(dualtree, breadth_first, k, metric, kwargs): kdt = KDTree(X, leaf_size=1, metric=metric, **kwargs) dist1, ind1 = kdt.query(Y, k, dualtree=dualtree, breadth_first=breadth_first) dist2, ind2 = brute_force_neighbors(X, Y, k, metric, **kwargs) # don't check indices here: if there are any duplicate distances, # the indices may not match. Distances should not have this problem. assert_array_almost_equal(dist1, dist2) for (metric, kwargs) in METRICS.items(): for k in (1, 3, 5): for dualtree in (True, False): for breadth_first in (True, False): yield (check_neighbors, dualtree, breadth_first, k, metric, kwargs) def test_kd_tree_query_radius(n_samples=100, n_features=10): np.random.seed(0) X = 2 * np.random.random(size=(n_samples, n_features)) - 1 query_pt = np.zeros(n_features, dtype=float) eps = 1E-15 # roundoff error can cause test to fail kdt = KDTree(X, leaf_size=5) rad = np.sqrt(((X - query_pt) ** 2).sum(1)) for r in np.linspace(rad[0], rad[-1], 100): ind = kdt.query_radius([query_pt], r + eps)[0] i = np.where(rad <= r + eps)[0] ind.sort() i.sort() assert_array_almost_equal(i, ind) def test_kd_tree_query_radius_distance(n_samples=100, n_features=10): np.random.seed(0) X = 2 * np.random.random(size=(n_samples, n_features)) - 1 query_pt = np.zeros(n_features, dtype=float) eps = 1E-15 # roundoff error can cause test to fail kdt = KDTree(X, leaf_size=5) rad = np.sqrt(((X - query_pt) ** 2).sum(1)) for r in np.linspace(rad[0], rad[-1], 100): ind, dist = kdt.query_radius([query_pt], r + eps, return_distance=True) ind = ind[0] dist = dist[0] d = np.sqrt(((query_pt - X[ind]) ** 2).sum(1)) assert_array_almost_equal(d, dist) def compute_kernel_slow(Y, X, kernel, h): d = np.sqrt(((Y[:, None, :] - X) ** 2).sum(-1)) norm = kernel_norm(h, X.shape[1], kernel) if kernel == 'gaussian': return norm * np.exp(-0.5 * (d * d) / (h * h)).sum(-1) elif kernel == 'tophat': return norm * (d < h).sum(-1) elif kernel == 'epanechnikov': return norm * ((1.0 - (d * d) / (h * h)) * (d < h)).sum(-1) elif kernel == 'exponential': return norm * (np.exp(-d / h)).sum(-1) elif kernel == 'linear': return norm * ((1 - d / h) * (d < h)).sum(-1) elif kernel == 'cosine': return norm * (np.cos(0.5 * np.pi * d / h) * (d < h)).sum(-1) else: raise ValueError('kernel not recognized') def test_kd_tree_kde(n_samples=100, n_features=3): np.random.seed(0) X = np.random.random((n_samples, n_features)) Y = np.random.random((n_samples, n_features)) kdt = KDTree(X, leaf_size=10) for kernel in ['gaussian', 'tophat', 'epanechnikov', 'exponential', 'linear', 'cosine']: for h in [0.01, 0.1, 1]: dens_true = compute_kernel_slow(Y, X, kernel, h) def check_results(kernel, h, atol, rtol, breadth_first): dens = kdt.kernel_density(Y, h, atol=atol, rtol=rtol, kernel=kernel, breadth_first=breadth_first) assert_allclose(dens, dens_true, atol=atol, rtol=max(rtol, 1e-7)) for rtol in [0, 1E-5]: for atol in [1E-6, 1E-2]: for breadth_first in (True, False): yield (check_results, kernel, h, atol, rtol, breadth_first) def test_gaussian_kde(n_samples=1000): # Compare gaussian KDE results to scipy.stats.gaussian_kde from scipy.stats import gaussian_kde np.random.seed(0) x_in = np.random.normal(0, 1, n_samples) x_out = np.linspace(-5, 5, 30) for h in [0.01, 0.1, 1]: kdt = KDTree(x_in[:, None]) try: gkde = gaussian_kde(x_in, bw_method=h / np.std(x_in)) except TypeError: raise SkipTest("Old scipy, does not accept explicit bandwidth.") dens_kdt = kdt.kernel_density(x_out[:, None], h) / n_samples dens_gkde = gkde.evaluate(x_out) assert_array_almost_equal(dens_kdt, dens_gkde, decimal=3) def test_kd_tree_two_point(n_samples=100, n_features=3): np.random.seed(0) X = np.random.random((n_samples, n_features)) Y = np.random.random((n_samples, n_features)) r = np.linspace(0, 1, 10) kdt = KDTree(X, leaf_size=10) D = DistanceMetric.get_metric("euclidean").pairwise(Y, X) counts_true = [(D <= ri).sum() for ri in r] def check_two_point(r, dualtree): counts = kdt.two_point_correlation(Y, r=r, dualtree=dualtree) assert_array_almost_equal(counts, counts_true) for dualtree in (True, False): yield check_two_point, r, dualtree def test_kd_tree_pickle(): import pickle np.random.seed(0) X = np.random.random((10, 3)) kdt1 = KDTree(X, leaf_size=1) ind1, dist1 = kdt1.query(X) def check_pickle_protocol(protocol): s = pickle.dumps(kdt1, protocol=protocol) kdt2 = pickle.loads(s) ind2, dist2 = kdt2.query(X) assert_array_almost_equal(ind1, ind2) assert_array_almost_equal(dist1, dist2) for protocol in (0, 1, 2): yield check_pickle_protocol, protocol def test_neighbors_heap(n_pts=5, n_nbrs=10): heap = NeighborsHeap(n_pts, n_nbrs) for row in range(n_pts): d_in = np.random.random(2 * n_nbrs).astype(DTYPE) i_in = np.arange(2 * n_nbrs, dtype=ITYPE) for d, i in zip(d_in, i_in): heap.push(row, d, i) ind = np.argsort(d_in) d_in = d_in[ind] i_in = i_in[ind] d_heap, i_heap = heap.get_arrays(sort=True) assert_array_almost_equal(d_in[:n_nbrs], d_heap[row]) assert_array_almost_equal(i_in[:n_nbrs], i_heap[row]) def test_node_heap(n_nodes=50): vals = np.random.random(n_nodes).astype(DTYPE) i1 = np.argsort(vals) vals2, i2 = nodeheap_sort(vals) assert_array_almost_equal(i1, i2) assert_array_almost_equal(vals[i1], vals2) def test_simultaneous_sort(n_rows=10, n_pts=201): dist = np.random.random((n_rows, n_pts)).astype(DTYPE) ind = (np.arange(n_pts) + np.zeros((n_rows, 1))).astype(ITYPE) dist2 = dist.copy() ind2 = ind.copy() # simultaneous sort rows using function simultaneous_sort(dist, ind) # simultaneous sort rows using numpy i = np.argsort(dist2, axis=1) row_ind = np.arange(n_rows)[:, None] dist2 = dist2[row_ind, i] ind2 = ind2[row_ind, i] assert_array_almost_equal(dist, dist2) assert_array_almost_equal(ind, ind2)
bsd-3-clause
mfrey/baltimore
plot/overheadplot.py
1
3419
#!/usr/bin/env python2.7 import os import re import csv import numpy as np import matplotlib.pyplot as plt import json import requests import matplotlib class OverheadPlot: def __init__(self): self.title = "Overhead ($\mu$ and $\pm \sigma$ interval)" self.ylabel = "Packets [%]" self.xlabel = "Pause Time [s]" self.xlist = [] self.mu = [] self.sigma = [] #self.yticks = [2, 3, 4, 6, 7, 8, 9, 10, 12, 15] #self.yticks = [0.2, 0.3, 0.4, 0.6, 0.7, 0.8, 0.9, 1.0] self.yticks = [2, 3, 4, 6, 7, 8, 9, 10] self.labels = [] self.markers = ['s','^','v','2','*','3','d'] self.legend_location = 4 def draw(self, filename): figure, axis = plt.subplots(1) axis.plot(self.xlist, self.mu, lw=2, label='ARA', color='#348ABD') # axis.plot(t, mu1, lw=2, label='mean population 2', color='yellow') #axis.fill_between(self.xlist, self.mu + self.sigma, self.mu - self.sigma, facecolor='blue', alpha=0.5) axis.fill_between(self.xlist, [i + j for i, j in zip(self.mu, self.sigma)], [i - j for i, j in zip(self.mu, self.sigma)], facecolor='#348ABD', alpha=0.5) # axis.fill_between(t, mu2+sigma2, mu2-sigma2, facecolor='yellow', alpha=0.5) axis.set_title(self.title) axis.legend(loc=self.legend_location) axis.set_xlabel(self.xlabel) axis.set_ylabel(self.ylabel) axis.grid() figure.savefig(filename) if __name__ == "__main__": csv_location = '/home/michael/Desktop/Projekte/remote/jupiter/Desktop/TechReport' overhead = {} scenarios = ['ARA0', 'ARA100', 'ARA300', 'ARA500', 'ARA700', 'ARA900', 'ARA1000'] scenario_files = {} for root, _, files in os.walk(csv_location): for name in files: if name.endswith('csv'): scenario = name.split("/")[-1].split("_")[0] if scenario in scenarios: if scenario not in scenario_files: scenario_files[scenario] = [] scenario_files[scenario].append(os.path.join(root, name)) for scenario in scenario_files: for csv_file in scenario_files[scenario]: if csv_file.endswith("overhead_raw.csv"): overhead[scenario] = [] with open(csv_file, 'rt') as csvfile: reader = csv.reader(csvfile, delimiter=',', quotechar='"') next(reader) for row in reader: if len(row) > 1: overhead[scenario].append(float(row[1]) * 100) # print(overhead[scenario]) # print(" ") # print(overhead) s = requests.get("https://raw.github.com/CamDavidsonPilon/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers/master/styles/bmh_matplotlibrc.json").json() matplotlib.rcParams.update(s) plot = OverheadPlot() plot.xlist = [0, 100, 300, 500, 700, 900, 1000] convert = lambda text: int(text) if text.isdigit() else text alphanum_key = lambda key: [ convert(c) for c in re.split('([0-9]+)', key) ] mean = [] std = [] for scenario in sorted(overhead, key = alphanum_key): mean.append(np.mean(overhead[scenario])) std.append(np.std(overhead[scenario])) plot.mu = mean plot.sigma = std plot.draw("test.pdf")
gpl-3.0
dimarkov/seaborn
seaborn/tests/test_utils.py
11
11537
"""Tests for plotting utilities.""" import warnings import tempfile import shutil import numpy as np import pandas as pd import matplotlib.pyplot as plt import nose import nose.tools as nt from nose.tools import assert_equal, raises import numpy.testing as npt import pandas.util.testing as pdt from distutils.version import LooseVersion pandas_has_categoricals = LooseVersion(pd.__version__) >= "0.15" from pandas.util.testing import network from ..utils import get_dataset_names, load_dataset try: from bs4 import BeautifulSoup except ImportError: BeautifulSoup = None from .. import utils, rcmod a_norm = np.random.randn(100) def test_pmf_hist_basics(): """Test the function to return barplot args for pmf hist.""" out = utils.pmf_hist(a_norm) assert_equal(len(out), 3) x, h, w = out assert_equal(len(x), len(h)) # Test simple case a = np.arange(10) x, h, w = utils.pmf_hist(a, 10) nose.tools.assert_true(np.all(h == h[0])) def test_pmf_hist_widths(): """Test histogram width is correct.""" x, h, w = utils.pmf_hist(a_norm) assert_equal(x[1] - x[0], w) def test_pmf_hist_normalization(): """Test that output data behaves like a PMF.""" x, h, w = utils.pmf_hist(a_norm) nose.tools.assert_almost_equal(sum(h), 1) nose.tools.assert_less_equal(h.max(), 1) def test_pmf_hist_bins(): """Test bin specification.""" x, h, w = utils.pmf_hist(a_norm, 20) assert_equal(len(x), 20) def test_ci_to_errsize(): """Test behavior of ci_to_errsize.""" cis = [[.5, .5], [1.25, 1.5]] heights = [1, 1.5] actual_errsize = np.array([[.5, 1], [.25, 0]]) test_errsize = utils.ci_to_errsize(cis, heights) npt.assert_array_equal(actual_errsize, test_errsize) def test_desaturate(): """Test color desaturation.""" out1 = utils.desaturate("red", .5) assert_equal(out1, (.75, .25, .25)) out2 = utils.desaturate("#00FF00", .5) assert_equal(out2, (.25, .75, .25)) out3 = utils.desaturate((0, 0, 1), .5) assert_equal(out3, (.25, .25, .75)) out4 = utils.desaturate("red", .5) assert_equal(out4, (.75, .25, .25)) @raises(ValueError) def test_desaturation_prop(): """Test that pct outside of [0, 1] raises exception.""" utils.desaturate("blue", 50) def test_saturate(): """Test performance of saturation function.""" out = utils.saturate((.75, .25, .25)) assert_equal(out, (1, 0, 0)) def test_iqr(): """Test the IQR function.""" a = np.arange(5) iqr = utils.iqr(a) assert_equal(iqr, 2) class TestSpineUtils(object): sides = ["left", "right", "bottom", "top"] outer_sides = ["top", "right"] inner_sides = ["left", "bottom"] offset = 10 original_position = ("outward", 0) offset_position = ("outward", offset) def test_despine(self): f, ax = plt.subplots() for side in self.sides: nt.assert_true(ax.spines[side].get_visible()) utils.despine() for side in self.outer_sides: nt.assert_true(~ax.spines[side].get_visible()) for side in self.inner_sides: nt.assert_true(ax.spines[side].get_visible()) utils.despine(**dict(zip(self.sides, [True] * 4))) for side in self.sides: nt.assert_true(~ax.spines[side].get_visible()) plt.close("all") def test_despine_specific_axes(self): f, (ax1, ax2) = plt.subplots(2, 1) utils.despine(ax=ax2) for side in self.sides: nt.assert_true(ax1.spines[side].get_visible()) for side in self.outer_sides: nt.assert_true(~ax2.spines[side].get_visible()) for side in self.inner_sides: nt.assert_true(ax2.spines[side].get_visible()) plt.close("all") def test_despine_with_offset(self): f, ax = plt.subplots() for side in self.sides: nt.assert_equal(ax.spines[side].get_position(), self.original_position) utils.despine(ax=ax, offset=self.offset) for side in self.sides: is_visible = ax.spines[side].get_visible() new_position = ax.spines[side].get_position() if is_visible: nt.assert_equal(new_position, self.offset_position) else: nt.assert_equal(new_position, self.original_position) plt.close("all") def test_despine_with_offset_specific_axes(self): f, (ax1, ax2) = plt.subplots(2, 1) utils.despine(offset=self.offset, ax=ax2) for side in self.sides: nt.assert_equal(ax1.spines[side].get_position(), self.original_position) if ax2.spines[side].get_visible(): nt.assert_equal(ax2.spines[side].get_position(), self.offset_position) else: nt.assert_equal(ax2.spines[side].get_position(), self.original_position) plt.close("all") def test_despine_trim_spines(self): f, ax = plt.subplots() ax.plot([1, 2, 3], [1, 2, 3]) ax.set_xlim(.75, 3.25) utils.despine(trim=True) for side in self.inner_sides: bounds = ax.spines[side].get_bounds() nt.assert_equal(bounds, (1, 3)) plt.close("all") def test_despine_trim_inverted(self): f, ax = plt.subplots() ax.plot([1, 2, 3], [1, 2, 3]) ax.set_ylim(.85, 3.15) ax.invert_yaxis() utils.despine(trim=True) for side in self.inner_sides: bounds = ax.spines[side].get_bounds() nt.assert_equal(bounds, (1, 3)) plt.close("all") def test_despine_trim_noticks(self): f, ax = plt.subplots() ax.plot([1, 2, 3], [1, 2, 3]) ax.set_yticks([]) utils.despine(trim=True) nt.assert_equal(ax.get_yticks().size, 0) def test_offset_spines_warns(self): with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always", category=UserWarning) f, ax = plt.subplots() utils.offset_spines(offset=self.offset) nt.assert_true('deprecated' in str(w[0].message)) nt.assert_true(issubclass(w[0].category, UserWarning)) plt.close('all') def test_offset_spines(self): with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always", category=UserWarning) f, ax = plt.subplots() for side in self.sides: nt.assert_equal(ax.spines[side].get_position(), self.original_position) utils.offset_spines(offset=self.offset) for side in self.sides: nt.assert_equal(ax.spines[side].get_position(), self.offset_position) plt.close("all") def test_offset_spines_specific_axes(self): with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always", category=UserWarning) f, (ax1, ax2) = plt.subplots(2, 1) utils.offset_spines(offset=self.offset, ax=ax2) for side in self.sides: nt.assert_equal(ax1.spines[side].get_position(), self.original_position) nt.assert_equal(ax2.spines[side].get_position(), self.offset_position) plt.close("all") def test_ticklabels_overlap(): rcmod.set() f, ax = plt.subplots(figsize=(2, 2)) f.tight_layout() # This gets the Agg renderer working assert not utils.axis_ticklabels_overlap(ax.get_xticklabels()) big_strings = "abcdefgh", "ijklmnop" ax.set_xlim(-.5, 1.5) ax.set_xticks([0, 1]) ax.set_xticklabels(big_strings) assert utils.axis_ticklabels_overlap(ax.get_xticklabels()) x, y = utils.axes_ticklabels_overlap(ax) assert x assert not y def test_categorical_order(): x = ["a", "c", "c", "b", "a", "d"] y = [3, 2, 5, 1, 4] order = ["a", "b", "c", "d"] out = utils.categorical_order(x) nt.assert_equal(out, ["a", "c", "b", "d"]) out = utils.categorical_order(x, order) nt.assert_equal(out, order) out = utils.categorical_order(x, ["b", "a"]) nt.assert_equal(out, ["b", "a"]) out = utils.categorical_order(np.array(x)) nt.assert_equal(out, ["a", "c", "b", "d"]) out = utils.categorical_order(pd.Series(x)) nt.assert_equal(out, ["a", "c", "b", "d"]) out = utils.categorical_order(y) nt.assert_equal(out, [1, 2, 3, 4, 5]) out = utils.categorical_order(np.array(y)) nt.assert_equal(out, [1, 2, 3, 4, 5]) out = utils.categorical_order(pd.Series(y)) nt.assert_equal(out, [1, 2, 3, 4, 5]) if pandas_has_categoricals: x = pd.Categorical(x, order) out = utils.categorical_order(x) nt.assert_equal(out, list(x.categories)) x = pd.Series(x) out = utils.categorical_order(x) nt.assert_equal(out, list(x.cat.categories)) out = utils.categorical_order(x, ["b", "a"]) nt.assert_equal(out, ["b", "a"]) x = ["a", np.nan, "c", "c", "b", "a", "d"] out = utils.categorical_order(x) nt.assert_equal(out, ["a", "c", "b", "d"]) if LooseVersion(pd.__version__) >= "0.15": def check_load_dataset(name): ds = load_dataset(name, cache=False) assert(isinstance(ds, pd.DataFrame)) def check_load_cached_dataset(name): # Test the cacheing using a temporary file. # With Python 3.2+, we could use the tempfile.TemporaryDirectory() # context manager instead of this try...finally statement tmpdir = tempfile.mkdtemp() try: # download and cache ds = load_dataset(name, cache=True, data_home=tmpdir) # use cached version ds2 = load_dataset(name, cache=True, data_home=tmpdir) pdt.assert_frame_equal(ds, ds2) finally: shutil.rmtree(tmpdir) @network(url="https://github.com/mwaskom/seaborn-data") def test_get_dataset_names(): if not BeautifulSoup: raise nose.SkipTest("No BeautifulSoup available for parsing html") names = get_dataset_names() assert(len(names) > 0) assert(u"titanic" in names) @network(url="https://github.com/mwaskom/seaborn-data") def test_load_datasets(): if not BeautifulSoup: raise nose.SkipTest("No BeautifulSoup available for parsing html") # Heavy test to verify that we can load all available datasets for name in get_dataset_names(): # unfortunately @network somehow obscures this generator so it # does not get in effect, so we need to call explicitly # yield check_load_dataset, name check_load_dataset(name) @network(url="https://github.com/mwaskom/seaborn-data") def test_load_cached_datasets(): if not BeautifulSoup: raise nose.SkipTest("No BeautifulSoup available for parsing html") # Heavy test to verify that we can load all available datasets for name in get_dataset_names(): # unfortunately @network somehow obscures this generator so it # does not get in effect, so we need to call explicitly # yield check_load_dataset, name check_load_cached_dataset(name)
bsd-3-clause
abonaca/gary
gary/dynamics/plot.py
1
8987
# coding: utf-8 """ ...explain... """ from __future__ import division, print_function __author__ = "adrn <[email protected]>" # Third-party import numpy as np __all__ = ['plot_orbits', 'three_panel'] def _get_axes(dim, axes=None, triangle=False, subplots_kwargs=dict()): """ Parameters ---------- dim : int Dimensionality of the orbit. axes : array_like (optional) Array of matplotlib Axes objects. triangle : bool (optional) Make a triangle plot instead of plotting all projections in a single row. subplots_kwargs : dict (optional) Dictionary of kwargs passed to the matplotlib `subplots()` call. """ import matplotlib.pyplot as plt if dim == 3: if triangle and axes is None: figsize = subplots_kwargs.pop('figsize', (12,12)) sharex = subplots_kwargs.pop('sharex', True) sharey = subplots_kwargs.pop('sharey', True) fig,axes = plt.subplots(2,2,figsize=figsize, sharex=sharex, sharey=sharey, **subplots_kwargs) axes[0,1].set_visible(False) axes = axes.flat axes = [axes[0],axes[2],axes[3]] elif triangle and axes is not None: try: axes = axes.flat except: pass if len(axes) == 4: axes = [axes[0],axes[2],axes[3]] elif not triangle and axes is None: figsize = subplots_kwargs.pop('figsize', (14,5)) fig,axes = plt.subplots(1, 3, figsize=figsize, **subplots_kwargs) elif dim <= 2: if axes is not None: try: len(axes) except TypeError: # single axes object axes = [axes] else: if dim ==1: figsize = subplots_kwargs.pop('figsize', (14,8)) elif dim == 2: figsize = subplots_kwargs.pop('figsize', (8,8)) fig,axes = plt.subplots(1, 1, figsize=figsize, **subplots_kwargs) axes = [axes] else: raise ValueError("Orbit must have dimensions <= 3.") return axes def plot_orbits(x, t=None, ix=None, axes=None, triangle=False, subplots_kwargs=dict(), labels=("$x$", "$y$", "$z$"), **kwargs): """ Given time series of positions, `x`, make nice plots of the orbit in cartesian projections. Parameters ---------- x : array_like Array of positions. The last axis (`axis=-1`) is assumed to be the dimensionality, e.g., `x.shape[-1]`. The first axis (`axis=0`) is assumed to be the time axis. t : array_like (optional) Arra of times. Only used if the input orbit is 1 dimensional. ix : int, array_like (optional) Index or array of indices of orbits to plot. For example, if `x` is an array of shape (1024,32,6) -- 1024 timesteps for 32 orbits in 6D phase-space -- `ix` would specify which of the 32 orbits to plot. axes : array_like (optional) Array of matplotlib Axes objects. triangle : bool (optional) Make a triangle plot instead of plotting all projections in a single row. subplots_kwargs : dict (optional) Dictionary of kwargs passed to the matplotlib `subplots()` call. labels : iterable (optional) List or iterable of axis labels as strings. They should correspond to the dimensions of the input orbit, for example, if the input orbit has shape (1000,1,3), then labels should have length=3. Other Parameters ---------------- kwargs All other keyword arguments are passed to the matplotlib `plot()` call. You can pass in any of the usual style kwargs like `color=...`, `marker=...`, etc. """ if x.ndim == 2: x = x[:,np.newaxis] # dimensionality of input orbit dim = x.shape[-1] if dim > 3: # if orbit has more than 3 dimensions, only use the first 3 dim = 3 # hack in some defaults to subplots kwargs so by default share x and y axes if 'sharex' not in subplots_kwargs: subplots_kwargs['sharex'] = True if 'sharey' not in subplots_kwargs: subplots_kwargs['sharey'] = True axes = _get_axes(dim=dim, axes=axes, triangle=triangle, subplots_kwargs=subplots_kwargs) if ix is not None: ixs = np.atleast_1d(ix) else: ixs = range(x.shape[1]) if dim == 3: for ii in ixs: axes[0].plot(x[:,ii,0], x[:,ii,1], **kwargs) axes[1].plot(x[:,ii,0], x[:,ii,2], **kwargs) axes[2].plot(x[:,ii,1], x[:,ii,2], **kwargs) if triangle: # HACK: until matplotlib 1.4 comes out, need this axes[0].set_ylim(axes[0].get_xlim()) axes[2].set_xlim(axes[0].get_ylim()) axes[0].set_ylabel(labels[1]) axes[1].set_xlabel(labels[0]) axes[1].set_ylabel(labels[2]) axes[2].set_xlabel(labels[1]) else: axes[0].set_xlabel(labels[0]) axes[0].set_ylabel(labels[1]) axes[1].set_xlabel(labels[0]) axes[1].set_ylabel(labels[2]) axes[2].set_xlabel(labels[1]) axes[2].set_ylabel(labels[2]) if not triangle: axes[0].figure.tight_layout() elif dim == 2: for ii in ixs: axes[0].plot(x[:,ii,0], x[:,ii,1], **kwargs) axes[0].set_xlabel(labels[0]) axes[0].set_ylabel(labels[1]) axes[0].figure.tight_layout() elif dim == 1: if t is None: t = np.arange(len(x)) for ii in ixs: axes[0].plot(t, x[:,ii,0], **kwargs) axes[0].set_xlabel("$t$") axes[0].set_ylabel(labels[0]) axes[0].figure.tight_layout() return axes[0].figure def three_panel(q, relative_to=None, symbol=None, autolim=True, axes=None, triangle=False, subplots_kwargs=dict(), **kwargs): """ Given 3D quantities, `q`, (not astropy quantities...), make nice three-panel or triangle plots of projections of the values. Parameters ---------- q : array_like Array of values. The last axis (`axis=-1`) is assumed to be the dimensionality, e.g., `q.shape[-1]`. relative_to : bool (optional) Plot the values relative to this value or values. symbol : str (optional) Symbol to represent the quantity for axis labels. Can be Latex. autolim : bool (optional) Automatically set the plot limits to be something sensible. axes : array_like (optional) Array of matplotlib Axes objects. triangle : bool (optional) Make a triangle plot instead of plotting all projections in a single row. subplots_kwargs : dict (optional) Dictionary of kwargs passed to the matplotlib `subplots()` call. Other Parameters ---------------- kwargs All other keyword arguments are passed to the matplotlib `scatter()` call. You can pass in any of the usual style kwargs like `color=...`, `marker=...`, etc. """ # don't propagate changes back... q = q.copy() # change default marker marker = kwargs.pop('marker', '.') # get axes object from arguments axes = _get_axes(dim=3, axes=axes, triangle=triangle, subplots_kwargs=subplots_kwargs) # if the quantities are relative label = None if relative_to is not None: q -= relative_to if symbol is not None: label = r"$\Delta {sym}_{{ix}}/{sym}^{{{{(0)}}}}_{{ix}}$".format(sym=symbol) else: if symbol is not None: label = r"${sym}_{{ix}}$".format(sym=symbol) axes[0].scatter(q[:,0], q[:,1], marker=marker, **kwargs) axes[1].scatter(q[:,0], q[:,2], marker=marker, **kwargs) axes[2].scatter(q[:,1], q[:,2], marker=marker, **kwargs) if label is not None: if triangle: axes[0].set_ylabel(label.format(ix=2)) axes[1].set_xlabel(label.format(ix=1)) axes[1].set_ylabel(label.format(ix=3)) axes[2].set_xlabel(label.format(ix=1)) else: axes[0].set_xlabel(label.format(ix=1)) axes[0].set_ylabel(label.format(ix=2)) axes[1].set_xlabel(label.format(ix=1)) axes[1].set_ylabel(label.format(ix=3)) axes[2].set_xlabel(label.format(ix=2)) axes[2].set_ylabel(label.format(ix=3)) if autolim: lims = [] for i in range(3): mx,mi = q[:,i].max(), q[:,i].min() delta = mx-mi lims.append((mi-delta*0.05, mx+delta*0.05)) axes[0].set_xlim(lims[0]) axes[0].set_ylim(lims[1]) axes[1].set_xlim(lims[0]) axes[1].set_ylim(lims[2]) axes[2].set_xlim(lims[1]) axes[2].set_ylim(lims[2]) if not triangle: axes[0].figure.tight_layout() return axes[0].figure
mit
withsmilo/lezhin_data_challenge_pyconkr_2017
src/features.py
1
9421
import loader import numpy as np import pandas as pd from pathlib import Path from definitions import * def get_features(): def generate_user_features(df): print('Generate user features') if Path(name__features_user).exists(): print('- {} is existed already. Let\'s load it'.format(name__features_user)) return pd.read_pickle(name__features_user) print('- {} is not existed. Let\'s generate it'.format(name__features_user)) # Step #1. Grouped by USER_ID_1, USER_ID_2, USER_ID_3 usr1 = df.groupby([df.USER_ID_1, df.USER_ID_2, df.USER_ID_3]).agg({'ORDERED': 'sum', 'SESSION_CNT': ['sum', 'mean'] }) usr1.columns = usr1.columns.droplevel(0) usr1.columns = ['USR_ORDERED_SUM', 'USR_SESSION_CNT_SUM', 'USR_SESSION_CNT_MEAN' ] usr1.reset_index(inplace=True) # Step #2. Grouped by USER_ID_1, USER_ID_2 usr2 = df.groupby([df.USER_ID_1, df.USER_ID_2]).agg({'TENDENCY_1': ['sum', 'mean'], 'TENDENCY_2': ['sum', 'mean'], 'TENDENCY_3': ['sum', 'mean'], 'TENDENCY_4': ['sum', 'mean'], 'TENDENCY_5': ['sum', 'mean'], 'TENDENCY_6': ['sum', 'mean'], 'TENDENCY_7': ['sum', 'mean'], 'TENDENCY_8': ['sum', 'mean'], 'TENDENCY_9': ['sum', 'mean'], 'TENDENCY_10': ['sum', 'mean'], 'TENDENCY_11': ['sum', 'mean'], 'TENDENCY_12': ['sum', 'mean'], 'TENDENCY_13': ['sum', 'mean'], 'TENDENCY_14': ['sum', 'mean'], 'TENDENCY_15': ['sum', 'mean'], 'TENDENCY_16': ['sum', 'mean']}) usr2.columns = usr2.columns.droplevel(0) usr2.columns = ['USR_TENDENCY_1_SUM', 'USR_TENDENCY_1_MEAN', 'USR_TENDENCY_2_SUM', 'USR_TENDENCY_2_MEAN', 'USR_TENDENCY_3_SUM', 'USR_TENDENCY_3_MEAN', 'USR_TENDENCY_4_SUM', 'USR_TENDENCY_4_MEAN', 'USR_TENDENCY_5_SUM', 'USR_TENDENCY_5_MEAN', 'USR_TENDENCY_6_SUM', 'USR_TENDENCY_6_MEAN', 'USR_TENDENCY_7_SUM', 'USR_TENDENCY_7_MEAN', 'USR_TENDENCY_8_SUM', 'USR_TENDENCY_8_MEAN', 'USR_TENDENCY_9_SUM', 'USR_TENDENCY_9_MEAN', 'USR_TENDENCY_10_SUM', 'USR_TENDENCY_10_MEAN', 'USR_TENDENCY_11_SUM', 'USR_TENDENCY_11_MEAN', 'USR_TENDENCY_12_SUM', 'USR_TENDENCY_12_MEAN', 'USR_TENDENCY_13_SUM', 'USR_TENDENCY_13_MEAN', 'USR_TENDENCY_14_SUM', 'USR_TENDENCY_14_MEAN', 'USR_TENDENCY_15_SUM', 'USR_TENDENCY_15_MEAN', 'USR_TENDENCY_16_SUM', 'USR_TENDENCY_16_MEAN'] usr2.reset_index(inplace=True) # Step #3. Merged usr1 with usr2 usr = usr1.merge(usr2, on=['USER_ID_1', 'USER_ID_2']) print('- Saving...') usr.to_pickle(name__features_user) print('- Saved {}'.format(name__features_user)) return usr def generate_product_features(df): print('Generate product features') if Path(name__features_product).exists(): print('- {} is existed already. Let\'s load it'.format(name__features_product)) return pd.read_pickle(name__features_product) print('- {} is not existed. Let\'s generate it'.format(name__features_product)) # Grouped by PRODUCT_ID prd = df.groupby([df.PRODUCT_ID]).agg({'ORDERED' : 'sum', # 'LAST_EPISODE': ['sum', 'mean'], # 'START_DATE': ['sum', 'mean'], # 'TOTAL_EPISODE_CNT': ['sum', 'mean'] }) # prd.columns = prd.columns.droplevel(0) prd.columns = ['PRD_ORDERED_SUM', # 'PRD_LAST_EPISODE_SUM', 'PRD_LAST_EPISODE_MEAN', # 'PRD_START_DATE_SUM', 'PRD_START_DATE_MEAN', # 'PRD_TOTAL_EPISODE_CNT_SUM', 'PRD_TOTAL_EPISODE_CNT_MEAN' ] prd.reset_index(inplace=True) print('- Saving...') prd.to_pickle(name__features_product) print('- Saved {}'.format(name__features_product)) return prd def generate_user_product_features(df): print('Generate user_product features') if Path(name__features_user_product).exists(): print('- {} is existed already. Let\'s load it'.format(name__features_user_product)) return pd.read_pickle(name__features_user_product) print('- {} is not existed. Let\'s generate it'.format(name__features_user_product)) # Grouped by USER_ID_1, USER_ID_2, USER_ID_3, PRODUCT_ID usr_prd = df.groupby([df.USER_ID_1, df.USER_ID_2, df.USER_ID_3, df.PRODUCT_ID])\ .agg({'USER_ID_1': 'size', 'ORDERED': 'sum'}) # usr_prd.columns = usr_prd.columns.droplevel(0) usr_prd.columns = ['UP_VIEW_CNT', 'UP_ORDERED_SUM'] usr_prd['UP_ORDERED_RATIO'] = pd.Series(usr_prd.UP_ORDERED_SUM / usr_prd.UP_VIEW_CNT).astype(np.float32) usr_prd.reset_index(inplace=True) print('- Saving...') usr_prd.to_pickle(name__features_user_product) print('- Saved {}'.format(name__features_user_product)) return usr_prd def generate_features(dtrain, dtest): # We do not use user_features because they took my cv score down! # usr = generate_user_features(dtrain) prd = generate_product_features(dtrain) usr_prd = generate_user_product_features(dtrain) # Merge usr_prd with original data dtrain = dtrain.merge(usr_prd, on=['USER_ID_1', 'USER_ID_2', 'USER_ID_3', 'PRODUCT_ID'], how='left') \ .merge(prd, on=['PRODUCT_ID'], how='left') dtest = dtest.merge(usr_prd, on=['USER_ID_1', 'USER_ID_2', 'USER_ID_3', 'PRODUCT_ID'], how='left') \ .merge(prd, on=['PRODUCT_ID'], how='left') # Concatenate USER_ID dtrain['USER_ID'] = dtrain[['USER_ID_1', 'USER_ID_2', 'USER_ID_3']].apply( lambda x: '{}_{}_{}'.format(x[0], x[1], x[2]), axis=1) dtrain.drop(['USER_ID_1', 'USER_ID_2', 'USER_ID_3'], axis=1, inplace=True) dtest['USER_ID'] = dtest[['USER_ID_1', 'USER_ID_2', 'USER_ID_3']].apply( lambda x: '{}_{}_{}'.format(x[0], x[1], x[2]), axis=1) dtest.drop(['USER_ID_1', 'USER_ID_2', 'USER_ID_3'], axis=1, inplace=True) # Add combined features dtrain['UP_PRD_ORDERED_RATIO'] = (dtrain.UP_ORDERED_SUM / dtrain.PRD_ORDERED_SUM).astype(np.float32) dtest['UP_PRD_ORDERED_RATIO'] = (dtest.UP_ORDERED_SUM / dtest.PRD_ORDERED_SUM).astype(np.float32) # Remove some 'less important' initial features drop_column_list = ['BUY_PRODUCT_31', 'BUY_PRODUCT_47', 'BUY_PRODUCT_54', 'BUY_PRODUCT_63', 'BUY_PRODUCT_64', 'BUY_PRODUCT_69', 'BUY_PRODUCT_78', 'BUY_PRODUCT_85', 'BUY_PRODUCT_91', 'BUY_PRODUCT_97', 'BUY_PRODUCT_58', 'SCHEDULE_4', 'SCHEDULE_10', 'GENRE_5', 'GENRE_7', 'GENRE_10', 'GENRE_11', 'GENRE_12', 'GENRE_13', 'GENRE_17', 'GENRE_18', 'TAG_3', 'TAG_4', 'TAG_5', 'TENDENCY_9'] dtrain.drop(drop_column_list, axis=1, inplace=True) dtest.drop(drop_column_list, axis=1, inplace=True) print('Train Features {}: [{}]'.format(dtrain.shape, ', '.join(dtrain.columns))) print('Test Features {}: [{}]'.format(dtest.shape, ', '.join(dtest.columns))) return dtrain, dtest if Path(name__features_train).exists() and Path(name__features_test).exists(): print('{} {} are existed already. Let\'s load it'.format(name__features_train, name__features_test)) return pd.read_pickle(name__features_train), pd.read_pickle(name__features_test) # Load target data train, test = loader.load() # Generate features f_train, f_test = generate_features(train, test) print('Saving...') f_train.to_pickle(name__features_train) f_test.to_pickle(name__features_test) print('Saved {} {}'.format(name__features_train, name__features_test)) return f_train, f_test
apache-2.0
Titan-C/scikit-learn
sklearn/cluster/tests/test_affinity_propagation.py
341
2620
""" Testing for Clustering methods """ import numpy as np from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_raises from sklearn.cluster.affinity_propagation_ import AffinityPropagation from sklearn.cluster.affinity_propagation_ import affinity_propagation from sklearn.datasets.samples_generator import make_blobs from sklearn.metrics import euclidean_distances n_clusters = 3 centers = np.array([[1, 1], [-1, -1], [1, -1]]) + 10 X, _ = make_blobs(n_samples=60, n_features=2, centers=centers, cluster_std=0.4, shuffle=True, random_state=0) def test_affinity_propagation(): # Affinity Propagation algorithm # Compute similarities S = -euclidean_distances(X, squared=True) preference = np.median(S) * 10 # Compute Affinity Propagation cluster_centers_indices, labels = affinity_propagation( S, preference=preference) n_clusters_ = len(cluster_centers_indices) assert_equal(n_clusters, n_clusters_) af = AffinityPropagation(preference=preference, affinity="precomputed") labels_precomputed = af.fit(S).labels_ af = AffinityPropagation(preference=preference, verbose=True) labels = af.fit(X).labels_ assert_array_equal(labels, labels_precomputed) cluster_centers_indices = af.cluster_centers_indices_ n_clusters_ = len(cluster_centers_indices) assert_equal(np.unique(labels).size, n_clusters_) assert_equal(n_clusters, n_clusters_) # Test also with no copy _, labels_no_copy = affinity_propagation(S, preference=preference, copy=False) assert_array_equal(labels, labels_no_copy) # Test input validation assert_raises(ValueError, affinity_propagation, S[:, :-1]) assert_raises(ValueError, affinity_propagation, S, damping=0) af = AffinityPropagation(affinity="unknown") assert_raises(ValueError, af.fit, X) def test_affinity_propagation_predict(): # Test AffinityPropagation.predict af = AffinityPropagation(affinity="euclidean") labels = af.fit_predict(X) labels2 = af.predict(X) assert_array_equal(labels, labels2) def test_affinity_propagation_predict_error(): # Test exception in AffinityPropagation.predict # Not fitted. af = AffinityPropagation(affinity="euclidean") assert_raises(ValueError, af.predict, X) # Predict not supported when affinity="precomputed". S = np.dot(X, X.T) af = AffinityPropagation(affinity="precomputed") af.fit(S) assert_raises(ValueError, af.predict, X)
bsd-3-clause
laurent-george/bokeh
bokeh/models/sources.py
13
10604
from __future__ import absolute_import from ..plot_object import PlotObject from ..properties import HasProps from ..properties import Any, Int, String, Instance, List, Dict, Either, Bool, Enum from ..validation.errors import COLUMN_LENGTHS from .. import validation from ..util.serialization import transform_column_source_data from .actions import Callback class DataSource(PlotObject): """ A base class for data source types. ``DataSource`` is not generally useful to instantiate on its own. """ column_names = List(String, help=""" An list of names for all the columns in this DataSource. """) selected = Dict(String, Dict(String, Any), default={ '0d': {'flag': False, 'indices': []}, '1d': {'indices': []}, '2d': {'indices': []} }, help=""" A dict to indicate selected indices on different dimensions on this DataSource. Keys are: - 0d: indicates whether a Line or Patch glyphs have been hit. Value is a dict with the following keys: - flag (boolean): true if glyph was with false otherwise - indices (list): indices hit (if applicable) - 1d: indicates whether any of all other glyph (except [multi]line or patches) was hit: - indices (list): indices that were hit/selected - 2d: indicates whether a [multi]line or patches) were hit: - indices (list(list)): indices of the lines/patches that were hit/selected """) callback = Instance(Callback, help=""" A callback to run in the browser whenever the selection is changed. """) def columns(self, *columns): """ Returns a ColumnsRef object for a column or set of columns on this data source. Args: *columns Returns: ColumnsRef """ return ColumnsRef(source=self, columns=list(columns)) class ColumnsRef(HasProps): """ A utility object to allow referring to a collection of columns from a specified data source, all together. """ source = Instance(DataSource, help=""" A data source to reference. """) columns = List(String, help=""" A list of column names to reference from ``source``. """) class ColumnDataSource(DataSource): """ Maps names of columns to sequences or arrays. If the ColumnDataSource initializer is called with a single argument that is a dict, that argument is used as the value for the "data" attribute. For example:: ColumnDataSource(mydict) # same as ColumnDataSource(data=mydict) .. note:: There is an implicit assumption that all the columns in a a given ColumnDataSource have the same length. """ data = Dict(String, Any, help=""" Mapping of column names to sequences of data. The data can be, e.g, Python lists or tuples, NumPy arrays, etc. """) def __init__(self, *args, **kw): """ If called with a single argument that is a dict, treat that implicitly as the "data" attribute. """ if len(args) == 1 and "data" not in kw: kw["data"] = args[0] # TODO (bev) invalid to pass args and "data", check and raise exception raw_data = kw.pop("data", {}) if not isinstance(raw_data, dict): import pandas as pd if isinstance(raw_data, pd.DataFrame): raw_data = self.from_df(raw_data) else: raise ValueError("expected a dict or pandas.DataFrame, got %s" % raw_data) for name, data in raw_data.items(): self.add(data, name) super(ColumnDataSource, self).__init__(**kw) # TODO: (bev) why not just return a ColumnDataSource? @classmethod def from_df(cls, data): """ Create a ``dict`` of columns from a Pandas DataFrame, suitable for creating a ColumnDataSource. Args: data (DataFrame) : data to convert Returns: dict(str, list) """ index = data.index new_data = {} for colname in data: new_data[colname] = data[colname].tolist() if index.name: new_data[index.name] = index.tolist() elif index.names and not all([x is None for x in index.names]): new_data["_".join(index.names)] = index.tolist() else: new_data["index"] = index.tolist() return new_data def to_df(self): """ Convert this data source to pandas dataframe. If ``column_names`` is set, use those. Otherwise let Pandas infer the column names. The ``column_names`` property can be used both to order and filter the columns. Returns: DataFrame """ import pandas as pd if self.column_names: return pd.DataFrame(self.data, columns=self.column_names) else: return pd.DataFrame(self.data) def add(self, data, name=None): """ Appends a new column of data to the data source. Args: data (seq) : new data to add name (str, optional) : column name to use. If not supplied, generate a name go the form "Series ####" Returns: str: the column name used """ if name is None: n = len(self.data) while "Series %d"%n in self.data: n += 1 name = "Series %d"%n self.column_names.append(name) self.data[name] = data return name def vm_serialize(self, changed_only=True): attrs = super(ColumnDataSource, self).vm_serialize(changed_only=changed_only) if 'data' in attrs: attrs['data'] = transform_column_source_data(attrs['data']) return attrs def remove(self, name): """ Remove a column of data. Args: name (str) : name of the column to remove Returns: None .. note:: If the column name does not exist, a warning is issued. """ try: self.column_names.remove(name) del self.data[name] except (ValueError, KeyError): import warnings warnings.warn("Unable to find column '%s' in data source" % name) def push_notebook(self): """ Update date for a plot in the IPthon notebook in place. This function can be be used to update data in plot data sources in the IPython notebook, without having to use the Bokeh server. Returns: None .. warning:: The current implementation leaks memory in the IPython notebook, due to accumulating JS code. This function typically works well with light UI interactions, but should not be used for continuously updating data. See :bokeh-issue:`1732` for more details and to track progress on potential fixes. """ from IPython.core import display from bokeh.protocol import serialize_json id = self.ref['id'] model = self.ref['type'] json = serialize_json(self.vm_serialize()) js = """ var ds = Bokeh.Collections('{model}').get('{id}'); var data = {json}; ds.set(data); """.format(model=model, id=id, json=json) display.display_javascript(js, raw=True) @validation.error(COLUMN_LENGTHS) def _check_column_lengths(self): lengths = set(len(x) for x in self.data.values()) if len(lengths) > 1: return str(self) class RemoteSource(DataSource): data_url = String(help=""" The URL to the endpoint for the data. """) data = Dict(String, Any, help=""" Additional data to include directly in this data source object. The columns provided here are merged with those from the Bokeh server. """) polling_interval = Int(help=""" polling interval for updating data source in milliseconds """) class AjaxDataSource(RemoteSource): method = Enum('POST', 'GET', help="http method - GET or POST") mode = Enum("replace", "append", help=""" Whether to append new data to existing data (up to ``max_size``), or to replace existing data entirely. """) max_size = Int(help=""" Maximum size of the data array being kept after each pull requests. Larger than that size, the data will be right shifted. """) if_modified = Bool(False, help=""" Whether to include an ``If-Modified-Since`` header in AJAX requests to the server. If this header is supported by the server, then only new data since the last request will be returned. """) class BlazeDataSource(RemoteSource): #blaze parts expr = Dict(String, Any(), help=""" blaze expression graph in json form """) namespace = Dict(String, Any(), help=""" namespace in json form for evaluating blaze expression graph """) local = Bool(help=""" Whether this data source is hosted by the bokeh server or not. """) def from_blaze(self, remote_blaze_obj, local=True): from blaze.server import to_tree # only one Client object, can hold many datasets assert len(remote_blaze_obj._leaves()) == 1 leaf = remote_blaze_obj._leaves()[0] blaze_client = leaf.data json_expr = to_tree(remote_blaze_obj, {leaf : ':leaf'}) self.data_url = blaze_client.url + "/compute.json" self.local = local self.expr = json_expr def to_blaze(self): from blaze.server.client import Client from blaze.server import from_tree from blaze import Data # hacky - blaze urls have `compute.json` in it, but we need to strip it off # to feed it into the blaze client lib c = Client(self.data_url.rsplit('compute.json', 1)[0]) d = Data(c) return from_tree(self.expr, {':leaf' : d}) class ServerDataSource(BlazeDataSource): """ A data source that referes to data located on a Bokeh server. The data from the server is loaded on-demand by the client. """ # Paramters of data transformation operations # The 'Any' is used to pass primtives around. # TODO: (jc) Find/create a property type for 'any primitive/atomic value' transform = Dict(String,Either(Instance(PlotObject), Any), help=""" Paramters of the data transformation operations. The associated valuse is minimally a tag that says which downsample routine to use. For some downsamplers, parameters are passed this way too. """)
bsd-3-clause
guillermo-carrasco/bcbio-nextgen-vm
setup.py
2
2841
#!/usr/bin/env python import os import shutil import sys from setuptools import setup, find_packages version = "0.1.0a" def write_version_py(): version_py = os.path.join(os.path.dirname(__file__), "bcbiovm", "version.py") try: import subprocess p = subprocess.Popen(["git", "rev-parse", "--short", "HEAD"], stdout=subprocess.PIPE) githash = p.stdout.read().strip() except: githash = "" with open(version_py, "w") as out_handle: out_handle.write("\n".join(['__version__ = "%s"' % version, '__git_revision__ = "%s"' % githash])) write_version_py() if "--record=/dev/null" in sys.argv: # conda build install_requires = [] else: install_requires = [ "matplotlib", "pandas", "paramiko", "six", "PyYAML", "pythonpy", "bcbio-nextgen"] setup(name="bcbio-nextgen-vm", version=version, author="Brad Chapman and bcbio-nextgen contributors", description="Run bcbio-nextgen genomic sequencing analyses using isolated containers and virtual machines", license="MIT", url="https://github.com/chapmanb/bcbio-nextgen-vm", packages=find_packages(), scripts=["scripts/bcbio_vm.py"], install_requires=install_requires) def ansible_pb_files(ansible_pb_dir): """Retrieve ansible files for installation. Derived from elasticluster setup. """ ansible_data = [] for (dirname, dirnames, filenames) in os.walk(ansible_pb_dir): tmp = [] for fname in filenames: if fname.startswith(".git"): continue tmp.append(os.path.join(dirname, fname)) ansible_data.append((os.path.join("share", "bcbio-vm", dirname), tmp)) return ansible_data def elasticluster_config_files(base_dir): """Retrieve example elasticluster config files for installation. """ return [(os.path.join("share", "bcbio-vm", base_dir), [os.path.join(base_dir, x) for x in os.listdir(base_dir)])] if __name__ == "__main__": """Install ansible playbooks and other associated data files. """ if sys.argv[1] in ["develop", "install"]: for dirname, fnames in ansible_pb_files("ansible") + elasticluster_config_files("elasticluster"): dirname = os.path.join(os.path.abspath(sys.prefix), dirname) if not os.path.exists(dirname): os.makedirs(dirname) for fname in fnames: if sys.argv[1] == "develop": link_path = os.path.join(dirname, os.path.basename(fname)) if not os.path.exists(link_path): link_target = os.path.join(os.getcwd(), fname) os.symlink(link_target, link_path) else: shutil.copy(fname, dirname)
mit
mindriot101/matplotlib-pngrenderer
testing/test_png_output.py
1
2075
from __future__ import print_function import os import sys sys.path.insert(0, '.') import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import numpy as np import zipfile from pngrenderer.core import PNGRenderer from pngrenderer.context import png_render def build_plot(): renderer = PNGRenderer(os.path.join( os.path.dirname(__file__), "out")) xdata = np.arange(10) ydata = xdata ** 2 fig = plt.figure() ax = fig.add_subplot(111) ax.plot(xdata, ydata, 'r-') out_fname = os.path.join(os.path.dirname(__file__), "out.zip") return (fig, ax, renderer, out_fname) def setup_function(function): print("Setup") fig, ax, renderer, out_fname = build_plot() function.func_globals['fig'] = fig function.func_globals['ax'] = ax function.func_globals['renderer'] = renderer function.func_globals['out_fname'] = out_fname def teardown_function(function): print("Teardown") try: os.remove(function.func_globals['out_fname']) except OSError: pass def zip_contents(fname, test_contents): with zipfile.ZipFile(fname) as infile: return infile.namelist() == test_contents def test_single_page(): renderer.save_page("first.png", fig) renderer.render() assert os.path.isfile(out_fname) assert zip_contents(out_fname, ['first.png']) def test_multiple_pages(): renderer.save_page("first.png", fig) renderer.save_page("second.png", fig) renderer.render() assert os.path.isfile(out_fname) assert zip_contents(out_fname, ['first.png', 'second.png']) def test_without_explicit_figure(): renderer.save_page("first.png") renderer.render() assert zip_contents(out_fname, ['first.png']) def test_context_manager(): stub = os.path.join(os.path.dirname(__file__), "out") with png_render(stub) as png_renderer: build_plot() png_renderer.save_page("first.png") assert zip_contents(stub + '.zip', ['first.png']) def test_savefig_alias(): assert renderer.save_page == renderer.savefig
mit
PatrickOReilly/scikit-learn
sklearn/utils/tests/test_estimator_checks.py
69
3894
import scipy.sparse as sp import numpy as np import sys from sklearn.externals.six.moves import cStringIO as StringIO from sklearn.base import BaseEstimator, ClassifierMixin from sklearn.utils.testing import assert_raises_regex, assert_true from sklearn.utils.estimator_checks import check_estimator from sklearn.utils.estimator_checks import check_estimators_unfitted from sklearn.ensemble import AdaBoostClassifier from sklearn.linear_model import MultiTaskElasticNet from sklearn.utils.validation import check_X_y, check_array class CorrectNotFittedError(ValueError): """Exception class to raise if estimator is used before fitting. Like NotFittedError, it inherits from ValueError, but not from AttributeError. Used for testing only. """ class BaseBadClassifier(BaseEstimator, ClassifierMixin): def fit(self, X, y): return self def predict(self, X): return np.ones(X.shape[0]) class NoCheckinPredict(BaseBadClassifier): def fit(self, X, y): X, y = check_X_y(X, y) return self class NoSparseClassifier(BaseBadClassifier): def fit(self, X, y): X, y = check_X_y(X, y, accept_sparse=['csr', 'csc']) if sp.issparse(X): raise ValueError("Nonsensical Error") return self def predict(self, X): X = check_array(X) return np.ones(X.shape[0]) class CorrectNotFittedErrorClassifier(BaseBadClassifier): def fit(self, X, y): X, y = check_X_y(X, y) self.coef_ = np.ones(X.shape[1]) return self def predict(self, X): if not hasattr(self, 'coef_'): raise CorrectNotFittedError("estimator is not fitted yet") X = check_array(X) return np.ones(X.shape[0]) def test_check_estimator(): # tests that the estimator actually fails on "bad" estimators. # not a complete test of all checks, which are very extensive. # check that we have a set_params and can clone msg = "it does not implement a 'get_params' methods" assert_raises_regex(TypeError, msg, check_estimator, object) # check that we have a fit method msg = "object has no attribute 'fit'" assert_raises_regex(AttributeError, msg, check_estimator, BaseEstimator) # check that fit does input validation msg = "TypeError not raised by fit" assert_raises_regex(AssertionError, msg, check_estimator, BaseBadClassifier) # check that predict does input validation (doesn't accept dicts in input) msg = "Estimator doesn't check for NaN and inf in predict" assert_raises_regex(AssertionError, msg, check_estimator, NoCheckinPredict) # check for sparse matrix input handling name = NoSparseClassifier.__name__ msg = "Estimator " + name + " doesn't seem to fail gracefully on sparse data" # the check for sparse input handling prints to the stdout, # instead of raising an error, so as not to remove the original traceback. # that means we need to jump through some hoops to catch it. old_stdout = sys.stdout string_buffer = StringIO() sys.stdout = string_buffer try: check_estimator(NoSparseClassifier) except: pass finally: sys.stdout = old_stdout assert_true(msg in string_buffer.getvalue()) # doesn't error on actual estimator check_estimator(AdaBoostClassifier) check_estimator(MultiTaskElasticNet) def test_check_estimators_unfitted(): # check that a ValueError/AttributeError is raised when calling predict # on an unfitted estimator msg = "AttributeError or ValueError not raised by predict" assert_raises_regex(AssertionError, msg, check_estimators_unfitted, "estimator", NoSparseClassifier) # check that CorrectNotFittedError inherit from either ValueError # or AttributeError check_estimators_unfitted("estimator", CorrectNotFittedErrorClassifier)
bsd-3-clause
henry-ngo/VIP
vip_hci/pca/pca_fullfr.py
1
48009
#! /usr/bin/env python """ PCA algorithm performed on full frame for ADI, RDI or SDI (IFS data). """ from __future__ import division, print_function __author__ = 'C. Gomez @ ULg' __all__ = ['pca', 'pca_incremental', 'pca_optimize_snr'] import numpy as np import pandas as pd import pyprind from skimage import draw from astropy.io import fits from matplotlib import pyplot as plt from sklearn.decomposition import IncrementalPCA from .svd import svd_wrapper from .pca_local import find_indices, compute_pa_thresh from .utils_pca import (prepare_matrix, reshape_matrix, pca_annulus, scale_cube_for_pca) from ..preproc import (cube_derotate, cube_collapse, check_PA_vector, check_scal_vector) from ..conf import timing, time_ini, check_enough_memory, get_available_memory from ..var import frame_center, dist from ..stats import descriptive_stats from .. import phot import warnings warnings.filterwarnings("ignore", category=Warning) def pca(cube, angle_list=None, cube_ref=None, scale_list=None, ncomp=1, ncomp2=1, svd_mode='lapack', scaling=None, mask_center_px=None, source_xy=None, delta_rot=1, fwhm=4, collapse='median', check_mem=True, full_output=False, verbose=True, debug=False): """ Algorithm where the reference PSF and the quasi-static speckle pattern are modeled using Principal Component Analysis. Depending on the input parameters this PCA function can work in ADI, RDI or SDI (IFS data) mode. ADI: if neither a reference cube or a scaling vector are provided, the target cube itself is used to learn the PCs and to obtain a low-rank approximation reference PSF (star + speckles). RDI + ADI: if a reference cube is provided (triggered by *cube_ref* parameter), its PCs are used to project the target frames and to obtain the reference PSF (star + speckles). SDI (IFS data): if a scaling vector is provided (triggered by *scale_list* parameter) and the cube is a 3d array, its assumed it contains 1 frame at multiple spectral channels. The frames are re-scaled to match the longest wavelenght. Then PCA is applied on this re-scaled cube where the planet will move radially. SDI (IFS data) + ADI: if a scaling vector is provided (triggered by *scale_list* parameter) and the cube is a 4d array [# channels, # adi-frames, Y, X], its assumed it contains several multi-spectral ADI frames. A double PCA is performed, first on each ADI multi-spectral frame (using ``ncomp`` PCs), then using each ADI residual to exploit the rotation (using ``ncomp2`` PCs). If ``ncomp2`` is None only one PCA is performed on the ADI multi-spectral frames and then the resulting frames are de-rotated and combined. Several SVD libraries can be used with almost (randsvd stands for randomized SVD) the same result but different computing time. References ---------- KLIP: http://arxiv.org/abs/1207.4197 pynpoint: http://arxiv.org/abs/1207.6637 IFS data: http://arxiv.org/abs/1409.6388 Parameters ---------- cube : array_like, 3d Input cube. angle_list : array_like, 1d Corresponding parallactic angle for each frame. cube_ref : array_like, 3d, optional Reference library cube. For Reference Star Differential Imaging. scale_list : Scaling factors in case of IFS data. Normally, the scaling factors are the central channel wavelength divided by the shortest wavelength in the cube. More thorough approaches can be used to get the scaling factors. ncomp : int, optional How many PCs are used as a lower-dimensional subspace to project the target frames. In ADI ncomp is the number of PCs from the target data, in RDI ncomp is the number of PCs from the reference data and in IFS ncomp is the number of PCs from the library of spectral channels. ncomp2 : int, optional How many PCs are used for IFS+ADI datacubes in the second stage PCA. ncomp2 goes up to the number of multi-spectral frames. svd_mode : {'lapack', 'arpack', 'eigen', 'randsvd', 'cupy', 'eigencupy', 'randcupy'}, str Switch for the SVD method/library to be used. ``lapack`` uses the LAPACK linear algebra library through Numpy and it is the most conventional way of computing the SVD (deterministic result computed on CPU). ``arpack`` uses the ARPACK Fortran libraries accessible through Scipy (computation on CPU). ``eigen`` computes the singular vectors through the eigendecomposition of the covariance M.M' (computation on CPU). ``randsvd`` uses the randomized_svd algorithm implemented in Sklearn (computation on CPU). ``cupy`` uses the Cupy library for GPU computation of the SVD as in the LAPACK version. ``eigencupy`` offers the same method as with the ``eigen`` option but on GPU (through Cupy). ``randcupy`` is an adaptation of the randomized_svd algorith, where all the computations are done on a GPU. scaling : {None, 'temp-mean', 'spat-mean', 'temp-standard', 'spat-standard'} With None, no scaling is performed on the input data before SVD. With "temp-mean" then temporal px-wise mean subtraction is done, with "spat-mean" then the spatial mean is subtracted, with "temp-standard" temporal mean centering plus scaling to unit variance is done and with "spat-standard" spatial mean centering plus scaling to unit variance is performed. mask_center_px : None or int If None, no masking is done. If an integer > 1 then this value is the radius of the circular mask. source_xy : tuple of int, optional For ADI PCA, this triggers a frame rejection in the PCA library. source_xy are the coordinates X,Y of the center of the annulus where the PA criterion will be used to reject frames from the library. fwhm : float, optional Known size of the FHWM in pixels to be used. Default value is 4. delta_rot : int, optional Factor for increasing the parallactic angle threshold, expressed in FWHM. Default is 1 (excludes 1 FHWM on each side of the considered frame). collapse : {'median', 'mean', 'sum', 'trimmean'}, str optional Sets the way of collapsing the frames for producing a final image. check_mem : {True, False}, bool optional If True, it check that the input cube(s) are smaller than the available system memory. full_output: boolean, optional Whether to return the final median combined image only or with other intermediate arrays. verbose : {True, False}, bool optional If True prints intermediate info and timing. debug : {False, True}, bool optional Whether to print debug information or not. Returns ------- frame : array_like, 2d Median combination of the de-rotated/re-scaled residuals cube. If full_output is True then it returns: return pcs, recon, residuals_cube, residuals_cube_ and frame. The PCs are not returned when a PA rejection criterion is applied (when *source_xy* is entered). pcs : array_like, 3d Cube with the selected principal components. recon : array_like, 3d Reconstruction of frames using the selected PCs. residuals_res : array_like, 3d Cube of residuals. residuals_res_der : array_like, 3d Cube of residuals after de-rotation/re-scaling. In the case of IFS+ADI data the it returns: residuals_cube_channels, residuals_cube_channels_ and frame residuals_cube_channels : array_like Cube with the residuals of the first stage PCA. residuals_cube_channels_ : array_like Cube with the residuals of the second stage PCA after de-rotation. """ #*************************************************************************** # Helping function #*************************************************************************** def subtract_projection(cube, cube_ref, ncomp, scaling, mask_center_px, debug, svd_mode, verbose, full_output, indices=None, frame=None): """ Subtracts the reference PSF after PCA projection. Returns the cube of residuals. """ _, y, x = cube.shape if indices is not None and frame is not None: matrix = prepare_matrix(cube, scaling, mask_center_px, mode='fullfr', verbose=False) else: matrix = prepare_matrix(cube, scaling, mask_center_px, mode='fullfr', verbose=verbose) if cube_ref is not None: ref_lib = prepare_matrix(cube_ref, scaling, mask_center_px, mode = 'fullfr', verbose=verbose) else: ref_lib = matrix if indices is not None and frame is not None: # one row (frame) at a time ref_lib = ref_lib[indices] if ref_lib.shape[0] <= 10: msg = 'Too few frames left in the PCA library (<10). ' msg += 'Try decreasing the parameter delta_rot' raise RuntimeError(msg) curr_frame = matrix[frame] # current frame V = svd_wrapper(ref_lib, svd_mode, ncomp, False, False) transformed = np.dot(curr_frame, V.T) reconstructed = np.dot(transformed.T, V) residuals = curr_frame - reconstructed if full_output: return ref_lib.shape[0], residuals, reconstructed else: return ref_lib.shape[0], residuals else: # the whole matrix V = svd_wrapper(ref_lib, svd_mode, ncomp, debug, verbose) if verbose: timing(start_time) transformed = np.dot(V, matrix.T) reconstructed = np.dot(transformed.T, V) residuals = matrix - reconstructed residuals_res = reshape_matrix(residuals,y,x) if full_output: return residuals_res, reconstructed, V else: return residuals_res #*************************************************************************** # Validation of input parameters #*************************************************************************** if not cube.ndim>2: raise TypeError('Input array is not a 3d or 4d array') if angle_list is not None: if (cube.ndim==3 and not (cube.shape[0] == angle_list.shape[0])) or \ (cube.ndim==4 and not (cube.shape[1] == angle_list.shape[0])): msg = "Angle list vector has wrong length. It must equal the number" msg += " frames in the cube." raise TypeError(msg) if source_xy is not None and delta_rot is None or fwhm is None: msg = 'Delta_rot or fwhm parameters missing. They are needed for the ' msg += 'PA-based rejection of frames from the library' raise TypeError(msg) if cube_ref is not None: if not cube_ref.ndim==3: raise TypeError('Input reference array is not a cube or 3d array') if not cube_ref.shape[1]==cube.shape[1]: msg = 'Frames in reference cube and target cube have different size' raise TypeError(msg) if scale_list is not None: raise RuntimeError('RDI + SDI (IFS) is not a valid mode') n, y, x = cube_ref.shape else: if scale_list is not None: if cube.ndim==3: z, y_in, x_in = cube.shape if cube.ndim==4: z, n, y_in, x_in = cube.shape else: n, y, x = cube.shape if angle_list is None and scale_list is None: msg = 'Either the angles list of scale factors list must be provided' raise ValueError(msg) if scale_list is not None: if np.array(scale_list).ndim>1: raise TypeError('Wrong scaling factors list. Must be a vector') if not scale_list.shape[0]==cube.shape[0]: raise TypeError('Scaling factors vector has wrong length') if verbose: start_time = time_ini() if check_mem: input_bytes = cube.nbytes if cube_ref is not None: input_bytes += cube_ref.nbytes if not check_enough_memory(input_bytes, 1.5, False): msgerr = 'Input cubes are larger than available system memory. ' msgerr += 'Set check_mem=False to override this memory check or ' msgerr += 'use the incremental PCA (for ADI)' raise RuntimeError(msgerr) if angle_list is not None: angle_list = check_PA_vector(angle_list) #*************************************************************************** # scale_list triggers SDI(IFS) #*************************************************************************** if scale_list is not None: if ncomp > z: ncomp = min(ncomp, z) msg = 'Number of PCs too high (max PCs={}), using instead {:} PCs.' print(msg.format(z, ncomp)) scale_list = check_scal_vector(scale_list) #*********************************************************************** # RDI (IFS): case of 3d cube with multiple spectral channels #*********************************************************************** if cube.ndim==3: if verbose: print('{:} spectral channels in IFS cube'.format(z)) # cube has been re-scaled to have the planets moving radially cube, _, y, x, _, _ = scale_cube_for_pca(cube, scale_list) residuals_result = subtract_projection(cube, None, ncomp, scaling, mask_center_px,debug,svd_mode, verbose, full_output) if full_output: residuals_cube = residuals_result[0] reconstructed = residuals_result[1] V = residuals_result[2] pcs = reshape_matrix(V, y, x) recon = reshape_matrix(reconstructed, y, x) residuals_cube_,frame,_,_,_,_ = scale_cube_for_pca(residuals_cube, scale_list, full_output=full_output, inverse=True, y_in=y_in, x_in=x_in) else: residuals_cube = residuals_result frame = scale_cube_for_pca(residuals_cube, scale_list, full_output=full_output, inverse=True, y_in=y_in, x_in=x_in) if verbose: print('Done re-scaling and combining') timing(start_time) #*********************************************************************** # SDI (IFS) + ADI: cube with multiple spectral channels + rotation # shape of cube: [# channels, # adi-frames, Y, X] #*********************************************************************** elif cube.ndim==4 and angle_list is not None: if verbose: print('{:} spectral channels in IFS cube'.format(z)) print('{:} ADI frames in all channels'.format(n)) residuals_cube_channels = np.zeros((n, y_in, x_in)) bar = pyprind.ProgBar(n, stream=1, title='Looping through ADI frames') for i in range(n): cube_res, _, y, x, _, _ = scale_cube_for_pca(cube[:,i,:,:], scale_list) residuals_result = subtract_projection(cube_res, None, ncomp, scaling, mask_center_px, debug, svd_mode, False, full_output) if full_output: residuals_cube = residuals_result[0] _,frame,_,_,_,_ = scale_cube_for_pca(residuals_cube, scale_list, full_output=full_output, inverse=True, y_in=y_in, x_in=x_in) else: residuals_cube = residuals_result frame = scale_cube_for_pca(residuals_cube, scale_list, full_output=full_output, inverse=True,y_in=y_in,x_in=x_in) residuals_cube_channels[i] = frame bar.update() # de-rotation of the PCA processed channels if ncomp2 > z: ncomp2 = min(ncomp2, z) msg = 'Number of PCs too high (max PCs={}), using instead {:} PCs.' print(msg.format(n, ncomp2)) elif ncomp2 is None: residuals_cube_channels_ = cube_derotate(residuals_cube_channels, angle_list) frame = cube_collapse(residuals_cube_channels_, mode=collapse) if verbose: print('De-rotating and combining') timing(start_time) else: res_ifs_adi = subtract_projection(residuals_cube_channels, None, ncomp2, scaling, mask_center_px, debug, svd_mode, False, full_output) residuals_cube_channels_ = cube_derotate(res_ifs_adi, angle_list) frame = cube_collapse(residuals_cube_channels_, mode=collapse) if verbose: msg = 'Done PCA per ADI multi-spectral frame, de-rotating ' msg += 'and combining' print(msg) timing(start_time) #*************************************************************************** # cube_ref triggers RDI+ADI #*************************************************************************** elif cube_ref is not None: if ncomp > n: ncomp = min(ncomp,n) msg = 'Number of PCs too high (max PCs={}), using instead {:} PCs.' print(msg.format(n, ncomp)) residuals_result = subtract_projection(cube, cube_ref, ncomp, scaling, mask_center_px, debug, svd_mode, verbose, full_output) if full_output: residuals_cube = residuals_result[0] reconstructed = residuals_result[1] V = residuals_result[2] pcs = reshape_matrix(V, y, x) recon = reshape_matrix(reconstructed, y, x) else: residuals_cube = residuals_result residuals_cube_ = cube_derotate(residuals_cube, angle_list) frame = cube_collapse(residuals_cube_, mode=collapse) if verbose: print('Done de-rotating and combining') timing(start_time) #*************************************************************************** # normal ADI PCA #*************************************************************************** else: if ncomp > n: ncomp = min(ncomp,n) msg = 'Number of PCs too high (max PCs={}), using instead {:} PCs.' print(msg.format(n, ncomp)) if source_xy is None: residuals_result = subtract_projection(cube, None, ncomp, scaling, mask_center_px, debug, svd_mode,verbose,full_output) if full_output: residuals_cube = residuals_result[0] reconstructed = residuals_result[1] V = residuals_result[2] pcs = reshape_matrix(V, y, x) recon = reshape_matrix(reconstructed, y, x) else: residuals_cube = residuals_result else: nfrslib = [] residuals_cube = np.zeros_like(cube) recon_cube = np.zeros_like(cube) yc, xc = frame_center(cube[0], False) x1, y1 = source_xy ann_center = dist(yc, xc, y1, x1) pa_thr = compute_pa_thresh(ann_center, fwhm, delta_rot) mid_range = np.abs(np.amax(angle_list) - np.amin(angle_list))/2 if pa_thr >= mid_range - mid_range * 0.1: new_pa_th = float(mid_range - mid_range * 0.1) if verbose: msg = 'PA threshold {:.2f} is too big, will be set to {:.2f}' print(msg.format(pa_thr, new_pa_th)) pa_thr = new_pa_th for frame in range(n): if ann_center > fwhm*3: # TODO: 3 optimal value? new parameter? ind = find_indices(angle_list, frame, pa_thr, True) else: ind = find_indices(angle_list, frame, pa_thr, False) res_result = subtract_projection(cube, None, ncomp, scaling, mask_center_px, debug, svd_mode,verbose,full_output, ind, frame) if full_output: nfrslib.append(res_result[0]) residual_frame = res_result[1] recon_frame = res_result[2] residuals_cube[frame] = residual_frame.reshape(cube[0].shape) recon_cube[frame] = recon_frame.reshape(cube[0].shape) else: nfrslib.append(res_result[0]) residual_frame = res_result[1] residuals_cube[frame] = residual_frame.reshape(cube[0].shape) # number of frames in library printed for each annular quadrant if verbose: descriptive_stats(nfrslib, verbose=verbose, label='Size LIB: ') residuals_cube_ = cube_derotate(residuals_cube, angle_list) frame = cube_collapse(residuals_cube_, mode=collapse) if verbose: print('Done de-rotating and combining') timing(start_time) if full_output and cube.ndim<4: if source_xy is not None: return recon_cube, residuals_cube, residuals_cube_, frame else: return pcs, recon, residuals_cube, residuals_cube_, frame elif full_output and cube.ndim==4: return residuals_cube_channels, residuals_cube_channels_, frame else: return frame def pca_optimize_snr(cube, angle_list, source_xy, fwhm, cube_ref=None, mode='fullfr', annulus_width=20, range_pcs=None, svd_mode='lapack', scaling=None, mask_center_px=None, fmerit='px', min_snr=0, collapse='median', verbose=True, full_output=False, debug=False, plot=True, save_plot=None, plot_title=None): """ Optimizes the number of principal components by doing a simple grid search measuring the SNR for a given position in the frame (ADI, RDI). The metric used could be the given pixel's SNR, the maximum SNR in a FWHM circular aperture centered on the given coordinates or the mean SNR in the same circular aperture. They yield slightly different results. Parameters ---------- cube : array_like, 3d Input cube. angle_list : array_like, 1d Corresponding parallactic angle for each frame. source_xy : tuple of floats X and Y coordinates of the pixel where the source is located and whose SNR is going to be maximized. fwhm : float Size of the PSF's FWHM in pixels. cube_ref : array_like, 3d, optional Reference library cube. For Reference Star Differential Imaging. mode : {'fullfr', 'annular'}, optional Mode for PCA processing (full-frame or just in an annulus). There is a catch: the optimal number of PCs in full-frame may not coincide with the one in annular mode. This is due to the fact that the annulus matrix is smaller (less noisy, probably not containing the central star) and also its intrinsic rank (smaller that in the full frame case). annulus_width : float, optional Width in pixels of the annulus in the case of the "annular" mode. range_pcs : tuple, optional The interval of PCs to be tried. If None then the algorithm will find a clever way to sample from 1 to 200 PCs. If a range is entered (as (PC_INI, PC_MAX)) a sequential grid will be evaluated between PC_INI and PC_MAX with step of 1. If a range is entered (as (PC_INI, PC_MAX, STEP)) a grid will be evaluated between PC_INI and PC_MAX with the given STEP. svd_mode : {'lapack', 'arpack', 'eigen', 'randsvd', 'cupy', 'eigencupy', 'randcupy'}, str Switch for the SVD method/library to be used. ``lapack`` uses the LAPACK linear algebra library through Numpy and it is the most conventional way of computing the SVD (deterministic result computed on CPU). ``arpack`` uses the ARPACK Fortran libraries accessible through Scipy (computation on CPU). ``eigen`` computes the singular vectors through the eigendecomposition of the covariance M.M' (computation on CPU). ``randsvd`` uses the randomized_svd algorithm implemented in Sklearn (computation on CPU). ``cupy`` uses the Cupy library for GPU computation of the SVD as in the LAPACK version. ``eigencupy`` offers the same method as with the ``eigen`` option but on GPU (through Cupy). ``randcupy`` is an adaptation of the randomized_svd algorith, where all the computations are done on a GPU. scaling : {None, 'temp-mean', 'spat-mean', 'temp-standard', 'spat-standard'} With None, no scaling is performed on the input data before SVD. With "temp-mean" then temporal px-wise mean subtraction is done, with "spat-mean" then the spatial mean is subtracted, with "temp-standard" temporal mean centering plus scaling to unit variance is done and with "spat-standard" spatial mean centering plus scaling to unit variance is performed. mask_center_px : None or int, optional If None, no masking is done. If an integer > 1 then this value is the radius of the circular mask. fmerit : {'px', 'max', 'mean'} The function of merit to be maximized. 'px' is *source_xy* pixel's SNR, 'max' the maximum SNR in a FWHM circular aperture centered on *source_xy* and 'mean' is the mean SNR in the same circular aperture. min_snr : float Value for the minimum acceptable SNR. Setting this value higher will reduce the steps. collapse : {'median', 'mean', 'sum', 'trimmean'}, str optional Sets the way of collapsing the frames for producing a final image. verbose : {True, False}, bool optional If True prints intermediate info and timing. full_output : {False, True} bool optional If True it returns the optimal number of PCs, the final PCA frame for the optimal PCs and a cube with all the final frames for each number of PC that was tried. debug : {False, True}, bool optional Whether to print debug information or not. plot : {True, False}, optional Whether to plot the SNR and flux as functions of PCs and final PCA frame or not. save_plot: string If provided, the pc optimization plot will be saved to that path. plot_title: string If provided, the plot is titled Returns ------- opt_npc : int Optimal number of PCs for given source. If full_output is True, the final processed frame, and a cube with all the PCA frames are returned along with the optimal number of PCs. """ def truncate_svd_get_finframe(matrix, angle_list, ncomp, V): """ Projection, subtraction, derotation plus combination in one frame. Only for full-frame""" transformed = np.dot(V[:ncomp], matrix.T) reconstructed = np.dot(transformed.T, V[:ncomp]) residuals = matrix - reconstructed frsize = int(np.sqrt(matrix.shape[1])) # only for square frames residuals_res = reshape_matrix(residuals, frsize, frsize) residuals_res_der = cube_derotate(residuals_res, angle_list) frame = cube_collapse(residuals_res_der, mode=collapse) return frame def truncate_svd_get_finframe_ann(matrix, indices, angle_list, ncomp, V): """ Projection, subtraction, derotation plus combination in one frame. Only for annular mode""" transformed = np.dot(V[:ncomp], matrix.T) reconstructed = np.dot(transformed.T, V[:ncomp]) residuals_ann = matrix - reconstructed residuals_res = np.zeros_like(cube) residuals_res[:,indices[0],indices[1]] = residuals_ann residuals_res_der = cube_derotate(residuals_res, angle_list) frame = cube_collapse(residuals_res_der, mode=collapse) return frame def get_snr(matrix, angle_list, y, x, mode, V, fwhm, ncomp, fmerit, full_output): if mode=='fullfr': frame = truncate_svd_get_finframe(matrix, angle_list, ncomp, V) elif mode=='annular': frame = truncate_svd_get_finframe_ann(matrix, annind, angle_list, ncomp, V) else: raise RuntimeError('Wrong mode. Choose either full or annular') if fmerit=='max': yy, xx = draw.circle(y, x, fwhm/2.) res = [phot.snr_ss(frame, (x_,y_), fwhm, plot=False, verbose=False, full_output=True) for y_, x_ in zip(yy, xx)] snr_pixels = np.array(res)[:,-1] fluxes = np.array(res)[:,2] argm = np.argmax(snr_pixels) if full_output: # integrated fluxes for the max snr return np.max(snr_pixels), fluxes[argm], frame else: return np.max(snr_pixels), fluxes[argm] elif fmerit=='px': res = phot.snr_ss(frame, (x,y), fwhm, plot=False, verbose=False, full_output=True) snrpx = res[-1] fluxpx = np.array(res)[2] if full_output: # integrated fluxes for the given px return snrpx, fluxpx, frame else: return snrpx, fluxpx elif fmerit=='mean': yy, xx = draw.circle(y, x, fwhm/2.) res = [phot.snr_ss(frame, (x_,y_), fwhm, plot=False, verbose=False, full_output=True) for y_, x_ in zip(yy, xx)] snr_pixels = np.array(res)[:,-1] fluxes = np.array(res)[:,2] if full_output: # mean of the integrated fluxes (shifting the aperture) return np.mean(snr_pixels), np.mean(fluxes), frame else: return np.mean(snr_pixels), np.mean(fluxes) def grid(matrix, angle_list, y, x, mode, V, fwhm, fmerit, step, inti, intf, debug, full_output, truncate=True): nsteps = 0 snrlist = [] pclist = [] fluxlist = [] if full_output: frlist = [] counter = 0 if debug: print('Step current grid:', step) print('PCs | SNR') for pc in range(inti, intf+1, step): if full_output: snr, flux, frame = get_snr(matrix, angle_list, y, x, mode, V, fwhm, pc, fmerit, full_output) else: snr, flux = get_snr(matrix, angle_list, y, x, mode, V, fwhm, pc, fmerit, full_output) if np.isnan(snr): snr=0 if nsteps>1 and snr<snrlist[-1]: counter += 1 snrlist.append(snr) pclist.append(pc) fluxlist.append(flux) if full_output: frlist.append(frame) nsteps += 1 if truncate and nsteps>2 and snr<min_snr: if debug: print('SNR too small') break if debug: print('{} {:.3f}'.format(pc, snr)) if truncate and counter==5: break argm = np.argmax(snrlist) if len(pclist)==2: pclist.append(pclist[-1]+1) if debug: print('Finished current stage') try: pclist[argm+1] print('Interval for next grid: ', pclist[argm-1], 'to', pclist[argm+1]) except: print('The optimal SNR seems to be outside of the given PC range') print() if argm==0: argm = 1 if full_output: return argm, pclist, snrlist, fluxlist, frlist else: return argm, pclist, snrlist, fluxlist #--------------------------------------------------------------------------- if not cube.ndim==3: raise TypeError('Input array is not a cube or 3d array') if verbose: start_time = time_ini() n = cube.shape[0] x, y = source_xy if range_pcs is not None: if len(range_pcs)==2: pcmin, pcmax = range_pcs pcmax = min(pcmax, n) step = 1 elif len(range_pcs)==3: pcmin, pcmax, step = range_pcs pcmax = min(pcmax, n) else: msg = 'Range_pcs tuple must be entered as (PC_INI, PC_MAX, STEP) ' msg += 'or (PC_INI, PC_MAX)' raise TypeError(msg) else: pcmin = 1 pcmax = 200 pcmax = min(pcmax, n) # Getting `pcmax` principal components a single time if mode=='fullfr': matrix = prepare_matrix(cube, scaling, mask_center_px, verbose=False) if cube_ref is not None: ref_lib = prepare_matrix(cube_ref, scaling, mask_center_px, verbose=False) else: ref_lib = matrix elif mode=='annular': y_cent, x_cent = frame_center(cube[0]) ann_radius = dist(y_cent, x_cent, y, x) matrix, annind = prepare_matrix(cube, scaling, None, mode='annular', annulus_radius=ann_radius, annulus_width=annulus_width, verbose=False) if cube_ref is not None: ref_lib, _ = prepare_matrix(cube_ref, scaling, mask_center_px, mode='annular', annulus_radius=ann_radius, annulus_width=annulus_width, verbose=False) else: ref_lib = matrix else: raise RuntimeError('Wrong mode. Choose either fullfr or annular') V = svd_wrapper(ref_lib, svd_mode, pcmax, False, verbose) # sequential grid if range_pcs is not None: grid1 = grid(matrix, angle_list, y, x, mode, V, fwhm, fmerit, step, pcmin, pcmax, debug, full_output, False) if full_output: argm, pclist, snrlist, fluxlist, frlist = grid1 else: argm, pclist, snrlist, fluxlist = grid1 opt_npc = pclist[argm] if verbose: print('Number of steps', len(pclist)) msg = 'Optimal number of PCs = {}, for SNR={}' print(msg.format(opt_npc, snrlist[argm])) print() timing(start_time) if full_output: cubeout = np.array((frlist)) # Plot of SNR as function of PCs if plot: plt.figure(figsize=(8,4)) ax1 = plt.subplot(211) ax1.plot(pclist, snrlist, '-', alpha=0.5) ax1.plot(pclist, snrlist, 'o', alpha=0.5, color='blue') ax1.set_xlim(np.array(pclist).min(), np.array(pclist).max()) ax1.set_ylim(0, np.array(snrlist).max()+1) ax1.set_ylabel('SNR') ax1.minorticks_on() ax1.grid('on', 'major', linestyle='solid', alpha=0.4) ax2 = plt.subplot(212) ax2.plot(pclist, fluxlist, '-', alpha=0.5, color='green') ax2.plot(pclist, fluxlist, 'o', alpha=0.5, color='green') ax2.set_xlim(np.array(pclist).min(), np.array(pclist).max()) ax2.set_ylim(0, np.array(fluxlist).max()+1) ax2.set_xlabel('Principal components') ax2.set_ylabel('Flux in FWHM ap. [ADUs]') ax2.minorticks_on() ax2.grid('on', 'major', linestyle='solid', alpha=0.4) print() # automatic "clever" grid else: grid1 = grid(matrix, angle_list, y, x, mode, V, fwhm, fmerit, max(int(pcmax*0.1),1), pcmin, pcmax, debug, full_output) if full_output: argm, pclist, snrlist, fluxlist, frlist1 = grid1 else: argm, pclist, snrlist, fluxlist = grid1 grid2 = grid(matrix, angle_list, y, x, mode, V, fwhm, fmerit, max(int(pcmax*0.05),1), pclist[argm-1], pclist[argm+1], debug, full_output) if full_output: argm2, pclist2, snrlist2, fluxlist2, frlist2 = grid2 else: argm2, pclist2, snrlist2, fluxlist2 = grid2 grid3 = grid(matrix, angle_list, y, x, mode, V, fwhm, fmerit, 1, pclist2[argm2-1], pclist2[argm2+1], debug, full_output, False) if full_output: _, pclist3, snrlist3, fluxlist3, frlist3 = grid3 else: _, pclist3, snrlist3, fluxlist3 = grid3 argm = np.argmax(snrlist3) opt_npc = pclist3[argm] dfr = pd.DataFrame(np.array((pclist+pclist2+pclist3, snrlist+snrlist2+snrlist3, fluxlist+fluxlist2+fluxlist3)).T) dfrs = dfr.sort_values(0) dfrsrd = dfrs.drop_duplicates() ind = np.array(dfrsrd.index) if verbose: print('Number of evaluated steps', ind.shape[0]) msg = 'Optimal number of PCs = {}, for SNR={}' print(msg.format(opt_npc, snrlist3[argm]), '\n') timing(start_time) if full_output: cubefrs = np.array((frlist1+frlist2+frlist3)) cubeout = cubefrs[ind] # Plot of SNR as function of PCs if plot: alpha = 0.4 lw = 2 plt.figure(figsize=(6,4)) ax1 = plt.subplot(211) ax1.plot(np.array(dfrsrd.loc[:,0]), np.array(dfrsrd.loc[:,1]), '-', alpha=alpha, color='blue', lw=lw) ax1.plot(np.array(dfrsrd.loc[:,0]), np.array(dfrsrd.loc[:,1]), 'o', alpha=alpha/2, color='blue') ax1.set_xlim(np.array(dfrsrd.loc[:,0]).min(), np.array(dfrsrd.loc[:,0]).max()) ax1.set_ylim(0, np.array(dfrsrd.loc[:,1]).max()+1) #ax1.set_xlabel('') ax1.set_ylabel('S/N') ax1.minorticks_on() ax1.grid('on', 'major', linestyle='solid', alpha=0.2) if plot_title is not None: ax1.set_title('Optimal pc: ' + str(opt_npc) + ' for ' + plot_title) ax2 = plt.subplot(212) ax2.plot(np.array(dfrsrd.loc[:,0]), np.array(dfrsrd.loc[:,2]), '-', alpha=alpha, color='green', lw=lw) ax2.plot(np.array(dfrsrd.loc[:,0]), np.array(dfrsrd.loc[:,2]), 'o', alpha=alpha/2, color='green') ax2.set_xlim(np.array(pclist).min(), np.array(pclist).max()) #ax2.set_ylim(0, np.array(fluxlist).max()+1) ax2.set_xlabel('Principal components') ax2.set_ylabel('Flux in FWHM aperture') ax2.minorticks_on() ax2.set_yscale('log') ax2.grid('on', 'major', linestyle='solid', alpha=0.2) #plt.savefig('figure.pdf', dpi=300, bbox_inches='tight') print() # Optionally, save the contrast curve if save_plot != None: plt.savefig(save_plot, dpi=100, bbox_inches='tight') if mode == 'fullfr': finalfr = pca(cube, angle_list, cube_ref=cube_ref, ncomp=opt_npc, svd_mode=svd_mode, mask_center_px=mask_center_px, scaling=scaling, collapse=collapse, verbose=False) elif mode == 'annular': finalfr = pca_annulus(cube, angle_list, ncomp=opt_npc, annulus_width=annulus_width, r_guess=ann_radius, cube_ref=cube_ref, svd_mode=svd_mode, scaling=scaling, collapse=collapse) _ = phot.frame_quick_report(finalfr, fwhm, (x,y), verbose=verbose) if full_output: return opt_npc, finalfr, cubeout else: return opt_npc def pca_incremental(cubepath, angle_list=None, n=0, batch_size=None, batch_ratio=0.1, ncomp=10, verbose=True, full_output=False): """ Computes the full-frame PCA-ADI algorithm in batches, for processing fits files larger than the available system memory. It uses the incremental PCA algorithm from scikit-learn. Parameters ---------- cubepath : str String with the path to the fits file to be opened in memmap mode. angle_list : array_like, 1d Corresponding parallactic angle for each frame. If None the parallactic angles are obtained from the same fits file (extension). n : int optional The index of the HDULIST contaning the data/cube. batch_size : int optional The number of frames in each batch. If None the size of the batch is computed wrt the available memory in the system. batch_ratio : float If batch_size is None, batch_ratio indicates the % of the available memory that should be used by every batch. ncomp : int, optional How many PCs are used as a lower-dimensional subspace to project the target frames. verbose : {True, False}, bool optional If True prints intermediate info and timing. full_output: boolean, optional Whether to return the final median combined image only or with other intermediate arrays. Returns ------- If full_output is True the algorithm returns the incremental PCA model of scikit-learn, the PCs reshaped into images, the median of the derotated residuals for each batch, and the final frame. If full_output is False then the final frame is returned. """ if verbose: start = time_ini() if not isinstance(cubepath, str): msgerr = 'Cubepath must be a string with the full path of your fits file' raise TypeError(msgerr) fitsfilename = cubepath hdulist = fits.open(fitsfilename, memmap=True) if not hdulist[n].data.ndim>2: raise TypeError('Input array is not a 3d or 4d array') n_frames = hdulist[n].data.shape[0] y = hdulist[n].data.shape[1] x = hdulist[n].data.shape[2] if angle_list is None: try: angle_list = hdulist[n+1].data except: raise RuntimeError('Parallactic angles were not provided') if not n_frames==angle_list.shape[0]: msg ='Angle list vector has wrong length. It must equal the number of \ frames in the cube.' raise TypeError(msg) ipca = IncrementalPCA(n_components=ncomp) if batch_size is None: aval_mem = get_available_memory(verbose) total_size = hdulist[n].data.nbytes batch_size = int(n_frames/(total_size/(batch_ratio*aval_mem))) if verbose: msg1 = "Cube with {:} frames ({:.3f} GB)" print(msg1.format(n_frames, hdulist[n].data.nbytes/1e9)) msg2 = "Batch size set to {:} frames ({:.3f} GB)" print(msg2.format(batch_size, hdulist[n].data[:batch_size].nbytes/1e9), '\n') res = n_frames%batch_size for i in range(0, int(n_frames/batch_size)): intini = i*batch_size intfin = (i+1)*batch_size batch = hdulist[n].data[intini:intfin] msg = 'Processing batch [{},{}] with shape {}' if verbose: print(msg.format(intini, intfin, batch.shape)) print('Batch size in memory = {:.3f} MB'.format(batch.nbytes/1e6)) matrix = prepare_matrix(batch, verbose=False) ipca.partial_fit(matrix) if res>0: batch = hdulist[n].data[intfin:] msg = 'Processing batch [{},{}] with shape {}' if verbose: print(msg.format(intfin, n_frames, batch.shape)) print('Batch size in memory = {:.3f} MB'.format(batch.nbytes/1e6)) matrix = prepare_matrix(batch, verbose=False) ipca.partial_fit(matrix) if verbose: timing(start) V = ipca.components_ mean = ipca.mean_.reshape(batch.shape[1], batch.shape[2]) if verbose: print('\nReconstructing and obtaining residuals') medians = [] for i in range(0, int(n_frames/batch_size)): intini = i*batch_size intfin = (i+1)*batch_size batch = hdulist[n].data[intini:intfin] batch = batch - mean matrix = prepare_matrix(batch, verbose=False) reconst = np.dot(np.dot(matrix, V.T), V) resid = matrix - reconst resid_der = cube_derotate(resid.reshape(batch.shape[0], batch.shape[1], batch.shape[2]), angle_list[intini:intfin]) medians.append(cube_collapse(resid_der, 'median')) if res>0: batch = hdulist[n].data[intfin:] batch = batch - mean matrix = prepare_matrix(batch, verbose=False) reconst = np.dot(np.dot(matrix, V.T), V) resid = matrix - reconst resid_der = cube_derotate(resid.reshape(batch.shape[0], batch.shape[1], batch.shape[2]), angle_list[intfin:]) medians.append(cube_collapse(resid_der, 'median')) del(matrix) del(batch) medians = np.array(medians) frame = np.median(medians, axis=0) if verbose: timing(start) if full_output: pcs = reshape_matrix(V, y, x) return ipca, pcs, medians, frame else: return frame
mit
nomadcube/scikit-learn
examples/svm/plot_svm_regression.py
249
1451
""" =================================================================== Support Vector Regression (SVR) using linear and non-linear kernels =================================================================== Toy example of 1D regression using linear, polynomial and RBF kernels. """ print(__doc__) import numpy as np from sklearn.svm import SVR import matplotlib.pyplot as plt ############################################################################### # Generate sample data X = np.sort(5 * np.random.rand(40, 1), axis=0) y = np.sin(X).ravel() ############################################################################### # Add noise to targets y[::5] += 3 * (0.5 - np.random.rand(8)) ############################################################################### # Fit regression model svr_rbf = SVR(kernel='rbf', C=1e3, gamma=0.1) svr_lin = SVR(kernel='linear', C=1e3) svr_poly = SVR(kernel='poly', C=1e3, degree=2) y_rbf = svr_rbf.fit(X, y).predict(X) y_lin = svr_lin.fit(X, y).predict(X) y_poly = svr_poly.fit(X, y).predict(X) ############################################################################### # look at the results plt.scatter(X, y, c='k', label='data') plt.hold('on') plt.plot(X, y_rbf, c='g', label='RBF model') plt.plot(X, y_lin, c='r', label='Linear model') plt.plot(X, y_poly, c='b', label='Polynomial model') plt.xlabel('data') plt.ylabel('target') plt.title('Support Vector Regression') plt.legend() plt.show()
bsd-3-clause
mjgrav2001/scikit-learn
examples/neural_networks/plot_rbm_logistic_classification.py
258
4609
""" ============================================================== Restricted Boltzmann Machine features for digit classification ============================================================== For greyscale image data where pixel values can be interpreted as degrees of blackness on a white background, like handwritten digit recognition, the Bernoulli Restricted Boltzmann machine model (:class:`BernoulliRBM <sklearn.neural_network.BernoulliRBM>`) can perform effective non-linear feature extraction. In order to learn good latent representations from a small dataset, we artificially generate more labeled data by perturbing the training data with linear shifts of 1 pixel in each direction. This example shows how to build a classification pipeline with a BernoulliRBM feature extractor and a :class:`LogisticRegression <sklearn.linear_model.LogisticRegression>` classifier. The hyperparameters of the entire model (learning rate, hidden layer size, regularization) were optimized by grid search, but the search is not reproduced here because of runtime constraints. Logistic regression on raw pixel values is presented for comparison. The example shows that the features extracted by the BernoulliRBM help improve the classification accuracy. """ from __future__ import print_function print(__doc__) # Authors: Yann N. Dauphin, Vlad Niculae, Gabriel Synnaeve # License: BSD import numpy as np import matplotlib.pyplot as plt from scipy.ndimage import convolve from sklearn import linear_model, datasets, metrics from sklearn.cross_validation import train_test_split from sklearn.neural_network import BernoulliRBM from sklearn.pipeline import Pipeline ############################################################################### # Setting up def nudge_dataset(X, Y): """ This produces a dataset 5 times bigger than the original one, by moving the 8x8 images in X around by 1px to left, right, down, up """ direction_vectors = [ [[0, 1, 0], [0, 0, 0], [0, 0, 0]], [[0, 0, 0], [1, 0, 0], [0, 0, 0]], [[0, 0, 0], [0, 0, 1], [0, 0, 0]], [[0, 0, 0], [0, 0, 0], [0, 1, 0]]] shift = lambda x, w: convolve(x.reshape((8, 8)), mode='constant', weights=w).ravel() X = np.concatenate([X] + [np.apply_along_axis(shift, 1, X, vector) for vector in direction_vectors]) Y = np.concatenate([Y for _ in range(5)], axis=0) return X, Y # Load Data digits = datasets.load_digits() X = np.asarray(digits.data, 'float32') X, Y = nudge_dataset(X, digits.target) X = (X - np.min(X, 0)) / (np.max(X, 0) + 0.0001) # 0-1 scaling X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, random_state=0) # Models we will use logistic = linear_model.LogisticRegression() rbm = BernoulliRBM(random_state=0, verbose=True) classifier = Pipeline(steps=[('rbm', rbm), ('logistic', logistic)]) ############################################################################### # Training # Hyper-parameters. These were set by cross-validation, # using a GridSearchCV. Here we are not performing cross-validation to # save time. rbm.learning_rate = 0.06 rbm.n_iter = 20 # More components tend to give better prediction performance, but larger # fitting time rbm.n_components = 100 logistic.C = 6000.0 # Training RBM-Logistic Pipeline classifier.fit(X_train, Y_train) # Training Logistic regression logistic_classifier = linear_model.LogisticRegression(C=100.0) logistic_classifier.fit(X_train, Y_train) ############################################################################### # Evaluation print() print("Logistic regression using RBM features:\n%s\n" % ( metrics.classification_report( Y_test, classifier.predict(X_test)))) print("Logistic regression using raw pixel features:\n%s\n" % ( metrics.classification_report( Y_test, logistic_classifier.predict(X_test)))) ############################################################################### # Plotting plt.figure(figsize=(4.2, 4)) for i, comp in enumerate(rbm.components_): plt.subplot(10, 10, i + 1) plt.imshow(comp.reshape((8, 8)), cmap=plt.cm.gray_r, interpolation='nearest') plt.xticks(()) plt.yticks(()) plt.suptitle('100 components extracted by RBM', fontsize=16) plt.subplots_adjust(0.08, 0.02, 0.92, 0.85, 0.08, 0.23) plt.show()
bsd-3-clause
tridesclous/tridesclous
tridesclous/peeler_engine_geometry.py
1
28001
""" Here implementation that tale in account the geometry of the probe to speed up template matching. """ import time import numpy as np import joblib from concurrent.futures import ThreadPoolExecutor import itertools from .peeler_engine_base import PeelerEngineGeneric from .peeler_tools import * from .peeler_tools import _dtype_spike import sklearn.metrics.pairwise from .cltools import HAVE_PYOPENCL, OpenCL_Helper if HAVE_PYOPENCL: import pyopencl mf = pyopencl.mem_flags from .peakdetector import get_peak_detector_class try: import numba HAVE_NUMBA = True from .numba_tools import numba_explore_best_shift, numba_sparse_scalar_product except ImportError: HAVE_NUMBA = False class PeelerEngineGeometrical(PeelerEngineGeneric): def change_params(self, **kargs): PeelerEngineGeneric.change_params(self, **kargs) def initialize(self, **kargs): PeelerEngineGeneric.initialize(self, **kargs) # create peak detector p = dict(self.catalogue['peak_detector_params']) self.peakdetector_engine = p.pop('engine') self.peakdetector_method = p.pop('method') PeakDetector_class = get_peak_detector_class(self.peakdetector_method, self.peakdetector_engine) chunksize = self.fifo_size-2*self.n_span # not the real chunksize here self.peakdetector = PeakDetector_class(self.sample_rate, self.nb_channel, chunksize, self.internal_dtype, self.geometry) self.peakdetector.change_params(**p) # some attrs self.shifts = np.arange(-self.maximum_jitter_shift, self.maximum_jitter_shift+1) self.nb_shift = self.shifts.size #~ self.channel_distances = sklearn.metrics.pairwise.euclidean_distances(self.geometry).astype('float32') #~ self.channels_adjacency = {} #~ for c in range(self.nb_channel): #~ if self.use_sparse_template: #~ nearest, = np.nonzero(self.channel_distances[c, :]<self.adjacency_radius_um) #~ self.channels_adjacency[c] = nearest #~ else: #~ self.channels_adjacency[c] = np.arange(self.nb_channel, dtype='int64') self.mask_already_tested = np.zeros((self.fifo_size, self.nb_channel), dtype='bool') def initialize_before_each_segment(self, **kargs): PeelerEngineGeneric.initialize_before_each_segment(self, **kargs) self.peakdetector.initialize_stream() def detect_local_peaks_before_peeling_loop(self): # reset tested mask self.mask_already_tested[:] = False # and detect peak self.re_detect_local_peak() #~ print('detect_local_peaks_before_peeling_loop', self.pending_peaks.size) def re_detect_local_peak(self): mask = self.peakdetector.get_mask_peaks_in_chunk(self.fifo_residuals) if mask.ndim ==1: #~ mask &= ~self.mask_already_tested[self.n_span:-self.n_span, 0] sample_indexes, = np.nonzero(mask) sample_indexes += self.n_span tested = self.mask_already_tested[sample_indexes, 0] sample_indexes = sample_indexes[~tested] chan_indexes = np.zeros(sample_indexes.size, dtype='int64') else: #~ mask &= ~self.mask_already_tested[self.n_span:-self.n_span, :] sample_indexes, chan_indexes = np.nonzero(mask) sample_indexes += self.n_span tested = self.mask_already_tested[sample_indexes, chan_indexes] sample_indexes = sample_indexes[~tested] chan_indexes = chan_indexes[~tested] amplitudes = np.abs(self.fifo_residuals[sample_indexes, chan_indexes]) order = np.argsort(amplitudes)[::-1] dtype_peak = [('sample_index', 'int32'), ('chan_index', 'int32'), ('peak_value', 'float32')] self.pending_peaks = np.zeros(sample_indexes.size, dtype=dtype_peak) self.pending_peaks['sample_index'] = sample_indexes self.pending_peaks['chan_index'] = chan_indexes self.pending_peaks['peak_value'] = amplitudes self.pending_peaks = self.pending_peaks[order] #~ print('re_detect_local_peak', self.pending_peaks.size) def select_next_peak(self): #~ print(len(self.pending_peaks)) if len(self.pending_peaks)>0: sample_ind, chan_ind, ampl = self.pending_peaks[0] self.pending_peaks = self.pending_peaks[1:] return sample_ind, chan_ind else: return LABEL_NO_MORE_PEAK, None def on_accepted_spike(self, sample_ind, cluster_idx, jitter): # remove spike prediction from fifo residuals #~ t1 = time.perf_counter() pos, pred = make_prediction_one_spike(sample_ind, cluster_idx, jitter, self.fifo_residuals.dtype, self.catalogue) #~ t2 = time.perf_counter() #~ print(' make_prediction_one_spike', (t2-t1)*1000) #~ t1 = time.perf_counter() self.fifo_residuals[pos:pos+self.peak_width_long, :] -= pred #~ t2 = time.perf_counter() #~ print(' self.fifo_residuals -', (t2-t1)*1000) # this prevent search peaks in the zone until next "reset_to_not_tested" #~ t1 = time.perf_counter() self.clean_pending_peaks_zone(sample_ind, cluster_idx) #~ t2 = time.perf_counter() #~ print(' self.clean_pending_peaks_zone -', (t2-t1)*1000) def clean_pending_peaks_zone(self, sample_ind, cluster_idx): # TODO test with sparse_mask_level3s!!!!! mask = self.sparse_mask_level1[cluster_idx, :] #~ t1 = time.perf_counter() #~ keep = np.zeros(self.pending_peaks.size, dtype='bool') #~ for i, peak in enumerate(self.pending_peaks): #~ in_zone = mask[peak['chan_index']] and \ #~ (peak['sample_index']+self.n_left)<sample_ind and \ #~ sample_ind<(peak['sample_index']+self.n_right) #~ keep[i] = not(in_zone) peaks = self.pending_peaks in_zone = mask[peaks['chan_index']] &\ ((peaks['sample_index']+self.n_left)<sample_ind) & \ ((peaks['sample_index']+self.n_right)>sample_ind) keep = ~ in_zone #~ t2 = time.perf_counter() #~ print(' clean_pending_peaks_zone loop', (t2-t1)*1000) self.pending_peaks = self.pending_peaks[keep] #~ print('clean_pending_peaks_zone', self.pending_peaks.size) def set_already_tested(self, sample_ind, peak_chan): self.mask_already_tested[sample_ind, peak_chan] = True def reset_to_not_tested(self, good_spikes): for spike in good_spikes: # each good spike can remove from cluster_idx = self.catalogue['label_to_index'][spike.cluster_label] chan_mask = self.sparse_mask_level1[cluster_idx, :] self.mask_already_tested[spike.index + self.n_left_long:spike.index + self.n_right_long][:, chan_mask] = False self.re_detect_local_peak() def get_no_label_peaks(self): mask = self.peakdetector.get_mask_peaks_in_chunk(self.fifo_residuals) nolabel_indexes, chan_indexes = np.nonzero(mask) #~ nolabel_indexes, chan_indexes = np.nonzero(~self.mask_not_already_tested) nolabel_indexes += self.n_span nolabel_indexes = nolabel_indexes[nolabel_indexes<(self.chunksize+self.n_span)] bad_spikes = np.zeros(nolabel_indexes.shape[0], dtype=_dtype_spike) bad_spikes['index'] = nolabel_indexes bad_spikes['cluster_label'] = LABEL_UNCLASSIFIED return bad_spikes def get_best_template(self, left_ind, chan_ind): full_waveform = self.fifo_residuals[left_ind:left_ind+self.peak_width,:] centers0 = self.catalogue['centers0'] projections = self.catalogue['projections'] strict_low = self.catalogue['boundaries'][:, 0] strict_high = self.catalogue['boundaries'][:, 1] flexible_low = self.catalogue['boundaries'][:, 2] flexible_high = self.catalogue['boundaries'][:, 3] n = centers0.shape[0] flat_waveform = full_waveform.flatten() flat_centers0 = centers0.reshape(n, -1) #~ scalar_products = np.zeros(n, dtype='float32') #~ for i in range(n): #~ sp = np.sum((flat_waveform - flat_centers0[i, :]) * projections[i, :]) #~ scalar_products[i] = sp #~ scalar_products = np.sum((flat_waveform[np.newaxis, :] - flat_centers0[:, :]) * projections[:, :], axis=1) #~ print(scalar_products) #~ t1 = time.perf_counter() scalar_products = numba_sparse_scalar_product(self.fifo_residuals, left_ind, centers0, projections, chan_ind, self.sparse_mask_level1, ) #~ t2 = time.perf_counter() #~ print('numba_sparse_scalar_product', (t2-t1)*1000) #~ print(scalar_products) possible_idx, = np.nonzero((scalar_products < strict_high) & (scalar_products > strict_low)) #~ possible_idx, = np.nonzero((scalar_products < flexible_high) & (scalar_products > flexible_low)) #~ print('possible_idx', possible_idx) #~ print('scalar_products[possible_idx]', scalar_products[possible_idx]) #~ do_plot = False if len(possible_idx) == 1: extra_idx = None candidates_idx =possible_idx elif len(possible_idx) == 0: #~ extra_idx, = np.nonzero((np.abs(scalar_products) < 0.5)) extra_idx, = np.nonzero((scalar_products < flexible_high) & (scalar_products > flexible_low)) #~ if len(extra_idx) ==0: # give a try to very far ones. #~ extra_idx, = np.nonzero((np.abs(scalar_products) < 1.)) #~ print('extra_idx', extra_idx) #~ if len(extra_idx) ==0: #~ candidates_idx = [] #~ else: #~ candidates_idx = extra_idx candidates_idx = extra_idx #~ candidates_idx =possible_idx #~ pass elif len(possible_idx) > 1 : extra_idx = None candidates_idx = possible_idx debug_plot_change = False if len(candidates_idx) > 0: #~ t1 = time.perf_counter() candidates_idx = np.array(candidates_idx, dtype='int64') common_mask = np.sum(self.sparse_mask_level3[candidates_idx, :], axis=0) > 0 shift_scalar_product, shift_distance = numba_explore_best_shift(self.fifo_residuals, left_ind, self.catalogue['centers0'], self.catalogue['projections'], candidates_idx, self.maximum_jitter_shift, common_mask, self.sparse_mask_level1) #~ i0, i1 = np.unravel_index(np.argmin(np.abs(shift_scalar_product), axis=None), shift_scalar_product.shape) i0, i1 = np.unravel_index(np.argmin(shift_distance, axis=None), shift_distance.shape) #~ best_idx = candidates_idx[i0] shift = self.shifts[i1] cluster_idx = candidates_idx[i0] final_scalar_product = shift_scalar_product[i0, i1] #~ t2 = time.perf_counter() #~ print('numba_explore_best_shift', (t2-t1)*1000) #~ print('shift', shift) #~ print('cluster_idx', cluster_idx) #~ print('final_scalar_product', final_scalar_product) if np.abs(shift) == self.maximum_jitter_shift: cluster_idx = None shift = None final_scalar_product = None #~ print('maximum_jitter_shift >> cluster_idx = None ') #~ do_plot = True #~ i0_bis, i1_bis = np.unravel_index(np.argmin(np.abs(shift_scalar_product), axis=None), shift_scalar_product.shape) #~ if i0 != i0_bis: #~ debug_plot_change = True #~ print('Warning') #~ print(possible_idx) #~ print(shift_scalar_product) #~ print(shift_distance) #~ if best_idx != cluster_idx: #~ print('*'*50) #~ print('best_idx != cluster_idx', best_idx, cluster_idx) #~ print('*'*50) #~ cluster_idx = best_idx #~ debug_plot_change = True else: cluster_idx = None shift = None final_scalar_product = None #~ import matplotlib.pyplot as plt #~ fig, ax = plt.subplots() #~ ax.plot(self.shifts, shift_scalar_product.T) #~ plt.show() #~ print('ici',) # DEBUG OMP #~ from sklearn.linear_model import orthogonal_mp_gram #~ from sklearn.linear_model import OrthogonalMatchingPursuit #~ n_nonzero_coefs = 2 #~ omp = OrthogonalMatchingPursuit(n_nonzero_coefs=n_nonzero_coefs) #~ X = self.catalogue['centers0'].reshape(self.catalogue['centers0'].shape[0], -1).T #~ waveform = self.fifo_residuals[left_ind:left_ind+self.peak_width,:].flatten() #~ y = waveform #~ omp.fit(X, y) #~ coef = omp.coef_ #~ idx_r, = coef.nonzero() #~ cluster_idx_omp = np.argmin(np.abs(coef - 1)) #~ if cluster_idx_omp != cluster_idx and coef[cluster_idx_omp] > 0.5: #~ if True: if False: #~ if cluster_idx in (3,6): #~ if do_plot: #~ if False: #~ if final_scalar_product is not None and np.abs(final_scalar_product) > 0.5: #~ if True: #~ if len(possible_idx) != 1: #~ if len(possible_idx) > 1: #~ if len(candidates_idx) > 1: #~ if 7 in possible_idx or cluster_idx == 7: #~ if cluster_idx not in possible_idx and len(possible_idx) > 0: #~ if debug_plot_change: import matplotlib.pyplot as plt print() print('best cluster_idx', cluster_idx) print('possible_idx', possible_idx) print('extra_idx', extra_idx) print(scalar_products[possible_idx]) print(strict_high[possible_idx]) print('cluster_idx_omp', cluster_idx_omp) fig, ax = plt.subplots() ax.plot(coef) if cluster_idx is not None: ax.axvline(cluster_idx) ax.set_title(f'{cluster_idx} omp {cluster_idx_omp}') #~ plt.show() fig, ax = plt.subplots() shift2 = 0 if shift is None else shift full_waveform2 = self.fifo_residuals[left_ind+shift2:left_ind+shift2+self.peak_width,:] ax.plot(full_waveform2.T.flatten(), color='k') if shift !=0 and shift is not None: ax.plot(full_waveform.T.flatten(), color='grey', ls='--') for idx in candidates_idx: ax.plot(self.catalogue['centers0'][idx, :].T.flatten(), color='m') ax.plot(self.catalogue['centers0'][cluster_idx_omp, :].T.flatten(), color='y') if cluster_idx is not None: ax.plot(self.catalogue['centers0'][cluster_idx, :].T.flatten(), color='c', ls='--') ax.set_title(f'best {cluster_idx} shift {shift} possible_idx {possible_idx}') if shift is not None: fig, ax = plt.subplots() #~ ax.plot(self.shifts, np.abs(shift_scalar_product).T) ax.plot(self.shifts, shift_scalar_product.T) ax.axhline(0) fig, ax = plt.subplots() ax.plot(self.shifts, np.abs(shift_distance).T) plt.show() best_template_info = {'nb_candidate' : len(candidates_idx), 'final_scalar_product':final_scalar_product} return cluster_idx, shift, best_template_info def accept_tempate(self, left_ind, cluster_idx, jitter, best_template_info): if jitter is None: # this must have a jitter jitter = 0 #~ if np.abs(jitter) > (self.maximum_jitter_shift - 0.5): #~ return False strict_low = self.catalogue['boundaries'][:, 0] strict_high = self.catalogue['boundaries'][:, 1] flexible_low = self.catalogue['boundaries'][:, 2] flexible_high = self.catalogue['boundaries'][:, 3] #~ flat_waveform = full_waveform.flatten() #~ sp2 = np.sum((flat_waveform - centers0[cluster_idx, :].flatten()) * projections[cluster_idx, :]) sp = best_template_info['final_scalar_product'] nb_candidate = best_template_info['nb_candidate'] if nb_candidate == 1: #~ accept_template = strict_low[cluster_idx] < sp < strict_high[cluster_idx] accept_template = flexible_low[cluster_idx] < sp < flexible_high[cluster_idx] else: accept_template = flexible_low[cluster_idx] < sp < flexible_high[cluster_idx] # waveform L2 on mask #~ full_waveform = self.fifo_residuals[left_ind:left_ind+self.peak_width,:] #~ wf = full_waveform[:, mask] # prediction with interpolation #~ _, pred_wf = make_prediction_one_spike(left_ind - self.n_left, cluster_idx, jitter, self.fifo_residuals.dtype, self.catalogue, long=False) #~ pred_wf = pred_wf[:, mask] #~ dist = (pred_wf - wf) ** 2 # criteria per channel #~ residual_nrj_by_chan = np.sum(dist, axis=0) #~ wf_nrj = np.sum(wf**2, axis=0) #~ weight = self.weight_per_template_dict[cluster_idx] #~ crietria_weighted = (wf_nrj>residual_nrj_by_chan).astype('float') * weight #~ accept_template = np.sum(crietria_weighted) >= 0.7 * np.sum(weight) # criteria per sample #~ dist * np.abs(pred_wf) < #~ dist_w = dist / np.abs(pred_wf) #~ gain = (dist < wf**2).astype('float') * np.abs(pred_wf) / np.sum(np.abs(pred_wf)) #~ gain = (wf / pred_wf - 1) * np.abs(pred_wf) / np.sum(np.abs(pred_wf)) #~ gain = (pred_wf**2 / wf**1 - 1) * np.abs(pred_wf) / np.sum(np.abs(pred_wf)) #~ accept_template = np.sum(gain) > 0.8 #~ accept_template = np.sum(gain) > 0.7 #~ accept_template0 = np.sum(gain) > 0.6 #~ accept_template = np.sum(gain) > 0.5 # criteria max residual #~ max_res = np.max(np.abs(pred_wf - wf)) #~ max_pred = np.max(np.abs(pred_wf)) #~ accept_template1 = max_pred > max_res #~ accept_template = False # debug #~ limit_sp =self.catalogue['sp_normed_limit'][cluster_idx, :] #~ sp = np.sum(self.catalogue['centers0_normed'] * full_waveform * self.catalogue['template_weight']) #~ print('limit_sp', limit_sp, 'sp', sp) #~ accept_template = False #~ immediate_accept = False # DEBUG always refuse!!!!! #~ accept_template = False #~ label = self.catalogue['cluster_labels'][cluster_idx] # debug #~ if label == 13: #~ if accept_template and not immediate_accept: #~ accept_template = False # debug #~ if label == 13: #~ if not hasattr(self, 'count_accept'): #~ self.count_accept = {} #~ self.count_accept[label] = {'accept_template':0, 'immediate_accept':0, 'not_accepted':0} #~ if accept_template: #~ self.count_accept[label]['accept_template'] += 1 #~ if immediate_accept: #~ self.count_accept[label]['immediate_accept'] += 1 #~ else: #~ self.count_accept[label]['not_accepted'] += 1 #~ print(self.count_accept) #~ if self._plot_debug: #~ if not accept_template and label in []: #~ if not accept_template: #~ if accept_template: #~ if True: if False: #~ if not immediate_accept: #~ if immediate_accept: #~ if immediate_accept: #~ if label == 7 and not accept_template: #~ if label == 7: #~ if label == 121: #~ if label == 5: #~ if nb_candidate > 1: #~ if label == 13 and accept_template and not immediate_accept: #~ if label == 13 and not accept_template: #~ if label in (7,9): #~ nears = np.array([ 5813767, 5813767, 11200038, 11322540, 14989650, 14989673, 14989692, 14989710, 15119220, 15830377, 16138346, 16216666, 17078883]) #~ print(np.abs((left_ind - self.n_left) - nears)) #~ print(np.abs((left_ind - self.n_left) - nears) < 2) #~ if label == 5 and np.any(np.abs((left_ind - self.n_left) - nears) < 50): #~ if immediate_accept: import matplotlib.pyplot as plt mask = self.sparse_mask_level2[cluster_idx] full_waveform = self.fifo_residuals[left_ind:left_ind+self.peak_width,:] wf = full_waveform[:, mask] _, pred_waveform = make_prediction_one_spike(left_ind - self.n_left, cluster_idx, jitter, self.fifo_residuals.dtype, self.catalogue, long=False) pred_wf = pred_waveform[:, mask] if accept_template: color = 'g' else: color = 'r' #~ if accept_template: #~ if immediate_accept: #~ color = 'g' #~ else: #~ color = 'c' #~ else: #~ color = 'r' #~ if not immediate_accept: #~ fig, ax = plt.subplots() #~ ax.plot(gain.T.flatten(), color=color) #~ ax.set_title('{}'.format(np.sum(gain))) #~ fig, ax = plt.subplots() #~ ax.plot(feat_centroids.T, alpha=0.5) #~ ax.plot(feat_waveform, color='k') fig, ax = plt.subplots() ax.plot(full_waveform.T.flatten(), color='k') ax.plot(pred_waveform.T.flatten(), color=color) l0, l1 = strict_low[cluster_idx], strict_high[cluster_idx] l2, l3 = flexible_low[cluster_idx], flexible_high[cluster_idx] title = f'{cluster_idx} {sp:0.3f} lim [{l0:0.3f} {l1:0.3f}] [{l2:0.3f} {l3:0.3f}] {nb_candidate}' ax.set_title(title) #~ fig, ax = plt.subplots() #~ ax.plot(wf.T.flatten(), color='k') #~ ax.plot(pred_wf.T.flatten(), color=color) #~ ax.plot( wf.T.flatten() - pred_wf.T.flatten(), color=color, ls='--') print() print('cluster_idx',cluster_idx, 'accept_template', accept_template) #~ print(distance, self.distance_limit[cluster_idx]) #~ print('distance', distance, distance2, 'limit_distance', self.distance_limit[cluster_idx]) #~ limit_sp =self.catalogue['sp_normed_limit'][cluster_idx, :] #~ sp = np.sum(self.catalogue['centers0_normed'] * full_waveform * self.catalogue['template_weight']) #~ sp = np.sum(self.catalogue['centers0_normed'] * full_waveform) #~ print('limit_sp', limit_sp, 'sp', sp) #~ if not immediate_accept: #~ print('np.sum(gain)', np.sum(gain)) #~ fig, ax = plt.subplots() #~ res = wf - pred_wf #~ count, bins = np.histogram(res, bins=150, weights=np.abs(pred_wf)) #~ ax.plot(bins[:-1], count) #~ plt.show() #~ if distance2 >= self.distance_limit[cluster_idx]: #~ print(crietria_weighted, weight) #~ print(np.sum(crietria_weighted), np.sum(weight)) #~ ax.plot(full_wf0.T.flatten(), color='y') #~ ax.plot( full_wf.T.flatten() - full_wf0.T.flatten(), color='y') #~ ax.set_title('not accepted') plt.show() return accept_template def _plot_after_inner_peeling_loop(self): pass def _plot_before_peeling_loop(self): import matplotlib.pyplot as plt fig, ax = plt.subplots() plot_sigs = self.fifo_residuals.copy() self._plot_sigs_before = plot_sigs #~ chan_order = np.argsort(self.channel_distances[0, :]) for c in range(self.nb_channel): #~ for c in chan_order: plot_sigs[:, c] += c*30 ax.plot(plot_sigs, color='k') ax.axvline(self.fifo_size - self.n_right_long, color='r') ax.axvline(-self.n_left_long, color='r') mask = self.peakdetector.get_mask_peaks_in_chunk(self.fifo_residuals) sample_inds, chan_inds= np.nonzero(mask) sample_inds += self.n_span ax.scatter(sample_inds, plot_sigs[sample_inds, chan_inds], color='r') ax.set_title(f'nb peak {sample_inds.size}') #~ plt.show() def _plot_label_unclassified(self, left_ind, peak_chan, cluster_idx, jitter): return import matplotlib.pyplot as plt #~ print('LABEL UNCLASSIFIED', left_ind, cluster_idx) fig, ax = plt.subplots() wf = self.fifo_residuals[left_ind:left_ind+self.peak_width, :] wf0 = self.catalogue['centers0'][cluster_idx, :, :] ax.plot(wf.T.flatten(), color='b') #~ ax.plot(wf0.T.flatten(), color='g') ax.set_title(f'label_unclassified {left_ind-self.n_left} {cluster_idx} chan{peak_chan}') ax.axvline(peak_chan*self.peak_width-self.n_left) plt.show() def _plot_after_peeling_loop(self, good_spikes): import matplotlib.pyplot as plt fig, ax = plt.subplots() plot_sigs = self.fifo_residuals.copy() for c in range(self.nb_channel): plot_sigs[:, c] += c*30 ax.plot(plot_sigs, color='k') ax.plot(self._plot_sigs_before, color='b') ax.axvline(self.fifo_size - self.n_right_long, color='r') ax.axvline(-self.n_left_long, color='r') mask = self.peakdetector.get_mask_peaks_in_chunk(self.fifo_residuals) sample_inds, chan_inds= np.nonzero(mask) sample_inds += self.n_span ax.scatter(sample_inds, plot_sigs[sample_inds, chan_inds], color='r') good_spikes = np.array(good_spikes, dtype=_dtype_spike) pred = make_prediction_signals(good_spikes, self.internal_dtype, plot_sigs.shape, self.catalogue, safe=True) plot_pred = pred.copy() for c in range(self.nb_channel): plot_pred[:, c] += c*30 ax.plot(plot_pred, color='m') plt.show()
mit
chandlercr/aima-python
grading/bayesian-submissions.py
15
2415
import importlib import traceback from grading.util import roster, print_table # from logic import FolKB # from utils import expr import os from sklearn.naive_bayes import GaussianNB gnb = GaussianNB() def indent(howMuch = 1): space = ' ' for i in range(1, howMuch): space += ' ' return space def printKB(label, kb): print(indent(), label + ' example:') print(indent(2), 'knowledge base:') for clause in kb.clauses: print(indent(3), str(clause)) def printResults(query, gen, limit=3): for count in range(limit): try: long = next(gen) except StopIteration: print() return short = {} for v in long: if v in query.args: short[v] = long[v] print(short, end=' ') print('...') def tryOne(label, frame): fit = gnb.fit(frame.data, frame.target) print('') print_table(fit.theta_, header=[frame.feature_names], topLeft=['Means:'], leftColumn=frame.target_names, numfmt='%6.3f', njust='center', tjust='rjust', ) y_pred = fit.predict(frame.data) print("Number of mislabeled points out of a total %d points : %d" % (len(frame.data), (frame.target != y_pred).sum())) def tryExamples(examples): for label in examples: tryOne(label, examples[label]) submissions = {} scores = {} message1 = 'Submissions that compile:' root = os.getcwd() for student in roster: try: os.chdir(root + '/submissions/' + student) # http://stackoverflow.com/a/17136796/2619926 mod = importlib.import_module('submissions.' + student + '.myBayes') submissions[student] = mod.Examples message1 += ' ' + student except ImportError: pass except: traceback.print_exc() os.chdir(root) print(message1) print('----------------------------------------') for student in roster: if not student in submissions.keys(): continue scores[student] = [] try: examples = submissions[student] print('Bayesian Networks from:', student) tryExamples(examples) except: traceback.print_exc() print(student + ' scores ' + str(scores[student]) + ' = ' + str(sum(scores[student]))) print('----------------------------------------')
mit
Moriadry/tensorflow
tensorflow/contrib/learn/python/learn/estimators/_sklearn.py
153
6723
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """sklearn cross-support.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import os import numpy as np import six def _pprint(d): return ', '.join(['%s=%s' % (key, str(value)) for key, value in d.items()]) class _BaseEstimator(object): """This is a cross-import when sklearn is not available. Adopted from sklearn.BaseEstimator implementation. https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/base.py """ def get_params(self, deep=True): """Get parameters for this estimator. Args: deep: boolean, optional If `True`, will return the parameters for this estimator and contained subobjects that are estimators. Returns: params : mapping of string to any Parameter names mapped to their values. """ out = dict() param_names = [name for name in self.__dict__ if not name.startswith('_')] for key in param_names: value = getattr(self, key, None) if isinstance(value, collections.Callable): continue # XXX: should we rather test if instance of estimator? if deep and hasattr(value, 'get_params'): deep_items = value.get_params().items() out.update((key + '__' + k, val) for k, val in deep_items) out[key] = value return out def set_params(self, **params): """Set the parameters of this estimator. The method works on simple estimators as well as on nested objects (such as pipelines). The former have parameters of the form ``<component>__<parameter>`` so that it's possible to update each component of a nested object. Args: **params: Parameters. Returns: self Raises: ValueError: If params contain invalid names. """ if not params: # Simple optimisation to gain speed (inspect is slow) return self valid_params = self.get_params(deep=True) for key, value in six.iteritems(params): split = key.split('__', 1) if len(split) > 1: # nested objects case name, sub_name = split if name not in valid_params: raise ValueError('Invalid parameter %s for estimator %s. ' 'Check the list of available parameters ' 'with `estimator.get_params().keys()`.' % (name, self)) sub_object = valid_params[name] sub_object.set_params(**{sub_name: value}) else: # simple objects case if key not in valid_params: raise ValueError('Invalid parameter %s for estimator %s. ' 'Check the list of available parameters ' 'with `estimator.get_params().keys()`.' % (key, self.__class__.__name__)) setattr(self, key, value) return self def __repr__(self): class_name = self.__class__.__name__ return '%s(%s)' % (class_name, _pprint(self.get_params(deep=False)),) # pylint: disable=old-style-class class _ClassifierMixin(): """Mixin class for all classifiers.""" pass class _RegressorMixin(): """Mixin class for all regression estimators.""" pass class _TransformerMixin(): """Mixin class for all transformer estimators.""" class NotFittedError(ValueError, AttributeError): """Exception class to raise if estimator is used before fitting. This class inherits from both ValueError and AttributeError to help with exception handling and backward compatibility. Examples: >>> from sklearn.svm import LinearSVC >>> from sklearn.exceptions import NotFittedError >>> try: ... LinearSVC().predict([[1, 2], [2, 3], [3, 4]]) ... except NotFittedError as e: ... print(repr(e)) ... # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS NotFittedError('This LinearSVC instance is not fitted yet',) Copied from https://github.com/scikit-learn/scikit-learn/master/sklearn/exceptions.py """ # pylint: enable=old-style-class def _accuracy_score(y_true, y_pred): score = y_true == y_pred return np.average(score) def _mean_squared_error(y_true, y_pred): if len(y_true.shape) > 1: y_true = np.squeeze(y_true) if len(y_pred.shape) > 1: y_pred = np.squeeze(y_pred) return np.average((y_true - y_pred)**2) def _train_test_split(*args, **options): # pylint: disable=missing-docstring test_size = options.pop('test_size', None) train_size = options.pop('train_size', None) random_state = options.pop('random_state', None) if test_size is None and train_size is None: train_size = 0.75 elif train_size is None: train_size = 1 - test_size train_size = int(train_size * args[0].shape[0]) np.random.seed(random_state) indices = np.random.permutation(args[0].shape[0]) train_idx, test_idx = indices[:train_size], indices[train_size:] result = [] for x in args: result += [x.take(train_idx, axis=0), x.take(test_idx, axis=0)] return tuple(result) # If "TENSORFLOW_SKLEARN" flag is defined then try to import from sklearn. TRY_IMPORT_SKLEARN = os.environ.get('TENSORFLOW_SKLEARN', False) if TRY_IMPORT_SKLEARN: # pylint: disable=g-import-not-at-top,g-multiple-import,unused-import from sklearn.base import BaseEstimator, ClassifierMixin, RegressorMixin, TransformerMixin from sklearn.metrics import accuracy_score, log_loss, mean_squared_error from sklearn.cross_validation import train_test_split try: from sklearn.exceptions import NotFittedError except ImportError: try: from sklearn.utils.validation import NotFittedError except ImportError: pass else: # Naive implementations of sklearn classes and functions. BaseEstimator = _BaseEstimator ClassifierMixin = _ClassifierMixin RegressorMixin = _RegressorMixin TransformerMixin = _TransformerMixin accuracy_score = _accuracy_score log_loss = None mean_squared_error = _mean_squared_error train_test_split = _train_test_split
apache-2.0
dkoes/md-scripts
rmsf.py
1
3438
''' Calculates the average RMSF for each residue in the trajectory using MDAnalysis's RMSF method. Output: If called using shortcut for multiple residues, returned is a single csv called rmsfs.csv containg the resname, resid, and trajectory number e.g. resname | resid | traj_1 | resid | traj_2 ... LEU | 1 | 1.272 | 1 | 1.410 ... If called using a single trajectory, returned is a csv called rmsfs.csv containing resid, resname and RMSF resid | resname | RMSF 1 | LEU | 1.27 ... Running the script: Since calculating RMSF is not a very intense calculation, it may be useful to just produce a single csv for all trajectories. If your trajetories are .dcd and have a naming scheme of prefix_number.dcd e.g. traj_1.dcd you can use the shortcut call. python rmsf.py MDAnalysis_supported_topology trajectory_prefix total_number_of_trajs_starting_at_1 e.g. python rmsf.py FXN_R165N_complex.prmtop FXN_R165N_compex_ 10 You can also call the script using a single trajectory: python rmsfs.py MDAnalysis_supported_topology MDAnalysis_supported_trajectory e.g. python rmsf.py FXN_R165N_complex.prmtop FXN_R165N_compex_1.dcd ''' import sys import MDAnalysis import pandas as pd from pandas import DataFrame import numpy as np # numpy 1.16.6 from MDAnalysis.analysis import align from MDAnalysis.analysis.rms import RMSF ''' Loads trajectory(s) into trajs ''' def getTrajs(): top = str(sys.argv[1]) dcd_prefix = str(sys.argv[2]) trajs = []; if (len(sys.argv) == 4): dcd_total = int(sys.argv[3]) for i in range(dcd_total): trajs.append(MDAnalysis.Universe(top, dcd_prefix + '{}.dcd'.format(i + 1))) traj = MDAnalysis.Universe(top, [dcd_prefix + '{}.dcd'.format(i + 1) for i in range(10)]) else: trajs.append(MDAnalysis.Universe(top, dcd_prefix)) traj = trajs[0] return trajs, traj ''' Calculates the avergae RMSF for each residue in the trajectory ''' def get_rmsf(t,label=None): sel = 'protein and not name H*' prot = t.select_atoms(sel) average_coordinates = t.trajectory.timeseries(asel=prot).mean(axis=1) # make a reference structure (need to reshape into a 1-frame "trajectory") reference = MDAnalysis.Merge(prot).load_new(average_coordinates[:, None, :], order="afc") aligner = align.AlignTraj(t, reference, select=sel, in_memory=True).run() print('\tDone Aligning... calculating RMSF') rmsfer = RMSF(prot).run() ret = pd.DataFrame(zip(prot.resids,prot.resnames,rmsfer.rmsf),columns=('resid','resname','rmsf')) if label != None: ret['label'] = label return ret ''' Creates and returns the final dataframe to become rmsfs.csv ''' def rmsf_df(trajs, traj): rmsfs = DataFrame() protein = traj.select_atoms('protein') rmsfs['resname'] = protein.residues.resnames for i in range(len(trajs)): print('\tCalculating rmsf for traj {}'.format(i + 1)) rmsf = get_rmsf(trajs[i]) if (len(trajs) == 1): col_name = 'RMSF' else: col_name = 'traj_%s' % str(i + 1) rmsf = rmsf.groupby(['resid']).mean().reset_index().rename(columns={'rmsf': col_name}) rmsfs = pd.concat([rmsfs, rmsf], axis=1) if (len(trajs) == 1): return rmsfs.set_index('resid') else: return rmsfs if __name__ == '__main__' : print('Loading trajectories...') trajs, traj = getTrajs() print('Calculating rmsfs') rmsfs = rmsf_df(trajs, traj) print('Outputing csv...') rmsfs.to_csv('rmsfs.csv') print('Done')
bsd-3-clause
kapilsaxena33/pyentropy
docs/sphinxext/inheritance_diagram.py
98
13648
""" Defines a docutils directive for inserting inheritance diagrams. Provide the directive with one or more classes or modules (separated by whitespace). For modules, all of the classes in that module will be used. Example:: Given the following classes: class A: pass class B(A): pass class C(A): pass class D(B, C): pass class E(B): pass .. inheritance-diagram: D E Produces a graph like the following: A / \ B C / \ / E D The graph is inserted as a PNG+image map into HTML and a PDF in LaTeX. """ import inspect import os import re import subprocess try: from hashlib import md5 except ImportError: from md5 import md5 from docutils.nodes import Body, Element from docutils.parsers.rst import directives from sphinx.roles import xfileref_role def my_import(name): """Module importer - taken from the python documentation. This function allows importing names with dots in them.""" mod = __import__(name) components = name.split('.') for comp in components[1:]: mod = getattr(mod, comp) return mod class DotException(Exception): pass class InheritanceGraph(object): """ Given a list of classes, determines the set of classes that they inherit from all the way to the root "object", and then is able to generate a graphviz dot graph from them. """ def __init__(self, class_names, show_builtins=False): """ *class_names* is a list of child classes to show bases from. If *show_builtins* is True, then Python builtins will be shown in the graph. """ self.class_names = class_names self.classes = self._import_classes(class_names) self.all_classes = self._all_classes(self.classes) if len(self.all_classes) == 0: raise ValueError("No classes found for inheritance diagram") self.show_builtins = show_builtins py_sig_re = re.compile(r'''^([\w.]*\.)? # class names (\w+) \s* $ # optionally arguments ''', re.VERBOSE) def _import_class_or_module(self, name): """ Import a class using its fully-qualified *name*. """ try: path, base = self.py_sig_re.match(name).groups() except: raise ValueError( "Invalid class or module '%s' specified for inheritance diagram" % name) fullname = (path or '') + base path = (path and path.rstrip('.')) if not path: path = base try: module = __import__(path, None, None, []) # We must do an import of the fully qualified name. Otherwise if a # subpackage 'a.b' is requested where 'import a' does NOT provide # 'a.b' automatically, then 'a.b' will not be found below. This # second call will force the equivalent of 'import a.b' to happen # after the top-level import above. my_import(fullname) except ImportError: raise ValueError( "Could not import class or module '%s' specified for inheritance diagram" % name) try: todoc = module for comp in fullname.split('.')[1:]: todoc = getattr(todoc, comp) except AttributeError: raise ValueError( "Could not find class or module '%s' specified for inheritance diagram" % name) # If a class, just return it if inspect.isclass(todoc): return [todoc] elif inspect.ismodule(todoc): classes = [] for cls in todoc.__dict__.values(): if inspect.isclass(cls) and cls.__module__ == todoc.__name__: classes.append(cls) return classes raise ValueError( "'%s' does not resolve to a class or module" % name) def _import_classes(self, class_names): """ Import a list of classes. """ classes = [] for name in class_names: classes.extend(self._import_class_or_module(name)) return classes def _all_classes(self, classes): """ Return a list of all classes that are ancestors of *classes*. """ all_classes = {} def recurse(cls): all_classes[cls] = None for c in cls.__bases__: if c not in all_classes: recurse(c) for cls in classes: recurse(cls) return all_classes.keys() def class_name(self, cls, parts=0): """ Given a class object, return a fully-qualified name. This works for things I've tested in matplotlib so far, but may not be completely general. """ module = cls.__module__ if module == '__builtin__': fullname = cls.__name__ else: fullname = "%s.%s" % (module, cls.__name__) if parts == 0: return fullname name_parts = fullname.split('.') return '.'.join(name_parts[-parts:]) def get_all_class_names(self): """ Get all of the class names involved in the graph. """ return [self.class_name(x) for x in self.all_classes] # These are the default options for graphviz default_graph_options = { "rankdir": "LR", "size": '"8.0, 12.0"' } default_node_options = { "shape": "box", "fontsize": 10, "height": 0.25, "fontname": "Vera Sans, DejaVu Sans, Liberation Sans, Arial, Helvetica, sans", "style": '"setlinewidth(0.5)"' } default_edge_options = { "arrowsize": 0.5, "style": '"setlinewidth(0.5)"' } def _format_node_options(self, options): return ','.join(["%s=%s" % x for x in options.items()]) def _format_graph_options(self, options): return ''.join(["%s=%s;\n" % x for x in options.items()]) def generate_dot(self, fd, name, parts=0, urls={}, graph_options={}, node_options={}, edge_options={}): """ Generate a graphviz dot graph from the classes that were passed in to __init__. *fd* is a Python file-like object to write to. *name* is the name of the graph *urls* is a dictionary mapping class names to http urls *graph_options*, *node_options*, *edge_options* are dictionaries containing key/value pairs to pass on as graphviz properties. """ g_options = self.default_graph_options.copy() g_options.update(graph_options) n_options = self.default_node_options.copy() n_options.update(node_options) e_options = self.default_edge_options.copy() e_options.update(edge_options) fd.write('digraph %s {\n' % name) fd.write(self._format_graph_options(g_options)) for cls in self.all_classes: if not self.show_builtins and cls in __builtins__.values(): continue name = self.class_name(cls, parts) # Write the node this_node_options = n_options.copy() url = urls.get(self.class_name(cls)) if url is not None: this_node_options['URL'] = '"%s"' % url fd.write(' "%s" [%s];\n' % (name, self._format_node_options(this_node_options))) # Write the edges for base in cls.__bases__: if not self.show_builtins and base in __builtins__.values(): continue base_name = self.class_name(base, parts) fd.write(' "%s" -> "%s" [%s];\n' % (base_name, name, self._format_node_options(e_options))) fd.write('}\n') def run_dot(self, args, name, parts=0, urls={}, graph_options={}, node_options={}, edge_options={}): """ Run graphviz 'dot' over this graph, returning whatever 'dot' writes to stdout. *args* will be passed along as commandline arguments. *name* is the name of the graph *urls* is a dictionary mapping class names to http urls Raises DotException for any of the many os and installation-related errors that may occur. """ try: dot = subprocess.Popen(['dot'] + list(args), stdin=subprocess.PIPE, stdout=subprocess.PIPE, close_fds=True) except OSError: raise DotException("Could not execute 'dot'. Are you sure you have 'graphviz' installed?") except ValueError: raise DotException("'dot' called with invalid arguments") except: raise DotException("Unexpected error calling 'dot'") self.generate_dot(dot.stdin, name, parts, urls, graph_options, node_options, edge_options) dot.stdin.close() result = dot.stdout.read() returncode = dot.wait() if returncode != 0: raise DotException("'dot' returned the errorcode %d" % returncode) return result class inheritance_diagram(Body, Element): """ A docutils node to use as a placeholder for the inheritance diagram. """ pass def inheritance_diagram_directive(name, arguments, options, content, lineno, content_offset, block_text, state, state_machine): """ Run when the inheritance_diagram directive is first encountered. """ node = inheritance_diagram() class_names = arguments # Create a graph starting with the list of classes graph = InheritanceGraph(class_names) # Create xref nodes for each target of the graph's image map and # add them to the doc tree so that Sphinx can resolve the # references to real URLs later. These nodes will eventually be # removed from the doctree after we're done with them. for name in graph.get_all_class_names(): refnodes, x = xfileref_role( 'class', ':class:`%s`' % name, name, 0, state) node.extend(refnodes) # Store the graph object so we can use it to generate the # dot file later node['graph'] = graph # Store the original content for use as a hash node['parts'] = options.get('parts', 0) node['content'] = " ".join(class_names) return [node] def get_graph_hash(node): return md5(node['content'] + str(node['parts'])).hexdigest()[-10:] def html_output_graph(self, node): """ Output the graph for HTML. This will insert a PNG with clickable image map. """ graph = node['graph'] parts = node['parts'] graph_hash = get_graph_hash(node) name = "inheritance%s" % graph_hash path = '_images' dest_path = os.path.join(setup.app.builder.outdir, path) if not os.path.exists(dest_path): os.makedirs(dest_path) png_path = os.path.join(dest_path, name + ".png") path = setup.app.builder.imgpath # Create a mapping from fully-qualified class names to URLs. urls = {} for child in node: if child.get('refuri') is not None: urls[child['reftitle']] = child.get('refuri') elif child.get('refid') is not None: urls[child['reftitle']] = '#' + child.get('refid') # These arguments to dot will save a PNG file to disk and write # an HTML image map to stdout. image_map = graph.run_dot(['-Tpng', '-o%s' % png_path, '-Tcmapx'], name, parts, urls) return ('<img src="%s/%s.png" usemap="#%s" class="inheritance"/>%s' % (path, name, name, image_map)) def latex_output_graph(self, node): """ Output the graph for LaTeX. This will insert a PDF. """ graph = node['graph'] parts = node['parts'] graph_hash = get_graph_hash(node) name = "inheritance%s" % graph_hash dest_path = os.path.abspath(os.path.join(setup.app.builder.outdir, '_images')) if not os.path.exists(dest_path): os.makedirs(dest_path) pdf_path = os.path.abspath(os.path.join(dest_path, name + ".pdf")) graph.run_dot(['-Tpdf', '-o%s' % pdf_path], name, parts, graph_options={'size': '"6.0,6.0"'}) return '\n\\includegraphics{%s}\n\n' % pdf_path def visit_inheritance_diagram(inner_func): """ This is just a wrapper around html/latex_output_graph to make it easier to handle errors and insert warnings. """ def visitor(self, node): try: content = inner_func(self, node) except DotException, e: # Insert the exception as a warning in the document warning = self.document.reporter.warning(str(e), line=node.line) warning.parent = node node.children = [warning] else: source = self.document.attributes['source'] self.body.append(content) node.children = [] return visitor def do_nothing(self, node): pass def setup(app): setup.app = app setup.confdir = app.confdir app.add_node( inheritance_diagram, latex=(visit_inheritance_diagram(latex_output_graph), do_nothing), html=(visit_inheritance_diagram(html_output_graph), do_nothing)) app.add_directive( 'inheritance-diagram', inheritance_diagram_directive, False, (1, 100, 0), parts = directives.nonnegative_int)
gpl-2.0
elijah513/scikit-learn
sklearn/metrics/cluster/unsupervised.py
230
8281
""" Unsupervised evaluation metrics. """ # Authors: Robert Layton <[email protected]> # # License: BSD 3 clause import numpy as np from ...utils import check_random_state from ..pairwise import pairwise_distances def silhouette_score(X, labels, metric='euclidean', sample_size=None, random_state=None, **kwds): """Compute the mean Silhouette Coefficient of all samples. The Silhouette Coefficient is calculated using the mean intra-cluster distance (``a``) and the mean nearest-cluster distance (``b``) for each sample. The Silhouette Coefficient for a sample is ``(b - a) / max(a, b)``. To clarify, ``b`` is the distance between a sample and the nearest cluster that the sample is not a part of. Note that Silhouette Coefficent is only defined if number of labels is 2 <= n_labels <= n_samples - 1. This function returns the mean Silhouette Coefficient over all samples. To obtain the values for each sample, use :func:`silhouette_samples`. The best value is 1 and the worst value is -1. Values near 0 indicate overlapping clusters. Negative values generally indicate that a sample has been assigned to the wrong cluster, as a different cluster is more similar. Read more in the :ref:`User Guide <silhouette_coefficient>`. Parameters ---------- X : array [n_samples_a, n_samples_a] if metric == "precomputed", or, \ [n_samples_a, n_features] otherwise Array of pairwise distances between samples, or a feature array. labels : array, shape = [n_samples] Predicted labels for each sample. metric : string, or callable The metric to use when calculating distance between instances in a feature array. If metric is a string, it must be one of the options allowed by :func:`metrics.pairwise.pairwise_distances <sklearn.metrics.pairwise.pairwise_distances>`. If X is the distance array itself, use ``metric="precomputed"``. sample_size : int or None The size of the sample to use when computing the Silhouette Coefficient on a random subset of the data. If ``sample_size is None``, no sampling is used. random_state : integer or numpy.RandomState, optional The generator used to randomly select a subset of samples if ``sample_size is not None``. If an integer is given, it fixes the seed. Defaults to the global numpy random number generator. `**kwds` : optional keyword parameters Any further parameters are passed directly to the distance function. If using a scipy.spatial.distance metric, the parameters are still metric dependent. See the scipy docs for usage examples. Returns ------- silhouette : float Mean Silhouette Coefficient for all samples. References ---------- .. [1] `Peter J. Rousseeuw (1987). "Silhouettes: a Graphical Aid to the Interpretation and Validation of Cluster Analysis". Computational and Applied Mathematics 20: 53-65. <http://www.sciencedirect.com/science/article/pii/0377042787901257>`_ .. [2] `Wikipedia entry on the Silhouette Coefficient <http://en.wikipedia.org/wiki/Silhouette_(clustering)>`_ """ n_labels = len(np.unique(labels)) n_samples = X.shape[0] if not 1 < n_labels < n_samples: raise ValueError("Number of labels is %d. Valid values are 2 " "to n_samples - 1 (inclusive)" % n_labels) if sample_size is not None: random_state = check_random_state(random_state) indices = random_state.permutation(X.shape[0])[:sample_size] if metric == "precomputed": X, labels = X[indices].T[indices].T, labels[indices] else: X, labels = X[indices], labels[indices] return np.mean(silhouette_samples(X, labels, metric=metric, **kwds)) def silhouette_samples(X, labels, metric='euclidean', **kwds): """Compute the Silhouette Coefficient for each sample. The Silhouette Coefficient is a measure of how well samples are clustered with samples that are similar to themselves. Clustering models with a high Silhouette Coefficient are said to be dense, where samples in the same cluster are similar to each other, and well separated, where samples in different clusters are not very similar to each other. The Silhouette Coefficient is calculated using the mean intra-cluster distance (``a``) and the mean nearest-cluster distance (``b``) for each sample. The Silhouette Coefficient for a sample is ``(b - a) / max(a, b)``. Note that Silhouette Coefficent is only defined if number of labels is 2 <= n_labels <= n_samples - 1. This function returns the Silhouette Coefficient for each sample. The best value is 1 and the worst value is -1. Values near 0 indicate overlapping clusters. Read more in the :ref:`User Guide <silhouette_coefficient>`. Parameters ---------- X : array [n_samples_a, n_samples_a] if metric == "precomputed", or, \ [n_samples_a, n_features] otherwise Array of pairwise distances between samples, or a feature array. labels : array, shape = [n_samples] label values for each sample metric : string, or callable The metric to use when calculating distance between instances in a feature array. If metric is a string, it must be one of the options allowed by :func:`sklearn.metrics.pairwise.pairwise_distances`. If X is the distance array itself, use "precomputed" as the metric. `**kwds` : optional keyword parameters Any further parameters are passed directly to the distance function. If using a ``scipy.spatial.distance`` metric, the parameters are still metric dependent. See the scipy docs for usage examples. Returns ------- silhouette : array, shape = [n_samples] Silhouette Coefficient for each samples. References ---------- .. [1] `Peter J. Rousseeuw (1987). "Silhouettes: a Graphical Aid to the Interpretation and Validation of Cluster Analysis". Computational and Applied Mathematics 20: 53-65. <http://www.sciencedirect.com/science/article/pii/0377042787901257>`_ .. [2] `Wikipedia entry on the Silhouette Coefficient <http://en.wikipedia.org/wiki/Silhouette_(clustering)>`_ """ distances = pairwise_distances(X, metric=metric, **kwds) n = labels.shape[0] A = np.array([_intra_cluster_distance(distances[i], labels, i) for i in range(n)]) B = np.array([_nearest_cluster_distance(distances[i], labels, i) for i in range(n)]) sil_samples = (B - A) / np.maximum(A, B) return sil_samples def _intra_cluster_distance(distances_row, labels, i): """Calculate the mean intra-cluster distance for sample i. Parameters ---------- distances_row : array, shape = [n_samples] Pairwise distance matrix between sample i and each sample. labels : array, shape = [n_samples] label values for each sample i : int Sample index being calculated. It is excluded from calculation and used to determine the current label Returns ------- a : float Mean intra-cluster distance for sample i """ mask = labels == labels[i] mask[i] = False if not np.any(mask): # cluster of size 1 return 0 a = np.mean(distances_row[mask]) return a def _nearest_cluster_distance(distances_row, labels, i): """Calculate the mean nearest-cluster distance for sample i. Parameters ---------- distances_row : array, shape = [n_samples] Pairwise distance matrix between sample i and each sample. labels : array, shape = [n_samples] label values for each sample i : int Sample index being calculated. It is used to determine the current label. Returns ------- b : float Mean nearest-cluster distance for sample i """ label = labels[i] b = np.min([np.mean(distances_row[labels == cur_label]) for cur_label in set(labels) if not cur_label == label]) return b
bsd-3-clause
google-research/robustness_metrics
robustness_metrics/projects/revisiting_calibration/figures/clean_imagenet_temp_scaling.py
1
5194
# coding=utf-8 # Copyright 2021 The Robustness Metrics Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """Figures for "Revisiting Calibration of Modern Neural Networks". This module contains figures comparing ECE on in-distribution data between unscaled and temperature-scaled predictions. """ from typing import List, Optional, Tuple import matplotlib as mpl from matplotlib import pyplot as plt import pandas as pd from robustness_metrics.projects.revisiting_calibration import display from robustness_metrics.projects.revisiting_calibration import plotting from robustness_metrics.projects.revisiting_calibration import utils def plot(df_main: pd.DataFrame, gce_prefix: str = plotting.STD_GCE_PREFIX, rescaling_method: str = "temperature_scaling", add_guo: bool = False) -> mpl.figure.Figure: """Plots acc/calib and reliability diagrams on clean ImageNet (Figure 1).""" rescaling_methods = ["none", rescaling_method] family_order = display.get_model_families_sorted() if add_guo: family_order.append("guo") # Set up figure: fig = plt.figure(figsize=(display.FULL_WIDTH/2, 1.4)) spec = fig.add_gridspec(ncols=2, nrows=1) for ax_i, rescaling_method in enumerate(rescaling_methods): df_plot, cmap = _get_data(df_main, gce_prefix, family_order, rescaling_methods=[rescaling_method]) ax = fig.add_subplot(spec[:, ax_i]) big_ax = ax for i, family in enumerate(family_order): if family == "guo": continue data_sub = df_plot[df_plot.ModelFamily == family] if data_sub.empty: continue ax.scatter( data_sub["downstream_error"], data_sub["MetricValue"], s=plotting.model_to_scatter_size(data_sub.model_size), c=data_sub.family_index, cmap=cmap, vmin=0, vmax=len(family_order), marker=utils.assert_and_get_constant(data_sub.family_marker), alpha=0.7, linewidth=0.0, zorder=100 - i, # Z-order is same as model family order. label=family) # Manually add Guo et al data: # From Table 1 and Table S2 in https://arxiv.org/pdf/1706.04599.pdf. # First model is DenseNet161, second is ResNet152. if add_guo: size = plotting.model_to_scatter_size(1) color = [len(family_order) - 1] * 2 marker = "x" if rescaling_method == "none": ax.scatter([0.2257, 0.2231], [0.0628, 0.0548], s=size, c=color, marker=marker, alpha=0.7, label="guo") if rescaling_method == "temperature_scaling": ax.scatter([0.2257, 0.2231], [0.0199, 0.0186], s=size, c=color, marker=marker, alpha=0.7, label="guo") plotting.show_spines(ax) # Aspect ratios are tuned manually for display in the paper: ax.set_anchor("N") ax.grid(False, which="minor") ax.grid(True, axis="both") ax.xaxis.set_major_locator(mpl.ticker.MultipleLocator(0.1)) ax.yaxis.set_major_locator(mpl.ticker.MultipleLocator(0.01)) ax.set_ylim(bottom=0.01, top=0.09) ax.set_xlim(0.05, 0.5) ax.set_xlabel(display.XLABEL_INET_ERROR) if rescaling_method == "none": ax.set_title("Unscaled") elif rescaling_method == "temperature_scaling": ax.set_title("Temperature-scaled") ax.set_yticklabels("") if ax.is_first_col(): ax.set_ylabel("ECE") # Model family legend: handles, labels = plotting.get_model_family_legend(big_ax, family_order) legend = big_ax.legend( handles=handles, labels=labels, loc="upper right", frameon=True, labelspacing=0.3, handletextpad=0.1, borderpad=0.3, fontsize=4) legend.get_frame().set_linewidth(mpl.rcParams["axes.linewidth"]) legend.get_frame().set_edgecolor("lightgray") plotting.apply_to_fig_text(fig, display.prettify) plotting.apply_to_fig_text(fig, lambda x: x.replace("EfficientNet", "EffNet")) return fig def _get_data( df_main: pd.DataFrame, gce_prefix: str, family_order: List[str], rescaling_methods: Optional[List[str]] = None, dataset_name: str = "imagenet(split='validation[20%:]')" ) -> Tuple[pd.DataFrame, mpl.colors.ListedColormap]: """Selects data for plotting.""" # Select data: mask = df_main.Metric.str.startswith(gce_prefix) mask &= df_main.ModelName.isin(display.get_standard_model_list()) mask &= df_main.DatasetName.isin([dataset_name]) mask &= df_main.rescaling_method.isin( rescaling_methods or ["temperature_scaling"]) mask &= df_main.ModelFamily.isin(family_order) df_plot = df_main[mask].copy() df_plot, cmap = display.add_display_data(df_plot, family_order) return df_plot, cmap
apache-2.0
xyguo/scikit-learn
sklearn/neural_network/tests/test_stochastic_optimizers.py
146
4310
import numpy as np from sklearn.neural_network._stochastic_optimizers import (BaseOptimizer, SGDOptimizer, AdamOptimizer) from sklearn.utils.testing import (assert_array_equal, assert_true, assert_false, assert_equal) shapes = [(4, 6), (6, 8), (7, 8, 9)] def test_base_optimizer(): params = [np.zeros(shape) for shape in shapes] for lr in [10 ** i for i in range(-3, 4)]: optimizer = BaseOptimizer(params, lr) assert_true(optimizer.trigger_stopping('', False)) def test_sgd_optimizer_no_momentum(): params = [np.zeros(shape) for shape in shapes] for lr in [10 ** i for i in range(-3, 4)]: optimizer = SGDOptimizer(params, lr, momentum=0, nesterov=False) grads = [np.random.random(shape) for shape in shapes] expected = [param - lr * grad for param, grad in zip(params, grads)] optimizer.update_params(grads) for exp, param in zip(expected, optimizer.params): assert_array_equal(exp, param) def test_sgd_optimizer_momentum(): params = [np.zeros(shape) for shape in shapes] lr = 0.1 for momentum in np.arange(0.5, 0.9, 0.1): optimizer = SGDOptimizer(params, lr, momentum=momentum, nesterov=False) velocities = [np.random.random(shape) for shape in shapes] optimizer.velocities = velocities grads = [np.random.random(shape) for shape in shapes] updates = [momentum * velocity - lr * grad for velocity, grad in zip(velocities, grads)] expected = [param + update for param, update in zip(params, updates)] optimizer.update_params(grads) for exp, param in zip(expected, optimizer.params): assert_array_equal(exp, param) def test_sgd_optimizer_trigger_stopping(): params = [np.zeros(shape) for shape in shapes] lr = 2e-6 optimizer = SGDOptimizer(params, lr, lr_schedule='adaptive') assert_false(optimizer.trigger_stopping('', False)) assert_equal(lr / 5, optimizer.learning_rate) assert_true(optimizer.trigger_stopping('', False)) def test_sgd_optimizer_nesterovs_momentum(): params = [np.zeros(shape) for shape in shapes] lr = 0.1 for momentum in np.arange(0.5, 0.9, 0.1): optimizer = SGDOptimizer(params, lr, momentum=momentum, nesterov=True) velocities = [np.random.random(shape) for shape in shapes] optimizer.velocities = velocities grads = [np.random.random(shape) for shape in shapes] updates = [momentum * velocity - lr * grad for velocity, grad in zip(velocities, grads)] updates = [momentum * update - lr * grad for update, grad in zip(updates, grads)] expected = [param + update for param, update in zip(params, updates)] optimizer.update_params(grads) for exp, param in zip(expected, optimizer.params): assert_array_equal(exp, param) def test_adam_optimizer(): params = [np.zeros(shape) for shape in shapes] lr = 0.001 epsilon = 1e-8 for beta_1 in np.arange(0.9, 1.0, 0.05): for beta_2 in np.arange(0.995, 1.0, 0.001): optimizer = AdamOptimizer(params, lr, beta_1, beta_2, epsilon) ms = [np.random.random(shape) for shape in shapes] vs = [np.random.random(shape) for shape in shapes] t = 10 optimizer.ms = ms optimizer.vs = vs optimizer.t = t - 1 grads = [np.random.random(shape) for shape in shapes] ms = [beta_1 * m + (1 - beta_1) * grad for m, grad in zip(ms, grads)] vs = [beta_2 * v + (1 - beta_2) * (grad ** 2) for v, grad in zip(vs, grads)] learning_rate = lr * np.sqrt(1 - beta_2 ** t) / (1 - beta_1**t) updates = [-learning_rate * m / (np.sqrt(v) + epsilon) for m, v in zip(ms, vs)] expected = [param + update for param, update in zip(params, updates)] optimizer.update_params(grads) for exp, param in zip(expected, optimizer.params): assert_array_equal(exp, param)
bsd-3-clause
IssamLaradji/scikit-learn
sklearn/linear_model/tests/test_coordinate_descent.py
11
21992
# Authors: Olivier Grisel <[email protected]> # Alexandre Gramfort <[email protected]> # License: BSD 3 clause from sys import version_info import numpy as np from scipy import interpolate, sparse from copy import deepcopy from sklearn.datasets import load_boston from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import SkipTest from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_warns from sklearn.utils.testing import ignore_warnings from sklearn.linear_model.coordinate_descent import Lasso, \ LassoCV, ElasticNet, ElasticNetCV, MultiTaskLasso, MultiTaskElasticNet, \ MultiTaskElasticNetCV, MultiTaskLassoCV, lasso_path, enet_path from sklearn.linear_model import LassoLarsCV, lars_path def check_warnings(): if version_info < (2, 6): raise SkipTest("Testing for warnings is not supported in versions \ older than Python 2.6") def test_lasso_zero(): """Check that the lasso can handle zero data without crashing""" X = [[0], [0], [0]] y = [0, 0, 0] clf = Lasso(alpha=0.1).fit(X, y) pred = clf.predict([[1], [2], [3]]) assert_array_almost_equal(clf.coef_, [0]) assert_array_almost_equal(pred, [0, 0, 0]) assert_almost_equal(clf.dual_gap_, 0) def test_lasso_toy(): """ Test Lasso on a toy example for various values of alpha. When validating this against glmnet notice that glmnet divides it against nobs. """ X = [[-1], [0], [1]] Y = [-1, 0, 1] # just a straight line T = [[2], [3], [4]] # test sample clf = Lasso(alpha=1e-8) clf.fit(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [1]) assert_array_almost_equal(pred, [2, 3, 4]) assert_almost_equal(clf.dual_gap_, 0) clf = Lasso(alpha=0.1) clf.fit(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [.85]) assert_array_almost_equal(pred, [1.7, 2.55, 3.4]) assert_almost_equal(clf.dual_gap_, 0) clf = Lasso(alpha=0.5) clf.fit(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [.25]) assert_array_almost_equal(pred, [0.5, 0.75, 1.]) assert_almost_equal(clf.dual_gap_, 0) clf = Lasso(alpha=1) clf.fit(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [.0]) assert_array_almost_equal(pred, [0, 0, 0]) assert_almost_equal(clf.dual_gap_, 0) def test_enet_toy(): """ Test ElasticNet for various parameters of alpha and l1_ratio. Actually, the parameters alpha = 0 should not be allowed. However, we test it as a border case. ElasticNet is tested with and without precomputed Gram matrix """ X = np.array([[-1.], [0.], [1.]]) Y = [-1, 0, 1] # just a straight line T = [[2.], [3.], [4.]] # test sample # this should be the same as lasso clf = ElasticNet(alpha=1e-8, l1_ratio=1.0) clf.fit(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [1]) assert_array_almost_equal(pred, [2, 3, 4]) assert_almost_equal(clf.dual_gap_, 0) clf = ElasticNet(alpha=0.5, l1_ratio=0.3, max_iter=100, precompute=False) clf.fit(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [0.50819], decimal=3) assert_array_almost_equal(pred, [1.0163, 1.5245, 2.0327], decimal=3) assert_almost_equal(clf.dual_gap_, 0) clf.set_params(max_iter=100, precompute=True) clf.fit(X, Y) # with Gram pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [0.50819], decimal=3) assert_array_almost_equal(pred, [1.0163, 1.5245, 2.0327], decimal=3) assert_almost_equal(clf.dual_gap_, 0) clf.set_params(max_iter=100, precompute=np.dot(X.T, X)) clf.fit(X, Y) # with Gram pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [0.50819], decimal=3) assert_array_almost_equal(pred, [1.0163, 1.5245, 2.0327], decimal=3) assert_almost_equal(clf.dual_gap_, 0) clf = ElasticNet(alpha=0.5, l1_ratio=0.5) clf.fit(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [0.45454], 3) assert_array_almost_equal(pred, [0.9090, 1.3636, 1.8181], 3) assert_almost_equal(clf.dual_gap_, 0) def build_dataset(n_samples=50, n_features=200, n_informative_features=10, n_targets=1): """ build an ill-posed linear regression problem with many noisy features and comparatively few samples """ random_state = np.random.RandomState(0) if n_targets > 1: w = random_state.randn(n_features, n_targets) else: w = random_state.randn(n_features) w[n_informative_features:] = 0.0 X = random_state.randn(n_samples, n_features) y = np.dot(X, w) X_test = random_state.randn(n_samples, n_features) y_test = np.dot(X_test, w) return X, y, X_test, y_test def test_lasso_cv(): X, y, X_test, y_test = build_dataset() max_iter = 150 clf = LassoCV(n_alphas=10, eps=1e-3, max_iter=max_iter).fit(X, y) assert_almost_equal(clf.alpha_, 0.056, 2) clf = LassoCV(n_alphas=10, eps=1e-3, max_iter=max_iter, precompute=True) clf.fit(X, y) assert_almost_equal(clf.alpha_, 0.056, 2) # Check that the lars and the coordinate descent implementation # select a similar alpha lars = LassoLarsCV(normalize=False, max_iter=30).fit(X, y) # for this we check that they don't fall in the grid of # clf.alphas further than 1 assert_true(np.abs( np.searchsorted(clf.alphas_[::-1], lars.alpha_) - np.searchsorted(clf.alphas_[::-1], clf.alpha_)) <= 1) # check that they also give a similar MSE mse_lars = interpolate.interp1d(lars.cv_alphas_, lars.cv_mse_path_.T) np.testing.assert_approx_equal(mse_lars(clf.alphas_[5]).mean(), clf.mse_path_[5].mean(), significant=2) # test set assert_greater(clf.score(X_test, y_test), 0.99) def test_lasso_cv_positive_constraint(): X, y, X_test, y_test = build_dataset() max_iter = 500 # Ensure the unconstrained fit has a negative coefficient clf_unconstrained = LassoCV(n_alphas=3, eps=1e-1, max_iter=max_iter, cv=2, n_jobs=1) clf_unconstrained.fit(X, y) assert_true(min(clf_unconstrained.coef_) < 0) # On same data, constrained fit has non-negative coefficients clf_constrained = LassoCV(n_alphas=3, eps=1e-1, max_iter=max_iter, positive=True, cv=2, n_jobs=1) clf_constrained.fit(X, y) assert_true(min(clf_constrained.coef_) >= 0) def test_lasso_path_return_models_vs_new_return_gives_same_coefficients(): # Test that lasso_path with lars_path style output gives the # same result # Some toy data X = np.array([[1, 2, 3.1], [2.3, 5.4, 4.3]]).T y = np.array([1, 2, 3.1]) alphas = [5., 1., .5] # Compute the lasso_path f = ignore_warnings coef_path = [e.coef_ for e in f(lasso_path)(X, y, alphas=alphas, return_models=True, fit_intercept=False)] # Use lars_path and lasso_path(new output) with 1D linear interpolation # to compute the the same path alphas_lars, _, coef_path_lars = lars_path(X, y, method='lasso') coef_path_cont_lars = interpolate.interp1d(alphas_lars[::-1], coef_path_lars[:, ::-1]) alphas_lasso2, coef_path_lasso2, _ = lasso_path(X, y, alphas=alphas, fit_intercept=False, return_models=False) coef_path_cont_lasso = interpolate.interp1d(alphas_lasso2[::-1], coef_path_lasso2[:, ::-1]) np.testing.assert_array_almost_equal(coef_path_cont_lasso(alphas), np.asarray(coef_path).T, decimal=1) np.testing.assert_array_almost_equal(coef_path_cont_lasso(alphas), coef_path_cont_lars(alphas), decimal=1) def test_enet_path(): # We use a large number of samples and of informative features so that # the l1_ratio selected is more toward ridge than lasso X, y, X_test, y_test = build_dataset(n_samples=200, n_features=100, n_informative_features=100) max_iter = 150 # Here we have a small number of iterations, and thus the # ElasticNet might not converge. This is to speed up tests clf = ElasticNetCV(alphas=[0.01, 0.05, 0.1], eps=2e-3, l1_ratio=[0.5, 0.7], cv=3, max_iter=max_iter) ignore_warnings(clf.fit)(X, y) # Well-conditioned settings, we should have selected our # smallest penalty assert_almost_equal(clf.alpha_, min(clf.alphas_)) # Non-sparse ground truth: we should have seleted an elastic-net # that is closer to ridge than to lasso assert_equal(clf.l1_ratio_, min(clf.l1_ratio)) clf = ElasticNetCV(alphas=[0.01, 0.05, 0.1], eps=2e-3, l1_ratio=[0.5, 0.7], cv=3, max_iter=max_iter, precompute=True) ignore_warnings(clf.fit)(X, y) # Well-conditioned settings, we should have selected our # smallest penalty assert_almost_equal(clf.alpha_, min(clf.alphas_)) # Non-sparse ground truth: we should have seleted an elastic-net # that is closer to ridge than to lasso assert_equal(clf.l1_ratio_, min(clf.l1_ratio)) # We are in well-conditioned settings with low noise: we should # have a good test-set performance assert_greater(clf.score(X_test, y_test), 0.99) # Multi-output/target case X, y, X_test, y_test = build_dataset(n_features=10, n_targets=3) clf = MultiTaskElasticNetCV(n_alphas=5, eps=2e-3, l1_ratio=[0.5, 0.7], cv=3, max_iter=max_iter) ignore_warnings(clf.fit)(X, y) # We are in well-conditioned settings with low noise: we should # have a good test-set performance assert_greater(clf.score(X_test, y_test), 0.99) assert_equal(clf.coef_.shape, (3, 10)) # Mono-output should have same cross-validated alpha_ and l1_ratio_ # in both cases. X, y, _, _ = build_dataset(n_features=10) clf1 = ElasticNetCV(n_alphas=5, eps=2e-3, l1_ratio=[0.5, 0.7]) clf1.fit(X, y) clf2 = MultiTaskElasticNetCV(n_alphas=5, eps=2e-3, l1_ratio=[0.5, 0.7]) clf2.fit(X, y[:, np.newaxis]) assert_almost_equal(clf1.l1_ratio_, clf2.l1_ratio_) assert_almost_equal(clf1.alpha_, clf2.alpha_) def test_path_parameters(): X, y, _, _ = build_dataset() max_iter = 100 clf = ElasticNetCV(n_alphas=50, eps=1e-3, max_iter=max_iter, l1_ratio=0.5, tol=1e-3) clf.fit(X, y) # new params assert_almost_equal(0.5, clf.l1_ratio) assert_equal(50, clf.n_alphas) assert_equal(50, len(clf.alphas_)) def test_warm_start(): X, y, _, _ = build_dataset() clf = ElasticNet(alpha=0.1, max_iter=5, warm_start=True) ignore_warnings(clf.fit)(X, y) ignore_warnings(clf.fit)(X, y) # do a second round with 5 iterations clf2 = ElasticNet(alpha=0.1, max_iter=10) ignore_warnings(clf2.fit)(X, y) assert_array_almost_equal(clf2.coef_, clf.coef_) def test_lasso_alpha_warning(): X = [[-1], [0], [1]] Y = [-1, 0, 1] # just a straight line clf = Lasso(alpha=0) assert_warns(UserWarning, clf.fit, X, Y) def test_lasso_positive_constraint(): X = [[-1], [0], [1]] y = [1, 0, -1] # just a straight line with negative slope lasso = Lasso(alpha=0.1, max_iter=1000, positive=True) lasso.fit(X, y) assert_true(min(lasso.coef_) >= 0) lasso = Lasso(alpha=0.1, max_iter=1000, precompute=True, positive=True) lasso.fit(X, y) assert_true(min(lasso.coef_) >= 0) def test_enet_positive_constraint(): X = [[-1], [0], [1]] y = [1, 0, -1] # just a straight line with negative slope enet = ElasticNet(alpha=0.1, max_iter=1000, positive=True) enet.fit(X, y) assert_true(min(enet.coef_) >= 0) def test_enet_cv_positive_constraint(): X, y, X_test, y_test = build_dataset() max_iter = 500 # Ensure the unconstrained fit has a negative coefficient enetcv_unconstrained = ElasticNetCV(n_alphas=3, eps=1e-1, max_iter=max_iter, cv=2, n_jobs=1) enetcv_unconstrained.fit(X, y) assert_true(min(enetcv_unconstrained.coef_) < 0) # On same data, constrained fit has non-negative coefficients enetcv_constrained = ElasticNetCV(n_alphas=3, eps=1e-1, max_iter=max_iter, cv=2, positive=True, n_jobs=1) enetcv_constrained.fit(X, y) assert_true(min(enetcv_constrained.coef_) >= 0) def test_multi_task_lasso_and_enet(): X, y, X_test, y_test = build_dataset() Y = np.c_[y, y] #Y_test = np.c_[y_test, y_test] clf = MultiTaskLasso(alpha=1, tol=1e-8).fit(X, Y) assert_true(0 < clf.dual_gap_ < 1e-5) assert_array_almost_equal(clf.coef_[0], clf.coef_[1]) clf = MultiTaskElasticNet(alpha=1, tol=1e-8).fit(X, Y) assert_true(0 < clf.dual_gap_ < 1e-5) assert_array_almost_equal(clf.coef_[0], clf.coef_[1]) def test_enet_multitarget(): n_targets = 3 X, y, _, _ = build_dataset(n_samples=10, n_features=8, n_informative_features=10, n_targets=n_targets) estimator = ElasticNet(alpha=0.01, fit_intercept=True) estimator.fit(X, y) coef, intercept, dual_gap = (estimator.coef_, estimator.intercept_, estimator.dual_gap_) for k in range(n_targets): estimator.fit(X, y[:, k]) assert_array_almost_equal(coef[k, :], estimator.coef_) assert_array_almost_equal(intercept[k], estimator.intercept_) assert_array_almost_equal(dual_gap[k], estimator.dual_gap_) def test_multioutput_enetcv_error(): X = np.random.randn(10, 2) y = np.random.randn(10, 2) clf = ElasticNetCV() assert_raises(ValueError, clf.fit, X, y) def test_multitask_enet_and_lasso_cv(): X, y, _, _ = build_dataset(n_features=100, n_targets=3) clf = MultiTaskElasticNetCV().fit(X, y) assert_almost_equal(clf.alpha_, 0.00556, 3) clf = MultiTaskLassoCV().fit(X, y) assert_almost_equal(clf.alpha_, 0.00278, 3) X, y, _, _ = build_dataset(n_targets=3) clf = MultiTaskElasticNetCV(n_alphas=50, eps=1e-3, max_iter=100, l1_ratio=[0.3, 0.5], tol=1e-3) clf.fit(X, y) assert_equal(0.5, clf.l1_ratio_) assert_equal((3, X.shape[1]), clf.coef_.shape) assert_equal((3, ), clf.intercept_.shape) assert_equal((2, 50, 3), clf.mse_path_.shape) assert_equal((2, 50), clf.alphas_.shape) X, y, _, _ = build_dataset(n_targets=3) clf = MultiTaskLassoCV(n_alphas=50, eps=1e-3, max_iter=100, tol=1e-3) clf.fit(X, y) assert_equal((3, X.shape[1]), clf.coef_.shape) assert_equal((3, ), clf.intercept_.shape) assert_equal((50, 3), clf.mse_path_.shape) assert_equal(50, len(clf.alphas_)) def test_1d_multioutput_enet_and_multitask_enet_cv(): X, y, _, _ = build_dataset(n_features=10) y = y[:, np.newaxis] clf = ElasticNetCV(n_alphas=5, eps=2e-3, l1_ratio=[0.5, 0.7]) clf.fit(X, y[:, 0]) clf1 = MultiTaskElasticNetCV(n_alphas=5, eps=2e-3, l1_ratio=[0.5, 0.7]) clf1.fit(X, y) assert_almost_equal(clf.l1_ratio_, clf1.l1_ratio_) assert_almost_equal(clf.alpha_, clf1.alpha_) assert_almost_equal(clf.coef_, clf1.coef_[0]) assert_almost_equal(clf.intercept_, clf1.intercept_[0]) def test_1d_multioutput_lasso_and_multitask_lasso_cv(): X, y, _, _ = build_dataset(n_features=10) y = y[:, np.newaxis] clf = LassoCV(n_alphas=5, eps=2e-3) clf.fit(X, y[:, 0]) clf1 = MultiTaskLassoCV(n_alphas=5, eps=2e-3) clf1.fit(X, y) assert_almost_equal(clf.alpha_, clf1.alpha_) assert_almost_equal(clf.coef_, clf1.coef_[0]) assert_almost_equal(clf.intercept_, clf1.intercept_[0]) def test_sparse_input_dtype_enet_and_lassocv(): X, y, _, _ = build_dataset(n_features=10) clf = ElasticNetCV(n_alphas=5) clf.fit(sparse.csr_matrix(X), y) clf1 = ElasticNetCV(n_alphas=5) clf1.fit(sparse.csr_matrix(X, dtype=np.float32), y) assert_almost_equal(clf.alpha_, clf1.alpha_, decimal=6) assert_almost_equal(clf.coef_, clf1.coef_, decimal=6) clf = LassoCV(n_alphas=5) clf.fit(sparse.csr_matrix(X), y) clf1 = LassoCV(n_alphas=5) clf1.fit(sparse.csr_matrix(X, dtype=np.float32), y) assert_almost_equal(clf.alpha_, clf1.alpha_, decimal=6) assert_almost_equal(clf.coef_, clf1.coef_, decimal=6) def test_precompute_invalid_argument(): X, y, _, _ = build_dataset() for clf in [ElasticNetCV(precompute="invalid"), LassoCV(precompute="invalid")]: assert_raises(ValueError, clf.fit, X, y) def test_warm_start_convergence(): X, y, _, _ = build_dataset() model = ElasticNet(alpha=1e-3, tol=1e-3).fit(X, y) n_iter_reference = model.n_iter_ # This dataset is not trivial enough for the model to converge in one pass. assert_greater(n_iter_reference, 2) # Check that n_iter_ is invariant to multiple calls to fit # when warm_start=False, all else being equal. model.fit(X, y) n_iter_cold_start = model.n_iter_ assert_equal(n_iter_cold_start, n_iter_reference) # Fit the same model again, using a warm start: the optimizer just performs # a single pass before checking that it has already converged model.set_params(warm_start=True) model.fit(X, y) n_iter_warm_start = model.n_iter_ assert_equal(n_iter_warm_start, 1) def test_warm_start_convergence_with_regularizer_decrement(): boston = load_boston() X, y = boston.data, boston.target # Train a model to converge on a lightly regularized problem final_alpha = 1e-5 low_reg_model = ElasticNet(alpha=final_alpha).fit(X, y) # Fitting a new model on a more regularized version of the same problem. # Fitting with high regularization is easier it should converge faster # in general. high_reg_model = ElasticNet(alpha=final_alpha * 10).fit(X, y) assert_greater(low_reg_model.n_iter_, high_reg_model.n_iter_) # Fit the solution to the original, less regularized version of the # problem but from the solution of the highly regularized variant of # the problem as a better starting point. This should also converge # faster than the original model that starts from zero. warm_low_reg_model = deepcopy(high_reg_model) warm_low_reg_model.set_params(warm_start=True, alpha=final_alpha) warm_low_reg_model.fit(X, y) assert_greater(low_reg_model.n_iter_, warm_low_reg_model.n_iter_) def test_random_descent(): """Test that both random and cyclic selection give the same results. Ensure that the test models fully converge and check a wide range of conditions. """ # This uses the coordinate descent algo using the gram trick. X, y, _, _ = build_dataset(n_samples=50, n_features=20) clf_cyclic = ElasticNet(selection='cyclic', tol=1e-8) clf_cyclic.fit(X, y) clf_random = ElasticNet(selection='random', tol=1e-8, random_state=42) clf_random.fit(X, y) assert_array_almost_equal(clf_cyclic.coef_, clf_random.coef_) assert_almost_equal(clf_cyclic.intercept_, clf_random.intercept_) # This uses the descent algo without the gram trick clf_cyclic = ElasticNet(selection='cyclic', tol=1e-8) clf_cyclic.fit(X.T, y[:20]) clf_random = ElasticNet(selection='random', tol=1e-8, random_state=42) clf_random.fit(X.T, y[:20]) assert_array_almost_equal(clf_cyclic.coef_, clf_random.coef_) assert_almost_equal(clf_cyclic.intercept_, clf_random.intercept_) # Sparse Case clf_cyclic = ElasticNet(selection='cyclic', tol=1e-8) clf_cyclic.fit(sparse.csr_matrix(X), y) clf_random = ElasticNet(selection='random', tol=1e-8, random_state=42) clf_random.fit(sparse.csr_matrix(X), y) assert_array_almost_equal(clf_cyclic.coef_, clf_random.coef_) assert_almost_equal(clf_cyclic.intercept_, clf_random.intercept_) # Multioutput case. new_y = np.hstack((y[:, np.newaxis], y[:, np.newaxis])) clf_cyclic = MultiTaskElasticNet(selection='cyclic', tol=1e-8) clf_cyclic.fit(X, new_y) clf_random = MultiTaskElasticNet(selection='random', tol=1e-8, random_state=42) clf_random.fit(X, new_y) assert_array_almost_equal(clf_cyclic.coef_, clf_random.coef_) assert_almost_equal(clf_cyclic.intercept_, clf_random.intercept_) # Raise error when selection is not in cyclic or random. clf_random = ElasticNet(selection='invalid') assert_raises(ValueError, clf_random.fit, X, y) def test_deprection_precompute_enet(): """ Test that setting precompute="auto" gives a Deprecation Warning. """ X, y, _, _ = build_dataset(n_samples=20, n_features=10) clf = ElasticNet(precompute="auto") assert_warns(DeprecationWarning, clf.fit, X, y) clf = Lasso(precompute="auto") assert_warns(DeprecationWarning, clf.fit, X, y) def test_enet_path_positive(): """ Test that the coefs returned by positive=True in enet_path are positive """ X, y, _, _ = build_dataset(n_samples=50, n_features=50) for path in [enet_path, lasso_path]: pos_path_coef = path(X, y, positive=True)[1] assert_true(np.all(pos_path_coef >= 0)) if __name__ == '__main__': import nose nose.runmodule()
bsd-3-clause
liang42hao/bokeh
bokeh/charts/builder/tests/test_scatter_builder.py
4
2880
""" This is the Bokeh charts testing interface. """ #----------------------------------------------------------------------------- # Copyright (c) 2012 - 2014, Continuum Analytics, Inc. All rights reserved. # # Powered by the Bokeh Development Team. # # The full license is in the file LICENSE.txt, distributed with this software. #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Imports #----------------------------------------------------------------------------- from __future__ import absolute_import from collections import OrderedDict import unittest import numpy as np from numpy.testing import assert_array_equal import pandas as pd from bokeh.charts import Scatter from bokeh.util.testing import create_chart #----------------------------------------------------------------------------- # Classes and functions #----------------------------------------------------------------------------- class TestScatter(unittest.TestCase): def test_supported_input(self): xyvalues = OrderedDict() xyvalues['python'] = [(1, 2), (3, 3), (4, 7), (5, 5), (8, 26)] xyvalues['pypy'] = [(1, 12), (2, 23), (4, 47), (5, 15), (8, 46)] xyvalues['jython'] = [(1, 22), (2, 43), (4, 10), (6, 25), (8, 26)] xyvaluesdf = pd.DataFrame(xyvalues) y_python = [2, 3, 7, 5, 26] y_pypy = [12, 23, 47, 15, 46] y_jython = [22, 43, 10, 25, 26] x_python = [1, 3, 4, 5, 8] x_pypy = [1, 2, 4, 5, 8] x_jython = [1, 2, 4, 6, 8] for i, _xy in enumerate([xyvalues, xyvaluesdf]): hm = create_chart(Scatter, _xy) builder = hm._builders[0] self.assertEqual(sorted(builder._groups), sorted(list(xyvalues.keys()))) assert_array_equal(builder._data['y_python'], y_python) assert_array_equal(builder._data['y_jython'], y_jython) assert_array_equal(builder._data['y_pypy'], y_pypy) assert_array_equal(builder._data['x_python'], x_python) assert_array_equal(builder._data['x_jython'], x_jython) assert_array_equal(builder._data['x_pypy'], x_pypy) lvalues = [xyvalues['python'], xyvalues['pypy'], xyvalues['jython']] for _xy in [lvalues, np.array(lvalues)]: hm = create_chart(Scatter, _xy) builder = hm._builders[0] self.assertEqual(builder._groups, ['0', '1', '2']) assert_array_equal(builder._data['y_0'], y_python) assert_array_equal(builder._data['y_1'], y_pypy) assert_array_equal(builder._data['y_2'], y_jython) assert_array_equal(builder._data['x_0'], x_python) assert_array_equal(builder._data['x_1'], x_pypy) assert_array_equal(builder._data['x_2'], x_jython)
bsd-3-clause
rhuelga/sms-tools
lectures/08-Sound-transformations/plots-code/FFT-filtering.py
2
1728
import math import matplotlib.pyplot as plt import numpy as np import time, os, sys sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), '../../../software/models/')) import dftModel as DFT import utilFunctions as UF (fs, x) = UF.wavread('../../../sounds/orchestra.wav') N = 2048 start = int(1.0*fs) x1 = x[start:start+N] plt.figure(1, figsize=(12, 9)) plt.subplot(321) plt.plot(np.arange(N)/float(fs), x1*np.hamming(N), 'b', lw=1.5) plt.axis([0, N/float(fs), min(x1*np.hamming(N)), max(x1*np.hamming(N))]) plt.title('x (orchestra.wav)') mX, pX = DFT.dftAnal(x1, np.hamming(N), N) startBin = int(N*500.0/fs) nBins = int(N*4000.0/fs) bandpass = (np.hanning(nBins) * 60.0) - 60 filt = np.zeros(mX.size)-60 filt[startBin:startBin+nBins] = bandpass mY = mX + filt plt.subplot(323) plt.plot(fs*np.arange(mX.size)/float(mX.size), mX, 'r', lw=1.5, label = 'mX') plt.plot(fs*np.arange(mX.size)/float(mX.size), filt+max(mX), 'k', lw=1.5, label='filter') plt.legend(prop={'size':10}) plt.axis([0,fs/4.0,-90,max(mX)+2]) plt.title('mX + filter') plt.subplot(325) plt.plot(fs*np.arange(pX.size)/float(pX.size), pX, 'c', lw=1.5) plt.axis([0,fs/4.0,min(pX),8]) plt.title('pX') y = DFT.dftSynth(mY, pX, N)*sum(np.hamming(N)) mY1, pY = DFT.dftAnal(y, np.hamming(N), N) plt.subplot(322) plt.plot(np.arange(N)/float(fs), y, 'b') plt.axis([0, float(N)/fs, min(y), max(y)]) plt.title('y') plt.subplot(324) plt.plot(fs*np.arange(mY1.size)/float(mY1.size), mY1, 'r', lw=1.5) plt.axis([0,fs/4.0,-90,max(mY1)+2]) plt.title('mY') plt.subplot(326) plt.plot(fs*np.arange(pY.size)/float(pY.size), pY, 'c', lw=1.5) plt.axis([0,fs/4.0,min(pY),8]) plt.title('pY') plt.tight_layout() plt.savefig('FFT-filtering.png') plt.show()
agpl-3.0
kenshay/ImageScripter
ProgramData/SystemFiles/Python/Lib/site-packages/pandas/tests/indexes/test_category.py
7
38793
# -*- coding: utf-8 -*- # TODO(wesm): fix long line flake8 issues # flake8: noqa import pandas.util.testing as tm from pandas.indexes.api import Index, CategoricalIndex from .common import Base from pandas.compat import range, PY3 import numpy as np from pandas import Categorical, compat, notnull from pandas.util.testing import assert_almost_equal import pandas.core.config as cf import pandas as pd if PY3: unicode = lambda x: x class TestCategoricalIndex(Base, tm.TestCase): _holder = CategoricalIndex def setUp(self): self.indices = dict(catIndex=tm.makeCategoricalIndex(100)) self.setup_indices() def create_index(self, categories=None, ordered=False): if categories is None: categories = list('cab') return CategoricalIndex( list('aabbca'), categories=categories, ordered=ordered) def test_construction(self): ci = self.create_index(categories=list('abcd')) categories = ci.categories result = Index(ci) tm.assert_index_equal(result, ci, exact=True) self.assertFalse(result.ordered) result = Index(ci.values) tm.assert_index_equal(result, ci, exact=True) self.assertFalse(result.ordered) # empty result = CategoricalIndex(categories=categories) self.assert_index_equal(result.categories, Index(categories)) tm.assert_numpy_array_equal(result.codes, np.array([], dtype='int8')) self.assertFalse(result.ordered) # passing categories result = CategoricalIndex(list('aabbca'), categories=categories) self.assert_index_equal(result.categories, Index(categories)) tm.assert_numpy_array_equal(result.codes, np.array([0, 0, 1, 1, 2, 0], dtype='int8')) c = pd.Categorical(list('aabbca')) result = CategoricalIndex(c) self.assert_index_equal(result.categories, Index(list('abc'))) tm.assert_numpy_array_equal(result.codes, np.array([0, 0, 1, 1, 2, 0], dtype='int8')) self.assertFalse(result.ordered) result = CategoricalIndex(c, categories=categories) self.assert_index_equal(result.categories, Index(categories)) tm.assert_numpy_array_equal(result.codes, np.array([0, 0, 1, 1, 2, 0], dtype='int8')) self.assertFalse(result.ordered) ci = CategoricalIndex(c, categories=list('abcd')) result = CategoricalIndex(ci) self.assert_index_equal(result.categories, Index(categories)) tm.assert_numpy_array_equal(result.codes, np.array([0, 0, 1, 1, 2, 0], dtype='int8')) self.assertFalse(result.ordered) result = CategoricalIndex(ci, categories=list('ab')) self.assert_index_equal(result.categories, Index(list('ab'))) tm.assert_numpy_array_equal(result.codes, np.array([0, 0, 1, 1, -1, 0], dtype='int8')) self.assertFalse(result.ordered) result = CategoricalIndex(ci, categories=list('ab'), ordered=True) self.assert_index_equal(result.categories, Index(list('ab'))) tm.assert_numpy_array_equal(result.codes, np.array([0, 0, 1, 1, -1, 0], dtype='int8')) self.assertTrue(result.ordered) # turn me to an Index result = Index(np.array(ci)) self.assertIsInstance(result, Index) self.assertNotIsInstance(result, CategoricalIndex) def test_construction_with_dtype(self): # specify dtype ci = self.create_index(categories=list('abc')) result = Index(np.array(ci), dtype='category') tm.assert_index_equal(result, ci, exact=True) result = Index(np.array(ci).tolist(), dtype='category') tm.assert_index_equal(result, ci, exact=True) # these are generally only equal when the categories are reordered ci = self.create_index() result = Index( np.array(ci), dtype='category').reorder_categories(ci.categories) tm.assert_index_equal(result, ci, exact=True) # make sure indexes are handled expected = CategoricalIndex([0, 1, 2], categories=[0, 1, 2], ordered=True) idx = Index(range(3)) result = CategoricalIndex(idx, categories=idx, ordered=True) tm.assert_index_equal(result, expected, exact=True) def test_disallow_set_ops(self): # GH 10039 # set ops (+/-) raise TypeError idx = pd.Index(pd.Categorical(['a', 'b'])) self.assertRaises(TypeError, lambda: idx - idx) self.assertRaises(TypeError, lambda: idx + idx) self.assertRaises(TypeError, lambda: idx - ['a', 'b']) self.assertRaises(TypeError, lambda: idx + ['a', 'b']) self.assertRaises(TypeError, lambda: ['a', 'b'] - idx) self.assertRaises(TypeError, lambda: ['a', 'b'] + idx) def test_method_delegation(self): ci = CategoricalIndex(list('aabbca'), categories=list('cabdef')) result = ci.set_categories(list('cab')) tm.assert_index_equal(result, CategoricalIndex( list('aabbca'), categories=list('cab'))) ci = CategoricalIndex(list('aabbca'), categories=list('cab')) result = ci.rename_categories(list('efg')) tm.assert_index_equal(result, CategoricalIndex( list('ffggef'), categories=list('efg'))) ci = CategoricalIndex(list('aabbca'), categories=list('cab')) result = ci.add_categories(['d']) tm.assert_index_equal(result, CategoricalIndex( list('aabbca'), categories=list('cabd'))) ci = CategoricalIndex(list('aabbca'), categories=list('cab')) result = ci.remove_categories(['c']) tm.assert_index_equal(result, CategoricalIndex( list('aabb') + [np.nan] + ['a'], categories=list('ab'))) ci = CategoricalIndex(list('aabbca'), categories=list('cabdef')) result = ci.as_unordered() tm.assert_index_equal(result, ci) ci = CategoricalIndex(list('aabbca'), categories=list('cabdef')) result = ci.as_ordered() tm.assert_index_equal(result, CategoricalIndex( list('aabbca'), categories=list('cabdef'), ordered=True)) # invalid self.assertRaises(ValueError, lambda: ci.set_categories( list('cab'), inplace=True)) def test_contains(self): ci = self.create_index(categories=list('cabdef')) self.assertTrue('a' in ci) self.assertTrue('z' not in ci) self.assertTrue('e' not in ci) self.assertTrue(np.nan not in ci) # assert codes NOT in index self.assertFalse(0 in ci) self.assertFalse(1 in ci) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): ci = CategoricalIndex( list('aabbca'), categories=list('cabdef') + [np.nan]) self.assertFalse(np.nan in ci) ci = CategoricalIndex( list('aabbca') + [np.nan], categories=list('cabdef')) self.assertTrue(np.nan in ci) def test_min_max(self): ci = self.create_index(ordered=False) self.assertRaises(TypeError, lambda: ci.min()) self.assertRaises(TypeError, lambda: ci.max()) ci = self.create_index(ordered=True) self.assertEqual(ci.min(), 'c') self.assertEqual(ci.max(), 'b') def test_map(self): ci = pd.CategoricalIndex(list('ABABC'), categories=list('CBA'), ordered=True) result = ci.map(lambda x: x.lower()) exp = pd.Categorical(list('ababc'), categories=list('cba'), ordered=True) tm.assert_categorical_equal(result, exp) ci = pd.CategoricalIndex(list('ABABC'), categories=list('BAC'), ordered=False, name='XXX') result = ci.map(lambda x: x.lower()) exp = pd.Categorical(list('ababc'), categories=list('bac'), ordered=False) tm.assert_categorical_equal(result, exp) tm.assert_numpy_array_equal(ci.map(lambda x: 1), np.array([1] * 5, dtype=np.int64)) # change categories dtype ci = pd.CategoricalIndex(list('ABABC'), categories=list('BAC'), ordered=False) def f(x): return {'A': 10, 'B': 20, 'C': 30}.get(x) result = ci.map(f) exp = pd.Categorical([10, 20, 10, 20, 30], categories=[20, 10, 30], ordered=False) tm.assert_categorical_equal(result, exp) def test_where(self): i = self.create_index() result = i.where(notnull(i)) expected = i tm.assert_index_equal(result, expected) i2 = i.copy() i2 = pd.CategoricalIndex([np.nan, np.nan] + i[2:].tolist(), categories=i.categories) result = i.where(notnull(i2)) expected = i2 tm.assert_index_equal(result, expected) def test_append(self): ci = self.create_index() categories = ci.categories # append cats with the same categories result = ci[:3].append(ci[3:]) tm.assert_index_equal(result, ci, exact=True) foos = [ci[:1], ci[1:3], ci[3:]] result = foos[0].append(foos[1:]) tm.assert_index_equal(result, ci, exact=True) # empty result = ci.append([]) tm.assert_index_equal(result, ci, exact=True) # appending with different categories or reoreded is not ok self.assertRaises( TypeError, lambda: ci.append(ci.values.set_categories(list('abcd')))) self.assertRaises( TypeError, lambda: ci.append(ci.values.reorder_categories(list('abc')))) # with objects result = ci.append(Index(['c', 'a'])) expected = CategoricalIndex(list('aabbcaca'), categories=categories) tm.assert_index_equal(result, expected, exact=True) # invalid objects self.assertRaises(TypeError, lambda: ci.append(Index(['a', 'd']))) # GH14298 - if base object is not categorical -> coerce to object result = Index(['c', 'a']).append(ci) expected = Index(list('caaabbca')) tm.assert_index_equal(result, expected, exact=True) def test_insert(self): ci = self.create_index() categories = ci.categories # test 0th element result = ci.insert(0, 'a') expected = CategoricalIndex(list('aaabbca'), categories=categories) tm.assert_index_equal(result, expected, exact=True) # test Nth element that follows Python list behavior result = ci.insert(-1, 'a') expected = CategoricalIndex(list('aabbcaa'), categories=categories) tm.assert_index_equal(result, expected, exact=True) # test empty result = CategoricalIndex(categories=categories).insert(0, 'a') expected = CategoricalIndex(['a'], categories=categories) tm.assert_index_equal(result, expected, exact=True) # invalid self.assertRaises(TypeError, lambda: ci.insert(0, 'd')) def test_delete(self): ci = self.create_index() categories = ci.categories result = ci.delete(0) expected = CategoricalIndex(list('abbca'), categories=categories) tm.assert_index_equal(result, expected, exact=True) result = ci.delete(-1) expected = CategoricalIndex(list('aabbc'), categories=categories) tm.assert_index_equal(result, expected, exact=True) with tm.assertRaises((IndexError, ValueError)): # either depeidnig on numpy version result = ci.delete(10) def test_astype(self): ci = self.create_index() result = ci.astype('category') tm.assert_index_equal(result, ci, exact=True) result = ci.astype(object) self.assert_index_equal(result, Index(np.array(ci))) # this IS equal, but not the same class self.assertTrue(result.equals(ci)) self.assertIsInstance(result, Index) self.assertNotIsInstance(result, CategoricalIndex) def test_reindex_base(self): # determined by cat ordering idx = self.create_index() expected = np.array([4, 0, 1, 5, 2, 3], dtype=np.intp) actual = idx.get_indexer(idx) tm.assert_numpy_array_equal(expected, actual) with tm.assertRaisesRegexp(ValueError, 'Invalid fill method'): idx.get_indexer(idx, method='invalid') def test_reindexing(self): ci = self.create_index() oidx = Index(np.array(ci)) for n in [1, 2, 5, len(ci)]: finder = oidx[np.random.randint(0, len(ci), size=n)] expected = oidx.get_indexer_non_unique(finder)[0] actual = ci.get_indexer(finder) tm.assert_numpy_array_equal(expected.values, actual, check_dtype=False) def test_reindex_dtype(self): c = CategoricalIndex(['a', 'b', 'c', 'a']) res, indexer = c.reindex(['a', 'c']) tm.assert_index_equal(res, Index(['a', 'a', 'c']), exact=True) tm.assert_numpy_array_equal(indexer, np.array([0, 3, 2], dtype=np.int64)) c = CategoricalIndex(['a', 'b', 'c', 'a']) res, indexer = c.reindex(Categorical(['a', 'c'])) exp = CategoricalIndex(['a', 'a', 'c'], categories=['a', 'c']) tm.assert_index_equal(res, exp, exact=True) tm.assert_numpy_array_equal(indexer, np.array([0, 3, 2], dtype=np.int64)) c = CategoricalIndex(['a', 'b', 'c', 'a'], categories=['a', 'b', 'c', 'd']) res, indexer = c.reindex(['a', 'c']) exp = Index(['a', 'a', 'c'], dtype='object') tm.assert_index_equal(res, exp, exact=True) tm.assert_numpy_array_equal(indexer, np.array([0, 3, 2], dtype=np.int64)) c = CategoricalIndex(['a', 'b', 'c', 'a'], categories=['a', 'b', 'c', 'd']) res, indexer = c.reindex(Categorical(['a', 'c'])) exp = CategoricalIndex(['a', 'a', 'c'], categories=['a', 'c']) tm.assert_index_equal(res, exp, exact=True) tm.assert_numpy_array_equal(indexer, np.array([0, 3, 2], dtype=np.int64)) def test_duplicates(self): idx = CategoricalIndex([0, 0, 0], name='foo') self.assertFalse(idx.is_unique) self.assertTrue(idx.has_duplicates) expected = CategoricalIndex([0], name='foo') self.assert_index_equal(idx.drop_duplicates(), expected) self.assert_index_equal(idx.unique(), expected) def test_get_indexer(self): idx1 = CategoricalIndex(list('aabcde'), categories=list('edabc')) idx2 = CategoricalIndex(list('abf')) for indexer in [idx2, list('abf'), Index(list('abf'))]: r1 = idx1.get_indexer(idx2) assert_almost_equal(r1, np.array([0, 1, 2, -1], dtype=np.intp)) self.assertRaises(NotImplementedError, lambda: idx2.get_indexer(idx1, method='pad')) self.assertRaises(NotImplementedError, lambda: idx2.get_indexer(idx1, method='backfill')) self.assertRaises(NotImplementedError, lambda: idx2.get_indexer(idx1, method='nearest')) def test_get_loc(self): # GH 12531 cidx1 = CategoricalIndex(list('abcde'), categories=list('edabc')) idx1 = Index(list('abcde')) self.assertEqual(cidx1.get_loc('a'), idx1.get_loc('a')) self.assertEqual(cidx1.get_loc('e'), idx1.get_loc('e')) for i in [cidx1, idx1]: with tm.assertRaises(KeyError): i.get_loc('NOT-EXIST') # non-unique cidx2 = CategoricalIndex(list('aacded'), categories=list('edabc')) idx2 = Index(list('aacded')) # results in bool array res = cidx2.get_loc('d') self.assert_numpy_array_equal(res, idx2.get_loc('d')) self.assert_numpy_array_equal(res, np.array([False, False, False, True, False, True])) # unique element results in scalar res = cidx2.get_loc('e') self.assertEqual(res, idx2.get_loc('e')) self.assertEqual(res, 4) for i in [cidx2, idx2]: with tm.assertRaises(KeyError): i.get_loc('NOT-EXIST') # non-unique, slicable cidx3 = CategoricalIndex(list('aabbb'), categories=list('abc')) idx3 = Index(list('aabbb')) # results in slice res = cidx3.get_loc('a') self.assertEqual(res, idx3.get_loc('a')) self.assertEqual(res, slice(0, 2, None)) res = cidx3.get_loc('b') self.assertEqual(res, idx3.get_loc('b')) self.assertEqual(res, slice(2, 5, None)) for i in [cidx3, idx3]: with tm.assertRaises(KeyError): i.get_loc('c') def test_repr_roundtrip(self): ci = CategoricalIndex(['a', 'b'], categories=['a', 'b'], ordered=True) str(ci) tm.assert_index_equal(eval(repr(ci)), ci, exact=True) # formatting if PY3: str(ci) else: compat.text_type(ci) # long format # this is not reprable ci = CategoricalIndex(np.random.randint(0, 5, size=100)) if PY3: str(ci) else: compat.text_type(ci) def test_isin(self): ci = CategoricalIndex( list('aabca') + [np.nan], categories=['c', 'a', 'b']) tm.assert_numpy_array_equal( ci.isin(['c']), np.array([False, False, False, True, False, False])) tm.assert_numpy_array_equal( ci.isin(['c', 'a', 'b']), np.array([True] * 5 + [False])) tm.assert_numpy_array_equal( ci.isin(['c', 'a', 'b', np.nan]), np.array([True] * 6)) # mismatched categorical -> coerced to ndarray so doesn't matter tm.assert_numpy_array_equal( ci.isin(ci.set_categories(list('abcdefghi'))), np.array([True] * 6)) tm.assert_numpy_array_equal( ci.isin(ci.set_categories(list('defghi'))), np.array([False] * 5 + [True])) def test_identical(self): ci1 = CategoricalIndex(['a', 'b'], categories=['a', 'b'], ordered=True) ci2 = CategoricalIndex(['a', 'b'], categories=['a', 'b', 'c'], ordered=True) self.assertTrue(ci1.identical(ci1)) self.assertTrue(ci1.identical(ci1.copy())) self.assertFalse(ci1.identical(ci2)) def test_ensure_copied_data(self): # Check the "copy" argument of each Index.__new__ is honoured # GH12309 # Must be tested separately from other indexes because # self.value is not an ndarray _base = lambda ar : ar if ar.base is None else ar.base for index in self.indices.values(): result = CategoricalIndex(index.values, copy=True) tm.assert_index_equal(index, result) self.assertIsNot(_base(index.values), _base(result.values)) result = CategoricalIndex(index.values, copy=False) self.assertIs(_base(index.values), _base(result.values)) def test_equals_categorical(self): ci1 = CategoricalIndex(['a', 'b'], categories=['a', 'b'], ordered=True) ci2 = CategoricalIndex(['a', 'b'], categories=['a', 'b', 'c'], ordered=True) self.assertTrue(ci1.equals(ci1)) self.assertFalse(ci1.equals(ci2)) self.assertTrue(ci1.equals(ci1.astype(object))) self.assertTrue(ci1.astype(object).equals(ci1)) self.assertTrue((ci1 == ci1).all()) self.assertFalse((ci1 != ci1).all()) self.assertFalse((ci1 > ci1).all()) self.assertFalse((ci1 < ci1).all()) self.assertTrue((ci1 <= ci1).all()) self.assertTrue((ci1 >= ci1).all()) self.assertFalse((ci1 == 1).all()) self.assertTrue((ci1 == Index(['a', 'b'])).all()) self.assertTrue((ci1 == ci1.values).all()) # invalid comparisons with tm.assertRaisesRegexp(ValueError, "Lengths must match"): ci1 == Index(['a', 'b', 'c']) self.assertRaises(TypeError, lambda: ci1 == ci2) self.assertRaises( TypeError, lambda: ci1 == Categorical(ci1.values, ordered=False)) self.assertRaises( TypeError, lambda: ci1 == Categorical(ci1.values, categories=list('abc'))) # tests # make sure that we are testing for category inclusion properly ci = CategoricalIndex(list('aabca'), categories=['c', 'a', 'b']) self.assertFalse(ci.equals(list('aabca'))) self.assertFalse(ci.equals(CategoricalIndex(list('aabca')))) self.assertTrue(ci.equals(ci.copy())) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): ci = CategoricalIndex(list('aabca'), categories=['c', 'a', 'b', np.nan]) self.assertFalse(ci.equals(list('aabca'))) self.assertFalse(ci.equals(CategoricalIndex(list('aabca')))) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): self.assertTrue(ci.equals(ci.copy())) ci = CategoricalIndex(list('aabca') + [np.nan], categories=['c', 'a', 'b']) self.assertFalse(ci.equals(list('aabca'))) self.assertFalse(ci.equals(CategoricalIndex(list('aabca')))) self.assertTrue(ci.equals(ci.copy())) ci = CategoricalIndex(list('aabca') + [np.nan], categories=['c', 'a', 'b']) self.assertFalse(ci.equals(list('aabca') + [np.nan])) self.assertFalse(ci.equals(CategoricalIndex(list('aabca') + [np.nan]))) self.assertTrue(ci.equals(ci.copy())) def test_string_categorical_index_repr(self): # short idx = pd.CategoricalIndex(['a', 'bb', 'ccc']) if PY3: expected = u"""CategoricalIndex(['a', 'bb', 'ccc'], categories=['a', 'bb', 'ccc'], ordered=False, dtype='category')""" self.assertEqual(repr(idx), expected) else: expected = u"""CategoricalIndex([u'a', u'bb', u'ccc'], categories=[u'a', u'bb', u'ccc'], ordered=False, dtype='category')""" self.assertEqual(unicode(idx), expected) # multiple lines idx = pd.CategoricalIndex(['a', 'bb', 'ccc'] * 10) if PY3: expected = u"""CategoricalIndex(['a', 'bb', 'ccc', 'a', 'bb', 'ccc', 'a', 'bb', 'ccc', 'a', 'bb', 'ccc', 'a', 'bb', 'ccc', 'a', 'bb', 'ccc', 'a', 'bb', 'ccc', 'a', 'bb', 'ccc', 'a', 'bb', 'ccc', 'a', 'bb', 'ccc'], categories=['a', 'bb', 'ccc'], ordered=False, dtype='category')""" self.assertEqual(repr(idx), expected) else: expected = u"""CategoricalIndex([u'a', u'bb', u'ccc', u'a', u'bb', u'ccc', u'a', u'bb', u'ccc', u'a', u'bb', u'ccc', u'a', u'bb', u'ccc', u'a', u'bb', u'ccc', u'a', u'bb', u'ccc', u'a', u'bb', u'ccc', u'a', u'bb', u'ccc', u'a', u'bb', u'ccc'], categories=[u'a', u'bb', u'ccc'], ordered=False, dtype='category')""" self.assertEqual(unicode(idx), expected) # truncated idx = pd.CategoricalIndex(['a', 'bb', 'ccc'] * 100) if PY3: expected = u"""CategoricalIndex(['a', 'bb', 'ccc', 'a', 'bb', 'ccc', 'a', 'bb', 'ccc', 'a', ... 'ccc', 'a', 'bb', 'ccc', 'a', 'bb', 'ccc', 'a', 'bb', 'ccc'], categories=['a', 'bb', 'ccc'], ordered=False, dtype='category', length=300)""" self.assertEqual(repr(idx), expected) else: expected = u"""CategoricalIndex([u'a', u'bb', u'ccc', u'a', u'bb', u'ccc', u'a', u'bb', u'ccc', u'a', ... u'ccc', u'a', u'bb', u'ccc', u'a', u'bb', u'ccc', u'a', u'bb', u'ccc'], categories=[u'a', u'bb', u'ccc'], ordered=False, dtype='category', length=300)""" self.assertEqual(unicode(idx), expected) # larger categories idx = pd.CategoricalIndex(list('abcdefghijklmmo')) if PY3: expected = u"""CategoricalIndex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'm', 'o'], categories=['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', ...], ordered=False, dtype='category')""" self.assertEqual(repr(idx), expected) else: expected = u"""CategoricalIndex([u'a', u'b', u'c', u'd', u'e', u'f', u'g', u'h', u'i', u'j', u'k', u'l', u'm', u'm', u'o'], categories=[u'a', u'b', u'c', u'd', u'e', u'f', u'g', u'h', ...], ordered=False, dtype='category')""" self.assertEqual(unicode(idx), expected) # short idx = pd.CategoricalIndex([u'あ', u'いい', u'ううう']) if PY3: expected = u"""CategoricalIndex(['あ', 'いい', 'ううう'], categories=['あ', 'いい', 'ううう'], ordered=False, dtype='category')""" self.assertEqual(repr(idx), expected) else: expected = u"""CategoricalIndex([u'あ', u'いい', u'ううう'], categories=[u'あ', u'いい', u'ううう'], ordered=False, dtype='category')""" self.assertEqual(unicode(idx), expected) # multiple lines idx = pd.CategoricalIndex([u'あ', u'いい', u'ううう'] * 10) if PY3: expected = u"""CategoricalIndex(['あ', 'いい', 'ううう', 'あ', 'いい', 'ううう', 'あ', 'いい', 'ううう', 'あ', 'いい', 'ううう', 'あ', 'いい', 'ううう', 'あ', 'いい', 'ううう', 'あ', 'いい', 'ううう', 'あ', 'いい', 'ううう', 'あ', 'いい', 'ううう', 'あ', 'いい', 'ううう'], categories=['あ', 'いい', 'ううう'], ordered=False, dtype='category')""" self.assertEqual(repr(idx), expected) else: expected = u"""CategoricalIndex([u'あ', u'いい', u'ううう', u'あ', u'いい', u'ううう', u'あ', u'いい', u'ううう', u'あ', u'いい', u'ううう', u'あ', u'いい', u'ううう', u'あ', u'いい', u'ううう', u'あ', u'いい', u'ううう', u'あ', u'いい', u'ううう', u'あ', u'いい', u'ううう', u'あ', u'いい', u'ううう'], categories=[u'あ', u'いい', u'ううう'], ordered=False, dtype='category')""" self.assertEqual(unicode(idx), expected) # truncated idx = pd.CategoricalIndex([u'あ', u'いい', u'ううう'] * 100) if PY3: expected = u"""CategoricalIndex(['あ', 'いい', 'ううう', 'あ', 'いい', 'ううう', 'あ', 'いい', 'ううう', 'あ', ... 'ううう', 'あ', 'いい', 'ううう', 'あ', 'いい', 'ううう', 'あ', 'いい', 'ううう'], categories=['あ', 'いい', 'ううう'], ordered=False, dtype='category', length=300)""" self.assertEqual(repr(idx), expected) else: expected = u"""CategoricalIndex([u'あ', u'いい', u'ううう', u'あ', u'いい', u'ううう', u'あ', u'いい', u'ううう', u'あ', ... u'ううう', u'あ', u'いい', u'ううう', u'あ', u'いい', u'ううう', u'あ', u'いい', u'ううう'], categories=[u'あ', u'いい', u'ううう'], ordered=False, dtype='category', length=300)""" self.assertEqual(unicode(idx), expected) # larger categories idx = pd.CategoricalIndex(list(u'あいうえおかきくけこさしすせそ')) if PY3: expected = u"""CategoricalIndex(['あ', 'い', 'う', 'え', 'お', 'か', 'き', 'く', 'け', 'こ', 'さ', 'し', 'す', 'せ', 'そ'], categories=['あ', 'い', 'う', 'え', 'お', 'か', 'き', 'く', ...], ordered=False, dtype='category')""" self.assertEqual(repr(idx), expected) else: expected = u"""CategoricalIndex([u'あ', u'い', u'う', u'え', u'お', u'か', u'き', u'く', u'け', u'こ', u'さ', u'し', u'す', u'せ', u'そ'], categories=[u'あ', u'い', u'う', u'え', u'お', u'か', u'き', u'く', ...], ordered=False, dtype='category')""" self.assertEqual(unicode(idx), expected) # Emable Unicode option ----------------------------------------- with cf.option_context('display.unicode.east_asian_width', True): # short idx = pd.CategoricalIndex([u'あ', u'いい', u'ううう']) if PY3: expected = u"""CategoricalIndex(['あ', 'いい', 'ううう'], categories=['あ', 'いい', 'ううう'], ordered=False, dtype='category')""" self.assertEqual(repr(idx), expected) else: expected = u"""CategoricalIndex([u'あ', u'いい', u'ううう'], categories=[u'あ', u'いい', u'ううう'], ordered=False, dtype='category')""" self.assertEqual(unicode(idx), expected) # multiple lines idx = pd.CategoricalIndex([u'あ', u'いい', u'ううう'] * 10) if PY3: expected = u"""CategoricalIndex(['あ', 'いい', 'ううう', 'あ', 'いい', 'ううう', 'あ', 'いい', 'ううう', 'あ', 'いい', 'ううう', 'あ', 'いい', 'ううう', 'あ', 'いい', 'ううう', 'あ', 'いい', 'ううう', 'あ', 'いい', 'ううう', 'あ', 'いい', 'ううう', 'あ', 'いい', 'ううう'], categories=['あ', 'いい', 'ううう'], ordered=False, dtype='category')""" self.assertEqual(repr(idx), expected) else: expected = u"""CategoricalIndex([u'あ', u'いい', u'ううう', u'あ', u'いい', u'ううう', u'あ', u'いい', u'ううう', u'あ', u'いい', u'ううう', u'あ', u'いい', u'ううう', u'あ', u'いい', u'ううう', u'あ', u'いい', u'ううう', u'あ', u'いい', u'ううう', u'あ', u'いい', u'ううう', u'あ', u'いい', u'ううう'], categories=[u'あ', u'いい', u'ううう'], ordered=False, dtype='category')""" self.assertEqual(unicode(idx), expected) # truncated idx = pd.CategoricalIndex([u'あ', u'いい', u'ううう'] * 100) if PY3: expected = u"""CategoricalIndex(['あ', 'いい', 'ううう', 'あ', 'いい', 'ううう', 'あ', 'いい', 'ううう', 'あ', ... 'ううう', 'あ', 'いい', 'ううう', 'あ', 'いい', 'ううう', 'あ', 'いい', 'ううう'], categories=['あ', 'いい', 'ううう'], ordered=False, dtype='category', length=300)""" self.assertEqual(repr(idx), expected) else: expected = u"""CategoricalIndex([u'あ', u'いい', u'ううう', u'あ', u'いい', u'ううう', u'あ', u'いい', u'ううう', u'あ', ... u'ううう', u'あ', u'いい', u'ううう', u'あ', u'いい', u'ううう', u'あ', u'いい', u'ううう'], categories=[u'あ', u'いい', u'ううう'], ordered=False, dtype='category', length=300)""" self.assertEqual(unicode(idx), expected) # larger categories idx = pd.CategoricalIndex(list(u'あいうえおかきくけこさしすせそ')) if PY3: expected = u"""CategoricalIndex(['あ', 'い', 'う', 'え', 'お', 'か', 'き', 'く', 'け', 'こ', 'さ', 'し', 'す', 'せ', 'そ'], categories=['あ', 'い', 'う', 'え', 'お', 'か', 'き', 'く', ...], ordered=False, dtype='category')""" self.assertEqual(repr(idx), expected) else: expected = u"""CategoricalIndex([u'あ', u'い', u'う', u'え', u'お', u'か', u'き', u'く', u'け', u'こ', u'さ', u'し', u'す', u'せ', u'そ'], categories=[u'あ', u'い', u'う', u'え', u'お', u'か', u'き', u'く', ...], ordered=False, dtype='category')""" self.assertEqual(unicode(idx), expected) def test_fillna_categorical(self): # GH 11343 idx = CategoricalIndex([1.0, np.nan, 3.0, 1.0], name='x') # fill by value in categories exp = CategoricalIndex([1.0, 1.0, 3.0, 1.0], name='x') self.assert_index_equal(idx.fillna(1.0), exp) # fill by value not in categories raises ValueError with tm.assertRaisesRegexp(ValueError, 'fill value must be in categories'): idx.fillna(2.0) def test_take_fill_value(self): # GH 12631 # numeric category idx = pd.CategoricalIndex([1, 2, 3], name='xxx') result = idx.take(np.array([1, 0, -1])) expected = pd.CategoricalIndex([2, 1, 3], name='xxx') tm.assert_index_equal(result, expected) tm.assert_categorical_equal(result.values, expected.values) # fill_value result = idx.take(np.array([1, 0, -1]), fill_value=True) expected = pd.CategoricalIndex([2, 1, np.nan], categories=[1, 2, 3], name='xxx') tm.assert_index_equal(result, expected) tm.assert_categorical_equal(result.values, expected.values) # allow_fill=False result = idx.take(np.array([1, 0, -1]), allow_fill=False, fill_value=True) expected = pd.CategoricalIndex([2, 1, 3], name='xxx') tm.assert_index_equal(result, expected) tm.assert_categorical_equal(result.values, expected.values) # object category idx = pd.CategoricalIndex(list('CBA'), categories=list('ABC'), ordered=True, name='xxx') result = idx.take(np.array([1, 0, -1])) expected = pd.CategoricalIndex(list('BCA'), categories=list('ABC'), ordered=True, name='xxx') tm.assert_index_equal(result, expected) tm.assert_categorical_equal(result.values, expected.values) # fill_value result = idx.take(np.array([1, 0, -1]), fill_value=True) expected = pd.CategoricalIndex(['B', 'C', np.nan], categories=list('ABC'), ordered=True, name='xxx') tm.assert_index_equal(result, expected) tm.assert_categorical_equal(result.values, expected.values) # allow_fill=False result = idx.take(np.array([1, 0, -1]), allow_fill=False, fill_value=True) expected = pd.CategoricalIndex(list('BCA'), categories=list('ABC'), ordered=True, name='xxx') tm.assert_index_equal(result, expected) tm.assert_categorical_equal(result.values, expected.values) msg = ('When allow_fill=True and fill_value is not None, ' 'all indices must be >= -1') with tm.assertRaisesRegexp(ValueError, msg): idx.take(np.array([1, 0, -2]), fill_value=True) with tm.assertRaisesRegexp(ValueError, msg): idx.take(np.array([1, 0, -5]), fill_value=True) with tm.assertRaises(IndexError): idx.take(np.array([1, -5])) def test_take_fill_value_datetime(self): # datetime category idx = pd.DatetimeIndex(['2011-01-01', '2011-02-01', '2011-03-01'], name='xxx') idx = pd.CategoricalIndex(idx) result = idx.take(np.array([1, 0, -1])) expected = pd.DatetimeIndex(['2011-02-01', '2011-01-01', '2011-03-01'], name='xxx') expected = pd.CategoricalIndex(expected) tm.assert_index_equal(result, expected) # fill_value result = idx.take(np.array([1, 0, -1]), fill_value=True) expected = pd.DatetimeIndex(['2011-02-01', '2011-01-01', 'NaT'], name='xxx') exp_cats = pd.DatetimeIndex(['2011-01-01', '2011-02-01', '2011-03-01']) expected = pd.CategoricalIndex(expected, categories=exp_cats) tm.assert_index_equal(result, expected) # allow_fill=False result = idx.take(np.array([1, 0, -1]), allow_fill=False, fill_value=True) expected = pd.DatetimeIndex(['2011-02-01', '2011-01-01', '2011-03-01'], name='xxx') expected = pd.CategoricalIndex(expected) tm.assert_index_equal(result, expected) msg = ('When allow_fill=True and fill_value is not None, ' 'all indices must be >= -1') with tm.assertRaisesRegexp(ValueError, msg): idx.take(np.array([1, 0, -2]), fill_value=True) with tm.assertRaisesRegexp(ValueError, msg): idx.take(np.array([1, 0, -5]), fill_value=True) with tm.assertRaises(IndexError): idx.take(np.array([1, -5])) def test_take_invalid_kwargs(self): idx = pd.CategoricalIndex([1, 2, 3], name='foo') indices = [1, 0, -1] msg = r"take\(\) got an unexpected keyword argument 'foo'" tm.assertRaisesRegexp(TypeError, msg, idx.take, indices, foo=2) msg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, msg, idx.take, indices, out=indices) msg = "the 'mode' parameter is not supported" tm.assertRaisesRegexp(ValueError, msg, idx.take, indices, mode='clip')
gpl-3.0
bthirion/scikit-learn
benchmarks/bench_sgd_regression.py
61
5612
""" Benchmark for SGD regression Compares SGD regression against coordinate descent and Ridge on synthetic data. """ print(__doc__) # Author: Peter Prettenhofer <[email protected]> # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt import gc from time import time from sklearn.linear_model import Ridge, SGDRegressor, ElasticNet from sklearn.metrics import mean_squared_error from sklearn.datasets.samples_generator import make_regression if __name__ == "__main__": list_n_samples = np.linspace(100, 10000, 5).astype(np.int) list_n_features = [10, 100, 1000] n_test = 1000 noise = 0.1 alpha = 0.01 sgd_results = np.zeros((len(list_n_samples), len(list_n_features), 2)) elnet_results = np.zeros((len(list_n_samples), len(list_n_features), 2)) ridge_results = np.zeros((len(list_n_samples), len(list_n_features), 2)) asgd_results = np.zeros((len(list_n_samples), len(list_n_features), 2)) for i, n_train in enumerate(list_n_samples): for j, n_features in enumerate(list_n_features): X, y, coef = make_regression( n_samples=n_train + n_test, n_features=n_features, noise=noise, coef=True) X_train = X[:n_train] y_train = y[:n_train] X_test = X[n_train:] y_test = y[n_train:] print("=======================") print("Round %d %d" % (i, j)) print("n_features:", n_features) print("n_samples:", n_train) # Shuffle data idx = np.arange(n_train) np.random.seed(13) np.random.shuffle(idx) X_train = X_train[idx] y_train = y_train[idx] std = X_train.std(axis=0) mean = X_train.mean(axis=0) X_train = (X_train - mean) / std X_test = (X_test - mean) / std std = y_train.std(axis=0) mean = y_train.mean(axis=0) y_train = (y_train - mean) / std y_test = (y_test - mean) / std gc.collect() print("- benchmarking ElasticNet") clf = ElasticNet(alpha=alpha, l1_ratio=0.5, fit_intercept=False) tstart = time() clf.fit(X_train, y_train) elnet_results[i, j, 0] = mean_squared_error(clf.predict(X_test), y_test) elnet_results[i, j, 1] = time() - tstart gc.collect() print("- benchmarking SGD") n_iter = np.ceil(10 ** 4.0 / n_train) clf = SGDRegressor(alpha=alpha / n_train, fit_intercept=False, n_iter=n_iter, learning_rate="invscaling", eta0=.01, power_t=0.25) tstart = time() clf.fit(X_train, y_train) sgd_results[i, j, 0] = mean_squared_error(clf.predict(X_test), y_test) sgd_results[i, j, 1] = time() - tstart gc.collect() print("n_iter", n_iter) print("- benchmarking A-SGD") n_iter = np.ceil(10 ** 4.0 / n_train) clf = SGDRegressor(alpha=alpha / n_train, fit_intercept=False, n_iter=n_iter, learning_rate="invscaling", eta0=.002, power_t=0.05, average=(n_iter * n_train // 2)) tstart = time() clf.fit(X_train, y_train) asgd_results[i, j, 0] = mean_squared_error(clf.predict(X_test), y_test) asgd_results[i, j, 1] = time() - tstart gc.collect() print("- benchmarking RidgeRegression") clf = Ridge(alpha=alpha, fit_intercept=False) tstart = time() clf.fit(X_train, y_train) ridge_results[i, j, 0] = mean_squared_error(clf.predict(X_test), y_test) ridge_results[i, j, 1] = time() - tstart # Plot results i = 0 m = len(list_n_features) plt.figure('scikit-learn SGD regression benchmark results', figsize=(5 * 2, 4 * m)) for j in range(m): plt.subplot(m, 2, i + 1) plt.plot(list_n_samples, np.sqrt(elnet_results[:, j, 0]), label="ElasticNet") plt.plot(list_n_samples, np.sqrt(sgd_results[:, j, 0]), label="SGDRegressor") plt.plot(list_n_samples, np.sqrt(asgd_results[:, j, 0]), label="A-SGDRegressor") plt.plot(list_n_samples, np.sqrt(ridge_results[:, j, 0]), label="Ridge") plt.legend(prop={"size": 10}) plt.xlabel("n_train") plt.ylabel("RMSE") plt.title("Test error - %d features" % list_n_features[j]) i += 1 plt.subplot(m, 2, i + 1) plt.plot(list_n_samples, np.sqrt(elnet_results[:, j, 1]), label="ElasticNet") plt.plot(list_n_samples, np.sqrt(sgd_results[:, j, 1]), label="SGDRegressor") plt.plot(list_n_samples, np.sqrt(asgd_results[:, j, 1]), label="A-SGDRegressor") plt.plot(list_n_samples, np.sqrt(ridge_results[:, j, 1]), label="Ridge") plt.legend(prop={"size": 10}) plt.xlabel("n_train") plt.ylabel("Time [sec]") plt.title("Training time - %d features" % list_n_features[j]) i += 1 plt.subplots_adjust(hspace=.30) plt.show()
bsd-3-clause
jmschrei/scikit-learn
sklearn/utils/graph.py
289
6239
""" Graph utilities and algorithms Graphs are represented with their adjacency matrices, preferably using sparse matrices. """ # Authors: Aric Hagberg <[email protected]> # Gael Varoquaux <[email protected]> # Jake Vanderplas <[email protected]> # License: BSD 3 clause import numpy as np from scipy import sparse from .validation import check_array from .graph_shortest_path import graph_shortest_path ############################################################################### # Path and connected component analysis. # Code adapted from networkx def single_source_shortest_path_length(graph, source, cutoff=None): """Return the shortest path length from source to all reachable nodes. Returns a dictionary of shortest path lengths keyed by target. Parameters ---------- graph: sparse matrix or 2D array (preferably LIL matrix) Adjacency matrix of the graph source : node label Starting node for path cutoff : integer, optional Depth to stop the search - only paths of length <= cutoff are returned. Examples -------- >>> from sklearn.utils.graph import single_source_shortest_path_length >>> import numpy as np >>> graph = np.array([[ 0, 1, 0, 0], ... [ 1, 0, 1, 0], ... [ 0, 1, 0, 1], ... [ 0, 0, 1, 0]]) >>> single_source_shortest_path_length(graph, 0) {0: 0, 1: 1, 2: 2, 3: 3} >>> single_source_shortest_path_length(np.ones((6, 6)), 2) {0: 1, 1: 1, 2: 0, 3: 1, 4: 1, 5: 1} """ if sparse.isspmatrix(graph): graph = graph.tolil() else: graph = sparse.lil_matrix(graph) seen = {} # level (number of hops) when seen in BFS level = 0 # the current level next_level = [source] # dict of nodes to check at next level while next_level: this_level = next_level # advance to next level next_level = set() # and start a new list (fringe) for v in this_level: if v not in seen: seen[v] = level # set the level of vertex v next_level.update(graph.rows[v]) if cutoff is not None and cutoff <= level: break level += 1 return seen # return all path lengths as dictionary if hasattr(sparse, 'connected_components'): connected_components = sparse.connected_components else: from .sparsetools import connected_components ############################################################################### # Graph laplacian def graph_laplacian(csgraph, normed=False, return_diag=False): """ Return the Laplacian matrix of a directed graph. For non-symmetric graphs the out-degree is used in the computation. Parameters ---------- csgraph : array_like or sparse matrix, 2 dimensions compressed-sparse graph, with shape (N, N). normed : bool, optional If True, then compute normalized Laplacian. return_diag : bool, optional If True, then return diagonal as well as laplacian. Returns ------- lap : ndarray The N x N laplacian matrix of graph. diag : ndarray The length-N diagonal of the laplacian matrix. diag is returned only if return_diag is True. Notes ----- The Laplacian matrix of a graph is sometimes referred to as the "Kirchoff matrix" or the "admittance matrix", and is useful in many parts of spectral graph theory. In particular, the eigen-decomposition of the laplacian matrix can give insight into many properties of the graph. For non-symmetric directed graphs, the laplacian is computed using the out-degree of each node. """ if csgraph.ndim != 2 or csgraph.shape[0] != csgraph.shape[1]: raise ValueError('csgraph must be a square matrix or array') if normed and (np.issubdtype(csgraph.dtype, np.int) or np.issubdtype(csgraph.dtype, np.uint)): csgraph = check_array(csgraph, dtype=np.float64, accept_sparse=True) if sparse.isspmatrix(csgraph): return _laplacian_sparse(csgraph, normed=normed, return_diag=return_diag) else: return _laplacian_dense(csgraph, normed=normed, return_diag=return_diag) def _laplacian_sparse(graph, normed=False, return_diag=False): n_nodes = graph.shape[0] if not graph.format == 'coo': lap = (-graph).tocoo() else: lap = -graph.copy() diag_mask = (lap.row == lap.col) if not diag_mask.sum() == n_nodes: # The sparsity pattern of the matrix has holes on the diagonal, # we need to fix that diag_idx = lap.row[diag_mask] diagonal_holes = list(set(range(n_nodes)).difference(diag_idx)) new_data = np.concatenate([lap.data, np.ones(len(diagonal_holes))]) new_row = np.concatenate([lap.row, diagonal_holes]) new_col = np.concatenate([lap.col, diagonal_holes]) lap = sparse.coo_matrix((new_data, (new_row, new_col)), shape=lap.shape) diag_mask = (lap.row == lap.col) lap.data[diag_mask] = 0 w = -np.asarray(lap.sum(axis=1)).squeeze() if normed: w = np.sqrt(w) w_zeros = (w == 0) w[w_zeros] = 1 lap.data /= w[lap.row] lap.data /= w[lap.col] lap.data[diag_mask] = (1 - w_zeros[lap.row[diag_mask]]).astype( lap.data.dtype) else: lap.data[diag_mask] = w[lap.row[diag_mask]] if return_diag: return lap, w return lap def _laplacian_dense(graph, normed=False, return_diag=False): n_nodes = graph.shape[0] lap = -np.asarray(graph) # minus sign leads to a copy # set diagonal to zero lap.flat[::n_nodes + 1] = 0 w = -lap.sum(axis=0) if normed: w = np.sqrt(w) w_zeros = (w == 0) w[w_zeros] = 1 lap /= w lap /= w[:, np.newaxis] lap.flat[::n_nodes + 1] = (1 - w_zeros).astype(lap.dtype) else: lap.flat[::n_nodes + 1] = w.astype(lap.dtype) if return_diag: return lap, w return lap
bsd-3-clause
JMill/edX-Learning-From-Data-Solutions-jm
Homework_7/Python/hw7_by_kirbs.py
3
11985
#------------------------------------------------------------------------------- # Name: homework 7 # Author: kirbs# # Created: 11/16/2013 #------------------------------------------------------------------------------- #!/usr/bin/env python import numpy import urllib import random import sys from sklearn import svm from sklearn.grid_search import GridSearchCV # ################################################### # ################## Helpers ###################### # ################################################### def in_dta(): fpin = urllib.urlopen("http://work.caltech.edu/data/in.dta") return ([map(float,(line.strip('\n').split('\r')[0].split())) for line in fpin]) def out_dta(): fpin = urllib.urlopen("http://work.caltech.edu/data/out.dta") return ([map(float,(line.strip('\n').split('\r')[0].split())) for line in fpin]) def transformPoint(p): return [1, p[0], p[1], p[0]**2, p[1]**2, p[0]*p[1], abs(p[0]-p[1]), abs(p[0]+p[1]), p[2]] def transformPoints(points, slicePosition): transformedPoints = [] for point in points: out = transformPoint(point)[:slicePosition + 1] out.append(point[-1]) transformedPoints.append(out) return transformedPoints """ Calculate weights using linear regression. Return list of weights. """ def linearRegression(samplePoints): X = [] y = [] y_location = len(samplePoints[0]) -1 # y's location is assumed to be the last element in the list # Construct X space and split y values out for point in samplePoints: X.append(numpy.array(point[:y_location])) y.append(point[y_location]) X = numpy.array(X) y = numpy.array(y) X_inverse = numpy.linalg.pinv(X) return numpy.dot(X_inverse, y) def linRegWithRegularization(samplePoints, l): X = [] y = [] y_location = len(samplePoints[0]) -1 # y's location is assumed to be the last element in the list # Construct X space and split y values out for point in samplePoints: X.append(numpy.array(point[:y_location])) y.append(point[y_location]) weights = linearRegression(samplePoints) X = numpy.array(X) X_inverse = numpy.linalg.pinv(X + numpy.array(l/len(samplePoints)*numpy.dot(weights, weights))) return numpy.dot(X_inverse, y) def eVal(validationPoints, weights): y_location = len(validationPoints[0]) - 1 e_val = 0 for p in validationPoints: if numpy.sign(numpy.dot(weights, p[:y_location])) != numpy.sign(p[y_location]): e_val += 1 return e_val/float(len(validationPoints)) # ############################################################################## def q1(): data = in_dta() for k in range(3,8): weights = linearRegression(transformPoints(data[:25], k)) e_val = eVal(transformPoints(data[25:],k), weights) print "k={}, e={}".format(k, e_val) #q1() def q2(): data = in_dta() testData = out_dta() for k in range(3,8): weights = linearRegression(transformPoints(data[:25], k)) e_val = eVal(transformPoints(testData[25:],k), weights) print "k={}, e={}".format(k, e_val) #q2() def q3(): data = in_dta() for k in range(3,8): weights = linearRegression(transformPoints(data[25:], k)) e_val = eVal(transformPoints(data[:25],k), weights) print "k={}, e={}".format(k, e_val) #q3() def q4(): data = in_dta() testData = out_dta() for k in range(3,8): weights = linearRegression(transformPoints(data[25:], k)) e_val = eVal(transformPoints(testData[:25],k), weights) print "k={}, e={}".format(k, e_val) #q4() def q6(): e = [] e1 = [] e2 = [] for i in range(1000000): _e1 = random.uniform(0,1) _e2 = random.uniform(0,1) e.append(min(_e1, _e2)) e1.append(_e1) e2.append(_e2) print "e_1={}, e_2={}, e={}".format(numpy.mean(e1), numpy.mean(e2), numpy.mean(e)) #q6() def q7(): def getPoints(val): return [[1, -1,0],[1, val,1],[1, 1,0]] def linear(points): return numpy.linalg.lstsq(points) answers = {"a": (3**.5+4)**.5, "b":(3**.5-1)**.5, "c": (3+4*6**.5)**.5, "d":(9-6**.5)**.5} e_cv = {} for key, ans in answers.iteritems(): e_constant = [] e_linear = [] for i in range(3): points = getPoints(ans) del points[i] weights = linearRegression(points) # squared error for p in points: e_linear.append((numpy.dot(weights, p[:2]) - p[2])**2) e_constant.append((weights[0] - p[2])**2) print "ans={}, e_constant={}, e_linear={}".format(key, numpy.mean(e_constant), numpy.mean(e_linear)) #q7() # ##################################################### # ######################################## # Perceptron helper functions from HW 1 ## # ######################################## def generatePoints(numberOfPoints): ## random.seed(1) #used for testing x1 = random.uniform(-1, 1) y1 = random.uniform(-1, 1) x2 = random.uniform(-1, 1) y2 = random.uniform(-1, 1) points = [] for i in range (numberOfPoints): ## random.seed(1) x = random.uniform (-1, 1) y = random.uniform (-1, 1) points.append([1, x, y, hw1TargetFunction(x1, y1, x2, y2, x, y)]) # add 1/-1 indicator to the end of each point list return x1, y1, x2, y2, points def hw1TargetFunction(x1,y1,x2,y2,x3,y3): u = (x2-x1)*(y3-y1) - (y2-y1)*(x3-x1) if u >= 0: return 1 elif u < 0: return -1 # ########################################## """ Helper function to visualize 2D data in [-1,1]x[-1,1] plane. samplePoints is required; all other parameters are optional. weights takes a list of weights and plots a line. x1, y1, x2, y2 represents two points in a 2D target function; this also plots the line. """ def plot(samplePoints, weights = None, x1 = None, y1 = None, x2 = None, y2 = None): red_x = [] red_y = [] blue_x = [] blue_y = [] for point in samplePoints: if point[3] == -1.0: red_x.append(point[1]) red_y.append(point[2]) else: blue_x.append(point[1]) blue_y.append(point[2]) pylab.plot(red_x, red_y, 'ro', label = '-1\'s') pylab.plot(blue_x, blue_y , 'bo', label = '1\'s') x = numpy.array( [-1,1] ) if x1 is not None: # plot target function(black) and hypothesis function(red) lines slope = (y2-y1)/(x2-x1) intercept = y2 - slope * x2 pylab.plot(x, slope*x + intercept, 'r') if weights is not None: pylab.plot( x, -weights[1]/weights[2] * x - weights[0] / weights[2] , linewidth = 2, c ='g', label = 'g') # this will throw an error if w[2] == 0 pylab.ylim([-1,1]) pylab.xlim([-1,1]) pylab.legend() pylab.show() # ############################### # ######### Perceptron ######### # ############################### """ Plots sample points, and two lines based on weight lists. Useful in showing how the perceptron is updating its weights during each iteration. """ def showPlot(samplePoints, w1, w2): green_x = [] green_y = [] blue_x = [] blue_y = [] for x in samplePoints: if x[3] == 1: green_x.append(x[1]) green_y.append(x[2]) else: blue_x.append(x[1]) blue_y.append(x[2]) pylab.plot(green_x, green_y, 'go') pylab.plot(blue_x, blue_y, 'bo') # plot target function(black) and hypothesis function(red) lines x = numpy.array( [-1,1] ) pylab.plot( x, -w1[1]/w1[2] * x - w1[0] / w1[2] ,lw=3.0, c='r', ls='-.', label = 'Before update') # this will throw an error if w[2] == 0 pylab.plot( x, -w2[1]/w2[2] * x - w2[0] / w2[2] , 'm--', label = 'After update weights') # this will throw an error if w[2] == 0 pylab.legend() pylab.show() """ Primary perceptron method. Returns iteration count and final weight list. """ def train(training_points, iterationLimit, weights): w = weights[:] # initialize weights for w[0], w[1], w[2] learned = False iterations = 0 def updateWeights(): random.shuffle(training_points) #randomize training points for point in training_points: res = numpy.sign(numpy.dot(w, point[:3])) #caclulate point if point[3] != res: # does point's y match our calculated y? #if not update weights w[0] += point[0]*point[3] w[1] += point[1]*point[3] w[2] += point[2]*point[3] ## showPlot(training_points, weights, w) return False # break out of loop and return return True # if the loop reaches this point all calculated points in the training points match their expected y's while not learned: noErrors = updateWeights() if iterations == iterationLimit or noErrors: learned = True break if iterations >1: i = 0 iterations += 1 return iterations, w """ Calculates the average E_out error of desired number of trials, using a new set of sample points each time and selecting a number of random points defined in numberOfPoints parameter. Returns average out of sample error. """ def eOutPLA(testPoints, weights, x1, y1, x2, y2): errorCount = 0 for point in testPoints: if numpy.sign(numpy.dot(point[:3], weights)) != numpy.sign(hw1TargetFunction(x1, y1, x2, y2, point[1], point[2])): errorCount += 1 return errorCount/float(len(testPoints)) def eOutSVM(testPoints, svm, x1, y1, x2, y2): errorCount = 0 for point in testPoints: if svm.predict([point[:3]])[0] != numpy.sign(hw1TargetFunction(x1, y1, x2, y2, point[1], point[2])): errorCount += 1 return errorCount/float(len(testPoints)) def machinery(points, c): X = [] y = [] y_location = len(points[0]) -1 # y's location is assumed to be the last element in the list for point in points: X.append(numpy.array(point[:y_location])) y.append(point[y_location]) machine = svm.SVC(kernel = 'linear', C=c) return machine.fit(X, y) def estimator(points): X = [] y = [] y_location = len(points[0]) -1 # y's location is assumed to be the last element in the list for point in points: X.append(numpy.array(point[:y_location])) y.append(numpy.array(point[y_location])) params = {'kernel': ['linear'], 'C': [1, 10, 100, 1000]} machine = GridSearchCV(svm.SVC(), params) machine.fit(X, numpy.array(y)) return machine.best_estimator def validPoints(points): has_0 = False has_1 = False for p in points: if p[-1] == -1: has_0 = True else: has_1 = True if has_0 and has_1: return True return False # ############################################# def plaVSsvm(numOfTrials, numOfPoints): svm_better_cnt = 0 sv_count = [] for i in range(numOfTrials): x1, y1, x2, y2, points = generatePoints(numOfPoints) iterations, perc_weights = train(points, 100, [0,0,0]) if(validPoints(points)): a,b,c,d, testPoints = generatePoints(10000) pla_e_out = eOutPLA(testPoints, perc_weights, x1, y1, x2, y2) machine = machinery(points, 1.0e6) svm_e_out = eOutSVM(testPoints, machine, x1, y1, x2, y2) ## print "PLA {}, SVM {}, SVM better? {}".format(pla_e_out, svm_e_out, svm_e_out < pla_e_out) if svm_e_out < pla_e_out: svm_better_cnt += 1 sv_count.append(numpy.sum(machine.n_support_)) ## print machine.n_support_ return svm_better_cnt/float(numOfTrials), numpy.mean(sv_count) # Question 8 #print plaVSsvm(1000,10) # Question 9/10 #print plaVSsvm(1000, 100, 100.0)
apache-2.0
appapantula/scikit-learn
examples/ensemble/plot_adaboost_twoclass.py
347
3268
""" ================== Two-class AdaBoost ================== This example fits an AdaBoosted decision stump on a non-linearly separable classification dataset composed of two "Gaussian quantiles" clusters (see :func:`sklearn.datasets.make_gaussian_quantiles`) and plots the decision boundary and decision scores. The distributions of decision scores are shown separately for samples of class A and B. The predicted class label for each sample is determined by the sign of the decision score. Samples with decision scores greater than zero are classified as B, and are otherwise classified as A. The magnitude of a decision score determines the degree of likeness with the predicted class label. Additionally, a new dataset could be constructed containing a desired purity of class B, for example, by only selecting samples with a decision score above some value. """ print(__doc__) # Author: Noel Dawe <[email protected]> # # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.ensemble import AdaBoostClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.datasets import make_gaussian_quantiles # Construct dataset X1, y1 = make_gaussian_quantiles(cov=2., n_samples=200, n_features=2, n_classes=2, random_state=1) X2, y2 = make_gaussian_quantiles(mean=(3, 3), cov=1.5, n_samples=300, n_features=2, n_classes=2, random_state=1) X = np.concatenate((X1, X2)) y = np.concatenate((y1, - y2 + 1)) # Create and fit an AdaBoosted decision tree bdt = AdaBoostClassifier(DecisionTreeClassifier(max_depth=1), algorithm="SAMME", n_estimators=200) bdt.fit(X, y) plot_colors = "br" plot_step = 0.02 class_names = "AB" plt.figure(figsize=(10, 5)) # Plot the decision boundaries plt.subplot(121) x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, plot_step), np.arange(y_min, y_max, plot_step)) Z = bdt.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) cs = plt.contourf(xx, yy, Z, cmap=plt.cm.Paired) plt.axis("tight") # Plot the training points for i, n, c in zip(range(2), class_names, plot_colors): idx = np.where(y == i) plt.scatter(X[idx, 0], X[idx, 1], c=c, cmap=plt.cm.Paired, label="Class %s" % n) plt.xlim(x_min, x_max) plt.ylim(y_min, y_max) plt.legend(loc='upper right') plt.xlabel('x') plt.ylabel('y') plt.title('Decision Boundary') # Plot the two-class decision scores twoclass_output = bdt.decision_function(X) plot_range = (twoclass_output.min(), twoclass_output.max()) plt.subplot(122) for i, n, c in zip(range(2), class_names, plot_colors): plt.hist(twoclass_output[y == i], bins=10, range=plot_range, facecolor=c, label='Class %s' % n, alpha=.5) x1, x2, y1, y2 = plt.axis() plt.axis((x1, x2, y1, y2 * 1.2)) plt.legend(loc='upper right') plt.ylabel('Samples') plt.xlabel('Score') plt.title('Decision Scores') plt.tight_layout() plt.subplots_adjust(wspace=0.35) plt.show()
bsd-3-clause
xiaoxiamii/scikit-learn
examples/linear_model/plot_ard.py
248
2622
""" ================================================== Automatic Relevance Determination Regression (ARD) ================================================== Fit regression model with Bayesian Ridge Regression. See :ref:`bayesian_ridge_regression` for more information on the regressor. Compared to the OLS (ordinary least squares) estimator, the coefficient weights are slightly shifted toward zeros, which stabilises them. The histogram of the estimated weights is very peaked, as a sparsity-inducing prior is implied on the weights. The estimation of the model is done by iteratively maximizing the marginal log-likelihood of the observations. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from scipy import stats from sklearn.linear_model import ARDRegression, LinearRegression ############################################################################### # Generating simulated data with Gaussian weights # Parameters of the example np.random.seed(0) n_samples, n_features = 100, 100 # Create Gaussian data X = np.random.randn(n_samples, n_features) # Create weigts with a precision lambda_ of 4. lambda_ = 4. w = np.zeros(n_features) # Only keep 10 weights of interest relevant_features = np.random.randint(0, n_features, 10) for i in relevant_features: w[i] = stats.norm.rvs(loc=0, scale=1. / np.sqrt(lambda_)) # Create noite with a precision alpha of 50. alpha_ = 50. noise = stats.norm.rvs(loc=0, scale=1. / np.sqrt(alpha_), size=n_samples) # Create the target y = np.dot(X, w) + noise ############################################################################### # Fit the ARD Regression clf = ARDRegression(compute_score=True) clf.fit(X, y) ols = LinearRegression() ols.fit(X, y) ############################################################################### # Plot the true weights, the estimated weights and the histogram of the # weights plt.figure(figsize=(6, 5)) plt.title("Weights of the model") plt.plot(clf.coef_, 'b-', label="ARD estimate") plt.plot(ols.coef_, 'r--', label="OLS estimate") plt.plot(w, 'g-', label="Ground truth") plt.xlabel("Features") plt.ylabel("Values of the weights") plt.legend(loc=1) plt.figure(figsize=(6, 5)) plt.title("Histogram of the weights") plt.hist(clf.coef_, bins=n_features, log=True) plt.plot(clf.coef_[relevant_features], 5 * np.ones(len(relevant_features)), 'ro', label="Relevant features") plt.ylabel("Features") plt.xlabel("Values of the weights") plt.legend(loc=1) plt.figure(figsize=(6, 5)) plt.title("Marginal log-likelihood") plt.plot(clf.scores_) plt.ylabel("Score") plt.xlabel("Iterations") plt.show()
bsd-3-clause
dominicelse/scipy
scipy/ndimage/fourier.py
25
11866
# Copyright (C) 2003-2005 Peter J. Verveer # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided # with the distribution. # # 3. The name of the author may not be used to endorse or promote # products derived from this software without specific prior # written permission. # # THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS # OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE # GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, # WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from __future__ import division, print_function, absolute_import import numpy from . import _ni_support from . import _nd_image __all__ = ['fourier_gaussian', 'fourier_uniform', 'fourier_ellipsoid', 'fourier_shift'] def _get_output_fourier(output, input): if output is None: if input.dtype.type in [numpy.complex64, numpy.complex128, numpy.float32]: output = numpy.zeros(input.shape, dtype=input.dtype) else: output = numpy.zeros(input.shape, dtype=numpy.float64) return_value = output elif type(output) is type: if output not in [numpy.complex64, numpy.complex128, numpy.float32, numpy.float64]: raise RuntimeError("output type not supported") output = numpy.zeros(input.shape, dtype=output) return_value = output else: if output.shape != input.shape: raise RuntimeError("output shape not correct") return_value = None return output, return_value def _get_output_fourier_complex(output, input): if output is None: if input.dtype.type in [numpy.complex64, numpy.complex128]: output = numpy.zeros(input.shape, dtype=input.dtype) else: output = numpy.zeros(input.shape, dtype=numpy.complex128) return_value = output elif type(output) is type: if output not in [numpy.complex64, numpy.complex128]: raise RuntimeError("output type not supported") output = numpy.zeros(input.shape, dtype=output) return_value = output else: if output.shape != input.shape: raise RuntimeError("output shape not correct") return_value = None return output, return_value def fourier_gaussian(input, sigma, n=-1, axis=-1, output=None): """ Multi-dimensional Gaussian fourier filter. The array is multiplied with the fourier transform of a Gaussian kernel. Parameters ---------- input : array_like The input array. sigma : float or sequence The sigma of the Gaussian kernel. If a float, `sigma` is the same for all axes. If a sequence, `sigma` has to contain one value for each axis. n : int, optional If `n` is negative (default), then the input is assumed to be the result of a complex fft. If `n` is larger than or equal to zero, the input is assumed to be the result of a real fft, and `n` gives the length of the array before transformation along the real transform direction. axis : int, optional The axis of the real transform. output : ndarray, optional If given, the result of filtering the input is placed in this array. None is returned in this case. Returns ------- fourier_gaussian : ndarray or None The filtered input. If `output` is given as a parameter, None is returned. Examples -------- >>> from scipy import ndimage, misc >>> import numpy.fft >>> import matplotlib.pyplot as plt >>> fig, (ax1, ax2) = plt.subplots(1, 2) >>> plt.gray() # show the filtered result in grayscale >>> ascent = misc.ascent() >>> input_ = numpy.fft.fft2(ascent) >>> result = ndimage.fourier_gaussian(input_, sigma=4) >>> result = numpy.fft.ifft2(result) >>> ax1.imshow(ascent) >>> ax2.imshow(result.real) # the imaginary part is an artifact >>> plt.show() """ input = numpy.asarray(input) output, return_value = _get_output_fourier(output, input) axis = _ni_support._check_axis(axis, input.ndim) sigmas = _ni_support._normalize_sequence(sigma, input.ndim) sigmas = numpy.asarray(sigmas, dtype=numpy.float64) if not sigmas.flags.contiguous: sigmas = sigmas.copy() _nd_image.fourier_filter(input, sigmas, n, axis, output, 0) return return_value def fourier_uniform(input, size, n=-1, axis=-1, output=None): """ Multi-dimensional uniform fourier filter. The array is multiplied with the fourier transform of a box of given size. Parameters ---------- input : array_like The input array. size : float or sequence The size of the box used for filtering. If a float, `size` is the same for all axes. If a sequence, `size` has to contain one value for each axis. n : int, optional If `n` is negative (default), then the input is assumed to be the result of a complex fft. If `n` is larger than or equal to zero, the input is assumed to be the result of a real fft, and `n` gives the length of the array before transformation along the real transform direction. axis : int, optional The axis of the real transform. output : ndarray, optional If given, the result of filtering the input is placed in this array. None is returned in this case. Returns ------- fourier_uniform : ndarray or None The filtered input. If `output` is given as a parameter, None is returned. Examples -------- >>> from scipy import ndimage, misc >>> import numpy.fft >>> import matplotlib.pyplot as plt >>> fig, (ax1, ax2) = plt.subplots(1, 2) >>> plt.gray() # show the filtered result in grayscale >>> ascent = misc.ascent() >>> input_ = numpy.fft.fft2(ascent) >>> result = ndimage.fourier_uniform(input_, size=20) >>> result = numpy.fft.ifft2(result) >>> ax1.imshow(ascent) >>> ax2.imshow(result.real) # the imaginary part is an artifact >>> plt.show() """ input = numpy.asarray(input) output, return_value = _get_output_fourier(output, input) axis = _ni_support._check_axis(axis, input.ndim) sizes = _ni_support._normalize_sequence(size, input.ndim) sizes = numpy.asarray(sizes, dtype=numpy.float64) if not sizes.flags.contiguous: sizes = sizes.copy() _nd_image.fourier_filter(input, sizes, n, axis, output, 1) return return_value def fourier_ellipsoid(input, size, n=-1, axis=-1, output=None): """ Multi-dimensional ellipsoid fourier filter. The array is multiplied with the fourier transform of a ellipsoid of given sizes. Parameters ---------- input : array_like The input array. size : float or sequence The size of the box used for filtering. If a float, `size` is the same for all axes. If a sequence, `size` has to contain one value for each axis. n : int, optional If `n` is negative (default), then the input is assumed to be the result of a complex fft. If `n` is larger than or equal to zero, the input is assumed to be the result of a real fft, and `n` gives the length of the array before transformation along the real transform direction. axis : int, optional The axis of the real transform. output : ndarray, optional If given, the result of filtering the input is placed in this array. None is returned in this case. Returns ------- fourier_ellipsoid : ndarray or None The filtered input. If `output` is given as a parameter, None is returned. Notes ----- This function is implemented for arrays of rank 1, 2, or 3. Examples -------- >>> from scipy import ndimage, misc >>> import numpy.fft >>> import matplotlib.pyplot as plt >>> fig, (ax1, ax2) = plt.subplots(1, 2) >>> plt.gray() # show the filtered result in grayscale >>> ascent = misc.ascent() >>> input_ = numpy.fft.fft2(ascent) >>> result = ndimage.fourier_ellipsoid(input_, size=20) >>> result = numpy.fft.ifft2(result) >>> ax1.imshow(ascent) >>> ax2.imshow(result.real) # the imaginary part is an artifact >>> plt.show() """ input = numpy.asarray(input) output, return_value = _get_output_fourier(output, input) axis = _ni_support._check_axis(axis, input.ndim) sizes = _ni_support._normalize_sequence(size, input.ndim) sizes = numpy.asarray(sizes, dtype=numpy.float64) if not sizes.flags.contiguous: sizes = sizes.copy() _nd_image.fourier_filter(input, sizes, n, axis, output, 2) return return_value def fourier_shift(input, shift, n=-1, axis=-1, output=None): """ Multi-dimensional fourier shift filter. The array is multiplied with the fourier transform of a shift operation. Parameters ---------- input : array_like The input array. shift : float or sequence The size of the box used for filtering. If a float, `shift` is the same for all axes. If a sequence, `shift` has to contain one value for each axis. n : int, optional If `n` is negative (default), then the input is assumed to be the result of a complex fft. If `n` is larger than or equal to zero, the input is assumed to be the result of a real fft, and `n` gives the length of the array before transformation along the real transform direction. axis : int, optional The axis of the real transform. output : ndarray, optional If given, the result of shifting the input is placed in this array. None is returned in this case. Returns ------- fourier_shift : ndarray or None The shifted input. If `output` is given as a parameter, None is returned. Examples -------- >>> from scipy import ndimage, misc >>> import matplotlib.pyplot as plt >>> import numpy.fft >>> fig, (ax1, ax2) = plt.subplots(1, 2) >>> plt.gray() # show the filtered result in grayscale >>> ascent = misc.ascent() >>> input_ = numpy.fft.fft2(ascent) >>> result = ndimage.fourier_shift(input_, shift=200) >>> result = numpy.fft.ifft2(result) >>> ax1.imshow(ascent) >>> ax2.imshow(result.real) # the imaginary part is an artifact >>> plt.show() """ input = numpy.asarray(input) output, return_value = _get_output_fourier_complex(output, input) axis = _ni_support._check_axis(axis, input.ndim) shifts = _ni_support._normalize_sequence(shift, input.ndim) shifts = numpy.asarray(shifts, dtype=numpy.float64) if not shifts.flags.contiguous: shifts = shifts.copy() _nd_image.fourier_shift(input, shifts, n, axis, output) return return_value
bsd-3-clause
dsullivan7/scikit-learn
examples/semi_supervised/plot_label_propagation_digits_active_learning.py
294
3417
""" ======================================== Label Propagation digits active learning ======================================== Demonstrates an active learning technique to learn handwritten digits using label propagation. We start by training a label propagation model with only 10 labeled points, then we select the top five most uncertain points to label. Next, we train with 15 labeled points (original 10 + 5 new ones). We repeat this process four times to have a model trained with 30 labeled examples. A plot will appear showing the top 5 most uncertain digits for each iteration of training. These may or may not contain mistakes, but we will train the next model with their true labels. """ print(__doc__) # Authors: Clay Woolam <[email protected]> # Licence: BSD import numpy as np import matplotlib.pyplot as plt from scipy import stats from sklearn import datasets from sklearn.semi_supervised import label_propagation from sklearn.metrics import classification_report, confusion_matrix digits = datasets.load_digits() rng = np.random.RandomState(0) indices = np.arange(len(digits.data)) rng.shuffle(indices) X = digits.data[indices[:330]] y = digits.target[indices[:330]] images = digits.images[indices[:330]] n_total_samples = len(y) n_labeled_points = 10 unlabeled_indices = np.arange(n_total_samples)[n_labeled_points:] f = plt.figure() for i in range(5): y_train = np.copy(y) y_train[unlabeled_indices] = -1 lp_model = label_propagation.LabelSpreading(gamma=0.25, max_iter=5) lp_model.fit(X, y_train) predicted_labels = lp_model.transduction_[unlabeled_indices] true_labels = y[unlabeled_indices] cm = confusion_matrix(true_labels, predicted_labels, labels=lp_model.classes_) print('Iteration %i %s' % (i, 70 * '_')) print("Label Spreading model: %d labeled & %d unlabeled (%d total)" % (n_labeled_points, n_total_samples - n_labeled_points, n_total_samples)) print(classification_report(true_labels, predicted_labels)) print("Confusion matrix") print(cm) # compute the entropies of transduced label distributions pred_entropies = stats.distributions.entropy( lp_model.label_distributions_.T) # select five digit examples that the classifier is most uncertain about uncertainty_index = uncertainty_index = np.argsort(pred_entropies)[-5:] # keep track of indices that we get labels for delete_indices = np.array([]) f.text(.05, (1 - (i + 1) * .183), "model %d\n\nfit with\n%d labels" % ((i + 1), i * 5 + 10), size=10) for index, image_index in enumerate(uncertainty_index): image = images[image_index] sub = f.add_subplot(5, 5, index + 1 + (5 * i)) sub.imshow(image, cmap=plt.cm.gray_r) sub.set_title('predict: %i\ntrue: %i' % ( lp_model.transduction_[image_index], y[image_index]), size=10) sub.axis('off') # labeling 5 points, remote from labeled set delete_index, = np.where(unlabeled_indices == image_index) delete_indices = np.concatenate((delete_indices, delete_index)) unlabeled_indices = np.delete(unlabeled_indices, delete_indices) n_labeled_points += 5 f.suptitle("Active learning with Label Propagation.\nRows show 5 most " "uncertain labels to learn with the next model.") plt.subplots_adjust(0.12, 0.03, 0.9, 0.8, 0.2, 0.45) plt.show()
bsd-3-clause
harpribot/deep-summarization
evaluation_plot_script.py
1
9114
from helpers.plotter import Plotter from helpers.metric import Calculator import matplotlib.pyplot as plt ############## ALL GRU PLOTS ############################ result_file_1 = 'result/simple/gru/no_attention.csv' result_file_2 = 'result/bidirectional/gru/no_attention.csv' result_file_3 = 'result/stacked_simple/gru/no_attention.csv' result_file_4 = 'result/stacked_bidirectional/gru/no_attention.csv' result_file_description = ['gru_smpl', 'gru_bidr', 'gru_stack_smpl', 'gru_stack_bidr'] hypothesis_dir = 'metrics/hypothesis' reference_dir = 'metrics/reference' bleu_1 = [] bleu_2 = [] bleu_3 = [] bleu_4 = [] rouge = [] calculator = Calculator(3,hypothesis_dir,reference_dir) calculator.load_result(result_file_1) calculator.evaluate_all_ref_hyp_pairs() bleu_1_val,bleu_2_val,bleu_3_val,bleu_4_val,rouge_val = calculator.get_all_metrics() bleu_1.append(bleu_1_val) bleu_2.append(bleu_2_val) bleu_3.append(bleu_3_val) bleu_4.append(bleu_4_val) rouge.append(rouge_val) calculator = Calculator(3,hypothesis_dir,reference_dir) calculator.load_result(result_file_2) calculator.evaluate_all_ref_hyp_pairs() bleu_1_val,bleu_2_val,bleu_3_val,bleu_4_val,rouge_val = calculator.get_all_metrics() bleu_1.append(bleu_1_val) bleu_2.append(bleu_2_val) bleu_3.append(bleu_3_val) bleu_4.append(bleu_4_val) rouge.append(rouge_val) calculator = Calculator(3,hypothesis_dir,reference_dir) calculator.load_result(result_file_3) calculator.evaluate_all_ref_hyp_pairs() bleu_1_val,bleu_2_val,bleu_3_val,bleu_4_val,rouge_val = calculator.get_all_metrics() bleu_1.append(bleu_1_val) bleu_2.append(bleu_2_val) bleu_3.append(bleu_3_val) bleu_4.append(bleu_4_val) rouge.append(rouge_val) calculator = Calculator(3,hypothesis_dir,reference_dir) calculator.load_result(result_file_4) calculator.evaluate_all_ref_hyp_pairs() bleu_1_val,bleu_2_val,bleu_3_val,bleu_4_val,rouge_val = calculator.get_all_metrics() bleu_1.append(bleu_1_val) bleu_2.append(bleu_2_val) bleu_3.append(bleu_3_val) bleu_4.append(bleu_4_val) rouge.append(rouge_val) steps = calculator.get_steps() plotter = Plotter() plotter.set_metrics(bleu_1,bleu_2,bleu_3,bleu_4,rouge) plotter.set_file_description(result_file_description) plotter.set_steps(steps) plotter.plot_all_metrics() ########## ALL LSTM PLOTS #################### result_file_1 = 'result/simple/lstm/no_attention.csv' result_file_2 = 'result/bidirectional/lstm/no_attention.csv' result_file_3 = 'result/stacked_simple/lstm/no_attention.csv' result_file_4 = 'result/stacked_bidirectional/lstm/no_attention.csv' result_file_description = ['lstm_smpl','lstm_bidr','lstm_stack_smpl','lstm_stack_bidr'] hypothesis_dir = 'metrics/hypothesis' reference_dir = 'metrics/reference' bleu_1 = [] bleu_2 = [] bleu_3 = [] bleu_4 = [] rouge = [] calculator = Calculator(3,hypothesis_dir,reference_dir) calculator.load_result(result_file_1) calculator.evaluate_all_ref_hyp_pairs() bleu_1_val,bleu_2_val,bleu_3_val,bleu_4_val,rouge_val = calculator.get_all_metrics() bleu_1.append(bleu_1_val) bleu_2.append(bleu_2_val) bleu_3.append(bleu_3_val) bleu_4.append(bleu_4_val) rouge.append(rouge_val) calculator = Calculator(3,hypothesis_dir,reference_dir) calculator.load_result(result_file_2) calculator.evaluate_all_ref_hyp_pairs() bleu_1_val,bleu_2_val,bleu_3_val,bleu_4_val,rouge_val = calculator.get_all_metrics() bleu_1.append(bleu_1_val) bleu_2.append(bleu_2_val) bleu_3.append(bleu_3_val) bleu_4.append(bleu_4_val) rouge.append(rouge_val) calculator = Calculator(3,hypothesis_dir,reference_dir) calculator.load_result(result_file_3) calculator.evaluate_all_ref_hyp_pairs() bleu_1_val,bleu_2_val,bleu_3_val,bleu_4_val,rouge_val = calculator.get_all_metrics() bleu_1.append(bleu_1_val) bleu_2.append(bleu_2_val) bleu_3.append(bleu_3_val) bleu_4.append(bleu_4_val) rouge.append(rouge_val) calculator = Calculator(3,hypothesis_dir,reference_dir) calculator.load_result(result_file_4) calculator.evaluate_all_ref_hyp_pairs() bleu_1_val,bleu_2_val,bleu_3_val,bleu_4_val,rouge_val = calculator.get_all_metrics() bleu_1.append(bleu_1_val) bleu_2.append(bleu_2_val) bleu_3.append(bleu_3_val) bleu_4.append(bleu_4_val) rouge.append(rouge_val) steps = calculator.get_steps() plotter = Plotter() plotter.set_metrics(bleu_1,bleu_2,bleu_3,bleu_4,rouge) plotter.set_file_description(result_file_description) plotter.set_steps(steps) plotter.plot_all_metrics() #### GRU and LSTM Comparison plots ##### ## SIMPLE result_file_1 = 'result/simple/gru/no_attention.csv' result_file_2 = 'result/simple/lstm/no_attention.csv' result_file_description = ['gru_simple','lstm_simple'] bleu_1 = [] bleu_2 = [] bleu_3 = [] bleu_4 = [] rouge = [] calculator = Calculator(3,hypothesis_dir,reference_dir) calculator.load_result(result_file_1) calculator.evaluate_all_ref_hyp_pairs() bleu_1_val,bleu_2_val,bleu_3_val,bleu_4_val,rouge_val = calculator.get_all_metrics() bleu_1.append(bleu_1_val) bleu_2.append(bleu_2_val) bleu_3.append(bleu_3_val) bleu_4.append(bleu_4_val) rouge.append(rouge_val) calculator = Calculator(3,hypothesis_dir,reference_dir) calculator.load_result(result_file_2) calculator.evaluate_all_ref_hyp_pairs() bleu_1_val,bleu_2_val,bleu_3_val,bleu_4_val,rouge_val = calculator.get_all_metrics() bleu_1.append(bleu_1_val) bleu_2.append(bleu_2_val) bleu_3.append(bleu_3_val) bleu_4.append(bleu_4_val) rouge.append(rouge_val) steps = calculator.get_steps() plotter = Plotter() plotter.set_metrics(bleu_1,bleu_2,bleu_3,bleu_4,rouge) plotter.set_file_description(result_file_description) plotter.set_steps(steps) plotter.plot_all_metrics() ## BIDIRECTIONAL result_file_1 = 'result/bidirectional/gru/no_attention.csv' result_file_2 = 'result/bidirectional/lstm/no_attention.csv' result_file_description = ['gru_bidir','lstm_bidir'] bleu_1 = [] bleu_2 = [] bleu_3 = [] bleu_4 = [] rouge = [] calculator = Calculator(3,hypothesis_dir,reference_dir) calculator.load_result(result_file_1) calculator.evaluate_all_ref_hyp_pairs() bleu_1_val,bleu_2_val,bleu_3_val,bleu_4_val,rouge_val = calculator.get_all_metrics() bleu_1.append(bleu_1_val) bleu_2.append(bleu_2_val) bleu_3.append(bleu_3_val) bleu_4.append(bleu_4_val) rouge.append(rouge_val) calculator = Calculator(3,hypothesis_dir,reference_dir) calculator.load_result(result_file_2) calculator.evaluate_all_ref_hyp_pairs() bleu_1_val,bleu_2_val,bleu_3_val,bleu_4_val,rouge_val = calculator.get_all_metrics() bleu_1.append(bleu_1_val) bleu_2.append(bleu_2_val) bleu_3.append(bleu_3_val) bleu_4.append(bleu_4_val) rouge.append(rouge_val) steps = calculator.get_steps() plotter = Plotter() plotter.set_metrics(bleu_1,bleu_2,bleu_3,bleu_4,rouge) plotter.set_file_description(result_file_description) plotter.set_steps(steps) plotter.plot_all_metrics() ## STACKED_SIMPLE result_file_1 = 'result/stacked_simple/gru/no_attention.csv' result_file_2 = 'result/stacked_simple/lstm/no_attention.csv' result_file_description = ['gru_stacked','lstm_stacked'] bleu_1 = [] bleu_2 = [] bleu_3 = [] bleu_4 = [] rouge = [] calculator = Calculator(3,hypothesis_dir,reference_dir) calculator.load_result(result_file_1) calculator.evaluate_all_ref_hyp_pairs() bleu_1_val,bleu_2_val,bleu_3_val,bleu_4_val,rouge_val = calculator.get_all_metrics() bleu_1.append(bleu_1_val) bleu_2.append(bleu_2_val) bleu_3.append(bleu_3_val) bleu_4.append(bleu_4_val) rouge.append(rouge_val) calculator = Calculator(3,hypothesis_dir,reference_dir) calculator.load_result(result_file_2) calculator.evaluate_all_ref_hyp_pairs() bleu_1_val,bleu_2_val,bleu_3_val,bleu_4_val,rouge_val = calculator.get_all_metrics() bleu_1.append(bleu_1_val) bleu_2.append(bleu_2_val) bleu_3.append(bleu_3_val) bleu_4.append(bleu_4_val) rouge.append(rouge_val) steps = calculator.get_steps() plotter = Plotter() plotter.set_metrics(bleu_1,bleu_2,bleu_3,bleu_4,rouge) plotter.set_file_description(result_file_description) plotter.set_steps(steps) plotter.plot_all_metrics() ## STACKED BIDIRECTIONAL result_file_1 = 'result/stacked_bidirectional/gru/no_attention.csv' result_file_2 = 'result/stacked_bidirectional/lstm/no_attention.csv' result_file_description = ['gru_stack_bidir','lstm_stack_bidir'] bleu_1 = [] bleu_2 = [] bleu_3 = [] bleu_4 = [] rouge = [] calculator = Calculator(3,hypothesis_dir,reference_dir) calculator.load_result(result_file_1) calculator.evaluate_all_ref_hyp_pairs() bleu_1_val,bleu_2_val,bleu_3_val,bleu_4_val,rouge_val = calculator.get_all_metrics() bleu_1.append(bleu_1_val) bleu_2.append(bleu_2_val) bleu_3.append(bleu_3_val) bleu_4.append(bleu_4_val) rouge.append(rouge_val) calculator = Calculator(3,hypothesis_dir,reference_dir) calculator.load_result(result_file_2) calculator.evaluate_all_ref_hyp_pairs() bleu_1_val,bleu_2_val,bleu_3_val,bleu_4_val,rouge_val = calculator.get_all_metrics() bleu_1.append(bleu_1_val) bleu_2.append(bleu_2_val) bleu_3.append(bleu_3_val) bleu_4.append(bleu_4_val) rouge.append(rouge_val) steps = calculator.get_steps() plotter = Plotter() plotter.set_metrics(bleu_1,bleu_2,bleu_3,bleu_4,rouge) plotter.set_file_description(result_file_description) plotter.set_steps(steps) plotter.plot_all_metrics() # SHOW ALL PLOTS plt.show()
mit
sourcepole/kadas-albireo
python/plugins/processing/algs/qgis/PolarPlot.py
5
3040
# -*- coding: utf-8 -*- """ *************************************************************************** BarPlot.py --------------------- Date : January 2013 Copyright : (C) 2013 by Victor Olaya Email : volayaf at gmail dot com *************************************************************************** * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * *************************************************************************** """ __author__ = 'Victor Olaya' __date__ = 'January 2013' __copyright__ = '(C) 2013, Victor Olaya' # This will get replaced with a git SHA1 when you do a git archive __revision__ = '$Format:%H$' import matplotlib.pyplot as plt import matplotlib.pylab as lab from matplotlib.pyplot import figure import numpy as np from processing.core.GeoAlgorithm import GeoAlgorithm from processing.core.parameters import ParameterTable from processing.core.parameters import ParameterTableField from processing.core.outputs import OutputHTML from processing.tools import vector from processing.tools import dataobjects class PolarPlot(GeoAlgorithm): INPUT = 'INPUT' OUTPUT = 'OUTPUT' NAME_FIELD = 'NAME_FIELD' VALUE_FIELD = 'VALUE_FIELD' def defineCharacteristics(self): self.name = 'Polar plot' self.group = 'Graphics' self.addParameter(ParameterTable(self.INPUT, self.tr('Input table'))) self.addParameter(ParameterTableField(self.NAME_FIELD, self.tr('Category name field'), self.INPUT)) self.addParameter(ParameterTableField(self.VALUE_FIELD, self.tr('Value field'), self.INPUT)) self.addOutput(OutputHTML(self.OUTPUT, self.tr('Output'))) def processAlgorithm(self, progress): layer = dataobjects.getObjectFromUri( self.getParameterValue(self.INPUT)) namefieldname = self.getParameterValue(self.NAME_FIELD) valuefieldname = self.getParameterValue(self.VALUE_FIELD) output = self.getOutputValue(self.OUTPUT) values = vector.values(layer, namefieldname, valuefieldname) plt.close() fig = figure(figsize=(8, 8)) ax = fig.add_axes([0.1, 0.1, 0.8, 0.8], polar=True) N = len(values[valuefieldname]) theta = np.arange(0.0, 2 * np.pi, 2 * np.pi / N) radii = values[valuefieldname] width = 2 * np.pi / N ax.bar(theta, radii, width=width, bottom=0.0) plotFilename = output + '.png' lab.savefig(plotFilename) f = open(output, 'w') f.write('<img src="' + plotFilename + '"/>') f.close()
gpl-2.0
rubikloud/scikit-learn
examples/neighbors/plot_kde_1d.py
347
5100
""" =================================== Simple 1D Kernel Density Estimation =================================== This example uses the :class:`sklearn.neighbors.KernelDensity` class to demonstrate the principles of Kernel Density Estimation in one dimension. The first plot shows one of the problems with using histograms to visualize the density of points in 1D. Intuitively, a histogram can be thought of as a scheme in which a unit "block" is stacked above each point on a regular grid. As the top two panels show, however, the choice of gridding for these blocks can lead to wildly divergent ideas about the underlying shape of the density distribution. If we instead center each block on the point it represents, we get the estimate shown in the bottom left panel. This is a kernel density estimation with a "top hat" kernel. This idea can be generalized to other kernel shapes: the bottom-right panel of the first figure shows a Gaussian kernel density estimate over the same distribution. Scikit-learn implements efficient kernel density estimation using either a Ball Tree or KD Tree structure, through the :class:`sklearn.neighbors.KernelDensity` estimator. The available kernels are shown in the second figure of this example. The third figure compares kernel density estimates for a distribution of 100 samples in 1 dimension. Though this example uses 1D distributions, kernel density estimation is easily and efficiently extensible to higher dimensions as well. """ # Author: Jake Vanderplas <[email protected]> # import numpy as np import matplotlib.pyplot as plt from scipy.stats import norm from sklearn.neighbors import KernelDensity #---------------------------------------------------------------------- # Plot the progression of histograms to kernels np.random.seed(1) N = 20 X = np.concatenate((np.random.normal(0, 1, 0.3 * N), np.random.normal(5, 1, 0.7 * N)))[:, np.newaxis] X_plot = np.linspace(-5, 10, 1000)[:, np.newaxis] bins = np.linspace(-5, 10, 10) fig, ax = plt.subplots(2, 2, sharex=True, sharey=True) fig.subplots_adjust(hspace=0.05, wspace=0.05) # histogram 1 ax[0, 0].hist(X[:, 0], bins=bins, fc='#AAAAFF', normed=True) ax[0, 0].text(-3.5, 0.31, "Histogram") # histogram 2 ax[0, 1].hist(X[:, 0], bins=bins + 0.75, fc='#AAAAFF', normed=True) ax[0, 1].text(-3.5, 0.31, "Histogram, bins shifted") # tophat KDE kde = KernelDensity(kernel='tophat', bandwidth=0.75).fit(X) log_dens = kde.score_samples(X_plot) ax[1, 0].fill(X_plot[:, 0], np.exp(log_dens), fc='#AAAAFF') ax[1, 0].text(-3.5, 0.31, "Tophat Kernel Density") # Gaussian KDE kde = KernelDensity(kernel='gaussian', bandwidth=0.75).fit(X) log_dens = kde.score_samples(X_plot) ax[1, 1].fill(X_plot[:, 0], np.exp(log_dens), fc='#AAAAFF') ax[1, 1].text(-3.5, 0.31, "Gaussian Kernel Density") for axi in ax.ravel(): axi.plot(X[:, 0], np.zeros(X.shape[0]) - 0.01, '+k') axi.set_xlim(-4, 9) axi.set_ylim(-0.02, 0.34) for axi in ax[:, 0]: axi.set_ylabel('Normalized Density') for axi in ax[1, :]: axi.set_xlabel('x') #---------------------------------------------------------------------- # Plot all available kernels X_plot = np.linspace(-6, 6, 1000)[:, None] X_src = np.zeros((1, 1)) fig, ax = plt.subplots(2, 3, sharex=True, sharey=True) fig.subplots_adjust(left=0.05, right=0.95, hspace=0.05, wspace=0.05) def format_func(x, loc): if x == 0: return '0' elif x == 1: return 'h' elif x == -1: return '-h' else: return '%ih' % x for i, kernel in enumerate(['gaussian', 'tophat', 'epanechnikov', 'exponential', 'linear', 'cosine']): axi = ax.ravel()[i] log_dens = KernelDensity(kernel=kernel).fit(X_src).score_samples(X_plot) axi.fill(X_plot[:, 0], np.exp(log_dens), '-k', fc='#AAAAFF') axi.text(-2.6, 0.95, kernel) axi.xaxis.set_major_formatter(plt.FuncFormatter(format_func)) axi.xaxis.set_major_locator(plt.MultipleLocator(1)) axi.yaxis.set_major_locator(plt.NullLocator()) axi.set_ylim(0, 1.05) axi.set_xlim(-2.9, 2.9) ax[0, 1].set_title('Available Kernels') #---------------------------------------------------------------------- # Plot a 1D density example N = 100 np.random.seed(1) X = np.concatenate((np.random.normal(0, 1, 0.3 * N), np.random.normal(5, 1, 0.7 * N)))[:, np.newaxis] X_plot = np.linspace(-5, 10, 1000)[:, np.newaxis] true_dens = (0.3 * norm(0, 1).pdf(X_plot[:, 0]) + 0.7 * norm(5, 1).pdf(X_plot[:, 0])) fig, ax = plt.subplots() ax.fill(X_plot[:, 0], true_dens, fc='black', alpha=0.2, label='input distribution') for kernel in ['gaussian', 'tophat', 'epanechnikov']: kde = KernelDensity(kernel=kernel, bandwidth=0.5).fit(X) log_dens = kde.score_samples(X_plot) ax.plot(X_plot[:, 0], np.exp(log_dens), '-', label="kernel = '{0}'".format(kernel)) ax.text(6, 0.38, "N={0} points".format(N)) ax.legend(loc='upper left') ax.plot(X[:, 0], -0.005 - 0.01 * np.random.random(X.shape[0]), '+k') ax.set_xlim(-4, 9) ax.set_ylim(-0.02, 0.4) plt.show()
bsd-3-clause
traxys/EyeTrackingInfo
room/room.py
1
1031
from PIL import Image, ImageTk import numpy as np import tkinter as tk from random import randrange import progressbar #import matplotlib.pyplot as plt def loadRoom(): '''Returns an array containg 359 frames as PIL objects''' bar = progressbar.ProgressBar( widgets=[ "Loading Room", progressbar.Bar(), "(",progressbar.ETA(),")" ], max_value=360) room = [] name = "Loading Room" for i in bar(range(1,361)): room.append( Image.open("deg_"+str(i)+".png") ) return room def getRoomAsNP(): room = loadRoom() npRoom = [] bar = progressbar.ProgressBar( widgets=[ "Converting Room", progressbar.Bar(), "(",progressbar.ETA(),")" ], max_value=360) for i in bar(room): npRoom.append(np.array(i)) return np.array(npRoom) def showImage(): t = randrange(359) img_tk = ImageTk.PhotoImage(room[t]) label.configure(image=img_tk) label.image = img_tk root = tk.Tk() label = tk.Label(root) label.pack() btn = tk.Button(root,text="Start",command=showImage) btn.pack() room = loadRoom() root.mainloop()
mit
zhanglab/psamm
setup.py
1
4946
#!/usr/bin/env python # This file is part of PSAMM. # # PSAMM is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # PSAMM is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with PSAMM. If not, see <http://www.gnu.org/licenses/>. # # Copyright 2014-2017 Jon Lund Steffensen <[email protected]> # Copyright 2015-2020 Keith Dufault-Thompson <[email protected]> from __future__ import print_function import sys from setuptools import setup, find_packages import pkg_resources # Read long description with open('README.rst') as f: long_description = f.read() # Test whether psamm-import is currently installed. Since the psamm-import # functionality was moved to this package (except Excel importers), only newer # versions of psamm-import are compatible with recent versions of PSAMM. try: pkg_resources.get_distribution('psamm-import <= 0.15.2') except (pkg_resources.DistributionNotFound, pkg_resources.VersionConflict): pass else: msg = ( 'Please upgrade or uninstall psamm-import before upgrading psamm:\n' '$ pip install --upgrade psamm-import\n' ' OR\n' '$ pip uninstall psamm-import' '\n\n' ' The functionality of the psamm-import package has been moved into' ' the psamm package, and the psamm-import package now only contains' ' the model-specific Excel importers.') print(msg, file=sys.stderr) sys.exit(1) setup( name='psamm', version='1.1.2', description='PSAMM metabolic modeling tools', maintainer='Jon Lund Steffensen', maintainer_email='[email protected]', url='https://github.com/zhanglab/psamm', license='GNU GPLv3+', long_description=long_description, classifiers=[ 'Development Status :: 4 - Beta', ( 'License :: OSI Approved :: ' 'GNU General Public License v3 or later (GPLv3+)'), 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', ], packages=find_packages(), entry_points=''' [console_scripts] psamm-model = psamm.command:main psamm-sbml-model = psamm.command:main_sbml psamm-list-lpsolvers = psamm.lpsolver.generic:list_solvers psamm-import = psamm.importer:main psamm-import-bigg = psamm.importer:main_bigg [psamm.commands] chargecheck = psamm.commands.chargecheck:ChargeBalanceCommand console = psamm.commands.console:ConsoleCommand dupcheck = psamm.commands.duplicatescheck:DuplicatesCheck excelexport = psamm.commands.excelexport:ExcelExportCommand fastgapfill = psamm.commands.fastgapfill:FastGapFillCommand fba = psamm.commands.fba:FluxBalanceCommand fluxcheck = psamm.commands.fluxcheck:FluxConsistencyCommand fluxcoupling = psamm.commands.fluxcoupling:FluxCouplingCommand formulacheck = psamm.commands.formulacheck:FormulaBalanceCommand fva = psamm.commands.fva:FluxVariabilityCommand gapcheck = psamm.commands.gapcheck:GapCheckCommand gapfill = psamm.commands.gapfill:GapFillCommand genedelete = psamm.commands.genedelete:GeneDeletionCommand gimme = psamm.commands.gimme:GimmeCommand masscheck = psamm.commands.masscheck:MassConsistencyCommand primarypairs = psamm.commands.primarypairs:PrimaryPairsCommand randomsparse = psamm.commands.randomsparse:RandomSparseNetworkCommand robustness = psamm.commands.robustness:RobustnessCommand sbmlexport = psamm.commands.sbmlexport:SBMLExport search = psamm.commands.search:SearchCommand tableexport = psamm.commands.tableexport:ExportTableCommand psammotate = psamm.commands.psammotate:PsammotateCommand modelmapping = psamm.commands.model_mapping:ModelMappingCommand vis = psamm.commands.vis:VisualizationCommand tmfa = psamm.commands.tmfa:TMFACommand [psamm.importer] JSON = psamm.importers.cobrajson:Importer SBML = psamm.importers.sbml:NonstrictImporter SBML-strict = psamm.importers.sbml:StrictImporter MATLAB = psamm.importers.matlab:Importer ''', test_suite='psamm.tests', install_requires=[ 'pyyaml>=4.2b1', 'six', 'xlsxwriter', 'numpy', 'scipy', 'future', 'pandas' ], extras_require={ 'docs': ['sphinx', 'sphinx_rtd_theme', 'mock'] })
gpl-3.0
beni55/networkx
doc/make_examples_rst.py
35
5461
""" generate the rst files for the examples by iterating over the networkx examples """ # This code was developed from the Matplotlib gen_rst.py module # and is distributed with the same license as Matplotlib from __future__ import print_function import os, glob import os import re import sys #fileList = [] #rootdir = '../../examples' def out_of_date(original, derived): """ Returns True if derivative is out-of-date wrt original, both of which are full file paths. TODO: this check isn't adequate in some cases. Eg, if we discover a bug when building the examples, the original and derived will be unchanged but we still want to fource a rebuild. We can manually remove from _static, but we may need another solution """ return (not os.path.exists(derived) or os.stat(derived).st_mtime < os.stat(original).st_mtime) def main(exampledir,sourcedir): noplot_regex = re.compile(r"#\s*-\*-\s*noplot\s*-\*-") datad = {} for root, subFolders, files in os.walk(exampledir): for fname in files: if ( fname.startswith('.') or fname.startswith('#') or fname.startswith('_') or fname.find('.svn')>=0 or not fname.endswith('.py') ): continue fullpath = os.path.join(root,fname) contents = file(fullpath).read() # indent relpath = os.path.split(root)[-1] datad.setdefault(relpath, []).append((fullpath, fname, contents)) subdirs = datad.keys() subdirs.sort() output_dir=os.path.join(sourcedir,'examples') if not os.path.exists(output_dir): os.makedirs(output_dir) fhindex = file(os.path.join(sourcedir,'examples','index.rst'), 'w') fhindex.write("""\ .. _examples-index: ***************** NetworkX Examples ***************** .. only:: html :Release: |version| :Date: |today| .. toctree:: :maxdepth: 2 """) for subdir in subdirs: output_dir= os.path.join(sourcedir,'examples',subdir) if not os.path.exists(output_dir): os.makedirs(output_dir) static_dir = os.path.join(sourcedir, 'static', 'examples') if not os.path.exists(static_dir): os.makedirs(static_dir) subdirIndexFile = os.path.join(subdir, 'index.rst') fhsubdirIndex = file(os.path.join(output_dir,'index.rst'), 'w') fhindex.write(' %s\n\n'%subdirIndexFile) #thumbdir = '../_static/plot_directive/mpl_examples/%s/thumbnails/'%subdir #for thumbname in glob.glob(os.path.join(thumbdir,'*.png')): # fhindex.write(' %s\n'%thumbname) fhsubdirIndex.write("""\ .. _%s-examples-index: ############################################## %s ############################################## .. only:: html :Release: |version| :Date: |today| .. toctree:: :maxdepth: 1 """%(subdir, subdir.title())) data = datad[subdir] data.sort() #parts = os.path.split(static_dir) #thumb_dir = ('../'*(len(parts)-1)) + os.path.join(static_dir, 'thumbnails') for fullpath, fname, contents in data: basename, ext = os.path.splitext(fname) static_file = os.path.join(static_dir, fname) #thumbfile = os.path.join(thumb_dir, '%s.png'%basename) #print ' static_dir=%s, basename=%s, fullpath=%s, fname=%s, thumb_dir=%s, thumbfile=%s'%(static_dir, basename, fullpath, fname, thumb_dir, thumbfile) rstfile = '%s.rst'%basename outfile = os.path.join(output_dir, rstfile) fhsubdirIndex.write(' %s\n'%rstfile) if (not out_of_date(fullpath, static_file) and not out_of_date(fullpath, outfile)): continue print('%s/%s' % (subdir,fname)) fhstatic = file(static_file, 'w') fhstatic.write(contents) fhstatic.close() fh = file(outfile, 'w') fh.write('.. _%s-%s:\n\n'%(subdir, basename)) base=fname.partition('.')[0] title = '%s'%(base.replace('_',' ').title()) #title = '<img src=%s> %s example code: %s'%(thumbfile, subdir, fname) fh.write(title + '\n') fh.write('='*len(title) + '\n\n') pngname=base+".png" png=os.path.join(static_dir,pngname) linkname = os.path.join('..', '..', 'static', 'examples') if os.path.exists(png): fh.write('.. image:: %s \n\n'%os.path.join(linkname,pngname)) linkname = os.path.join('..', '..', '_static', 'examples') fh.write("[`source code <%s>`_]\n\n::\n\n" % os.path.join(linkname,fname)) # indent the contents contents = '\n'.join([' %s'%row.rstrip() for row in contents.split('\n')]) fh.write(contents) # fh.write('\n\nKeywords: python, matplotlib, pylab, example, codex (see :ref:`how-to-search-examples`)') fh.close() fhsubdirIndex.close() fhindex.close() if __name__ == '__main__': import sys try: arg0,arg1,arg2=sys.argv[:3] except: arg0=sys.argv[0] print(""" Usage: %s exampledir sourcedir exampledir: a directory containing the python code for the examples. sourcedir: a directory to put the generated documentation source for these examples. """ % (arg0)) else: main(arg1,arg2)
bsd-3-clause
mattilyra/scikit-learn
examples/cluster/plot_affinity_propagation.py
349
2304
""" ================================================= Demo of affinity propagation clustering algorithm ================================================= Reference: Brendan J. Frey and Delbert Dueck, "Clustering by Passing Messages Between Data Points", Science Feb. 2007 """ print(__doc__) from sklearn.cluster import AffinityPropagation from sklearn import metrics from sklearn.datasets.samples_generator import make_blobs ############################################################################## # Generate sample data centers = [[1, 1], [-1, -1], [1, -1]] X, labels_true = make_blobs(n_samples=300, centers=centers, cluster_std=0.5, random_state=0) ############################################################################## # Compute Affinity Propagation af = AffinityPropagation(preference=-50).fit(X) cluster_centers_indices = af.cluster_centers_indices_ labels = af.labels_ n_clusters_ = len(cluster_centers_indices) print('Estimated number of clusters: %d' % n_clusters_) print("Homogeneity: %0.3f" % metrics.homogeneity_score(labels_true, labels)) print("Completeness: %0.3f" % metrics.completeness_score(labels_true, labels)) print("V-measure: %0.3f" % metrics.v_measure_score(labels_true, labels)) print("Adjusted Rand Index: %0.3f" % metrics.adjusted_rand_score(labels_true, labels)) print("Adjusted Mutual Information: %0.3f" % metrics.adjusted_mutual_info_score(labels_true, labels)) print("Silhouette Coefficient: %0.3f" % metrics.silhouette_score(X, labels, metric='sqeuclidean')) ############################################################################## # Plot result import matplotlib.pyplot as plt from itertools import cycle plt.close('all') plt.figure(1) plt.clf() colors = cycle('bgrcmykbgrcmykbgrcmykbgrcmyk') for k, col in zip(range(n_clusters_), colors): class_members = labels == k cluster_center = X[cluster_centers_indices[k]] plt.plot(X[class_members, 0], X[class_members, 1], col + '.') plt.plot(cluster_center[0], cluster_center[1], 'o', markerfacecolor=col, markeredgecolor='k', markersize=14) for x in X[class_members]: plt.plot([cluster_center[0], x[0]], [cluster_center[1], x[1]], col) plt.title('Estimated number of clusters: %d' % n_clusters_) plt.show()
bsd-3-clause
neet-ai/AndroidApp
drag-sort-listview-master/tools/dslv.py
6
7243
from matplotlib.lines import Line2D from matplotlib.text import Text from matplotlib.patches import Rectangle import pylab from xml.etree.ElementTree import ElementTree width = 300 class ItemArtist: def __init__(self, position, state): self.position = position indx = state.positions.index(position) self.top = -state.tops[indx] self.top_line, = pylab.plot([0,width], 2*[self.top], c='b') self.bottom = -state.bottoms[indx] self.bottom_line, = pylab.plot([0,width], 2*[self.bottom], c='b') self.edge = -state.edges[indx] self.edge_line, = pylab.plot([0,width], 2*[self.edge], c='g') self.label = Text(width/2, (self.top+self.bottom)/2, str(position), va='center', ha='center') self.axes = pylab.gca() self.axes.add_artist(self.label) self.src_box = None self.exp_box = None self._check_boxes(state) def _check_boxes(self, state): if self.position == state.src: if self.src_box == None: self.src_box = Rectangle((0, self.bottom), width, self.top - self.bottom, fill=True, ec=None, fc='0.7') self.axes.add_patch(self.src_box) else: self.src_box.set_y(self.bottom) self.src_box.set_height(self.top - self.bottom) elif self.position == state.exp1: if state.exp1 < state.src: gap_bottom = self.top - state.exp1_gap else: gap_bottom = self.bottom if self.exp_box == None: self.exp_box = Rectangle((0,gap_bottom), width, state.exp1_gap, fill=True, ec=None, fc='0.7') self.axes.add_patch(self.exp_box) else: self.exp_box.set_y(gap_bottom) self.exp_box.set_height(state.exp1_gap) elif self.position == state.exp2: if state.exp2 < state.src: gap_bottom = self.top - state.exp2_gap else: gap_bottom = self.bottom if self.exp_box == None: self.exp_box = Rectangle((0,gap_bottom), width, state.exp2_gap, fill=True, ec=None, fc='0.7') self.axes.add_patch(self.exp_box) else: self.exp_box.set_y(gap_bottom) self.exp_box.set_height(state.exp2_gap) else: if self.src_box != None: self.src_box.remove() self.src_box = None if self.exp_box != None: self.exp_box.remove() self.exp_box = None def inState(self, state): return self.position in state.positions def update(self, position, state): moved = False if position != self.position: self.position = position self.label.set_text(str(position)) indx = state.positions.index(self.position) old_top = self.top self.top = -state.tops[indx] if old_top != self.top: self.top_line.set_ydata(2*[self.top]) moved = True old_bottom = self.bottom self.bottom = -state.bottoms[indx] if old_bottom != self.bottom: self.bottom_line.set_ydata(2*[self.bottom]) moved = True old_edge = self.edge self.edge = -state.edges[indx] if old_edge != self.edge: self.edge_line.set_ydata(2*[self.edge]) if moved: # adjust label, blank spot, etc. self.label.set_y((self.top + self.bottom)/2) self._check_boxes(state) def remove(self): self.edge_line.remove() self.top_line.remove() self.bottom_line.remove() self.label.remove() if self.src_box != None: self.src_box.remove() if self.exp_box != None: self.exp_box.remove() class StateArtist: xbuff = 40 ybuff = 100 def __init__(self, state): self.fig = pylab.figure(figsize=(5,9)) self.axes = self.fig.add_subplot(111) self.axes.set_aspect('equal') self.axes.set_ylim((-self.ybuff - state.height, self.ybuff)) self.axes.set_xlim((-self.xbuff, width + self.xbuff)) self.float_y = -state.float_y self.float_y_line, = pylab.plot([0,width], 2*[self.float_y], c='r', lw=2) self.items = [] self.update(state) self.axes.add_patch(Rectangle((0, -state.height), width, state.height, fill=False, ls='dashed', ec='0.7')) def update(self, state): # update floatView location old_float_y = self.float_y self.float_y = -state.float_y if old_float_y != self.float_y: self.float_y_line.set_ydata(2*[self.float_y]) updatedPos = [] toRecycle = [] for item in self.items: if item.inState(state): item.update(item.position, state) updatedPos.append(item.position) else: toRecycle.append(item) posSet = set(state.positions) updatedPosSet = set(updatedPos) unupdatedPosSet = posSet.symmetric_difference(updatedPosSet) for position in unupdatedPosSet: if len(toRecycle) != 0: item = toRecycle.pop(-1) item.update(position, state) else: item = ItemArtist(position, state) self.items.append(item) if len(toRecycle) != 0: for item in toRecycle: item.remove() #remove artists from current plot self.items.remove(item) self.fig.canvas.draw() class State: def __init__(self, element): self.positions = map(int, element.find("Positions").text.split(",")[:-1]) self.tops = map(int, element.find("Tops").text.split(",")[:-1]) self.bottoms = map(int, element.find("Bottoms").text.split(",")[:-1]) self.count = len(self.positions) self.edges = map(int, element.find("ShuffleEdges").text.split(",")[:-1]) self.src = int(element.find("SrcPos").text) self.src_h = int(element.find("SrcHeight").text) self.exp1 = int(element.find("FirstExpPos").text) self.exp1_gap = int(element.find("FirstExpBlankHeight").text) self.exp2 = int(element.find("SecondExpPos").text) self.exp2_gap = int(element.find("SecondExpBlankHeight").text) self.height = int(element.find("ViewHeight").text) self.lasty = int(element.find("LastY").text) self.float_y = int(element.find("FloatY").text) class StateAnimator: page_frames = 30 def __init__(self, states, startFrame=0): self.states = states self.count = len(states) if startFrame < 0 or startFrame >= self.count: self.curr = self.count - 1 else: self.curr = startFrame self.state_artist = StateArtist(self.states[self.curr]) self.state_artist.fig.canvas.mpl_connect('key_press_event', self.flip) pylab.show() def flip(self, event): #print event.key if event.key == 'right': self.curr += 1 elif event.key == 'left': self.curr -= 1 elif event.key == 'up': self.curr -= self.page_frames elif event.key == 'down': self.curr += self.page_frames else: return if self.curr >= self.count: print "reached end of saved motions" self.curr = self.count - 1 elif self.curr < 0: print "reached beginning of saved motions" self.curr = 0 else: print "flipped to frame " + str(self.curr) self.state_artist.update(self.states[self.curr]) #self.ax.clear() def getStates(file): tree = ElementTree(); tree.parse(file); root = tree.getroot() return map(State, list(root.iter("DSLVState"))) if __name__ == "__main__": states = getStates("dslv_state.txt") StateAnimator(states, startFrame=-1)
mit
kleskjr/scipy
scipy/stats/_binned_statistic.py
28
25272
from __future__ import division, print_function, absolute_import import warnings import numpy as np from scipy._lib.six import callable, xrange from collections import namedtuple __all__ = ['binned_statistic', 'binned_statistic_2d', 'binned_statistic_dd'] BinnedStatisticResult = namedtuple('BinnedStatisticResult', ('statistic', 'bin_edges', 'binnumber')) def binned_statistic(x, values, statistic='mean', bins=10, range=None): """ Compute a binned statistic for one or more sets of data. This is a generalization of a histogram function. A histogram divides the space into bins, and returns the count of the number of points in each bin. This function allows the computation of the sum, mean, median, or other statistic of the values (or set of values) within each bin. Parameters ---------- x : (N,) array_like A sequence of values to be binned. values : (N,) array_like or list of (N,) array_like The data on which the statistic will be computed. This must be the same shape as `x`, or a set of sequences - each the same shape as `x`. If `values` is a set of sequences, the statistic will be computed on each independently. statistic : string or callable, optional The statistic to compute (default is 'mean'). The following statistics are available: * 'mean' : compute the mean of values for points within each bin. Empty bins will be represented by NaN. * 'median' : compute the median of values for points within each bin. Empty bins will be represented by NaN. * 'count' : compute the count of points within each bin. This is identical to an unweighted histogram. `values` array is not referenced. * 'sum' : compute the sum of values for points within each bin. This is identical to a weighted histogram. * function : a user-defined function which takes a 1D array of values, and outputs a single numerical statistic. This function will be called on the values in each bin. Empty bins will be represented by function([]), or NaN if this returns an error. bins : int or sequence of scalars, optional If `bins` is an int, it defines the number of equal-width bins in the given range (10 by default). If `bins` is a sequence, it defines the bin edges, including the rightmost edge, allowing for non-uniform bin widths. Values in `x` that are smaller than lowest bin edge are assigned to bin number 0, values beyond the highest bin are assigned to ``bins[-1]``. If the bin edges are specified, the number of bins will be, (nx = len(bins)-1). range : (float, float) or [(float, float)], optional The lower and upper range of the bins. If not provided, range is simply ``(x.min(), x.max())``. Values outside the range are ignored. Returns ------- statistic : array The values of the selected statistic in each bin. bin_edges : array of dtype float Return the bin edges ``(length(statistic)+1)``. binnumber: 1-D ndarray of ints Indices of the bins (corresponding to `bin_edges`) in which each value of `x` belongs. Same length as `values`. A binnumber of `i` means the corresponding value is between (bin_edges[i-1], bin_edges[i]). See Also -------- numpy.digitize, numpy.histogram, binned_statistic_2d, binned_statistic_dd Notes ----- All but the last (righthand-most) bin is half-open. In other words, if `bins` is ``[1, 2, 3, 4]``, then the first bin is ``[1, 2)`` (including 1, but excluding 2) and the second ``[2, 3)``. The last bin, however, is ``[3, 4]``, which *includes* 4. .. versionadded:: 0.11.0 Examples -------- >>> from scipy import stats >>> import matplotlib.pyplot as plt First some basic examples: Create two evenly spaced bins in the range of the given sample, and sum the corresponding values in each of those bins: >>> values = [1.0, 1.0, 2.0, 1.5, 3.0] >>> stats.binned_statistic([1, 1, 2, 5, 7], values, 'sum', bins=2) (array([ 4. , 4.5]), array([ 1., 4., 7.]), array([1, 1, 1, 2, 2])) Multiple arrays of values can also be passed. The statistic is calculated on each set independently: >>> values = [[1.0, 1.0, 2.0, 1.5, 3.0], [2.0, 2.0, 4.0, 3.0, 6.0]] >>> stats.binned_statistic([1, 1, 2, 5, 7], values, 'sum', bins=2) (array([[ 4. , 4.5], [ 8. , 9. ]]), array([ 1., 4., 7.]), array([1, 1, 1, 2, 2])) >>> stats.binned_statistic([1, 2, 1, 2, 4], np.arange(5), statistic='mean', ... bins=3) (array([ 1., 2., 4.]), array([ 1., 2., 3., 4.]), array([1, 2, 1, 2, 3])) As a second example, we now generate some random data of sailing boat speed as a function of wind speed, and then determine how fast our boat is for certain wind speeds: >>> windspeed = 8 * np.random.rand(500) >>> boatspeed = .3 * windspeed**.5 + .2 * np.random.rand(500) >>> bin_means, bin_edges, binnumber = stats.binned_statistic(windspeed, ... boatspeed, statistic='median', bins=[1,2,3,4,5,6,7]) >>> plt.figure() >>> plt.plot(windspeed, boatspeed, 'b.', label='raw data') >>> plt.hlines(bin_means, bin_edges[:-1], bin_edges[1:], colors='g', lw=5, ... label='binned statistic of data') >>> plt.legend() Now we can use ``binnumber`` to select all datapoints with a windspeed below 1: >>> low_boatspeed = boatspeed[binnumber == 0] As a final example, we will use ``bin_edges`` and ``binnumber`` to make a plot of a distribution that shows the mean and distribution around that mean per bin, on top of a regular histogram and the probability distribution function: >>> x = np.linspace(0, 5, num=500) >>> x_pdf = stats.maxwell.pdf(x) >>> samples = stats.maxwell.rvs(size=10000) >>> bin_means, bin_edges, binnumber = stats.binned_statistic(x, x_pdf, ... statistic='mean', bins=25) >>> bin_width = (bin_edges[1] - bin_edges[0]) >>> bin_centers = bin_edges[1:] - bin_width/2 >>> plt.figure() >>> plt.hist(samples, bins=50, normed=True, histtype='stepfilled', ... alpha=0.2, label='histogram of data') >>> plt.plot(x, x_pdf, 'r-', label='analytical pdf') >>> plt.hlines(bin_means, bin_edges[:-1], bin_edges[1:], colors='g', lw=2, ... label='binned statistic of data') >>> plt.plot((binnumber - 0.5) * bin_width, x_pdf, 'g.', alpha=0.5) >>> plt.legend(fontsize=10) >>> plt.show() """ try: N = len(bins) except TypeError: N = 1 if N != 1: bins = [np.asarray(bins, float)] if range is not None: if len(range) == 2: range = [range] medians, edges, binnumbers = binned_statistic_dd( [x], values, statistic, bins, range) return BinnedStatisticResult(medians, edges[0], binnumbers) BinnedStatistic2dResult = namedtuple('BinnedStatistic2dResult', ('statistic', 'x_edge', 'y_edge', 'binnumber')) def binned_statistic_2d(x, y, values, statistic='mean', bins=10, range=None, expand_binnumbers=False): """ Compute a bidimensional binned statistic for one or more sets of data. This is a generalization of a histogram2d function. A histogram divides the space into bins, and returns the count of the number of points in each bin. This function allows the computation of the sum, mean, median, or other statistic of the values (or set of values) within each bin. Parameters ---------- x : (N,) array_like A sequence of values to be binned along the first dimension. y : (N,) array_like A sequence of values to be binned along the second dimension. values : (N,) array_like or list of (N,) array_like The data on which the statistic will be computed. This must be the same shape as `x`, or a list of sequences - each with the same shape as `x`. If `values` is such a list, the statistic will be computed on each independently. statistic : string or callable, optional The statistic to compute (default is 'mean'). The following statistics are available: * 'mean' : compute the mean of values for points within each bin. Empty bins will be represented by NaN. * 'median' : compute the median of values for points within each bin. Empty bins will be represented by NaN. * 'count' : compute the count of points within each bin. This is identical to an unweighted histogram. `values` array is not referenced. * 'sum' : compute the sum of values for points within each bin. This is identical to a weighted histogram. * function : a user-defined function which takes a 1D array of values, and outputs a single numerical statistic. This function will be called on the values in each bin. Empty bins will be represented by function([]), or NaN if this returns an error. bins : int or [int, int] or array_like or [array, array], optional The bin specification: * the number of bins for the two dimensions (nx = ny = bins), * the number of bins in each dimension (nx, ny = bins), * the bin edges for the two dimensions (x_edge = y_edge = bins), * the bin edges in each dimension (x_edge, y_edge = bins). If the bin edges are specified, the number of bins will be, (nx = len(x_edge)-1, ny = len(y_edge)-1). range : (2,2) array_like, optional The leftmost and rightmost edges of the bins along each dimension (if not specified explicitly in the `bins` parameters): [[xmin, xmax], [ymin, ymax]]. All values outside of this range will be considered outliers and not tallied in the histogram. expand_binnumbers : bool, optional 'False' (default): the returned `binnumber` is a shape (N,) array of linearized bin indices. 'True': the returned `binnumber` is 'unraveled' into a shape (2,N) ndarray, where each row gives the bin numbers in the corresponding dimension. See the `binnumber` returned value, and the `Examples` section. .. versionadded:: 0.17.0 Returns ------- statistic : (nx, ny) ndarray The values of the selected statistic in each two-dimensional bin. x_edge : (nx + 1) ndarray The bin edges along the first dimension. y_edge : (ny + 1) ndarray The bin edges along the second dimension. binnumber : (N,) array of ints or (2,N) ndarray of ints This assigns to each element of `sample` an integer that represents the bin in which this observation falls. The representation depends on the `expand_binnumbers` argument. See `Notes` for details. See Also -------- numpy.digitize, numpy.histogram2d, binned_statistic, binned_statistic_dd Notes ----- Binedges: All but the last (righthand-most) bin is half-open. In other words, if `bins` is ``[1, 2, 3, 4]``, then the first bin is ``[1, 2)`` (including 1, but excluding 2) and the second ``[2, 3)``. The last bin, however, is ``[3, 4]``, which *includes* 4. `binnumber`: This returned argument assigns to each element of `sample` an integer that represents the bin in which it belongs. The representation depends on the `expand_binnumbers` argument. If 'False' (default): The returned `binnumber` is a shape (N,) array of linearized indices mapping each element of `sample` to its corresponding bin (using row-major ordering). If 'True': The returned `binnumber` is a shape (2,N) ndarray where each row indicates bin placements for each dimension respectively. In each dimension, a binnumber of `i` means the corresponding value is between (D_edge[i-1], D_edge[i]), where 'D' is either 'x' or 'y'. .. versionadded:: 0.11.0 Examples -------- >>> from scipy import stats Calculate the counts with explicit bin-edges: >>> x = [0.1, 0.1, 0.1, 0.6] >>> y = [2.1, 2.6, 2.1, 2.1] >>> binx = [0.0, 0.5, 1.0] >>> biny = [2.0, 2.5, 3.0] >>> ret = stats.binned_statistic_2d(x, y, None, 'count', bins=[binx,biny]) >>> ret.statistic array([[ 2., 1.], [ 1., 0.]]) The bin in which each sample is placed is given by the `binnumber` returned parameter. By default, these are the linearized bin indices: >>> ret.binnumber array([5, 6, 5, 9]) The bin indices can also be expanded into separate entries for each dimension using the `expand_binnumbers` parameter: >>> ret = stats.binned_statistic_2d(x, y, None, 'count', bins=[binx,biny], ... expand_binnumbers=True) >>> ret.binnumber array([[1, 1, 1, 2], [1, 2, 1, 1]]) Which shows that the first three elements belong in the xbin 1, and the fourth into xbin 2; and so on for y. """ # This code is based on np.histogram2d try: N = len(bins) except TypeError: N = 1 if N != 1 and N != 2: xedges = yedges = np.asarray(bins, float) bins = [xedges, yedges] medians, edges, binnumbers = binned_statistic_dd( [x, y], values, statistic, bins, range, expand_binnumbers=expand_binnumbers) return BinnedStatistic2dResult(medians, edges[0], edges[1], binnumbers) BinnedStatisticddResult = namedtuple('BinnedStatisticddResult', ('statistic', 'bin_edges', 'binnumber')) def binned_statistic_dd(sample, values, statistic='mean', bins=10, range=None, expand_binnumbers=False): """ Compute a multidimensional binned statistic for a set of data. This is a generalization of a histogramdd function. A histogram divides the space into bins, and returns the count of the number of points in each bin. This function allows the computation of the sum, mean, median, or other statistic of the values within each bin. Parameters ---------- sample : array_like Data to histogram passed as a sequence of D arrays of length N, or as an (N,D) array. values : (N,) array_like or list of (N,) array_like The data on which the statistic will be computed. This must be the same shape as `x`, or a list of sequences - each with the same shape as `x`. If `values` is such a list, the statistic will be computed on each independently. statistic : string or callable, optional The statistic to compute (default is 'mean'). The following statistics are available: * 'mean' : compute the mean of values for points within each bin. Empty bins will be represented by NaN. * 'median' : compute the median of values for points within each bin. Empty bins will be represented by NaN. * 'count' : compute the count of points within each bin. This is identical to an unweighted histogram. `values` array is not referenced. * 'sum' : compute the sum of values for points within each bin. This is identical to a weighted histogram. * function : a user-defined function which takes a 1D array of values, and outputs a single numerical statistic. This function will be called on the values in each bin. Empty bins will be represented by function([]), or NaN if this returns an error. bins : sequence or int, optional The bin specification must be in one of the following forms: * A sequence of arrays describing the bin edges along each dimension. * The number of bins for each dimension (nx, ny, ... = bins). * The number of bins for all dimensions (nx = ny = ... = bins). range : sequence, optional A sequence of lower and upper bin edges to be used if the edges are not given explicitely in `bins`. Defaults to the minimum and maximum values along each dimension. expand_binnumbers : bool, optional 'False' (default): the returned `binnumber` is a shape (N,) array of linearized bin indices. 'True': the returned `binnumber` is 'unraveled' into a shape (D,N) ndarray, where each row gives the bin numbers in the corresponding dimension. See the `binnumber` returned value, and the `Examples` section of `binned_statistic_2d`. .. versionadded:: 0.17.0 Returns ------- statistic : ndarray, shape(nx1, nx2, nx3,...) The values of the selected statistic in each two-dimensional bin. bin_edges : list of ndarrays A list of D arrays describing the (nxi + 1) bin edges for each dimension. binnumber : (N,) array of ints or (D,N) ndarray of ints This assigns to each element of `sample` an integer that represents the bin in which this observation falls. The representation depends on the `expand_binnumbers` argument. See `Notes` for details. See Also -------- numpy.digitize, numpy.histogramdd, binned_statistic, binned_statistic_2d Notes ----- Binedges: All but the last (righthand-most) bin is half-open in each dimension. In other words, if `bins` is ``[1, 2, 3, 4]``, then the first bin is ``[1, 2)`` (including 1, but excluding 2) and the second ``[2, 3)``. The last bin, however, is ``[3, 4]``, which *includes* 4. `binnumber`: This returned argument assigns to each element of `sample` an integer that represents the bin in which it belongs. The representation depends on the `expand_binnumbers` argument. If 'False' (default): The returned `binnumber` is a shape (N,) array of linearized indices mapping each element of `sample` to its corresponding bin (using row-major ordering). If 'True': The returned `binnumber` is a shape (D,N) ndarray where each row indicates bin placements for each dimension respectively. In each dimension, a binnumber of `i` means the corresponding value is between (bin_edges[D][i-1], bin_edges[D][i]), for each dimension 'D'. .. versionadded:: 0.11.0 """ known_stats = ['mean', 'median', 'count', 'sum', 'std'] if not callable(statistic) and statistic not in known_stats: raise ValueError('invalid statistic %r' % (statistic,)) # `Ndim` is the number of dimensions (e.g. `2` for `binned_statistic_2d`) # `Dlen` is the length of elements along each dimension. # This code is based on np.histogramdd try: # `sample` is an ND-array. Dlen, Ndim = sample.shape except (AttributeError, ValueError): # `sample` is a sequence of 1D arrays. sample = np.atleast_2d(sample).T Dlen, Ndim = sample.shape # Store initial shape of `values` to preserve it in the output values = np.asarray(values) input_shape = list(values.shape) # Make sure that `values` is 2D to iterate over rows values = np.atleast_2d(values) Vdim, Vlen = values.shape # Make sure `values` match `sample` if(statistic != 'count' and Vlen != Dlen): raise AttributeError('The number of `values` elements must match the ' 'length of each `sample` dimension.') nbin = np.empty(Ndim, int) # Number of bins in each dimension edges = Ndim * [None] # Bin edges for each dim (will be 2D array) dedges = Ndim * [None] # Spacing between edges (will be 2D array) try: M = len(bins) if M != Ndim: raise AttributeError('The dimension of bins must be equal ' 'to the dimension of the sample x.') except TypeError: bins = Ndim * [bins] # Select range for each dimension # Used only if number of bins is given. if range is None: smin = np.atleast_1d(np.array(sample.min(axis=0), float)) smax = np.atleast_1d(np.array(sample.max(axis=0), float)) else: smin = np.zeros(Ndim) smax = np.zeros(Ndim) for i in xrange(Ndim): smin[i], smax[i] = range[i] # Make sure the bins have a finite width. for i in xrange(len(smin)): if smin[i] == smax[i]: smin[i] = smin[i] - .5 smax[i] = smax[i] + .5 # Create edge arrays for i in xrange(Ndim): if np.isscalar(bins[i]): nbin[i] = bins[i] + 2 # +2 for outlier bins edges[i] = np.linspace(smin[i], smax[i], nbin[i] - 1) else: edges[i] = np.asarray(bins[i], float) nbin[i] = len(edges[i]) + 1 # +1 for outlier bins dedges[i] = np.diff(edges[i]) nbin = np.asarray(nbin) # Compute the bin number each sample falls into, in each dimension sampBin = {} for i in xrange(Ndim): sampBin[i] = np.digitize(sample[:, i], edges[i]) # Using `digitize`, values that fall on an edge are put in the right bin. # For the rightmost bin, we want values equal to the right # edge to be counted in the last bin, and not as an outlier. for i in xrange(Ndim): # Find the rounding precision decimal = int(-np.log10(dedges[i].min())) + 6 # Find which points are on the rightmost edge. on_edge = np.where(np.around(sample[:, i], decimal) == np.around(edges[i][-1], decimal))[0] # Shift these points one bin to the left. sampBin[i][on_edge] -= 1 # Compute the sample indices in the flattened statistic matrix. ni = nbin.argsort() # `binnumbers` is which bin (in linearized `Ndim` space) each sample goes binnumbers = np.zeros(Dlen, int) for i in xrange(0, Ndim - 1): binnumbers += sampBin[ni[i]] * nbin[ni[i + 1:]].prod() binnumbers += sampBin[ni[-1]] result = np.empty([Vdim, nbin.prod()], float) if statistic == 'mean': result.fill(np.nan) flatcount = np.bincount(binnumbers, None) a = flatcount.nonzero() for vv in xrange(Vdim): flatsum = np.bincount(binnumbers, values[vv]) result[vv, a] = flatsum[a] / flatcount[a] elif statistic == 'std': result.fill(0) flatcount = np.bincount(binnumbers, None) a = flatcount.nonzero() for vv in xrange(Vdim): flatsum = np.bincount(binnumbers, values[vv]) flatsum2 = np.bincount(binnumbers, values[vv] ** 2) result[vv, a] = np.sqrt(flatsum2[a] / flatcount[a] - (flatsum[a] / flatcount[a]) ** 2) elif statistic == 'count': result.fill(0) flatcount = np.bincount(binnumbers, None) a = np.arange(len(flatcount)) result[:, a] = flatcount[np.newaxis, :] elif statistic == 'sum': result.fill(0) for vv in xrange(Vdim): flatsum = np.bincount(binnumbers, values[vv]) a = np.arange(len(flatsum)) result[vv, a] = flatsum elif statistic == 'median': result.fill(np.nan) for i in np.unique(binnumbers): for vv in xrange(Vdim): result[vv, i] = np.median(values[vv, binnumbers == i]) elif callable(statistic): with warnings.catch_warnings(): # Numpy generates a warnings for mean/std/... with empty list warnings.filterwarnings('ignore', category=RuntimeWarning) old = np.seterr(invalid='ignore') try: null = statistic([]) except: null = np.nan np.seterr(**old) result.fill(null) for i in np.unique(binnumbers): for vv in xrange(Vdim): result[vv, i] = statistic(values[vv, binnumbers == i]) # Shape into a proper matrix result = result.reshape(np.append(Vdim, np.sort(nbin))) for i in xrange(nbin.size): j = ni.argsort()[i] # Accomodate the extra `Vdim` dimension-zero with `+1` result = result.swapaxes(i+1, j+1) ni[i], ni[j] = ni[j], ni[i] # Remove outliers (indices 0 and -1 for each bin-dimension). core = [slice(None)] + Ndim * [slice(1, -1)] result = result[core] # Unravel binnumbers into an ndarray, each row the bins for each dimension if(expand_binnumbers and Ndim > 1): binnumbers = np.asarray(np.unravel_index(binnumbers, nbin)) if np.any(result.shape[1:] != nbin - 2): raise RuntimeError('Internal Shape Error') # Reshape to have output (`reulst`) match input (`values`) shape result = result.reshape(input_shape[:-1] + list(nbin-2)) return BinnedStatisticddResult(result, edges, binnumbers)
bsd-3-clause
ahaque/dsbowl
runTestSet.py
1
1264
import numpy as np import matplotlib.pyplot as plt # Make sure that caffe is on the python path: caffe_root = '/home/albert/caffe/' # this file is expected to be in {caffe_root}/examples import sys sys.path.insert(0, caffe_root + 'python') import caffe # Set the right path to your model definition file, pretrained model weights, # and the image you would like to classify. MODEL_FILE = '/home/albert/caffe/models/bvlc_reference_caffenet/deploy.prototxt' PRETRAINED = '/home/albert/caffe/models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel' IMAGE_FILE = '/home/albert/caffe/examples/images/cat.jpg' caffe.set_mode_gpu() net = caffe.Classifier(MODEL_FILE, PRETRAINED, mean=np.load(caffe_root + 'python/caffe/imagenet/ilsvrc_2012_mean.npy').mean(1).mean(1), channel_swap=(2,1,0), raw_scale=255, image_dims=(256, 256)) input_image = caffe.io.load_image(IMAGE_FILE) plt.imshow(input_image) prediction = net.predict([input_image]) # predict takes any number of images, and formats them for the Caffe net automatically print 'prediction shape:', prediction[0].shape print prediction plt.plot(prediction[0]) print 'predicted class:', prediction[0].argmax()
mit
vshtanko/scikit-learn
examples/svm/plot_svm_kernels.py
329
1971
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= SVM-Kernels ========================================================= Three different types of SVM-Kernels are displayed below. The polynomial and RBF are especially useful when the data-points are not linearly separable. """ print(__doc__) # Code source: Gaël Varoquaux # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import svm # Our dataset and targets X = np.c_[(.4, -.7), (-1.5, -1), (-1.4, -.9), (-1.3, -1.2), (-1.1, -.2), (-1.2, -.4), (-.5, 1.2), (-1.5, 2.1), (1, 1), # -- (1.3, .8), (1.2, .5), (.2, -2), (.5, -2.4), (.2, -2.3), (0, -2.7), (1.3, 2.1)].T Y = [0] * 8 + [1] * 8 # figure number fignum = 1 # fit the model for kernel in ('linear', 'poly', 'rbf'): clf = svm.SVC(kernel=kernel, gamma=2) clf.fit(X, Y) # plot the line, the points, and the nearest vectors to the plane plt.figure(fignum, figsize=(4, 3)) plt.clf() plt.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], s=80, facecolors='none', zorder=10) plt.scatter(X[:, 0], X[:, 1], c=Y, zorder=10, cmap=plt.cm.Paired) plt.axis('tight') x_min = -3 x_max = 3 y_min = -3 y_max = 3 XX, YY = np.mgrid[x_min:x_max:200j, y_min:y_max:200j] Z = clf.decision_function(np.c_[XX.ravel(), YY.ravel()]) # Put the result into a color plot Z = Z.reshape(XX.shape) plt.figure(fignum, figsize=(4, 3)) plt.pcolormesh(XX, YY, Z > 0, cmap=plt.cm.Paired) plt.contour(XX, YY, Z, colors=['k', 'k', 'k'], linestyles=['--', '-', '--'], levels=[-.5, 0, .5]) plt.xlim(x_min, x_max) plt.ylim(y_min, y_max) plt.xticks(()) plt.yticks(()) fignum = fignum + 1 plt.show()
bsd-3-clause
vivekmishra1991/scikit-learn
sklearn/manifold/isomap.py
229
7169
"""Isomap for manifold learning""" # Author: Jake Vanderplas -- <[email protected]> # License: BSD 3 clause (C) 2011 import numpy as np from ..base import BaseEstimator, TransformerMixin from ..neighbors import NearestNeighbors, kneighbors_graph from ..utils import check_array from ..utils.graph import graph_shortest_path from ..decomposition import KernelPCA from ..preprocessing import KernelCenterer class Isomap(BaseEstimator, TransformerMixin): """Isomap Embedding Non-linear dimensionality reduction through Isometric Mapping Read more in the :ref:`User Guide <isomap>`. Parameters ---------- n_neighbors : integer number of neighbors to consider for each point. n_components : integer number of coordinates for the manifold eigen_solver : ['auto'|'arpack'|'dense'] 'auto' : Attempt to choose the most efficient solver for the given problem. 'arpack' : Use Arnoldi decomposition to find the eigenvalues and eigenvectors. 'dense' : Use a direct solver (i.e. LAPACK) for the eigenvalue decomposition. tol : float Convergence tolerance passed to arpack or lobpcg. not used if eigen_solver == 'dense'. max_iter : integer Maximum number of iterations for the arpack solver. not used if eigen_solver == 'dense'. path_method : string ['auto'|'FW'|'D'] Method to use in finding shortest path. 'auto' : attempt to choose the best algorithm automatically. 'FW' : Floyd-Warshall algorithm. 'D' : Dijkstra's algorithm. neighbors_algorithm : string ['auto'|'brute'|'kd_tree'|'ball_tree'] Algorithm to use for nearest neighbors search, passed to neighbors.NearestNeighbors instance. Attributes ---------- embedding_ : array-like, shape (n_samples, n_components) Stores the embedding vectors. kernel_pca_ : object `KernelPCA` object used to implement the embedding. training_data_ : array-like, shape (n_samples, n_features) Stores the training data. nbrs_ : sklearn.neighbors.NearestNeighbors instance Stores nearest neighbors instance, including BallTree or KDtree if applicable. dist_matrix_ : array-like, shape (n_samples, n_samples) Stores the geodesic distance matrix of training data. References ---------- .. [1] Tenenbaum, J.B.; De Silva, V.; & Langford, J.C. A global geometric framework for nonlinear dimensionality reduction. Science 290 (5500) """ def __init__(self, n_neighbors=5, n_components=2, eigen_solver='auto', tol=0, max_iter=None, path_method='auto', neighbors_algorithm='auto'): self.n_neighbors = n_neighbors self.n_components = n_components self.eigen_solver = eigen_solver self.tol = tol self.max_iter = max_iter self.path_method = path_method self.neighbors_algorithm = neighbors_algorithm self.nbrs_ = NearestNeighbors(n_neighbors=n_neighbors, algorithm=neighbors_algorithm) def _fit_transform(self, X): X = check_array(X) self.nbrs_.fit(X) self.training_data_ = self.nbrs_._fit_X self.kernel_pca_ = KernelPCA(n_components=self.n_components, kernel="precomputed", eigen_solver=self.eigen_solver, tol=self.tol, max_iter=self.max_iter) kng = kneighbors_graph(self.nbrs_, self.n_neighbors, mode='distance') self.dist_matrix_ = graph_shortest_path(kng, method=self.path_method, directed=False) G = self.dist_matrix_ ** 2 G *= -0.5 self.embedding_ = self.kernel_pca_.fit_transform(G) def reconstruction_error(self): """Compute the reconstruction error for the embedding. Returns ------- reconstruction_error : float Notes ------- The cost function of an isomap embedding is ``E = frobenius_norm[K(D) - K(D_fit)] / n_samples`` Where D is the matrix of distances for the input data X, D_fit is the matrix of distances for the output embedding X_fit, and K is the isomap kernel: ``K(D) = -0.5 * (I - 1/n_samples) * D^2 * (I - 1/n_samples)`` """ G = -0.5 * self.dist_matrix_ ** 2 G_center = KernelCenterer().fit_transform(G) evals = self.kernel_pca_.lambdas_ return np.sqrt(np.sum(G_center ** 2) - np.sum(evals ** 2)) / G.shape[0] def fit(self, X, y=None): """Compute the embedding vectors for data X Parameters ---------- X : {array-like, sparse matrix, BallTree, KDTree, NearestNeighbors} Sample data, shape = (n_samples, n_features), in the form of a numpy array, precomputed tree, or NearestNeighbors object. Returns ------- self : returns an instance of self. """ self._fit_transform(X) return self def fit_transform(self, X, y=None): """Fit the model from data in X and transform X. Parameters ---------- X: {array-like, sparse matrix, BallTree, KDTree} Training vector, where n_samples in the number of samples and n_features is the number of features. Returns ------- X_new: array-like, shape (n_samples, n_components) """ self._fit_transform(X) return self.embedding_ def transform(self, X): """Transform X. This is implemented by linking the points X into the graph of geodesic distances of the training data. First the `n_neighbors` nearest neighbors of X are found in the training data, and from these the shortest geodesic distances from each point in X to each point in the training data are computed in order to construct the kernel. The embedding of X is the projection of this kernel onto the embedding vectors of the training set. Parameters ---------- X: array-like, shape (n_samples, n_features) Returns ------- X_new: array-like, shape (n_samples, n_components) """ X = check_array(X) distances, indices = self.nbrs_.kneighbors(X, return_distance=True) #Create the graph of shortest distances from X to self.training_data_ # via the nearest neighbors of X. #This can be done as a single array operation, but it potentially # takes a lot of memory. To avoid that, use a loop: G_X = np.zeros((X.shape[0], self.training_data_.shape[0])) for i in range(X.shape[0]): G_X[i] = np.min((self.dist_matrix_[indices[i]] + distances[i][:, None]), 0) G_X **= 2 G_X *= -0.5 return self.kernel_pca_.transform(G_X)
bsd-3-clause
Eric89GXL/scikit-learn
examples/linear_model/plot_lasso_lars.py
8
1059
#!/usr/bin/env python """ ===================== Lasso path using LARS ===================== Computes Lasso Path along the regularization parameter using the LARS algorithm on the diabetes dataset. Each color represents a different feature of the coefficient vector, and this is displayed as a function of the regularization parameter. """ print(__doc__) # Author: Fabian Pedregosa <[email protected]> # Alexandre Gramfort <[email protected]> # License: BSD 3 clause import numpy as np import pylab as pl from sklearn import linear_model from sklearn import datasets diabetes = datasets.load_diabetes() X = diabetes.data y = diabetes.target print("Computing regularization path using the LARS ...") alphas, _, coefs = linear_model.lars_path(X, y, method='lasso', verbose=True) xx = np.sum(np.abs(coefs.T), axis=1) xx /= xx[-1] pl.plot(xx, coefs.T) ymin, ymax = pl.ylim() pl.vlines(xx, ymin, ymax, linestyle='dashed') pl.xlabel('|coef| / max|coef|') pl.ylabel('Coefficients') pl.title('LASSO Path') pl.axis('tight') pl.show()
bsd-3-clause
pratapvardhan/pandas
pandas/tests/series/test_asof.py
11
5289
# coding=utf-8 import pytest import numpy as np from pandas import (offsets, Series, notna, isna, date_range, Timestamp) import pandas.util.testing as tm from .common import TestData class TestSeriesAsof(TestData): def test_basic(self): # array or list or dates N = 50 rng = date_range('1/1/1990', periods=N, freq='53s') ts = Series(np.random.randn(N), index=rng) ts[15:30] = np.nan dates = date_range('1/1/1990', periods=N * 3, freq='25s') result = ts.asof(dates) assert notna(result).all() lb = ts.index[14] ub = ts.index[30] result = ts.asof(list(dates)) assert notna(result).all() lb = ts.index[14] ub = ts.index[30] mask = (result.index >= lb) & (result.index < ub) rs = result[mask] assert (rs == ts[lb]).all() val = result[result.index[result.index >= ub][0]] assert ts[ub] == val def test_scalar(self): N = 30 rng = date_range('1/1/1990', periods=N, freq='53s') ts = Series(np.arange(N), index=rng) ts[5:10] = np.NaN ts[15:20] = np.NaN val1 = ts.asof(ts.index[7]) val2 = ts.asof(ts.index[19]) assert val1 == ts[4] assert val2 == ts[14] # accepts strings val1 = ts.asof(str(ts.index[7])) assert val1 == ts[4] # in there result = ts.asof(ts.index[3]) assert result == ts[3] # no as of value d = ts.index[0] - offsets.BDay() assert np.isnan(ts.asof(d)) def test_with_nan(self): # basic asof test rng = date_range('1/1/2000', '1/2/2000', freq='4h') s = Series(np.arange(len(rng)), index=rng) r = s.resample('2h').mean() result = r.asof(r.index) expected = Series([0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6.], index=date_range('1/1/2000', '1/2/2000', freq='2h')) tm.assert_series_equal(result, expected) r.iloc[3:5] = np.nan result = r.asof(r.index) expected = Series([0, 0, 1, 1, 1, 1, 3, 3, 4, 4, 5, 5, 6.], index=date_range('1/1/2000', '1/2/2000', freq='2h')) tm.assert_series_equal(result, expected) r.iloc[-3:] = np.nan result = r.asof(r.index) expected = Series([0, 0, 1, 1, 1, 1, 3, 3, 4, 4, 4, 4, 4.], index=date_range('1/1/2000', '1/2/2000', freq='2h')) tm.assert_series_equal(result, expected) def test_periodindex(self): from pandas import period_range, PeriodIndex # array or list or dates N = 50 rng = period_range('1/1/1990', periods=N, freq='H') ts = Series(np.random.randn(N), index=rng) ts[15:30] = np.nan dates = date_range('1/1/1990', periods=N * 3, freq='37min') result = ts.asof(dates) assert notna(result).all() lb = ts.index[14] ub = ts.index[30] result = ts.asof(list(dates)) assert notna(result).all() lb = ts.index[14] ub = ts.index[30] pix = PeriodIndex(result.index.values, freq='H') mask = (pix >= lb) & (pix < ub) rs = result[mask] assert (rs == ts[lb]).all() ts[5:10] = np.nan ts[15:20] = np.nan val1 = ts.asof(ts.index[7]) val2 = ts.asof(ts.index[19]) assert val1 == ts[4] assert val2 == ts[14] # accepts strings val1 = ts.asof(str(ts.index[7])) assert val1 == ts[4] # in there assert ts.asof(ts.index[3]) == ts[3] # no as of value d = ts.index[0].to_timestamp() - offsets.BDay() assert isna(ts.asof(d)) def test_errors(self): s = Series([1, 2, 3], index=[Timestamp('20130101'), Timestamp('20130103'), Timestamp('20130102')]) # non-monotonic assert not s.index.is_monotonic with pytest.raises(ValueError): s.asof(s.index[0]) # subset with Series N = 10 rng = date_range('1/1/1990', periods=N, freq='53s') s = Series(np.random.randn(N), index=rng) with pytest.raises(ValueError): s.asof(s.index[0], subset='foo') def test_all_nans(self): # GH 15713 # series is all nans result = Series([np.nan]).asof([0]) expected = Series([np.nan]) tm.assert_series_equal(result, expected) # testing non-default indexes N = 50 rng = date_range('1/1/1990', periods=N, freq='53s') dates = date_range('1/1/1990', periods=N * 3, freq='25s') result = Series(np.nan, index=rng).asof(dates) expected = Series(np.nan, index=dates) tm.assert_series_equal(result, expected) # testing scalar input date = date_range('1/1/1990', periods=N * 3, freq='25s')[0] result = Series(np.nan, index=rng).asof(date) assert isna(result) # test name is propagated result = Series(np.nan, index=[1, 2, 3, 4], name='test').asof([4, 5]) expected = Series(np.nan, index=[4, 5], name='test') tm.assert_series_equal(result, expected)
bsd-3-clause
xzh86/scikit-learn
examples/bicluster/plot_spectral_coclustering.py
276
1736
""" ============================================== A demo of the Spectral Co-Clustering algorithm ============================================== This example demonstrates how to generate a dataset and bicluster it using the the Spectral Co-Clustering algorithm. The dataset is generated using the ``make_biclusters`` function, which creates a matrix of small values and implants bicluster with large values. The rows and columns are then shuffled and passed to the Spectral Co-Clustering algorithm. Rearranging the shuffled matrix to make biclusters contiguous shows how accurately the algorithm found the biclusters. """ print(__doc__) # Author: Kemal Eren <[email protected]> # License: BSD 3 clause import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import make_biclusters from sklearn.datasets import samples_generator as sg from sklearn.cluster.bicluster import SpectralCoclustering from sklearn.metrics import consensus_score data, rows, columns = make_biclusters( shape=(300, 300), n_clusters=5, noise=5, shuffle=False, random_state=0) plt.matshow(data, cmap=plt.cm.Blues) plt.title("Original dataset") data, row_idx, col_idx = sg._shuffle(data, random_state=0) plt.matshow(data, cmap=plt.cm.Blues) plt.title("Shuffled dataset") model = SpectralCoclustering(n_clusters=5, random_state=0) model.fit(data) score = consensus_score(model.biclusters_, (rows[:, row_idx], columns[:, col_idx])) print("consensus score: {:.3f}".format(score)) fit_data = data[np.argsort(model.row_labels_)] fit_data = fit_data[:, np.argsort(model.column_labels_)] plt.matshow(fit_data, cmap=plt.cm.Blues) plt.title("After biclustering; rearranged to show biclusters") plt.show()
bsd-3-clause
robcarver17/pysystemtrade
sysproduction/reporting/roll_report.py
1
6345
import datetime import pandas as pd from sysproduction.data.volumes import diagVolumes from sysproduction.data.contracts import dataContracts from sysproduction.data.prices import diagPrices from sysproduction.data.positions import diagPositions from syscore.objects import header, table, body_text # We want a roll report (We could merge this into another kind of report) # We want to be able to have it emailed, or run it offline # To have it emailed, we'll call the report function and optionally pass the output to a text file not stdout # Reports consist of multiple calls to functions with data object, each of which returns a displayable object # We also chuck in a title and a timestamp ALL_ROLL_INSTRUMENTS = "ALL" def roll_info(data, instrument_code=ALL_ROLL_INSTRUMENTS): """ Get some roll info. For all markets which are: - currently rolling - need to have roll status changed now or in the near future We calculate: - Volume data - Curve data - Length to expiry data (contract and/or carry) - Current roll status - Suggested roll status :param: data blob :return: list of pd.DataFrame """ diag_prices = diagPrices(data) if instrument_code == ALL_ROLL_INSTRUMENTS: list_of_instruments = diag_prices.get_list_of_instruments_in_multiple_prices() else: list_of_instruments = [instrument_code] results_dict = {} for instrument_code in list_of_instruments: roll_data = get_roll_data_for_instrument(instrument_code, data) results_dict[instrument_code] = roll_data formatted_output = format_roll_data_for_instrument(results_dict) return formatted_output def get_roll_data_for_instrument(instrument_code, data): """ Get roll data for an individual instrument :param instrument_code: str :param data: dataBlob :return: """ c_data = dataContracts(data) relevant_contract_dict = c_data.get_labelled_dict_of_current_contracts( instrument_code ) list_of_relevant_contract_date_str = relevant_contract_dict["contracts"] contract_labels = relevant_contract_dict["labels"] v_data = diagVolumes(data) volumes = v_data.get_normalised_smoothed_volumes_of_contract_list( instrument_code, list_of_relevant_contract_date_str ) # length to expiries / length to suggested roll price_expiry = c_data.get_priced_expiry(instrument_code) carry_expiry = c_data.get_carry_expiry(instrument_code) when_to_roll = c_data.when_to_roll_priced_contract(instrument_code) now = datetime.datetime.now() price_expiry_days = (price_expiry - now).days carry_expiry_days = (carry_expiry - now).days when_to_roll_days = (when_to_roll - now).days # roll status diag_positions = diagPositions(data) roll_status = diag_positions.get_name_of_roll_state(instrument_code) # Positions positions = diag_positions.get_positions_for_instrument_and_contract_list( instrument_code, list_of_relevant_contract_date_str ) results_dict_code = dict( code=instrument_code, status=roll_status, roll_expiry=when_to_roll_days, price_expiry=price_expiry_days, carry_expiry=carry_expiry_days, contract_labels=contract_labels, volumes=volumes, positions=positions, ) return results_dict_code def format_roll_data_for_instrument(results_dict): """ Put the results into a printable format :param results_dict: dict, keys are instruments, contains roll information :return: """ instrument_codes = list(results_dict.keys()) formatted_output = [] formatted_output.append( header( "Roll status report produced on %s" % str( datetime.datetime.now()))) table1_df = pd.DataFrame( dict( Status=[results_dict[code]["status"] for code in instrument_codes], Roll_exp=[results_dict[code]["roll_expiry"] for code in instrument_codes], Prc_exp=[results_dict[code]["price_expiry"] for code in instrument_codes], Crry_exp=[results_dict[code]["carry_expiry"] for code in instrument_codes], ), index=instrument_codes, ) # sort by time to theoretical roll, and apply same sort order for all # tables table1_df = table1_df.sort_values("Roll_exp") instrument_codes = list(table1_df.index) table1 = table("Status and time to roll in days", table1_df) formatted_output.append(table1) formatted_output.append( body_text( "Roll_exp is days until preferred roll set by roll parameters. Prc_exp is days until price contract rolls, Crry_exp is days until carry contract rolls" ) ) # will always be 6 wide width_contract_columns = len( results_dict[instrument_codes[0]]["contract_labels"]) table2_dict = {} for col_number in range(width_contract_columns): table2_dict["C%d" % col_number] = [ str(results_dict[code]["contract_labels"][col_number]) for code in instrument_codes ] table2_df = pd.DataFrame(table2_dict, index=instrument_codes) table2 = table("List of contracts", table2_df) formatted_output.append(table2) formatted_output.append(body_text("Suffix: p=price, f=forward, c=carry")) table2b_dict = {} for col_number in range(width_contract_columns): table2b_dict["Pos%d" % col_number] = [results_dict[code][ "positions"][col_number] for code in instrument_codes] table2b_df = pd.DataFrame(table2b_dict, index=instrument_codes) table2b = table("Positions", table2b_df) formatted_output.append(table2b) table3_dict = {} for col_number in range(width_contract_columns): table3_dict["V%d" % col_number] = [results_dict[code][ "volumes"][col_number] for code in instrument_codes] table3_df = pd.DataFrame(table3_dict, index=instrument_codes) table3_df = table3_df.round(2) table3 = table("Relative volumes", table3_df) formatted_output.append(table3) formatted_output.append( body_text( "Contract volumes over recent days, normalised so largest volume is 1.0" ) ) formatted_output.append(header("END OF ROLL REPORT")) return formatted_output
gpl-3.0
secimTools/SECIMTools
src/scripts/remove_selected_features_samples.py
1
10537
#!/usr/bin/env python ################################################################################ # SCRIPT: remove_selected_features_samples.py # # LAST VERSION: Includes support to select the type of drop to perform instead # of automatically decide. # # AUTHOR: Miguel Ibarra Arellano ([email protected]). # # DESCRIPTION: This script takes a Wide format file (wide), a flag file and a # design file (only for drop by column) and drops either rows or columns for a # given criteria. This criteria could be either numeric,string or a flag (1,0). # # OUTPUT: # Drop by row: # Wide file with just the dropped rows # Wide file without the dropped rows # Drop by column: # Wide file with just the dropped columns # Wide file without the dropped columns # ################################################################################ # Import built-in libraries import os import re import copy import logging import argparse from argparse import RawDescriptionHelpFormatter # Import add-on libraries import pandas as pd # Import local data libraries from secimtools.dataManager import logger as sl from secimtools.dataManager.interface import wideToDesign """Function to pull arguments""" def getOptions(): parser = argparse.ArgumentParser(description="Removes rows or columns from the data" \ "using user-defined cut-offs.") # Standard Input standard = parser.add_argument_group(title='Required Input', description="Standard inputs for SECIM tools.") standard.add_argument('-i',"--input",dest="input", action="store", required=True,help="Input dataset in wide format.") standard.add_argument('-d',"--design",dest="design", action="store", required=True, help="Design file.") standard.add_argument('-id',"--ID",dest="uniqID",action="store", required=True,help="Name of the column with unique "\ "identifiers.") # Tool Input tool = parser.add_argument_group(title="Tool Input", description="Tool especific input.") tool.add_argument('-f',"--flags",dest="flags", action="store", required=True,help="Flag file.") tool.add_argument('-fft',"--flagfiletype",dest="flagfiletype",action='store', required=True, default="row", choices=["row","column"], help="Type of flag file") tool.add_argument('-fid',"--flagUniqID",dest="flagUniqID",action="store", required=False, default=False,help="Name of the column "\ "with unique identifiers in the flag files.") tool.add_argument('-fd',"--flagDrop",dest="flagDrop",action='store', required=True, help="Name of the flag/field you want to"\ " access.") tool.add_argument('-val',"--value",dest="value",action='store', required=False, default="1",help="Cut Value") tool.add_argument('-con',"--condition",dest="condition",action='store', required=False, default="0",help="Condition for the cut" \ "where 0=Equal to, 1=Greater than and 2=less than.") # Tool Output output = parser.add_argument_group(title='Output', description="Output of the script.") output.add_argument('-ow',"--outWide",dest="outWide",action="store",required=True, help="Output file without the Drops.") output.add_argument('-of',"--outFlags",dest="outFlags",action="store", required=True,help="Output file for Drops.") args = parser.parse_args() # Standardize paths args.input = os.path.abspath(args.input) args.flags = os.path.abspath(args.flags) args.design = os.path.abspath(args.design) args.outWide = os.path.abspath(args.outWide) args.outFlags = os.path.abspath(args.outFlags) return(args); def dropRows(df_wide, df_flags,cut_value, condition, args): """ Drop rows in a wide file based on its flag file and the specified flag values to keep. :Arguments: :type df_wide: pandas.DataFrame :param df: A data frame in wide format :type df_flags: pandas.DataFrame :param df: A data frame of flag values corresponding to the wide file :type cut_value: string :param args: Cut Value for evaluation :type condition: string :param args: Condition to evaluate :type args: argparse.ArgumentParser :param args: Command line arguments. :Returns: :rtype: pandas.DataFrame :returns: Updates the wide DataFrame with dropped rows and writes to a TSV. :rtype: pandas.DataFrame :returns: Fron wide DataFrame Dropped rows and writes to a TSV. """ #Dropping flags from flag files, first asks for the type of value, then asks # for the diferent type of conditions new conditios can be added here if not((re.search(r'[a-zA-Z]+', cut_value))): cut_value = float(cut_value) if condition == '>': df_filtered = df_flags[df_flags[args.flagDrop]<cut_value] elif condition == '<': df_filtered = df_flags[df_flags[args.flagDrop]>cut_value] elif condition == '==': df_filtered = df_flags[df_flags[args.flagDrop]!=cut_value] else: logger.error(u'The {0} is not supported by the program, please use <,== or >'.format(condition)) quit() else: cut_value = str(cut_value) if condition == '==': df_filtered = df_flags[df_flags[args.flagDrop]!=cut_value] else: logger.error(u'The {0} conditional is not supported for string flags, please use =='.format(condition)) quit() #Create a mask over the original data to determinate what to delete mask = df_wide.index.isin(df_filtered.index) #Create a mask over the original flags to determinate what to delete mask_flags = df_flags.index.isin(df_filtered.index) # Use mask to drop values form original data df_wide_keeped = df_wide[mask] # Use mas to drop values out of original flags df_flags_keeped = df_flags[mask_flags] # Returning datasets return df_wide_keeped,df_flags_keeped def dropColumns(df_wide, df_flags,cut_value, condition, args): """ Drop columns in a wide file based on its flag file and the specified flag values to keep. :Arguments: :type df_wide: pandas.DataFrame :param df: A data frame in wide format :type df_flags: pandas.DataFrame :param df: A data frame of flag values corresponding to the wide file :type cut_value: string :param args: Cut Value for evaluation :type condition: string :param args: Condition to evaluate :type args: argparse.ArgumentParser :param args: Command line arguments. :Returns: :rtype: pandas.DataFrame :returns: Updates the wide DataFrame with dropped columns and writes to a TSV. :rtype: pandas.DataFrame :returns: Fron wide DataFrame Dropped columns and writes to a TSV. """ #Getting list of filtered columns from flag files if not(re.search(r'[a-zA-Z]+', cut_value)): cut_value = float(cut_value) if condition == '>': to_keep = df_flags.index[df_flags[args.flagDrop]<cut_value] elif condition == '<': to_keep = df_flags.index[df_flags[args.flagDrop]>cut_value] elif condition == '==': to_keep = df_flags.index[df_flags[args.flagDrop]!=cut_value] else: logger.error(u'The {0} is not supported by the program, please use <,== or >'.format(condition)) quit() else: cut_value = str(cut_value) if condition == '==': to_keep = df_flags.index[df_flags[args.flagDrop]!=cut_value] else: logger.error(u'The {0} conditional is not supported for string flags, please use =='.format(condition)) quit() # Subsetting dropped_flags = df_flags.T[to_keep].T df_wide = df_wide[to_keep] # Returning return df_wide,dropped_flags def main(args): # Import data with the interface dat = wideToDesign(wide=args.input, design=args.design, uniqID=args.uniqID, logger=logger) # Cleaning from missing data dat.dropMissing() # Read flag file df_flags = pd.read_table(args.flags) # Select index on flag file if none then rise an error if args.flagUniqID: df_flags.set_index(args.flagUniqID, inplace=True) else: logger.error("Not flagUniqID provided") raise # Drop either rows or columns logger.info("Running drop flags by {0}".format(args.flagfiletype)) if args.flagfiletype=="column": kpd_wide,kpd_flag = dropColumns(df_wide=dat.wide, df_flags=df_flags, cut_value=args.value, condition=args.condition, args=args) else: kpd_wide,kpd_flag = dropRows(df_wide=dat.wide, df_flags=df_flags, cut_value=args.value, condition=args.condition, args=args) # Wide and flags kpd_wide.to_csv(args.outWide, sep='\t') kpd_flag.to_csv(args.outFlags, sep='\t') # Finishing script logger.info("Script complete.") if __name__ == '__main__': #Gettign arguments from parser args = getOptions() #Stablishing logger logger = logging.getLogger() sl.setLogger(logger) #Change condition if args.condition == "0": args.condition="==" elif args.condition == "1": args.condition=">" elif args.condition == "2": args.condition="<" #Starting script logger.info(u"Importing data with following parameters: "\ "\n\tWide: {0}"\ "\n\tFlags: {1}"\ "\n\tDesign: {2}"\ "\n\tID: {3}"\ "\n\toutput: {4}"\ "\n\tVariable: {5}"\ "\n\tCondition: {6}"\ "\n\tValue: {7}"\ "\n\tType Of Flag File: {8}" .format(args.input,args.flags,args.design, args.uniqID,args.outWide,args.outFlags, args.condition,args.value,args.flagfiletype)) #Main script main(args)
mit
Barmaley-exe/scikit-learn
examples/model_selection/plot_underfitting_overfitting.py
230
2649
""" ============================ Underfitting vs. Overfitting ============================ This example demonstrates the problems of underfitting and overfitting and how we can use linear regression with polynomial features to approximate nonlinear functions. The plot shows the function that we want to approximate, which is a part of the cosine function. In addition, the samples from the real function and the approximations of different models are displayed. The models have polynomial features of different degrees. We can see that a linear function (polynomial with degree 1) is not sufficient to fit the training samples. This is called **underfitting**. A polynomial of degree 4 approximates the true function almost perfectly. However, for higher degrees the model will **overfit** the training data, i.e. it learns the noise of the training data. We evaluate quantitatively **overfitting** / **underfitting** by using cross-validation. We calculate the mean squared error (MSE) on the validation set, the higher, the less likely the model generalizes correctly from the training data. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.pipeline import Pipeline from sklearn.preprocessing import PolynomialFeatures from sklearn.linear_model import LinearRegression from sklearn import cross_validation np.random.seed(0) n_samples = 30 degrees = [1, 4, 15] true_fun = lambda X: np.cos(1.5 * np.pi * X) X = np.sort(np.random.rand(n_samples)) y = true_fun(X) + np.random.randn(n_samples) * 0.1 plt.figure(figsize=(14, 5)) for i in range(len(degrees)): ax = plt.subplot(1, len(degrees), i + 1) plt.setp(ax, xticks=(), yticks=()) polynomial_features = PolynomialFeatures(degree=degrees[i], include_bias=False) linear_regression = LinearRegression() pipeline = Pipeline([("polynomial_features", polynomial_features), ("linear_regression", linear_regression)]) pipeline.fit(X[:, np.newaxis], y) # Evaluate the models using crossvalidation scores = cross_validation.cross_val_score(pipeline, X[:, np.newaxis], y, scoring="mean_squared_error", cv=10) X_test = np.linspace(0, 1, 100) plt.plot(X_test, pipeline.predict(X_test[:, np.newaxis]), label="Model") plt.plot(X_test, true_fun(X_test), label="True function") plt.scatter(X, y, label="Samples") plt.xlabel("x") plt.ylabel("y") plt.xlim((0, 1)) plt.ylim((-2, 2)) plt.legend(loc="best") plt.title("Degree {}\nMSE = {:.2e}(+/- {:.2e})".format( degrees[i], -scores.mean(), scores.std())) plt.show()
bsd-3-clause
mit-ll/LO-PHI
experiments/artifacts/memory/memory_aggregate_data.py
1
10774
#!/usr/bin/env python """ This is a script to aggregate data from ramspeed (c) 2015 Massachusetts Institute of Technology """ import argparse import sys import os import numpy import matplotlib matplotlib.use('GTKAgg') import matplotlib.pyplot as plt def parse_ramspeed(filename): """ Simple function to parse our output from ramspeed into a dict """ ramspeed_struct = {} f = open(filename,"r") # Read every file until we hit the rows with data init = False empty_count = 0 for line in f: # Ignore header data if line.strip() == "": empty_count += 1 continue if empty_count < 3: continue cols = line.split() # Ensure it's a valid line if len(cols) < 3: continue # Extract values mem_operation = cols[0] mem_type = cols[1].strip(":") if mem_type == "BatchRun": continue mem_rate = float(cols[2]) # Store in our nested structure if mem_operation not in ramspeed_struct: ramspeed_struct[mem_operation] = {} if mem_type not in ramspeed_struct[mem_operation]: ramspeed_struct[mem_operation][mem_type] = [mem_rate] else: ramspeed_struct[mem_operation][mem_type].append(mem_rate) f.close() return ramspeed_struct def parse_data_rate(filename): f = open(filename,"r") s = f.read() s_list = s.split("\t") f.close() time_elapsed = float(s_list[0]) bytes = float(s_list[1]) return bytes/time_elapsed def parse_dir(input_dir): # parse all of our files ramspeed_data = [] data_rate_list = [] for (dirpath, dirnames, filenames) in os.walk(input_dir): for file in filenames: # Is this iozone output? if file.endswith("txt"): print "* Parsing %s..."%file if file.find("sensor") != -1: rate = parse_data_rate(os.path.join(dirpath,file)) data_rate_list.append(rate) else: data = parse_ramspeed(os.path.join(dirpath,file)) ramspeed_data.append(data) data_rate = numpy.average(data_rate_list)/(1.0*10**6) print "Data Rate: ", data_rate, "MB/sec" # Aggregate data into one big struct aggregate_data = {} for rd in ramspeed_data: for mem_operation in rd: if mem_operation in aggregate_data: for mem_type in rd[mem_operation]: if mem_type in aggregate_data[mem_operation]: aggregate_data[mem_operation][mem_type] += rd[mem_operation][mem_type] else: aggregate_data[mem_operation][mem_type] = rd[mem_operation][mem_type] else: aggregate_data[mem_operation] = {} for mem_type in rd[mem_operation]: aggregate_data[mem_operation][mem_type] = rd[mem_operation][mem_type] return (aggregate_data, data_rate_list) def extract_graph_data(aggregate_data): rate_data = {} for mem_operation in aggregate_data: for mem_type in aggregate_data[mem_operation]: rates = aggregate_data[mem_operation][mem_type] if mem_type != "AVERAGE": continue print "Operation: %s, Type: %s"%(mem_operation,mem_type) print " Avg: %f, StDev: %f, Count: %d"%(numpy.average(rates), numpy.std(rates), len(rates)) rate_data[mem_operation] = rates return rate_data def aggregate_files(options): # Get aggregate data from input 1 aggregate_data_sensor, data_rate_list1 = parse_dir(options.input_dir_sensor) aggregate_data_base, data_rate_list2 = parse_dir(options.input_dir_base) # Extract the data to graph rate_data_sensor = extract_graph_data(aggregate_data_sensor) rate_data_base = extract_graph_data(aggregate_data_base) # f = open("tmp.csv", "w+") # for x in range(100): # tmp_list = [] # for y in range(len(rate_data_sensor)): # print y,x # tmp_list.append(str(rate_data_sensor[y][x])) # f.write(",".join(tmp_list)+"\n") # # f.close() # figure() fig, ax1 = plt.subplots(figsize=(10,6)) plot_data_sensor = [] plot_data_base = [] labels = [] for mem_operation in ['SSE','MMX','INTEGER','FL-POINT']: # Output medians median_without = numpy.median(rate_data_base[mem_operation]) median_with = numpy.median(rate_data_sensor[mem_operation]) stdev_without = numpy.std(rate_data_base[mem_operation]) stdev_with = numpy.std(rate_data_sensor[mem_operation]) print " * %s: With: %f, Without: %f"%(mem_operation, median_with, median_without) print " * %s: With (Stdev): %f, Without (Stdev): %f"%(mem_operation, stdev_with, stdev_without) prct_change = (median_without-median_with)/median_without print " * %s: Percent Change: %f"%(mem_operation,prct_change) labels.append(mem_operation) plot_data_base += [rate_data_base[mem_operation]] plot_data_sensor += [rate_data_sensor[mem_operation]] index = numpy.arange(len(rate_data_sensor))+1 bar_width=.2 widths = numpy.ones(len(rate_data_sensor))*bar_width*2 print index bp = plt.boxplot(plot_data_base, positions=index-bar_width, widths=widths, sym='') bp2 = plt.boxplot(plot_data_sensor, positions=index+bar_width, widths=widths, sym='') # Color bps plt.setp(bp['boxes'], color='black') plt.setp(bp['whiskers'], color='black') plt.setp(bp['fliers'], color='grey', marker='+') plt.setp(bp2['boxes'], color='black') plt.setp(bp2['whiskers'], color='black') plt.setp(bp2['fliers'], color='grey', marker='+') boxColors = ['white','grey'] numBoxes = len(rate_data_sensor) medians = range(numBoxes) for i in range(numBoxes): # Box 1 box = bp['boxes'][i] boxX = [] boxY = [] for j in range(5): boxX.append(box.get_xdata()[j]) boxY.append(box.get_ydata()[j]) boxCoords = zip(boxX,boxY) # Alternate between Dark Khaki and Royal Blue k = i % 2 boxPolygon = plt.Polygon(boxCoords, facecolor=boxColors[0]) ax1.add_patch(boxPolygon) # Now draw the median lines back over what we just filled in med = bp['medians'][i] medianX = [] medianY = [] for j in range(2): medianX.append(med.get_xdata()[j]) medianY.append(med.get_ydata()[j]) plt.plot(medianX, medianY, 'k') medians[i] = medianY[0] # Box 2 box = bp2['boxes'][i] boxX = [] boxY = [] for j in range(5): boxX.append(box.get_xdata()[j]) boxY.append(box.get_ydata()[j]) boxCoords = zip(boxX,boxY) # Alternate between Dark Khaki and Royal Blue boxPolygon = plt.Polygon(boxCoords, facecolor=boxColors[1]) ax1.add_patch(boxPolygon) # Now draw the median lines back over what we just filled in med = bp2['medians'][i] medianX = [] medianY = [] for j in range(2): medianX.append(med.get_xdata()[j]) medianY.append(med.get_ydata()[j]) plt.plot(medianX, medianY, 'k') medians[i] = medianY[0] plt.grid('on') plt.xlim(0,len(labels)+1) plt.xticks(index, labels) plt.xlabel("Memory Operation Type", fontsize=20) plt.ylabel("Memory Throughput (MB/sec)", fontsize=20) for tick in ax1.xaxis.get_major_ticks(): tick.label.set_fontsize(15) for tick in ax1.yaxis.get_major_ticks(): tick.label.set_fontsize(15) # plt.title(options.title) # rate_data_base = [[]] + rate_data_base # plt.boxplot(rate_data_base) plt.figtext(0.15, 0.18, 'Uninstrumented' , backgroundcolor=boxColors[0], color='black', weight='roman', size=15, bbox=dict(facecolor=boxColors[0], edgecolor='black', boxstyle='round,pad=1')) plt.figtext(0.38, 0.18, 'With Instrumentation', backgroundcolor=boxColors[1], color='white', weight='roman', size=15, bbox=dict(facecolor=boxColors[1], edgecolor='black', boxstyle='round,pad=1')) # plt.show() plt.tight_layout() plt.savefig(options.output_filename, format='eps', dpi=1000) if __name__ == "__main__": # Import our command line parser args = argparse.ArgumentParser() # args.add_argument("-t", "--target", action="store", type=str, default=None, # help="Target for control sensor. (E.g. 172.20.1.20 or VMName)") # Add any options we want here args.add_argument("input_dir_sensor", action="store", type=str, default=None, help="Directory with experiment output.") args.add_argument("input_dir_base", action="store", type=str, default=None, help="Directory with experiment output.") args.add_argument("-t", "--title", action="store", type=str, default=None, help="Title of graph") args.add_argument("-o", "--output_filename", action="store", type=str, default=None, help="Output filename") # Get arguments options = args.parse_args() if options.input_dir_sensor is None or options.input_dir_base is None: print "ERROR: Must provide input directory" args.print_help() sys.exit(0) # if options.title is None: # print "ERROR: Must provide a title." # args.print_help() # sys.exit(0) if options.output_filename is None: print "ERROR: Must provide an output filename." args.print_help() sys.exit(0) aggregate_files(options)
bsd-3-clause
alexsavio/scikit-learn
examples/applications/plot_tomography_l1_reconstruction.py
81
5461
""" ====================================================================== Compressive sensing: tomography reconstruction with L1 prior (Lasso) ====================================================================== This example shows the reconstruction of an image from a set of parallel projections, acquired along different angles. Such a dataset is acquired in **computed tomography** (CT). Without any prior information on the sample, the number of projections required to reconstruct the image is of the order of the linear size ``l`` of the image (in pixels). For simplicity we consider here a sparse image, where only pixels on the boundary of objects have a non-zero value. Such data could correspond for example to a cellular material. Note however that most images are sparse in a different basis, such as the Haar wavelets. Only ``l/7`` projections are acquired, therefore it is necessary to use prior information available on the sample (its sparsity): this is an example of **compressive sensing**. The tomography projection operation is a linear transformation. In addition to the data-fidelity term corresponding to a linear regression, we penalize the L1 norm of the image to account for its sparsity. The resulting optimization problem is called the :ref:`lasso`. We use the class :class:`sklearn.linear_model.Lasso`, that uses the coordinate descent algorithm. Importantly, this implementation is more computationally efficient on a sparse matrix, than the projection operator used here. The reconstruction with L1 penalization gives a result with zero error (all pixels are successfully labeled with 0 or 1), even if noise was added to the projections. In comparison, an L2 penalization (:class:`sklearn.linear_model.Ridge`) produces a large number of labeling errors for the pixels. Important artifacts are observed on the reconstructed image, contrary to the L1 penalization. Note in particular the circular artifact separating the pixels in the corners, that have contributed to fewer projections than the central disk. """ print(__doc__) # Author: Emmanuelle Gouillart <[email protected]> # License: BSD 3 clause import numpy as np from scipy import sparse from scipy import ndimage from sklearn.linear_model import Lasso from sklearn.linear_model import Ridge import matplotlib.pyplot as plt def _weights(x, dx=1, orig=0): x = np.ravel(x) floor_x = np.floor((x - orig) / dx) alpha = (x - orig - floor_x * dx) / dx return np.hstack((floor_x, floor_x + 1)), np.hstack((1 - alpha, alpha)) def _generate_center_coordinates(l_x): X, Y = np.mgrid[:l_x, :l_x].astype(np.float64) center = l_x / 2. X += 0.5 - center Y += 0.5 - center return X, Y def build_projection_operator(l_x, n_dir): """ Compute the tomography design matrix. Parameters ---------- l_x : int linear size of image array n_dir : int number of angles at which projections are acquired. Returns ------- p : sparse matrix of shape (n_dir l_x, l_x**2) """ X, Y = _generate_center_coordinates(l_x) angles = np.linspace(0, np.pi, n_dir, endpoint=False) data_inds, weights, camera_inds = [], [], [] data_unravel_indices = np.arange(l_x ** 2) data_unravel_indices = np.hstack((data_unravel_indices, data_unravel_indices)) for i, angle in enumerate(angles): Xrot = np.cos(angle) * X - np.sin(angle) * Y inds, w = _weights(Xrot, dx=1, orig=X.min()) mask = np.logical_and(inds >= 0, inds < l_x) weights += list(w[mask]) camera_inds += list(inds[mask] + i * l_x) data_inds += list(data_unravel_indices[mask]) proj_operator = sparse.coo_matrix((weights, (camera_inds, data_inds))) return proj_operator def generate_synthetic_data(): """ Synthetic binary data """ rs = np.random.RandomState(0) n_pts = 36. x, y = np.ogrid[0:l, 0:l] mask_outer = (x - l / 2) ** 2 + (y - l / 2) ** 2 < (l / 2) ** 2 mask = np.zeros((l, l)) points = l * rs.rand(2, n_pts) mask[(points[0]).astype(np.int), (points[1]).astype(np.int)] = 1 mask = ndimage.gaussian_filter(mask, sigma=l / n_pts) res = np.logical_and(mask > mask.mean(), mask_outer) return res - ndimage.binary_erosion(res) # Generate synthetic images, and projections l = 128 proj_operator = build_projection_operator(l, l / 7.) data = generate_synthetic_data() proj = proj_operator * data.ravel()[:, np.newaxis] proj += 0.15 * np.random.randn(*proj.shape) # Reconstruction with L2 (Ridge) penalization rgr_ridge = Ridge(alpha=0.2) rgr_ridge.fit(proj_operator, proj.ravel()) rec_l2 = rgr_ridge.coef_.reshape(l, l) # Reconstruction with L1 (Lasso) penalization # the best value of alpha was determined using cross validation # with LassoCV rgr_lasso = Lasso(alpha=0.001) rgr_lasso.fit(proj_operator, proj.ravel()) rec_l1 = rgr_lasso.coef_.reshape(l, l) plt.figure(figsize=(8, 3.3)) plt.subplot(131) plt.imshow(data, cmap=plt.cm.gray, interpolation='nearest') plt.axis('off') plt.title('original image') plt.subplot(132) plt.imshow(rec_l2, cmap=plt.cm.gray, interpolation='nearest') plt.title('L2 penalization') plt.axis('off') plt.subplot(133) plt.imshow(rec_l1, cmap=plt.cm.gray, interpolation='nearest') plt.title('L1 penalization') plt.axis('off') plt.subplots_adjust(hspace=0.01, wspace=0.01, top=1, bottom=0, left=0, right=1) plt.show()
bsd-3-clause
rohanp/scikit-learn
examples/tree/plot_tree_regression_multioutput.py
22
1848
""" =================================================================== Multi-output Decision Tree Regression =================================================================== An example to illustrate multi-output regression with decision tree. The :ref:`decision trees <tree>` is used to predict simultaneously the noisy x and y observations of a circle given a single underlying feature. As a result, it learns local linear regressions approximating the circle. We can see that if the maximum depth of the tree (controlled by the `max_depth` parameter) is set too high, the decision trees learn too fine details of the training data and learn from the noise, i.e. they overfit. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.tree import DecisionTreeRegressor # Create a random dataset rng = np.random.RandomState(1) X = np.sort(200 * rng.rand(100, 1) - 100, axis=0) y = np.array([np.pi * np.sin(X).ravel(), np.pi * np.cos(X).ravel()]).T y[::5, :] += (0.5 - rng.rand(20, 2)) # Fit regression model regr_1 = DecisionTreeRegressor(max_depth=2) regr_2 = DecisionTreeRegressor(max_depth=5) regr_3 = DecisionTreeRegressor(max_depth=8) regr_1.fit(X, y) regr_2.fit(X, y) regr_3.fit(X, y) # Predict X_test = np.arange(-100.0, 100.0, 0.01)[:, np.newaxis] y_1 = regr_1.predict(X_test) y_2 = regr_2.predict(X_test) y_3 = regr_3.predict(X_test) # Plot the results plt.figure() s = 50 plt.scatter(y[:, 0], y[:, 1], c="navy", s=s, label="data") plt.scatter(y_1[:, 0], y_1[:, 1], c="cornflowerblue", s=s, label="max_depth=2") plt.scatter(y_2[:, 0], y_2[:, 1], c="c", s=s, label="max_depth=5") plt.scatter(y_3[:, 0], y_3[:, 1], c="orange", s=s, label="max_depth=8") plt.xlim([-6, 6]) plt.ylim([-6, 6]) plt.xlabel("data") plt.ylabel("target") plt.title("Multi-output Decision Tree Regression") plt.legend() plt.show()
bsd-3-clause
rosswhitfield/mantid
Framework/PythonInterface/test/python/plugins/algorithms/WorkflowAlgorithms/SavePlot1DTest.py
3
3186
# Mantid Repository : https://github.com/mantidproject/mantid # # Copyright &copy; 2018 ISIS Rutherford Appleton Laboratory UKRI, # NScD Oak Ridge National Laboratory, European Spallation Source, # Institut Laue - Langevin & CSNS, Institute of High Energy Physics, CAS # SPDX - License - Identifier: GPL - 3.0 + import unittest, os from mantid import AnalysisDataServiceImpl, config, simpleapi try: import plotly havePlotly = True except ImportError: havePlotly = False # check if matplotlib is available and a new enough version matplotlibissue = None # indicates there are no issues try: import matplotlib from distutils.version import LooseVersion if LooseVersion(matplotlib.__version__) < LooseVersion("1.2.0"): matplotlibissue = 'Wrong version of matplotlib. Required >= 1.2.0' matplotlib.use("agg") import matplotlib.pyplot as plt except: matplotlibissue = 'Problem importing matplotlib' class SavePlot1DTest(unittest.TestCase): def makeWs(self): simpleapi.CreateWorkspace(OutputWorkspace='test1', DataX='1,2,3,4,5,1,2,3,4,5', DataY='1,2,3,4,2,3,4,5', DataE='1,2,3,4,2,3,4,5', NSpec='2', UnitX='dSpacing', Distribution='1', YUnitlabel="S(q)") simpleapi.CreateWorkspace(OutputWorkspace='test2', DataX='1,2,3,4,5,1,2,3,4,5', DataY='1,2,3,4,2,3,4,5', DataE='1,2,3,4,2,3,4,5', NSpec='2', UnitX='Momentum', VerticalAxisUnit='TOF', VerticalAxisValues='1,2', Distribution='1', YUnitLabel='E', WorkspaceTitle='x') simpleapi.GroupWorkspaces("test1,test2", OutputWorkspace="group") self.plotfile = os.path.join(config.getString('defaultsave.directory'), 'plot.png') def cleanup(self): ads = AnalysisDataServiceImpl.Instance() ads.remove("group") ads.remove("test1") ads.remove("test2") if os.path.exists(self.plotfile): os.remove(self.plotfile) @unittest.skipIf(matplotlibissue is not None, matplotlibissue) def testPlotSingle(self): self.makeWs() simpleapi.SavePlot1D('test1', self.plotfile) self.assertGreater(os.path.getsize(self.plotfile), 1e4) self.cleanup() @unittest.skipIf(matplotlibissue is not None, matplotlibissue) def testPlotGroup(self): self.makeWs() simpleapi.SavePlot1D('group', self.plotfile) self.assertGreater(os.path.getsize(self.plotfile), 1e4) self.cleanup() @unittest.skipIf(not havePlotly, 'Do not have plotly installed') def testPlotlySingle(self): self.makeWs() div = simpleapi.SavePlot1D(InputWorkspace='test1', OutputType='plotly') self.cleanup() self.assertGreater(len(div), 0) # confirm result is non-empty @unittest.skipIf(not havePlotly, 'Do not have plotly installed') def testPlotlyGroup(self): self.makeWs() div = simpleapi.SavePlot1D(InputWorkspace='group', OutputType='plotly') self.cleanup() self.assertGreater(len(div), 0) # confirm result is non-empty if __name__ == "__main__": unittest.main()
gpl-3.0
cmcantalupo/geopm
integration/test/test_profile_policy.py
1
6589
#!/usr/bin/env python # # Copyright (c) 2015 - 2021, Intel Corporation # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in # the documentation and/or other materials provided with the # distribution. # # * Neither the name of Intel Corporation nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY LOG OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # from __future__ import absolute_import import os import sys import pandas import signal import unittest import subprocess import geopmpy.launcher import geopmpy.io import geopmpy.policy_store import util @util.skip_unless_do_launch() @util.skip_unless_batch() class TestIntegrationProfilePolicy(unittest.TestCase): def setUp(self): # clean up stale keys try: os.unlink("/dev/shm/geopm*") except: pass self._files = [] self.default_power_cap = 142 self.custom_power_cap = 152 # file name must match name in .cpp file script_dir = os.path.dirname(os.path.realpath(__file__)) exe_path = os.path.join(script_dir, '.libs', 'test_profile_policy') policy_db_path = os.path.join(script_dir, "policystore.db") self._files.append(policy_db_path) geopmpy.policy_store.connect(policy_db_path) geopmpy.policy_store.set_default("power_balancer", [self.default_power_cap]) geopmpy.policy_store.set_best("power_balancer", "power_custom", [self.custom_power_cap, 0, 0, 0]) geopmpy.policy_store.disconnect() # common run parameters self._num_rank = 1 self._num_node = 1 agent = 'power_balancer' self._app_conf = geopmpy.io.BenchConf('test_profile_policy_app.config') self._app_conf.append_region('sleep', 1.0) self._app_conf.write() self._files.append(self._app_conf.get_path()) # must match prefix in .cpp file endpoint_prefix = '/geopm_endpoint_profile_policy_test' # test launcher sets profile, have to use real launcher for now self._argv = ['dummy', 'srun', '--geopm-endpoint', endpoint_prefix, '--geopm-agent', agent, '--geopm-timeout', "5"] # this must be launched on the same node as the root controller # for now limit test to one node self._endpoint_mgr = subprocess.Popen([exe_path], stdout=subprocess.PIPE, stderr=subprocess.PIPE) def tearDown(self): # kill policy handler in case it didn't exit on its own self._endpoint_mgr.kill() sys.stdout.write(self._endpoint_mgr.stdout.read().decode()) sys.stdout.write(self._endpoint_mgr.stderr.read().decode()) # clean up shared memory try: os.unlink("/dev/shm/geopm*") except: pass @util.skip_unless_config_enable('beta') def test_policy_default(self): profile = 'unknown' report_path = profile + '.report' policy_trace = profile + '.trace-policy' self._files.append(report_path) self._files.append(policy_trace) self._argv.extend(['--geopm-profile', profile]) self._argv.extend(['--geopm-trace-endpoint-policy', policy_trace]) self._argv.extend(['--geopm-report', report_path]) self._argv.append(self._app_conf.get_exec_path()) self._argv.extend(self._app_conf.get_exec_args()) launcher = geopmpy.launcher.Factory().create(self._argv, self._num_rank, self._num_node) launcher.run() report_data = geopmpy.io.RawReport(report_path).meta_data() self.assertEqual(report_data['Profile'], profile) policy = report_data['Policy'] self.assertEqual(policy, 'DYNAMIC') # check profile trace for single line with this power cap csv_data = pandas.read_csv(policy_trace, delimiter='|', comment='#') self.assertEqual(csv_data['POWER_PACKAGE_LIMIT_TOTAL'][0], self.default_power_cap) @util.skip_unless_config_enable('beta') def test_policy_custom(self): profile = 'power_custom' report_path = profile + '.report' policy_trace = profile + '.trace-policy' self._files.append(report_path) self._files.append(policy_trace) self._argv.extend(['--geopm-profile', profile]) self._argv.extend(['--geopm-trace-endpoint-policy', policy_trace]) self._argv.extend(['--geopm-report', report_path]) self._argv.append(self._app_conf.get_exec_path()) self._argv.extend(self._app_conf.get_exec_args()) launcher = geopmpy.launcher.Factory().create(self._argv, self._num_rank, self._num_node) launcher.run() report_data = geopmpy.io.RawReport(report_path).meta_data() self.assertEqual(report_data['Profile'], profile) policy = report_data['Policy'] self.assertEqual(policy, 'DYNAMIC') # check profile trace for single line with this power cap csv_data = pandas.read_csv(policy_trace, delimiter='|', comment='#') self.assertEqual(csv_data['POWER_PACKAGE_LIMIT_TOTAL'][0], self.custom_power_cap) if __name__ == '__main__': unittest.main()
bsd-3-clause
shangwuhencc/scikit-learn
benchmarks/bench_tree.py
297
3617
""" To run this, you'll need to have installed. * scikit-learn Does two benchmarks First, we fix a training set, increase the number of samples to classify and plot number of classified samples as a function of time. In the second benchmark, we increase the number of dimensions of the training set, classify a sample and plot the time taken as a function of the number of dimensions. """ import numpy as np import pylab as pl import gc from datetime import datetime # to store the results scikit_classifier_results = [] scikit_regressor_results = [] mu_second = 0.0 + 10 ** 6 # number of microseconds in a second def bench_scikit_tree_classifier(X, Y): """Benchmark with scikit-learn decision tree classifier""" from sklearn.tree import DecisionTreeClassifier gc.collect() # start time tstart = datetime.now() clf = DecisionTreeClassifier() clf.fit(X, Y).predict(X) delta = (datetime.now() - tstart) # stop time scikit_classifier_results.append( delta.seconds + delta.microseconds / mu_second) def bench_scikit_tree_regressor(X, Y): """Benchmark with scikit-learn decision tree regressor""" from sklearn.tree import DecisionTreeRegressor gc.collect() # start time tstart = datetime.now() clf = DecisionTreeRegressor() clf.fit(X, Y).predict(X) delta = (datetime.now() - tstart) # stop time scikit_regressor_results.append( delta.seconds + delta.microseconds / mu_second) if __name__ == '__main__': print('============================================') print('Warning: this is going to take a looong time') print('============================================') n = 10 step = 10000 n_samples = 10000 dim = 10 n_classes = 10 for i in range(n): print('============================================') print('Entering iteration %s of %s' % (i, n)) print('============================================') n_samples += step X = np.random.randn(n_samples, dim) Y = np.random.randint(0, n_classes, (n_samples,)) bench_scikit_tree_classifier(X, Y) Y = np.random.randn(n_samples) bench_scikit_tree_regressor(X, Y) xx = range(0, n * step, step) pl.figure('scikit-learn tree benchmark results') pl.subplot(211) pl.title('Learning with varying number of samples') pl.plot(xx, scikit_classifier_results, 'g-', label='classification') pl.plot(xx, scikit_regressor_results, 'r-', label='regression') pl.legend(loc='upper left') pl.xlabel('number of samples') pl.ylabel('Time (s)') scikit_classifier_results = [] scikit_regressor_results = [] n = 10 step = 500 start_dim = 500 n_classes = 10 dim = start_dim for i in range(0, n): print('============================================') print('Entering iteration %s of %s' % (i, n)) print('============================================') dim += step X = np.random.randn(100, dim) Y = np.random.randint(0, n_classes, (100,)) bench_scikit_tree_classifier(X, Y) Y = np.random.randn(100) bench_scikit_tree_regressor(X, Y) xx = np.arange(start_dim, start_dim + n * step, step) pl.subplot(212) pl.title('Learning in high dimensional spaces') pl.plot(xx, scikit_classifier_results, 'g-', label='classification') pl.plot(xx, scikit_regressor_results, 'r-', label='regression') pl.legend(loc='upper left') pl.xlabel('number of dimensions') pl.ylabel('Time (s)') pl.axis('tight') pl.show()
bsd-3-clause
xyguo/scikit-learn
examples/calibration/plot_calibration_curve.py
113
5904
""" ============================== Probability Calibration curves ============================== When performing classification one often wants to predict not only the class label, but also the associated probability. This probability gives some kind of confidence on the prediction. This example demonstrates how to display how well calibrated the predicted probabilities are and how to calibrate an uncalibrated classifier. The experiment is performed on an artificial dataset for binary classification with 100.000 samples (1.000 of them are used for model fitting) with 20 features. Of the 20 features, only 2 are informative and 10 are redundant. The first figure shows the estimated probabilities obtained with logistic regression, Gaussian naive Bayes, and Gaussian naive Bayes with both isotonic calibration and sigmoid calibration. The calibration performance is evaluated with Brier score, reported in the legend (the smaller the better). One can observe here that logistic regression is well calibrated while raw Gaussian naive Bayes performs very badly. This is because of the redundant features which violate the assumption of feature-independence and result in an overly confident classifier, which is indicated by the typical transposed-sigmoid curve. Calibration of the probabilities of Gaussian naive Bayes with isotonic regression can fix this issue as can be seen from the nearly diagonal calibration curve. Sigmoid calibration also improves the brier score slightly, albeit not as strongly as the non-parametric isotonic regression. This can be attributed to the fact that we have plenty of calibration data such that the greater flexibility of the non-parametric model can be exploited. The second figure shows the calibration curve of a linear support-vector classifier (LinearSVC). LinearSVC shows the opposite behavior as Gaussian naive Bayes: the calibration curve has a sigmoid curve, which is typical for an under-confident classifier. In the case of LinearSVC, this is caused by the margin property of the hinge loss, which lets the model focus on hard samples that are close to the decision boundary (the support vectors). Both kinds of calibration can fix this issue and yield nearly identical results. This shows that sigmoid calibration can deal with situations where the calibration curve of the base classifier is sigmoid (e.g., for LinearSVC) but not where it is transposed-sigmoid (e.g., Gaussian naive Bayes). """ print(__doc__) # Author: Alexandre Gramfort <[email protected]> # Jan Hendrik Metzen <[email protected]> # License: BSD Style. import matplotlib.pyplot as plt from sklearn import datasets from sklearn.naive_bayes import GaussianNB from sklearn.svm import LinearSVC from sklearn.linear_model import LogisticRegression from sklearn.metrics import (brier_score_loss, precision_score, recall_score, f1_score) from sklearn.calibration import CalibratedClassifierCV, calibration_curve from sklearn.model_selection import train_test_split # Create dataset of classification task with many redundant and few # informative features X, y = datasets.make_classification(n_samples=100000, n_features=20, n_informative=2, n_redundant=10, random_state=42) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.99, random_state=42) def plot_calibration_curve(est, name, fig_index): """Plot calibration curve for est w/o and with calibration. """ # Calibrated with isotonic calibration isotonic = CalibratedClassifierCV(est, cv=2, method='isotonic') # Calibrated with sigmoid calibration sigmoid = CalibratedClassifierCV(est, cv=2, method='sigmoid') # Logistic regression with no calibration as baseline lr = LogisticRegression(C=1., solver='lbfgs') fig = plt.figure(fig_index, figsize=(10, 10)) ax1 = plt.subplot2grid((3, 1), (0, 0), rowspan=2) ax2 = plt.subplot2grid((3, 1), (2, 0)) ax1.plot([0, 1], [0, 1], "k:", label="Perfectly calibrated") for clf, name in [(lr, 'Logistic'), (est, name), (isotonic, name + ' + Isotonic'), (sigmoid, name + ' + Sigmoid')]: clf.fit(X_train, y_train) y_pred = clf.predict(X_test) if hasattr(clf, "predict_proba"): prob_pos = clf.predict_proba(X_test)[:, 1] else: # use decision function prob_pos = clf.decision_function(X_test) prob_pos = \ (prob_pos - prob_pos.min()) / (prob_pos.max() - prob_pos.min()) clf_score = brier_score_loss(y_test, prob_pos, pos_label=y.max()) print("%s:" % name) print("\tBrier: %1.3f" % (clf_score)) print("\tPrecision: %1.3f" % precision_score(y_test, y_pred)) print("\tRecall: %1.3f" % recall_score(y_test, y_pred)) print("\tF1: %1.3f\n" % f1_score(y_test, y_pred)) fraction_of_positives, mean_predicted_value = \ calibration_curve(y_test, prob_pos, n_bins=10) ax1.plot(mean_predicted_value, fraction_of_positives, "s-", label="%s (%1.3f)" % (name, clf_score)) ax2.hist(prob_pos, range=(0, 1), bins=10, label=name, histtype="step", lw=2) ax1.set_ylabel("Fraction of positives") ax1.set_ylim([-0.05, 1.05]) ax1.legend(loc="lower right") ax1.set_title('Calibration plots (reliability curve)') ax2.set_xlabel("Mean predicted value") ax2.set_ylabel("Count") ax2.legend(loc="upper center", ncol=2) plt.tight_layout() # Plot calibration curve for Gaussian Naive Bayes plot_calibration_curve(GaussianNB(), "Naive Bayes", 1) # Plot calibration curve for Linear SVC plot_calibration_curve(LinearSVC(), "SVC", 2) plt.show()
bsd-3-clause
BorisJeremic/Real-ESSI-Examples
analytic_solution/test_cases/Contact/Static_Normal_Contact/Monotonic_Loading/Two_Bar_Truss_With_Gap/kn_1e2/plot.py
8
2153
#!/usr/bin/python import h5py import matplotlib.pylab as plt import sys ################ Node # 2 Displacement ############################# ## Analytical Solution finput = h5py.File('Analytical_Solution.feioutput') # Read the time and displacement times = finput["time"][:] disp = finput["/Model/Nodes/Generalized_Displacements"][3,:] # Plot the figure. Add labels and titles. plt.figure() plt.plot(times,disp,'-r',label='Analytical Solution') plt.xlabel("Time [s] ") plt.ylabel("Displacement [m] ") plt.hold(True) ## Current Solution finput = h5py.File('Verification_Of_Static_Normal_Contact_Adding_Normal_Load.h5.feioutput') # Read the time and displacement times = finput["time"][:] disp = finput["/Model/Nodes/Generalized_Displacements"][3,:] # Plot the figure. Add labels and titles. plt.plot(times,disp,'-k',label='Numerical Solution') # plt.grid(b=True, which='major', color='k', linestyle='-') # plt.grid(b=True, which='minor', color='r', linestyle='-', alpha=0.2) plt.minorticks_on() plt.xlabel("Time [s] ") plt.ylabel("Displacement [m] ") plt.legend() plt.savefig('Node_2_Displacement', bbox_inches='tight') #plt.show() ################ Node # 3 Displacement ############################# ## Analytical Solution finput = h5py.File('Analytical_Solution.feioutput') # Read the time and displacement times = finput["time"][:] disp = finput["/Model/Nodes/Generalized_Displacements"][6,:] # Plot the figure. Add labels and titles. plt.figure() plt.plot(times,disp,'-r',label='Analytical Solution') plt.hold(True) ## Current Solution finput = h5py.File('Verification_Of_Static_Normal_Contact_Adding_Normal_Load.h5.feioutput') # Read the time and displacement times = finput["time"][:] disp = finput["/Model/Nodes/Generalized_Displacements"][6,:] # Plot the figure. Add labels and titles. plt.plot(times,disp,'-k',label='Numerical Solution') # plt.grid(b=True, which='major', color='k', linestyle='-') # plt.grid(b=True, which='minor', color='r', linestyle='-', alpha=0.2) plt.minorticks_on() plt.xlabel("Time [s] ") plt.ylabel("Displacement [m] ") plt.legend() plt.savefig('Node_3_Displacement', bbox_inches='tight') #plt.show()
cc0-1.0
NunoEdgarGub1/scikit-learn
sklearn/datasets/mlcomp.py
289
3855
# Copyright (c) 2010 Olivier Grisel <[email protected]> # License: BSD 3 clause """Glue code to load http://mlcomp.org data as a scikit.learn dataset""" import os import numbers from sklearn.datasets.base import load_files def _load_document_classification(dataset_path, metadata, set_=None, **kwargs): if set_ is not None: dataset_path = os.path.join(dataset_path, set_) return load_files(dataset_path, metadata.get('description'), **kwargs) LOADERS = { 'DocumentClassification': _load_document_classification, # TODO: implement the remaining domain formats } def load_mlcomp(name_or_id, set_="raw", mlcomp_root=None, **kwargs): """Load a datasets as downloaded from http://mlcomp.org Parameters ---------- name_or_id : the integer id or the string name metadata of the MLComp dataset to load set_ : select the portion to load: 'train', 'test' or 'raw' mlcomp_root : the filesystem path to the root folder where MLComp datasets are stored, if mlcomp_root is None, the MLCOMP_DATASETS_HOME environment variable is looked up instead. **kwargs : domain specific kwargs to be passed to the dataset loader. Read more in the :ref:`User Guide <datasets>`. Returns ------- data : Bunch Dictionary-like object, the interesting attributes are: 'filenames', the files holding the raw to learn, 'target', the classification labels (integer index), 'target_names', the meaning of the labels, and 'DESCR', the full description of the dataset. Note on the lookup process: depending on the type of name_or_id, will choose between integer id lookup or metadata name lookup by looking at the unzipped archives and metadata file. TODO: implement zip dataset loading too """ if mlcomp_root is None: try: mlcomp_root = os.environ['MLCOMP_DATASETS_HOME'] except KeyError: raise ValueError("MLCOMP_DATASETS_HOME env variable is undefined") mlcomp_root = os.path.expanduser(mlcomp_root) mlcomp_root = os.path.abspath(mlcomp_root) mlcomp_root = os.path.normpath(mlcomp_root) if not os.path.exists(mlcomp_root): raise ValueError("Could not find folder: " + mlcomp_root) # dataset lookup if isinstance(name_or_id, numbers.Integral): # id lookup dataset_path = os.path.join(mlcomp_root, str(name_or_id)) else: # assume name based lookup dataset_path = None expected_name_line = "name: " + name_or_id for dataset in os.listdir(mlcomp_root): metadata_file = os.path.join(mlcomp_root, dataset, 'metadata') if not os.path.exists(metadata_file): continue with open(metadata_file) as f: for line in f: if line.strip() == expected_name_line: dataset_path = os.path.join(mlcomp_root, dataset) break if dataset_path is None: raise ValueError("Could not find dataset with metadata line: " + expected_name_line) # loading the dataset metadata metadata = dict() metadata_file = os.path.join(dataset_path, 'metadata') if not os.path.exists(metadata_file): raise ValueError(dataset_path + ' is not a valid MLComp dataset') with open(metadata_file) as f: for line in f: if ":" in line: key, value = line.split(":", 1) metadata[key.strip()] = value.strip() format = metadata.get('format', 'unknow') loader = LOADERS.get(format) if loader is None: raise ValueError("No loader implemented for format: " + format) return loader(dataset_path, metadata, set_=set_, **kwargs)
bsd-3-clause
nikste/tensorflow
tensorflow/contrib/learn/python/learn/tests/dataframe/feeding_queue_runner_test.py
12
5278
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests `FeedingQueueRunner` using arrays and `DataFrames`.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import sys # TODO: #6568 Remove this hack that makes dlopen() not crash. if hasattr(sys, "getdlopenflags") and hasattr(sys, "setdlopenflags"): import ctypes sys.setdlopenflags(sys.getdlopenflags() | ctypes.RTLD_GLOBAL) import numpy as np from tensorflow.contrib.learn.python.learn.dataframe.queues import feeding_functions as ff from tensorflow.python.client import session from tensorflow.python.framework import ops from tensorflow.python.platform import test from tensorflow.python.training import coordinator from tensorflow.python.training import queue_runner_impl # pylint: disable=g-import-not-at-top try: import pandas as pd HAS_PANDAS = True except ImportError: HAS_PANDAS = False def get_rows(array, row_indices): rows = [array[i] for i in row_indices] return np.vstack(rows) class FeedingQueueRunnerTestCase(test.TestCase): """Tests for `FeedingQueueRunner`.""" def testArrayFeeding(self): with ops.Graph().as_default(): array = np.arange(32).reshape([16, 2]) q = ff.enqueue_data(array, capacity=100) batch_size = 3 dq_op = q.dequeue_many(batch_size) with session.Session() as sess: coord = coordinator.Coordinator() threads = queue_runner_impl.start_queue_runners(sess=sess, coord=coord) for i in range(100): indices = [ j % array.shape[0] for j in range(batch_size * i, batch_size * (i + 1)) ] expected_dq = get_rows(array, indices) dq = sess.run(dq_op) np.testing.assert_array_equal(indices, dq[0]) np.testing.assert_array_equal(expected_dq, dq[1]) coord.request_stop() coord.join(threads) def testArrayFeedingMultiThread(self): with ops.Graph().as_default(): array = np.arange(256).reshape([128, 2]) q = ff.enqueue_data(array, capacity=128, num_threads=8, shuffle=True) batch_size = 3 dq_op = q.dequeue_many(batch_size) with session.Session() as sess: coord = coordinator.Coordinator() threads = queue_runner_impl.start_queue_runners(sess=sess, coord=coord) for _ in range(100): dq = sess.run(dq_op) indices = dq[0] expected_dq = get_rows(array, indices) np.testing.assert_array_equal(expected_dq, dq[1]) coord.request_stop() coord.join(threads) def testPandasFeeding(self): if not HAS_PANDAS: return with ops.Graph().as_default(): array1 = np.arange(32) array2 = np.arange(32, 64) df = pd.DataFrame({"a": array1, "b": array2}, index=np.arange(64, 96)) q = ff.enqueue_data(df, capacity=100) batch_size = 5 dq_op = q.dequeue_many(5) with session.Session() as sess: coord = coordinator.Coordinator() threads = queue_runner_impl.start_queue_runners(sess=sess, coord=coord) for i in range(100): indices = [ j % array1.shape[0] for j in range(batch_size * i, batch_size * (i + 1)) ] expected_df_indices = df.index[indices] expected_rows = df.iloc[indices] dq = sess.run(dq_op) np.testing.assert_array_equal(expected_df_indices, dq[0]) for col_num, col in enumerate(df.columns): np.testing.assert_array_equal(expected_rows[col].values, dq[col_num + 1]) coord.request_stop() coord.join(threads) def testPandasFeedingMultiThread(self): if not HAS_PANDAS: return with ops.Graph().as_default(): array1 = np.arange(128, 256) array2 = 2 * array1 df = pd.DataFrame({"a": array1, "b": array2}, index=np.arange(128)) q = ff.enqueue_data(df, capacity=128, num_threads=8, shuffle=True) batch_size = 5 dq_op = q.dequeue_many(batch_size) with session.Session() as sess: coord = coordinator.Coordinator() threads = queue_runner_impl.start_queue_runners(sess=sess, coord=coord) for _ in range(100): dq = sess.run(dq_op) indices = dq[0] expected_rows = df.iloc[indices] for col_num, col in enumerate(df.columns): np.testing.assert_array_equal(expected_rows[col].values, dq[col_num + 1]) coord.request_stop() coord.join(threads) if __name__ == "__main__": test.main()
apache-2.0
OshynSong/scikit-learn
sklearn/preprocessing/tests/test_imputation.py
213
11911
import numpy as np from scipy import sparse from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_false from sklearn.utils.testing import assert_true from sklearn.preprocessing.imputation import Imputer from sklearn.pipeline import Pipeline from sklearn import grid_search from sklearn import tree from sklearn.random_projection import sparse_random_matrix def _check_statistics(X, X_true, strategy, statistics, missing_values): """Utility function for testing imputation for a given strategy. Test: - along the two axes - with dense and sparse arrays Check that: - the statistics (mean, median, mode) are correct - the missing values are imputed correctly""" err_msg = "Parameters: strategy = %s, missing_values = %s, " \ "axis = {0}, sparse = {1}" % (strategy, missing_values) # Normal matrix, axis = 0 imputer = Imputer(missing_values, strategy=strategy, axis=0) X_trans = imputer.fit(X).transform(X.copy()) assert_array_equal(imputer.statistics_, statistics, err_msg.format(0, False)) assert_array_equal(X_trans, X_true, err_msg.format(0, False)) # Normal matrix, axis = 1 imputer = Imputer(missing_values, strategy=strategy, axis=1) imputer.fit(X.transpose()) if np.isnan(statistics).any(): assert_raises(ValueError, imputer.transform, X.copy().transpose()) else: X_trans = imputer.transform(X.copy().transpose()) assert_array_equal(X_trans, X_true.transpose(), err_msg.format(1, False)) # Sparse matrix, axis = 0 imputer = Imputer(missing_values, strategy=strategy, axis=0) imputer.fit(sparse.csc_matrix(X)) X_trans = imputer.transform(sparse.csc_matrix(X.copy())) if sparse.issparse(X_trans): X_trans = X_trans.toarray() assert_array_equal(imputer.statistics_, statistics, err_msg.format(0, True)) assert_array_equal(X_trans, X_true, err_msg.format(0, True)) # Sparse matrix, axis = 1 imputer = Imputer(missing_values, strategy=strategy, axis=1) imputer.fit(sparse.csc_matrix(X.transpose())) if np.isnan(statistics).any(): assert_raises(ValueError, imputer.transform, sparse.csc_matrix(X.copy().transpose())) else: X_trans = imputer.transform(sparse.csc_matrix(X.copy().transpose())) if sparse.issparse(X_trans): X_trans = X_trans.toarray() assert_array_equal(X_trans, X_true.transpose(), err_msg.format(1, True)) def test_imputation_shape(): # Verify the shapes of the imputed matrix for different strategies. X = np.random.randn(10, 2) X[::2] = np.nan for strategy in ['mean', 'median', 'most_frequent']: imputer = Imputer(strategy=strategy) X_imputed = imputer.fit_transform(X) assert_equal(X_imputed.shape, (10, 2)) X_imputed = imputer.fit_transform(sparse.csr_matrix(X)) assert_equal(X_imputed.shape, (10, 2)) def test_imputation_mean_median_only_zero(): # Test imputation using the mean and median strategies, when # missing_values == 0. X = np.array([ [np.nan, 0, 0, 0, 5], [np.nan, 1, 0, np.nan, 3], [np.nan, 2, 0, 0, 0], [np.nan, 6, 0, 5, 13], ]) X_imputed_mean = np.array([ [3, 5], [1, 3], [2, 7], [6, 13], ]) statistics_mean = [np.nan, 3, np.nan, np.nan, 7] # Behaviour of median with NaN is undefined, e.g. different results in # np.median and np.ma.median X_for_median = X[:, [0, 1, 2, 4]] X_imputed_median = np.array([ [2, 5], [1, 3], [2, 5], [6, 13], ]) statistics_median = [np.nan, 2, np.nan, 5] _check_statistics(X, X_imputed_mean, "mean", statistics_mean, 0) _check_statistics(X_for_median, X_imputed_median, "median", statistics_median, 0) def test_imputation_mean_median(): # Test imputation using the mean and median strategies, when # missing_values != 0. rng = np.random.RandomState(0) dim = 10 dec = 10 shape = (dim * dim, dim + dec) zeros = np.zeros(shape[0]) values = np.arange(1, shape[0]+1) values[4::2] = - values[4::2] tests = [("mean", "NaN", lambda z, v, p: np.mean(np.hstack((z, v)))), ("mean", 0, lambda z, v, p: np.mean(v)), ("median", "NaN", lambda z, v, p: np.median(np.hstack((z, v)))), ("median", 0, lambda z, v, p: np.median(v))] for strategy, test_missing_values, true_value_fun in tests: X = np.empty(shape) X_true = np.empty(shape) true_statistics = np.empty(shape[1]) # Create a matrix X with columns # - with only zeros, # - with only missing values # - with zeros, missing values and values # And a matrix X_true containing all true values for j in range(shape[1]): nb_zeros = (j - dec + 1 > 0) * (j - dec + 1) * (j - dec + 1) nb_missing_values = max(shape[0] + dec * dec - (j + dec) * (j + dec), 0) nb_values = shape[0] - nb_zeros - nb_missing_values z = zeros[:nb_zeros] p = np.repeat(test_missing_values, nb_missing_values) v = values[rng.permutation(len(values))[:nb_values]] true_statistics[j] = true_value_fun(z, v, p) # Create the columns X[:, j] = np.hstack((v, z, p)) if 0 == test_missing_values: X_true[:, j] = np.hstack((v, np.repeat( true_statistics[j], nb_missing_values + nb_zeros))) else: X_true[:, j] = np.hstack((v, z, np.repeat(true_statistics[j], nb_missing_values))) # Shuffle them the same way np.random.RandomState(j).shuffle(X[:, j]) np.random.RandomState(j).shuffle(X_true[:, j]) # Mean doesn't support columns containing NaNs, median does if strategy == "median": cols_to_keep = ~np.isnan(X_true).any(axis=0) else: cols_to_keep = ~np.isnan(X_true).all(axis=0) X_true = X_true[:, cols_to_keep] _check_statistics(X, X_true, strategy, true_statistics, test_missing_values) def test_imputation_median_special_cases(): # Test median imputation with sparse boundary cases X = np.array([ [0, np.nan, np.nan], # odd: implicit zero [5, np.nan, np.nan], # odd: explicit nonzero [0, 0, np.nan], # even: average two zeros [-5, 0, np.nan], # even: avg zero and neg [0, 5, np.nan], # even: avg zero and pos [4, 5, np.nan], # even: avg nonzeros [-4, -5, np.nan], # even: avg negatives [-1, 2, np.nan], # even: crossing neg and pos ]).transpose() X_imputed_median = np.array([ [0, 0, 0], [5, 5, 5], [0, 0, 0], [-5, 0, -2.5], [0, 5, 2.5], [4, 5, 4.5], [-4, -5, -4.5], [-1, 2, .5], ]).transpose() statistics_median = [0, 5, 0, -2.5, 2.5, 4.5, -4.5, .5] _check_statistics(X, X_imputed_median, "median", statistics_median, 'NaN') def test_imputation_most_frequent(): # Test imputation using the most-frequent strategy. X = np.array([ [-1, -1, 0, 5], [-1, 2, -1, 3], [-1, 1, 3, -1], [-1, 2, 3, 7], ]) X_true = np.array([ [2, 0, 5], [2, 3, 3], [1, 3, 3], [2, 3, 7], ]) # scipy.stats.mode, used in Imputer, doesn't return the first most # frequent as promised in the doc but the lowest most frequent. When this # test will fail after an update of scipy, Imputer will need to be updated # to be consistent with the new (correct) behaviour _check_statistics(X, X_true, "most_frequent", [np.nan, 2, 3, 3], -1) def test_imputation_pipeline_grid_search(): # Test imputation within a pipeline + gridsearch. pipeline = Pipeline([('imputer', Imputer(missing_values=0)), ('tree', tree.DecisionTreeRegressor(random_state=0))]) parameters = { 'imputer__strategy': ["mean", "median", "most_frequent"], 'imputer__axis': [0, 1] } l = 100 X = sparse_random_matrix(l, l, density=0.10) Y = sparse_random_matrix(l, 1, density=0.10).toarray() gs = grid_search.GridSearchCV(pipeline, parameters) gs.fit(X, Y) def test_imputation_pickle(): # Test for pickling imputers. import pickle l = 100 X = sparse_random_matrix(l, l, density=0.10) for strategy in ["mean", "median", "most_frequent"]: imputer = Imputer(missing_values=0, strategy=strategy) imputer.fit(X) imputer_pickled = pickle.loads(pickle.dumps(imputer)) assert_array_equal(imputer.transform(X.copy()), imputer_pickled.transform(X.copy()), "Fail to transform the data after pickling " "(strategy = %s)" % (strategy)) def test_imputation_copy(): # Test imputation with copy X_orig = sparse_random_matrix(5, 5, density=0.75, random_state=0) # copy=True, dense => copy X = X_orig.copy().toarray() imputer = Imputer(missing_values=0, strategy="mean", copy=True) Xt = imputer.fit(X).transform(X) Xt[0, 0] = -1 assert_false(np.all(X == Xt)) # copy=True, sparse csr => copy X = X_orig.copy() imputer = Imputer(missing_values=X.data[0], strategy="mean", copy=True) Xt = imputer.fit(X).transform(X) Xt.data[0] = -1 assert_false(np.all(X.data == Xt.data)) # copy=False, dense => no copy X = X_orig.copy().toarray() imputer = Imputer(missing_values=0, strategy="mean", copy=False) Xt = imputer.fit(X).transform(X) Xt[0, 0] = -1 assert_true(np.all(X == Xt)) # copy=False, sparse csr, axis=1 => no copy X = X_orig.copy() imputer = Imputer(missing_values=X.data[0], strategy="mean", copy=False, axis=1) Xt = imputer.fit(X).transform(X) Xt.data[0] = -1 assert_true(np.all(X.data == Xt.data)) # copy=False, sparse csc, axis=0 => no copy X = X_orig.copy().tocsc() imputer = Imputer(missing_values=X.data[0], strategy="mean", copy=False, axis=0) Xt = imputer.fit(X).transform(X) Xt.data[0] = -1 assert_true(np.all(X.data == Xt.data)) # copy=False, sparse csr, axis=0 => copy X = X_orig.copy() imputer = Imputer(missing_values=X.data[0], strategy="mean", copy=False, axis=0) Xt = imputer.fit(X).transform(X) Xt.data[0] = -1 assert_false(np.all(X.data == Xt.data)) # copy=False, sparse csc, axis=1 => copy X = X_orig.copy().tocsc() imputer = Imputer(missing_values=X.data[0], strategy="mean", copy=False, axis=1) Xt = imputer.fit(X).transform(X) Xt.data[0] = -1 assert_false(np.all(X.data == Xt.data)) # copy=False, sparse csr, axis=1, missing_values=0 => copy X = X_orig.copy() imputer = Imputer(missing_values=0, strategy="mean", copy=False, axis=1) Xt = imputer.fit(X).transform(X) assert_false(sparse.issparse(Xt)) # Note: If X is sparse and if missing_values=0, then a (dense) copy of X is # made, even if copy=False.
bsd-3-clause
xubenben/scikit-learn
sklearn/utils/multiclass.py
83
12343
# Author: Arnaud Joly, Joel Nothman, Hamzeh Alsalhi # # License: BSD 3 clause """ Multi-class / multi-label utility function ========================================== """ from __future__ import division from collections import Sequence from itertools import chain from scipy.sparse import issparse from scipy.sparse.base import spmatrix from scipy.sparse import dok_matrix from scipy.sparse import lil_matrix import numpy as np from ..externals.six import string_types from .validation import check_array from ..utils.fixes import bincount def _unique_multiclass(y): if hasattr(y, '__array__'): return np.unique(np.asarray(y)) else: return set(y) def _unique_indicator(y): return np.arange(check_array(y, ['csr', 'csc', 'coo']).shape[1]) _FN_UNIQUE_LABELS = { 'binary': _unique_multiclass, 'multiclass': _unique_multiclass, 'multilabel-indicator': _unique_indicator, } def unique_labels(*ys): """Extract an ordered array of unique labels We don't allow: - mix of multilabel and multiclass (single label) targets - mix of label indicator matrix and anything else, because there are no explicit labels) - mix of label indicator matrices of different sizes - mix of string and integer labels At the moment, we also don't allow "multiclass-multioutput" input type. Parameters ---------- *ys : array-likes, Returns ------- out : numpy array of shape [n_unique_labels] An ordered array of unique labels. Examples -------- >>> from sklearn.utils.multiclass import unique_labels >>> unique_labels([3, 5, 5, 5, 7, 7]) array([3, 5, 7]) >>> unique_labels([1, 2, 3, 4], [2, 2, 3, 4]) array([1, 2, 3, 4]) >>> unique_labels([1, 2, 10], [5, 11]) array([ 1, 2, 5, 10, 11]) """ if not ys: raise ValueError('No argument has been passed.') # Check that we don't mix label format ys_types = set(type_of_target(x) for x in ys) if ys_types == set(["binary", "multiclass"]): ys_types = set(["multiclass"]) if len(ys_types) > 1: raise ValueError("Mix type of y not allowed, got types %s" % ys_types) label_type = ys_types.pop() # Check consistency for the indicator format if (label_type == "multilabel-indicator" and len(set(check_array(y, ['csr', 'csc', 'coo']).shape[1] for y in ys)) > 1): raise ValueError("Multi-label binary indicator input with " "different numbers of labels") # Get the unique set of labels _unique_labels = _FN_UNIQUE_LABELS.get(label_type, None) if not _unique_labels: raise ValueError("Unknown label type: %s" % repr(ys)) ys_labels = set(chain.from_iterable(_unique_labels(y) for y in ys)) # Check that we don't mix string type with number type if (len(set(isinstance(label, string_types) for label in ys_labels)) > 1): raise ValueError("Mix of label input types (string and number)") return np.array(sorted(ys_labels)) def _is_integral_float(y): return y.dtype.kind == 'f' and np.all(y.astype(int) == y) def is_multilabel(y): """ Check if ``y`` is in a multilabel format. Parameters ---------- y : numpy array of shape [n_samples] Target values. Returns ------- out : bool, Return ``True``, if ``y`` is in a multilabel format, else ```False``. Examples -------- >>> import numpy as np >>> from sklearn.utils.multiclass import is_multilabel >>> is_multilabel([0, 1, 0, 1]) False >>> is_multilabel([[1], [0, 2], []]) False >>> is_multilabel(np.array([[1, 0], [0, 0]])) True >>> is_multilabel(np.array([[1], [0], [0]])) False >>> is_multilabel(np.array([[1, 0, 0]])) True """ if hasattr(y, '__array__'): y = np.asarray(y) if not (hasattr(y, "shape") and y.ndim == 2 and y.shape[1] > 1): return False if issparse(y): if isinstance(y, (dok_matrix, lil_matrix)): y = y.tocsr() return (len(y.data) == 0 or np.ptp(y.data) == 0 and (y.dtype.kind in 'biu' or # bool, int, uint _is_integral_float(np.unique(y.data)))) else: labels = np.unique(y) return len(labels) < 3 and (y.dtype.kind in 'biu' or # bool, int, uint _is_integral_float(labels)) def type_of_target(y): """Determine the type of data indicated by target `y` Parameters ---------- y : array-like Returns ------- target_type : string One of: * 'continuous': `y` is an array-like of floats that are not all integers, and is 1d or a column vector. * 'continuous-multioutput': `y` is a 2d array of floats that are not all integers, and both dimensions are of size > 1. * 'binary': `y` contains <= 2 discrete values and is 1d or a column vector. * 'multiclass': `y` contains more than two discrete values, is not a sequence of sequences, and is 1d or a column vector. * 'multiclass-multioutput': `y` is a 2d array that contains more than two discrete values, is not a sequence of sequences, and both dimensions are of size > 1. * 'multilabel-indicator': `y` is a label indicator matrix, an array of two dimensions with at least two columns, and at most 2 unique values. * 'unknown': `y` is array-like but none of the above, such as a 3d array, sequence of sequences, or an array of non-sequence objects. Examples -------- >>> import numpy as np >>> type_of_target([0.1, 0.6]) 'continuous' >>> type_of_target([1, -1, -1, 1]) 'binary' >>> type_of_target(['a', 'b', 'a']) 'binary' >>> type_of_target([1.0, 2.0]) 'binary' >>> type_of_target([1, 0, 2]) 'multiclass' >>> type_of_target([1.0, 0.0, 3.0]) 'multiclass' >>> type_of_target(['a', 'b', 'c']) 'multiclass' >>> type_of_target(np.array([[1, 2], [3, 1]])) 'multiclass-multioutput' >>> type_of_target([[1, 2]]) 'multiclass-multioutput' >>> type_of_target(np.array([[1.5, 2.0], [3.0, 1.6]])) 'continuous-multioutput' >>> type_of_target(np.array([[0, 1], [1, 1]])) 'multilabel-indicator' """ valid = ((isinstance(y, (Sequence, spmatrix)) or hasattr(y, '__array__')) and not isinstance(y, string_types)) if not valid: raise ValueError('Expected array-like (array or non-string sequence), ' 'got %r' % y) if is_multilabel(y): return 'multilabel-indicator' try: y = np.asarray(y) except ValueError: # Known to fail in numpy 1.3 for array of arrays return 'unknown' # The old sequence of sequences format try: if (not hasattr(y[0], '__array__') and isinstance(y[0], Sequence) and not isinstance(y[0], string_types)): raise ValueError('You appear to be using a legacy multi-label data' ' representation. Sequence of sequences are no' ' longer supported; use a binary array or sparse' ' matrix instead.') except IndexError: pass # Invalid inputs if y.ndim > 2 or (y.dtype == object and len(y) and not isinstance(y.flat[0], string_types)): return 'unknown' # [[[1, 2]]] or [obj_1] and not ["label_1"] if y.ndim == 2 and y.shape[1] == 0: return 'unknown' # [[]] if y.ndim == 2 and y.shape[1] > 1: suffix = "-multioutput" # [[1, 2], [1, 2]] else: suffix = "" # [1, 2, 3] or [[1], [2], [3]] # check float and contains non-integer float values if y.dtype.kind == 'f' and np.any(y != y.astype(int)): # [.1, .2, 3] or [[.1, .2, 3]] or [[1., .2]] and not [1., 2., 3.] return 'continuous' + suffix if (len(np.unique(y)) > 2) or (y.ndim >= 2 and len(y[0]) > 1): return 'multiclass' + suffix # [1, 2, 3] or [[1., 2., 3]] or [[1, 2]] else: return 'binary' # [1, 2] or [["a"], ["b"]] def _check_partial_fit_first_call(clf, classes=None): """Private helper function for factorizing common classes param logic Estimators that implement the ``partial_fit`` API need to be provided with the list of possible classes at the first call to partial_fit. Subsequent calls to partial_fit should check that ``classes`` is still consistent with a previous value of ``clf.classes_`` when provided. This function returns True if it detects that this was the first call to ``partial_fit`` on ``clf``. In that case the ``classes_`` attribute is also set on ``clf``. """ if getattr(clf, 'classes_', None) is None and classes is None: raise ValueError("classes must be passed on the first call " "to partial_fit.") elif classes is not None: if getattr(clf, 'classes_', None) is not None: if not np.all(clf.classes_ == unique_labels(classes)): raise ValueError( "`classes=%r` is not the same as on last call " "to partial_fit, was: %r" % (classes, clf.classes_)) else: # This is the first call to partial_fit clf.classes_ = unique_labels(classes) return True # classes is None and clf.classes_ has already previously been set: # nothing to do return False def class_distribution(y, sample_weight=None): """Compute class priors from multioutput-multiclass target data Parameters ---------- y : array like or sparse matrix of size (n_samples, n_outputs) The labels for each example. sample_weight : array-like of shape = (n_samples,), optional Sample weights. Returns ------- classes : list of size n_outputs of arrays of size (n_classes,) List of classes for each column. n_classes : list of integrs of size n_outputs Number of classes in each column class_prior : list of size n_outputs of arrays of size (n_classes,) Class distribution of each column. """ classes = [] n_classes = [] class_prior = [] n_samples, n_outputs = y.shape if issparse(y): y = y.tocsc() y_nnz = np.diff(y.indptr) for k in range(n_outputs): col_nonzero = y.indices[y.indptr[k]:y.indptr[k + 1]] # separate sample weights for zero and non-zero elements if sample_weight is not None: nz_samp_weight = np.asarray(sample_weight)[col_nonzero] zeros_samp_weight_sum = (np.sum(sample_weight) - np.sum(nz_samp_weight)) else: nz_samp_weight = None zeros_samp_weight_sum = y.shape[0] - y_nnz[k] classes_k, y_k = np.unique(y.data[y.indptr[k]:y.indptr[k + 1]], return_inverse=True) class_prior_k = bincount(y_k, weights=nz_samp_weight) # An explicit zero was found, combine its wieght with the wieght # of the implicit zeros if 0 in classes_k: class_prior_k[classes_k == 0] += zeros_samp_weight_sum # If an there is an implict zero and it is not in classes and # class_prior, make an entry for it if 0 not in classes_k and y_nnz[k] < y.shape[0]: classes_k = np.insert(classes_k, 0, 0) class_prior_k = np.insert(class_prior_k, 0, zeros_samp_weight_sum) classes.append(classes_k) n_classes.append(classes_k.shape[0]) class_prior.append(class_prior_k / class_prior_k.sum()) else: for k in range(n_outputs): classes_k, y_k = np.unique(y[:, k], return_inverse=True) classes.append(classes_k) n_classes.append(classes_k.shape[0]) class_prior_k = bincount(y_k, weights=sample_weight) class_prior.append(class_prior_k / class_prior_k.sum()) return (classes, n_classes, class_prior)
bsd-3-clause
edhuckle/statsmodels
statsmodels/tsa/vector_ar/dynamic.py
27
9932
# pylint: disable=W0201 from statsmodels.compat.python import iteritems, string_types, range import numpy as np from statsmodels.tools.decorators import cache_readonly import pandas as pd from . import var_model as _model from . import util from . import plotting FULL_SAMPLE = 0 ROLLING = 1 EXPANDING = 2 def _get_window_type(window_type): if window_type in (FULL_SAMPLE, ROLLING, EXPANDING): return window_type elif isinstance(window_type, string_types): window_type_up = window_type.upper() if window_type_up in ('FULL SAMPLE', 'FULL_SAMPLE'): return FULL_SAMPLE elif window_type_up == 'ROLLING': return ROLLING elif window_type_up == 'EXPANDING': return EXPANDING raise Exception('Unrecognized window type: %s' % window_type) class DynamicVAR(object): """ Estimates time-varying vector autoregression (VAR(p)) using equation-by-equation least squares Parameters ---------- data : pandas.DataFrame lag_order : int, default 1 window : int window_type : {'expanding', 'rolling'} min_periods : int or None Minimum number of observations to require in window, defaults to window size if None specified trend : {'c', 'nc', 'ct', 'ctt'} TODO Returns ------- **Attributes**: coefs : WidePanel items : coefficient names major_axis : dates minor_axis : VAR equation names """ def __init__(self, data, lag_order=1, window=None, window_type='expanding', trend='c', min_periods=None): self.lag_order = lag_order self.names = list(data.columns) self.neqs = len(self.names) self._y_orig = data # TODO: deal with trend self._x_orig = _make_lag_matrix(data, lag_order) self._x_orig['intercept'] = 1 (self.y, self.x, self.x_filtered, self._index, self._time_has_obs) = _filter_data(self._y_orig, self._x_orig) self.lag_order = lag_order self.trendorder = util.get_trendorder(trend) self._set_window(window_type, window, min_periods) def _set_window(self, window_type, window, min_periods): self._window_type = _get_window_type(window_type) if self._is_rolling: if window is None: raise Exception('Must pass window when doing rolling ' 'regression') if min_periods is None: min_periods = window else: window = len(self.x) if min_periods is None: min_periods = 1 self._window = int(window) self._min_periods = min_periods @cache_readonly def T(self): """ Number of time periods in results """ return len(self.result_index) @property def nobs(self): # Stub, do I need this? data = dict((eq, r.nobs) for eq, r in iteritems(self.equations)) return pd.DataFrame(data) @cache_readonly def equations(self): eqs = {} for col, ts in iteritems(self.y): model = pd.ols(y=ts, x=self.x, window=self._window, window_type=self._window_type, min_periods=self._min_periods) eqs[col] = model return eqs @cache_readonly def coefs(self): """ Return dynamic regression coefficients as WidePanel """ data = {} for eq, result in iteritems(self.equations): data[eq] = result.beta panel = pd.WidePanel.fromDict(data) # Coefficient names become items return panel.swapaxes('items', 'minor') @property def result_index(self): return self.coefs.major_axis @cache_readonly def _coefs_raw(self): """ Reshape coefficients to be more amenable to dynamic calculations Returns ------- coefs : (time_periods x lag_order x neqs x neqs) """ coef_panel = self.coefs.copy() del coef_panel['intercept'] coef_values = coef_panel.swapaxes('items', 'major').values coef_values = coef_values.reshape((len(coef_values), self.lag_order, self.neqs, self.neqs)) return coef_values @cache_readonly def _intercepts_raw(self): """ Similar to _coefs_raw, return intercept values in easy-to-use matrix form Returns ------- intercepts : (T x K) """ return self.coefs['intercept'].values @cache_readonly def resid(self): data = {} for eq, result in iteritems(self.equations): data[eq] = result.resid return pd.DataFrame(data) def forecast(self, steps=1): """ Produce dynamic forecast Parameters ---------- steps Returns ------- forecasts : pandas.DataFrame """ output = np.empty((self.T - steps, self.neqs)) y_values = self.y.values y_index_map = dict((d, idx) for idx, d in enumerate(self.y.index)) result_index_map = dict((d, idx) for idx, d in enumerate(self.result_index)) coefs = self._coefs_raw intercepts = self._intercepts_raw # can only produce this many forecasts forc_index = self.result_index[steps:] for i, date in enumerate(forc_index): # TODO: check that this does the right thing in weird cases... idx = y_index_map[date] - steps result_idx = result_index_map[date] - steps y_slice = y_values[:idx] forcs = _model.forecast(y_slice, coefs[result_idx], intercepts[result_idx], steps) output[i] = forcs[-1] return pd.DataFrame(output, index=forc_index, columns=self.names) def plot_forecast(self, steps=1, figsize=(10, 10)): """ Plot h-step ahead forecasts against actual realizations of time series. Note that forecasts are lined up with their respective realizations. Parameters ---------- steps : """ import matplotlib.pyplot as plt fig, axes = plt.subplots(figsize=figsize, nrows=self.neqs, sharex=True) forc = self.forecast(steps=steps) dates = forc.index y_overlay = self.y.reindex(dates) for i, col in enumerate(forc.columns): ax = axes[i] y_ts = y_overlay[col] forc_ts = forc[col] y_handle = ax.plot(dates, y_ts.values, 'k.', ms=2) forc_handle = ax.plot(dates, forc_ts.values, 'k-') fig.legend((y_handle, forc_handle), ('Y', 'Forecast')) fig.autofmt_xdate() fig.suptitle('Dynamic %d-step forecast' % steps) # pretty things up a bit plotting.adjust_subplots(bottom=0.15, left=0.10) plt.draw_if_interactive() @property def _is_rolling(self): return self._window_type == ROLLING @cache_readonly def r2(self): """Returns the r-squared values.""" data = dict((eq, r.r2) for eq, r in iteritems(self.equations)) return pd.DataFrame(data) class DynamicPanelVAR(DynamicVAR): """ Dynamic (time-varying) panel vector autoregression using panel ordinary least squares Parameters ---------- """ def __init__(self, data, lag_order=1, window=None, window_type='expanding', trend='c', min_periods=None): self.lag_order = lag_order self.neqs = len(data.columns) self._y_orig = data # TODO: deal with trend self._x_orig = _make_lag_matrix(data, lag_order) self._x_orig['intercept'] = 1 (self.y, self.x, self.x_filtered, self._index, self._time_has_obs) = _filter_data(self._y_orig, self._x_orig) self.lag_order = lag_order self.trendorder = util.get_trendorder(trend) self._set_window(window_type, window, min_periods) def _filter_data(lhs, rhs): """ Data filtering routine for dynamic VAR lhs : DataFrame original data rhs : DataFrame lagged variables Returns ------- """ def _has_all_columns(df): return np.isfinite(df.values).sum(1) == len(df.columns) rhs_valid = _has_all_columns(rhs) if not rhs_valid.all(): pre_filtered_rhs = rhs[rhs_valid] else: pre_filtered_rhs = rhs index = lhs.index.union(rhs.index) if not index.equals(rhs.index) or not index.equals(lhs.index): rhs = rhs.reindex(index) lhs = lhs.reindex(index) rhs_valid = _has_all_columns(rhs) lhs_valid = _has_all_columns(lhs) valid = rhs_valid & lhs_valid if not valid.all(): filt_index = rhs.index[valid] filtered_rhs = rhs.reindex(filt_index) filtered_lhs = lhs.reindex(filt_index) else: filtered_rhs, filtered_lhs = rhs, lhs return filtered_lhs, filtered_rhs, pre_filtered_rhs, index, valid def _make_lag_matrix(x, lags): data = {} columns = [] for i in range(1, 1 + lags): lagstr = 'L%d.'% i lag = x.shift(i).rename(columns=lambda c: lagstr + c) data.update(lag._series) columns.extend(lag.columns) return pd.DataFrame(data, columns=columns) class Equation(object): """ Stub, estimate one equation """ def __init__(self, y, x): pass if __name__ == '__main__': import pandas.util.testing as ptest ptest.N = 500 data = ptest.makeTimeDataFrame().cumsum(0) var = DynamicVAR(data, lag_order=2, window_type='expanding') var2 = DynamicVAR(data, lag_order=2, window=10, window_type='rolling')
bsd-3-clause
zorojean/scikit-learn
sklearn/svm/classes.py
126
40114
import warnings import numpy as np from .base import _fit_liblinear, BaseSVC, BaseLibSVM from ..base import BaseEstimator, RegressorMixin from ..linear_model.base import LinearClassifierMixin, SparseCoefMixin, \ LinearModel from ..feature_selection.from_model import _LearntSelectorMixin from ..utils import check_X_y from ..utils.validation import _num_samples class LinearSVC(BaseEstimator, LinearClassifierMixin, _LearntSelectorMixin, SparseCoefMixin): """Linear Support Vector Classification. Similar to SVC with parameter kernel='linear', but implemented in terms of liblinear rather than libsvm, so it has more flexibility in the choice of penalties and loss functions and should scale better to large numbers of samples. This class supports both dense and sparse input and the multiclass support is handled according to a one-vs-the-rest scheme. Read more in the :ref:`User Guide <svm_classification>`. Parameters ---------- C : float, optional (default=1.0) Penalty parameter C of the error term. loss : string, 'hinge' or 'squared_hinge' (default='squared_hinge') Specifies the loss function. 'hinge' is the standard SVM loss (used e.g. by the SVC class) while 'squared_hinge' is the square of the hinge loss. penalty : string, 'l1' or 'l2' (default='l2') Specifies the norm used in the penalization. The 'l2' penalty is the standard used in SVC. The 'l1' leads to `coef_` vectors that are sparse. dual : bool, (default=True) Select the algorithm to either solve the dual or primal optimization problem. Prefer dual=False when n_samples > n_features. tol : float, optional (default=1e-4) Tolerance for stopping criteria. multi_class: string, 'ovr' or 'crammer_singer' (default='ovr') Determines the multi-class strategy if `y` contains more than two classes. `ovr` trains n_classes one-vs-rest classifiers, while `crammer_singer` optimizes a joint objective over all classes. While `crammer_singer` is interesting from a theoretical perspective as it is consistent, it is seldom used in practice as it rarely leads to better accuracy and is more expensive to compute. If `crammer_singer` is chosen, the options loss, penalty and dual will be ignored. fit_intercept : boolean, optional (default=True) Whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (i.e. data is expected to be already centered). intercept_scaling : float, optional (default=1) When self.fit_intercept is True, instance vector x becomes [x, self.intercept_scaling], i.e. a "synthetic" feature with constant value equals to intercept_scaling is appended to the instance vector. The intercept becomes intercept_scaling * synthetic feature weight Note! the synthetic feature weight is subject to l1/l2 regularization as all other features. To lessen the effect of regularization on synthetic feature weight (and therefore on the intercept) intercept_scaling has to be increased. class_weight : {dict, 'balanced'}, optional Set the parameter C of class i to class_weight[i]*C for SVC. If not given, all classes are supposed to have weight one. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))`` verbose : int, (default=0) Enable verbose output. Note that this setting takes advantage of a per-process runtime setting in liblinear that, if enabled, may not work properly in a multithreaded context. random_state : int seed, RandomState instance, or None (default=None) The seed of the pseudo random number generator to use when shuffling the data. max_iter : int, (default=1000) The maximum number of iterations to be run. Attributes ---------- coef_ : array, shape = [n_features] if n_classes == 2 else [n_classes, n_features] Weights assigned to the features (coefficients in the primal problem). This is only available in the case of a linear kernel. `coef_` is a readonly property derived from `raw_coef_` that follows the internal memory layout of liblinear. intercept_ : array, shape = [1] if n_classes == 2 else [n_classes] Constants in decision function. Notes ----- The underlying C implementation uses a random number generator to select features when fitting the model. It is thus not uncommon to have slightly different results for the same input data. If that happens, try with a smaller ``tol`` parameter. The underlying implementation (liblinear) uses a sparse internal representation for the data that will incur a memory copy. Predict output may not match that of standalone liblinear in certain cases. See :ref:`differences from liblinear <liblinear_differences>` in the narrative documentation. **References:** `LIBLINEAR: A Library for Large Linear Classification <http://www.csie.ntu.edu.tw/~cjlin/liblinear/>`__ See also -------- SVC Implementation of Support Vector Machine classifier using libsvm: the kernel can be non-linear but its SMO algorithm does not scale to large number of samples as LinearSVC does. Furthermore SVC multi-class mode is implemented using one vs one scheme while LinearSVC uses one vs the rest. It is possible to implement one vs the rest with SVC by using the :class:`sklearn.multiclass.OneVsRestClassifier` wrapper. Finally SVC can fit dense data without memory copy if the input is C-contiguous. Sparse data will still incur memory copy though. sklearn.linear_model.SGDClassifier SGDClassifier can optimize the same cost function as LinearSVC by adjusting the penalty and loss parameters. In addition it requires less memory, allows incremental (online) learning, and implements various loss functions and regularization regimes. """ def __init__(self, penalty='l2', loss='squared_hinge', dual=True, tol=1e-4, C=1.0, multi_class='ovr', fit_intercept=True, intercept_scaling=1, class_weight=None, verbose=0, random_state=None, max_iter=1000): self.dual = dual self.tol = tol self.C = C self.multi_class = multi_class self.fit_intercept = fit_intercept self.intercept_scaling = intercept_scaling self.class_weight = class_weight self.verbose = verbose self.random_state = random_state self.max_iter = max_iter self.penalty = penalty self.loss = loss def fit(self, X, y): """Fit the model according to the given training data. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training vector, where n_samples in the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] Target vector relative to X Returns ------- self : object Returns self. """ # FIXME Remove l1/l2 support in 1.0 ----------------------------------- loss_l = self.loss.lower() msg = ("loss='%s' has been deprecated in favor of " "loss='%s' as of 0.16. Backward compatibility" " for the loss='%s' will be removed in %s") # FIXME change loss_l --> self.loss after 0.18 if loss_l in ('l1', 'l2'): old_loss = self.loss self.loss = {'l1': 'hinge', 'l2': 'squared_hinge'}.get(loss_l) warnings.warn(msg % (old_loss, self.loss, old_loss, '1.0'), DeprecationWarning) # --------------------------------------------------------------------- if self.C < 0: raise ValueError("Penalty term must be positive; got (C=%r)" % self.C) X, y = check_X_y(X, y, accept_sparse='csr', dtype=np.float64, order="C") self.classes_ = np.unique(y) self.coef_, self.intercept_, self.n_iter_ = _fit_liblinear( X, y, self.C, self.fit_intercept, self.intercept_scaling, self.class_weight, self.penalty, self.dual, self.verbose, self.max_iter, self.tol, self.random_state, self.multi_class, self.loss) if self.multi_class == "crammer_singer" and len(self.classes_) == 2: self.coef_ = (self.coef_[1] - self.coef_[0]).reshape(1, -1) if self.fit_intercept: intercept = self.intercept_[1] - self.intercept_[0] self.intercept_ = np.array([intercept]) return self class LinearSVR(LinearModel, RegressorMixin): """Linear Support Vector Regression. Similar to SVR with parameter kernel='linear', but implemented in terms of liblinear rather than libsvm, so it has more flexibility in the choice of penalties and loss functions and should scale better to large numbers of samples. This class supports both dense and sparse input. Read more in the :ref:`User Guide <svm_regression>`. Parameters ---------- C : float, optional (default=1.0) Penalty parameter C of the error term. The penalty is a squared l2 penalty. The bigger this parameter, the less regularization is used. loss : string, 'epsilon_insensitive' or 'squared_epsilon_insensitive' (default='epsilon_insensitive') Specifies the loss function. 'l1' is the epsilon-insensitive loss (standard SVR) while 'l2' is the squared epsilon-insensitive loss. epsilon : float, optional (default=0.1) Epsilon parameter in the epsilon-insensitive loss function. Note that the value of this parameter depends on the scale of the target variable y. If unsure, set epsilon=0. dual : bool, (default=True) Select the algorithm to either solve the dual or primal optimization problem. Prefer dual=False when n_samples > n_features. tol : float, optional (default=1e-4) Tolerance for stopping criteria. fit_intercept : boolean, optional (default=True) Whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (i.e. data is expected to be already centered). intercept_scaling : float, optional (default=1) When self.fit_intercept is True, instance vector x becomes [x, self.intercept_scaling], i.e. a "synthetic" feature with constant value equals to intercept_scaling is appended to the instance vector. The intercept becomes intercept_scaling * synthetic feature weight Note! the synthetic feature weight is subject to l1/l2 regularization as all other features. To lessen the effect of regularization on synthetic feature weight (and therefore on the intercept) intercept_scaling has to be increased. verbose : int, (default=0) Enable verbose output. Note that this setting takes advantage of a per-process runtime setting in liblinear that, if enabled, may not work properly in a multithreaded context. random_state : int seed, RandomState instance, or None (default=None) The seed of the pseudo random number generator to use when shuffling the data. max_iter : int, (default=1000) The maximum number of iterations to be run. Attributes ---------- coef_ : array, shape = [n_features] if n_classes == 2 else [n_classes, n_features] Weights assigned to the features (coefficients in the primal problem). This is only available in the case of a linear kernel. `coef_` is a readonly property derived from `raw_coef_` that follows the internal memory layout of liblinear. intercept_ : array, shape = [1] if n_classes == 2 else [n_classes] Constants in decision function. See also -------- LinearSVC Implementation of Support Vector Machine classifier using the same library as this class (liblinear). SVR Implementation of Support Vector Machine regression using libsvm: the kernel can be non-linear but its SMO algorithm does not scale to large number of samples as LinearSVC does. sklearn.linear_model.SGDRegressor SGDRegressor can optimize the same cost function as LinearSVR by adjusting the penalty and loss parameters. In addition it requires less memory, allows incremental (online) learning, and implements various loss functions and regularization regimes. """ def __init__(self, epsilon=0.0, tol=1e-4, C=1.0, loss='epsilon_insensitive', fit_intercept=True, intercept_scaling=1., dual=True, verbose=0, random_state=None, max_iter=1000): self.tol = tol self.C = C self.epsilon = epsilon self.fit_intercept = fit_intercept self.intercept_scaling = intercept_scaling self.verbose = verbose self.random_state = random_state self.max_iter = max_iter self.dual = dual self.loss = loss def fit(self, X, y): """Fit the model according to the given training data. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training vector, where n_samples in the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] Target vector relative to X Returns ------- self : object Returns self. """ # FIXME Remove l1/l2 support in 1.0 ----------------------------------- loss_l = self.loss.lower() msg = ("loss='%s' has been deprecated in favor of " "loss='%s' as of 0.16. Backward compatibility" " for the loss='%s' will be removed in %s") # FIXME change loss_l --> self.loss after 0.18 if loss_l in ('l1', 'l2'): old_loss = self.loss self.loss = {'l1': 'epsilon_insensitive', 'l2': 'squared_epsilon_insensitive' }.get(loss_l) warnings.warn(msg % (old_loss, self.loss, old_loss, '1.0'), DeprecationWarning) # --------------------------------------------------------------------- if self.C < 0: raise ValueError("Penalty term must be positive; got (C=%r)" % self.C) X, y = check_X_y(X, y, accept_sparse='csr', dtype=np.float64, order="C") penalty = 'l2' # SVR only accepts l2 penalty self.coef_, self.intercept_, self.n_iter_ = _fit_liblinear( X, y, self.C, self.fit_intercept, self.intercept_scaling, None, penalty, self.dual, self.verbose, self.max_iter, self.tol, self.random_state, loss=self.loss, epsilon=self.epsilon) self.coef_ = self.coef_.ravel() return self class SVC(BaseSVC): """C-Support Vector Classification. The implementation is based on libsvm. The fit time complexity is more than quadratic with the number of samples which makes it hard to scale to dataset with more than a couple of 10000 samples. The multiclass support is handled according to a one-vs-one scheme. For details on the precise mathematical formulation of the provided kernel functions and how `gamma`, `coef0` and `degree` affect each other, see the corresponding section in the narrative documentation: :ref:`svm_kernels`. Read more in the :ref:`User Guide <svm_classification>`. Parameters ---------- C : float, optional (default=1.0) Penalty parameter C of the error term. kernel : string, optional (default='rbf') Specifies the kernel type to be used in the algorithm. It must be one of 'linear', 'poly', 'rbf', 'sigmoid', 'precomputed' or a callable. If none is given, 'rbf' will be used. If a callable is given it is used to pre-compute the kernel matrix from data matrices; that matrix should be an array of shape ``(n_samples, n_samples)``. degree : int, optional (default=3) Degree of the polynomial kernel function ('poly'). Ignored by all other kernels. gamma : float, optional (default='auto') Kernel coefficient for 'rbf', 'poly' and 'sigmoid'. If gamma is 'auto' then 1/n_features will be used instead. coef0 : float, optional (default=0.0) Independent term in kernel function. It is only significant in 'poly' and 'sigmoid'. probability : boolean, optional (default=False) Whether to enable probability estimates. This must be enabled prior to calling `fit`, and will slow down that method. shrinking : boolean, optional (default=True) Whether to use the shrinking heuristic. tol : float, optional (default=1e-3) Tolerance for stopping criterion. cache_size : float, optional Specify the size of the kernel cache (in MB). class_weight : {dict, 'balanced'}, optional Set the parameter C of class i to class_weight[i]*C for SVC. If not given, all classes are supposed to have weight one. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))`` verbose : bool, default: False Enable verbose output. Note that this setting takes advantage of a per-process runtime setting in libsvm that, if enabled, may not work properly in a multithreaded context. max_iter : int, optional (default=-1) Hard limit on iterations within solver, or -1 for no limit. decision_function_shape : 'ovo', 'ovr' or None, default=None Whether to return a one-vs-rest ('ovr') ecision function of shape (n_samples, n_classes) as all other classifiers, or the original one-vs-one ('ovo') decision function of libsvm which has shape (n_samples, n_classes * (n_classes - 1) / 2). The default of None will currently behave as 'ovo' for backward compatibility and raise a deprecation warning, but will change 'ovr' in 0.18. random_state : int seed, RandomState instance, or None (default) The seed of the pseudo random number generator to use when shuffling the data for probability estimation. Attributes ---------- support_ : array-like, shape = [n_SV] Indices of support vectors. support_vectors_ : array-like, shape = [n_SV, n_features] Support vectors. n_support_ : array-like, dtype=int32, shape = [n_class] Number of support vectors for each class. dual_coef_ : array, shape = [n_class-1, n_SV] Coefficients of the support vector in the decision function. For multiclass, coefficient for all 1-vs-1 classifiers. The layout of the coefficients in the multiclass case is somewhat non-trivial. See the section about multi-class classification in the SVM section of the User Guide for details. coef_ : array, shape = [n_class-1, n_features] Weights assigned to the features (coefficients in the primal problem). This is only available in the case of a linear kernel. `coef_` is a readonly property derived from `dual_coef_` and `support_vectors_`. intercept_ : array, shape = [n_class * (n_class-1) / 2] Constants in decision function. Examples -------- >>> import numpy as np >>> X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]]) >>> y = np.array([1, 1, 2, 2]) >>> from sklearn.svm import SVC >>> clf = SVC() >>> clf.fit(X, y) #doctest: +NORMALIZE_WHITESPACE SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0, decision_function_shape=None, degree=3, gamma='auto', kernel='rbf', max_iter=-1, probability=False, random_state=None, shrinking=True, tol=0.001, verbose=False) >>> print(clf.predict([[-0.8, -1]])) [1] See also -------- SVR Support Vector Machine for Regression implemented using libsvm. LinearSVC Scalable Linear Support Vector Machine for classification implemented using liblinear. Check the See also section of LinearSVC for more comparison element. """ def __init__(self, C=1.0, kernel='rbf', degree=3, gamma='auto', coef0=0.0, shrinking=True, probability=False, tol=1e-3, cache_size=200, class_weight=None, verbose=False, max_iter=-1, decision_function_shape=None, random_state=None): super(SVC, self).__init__( impl='c_svc', kernel=kernel, degree=degree, gamma=gamma, coef0=coef0, tol=tol, C=C, nu=0., shrinking=shrinking, probability=probability, cache_size=cache_size, class_weight=class_weight, verbose=verbose, max_iter=max_iter, decision_function_shape=decision_function_shape, random_state=random_state) class NuSVC(BaseSVC): """Nu-Support Vector Classification. Similar to SVC but uses a parameter to control the number of support vectors. The implementation is based on libsvm. Read more in the :ref:`User Guide <svm_classification>`. Parameters ---------- nu : float, optional (default=0.5) An upper bound on the fraction of training errors and a lower bound of the fraction of support vectors. Should be in the interval (0, 1]. kernel : string, optional (default='rbf') Specifies the kernel type to be used in the algorithm. It must be one of 'linear', 'poly', 'rbf', 'sigmoid', 'precomputed' or a callable. If none is given, 'rbf' will be used. If a callable is given it is used to precompute the kernel matrix. degree : int, optional (default=3) Degree of the polynomial kernel function ('poly'). Ignored by all other kernels. gamma : float, optional (default='auto') Kernel coefficient for 'rbf', 'poly' and 'sigmoid'. If gamma is 'auto' then 1/n_features will be used instead. coef0 : float, optional (default=0.0) Independent term in kernel function. It is only significant in 'poly' and 'sigmoid'. probability : boolean, optional (default=False) Whether to enable probability estimates. This must be enabled prior to calling `fit`, and will slow down that method. shrinking : boolean, optional (default=True) Whether to use the shrinking heuristic. tol : float, optional (default=1e-3) Tolerance for stopping criterion. cache_size : float, optional Specify the size of the kernel cache (in MB). class_weight : {dict, 'auto'}, optional Set the parameter C of class i to class_weight[i]*C for SVC. If not given, all classes are supposed to have weight one. The 'auto' mode uses the values of y to automatically adjust weights inversely proportional to class frequencies. verbose : bool, default: False Enable verbose output. Note that this setting takes advantage of a per-process runtime setting in libsvm that, if enabled, may not work properly in a multithreaded context. max_iter : int, optional (default=-1) Hard limit on iterations within solver, or -1 for no limit. decision_function_shape : 'ovo', 'ovr' or None, default=None Whether to return a one-vs-rest ('ovr') ecision function of shape (n_samples, n_classes) as all other classifiers, or the original one-vs-one ('ovo') decision function of libsvm which has shape (n_samples, n_classes * (n_classes - 1) / 2). The default of None will currently behave as 'ovo' for backward compatibility and raise a deprecation warning, but will change 'ovr' in 0.18. random_state : int seed, RandomState instance, or None (default) The seed of the pseudo random number generator to use when shuffling the data for probability estimation. Attributes ---------- support_ : array-like, shape = [n_SV] Indices of support vectors. support_vectors_ : array-like, shape = [n_SV, n_features] Support vectors. n_support_ : array-like, dtype=int32, shape = [n_class] Number of support vectors for each class. dual_coef_ : array, shape = [n_class-1, n_SV] Coefficients of the support vector in the decision function. For multiclass, coefficient for all 1-vs-1 classifiers. The layout of the coefficients in the multiclass case is somewhat non-trivial. See the section about multi-class classification in the SVM section of the User Guide for details. coef_ : array, shape = [n_class-1, n_features] Weights assigned to the features (coefficients in the primal problem). This is only available in the case of a linear kernel. `coef_` is readonly property derived from `dual_coef_` and `support_vectors_`. intercept_ : array, shape = [n_class * (n_class-1) / 2] Constants in decision function. Examples -------- >>> import numpy as np >>> X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]]) >>> y = np.array([1, 1, 2, 2]) >>> from sklearn.svm import NuSVC >>> clf = NuSVC() >>> clf.fit(X, y) #doctest: +NORMALIZE_WHITESPACE NuSVC(cache_size=200, class_weight=None, coef0=0.0, decision_function_shape=None, degree=3, gamma='auto', kernel='rbf', max_iter=-1, nu=0.5, probability=False, random_state=None, shrinking=True, tol=0.001, verbose=False) >>> print(clf.predict([[-0.8, -1]])) [1] See also -------- SVC Support Vector Machine for classification using libsvm. LinearSVC Scalable linear Support Vector Machine for classification using liblinear. """ def __init__(self, nu=0.5, kernel='rbf', degree=3, gamma='auto', coef0=0.0, shrinking=True, probability=False, tol=1e-3, cache_size=200, class_weight=None, verbose=False, max_iter=-1, decision_function_shape=None, random_state=None): super(NuSVC, self).__init__( impl='nu_svc', kernel=kernel, degree=degree, gamma=gamma, coef0=coef0, tol=tol, C=0., nu=nu, shrinking=shrinking, probability=probability, cache_size=cache_size, class_weight=class_weight, verbose=verbose, max_iter=max_iter, decision_function_shape=decision_function_shape, random_state=random_state) class SVR(BaseLibSVM, RegressorMixin): """Epsilon-Support Vector Regression. The free parameters in the model are C and epsilon. The implementation is based on libsvm. Read more in the :ref:`User Guide <svm_regression>`. Parameters ---------- C : float, optional (default=1.0) Penalty parameter C of the error term. epsilon : float, optional (default=0.1) Epsilon in the epsilon-SVR model. It specifies the epsilon-tube within which no penalty is associated in the training loss function with points predicted within a distance epsilon from the actual value. kernel : string, optional (default='rbf') Specifies the kernel type to be used in the algorithm. It must be one of 'linear', 'poly', 'rbf', 'sigmoid', 'precomputed' or a callable. If none is given, 'rbf' will be used. If a callable is given it is used to precompute the kernel matrix. degree : int, optional (default=3) Degree of the polynomial kernel function ('poly'). Ignored by all other kernels. gamma : float, optional (default='auto') Kernel coefficient for 'rbf', 'poly' and 'sigmoid'. If gamma is 'auto' then 1/n_features will be used instead. coef0 : float, optional (default=0.0) Independent term in kernel function. It is only significant in 'poly' and 'sigmoid'. shrinking : boolean, optional (default=True) Whether to use the shrinking heuristic. tol : float, optional (default=1e-3) Tolerance for stopping criterion. cache_size : float, optional Specify the size of the kernel cache (in MB). verbose : bool, default: False Enable verbose output. Note that this setting takes advantage of a per-process runtime setting in libsvm that, if enabled, may not work properly in a multithreaded context. max_iter : int, optional (default=-1) Hard limit on iterations within solver, or -1 for no limit. Attributes ---------- support_ : array-like, shape = [n_SV] Indices of support vectors. support_vectors_ : array-like, shape = [nSV, n_features] Support vectors. dual_coef_ : array, shape = [1, n_SV] Coefficients of the support vector in the decision function. coef_ : array, shape = [1, n_features] Weights assigned to the features (coefficients in the primal problem). This is only available in the case of a linear kernel. `coef_` is readonly property derived from `dual_coef_` and `support_vectors_`. intercept_ : array, shape = [1] Constants in decision function. Examples -------- >>> from sklearn.svm import SVR >>> import numpy as np >>> n_samples, n_features = 10, 5 >>> np.random.seed(0) >>> y = np.random.randn(n_samples) >>> X = np.random.randn(n_samples, n_features) >>> clf = SVR(C=1.0, epsilon=0.2) >>> clf.fit(X, y) #doctest: +NORMALIZE_WHITESPACE SVR(C=1.0, cache_size=200, coef0=0.0, degree=3, epsilon=0.2, gamma='auto', kernel='rbf', max_iter=-1, shrinking=True, tol=0.001, verbose=False) See also -------- NuSVR Support Vector Machine for regression implemented using libsvm using a parameter to control the number of support vectors. LinearSVR Scalable Linear Support Vector Machine for regression implemented using liblinear. """ def __init__(self, kernel='rbf', degree=3, gamma='auto', coef0=0.0, tol=1e-3, C=1.0, epsilon=0.1, shrinking=True, cache_size=200, verbose=False, max_iter=-1): super(SVR, self).__init__( 'epsilon_svr', kernel=kernel, degree=degree, gamma=gamma, coef0=coef0, tol=tol, C=C, nu=0., epsilon=epsilon, verbose=verbose, shrinking=shrinking, probability=False, cache_size=cache_size, class_weight=None, max_iter=max_iter, random_state=None) class NuSVR(BaseLibSVM, RegressorMixin): """Nu Support Vector Regression. Similar to NuSVC, for regression, uses a parameter nu to control the number of support vectors. However, unlike NuSVC, where nu replaces C, here nu replaces the parameter epsilon of epsilon-SVR. The implementation is based on libsvm. Read more in the :ref:`User Guide <svm_regression>`. Parameters ---------- C : float, optional (default=1.0) Penalty parameter C of the error term. nu : float, optional An upper bound on the fraction of training errors and a lower bound of the fraction of support vectors. Should be in the interval (0, 1]. By default 0.5 will be taken. kernel : string, optional (default='rbf') Specifies the kernel type to be used in the algorithm. It must be one of 'linear', 'poly', 'rbf', 'sigmoid', 'precomputed' or a callable. If none is given, 'rbf' will be used. If a callable is given it is used to precompute the kernel matrix. degree : int, optional (default=3) Degree of the polynomial kernel function ('poly'). Ignored by all other kernels. gamma : float, optional (default='auto') Kernel coefficient for 'rbf', 'poly' and 'sigmoid'. If gamma is 'auto' then 1/n_features will be used instead. coef0 : float, optional (default=0.0) Independent term in kernel function. It is only significant in 'poly' and 'sigmoid'. shrinking : boolean, optional (default=True) Whether to use the shrinking heuristic. tol : float, optional (default=1e-3) Tolerance for stopping criterion. cache_size : float, optional Specify the size of the kernel cache (in MB). verbose : bool, default: False Enable verbose output. Note that this setting takes advantage of a per-process runtime setting in libsvm that, if enabled, may not work properly in a multithreaded context. max_iter : int, optional (default=-1) Hard limit on iterations within solver, or -1 for no limit. Attributes ---------- support_ : array-like, shape = [n_SV] Indices of support vectors. support_vectors_ : array-like, shape = [nSV, n_features] Support vectors. dual_coef_ : array, shape = [1, n_SV] Coefficients of the support vector in the decision function. coef_ : array, shape = [1, n_features] Weights assigned to the features (coefficients in the primal problem). This is only available in the case of a linear kernel. `coef_` is readonly property derived from `dual_coef_` and `support_vectors_`. intercept_ : array, shape = [1] Constants in decision function. Examples -------- >>> from sklearn.svm import NuSVR >>> import numpy as np >>> n_samples, n_features = 10, 5 >>> np.random.seed(0) >>> y = np.random.randn(n_samples) >>> X = np.random.randn(n_samples, n_features) >>> clf = NuSVR(C=1.0, nu=0.1) >>> clf.fit(X, y) #doctest: +NORMALIZE_WHITESPACE NuSVR(C=1.0, cache_size=200, coef0=0.0, degree=3, gamma='auto', kernel='rbf', max_iter=-1, nu=0.1, shrinking=True, tol=0.001, verbose=False) See also -------- NuSVC Support Vector Machine for classification implemented with libsvm with a parameter to control the number of support vectors. SVR epsilon Support Vector Machine for regression implemented with libsvm. """ def __init__(self, nu=0.5, C=1.0, kernel='rbf', degree=3, gamma='auto', coef0=0.0, shrinking=True, tol=1e-3, cache_size=200, verbose=False, max_iter=-1): super(NuSVR, self).__init__( 'nu_svr', kernel=kernel, degree=degree, gamma=gamma, coef0=coef0, tol=tol, C=C, nu=nu, epsilon=0., shrinking=shrinking, probability=False, cache_size=cache_size, class_weight=None, verbose=verbose, max_iter=max_iter, random_state=None) class OneClassSVM(BaseLibSVM): """Unsupervised Outlier Detection. Estimate the support of a high-dimensional distribution. The implementation is based on libsvm. Read more in the :ref:`User Guide <svm_outlier_detection>`. Parameters ---------- kernel : string, optional (default='rbf') Specifies the kernel type to be used in the algorithm. It must be one of 'linear', 'poly', 'rbf', 'sigmoid', 'precomputed' or a callable. If none is given, 'rbf' will be used. If a callable is given it is used to precompute the kernel matrix. nu : float, optional An upper bound on the fraction of training errors and a lower bound of the fraction of support vectors. Should be in the interval (0, 1]. By default 0.5 will be taken. degree : int, optional (default=3) Degree of the polynomial kernel function ('poly'). Ignored by all other kernels. gamma : float, optional (default='auto') Kernel coefficient for 'rbf', 'poly' and 'sigmoid'. If gamma is 'auto' then 1/n_features will be used instead. coef0 : float, optional (default=0.0) Independent term in kernel function. It is only significant in 'poly' and 'sigmoid'. tol : float, optional Tolerance for stopping criterion. shrinking : boolean, optional Whether to use the shrinking heuristic. cache_size : float, optional Specify the size of the kernel cache (in MB). verbose : bool, default: False Enable verbose output. Note that this setting takes advantage of a per-process runtime setting in libsvm that, if enabled, may not work properly in a multithreaded context. max_iter : int, optional (default=-1) Hard limit on iterations within solver, or -1 for no limit. random_state : int seed, RandomState instance, or None (default) The seed of the pseudo random number generator to use when shuffling the data for probability estimation. Attributes ---------- support_ : array-like, shape = [n_SV] Indices of support vectors. support_vectors_ : array-like, shape = [nSV, n_features] Support vectors. dual_coef_ : array, shape = [n_classes-1, n_SV] Coefficients of the support vectors in the decision function. coef_ : array, shape = [n_classes-1, n_features] Weights assigned to the features (coefficients in the primal problem). This is only available in the case of a linear kernel. `coef_` is readonly property derived from `dual_coef_` and `support_vectors_` intercept_ : array, shape = [n_classes-1] Constants in decision function. """ def __init__(self, kernel='rbf', degree=3, gamma='auto', coef0=0.0, tol=1e-3, nu=0.5, shrinking=True, cache_size=200, verbose=False, max_iter=-1, random_state=None): super(OneClassSVM, self).__init__( 'one_class', kernel, degree, gamma, coef0, tol, 0., nu, 0., shrinking, False, cache_size, None, verbose, max_iter, random_state) def fit(self, X, y=None, sample_weight=None, **params): """ Detects the soft boundary of the set of samples X. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Set of samples, where n_samples is the number of samples and n_features is the number of features. sample_weight : array-like, shape (n_samples,) Per-sample weights. Rescale C per sample. Higher weights force the classifier to put more emphasis on these points. Returns ------- self : object Returns self. Notes ----- If X is not a C-ordered contiguous array it is copied. """ super(OneClassSVM, self).fit(X, np.ones(_num_samples(X)), sample_weight=sample_weight, **params) return self def decision_function(self, X): """Distance of the samples X to the separating hyperplane. Parameters ---------- X : array-like, shape (n_samples, n_features) Returns ------- X : array-like, shape (n_samples,) Returns the decision function of the samples. """ dec = self._decision_function(X) return dec
bsd-3-clause
mahak/spark
python/pyspark/sql/tests/test_arrow.py
15
27974
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import datetime import os import threading import time import unittest import warnings from distutils.version import LooseVersion from pyspark import SparkContext, SparkConf from pyspark.sql import Row, SparkSession from pyspark.sql.functions import rand, udf from pyspark.sql.types import StructType, StringType, IntegerType, LongType, \ FloatType, DoubleType, DecimalType, DateType, TimestampType, BinaryType, StructField, \ ArrayType, NullType from pyspark.testing.sqlutils import ReusedSQLTestCase, have_pandas, have_pyarrow, \ pandas_requirement_message, pyarrow_requirement_message from pyspark.testing.utils import QuietTest if have_pandas: import pandas as pd from pandas.testing import assert_frame_equal if have_pyarrow: import pyarrow as pa # noqa: F401 @unittest.skipIf( not have_pandas or not have_pyarrow, pandas_requirement_message or pyarrow_requirement_message) # type: ignore class ArrowTests(ReusedSQLTestCase): @classmethod def setUpClass(cls): from datetime import date, datetime from decimal import Decimal super(ArrowTests, cls).setUpClass() cls.warnings_lock = threading.Lock() # Synchronize default timezone between Python and Java cls.tz_prev = os.environ.get("TZ", None) # save current tz if set tz = "America/Los_Angeles" os.environ["TZ"] = tz time.tzset() cls.spark.conf.set("spark.sql.session.timeZone", tz) # Test fallback cls.spark.conf.set("spark.sql.execution.arrow.enabled", "false") assert cls.spark.conf.get("spark.sql.execution.arrow.pyspark.enabled") == "false" cls.spark.conf.set("spark.sql.execution.arrow.enabled", "true") assert cls.spark.conf.get("spark.sql.execution.arrow.pyspark.enabled") == "true" cls.spark.conf.set("spark.sql.execution.arrow.fallback.enabled", "true") assert cls.spark.conf.get("spark.sql.execution.arrow.pyspark.fallback.enabled") == "true" cls.spark.conf.set("spark.sql.execution.arrow.fallback.enabled", "false") assert cls.spark.conf.get("spark.sql.execution.arrow.pyspark.fallback.enabled") == "false" # Enable Arrow optimization in this tests. cls.spark.conf.set("spark.sql.execution.arrow.pyspark.enabled", "true") # Disable fallback by default to easily detect the failures. cls.spark.conf.set("spark.sql.execution.arrow.pyspark.fallback.enabled", "false") cls.schema_wo_null = StructType([ StructField("1_str_t", StringType(), True), StructField("2_int_t", IntegerType(), True), StructField("3_long_t", LongType(), True), StructField("4_float_t", FloatType(), True), StructField("5_double_t", DoubleType(), True), StructField("6_decimal_t", DecimalType(38, 18), True), StructField("7_date_t", DateType(), True), StructField("8_timestamp_t", TimestampType(), True), StructField("9_binary_t", BinaryType(), True)]) cls.schema = cls.schema_wo_null.add("10_null_t", NullType(), True) cls.data_wo_null = [ (u"a", 1, 10, 0.2, 2.0, Decimal("2.0"), date(1969, 1, 1), datetime(1969, 1, 1, 1, 1, 1), bytearray(b"a")), (u"b", 2, 20, 0.4, 4.0, Decimal("4.0"), date(2012, 2, 2), datetime(2012, 2, 2, 2, 2, 2), bytearray(b"bb")), (u"c", 3, 30, 0.8, 6.0, Decimal("6.0"), date(2100, 3, 3), datetime(2100, 3, 3, 3, 3, 3), bytearray(b"ccc")), (u"d", 4, 40, 1.0, 8.0, Decimal("8.0"), date(2262, 4, 12), datetime(2262, 3, 3, 3, 3, 3), bytearray(b"dddd")), ] cls.data = [tuple(list(d) + [None]) for d in cls.data_wo_null] @classmethod def tearDownClass(cls): del os.environ["TZ"] if cls.tz_prev is not None: os.environ["TZ"] = cls.tz_prev time.tzset() super(ArrowTests, cls).tearDownClass() def create_pandas_data_frame(self): import numpy as np data_dict = {} for j, name in enumerate(self.schema.names): data_dict[name] = [self.data[i][j] for i in range(len(self.data))] # need to convert these to numpy types first data_dict["2_int_t"] = np.int32(data_dict["2_int_t"]) data_dict["4_float_t"] = np.float32(data_dict["4_float_t"]) return pd.DataFrame(data=data_dict) def test_toPandas_fallback_enabled(self): ts = datetime.datetime(2015, 11, 1, 0, 30) with self.sql_conf({"spark.sql.execution.arrow.pyspark.fallback.enabled": True}): schema = StructType([StructField("a", ArrayType(TimestampType()), True)]) df = self.spark.createDataFrame([([ts],)], schema=schema) with QuietTest(self.sc): with self.warnings_lock: with warnings.catch_warnings(record=True) as warns: # we want the warnings to appear even if this test is run from a subclass warnings.simplefilter("always") pdf = df.toPandas() # Catch and check the last UserWarning. user_warns = [ warn.message for warn in warns if isinstance(warn.message, UserWarning)] self.assertTrue(len(user_warns) > 0) self.assertTrue( "Attempting non-optimization" in str(user_warns[-1])) assert_frame_equal(pdf, pd.DataFrame({"a": [[ts]]})) def test_toPandas_fallback_disabled(self): schema = StructType([StructField("a", ArrayType(TimestampType()), True)]) df = self.spark.createDataFrame([(None,)], schema=schema) with QuietTest(self.sc): with self.warnings_lock: with self.assertRaisesRegex(Exception, 'Unsupported type'): df.toPandas() def test_null_conversion(self): df_null = self.spark.createDataFrame( [tuple([None for _ in range(len(self.data_wo_null[0]))])] + self.data_wo_null) pdf = df_null.toPandas() null_counts = pdf.isnull().sum().tolist() self.assertTrue(all([c == 1 for c in null_counts])) def _toPandas_arrow_toggle(self, df): with self.sql_conf({"spark.sql.execution.arrow.pyspark.enabled": False}): pdf = df.toPandas() pdf_arrow = df.toPandas() return pdf, pdf_arrow def test_toPandas_arrow_toggle(self): df = self.spark.createDataFrame(self.data, schema=self.schema) pdf, pdf_arrow = self._toPandas_arrow_toggle(df) expected = self.create_pandas_data_frame() assert_frame_equal(expected, pdf) assert_frame_equal(expected, pdf_arrow) def test_toPandas_respect_session_timezone(self): df = self.spark.createDataFrame(self.data, schema=self.schema) timezone = "America/Los_Angeles" with self.sql_conf({"spark.sql.session.timeZone": timezone}): pdf_la, pdf_arrow_la = self._toPandas_arrow_toggle(df) assert_frame_equal(pdf_arrow_la, pdf_la) timezone = "America/New_York" with self.sql_conf({"spark.sql.session.timeZone": timezone}): pdf_ny, pdf_arrow_ny = self._toPandas_arrow_toggle(df) assert_frame_equal(pdf_arrow_ny, pdf_ny) self.assertFalse(pdf_ny.equals(pdf_la)) from pyspark.sql.pandas.types import _check_series_convert_timestamps_local_tz pdf_la_corrected = pdf_la.copy() for field in self.schema: if isinstance(field.dataType, TimestampType): pdf_la_corrected[field.name] = _check_series_convert_timestamps_local_tz( pdf_la_corrected[field.name], timezone) assert_frame_equal(pdf_ny, pdf_la_corrected) def test_pandas_round_trip(self): pdf = self.create_pandas_data_frame() df = self.spark.createDataFrame(self.data, schema=self.schema) pdf_arrow = df.toPandas() assert_frame_equal(pdf_arrow, pdf) def test_pandas_self_destruct(self): import pyarrow as pa rows = 2 ** 10 cols = 4 expected_bytes = rows * cols * 8 df = self.spark.range(0, rows).select(*[rand() for _ in range(cols)]) # Test the self_destruct behavior by testing _collect_as_arrow directly allocation_before = pa.total_allocated_bytes() batches = df._collect_as_arrow(split_batches=True) table = pa.Table.from_batches(batches) del batches pdf_split = table.to_pandas(self_destruct=True, split_blocks=True, use_threads=False) allocation_after = pa.total_allocated_bytes() difference = allocation_after - allocation_before # Should be around 1x the data size (table should not hold on to any memory) self.assertGreaterEqual(difference, 0.9 * expected_bytes) self.assertLessEqual(difference, 1.1 * expected_bytes) with self.sql_conf({"spark.sql.execution.arrow.pyspark.selfDestruct.enabled": False}): no_self_destruct_pdf = df.toPandas() # Note while memory usage is 2x data size here (both table and pdf hold on to # memory), in this case Arrow still only tracks 1x worth of memory (since the # batches are not allocated by Arrow in this case), so we can't make any # assertions here with self.sql_conf({"spark.sql.execution.arrow.pyspark.selfDestruct.enabled": True}): self_destruct_pdf = df.toPandas() assert_frame_equal(pdf_split, no_self_destruct_pdf) assert_frame_equal(pdf_split, self_destruct_pdf) def test_filtered_frame(self): df = self.spark.range(3).toDF("i") pdf = df.filter("i < 0").toPandas() self.assertEqual(len(pdf.columns), 1) self.assertEqual(pdf.columns[0], "i") self.assertTrue(pdf.empty) def test_no_partition_frame(self): schema = StructType([StructField("field1", StringType(), True)]) df = self.spark.createDataFrame(self.sc.emptyRDD(), schema) pdf = df.toPandas() self.assertEqual(len(pdf.columns), 1) self.assertEqual(pdf.columns[0], "field1") self.assertTrue(pdf.empty) def test_propagates_spark_exception(self): df = self.spark.range(3).toDF("i") def raise_exception(): raise RuntimeError("My error") exception_udf = udf(raise_exception, IntegerType()) df = df.withColumn("error", exception_udf()) with QuietTest(self.sc): with self.assertRaisesRegex(Exception, 'My error'): df.toPandas() def _createDataFrame_toggle(self, pdf, schema=None): with self.sql_conf({"spark.sql.execution.arrow.pyspark.enabled": False}): df_no_arrow = self.spark.createDataFrame(pdf, schema=schema) df_arrow = self.spark.createDataFrame(pdf, schema=schema) return df_no_arrow, df_arrow def test_createDataFrame_toggle(self): pdf = self.create_pandas_data_frame() df_no_arrow, df_arrow = self._createDataFrame_toggle(pdf, schema=self.schema) self.assertEqual(df_no_arrow.collect(), df_arrow.collect()) def test_createDataFrame_respect_session_timezone(self): from datetime import timedelta pdf = self.create_pandas_data_frame() timezone = "America/Los_Angeles" with self.sql_conf({"spark.sql.session.timeZone": timezone}): df_no_arrow_la, df_arrow_la = self._createDataFrame_toggle(pdf, schema=self.schema) result_la = df_no_arrow_la.collect() result_arrow_la = df_arrow_la.collect() self.assertEqual(result_la, result_arrow_la) timezone = "America/New_York" with self.sql_conf({"spark.sql.session.timeZone": timezone}): df_no_arrow_ny, df_arrow_ny = self._createDataFrame_toggle(pdf, schema=self.schema) result_ny = df_no_arrow_ny.collect() result_arrow_ny = df_arrow_ny.collect() self.assertEqual(result_ny, result_arrow_ny) self.assertNotEqual(result_ny, result_la) # Correct result_la by adjusting 3 hours difference between Los Angeles and New York result_la_corrected = [Row(**{k: v - timedelta(hours=3) if k == '8_timestamp_t' else v for k, v in row.asDict().items()}) for row in result_la] self.assertEqual(result_ny, result_la_corrected) def test_createDataFrame_with_schema(self): pdf = self.create_pandas_data_frame() df = self.spark.createDataFrame(pdf, schema=self.schema) self.assertEqual(self.schema, df.schema) pdf_arrow = df.toPandas() assert_frame_equal(pdf_arrow, pdf) def test_createDataFrame_with_incorrect_schema(self): pdf = self.create_pandas_data_frame() fields = list(self.schema) fields[5], fields[6] = fields[6], fields[5] # swap decimal with date wrong_schema = StructType(fields) with self.sql_conf({"spark.sql.execution.pandas.convertToArrowArraySafely": False}): with QuietTest(self.sc): with self.assertRaisesRegex(Exception, "[D|d]ecimal.*got.*date"): self.spark.createDataFrame(pdf, schema=wrong_schema) def test_createDataFrame_with_names(self): pdf = self.create_pandas_data_frame() new_names = list(map(str, range(len(self.schema.fieldNames())))) # Test that schema as a list of column names gets applied df = self.spark.createDataFrame(pdf, schema=list(new_names)) self.assertEqual(df.schema.fieldNames(), new_names) # Test that schema as tuple of column names gets applied df = self.spark.createDataFrame(pdf, schema=tuple(new_names)) self.assertEqual(df.schema.fieldNames(), new_names) def test_createDataFrame_column_name_encoding(self): pdf = pd.DataFrame({u'a': [1]}) columns = self.spark.createDataFrame(pdf).columns self.assertTrue(isinstance(columns[0], str)) self.assertEqual(columns[0], 'a') columns = self.spark.createDataFrame(pdf, [u'b']).columns self.assertTrue(isinstance(columns[0], str)) self.assertEqual(columns[0], 'b') def test_createDataFrame_with_single_data_type(self): with QuietTest(self.sc): with self.assertRaisesRegex(ValueError, ".*IntegerType.*not supported.*"): self.spark.createDataFrame(pd.DataFrame({"a": [1]}), schema="int") def test_createDataFrame_does_not_modify_input(self): # Some series get converted for Spark to consume, this makes sure input is unchanged pdf = self.create_pandas_data_frame() # Use a nanosecond value to make sure it is not truncated pdf.iloc[0, 7] = pd.Timestamp(1) # Integers with nulls will get NaNs filled with 0 and will be casted pdf.iloc[1, 1] = None pdf_copy = pdf.copy(deep=True) self.spark.createDataFrame(pdf, schema=self.schema) self.assertTrue(pdf.equals(pdf_copy)) def test_schema_conversion_roundtrip(self): from pyspark.sql.pandas.types import from_arrow_schema, to_arrow_schema arrow_schema = to_arrow_schema(self.schema) schema_rt = from_arrow_schema(arrow_schema) self.assertEqual(self.schema, schema_rt) def test_createDataFrame_with_array_type(self): pdf = pd.DataFrame({"a": [[1, 2], [3, 4]], "b": [[u"x", u"y"], [u"y", u"z"]]}) df, df_arrow = self._createDataFrame_toggle(pdf) result = df.collect() result_arrow = df_arrow.collect() expected = [tuple(list(e) for e in rec) for rec in pdf.to_records(index=False)] for r in range(len(expected)): for e in range(len(expected[r])): self.assertTrue(expected[r][e] == result_arrow[r][e] and result[r][e] == result_arrow[r][e]) def test_toPandas_with_array_type(self): expected = [([1, 2], [u"x", u"y"]), ([3, 4], [u"y", u"z"])] array_schema = StructType([StructField("a", ArrayType(IntegerType())), StructField("b", ArrayType(StringType()))]) df = self.spark.createDataFrame(expected, schema=array_schema) pdf, pdf_arrow = self._toPandas_arrow_toggle(df) result = [tuple(list(e) for e in rec) for rec in pdf.to_records(index=False)] result_arrow = [tuple(list(e) for e in rec) for rec in pdf_arrow.to_records(index=False)] for r in range(len(expected)): for e in range(len(expected[r])): self.assertTrue(expected[r][e] == result_arrow[r][e] and result[r][e] == result_arrow[r][e]) def test_createDataFrame_with_map_type(self): map_data = [{"a": 1}, {"b": 2, "c": 3}, {}, None, {"d": None}] pdf = pd.DataFrame({"id": [0, 1, 2, 3, 4], "m": map_data}) schema = "id long, m map<string, long>" with self.sql_conf({"spark.sql.execution.arrow.pyspark.enabled": False}): df = self.spark.createDataFrame(pdf, schema=schema) if LooseVersion(pa.__version__) < LooseVersion("2.0.0"): with QuietTest(self.sc): with self.assertRaisesRegex(Exception, "MapType.*only.*pyarrow 2.0.0"): self.spark.createDataFrame(pdf, schema=schema) else: df_arrow = self.spark.createDataFrame(pdf, schema=schema) result = df.collect() result_arrow = df_arrow.collect() self.assertEqual(len(result), len(result_arrow)) for row, row_arrow in zip(result, result_arrow): i, m = row _, m_arrow = row_arrow self.assertEqual(m, map_data[i]) self.assertEqual(m_arrow, map_data[i]) def test_toPandas_with_map_type(self): pdf = pd.DataFrame({"id": [0, 1, 2, 3], "m": [{}, {"a": 1}, {"a": 1, "b": 2}, {"a": 1, "b": 2, "c": 3}]}) with self.sql_conf({"spark.sql.execution.arrow.pyspark.enabled": False}): df = self.spark.createDataFrame(pdf, schema="id long, m map<string, long>") if LooseVersion(pa.__version__) < LooseVersion("2.0.0"): with QuietTest(self.sc): with self.assertRaisesRegex(Exception, "MapType.*only.*pyarrow 2.0.0"): df.toPandas() else: pdf_non, pdf_arrow = self._toPandas_arrow_toggle(df) assert_frame_equal(pdf_arrow, pdf_non) def test_toPandas_with_map_type_nulls(self): pdf = pd.DataFrame({"id": [0, 1, 2, 3, 4], "m": [{"a": 1}, {"b": 2, "c": 3}, {}, None, {"d": None}]}) with self.sql_conf({"spark.sql.execution.arrow.pyspark.enabled": False}): df = self.spark.createDataFrame(pdf, schema="id long, m map<string, long>") if LooseVersion(pa.__version__) < LooseVersion("2.0.0"): with QuietTest(self.sc): with self.assertRaisesRegex(Exception, "MapType.*only.*pyarrow 2.0.0"): df.toPandas() else: pdf_non, pdf_arrow = self._toPandas_arrow_toggle(df) assert_frame_equal(pdf_arrow, pdf_non) def test_createDataFrame_with_int_col_names(self): import numpy as np pdf = pd.DataFrame(np.random.rand(4, 2)) df, df_arrow = self._createDataFrame_toggle(pdf) pdf_col_names = [str(c) for c in pdf.columns] self.assertEqual(pdf_col_names, df.columns) self.assertEqual(pdf_col_names, df_arrow.columns) def test_createDataFrame_fallback_enabled(self): ts = datetime.datetime(2015, 11, 1, 0, 30) with QuietTest(self.sc): with self.sql_conf({"spark.sql.execution.arrow.pyspark.fallback.enabled": True}): with warnings.catch_warnings(record=True) as warns: # we want the warnings to appear even if this test is run from a subclass warnings.simplefilter("always") df = self.spark.createDataFrame( pd.DataFrame({"a": [[ts]]}), "a: array<timestamp>") # Catch and check the last UserWarning. user_warns = [ warn.message for warn in warns if isinstance(warn.message, UserWarning)] self.assertTrue(len(user_warns) > 0) self.assertTrue( "Attempting non-optimization" in str(user_warns[-1])) self.assertEqual(df.collect(), [Row(a=[ts])]) def test_createDataFrame_fallback_disabled(self): with QuietTest(self.sc): with self.assertRaisesRegex(TypeError, 'Unsupported type'): self.spark.createDataFrame( pd.DataFrame({"a": [[datetime.datetime(2015, 11, 1, 0, 30)]]}), "a: array<timestamp>") # Regression test for SPARK-23314 def test_timestamp_dst(self): # Daylight saving time for Los Angeles for 2015 is Sun, Nov 1 at 2:00 am dt = [datetime.datetime(2015, 11, 1, 0, 30), datetime.datetime(2015, 11, 1, 1, 30), datetime.datetime(2015, 11, 1, 2, 30)] pdf = pd.DataFrame({'time': dt}) df_from_python = self.spark.createDataFrame(dt, 'timestamp').toDF('time') df_from_pandas = self.spark.createDataFrame(pdf) assert_frame_equal(pdf, df_from_python.toPandas()) assert_frame_equal(pdf, df_from_pandas.toPandas()) # Regression test for SPARK-28003 def test_timestamp_nat(self): dt = [pd.NaT, pd.Timestamp('2019-06-11'), None] * 100 pdf = pd.DataFrame({'time': dt}) df_no_arrow, df_arrow = self._createDataFrame_toggle(pdf) assert_frame_equal(pdf, df_no_arrow.toPandas()) assert_frame_equal(pdf, df_arrow.toPandas()) def test_toPandas_batch_order(self): def delay_first_part(partition_index, iterator): if partition_index == 0: time.sleep(0.1) return iterator # Collects Arrow RecordBatches out of order in driver JVM then re-orders in Python def run_test(num_records, num_parts, max_records, use_delay=False): df = self.spark.range(num_records, numPartitions=num_parts).toDF("a") if use_delay: df = df.rdd.mapPartitionsWithIndex(delay_first_part).toDF() with self.sql_conf({"spark.sql.execution.arrow.maxRecordsPerBatch": max_records}): pdf, pdf_arrow = self._toPandas_arrow_toggle(df) assert_frame_equal(pdf, pdf_arrow) cases = [ (1024, 512, 2), # Use large num partitions for more likely collecting out of order (64, 8, 2, True), # Use delay in first partition to force collecting out of order (64, 64, 1), # Test single batch per partition (64, 1, 64), # Test single partition, single batch (64, 1, 8), # Test single partition, multiple batches (30, 7, 2), # Test different sized partitions ] for case in cases: run_test(*case) def test_createDateFrame_with_category_type(self): pdf = pd.DataFrame({"A": [u"a", u"b", u"c", u"a"]}) pdf["B"] = pdf["A"].astype('category') category_first_element = dict(enumerate(pdf['B'].cat.categories))[0] with self.sql_conf({"spark.sql.execution.arrow.pyspark.enabled": True}): arrow_df = self.spark.createDataFrame(pdf) arrow_type = arrow_df.dtypes[1][1] result_arrow = arrow_df.toPandas() arrow_first_category_element = result_arrow["B"][0] with self.sql_conf({"spark.sql.execution.arrow.pyspark.enabled": False}): df = self.spark.createDataFrame(pdf) spark_type = df.dtypes[1][1] result_spark = df.toPandas() spark_first_category_element = result_spark["B"][0] assert_frame_equal(result_spark, result_arrow) # ensure original category elements are string self.assertIsInstance(category_first_element, str) # spark data frame and arrow execution mode enabled data frame type must match pandas self.assertEqual(spark_type, 'string') self.assertEqual(arrow_type, 'string') self.assertIsInstance(arrow_first_category_element, str) self.assertIsInstance(spark_first_category_element, str) def test_createDataFrame_with_float_index(self): # SPARK-32098: float index should not produce duplicated or truncated Spark DataFrame self.assertEqual( self.spark.createDataFrame( pd.DataFrame({'a': [1, 2, 3]}, index=[2., 3., 4.])).distinct().count(), 3) def test_no_partition_toPandas(self): # SPARK-32301: toPandas should work from a Spark DataFrame with no partitions # Forward-ported from SPARK-32300. pdf = self.spark.sparkContext.emptyRDD().toDF("col1 int").toPandas() self.assertEqual(len(pdf), 0) self.assertEqual(list(pdf.columns), ["col1"]) def test_createDataFrame_empty_partition(self): pdf = pd.DataFrame({"c1": [1], "c2": ["string"]}) df = self.spark.createDataFrame(pdf) self.assertEqual([Row(c1=1, c2='string')], df.collect()) self.assertGreater(self.spark.sparkContext.defaultParallelism, len(pdf)) @unittest.skipIf( not have_pandas or not have_pyarrow, pandas_requirement_message or pyarrow_requirement_message) # type: ignore class MaxResultArrowTests(unittest.TestCase): # These tests are separate as 'spark.driver.maxResultSize' configuration # is a static configuration to Spark context. @classmethod def setUpClass(cls): cls.spark = SparkSession(SparkContext( 'local[4]', cls.__name__, conf=SparkConf().set("spark.driver.maxResultSize", "10k"))) # Explicitly enable Arrow and disable fallback. cls.spark.conf.set("spark.sql.execution.arrow.pyspark.enabled", "true") cls.spark.conf.set("spark.sql.execution.arrow.pyspark.fallback.enabled", "false") @classmethod def tearDownClass(cls): if hasattr(cls, "spark"): cls.spark.stop() def test_exception_by_max_results(self): with self.assertRaisesRegex(Exception, "is bigger than"): self.spark.range(0, 10000, 1, 100).toPandas() class EncryptionArrowTests(ArrowTests): @classmethod def conf(cls): return super(EncryptionArrowTests, cls).conf().set("spark.io.encryption.enabled", "true") if __name__ == "__main__": from pyspark.sql.tests.test_arrow import * # noqa: F401 try: import xmlrunner # type: ignore testRunner = xmlrunner.XMLTestRunner(output='target/test-reports', verbosity=2) except ImportError: testRunner = None unittest.main(testRunner=testRunner, verbosity=2)
apache-2.0
Clyde-fare/scikit-learn
examples/exercises/plot_cv_diabetes.py
231
2527
""" =============================================== Cross-validation on diabetes Dataset Exercise =============================================== A tutorial exercise which uses cross-validation with linear models. This exercise is used in the :ref:`cv_estimators_tut` part of the :ref:`model_selection_tut` section of the :ref:`stat_learn_tut_index`. """ from __future__ import print_function print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import cross_validation, datasets, linear_model diabetes = datasets.load_diabetes() X = diabetes.data[:150] y = diabetes.target[:150] lasso = linear_model.Lasso() alphas = np.logspace(-4, -.5, 30) scores = list() scores_std = list() for alpha in alphas: lasso.alpha = alpha this_scores = cross_validation.cross_val_score(lasso, X, y, n_jobs=1) scores.append(np.mean(this_scores)) scores_std.append(np.std(this_scores)) plt.figure(figsize=(4, 3)) plt.semilogx(alphas, scores) # plot error lines showing +/- std. errors of the scores plt.semilogx(alphas, np.array(scores) + np.array(scores_std) / np.sqrt(len(X)), 'b--') plt.semilogx(alphas, np.array(scores) - np.array(scores_std) / np.sqrt(len(X)), 'b--') plt.ylabel('CV score') plt.xlabel('alpha') plt.axhline(np.max(scores), linestyle='--', color='.5') ############################################################################## # Bonus: how much can you trust the selection of alpha? # To answer this question we use the LassoCV object that sets its alpha # parameter automatically from the data by internal cross-validation (i.e. it # performs cross-validation on the training data it receives). # We use external cross-validation to see how much the automatically obtained # alphas differ across different cross-validation folds. lasso_cv = linear_model.LassoCV(alphas=alphas) k_fold = cross_validation.KFold(len(X), 3) print("Answer to the bonus question:", "how much can you trust the selection of alpha?") print() print("Alpha parameters maximising the generalization score on different") print("subsets of the data:") for k, (train, test) in enumerate(k_fold): lasso_cv.fit(X[train], y[train]) print("[fold {0}] alpha: {1:.5f}, score: {2:.5f}". format(k, lasso_cv.alpha_, lasso_cv.score(X[test], y[test]))) print() print("Answer: Not very much since we obtained different alphas for different") print("subsets of the data and moreover, the scores for these alphas differ") print("quite substantially.") plt.show()
bsd-3-clause
rajul/mne-python
mne/viz/tests/test_decoding.py
10
3823
# Authors: Denis Engemann <[email protected]> # Jean-Remi King <[email protected]> # # License: Simplified BSD import os.path as op import warnings from nose.tools import assert_raises, assert_equals import numpy as np from mne.epochs import equalize_epoch_counts, concatenate_epochs from mne.decoding import GeneralizationAcrossTime from mne import io, Epochs, read_events, pick_types from mne.utils import requires_sklearn, run_tests_if_main import matplotlib matplotlib.use('Agg') # for testing don't use X server data_dir = op.join(op.dirname(__file__), '..', '..', 'io', 'tests', 'data') raw_fname = op.join(data_dir, 'test_raw.fif') event_name = op.join(data_dir, 'test-eve.fif') warnings.simplefilter('always') # enable b/c these tests throw warnings def _get_data(tmin=-0.2, tmax=0.5, event_id=dict(aud_l=1, vis_l=3), event_id_gen=dict(aud_l=2, vis_l=4), test_times=None): """Aux function for testing GAT viz""" gat = GeneralizationAcrossTime() raw = io.Raw(raw_fname, preload=False) events = read_events(event_name) picks = pick_types(raw.info, meg='mag', stim=False, ecg=False, eog=False, exclude='bads') picks = picks[1:13:3] decim = 30 # Test on time generalization within one condition with warnings.catch_warnings(record=True): epochs = Epochs(raw, events, event_id, tmin, tmax, picks=picks, baseline=(None, 0), preload=True, decim=decim) epochs_list = [epochs[k] for k in event_id] equalize_epoch_counts(epochs_list) epochs = concatenate_epochs(epochs_list) # Test default running gat = GeneralizationAcrossTime(test_times=test_times) gat.fit(epochs) gat.score(epochs) return gat @requires_sklearn def test_gat_plot_matrix(): """Test GAT matrix plot""" gat = _get_data() gat.plot() del gat.scores_ assert_raises(RuntimeError, gat.plot) @requires_sklearn def test_gat_plot_diagonal(): """Test GAT diagonal plot""" gat = _get_data() gat.plot_diagonal() del gat.scores_ assert_raises(RuntimeError, gat.plot) @requires_sklearn def test_gat_plot_times(): """Test GAT times plot""" gat = _get_data() # test one line gat.plot_times(gat.train_times_['times'][0]) # test multiple lines gat.plot_times(gat.train_times_['times']) # test multiple colors n_times = len(gat.train_times_['times']) colors = np.tile(['r', 'g', 'b'], int(np.ceil(n_times / 3)))[:n_times] gat.plot_times(gat.train_times_['times'], color=colors) # test invalid time point assert_raises(ValueError, gat.plot_times, -1.) # test float type assert_raises(ValueError, gat.plot_times, 1) assert_raises(ValueError, gat.plot_times, 'diagonal') del gat.scores_ assert_raises(RuntimeError, gat.plot) def chance(ax): return ax.get_children()[1].get_lines()[0].get_ydata()[0] @requires_sklearn def test_gat_chance_level(): """Test GAT plot_times chance level""" gat = _get_data() ax = gat.plot_diagonal(chance=False) ax = gat.plot_diagonal() assert_equals(chance(ax), .5) gat = _get_data(event_id=dict(aud_l=1, vis_l=3, aud_r=2, vis_r=4)) ax = gat.plot_diagonal() assert_equals(chance(ax), .25) ax = gat.plot_diagonal(chance=1.234) assert_equals(chance(ax), 1.234) assert_raises(ValueError, gat.plot_diagonal, chance='foo') del gat.scores_ assert_raises(RuntimeError, gat.plot) @requires_sklearn def test_gat_plot_nonsquared(): """Test GAT diagonal plot""" gat = _get_data(test_times=dict(start=0.)) gat.plot() ax = gat.plot_diagonal() scores = ax.get_children()[1].get_lines()[2].get_ydata() assert_equals(len(scores), len(gat.estimators_)) run_tests_if_main()
bsd-3-clause
plotly/python-api
packages/python/plotly/plotly/graph_objs/_image.py
1
45495
from plotly.basedatatypes import BaseTraceType as _BaseTraceType import copy as _copy class Image(_BaseTraceType): # class properties # -------------------- _parent_path_str = "" _path_str = "image" _valid_props = { "colormodel", "customdata", "customdatasrc", "dx", "dy", "hoverinfo", "hoverinfosrc", "hoverlabel", "hovertemplate", "hovertemplatesrc", "hovertext", "hovertextsrc", "ids", "idssrc", "meta", "metasrc", "name", "opacity", "stream", "text", "textsrc", "type", "uid", "uirevision", "visible", "x0", "xaxis", "y0", "yaxis", "z", "zmax", "zmin", "zsrc", } # colormodel # ---------- @property def colormodel(self): """ Color model used to map the numerical color components described in `z` into colors. The 'colormodel' property is an enumeration that may be specified as: - One of the following enumeration values: ['rgb', 'rgba', 'hsl', 'hsla'] Returns ------- Any """ return self["colormodel"] @colormodel.setter def colormodel(self, val): self["colormodel"] = val # customdata # ---------- @property def customdata(self): """ Assigns extra data each datum. This may be useful when listening to hover, click and selection events. Note that, "scatter" traces also appends customdata items in the markers DOM elements The 'customdata' property is an array that may be specified as a tuple, list, numpy array, or pandas Series Returns ------- numpy.ndarray """ return self["customdata"] @customdata.setter def customdata(self, val): self["customdata"] = val # customdatasrc # ------------- @property def customdatasrc(self): """ Sets the source reference on Chart Studio Cloud for customdata . The 'customdatasrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str """ return self["customdatasrc"] @customdatasrc.setter def customdatasrc(self, val): self["customdatasrc"] = val # dx # -- @property def dx(self): """ Set the pixel's horizontal size. The 'dx' property is a number and may be specified as: - An int or float Returns ------- int|float """ return self["dx"] @dx.setter def dx(self, val): self["dx"] = val # dy # -- @property def dy(self): """ Set the pixel's vertical size The 'dy' property is a number and may be specified as: - An int or float Returns ------- int|float """ return self["dy"] @dy.setter def dy(self, val): self["dy"] = val # hoverinfo # --------- @property def hoverinfo(self): """ Determines which trace information appear on hover. If `none` or `skip` are set, no information is displayed upon hovering. But, if `none` is set, click and hover events are still fired. The 'hoverinfo' property is a flaglist and may be specified as a string containing: - Any combination of ['x', 'y', 'z', 'color', 'name', 'text'] joined with '+' characters (e.g. 'x+y') OR exactly one of ['all', 'none', 'skip'] (e.g. 'skip') - A list or array of the above Returns ------- Any|numpy.ndarray """ return self["hoverinfo"] @hoverinfo.setter def hoverinfo(self, val): self["hoverinfo"] = val # hoverinfosrc # ------------ @property def hoverinfosrc(self): """ Sets the source reference on Chart Studio Cloud for hoverinfo . The 'hoverinfosrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str """ return self["hoverinfosrc"] @hoverinfosrc.setter def hoverinfosrc(self, val): self["hoverinfosrc"] = val # hoverlabel # ---------- @property def hoverlabel(self): """ The 'hoverlabel' property is an instance of Hoverlabel that may be specified as: - An instance of :class:`plotly.graph_objs.image.Hoverlabel` - A dict of string/value properties that will be passed to the Hoverlabel constructor Supported dict properties: align Sets the horizontal alignment of the text content within hover label box. Has an effect only if the hover label text spans more two or more lines alignsrc Sets the source reference on Chart Studio Cloud for align . bgcolor Sets the background color of the hover labels for this trace bgcolorsrc Sets the source reference on Chart Studio Cloud for bgcolor . bordercolor Sets the border color of the hover labels for this trace. bordercolorsrc Sets the source reference on Chart Studio Cloud for bordercolor . font Sets the font used in hover labels. namelength Sets the default length (in number of characters) of the trace name in the hover labels for all traces. -1 shows the whole name regardless of length. 0-3 shows the first 0-3 characters, and an integer >3 will show the whole name if it is less than that many characters, but if it is longer, will truncate to `namelength - 3` characters and add an ellipsis. namelengthsrc Sets the source reference on Chart Studio Cloud for namelength . Returns ------- plotly.graph_objs.image.Hoverlabel """ return self["hoverlabel"] @hoverlabel.setter def hoverlabel(self, val): self["hoverlabel"] = val # hovertemplate # ------------- @property def hovertemplate(self): """ Template string used for rendering the information that appear on hover box. Note that this will override `hoverinfo`. Variables are inserted using %{variable}, for example "y: %{y}". Numbers are formatted using d3-format's syntax %{variable:d3-format}, for example "Price: %{y:$.2f}". https://github.com/d3/d3-3.x-api- reference/blob/master/Formatting.md#d3_format for details on the formatting syntax. Dates are formatted using d3-time- format's syntax %{variable|d3-time-format}, for example "Day: %{2019-01-01|%A}". https://github.com/d3/d3-3.x-api- reference/blob/master/Time-Formatting.md#format for details on the date formatting syntax. The variables available in `hovertemplate` are the ones emitted as event data described at this link https://plotly.com/javascript/plotlyjs-events/#event- data. Additionally, every attributes that can be specified per- point (the ones that are `arrayOk: true`) are available. variables `z`, `color` and `colormodel`. Anything contained in tag `<extra>` is displayed in the secondary box, for example "<extra>{fullData.name}</extra>". To hide the secondary box completely, use an empty tag `<extra></extra>`. The 'hovertemplate' property is a string and must be specified as: - A string - A number that will be converted to a string - A tuple, list, or one-dimensional numpy array of the above Returns ------- str|numpy.ndarray """ return self["hovertemplate"] @hovertemplate.setter def hovertemplate(self, val): self["hovertemplate"] = val # hovertemplatesrc # ---------------- @property def hovertemplatesrc(self): """ Sets the source reference on Chart Studio Cloud for hovertemplate . The 'hovertemplatesrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str """ return self["hovertemplatesrc"] @hovertemplatesrc.setter def hovertemplatesrc(self, val): self["hovertemplatesrc"] = val # hovertext # --------- @property def hovertext(self): """ Same as `text`. The 'hovertext' property is an array that may be specified as a tuple, list, numpy array, or pandas Series Returns ------- numpy.ndarray """ return self["hovertext"] @hovertext.setter def hovertext(self, val): self["hovertext"] = val # hovertextsrc # ------------ @property def hovertextsrc(self): """ Sets the source reference on Chart Studio Cloud for hovertext . The 'hovertextsrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str """ return self["hovertextsrc"] @hovertextsrc.setter def hovertextsrc(self, val): self["hovertextsrc"] = val # ids # --- @property def ids(self): """ Assigns id labels to each datum. These ids for object constancy of data points during animation. Should be an array of strings, not numbers or any other type. The 'ids' property is an array that may be specified as a tuple, list, numpy array, or pandas Series Returns ------- numpy.ndarray """ return self["ids"] @ids.setter def ids(self, val): self["ids"] = val # idssrc # ------ @property def idssrc(self): """ Sets the source reference on Chart Studio Cloud for ids . The 'idssrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str """ return self["idssrc"] @idssrc.setter def idssrc(self, val): self["idssrc"] = val # meta # ---- @property def meta(self): """ Assigns extra meta information associated with this trace that can be used in various text attributes. Attributes such as trace `name`, graph, axis and colorbar `title.text`, annotation `text` `rangeselector`, `updatemenues` and `sliders` `label` text all support `meta`. To access the trace `meta` values in an attribute in the same trace, simply use `%{meta[i]}` where `i` is the index or key of the `meta` item in question. To access trace `meta` in layout attributes, use `%{data[n[.meta[i]}` where `i` is the index or key of the `meta` and `n` is the trace index. The 'meta' property accepts values of any type Returns ------- Any|numpy.ndarray """ return self["meta"] @meta.setter def meta(self, val): self["meta"] = val # metasrc # ------- @property def metasrc(self): """ Sets the source reference on Chart Studio Cloud for meta . The 'metasrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str """ return self["metasrc"] @metasrc.setter def metasrc(self, val): self["metasrc"] = val # name # ---- @property def name(self): """ Sets the trace name. The trace name appear as the legend item and on hover. The 'name' property is a string and must be specified as: - A string - A number that will be converted to a string Returns ------- str """ return self["name"] @name.setter def name(self, val): self["name"] = val # opacity # ------- @property def opacity(self): """ Sets the opacity of the trace. The 'opacity' property is a number and may be specified as: - An int or float in the interval [0, 1] Returns ------- int|float """ return self["opacity"] @opacity.setter def opacity(self, val): self["opacity"] = val # stream # ------ @property def stream(self): """ The 'stream' property is an instance of Stream that may be specified as: - An instance of :class:`plotly.graph_objs.image.Stream` - A dict of string/value properties that will be passed to the Stream constructor Supported dict properties: maxpoints Sets the maximum number of points to keep on the plots from an incoming stream. If `maxpoints` is set to 50, only the newest 50 points will be displayed on the plot. token The stream id number links a data trace on a plot with a stream. See https://chart- studio.plotly.com/settings for more details. Returns ------- plotly.graph_objs.image.Stream """ return self["stream"] @stream.setter def stream(self, val): self["stream"] = val # text # ---- @property def text(self): """ Sets the text elements associated with each z value. The 'text' property is an array that may be specified as a tuple, list, numpy array, or pandas Series Returns ------- numpy.ndarray """ return self["text"] @text.setter def text(self, val): self["text"] = val # textsrc # ------- @property def textsrc(self): """ Sets the source reference on Chart Studio Cloud for text . The 'textsrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str """ return self["textsrc"] @textsrc.setter def textsrc(self, val): self["textsrc"] = val # uid # --- @property def uid(self): """ Assign an id to this trace, Use this to provide object constancy between traces during animations and transitions. The 'uid' property is a string and must be specified as: - A string - A number that will be converted to a string Returns ------- str """ return self["uid"] @uid.setter def uid(self, val): self["uid"] = val # uirevision # ---------- @property def uirevision(self): """ Controls persistence of some user-driven changes to the trace: `constraintrange` in `parcoords` traces, as well as some `editable: true` modifications such as `name` and `colorbar.title`. Defaults to `layout.uirevision`. Note that other user-driven trace attribute changes are controlled by `layout` attributes: `trace.visible` is controlled by `layout.legend.uirevision`, `selectedpoints` is controlled by `layout.selectionrevision`, and `colorbar.(x|y)` (accessible with `config: {editable: true}`) is controlled by `layout.editrevision`. Trace changes are tracked by `uid`, which only falls back on trace index if no `uid` is provided. So if your app can add/remove traces before the end of the `data` array, such that the same trace has a different index, you can still preserve user-driven changes if you give each trace a `uid` that stays with it as it moves. The 'uirevision' property accepts values of any type Returns ------- Any """ return self["uirevision"] @uirevision.setter def uirevision(self, val): self["uirevision"] = val # visible # ------- @property def visible(self): """ Determines whether or not this trace is visible. If "legendonly", the trace is not drawn, but can appear as a legend item (provided that the legend itself is visible). The 'visible' property is an enumeration that may be specified as: - One of the following enumeration values: [True, False, 'legendonly'] Returns ------- Any """ return self["visible"] @visible.setter def visible(self, val): self["visible"] = val # x0 # -- @property def x0(self): """ Set the image's x position. The 'x0' property accepts values of any type Returns ------- Any """ return self["x0"] @x0.setter def x0(self, val): self["x0"] = val # xaxis # ----- @property def xaxis(self): """ Sets a reference between this trace's x coordinates and a 2D cartesian x axis. If "x" (the default value), the x coordinates refer to `layout.xaxis`. If "x2", the x coordinates refer to `layout.xaxis2`, and so on. The 'xaxis' property is an identifier of a particular subplot, of type 'x', that may be specified as the string 'x' optionally followed by an integer >= 1 (e.g. 'x', 'x1', 'x2', 'x3', etc.) Returns ------- str """ return self["xaxis"] @xaxis.setter def xaxis(self, val): self["xaxis"] = val # y0 # -- @property def y0(self): """ Set the image's y position. The 'y0' property accepts values of any type Returns ------- Any """ return self["y0"] @y0.setter def y0(self, val): self["y0"] = val # yaxis # ----- @property def yaxis(self): """ Sets a reference between this trace's y coordinates and a 2D cartesian y axis. If "y" (the default value), the y coordinates refer to `layout.yaxis`. If "y2", the y coordinates refer to `layout.yaxis2`, and so on. The 'yaxis' property is an identifier of a particular subplot, of type 'y', that may be specified as the string 'y' optionally followed by an integer >= 1 (e.g. 'y', 'y1', 'y2', 'y3', etc.) Returns ------- str """ return self["yaxis"] @yaxis.setter def yaxis(self, val): self["yaxis"] = val # z # - @property def z(self): """ A 2-dimensional array in which each element is an array of 3 or 4 numbers representing a color. The 'z' property is an array that may be specified as a tuple, list, numpy array, or pandas Series Returns ------- numpy.ndarray """ return self["z"] @z.setter def z(self, val): self["z"] = val # zmax # ---- @property def zmax(self): """ Array defining the higher bound for each color component. Note that the default value will depend on the colormodel. For the `rgb` colormodel, it is [255, 255, 255]. For the `rgba` colormodel, it is [255, 255, 255, 1]. For the `hsl` colormodel, it is [360, 100, 100]. For the `hsla` colormodel, it is [360, 100, 100, 1]. The 'zmax' property is an info array that may be specified as: * a list or tuple of 4 elements where: (0) The 'zmax[0]' property is a number and may be specified as: - An int or float (1) The 'zmax[1]' property is a number and may be specified as: - An int or float (2) The 'zmax[2]' property is a number and may be specified as: - An int or float (3) The 'zmax[3]' property is a number and may be specified as: - An int or float Returns ------- list """ return self["zmax"] @zmax.setter def zmax(self, val): self["zmax"] = val # zmin # ---- @property def zmin(self): """ Array defining the lower bound for each color component. Note that the default value will depend on the colormodel. For the `rgb` colormodel, it is [0, 0, 0]. For the `rgba` colormodel, it is [0, 0, 0, 0]. For the `hsl` colormodel, it is [0, 0, 0]. For the `hsla` colormodel, it is [0, 0, 0, 0]. The 'zmin' property is an info array that may be specified as: * a list or tuple of 4 elements where: (0) The 'zmin[0]' property is a number and may be specified as: - An int or float (1) The 'zmin[1]' property is a number and may be specified as: - An int or float (2) The 'zmin[2]' property is a number and may be specified as: - An int or float (3) The 'zmin[3]' property is a number and may be specified as: - An int or float Returns ------- list """ return self["zmin"] @zmin.setter def zmin(self, val): self["zmin"] = val # zsrc # ---- @property def zsrc(self): """ Sets the source reference on Chart Studio Cloud for z . The 'zsrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str """ return self["zsrc"] @zsrc.setter def zsrc(self, val): self["zsrc"] = val # type # ---- @property def type(self): return self._props["type"] # Self properties description # --------------------------- @property def _prop_descriptions(self): return """\ colormodel Color model used to map the numerical color components described in `z` into colors. customdata Assigns extra data each datum. This may be useful when listening to hover, click and selection events. Note that, "scatter" traces also appends customdata items in the markers DOM elements customdatasrc Sets the source reference on Chart Studio Cloud for customdata . dx Set the pixel's horizontal size. dy Set the pixel's vertical size hoverinfo Determines which trace information appear on hover. If `none` or `skip` are set, no information is displayed upon hovering. But, if `none` is set, click and hover events are still fired. hoverinfosrc Sets the source reference on Chart Studio Cloud for hoverinfo . hoverlabel :class:`plotly.graph_objects.image.Hoverlabel` instance or dict with compatible properties hovertemplate Template string used for rendering the information that appear on hover box. Note that this will override `hoverinfo`. Variables are inserted using %{variable}, for example "y: %{y}". Numbers are formatted using d3-format's syntax %{variable:d3-format}, for example "Price: %{y:$.2f}". https://github.com/d3/d3-3.x-api- reference/blob/master/Formatting.md#d3_format for details on the formatting syntax. Dates are formatted using d3-time-format's syntax %{variable|d3-time- format}, for example "Day: %{2019-01-01|%A}". https://github.com/d3/d3-3.x-api- reference/blob/master/Time-Formatting.md#format for details on the date formatting syntax. The variables available in `hovertemplate` are the ones emitted as event data described at this link https://plotly.com/javascript/plotlyjs-events/#event- data. Additionally, every attributes that can be specified per-point (the ones that are `arrayOk: true`) are available. variables `z`, `color` and `colormodel`. Anything contained in tag `<extra>` is displayed in the secondary box, for example "<extra>{fullData.name}</extra>". To hide the secondary box completely, use an empty tag `<extra></extra>`. hovertemplatesrc Sets the source reference on Chart Studio Cloud for hovertemplate . hovertext Same as `text`. hovertextsrc Sets the source reference on Chart Studio Cloud for hovertext . ids Assigns id labels to each datum. These ids for object constancy of data points during animation. Should be an array of strings, not numbers or any other type. idssrc Sets the source reference on Chart Studio Cloud for ids . meta Assigns extra meta information associated with this trace that can be used in various text attributes. Attributes such as trace `name`, graph, axis and colorbar `title.text`, annotation `text` `rangeselector`, `updatemenues` and `sliders` `label` text all support `meta`. To access the trace `meta` values in an attribute in the same trace, simply use `%{meta[i]}` where `i` is the index or key of the `meta` item in question. To access trace `meta` in layout attributes, use `%{data[n[.meta[i]}` where `i` is the index or key of the `meta` and `n` is the trace index. metasrc Sets the source reference on Chart Studio Cloud for meta . name Sets the trace name. The trace name appear as the legend item and on hover. opacity Sets the opacity of the trace. stream :class:`plotly.graph_objects.image.Stream` instance or dict with compatible properties text Sets the text elements associated with each z value. textsrc Sets the source reference on Chart Studio Cloud for text . uid Assign an id to this trace, Use this to provide object constancy between traces during animations and transitions. uirevision Controls persistence of some user-driven changes to the trace: `constraintrange` in `parcoords` traces, as well as some `editable: true` modifications such as `name` and `colorbar.title`. Defaults to `layout.uirevision`. Note that other user-driven trace attribute changes are controlled by `layout` attributes: `trace.visible` is controlled by `layout.legend.uirevision`, `selectedpoints` is controlled by `layout.selectionrevision`, and `colorbar.(x|y)` (accessible with `config: {editable: true}`) is controlled by `layout.editrevision`. Trace changes are tracked by `uid`, which only falls back on trace index if no `uid` is provided. So if your app can add/remove traces before the end of the `data` array, such that the same trace has a different index, you can still preserve user-driven changes if you give each trace a `uid` that stays with it as it moves. visible Determines whether or not this trace is visible. If "legendonly", the trace is not drawn, but can appear as a legend item (provided that the legend itself is visible). x0 Set the image's x position. xaxis Sets a reference between this trace's x coordinates and a 2D cartesian x axis. If "x" (the default value), the x coordinates refer to `layout.xaxis`. If "x2", the x coordinates refer to `layout.xaxis2`, and so on. y0 Set the image's y position. yaxis Sets a reference between this trace's y coordinates and a 2D cartesian y axis. If "y" (the default value), the y coordinates refer to `layout.yaxis`. If "y2", the y coordinates refer to `layout.yaxis2`, and so on. z A 2-dimensional array in which each element is an array of 3 or 4 numbers representing a color. zmax Array defining the higher bound for each color component. Note that the default value will depend on the colormodel. For the `rgb` colormodel, it is [255, 255, 255]. For the `rgba` colormodel, it is [255, 255, 255, 1]. For the `hsl` colormodel, it is [360, 100, 100]. For the `hsla` colormodel, it is [360, 100, 100, 1]. zmin Array defining the lower bound for each color component. Note that the default value will depend on the colormodel. For the `rgb` colormodel, it is [0, 0, 0]. For the `rgba` colormodel, it is [0, 0, 0, 0]. For the `hsl` colormodel, it is [0, 0, 0]. For the `hsla` colormodel, it is [0, 0, 0, 0]. zsrc Sets the source reference on Chart Studio Cloud for z . """ def __init__( self, arg=None, colormodel=None, customdata=None, customdatasrc=None, dx=None, dy=None, hoverinfo=None, hoverinfosrc=None, hoverlabel=None, hovertemplate=None, hovertemplatesrc=None, hovertext=None, hovertextsrc=None, ids=None, idssrc=None, meta=None, metasrc=None, name=None, opacity=None, stream=None, text=None, textsrc=None, uid=None, uirevision=None, visible=None, x0=None, xaxis=None, y0=None, yaxis=None, z=None, zmax=None, zmin=None, zsrc=None, **kwargs ): """ Construct a new Image object Display an image, i.e. data on a 2D regular raster. By default, when an image is displayed in a subplot, its y axis will be reversed (ie. `autorange: 'reversed'`), constrained to the domain (ie. `constrain: 'domain'`) and it will have the same scale as its x axis (ie. `scaleanchor: 'x,`) in order for pixels to be rendered as squares. Parameters ---------- arg dict of properties compatible with this constructor or an instance of :class:`plotly.graph_objs.Image` colormodel Color model used to map the numerical color components described in `z` into colors. customdata Assigns extra data each datum. This may be useful when listening to hover, click and selection events. Note that, "scatter" traces also appends customdata items in the markers DOM elements customdatasrc Sets the source reference on Chart Studio Cloud for customdata . dx Set the pixel's horizontal size. dy Set the pixel's vertical size hoverinfo Determines which trace information appear on hover. If `none` or `skip` are set, no information is displayed upon hovering. But, if `none` is set, click and hover events are still fired. hoverinfosrc Sets the source reference on Chart Studio Cloud for hoverinfo . hoverlabel :class:`plotly.graph_objects.image.Hoverlabel` instance or dict with compatible properties hovertemplate Template string used for rendering the information that appear on hover box. Note that this will override `hoverinfo`. Variables are inserted using %{variable}, for example "y: %{y}". Numbers are formatted using d3-format's syntax %{variable:d3-format}, for example "Price: %{y:$.2f}". https://github.com/d3/d3-3.x-api- reference/blob/master/Formatting.md#d3_format for details on the formatting syntax. Dates are formatted using d3-time-format's syntax %{variable|d3-time- format}, for example "Day: %{2019-01-01|%A}". https://github.com/d3/d3-3.x-api- reference/blob/master/Time-Formatting.md#format for details on the date formatting syntax. The variables available in `hovertemplate` are the ones emitted as event data described at this link https://plotly.com/javascript/plotlyjs-events/#event- data. Additionally, every attributes that can be specified per-point (the ones that are `arrayOk: true`) are available. variables `z`, `color` and `colormodel`. Anything contained in tag `<extra>` is displayed in the secondary box, for example "<extra>{fullData.name}</extra>". To hide the secondary box completely, use an empty tag `<extra></extra>`. hovertemplatesrc Sets the source reference on Chart Studio Cloud for hovertemplate . hovertext Same as `text`. hovertextsrc Sets the source reference on Chart Studio Cloud for hovertext . ids Assigns id labels to each datum. These ids for object constancy of data points during animation. Should be an array of strings, not numbers or any other type. idssrc Sets the source reference on Chart Studio Cloud for ids . meta Assigns extra meta information associated with this trace that can be used in various text attributes. Attributes such as trace `name`, graph, axis and colorbar `title.text`, annotation `text` `rangeselector`, `updatemenues` and `sliders` `label` text all support `meta`. To access the trace `meta` values in an attribute in the same trace, simply use `%{meta[i]}` where `i` is the index or key of the `meta` item in question. To access trace `meta` in layout attributes, use `%{data[n[.meta[i]}` where `i` is the index or key of the `meta` and `n` is the trace index. metasrc Sets the source reference on Chart Studio Cloud for meta . name Sets the trace name. The trace name appear as the legend item and on hover. opacity Sets the opacity of the trace. stream :class:`plotly.graph_objects.image.Stream` instance or dict with compatible properties text Sets the text elements associated with each z value. textsrc Sets the source reference on Chart Studio Cloud for text . uid Assign an id to this trace, Use this to provide object constancy between traces during animations and transitions. uirevision Controls persistence of some user-driven changes to the trace: `constraintrange` in `parcoords` traces, as well as some `editable: true` modifications such as `name` and `colorbar.title`. Defaults to `layout.uirevision`. Note that other user-driven trace attribute changes are controlled by `layout` attributes: `trace.visible` is controlled by `layout.legend.uirevision`, `selectedpoints` is controlled by `layout.selectionrevision`, and `colorbar.(x|y)` (accessible with `config: {editable: true}`) is controlled by `layout.editrevision`. Trace changes are tracked by `uid`, which only falls back on trace index if no `uid` is provided. So if your app can add/remove traces before the end of the `data` array, such that the same trace has a different index, you can still preserve user-driven changes if you give each trace a `uid` that stays with it as it moves. visible Determines whether or not this trace is visible. If "legendonly", the trace is not drawn, but can appear as a legend item (provided that the legend itself is visible). x0 Set the image's x position. xaxis Sets a reference between this trace's x coordinates and a 2D cartesian x axis. If "x" (the default value), the x coordinates refer to `layout.xaxis`. If "x2", the x coordinates refer to `layout.xaxis2`, and so on. y0 Set the image's y position. yaxis Sets a reference between this trace's y coordinates and a 2D cartesian y axis. If "y" (the default value), the y coordinates refer to `layout.yaxis`. If "y2", the y coordinates refer to `layout.yaxis2`, and so on. z A 2-dimensional array in which each element is an array of 3 or 4 numbers representing a color. zmax Array defining the higher bound for each color component. Note that the default value will depend on the colormodel. For the `rgb` colormodel, it is [255, 255, 255]. For the `rgba` colormodel, it is [255, 255, 255, 1]. For the `hsl` colormodel, it is [360, 100, 100]. For the `hsla` colormodel, it is [360, 100, 100, 1]. zmin Array defining the lower bound for each color component. Note that the default value will depend on the colormodel. For the `rgb` colormodel, it is [0, 0, 0]. For the `rgba` colormodel, it is [0, 0, 0, 0]. For the `hsl` colormodel, it is [0, 0, 0]. For the `hsla` colormodel, it is [0, 0, 0, 0]. zsrc Sets the source reference on Chart Studio Cloud for z . Returns ------- Image """ super(Image, self).__init__("image") if "_parent" in kwargs: self._parent = kwargs["_parent"] return # Validate arg # ------------ if arg is None: arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError( """\ The first argument to the plotly.graph_objs.Image constructor must be a dict or an instance of :class:`plotly.graph_objs.Image`""" ) # Handle skip_invalid # ------------------- self._skip_invalid = kwargs.pop("skip_invalid", False) self._validate = kwargs.pop("_validate", True) # Populate data dict with properties # ---------------------------------- _v = arg.pop("colormodel", None) _v = colormodel if colormodel is not None else _v if _v is not None: self["colormodel"] = _v _v = arg.pop("customdata", None) _v = customdata if customdata is not None else _v if _v is not None: self["customdata"] = _v _v = arg.pop("customdatasrc", None) _v = customdatasrc if customdatasrc is not None else _v if _v is not None: self["customdatasrc"] = _v _v = arg.pop("dx", None) _v = dx if dx is not None else _v if _v is not None: self["dx"] = _v _v = arg.pop("dy", None) _v = dy if dy is not None else _v if _v is not None: self["dy"] = _v _v = arg.pop("hoverinfo", None) _v = hoverinfo if hoverinfo is not None else _v if _v is not None: self["hoverinfo"] = _v _v = arg.pop("hoverinfosrc", None) _v = hoverinfosrc if hoverinfosrc is not None else _v if _v is not None: self["hoverinfosrc"] = _v _v = arg.pop("hoverlabel", None) _v = hoverlabel if hoverlabel is not None else _v if _v is not None: self["hoverlabel"] = _v _v = arg.pop("hovertemplate", None) _v = hovertemplate if hovertemplate is not None else _v if _v is not None: self["hovertemplate"] = _v _v = arg.pop("hovertemplatesrc", None) _v = hovertemplatesrc if hovertemplatesrc is not None else _v if _v is not None: self["hovertemplatesrc"] = _v _v = arg.pop("hovertext", None) _v = hovertext if hovertext is not None else _v if _v is not None: self["hovertext"] = _v _v = arg.pop("hovertextsrc", None) _v = hovertextsrc if hovertextsrc is not None else _v if _v is not None: self["hovertextsrc"] = _v _v = arg.pop("ids", None) _v = ids if ids is not None else _v if _v is not None: self["ids"] = _v _v = arg.pop("idssrc", None) _v = idssrc if idssrc is not None else _v if _v is not None: self["idssrc"] = _v _v = arg.pop("meta", None) _v = meta if meta is not None else _v if _v is not None: self["meta"] = _v _v = arg.pop("metasrc", None) _v = metasrc if metasrc is not None else _v if _v is not None: self["metasrc"] = _v _v = arg.pop("name", None) _v = name if name is not None else _v if _v is not None: self["name"] = _v _v = arg.pop("opacity", None) _v = opacity if opacity is not None else _v if _v is not None: self["opacity"] = _v _v = arg.pop("stream", None) _v = stream if stream is not None else _v if _v is not None: self["stream"] = _v _v = arg.pop("text", None) _v = text if text is not None else _v if _v is not None: self["text"] = _v _v = arg.pop("textsrc", None) _v = textsrc if textsrc is not None else _v if _v is not None: self["textsrc"] = _v _v = arg.pop("uid", None) _v = uid if uid is not None else _v if _v is not None: self["uid"] = _v _v = arg.pop("uirevision", None) _v = uirevision if uirevision is not None else _v if _v is not None: self["uirevision"] = _v _v = arg.pop("visible", None) _v = visible if visible is not None else _v if _v is not None: self["visible"] = _v _v = arg.pop("x0", None) _v = x0 if x0 is not None else _v if _v is not None: self["x0"] = _v _v = arg.pop("xaxis", None) _v = xaxis if xaxis is not None else _v if _v is not None: self["xaxis"] = _v _v = arg.pop("y0", None) _v = y0 if y0 is not None else _v if _v is not None: self["y0"] = _v _v = arg.pop("yaxis", None) _v = yaxis if yaxis is not None else _v if _v is not None: self["yaxis"] = _v _v = arg.pop("z", None) _v = z if z is not None else _v if _v is not None: self["z"] = _v _v = arg.pop("zmax", None) _v = zmax if zmax is not None else _v if _v is not None: self["zmax"] = _v _v = arg.pop("zmin", None) _v = zmin if zmin is not None else _v if _v is not None: self["zmin"] = _v _v = arg.pop("zsrc", None) _v = zsrc if zsrc is not None else _v if _v is not None: self["zsrc"] = _v # Read-only literals # ------------------ self._props["type"] = "image" arg.pop("type", None) # Process unknown kwargs # ---------------------- self._process_kwargs(**dict(arg, **kwargs)) # Reset skip_invalid # ------------------ self._skip_invalid = False
mit
Djabbz/scikit-learn
sklearn/datasets/tests/test_mldata.py
384
5221
"""Test functionality of mldata fetching utilities.""" import os import shutil import tempfile import scipy as sp from sklearn import datasets from sklearn.datasets import mldata_filename, fetch_mldata from sklearn.utils.testing import assert_in from sklearn.utils.testing import assert_not_in from sklearn.utils.testing import mock_mldata_urlopen from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import with_setup from sklearn.utils.testing import assert_array_equal tmpdir = None def setup_tmpdata(): # create temporary dir global tmpdir tmpdir = tempfile.mkdtemp() os.makedirs(os.path.join(tmpdir, 'mldata')) def teardown_tmpdata(): # remove temporary dir if tmpdir is not None: shutil.rmtree(tmpdir) def test_mldata_filename(): cases = [('datasets-UCI iris', 'datasets-uci-iris'), ('news20.binary', 'news20binary'), ('book-crossing-ratings-1.0', 'book-crossing-ratings-10'), ('Nile Water Level', 'nile-water-level'), ('MNIST (original)', 'mnist-original')] for name, desired in cases: assert_equal(mldata_filename(name), desired) @with_setup(setup_tmpdata, teardown_tmpdata) def test_download(): """Test that fetch_mldata is able to download and cache a data set.""" _urlopen_ref = datasets.mldata.urlopen datasets.mldata.urlopen = mock_mldata_urlopen({ 'mock': { 'label': sp.ones((150,)), 'data': sp.ones((150, 4)), }, }) try: mock = fetch_mldata('mock', data_home=tmpdir) for n in ["COL_NAMES", "DESCR", "target", "data"]: assert_in(n, mock) assert_equal(mock.target.shape, (150,)) assert_equal(mock.data.shape, (150, 4)) assert_raises(datasets.mldata.HTTPError, fetch_mldata, 'not_existing_name') finally: datasets.mldata.urlopen = _urlopen_ref @with_setup(setup_tmpdata, teardown_tmpdata) def test_fetch_one_column(): _urlopen_ref = datasets.mldata.urlopen try: dataname = 'onecol' # create fake data set in cache x = sp.arange(6).reshape(2, 3) datasets.mldata.urlopen = mock_mldata_urlopen({dataname: {'x': x}}) dset = fetch_mldata(dataname, data_home=tmpdir) for n in ["COL_NAMES", "DESCR", "data"]: assert_in(n, dset) assert_not_in("target", dset) assert_equal(dset.data.shape, (2, 3)) assert_array_equal(dset.data, x) # transposing the data array dset = fetch_mldata(dataname, transpose_data=False, data_home=tmpdir) assert_equal(dset.data.shape, (3, 2)) finally: datasets.mldata.urlopen = _urlopen_ref @with_setup(setup_tmpdata, teardown_tmpdata) def test_fetch_multiple_column(): _urlopen_ref = datasets.mldata.urlopen try: # create fake data set in cache x = sp.arange(6).reshape(2, 3) y = sp.array([1, -1]) z = sp.arange(12).reshape(4, 3) # by default dataname = 'threecol-default' datasets.mldata.urlopen = mock_mldata_urlopen({ dataname: ( { 'label': y, 'data': x, 'z': z, }, ['z', 'data', 'label'], ), }) dset = fetch_mldata(dataname, data_home=tmpdir) for n in ["COL_NAMES", "DESCR", "target", "data", "z"]: assert_in(n, dset) assert_not_in("x", dset) assert_not_in("y", dset) assert_array_equal(dset.data, x) assert_array_equal(dset.target, y) assert_array_equal(dset.z, z.T) # by order dataname = 'threecol-order' datasets.mldata.urlopen = mock_mldata_urlopen({ dataname: ({'y': y, 'x': x, 'z': z}, ['y', 'x', 'z']), }) dset = fetch_mldata(dataname, data_home=tmpdir) for n in ["COL_NAMES", "DESCR", "target", "data", "z"]: assert_in(n, dset) assert_not_in("x", dset) assert_not_in("y", dset) assert_array_equal(dset.data, x) assert_array_equal(dset.target, y) assert_array_equal(dset.z, z.T) # by number dataname = 'threecol-number' datasets.mldata.urlopen = mock_mldata_urlopen({ dataname: ({'y': y, 'x': x, 'z': z}, ['z', 'x', 'y']), }) dset = fetch_mldata(dataname, target_name=2, data_name=0, data_home=tmpdir) for n in ["COL_NAMES", "DESCR", "target", "data", "x"]: assert_in(n, dset) assert_not_in("y", dset) assert_not_in("z", dset) assert_array_equal(dset.data, z) assert_array_equal(dset.target, y) # by name dset = fetch_mldata(dataname, target_name='y', data_name='z', data_home=tmpdir) for n in ["COL_NAMES", "DESCR", "target", "data", "x"]: assert_in(n, dset) assert_not_in("y", dset) assert_not_in("z", dset) finally: datasets.mldata.urlopen = _urlopen_ref
bsd-3-clause
sanuj/opencog
opencog/python/spatiotemporal/demo.py
33
1221
__author__ = 'sebastian' from spatiotemporal.temporal_events.trapezium import TemporalEventTrapezium from spatiotemporal.temporal_events.relation_formulas import FormulaCreator from spatiotemporal.temporal_events.composition.non_linear_least_squares import DecompositionFitter import matplotlib.pyplot as plt all_relations = "pmoFDseSdfOMP" a = TemporalEventTrapezium(1, 12, 4, 8) b = TemporalEventTrapezium(9, 17, 13, 15) # compute relations between events temporal_relations = a * b print("Relations: {0}".format(temporal_relations.to_list())) # print degree for every relation for relation in all_relations: print(relation, temporal_relations[relation]) # plot events a.plot(show_distributions=True).ylim(ymin=-0.1, ymax=1.1) b.plot(show_distributions=True).figure() plt.show() # from the 13 relations, learns parameters for all combinations of the # before, same, and after relationships between the beginning and # ending distributions of the two intervals formula = FormulaCreator(DecompositionFitter(temporal_relations)) # from these relationships, computes the 13 relations again relations_estimate = formula.calculate_relations() print("Estimated relations: {0}".format(relations_estimate.to_list()))
agpl-3.0
iulian787/spack
var/spack/repos/builtin/packages/py-seaborn/package.py
5
1184
# Copyright 2013-2020 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class PySeaborn(PythonPackage): """Seaborn: statistical data visualization. Seaborn is a library for making attractive and informative statistical graphics in Python. It is built on top of matplotlib and tightly integrated with the PyData stack, including support for numpy and pandas data structures and statistical routines from scipy and statsmodels.""" homepage = "http://seaborn.pydata.org/" url = "https://pypi.io/packages/source/s/seaborn/seaborn-0.7.1.tar.gz" version('0.9.0', sha256='76c83f794ca320fb6b23a7c6192d5e185a5fcf4758966a0c0a54baee46d41e2f') version('0.7.1', sha256='fa274344b1ee72f723bab751c40a5c671801d47a29ee9b5e69fcf63a18ce5c5d') depends_on('py-setuptools', type='build') depends_on('py-numpy', type=('build', 'run')) depends_on('py-scipy', type=('build', 'run')) depends_on('py-matplotlib', type=('build', 'run')) depends_on('py-pandas', type=('build', 'run'))
lgpl-2.1
JoshuaMichaelKing/MyLearning
learn-python2.7/scikit-learn/NaiveBayesDemo.py
1
2916
#!/usr/bin/env python2.7 # -*- coding: utf-8 -*- from __future__ import print_function from __future__ import division import numpy as np from sklearn import datasets from sklearn.naive_bayes import GaussianNB, MultinomialNB, BernoulliNB __version__ = '0.0.1' __license__ = 'MIT' __author__ = 'Joshua Guo ([email protected])' ''' Python To Try NaiveBayes(classification) through scikit-learn! Naive Bayes methods are a set of supervised learning algorithms based on applying Bayes' theorem with the "naive" assumption of independence between every pair of features. In spite of its apparently over-simplified assumptions, naive Bayes classifiers have worked quite well in many real-world situations, famously document classification and spam filtering. They require a small amount of training data to estimate the necessary parameters. On the flip side, although naive Bayes is known as a decent classifier, it is known to be a bad estimator, so the probability outputs from predict_prob are not to be taken too seriously. ''' def main(): gaussian_nb_test() multinomial_nb_test() multinomial_nb_partial_test() bernoulli_nb_test() def gaussian_nb_test(): ''' GaussianNB implements the Gaussian Naive Bayes algorithm for classification. ''' print("gaussian_nb_test") iris = datasets.load_iris() print(iris.feature_names) # 四个特征的名字 print(iris.target_names) # print(iris.data) print(len(iris.data)) print(iris.target.data) print(iris.target.size) clf = GaussianNB() clf.fit(iris.data, iris.target) result1 = clf.predict(iris.data[0]) print(result1) result2 = clf.predict(iris.data[149]) print(result2) data = np.array([6, 4, 6, 2]) result3 = clf.predict(data) print(result3) def multinomial_nb_test(): ''' MultinomialNB implements the naive Bayes algorithm for multinomially distributed data, and is one of the two classic naive Bayes variants used in text classification. ''' print("multinomial_nb_test") X = np.random.randint(5, size=(6, 100)) y = np.array([1, 2, 3, 4, 5, 6]) clf = MultinomialNB() clf.fit(X, y) print(clf.predict(X[2])) def multinomial_nb_partial_test(): ''' 在sklearn中,MultinomialNB()类的partial_fit()方法可以进行更新训练。 这种方式特别适合于训练集大到内存无法一次性放入的情况。 ''' clf = MultinomialNB() clf.partial_fit(np.array([1,1]), np.array(['aa']), ['aa','bb']) clf.partial_fit(np.array([6,1]), np.array(['bb'])) print(clf.predict(np.array([9,1]))) def bernoulli_nb_test(): ''' Like MultinomialNB, this classifier is suitable for discrete data. The difference is that while MultinomialNB works with occurrence counts, BernoulliNB is designed for binary/boolean features. ''' print("bernoulli_nb_test") X = np.random.randint(2, size=(6, 100)) Y = np.array([1, 2, 3, 4, 4, 5]) clf = BernoulliNB() clf.fit(X, Y) print(clf.predict(X[2])) if __name__ == '__main__': main()
mit
Tong-Chen/scikit-learn
sklearn/utils/sparsetools/tests/test_spanning_tree.py
11
2295
"""Test the minimum spanning tree function""" from __future__ import division, print_function, absolute_import import numpy as np from numpy.testing import assert_ import numpy.testing as npt from scipy.sparse import csr_matrix from sklearn.utils import minimum_spanning_tree def test_minimum_spanning_tree(): # Create a graph with two connected components. graph = [[0, 1, 0, 0, 0], [1, 0, 0, 0, 0], [0, 0, 0, 8, 5], [0, 0, 8, 0, 1], [0, 0, 5, 1, 0]] graph = np.asarray(graph) # Create the expected spanning tree. expected = [[0, 1, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 5], [0, 0, 0, 0, 1], [0, 0, 0, 0, 0]] expected = np.asarray(expected) # Ensure minimum spanning tree code gives this expected output. csgraph = csr_matrix(graph) mintree = minimum_spanning_tree(csgraph) npt.assert_array_equal(mintree.todense(), expected, 'Incorrect spanning tree found.') # Ensure that the original graph was not modified. npt.assert_array_equal(csgraph.todense(), graph, 'Original graph was modified.') # Now let the algorithm modify the csgraph in place. mintree = minimum_spanning_tree(csgraph, overwrite=True) npt.assert_array_equal(mintree.todense(), expected, 'Graph was not properly modified to contain MST.') np.random.seed(1234) for N in (5, 10, 15, 20): # Create a random graph. graph = 3 + np.random.random((N, N)) csgraph = csr_matrix(graph) # The spanning tree has at most N - 1 edges. mintree = minimum_spanning_tree(csgraph) assert_(mintree.nnz < N) # Set the sub diagonal to 1 to create a known spanning tree. idx = np.arange(N - 1) graph[idx, idx + 1] = 1 csgraph = csr_matrix(graph) mintree = minimum_spanning_tree(csgraph) # We expect to see this pattern in the spanning tree and otherwise # have this zero. expected = np.zeros((N, N)) expected[idx, idx + 1] = 1 npt.assert_array_equal(mintree.todense(), expected, 'Incorrect spanning tree found.')
bsd-3-clause
KirstieJane/BrainsForPublication
scripts/show_cluster_in_volume.py
3
18141
#!/usr/bin/env python #============================================================================= # Created by Michael Notter # at OHBM 2016 Brainhack in Lausanne, June 2016 # Edited with more comments by Kirstie Whitaker # at Cambridge Brainhack-Global 2017, March 2017 # Contact: [email protected] #============================================================================= #============================================================================= # IMPORTS #============================================================================= import argparse import future # pip install future from glob import glob as gg import os from os.path import join as opj from os.path import basename as opb import sys import textwrap import numpy as np from matplotlib import pylab from matplotlib import pyplot as plt import nibabel as nb import nilearn from nipy.labs import viz from scipy.ndimage import label as sci_label #============================================================================= # FUNCTIONS #============================================================================= def setup_argparser(): ''' Code to read in arguments from the command line Also allows you to change some settings ''' # Build a basic parser. help_text = ('Show the locations of clusters in a statistical map in MNI space.') sign_off = 'Author: Kirstie Whitaker <[email protected]>' parser = argparse.ArgumentParser(description=help_text, epilog=sign_off, formatter_class=argparse.RawTextHelpFormatter) # Now add the arguments parser.add_argument(dest='stats_file', type=str, metavar='stats_file', help=textwrap.dedent('3D nifti file in MNI space containing the statistical values\n ' + 'you want to visualise.\n' + 'Note that this file can be pre-thresholded or not.\n' + 'If your file is already thresholded then you will need to\n ' + 'pass an argument to the -t option otherwise it will default to 2.3.\n ' + 'A suggested value is 0.01.' )) parser.add_argument('-ce, --cluster_extent', type=str, metavar='cluster_extent', help=textwrap.dedent("Minimum cluster extent for a region to be included in the visualisation\n (integer)\n Default: 20"), default=20) parser.add_argument('-t, --cluster_thr', type=str, metavar='threshold', help=textwrap.dedent("Minimum statistical value for a region to be included in the visualisation\n (float)\n Default: 2.3"), default=2.3) parser.add_argument('--csv', action='store_true', help=textwrap.dedent('Create a csv file with cluster information.\n Default: False'), default=False) parser.add_argument('--cluster_title', action='store_true', help=textwrap.dedent('Show cluster information in the title of the plot.\n Default: False'), default=False) parser.add_argument('-c', '--cmap', type=str, metavar='cmap', help=textwrap.dedent('Any matplotlib colormap listed at\n http://matplotlib.org/examples/color/colormaps_reference.html\n Default: RdBu_r'), default='hot') parser.add_argument('-cb', '--cbar', action='store_true', help=textwrap.dedent('Display a colorbar on the right of the plots\n Default: False'), default=False) parser.add_argument('--black_bg', action='store_true', help=textwrap.dedent('Set the background to black.\n Default: White'), default=False) """ parser.add_argument('--thr_abs', type=float, metavar='thr_abs', help=textwrap.dedent('Mask the input image such that all values\n which have an absolute value less than this threshold\n are not shown.\nIf None then no thresholding is undertaken.\nDefault: None'), default=None) parser.add_argument('--thr_pos', type=float, metavar='thr_pos', help=textwrap.dedent('Mask the input image such that all values\n less than this threshold are not shown.\nIf None then no thresholding is undertaken.\nDefault: None'), default=None) parser.add_argument('-l', '--lower', type=float, metavar='lowerthr', help='Lower limit for colormap', default=None) parser.add_argument('-u', '--upper', type=float, metavar='upperthr', help='Upper limit for colormap', default=None) """ parser.add_argument('--dpi', type=float, metavar='dpi', help='DPI of output png file\n Default: 300', default=300) parser.add_argument('--format', type=float, metavar='format', help=textwrap.dedent('Format of the output image file.\n Eg: png, pdf, tif, jpeg, svg. \n Default: png'), default='png') arguments = parser.parse_args() return arguments, parser def get_labels(data, cluster_thr=0, min_extent=0): """ Get number of clusters in dataset as well as a labeled volume Minimal extent of each cluster and voxel-vise threshold can be specified """ # Threshold the data by zeroing all voxels with values that have an # absolute value less than the cluster threshold thr_data = abs(data) > cluster_thr # Find all the clusters in the thresholded data labels, nlabels = sci_label(thr_data) # Now loop through all the clusters # and if a cluster is smaller than the minimum cluster extent # exclude it from the list (set the values to zero) for idx in range(1, nlabels + 1): if np.sum(labels == idx) < min_extent: labels[labels == idx] = 0 # Re-run the clustering command to get only the clusters # that are larger than the minimum extent labels, nlabels = sci_label(labels) # overwrites the input data with the thresholded data binarized_data = labels.astype('bool') data[np.invert(binarized_data)] = 0 return labels, nlabels, data, binarized_data def get_cluster_info(img, affine, data): """ Returns peak coordinations and cluster information of a given dataset, if labeled file and affine is provided """ # Set up some variables we're going to need coords = [] # cs = [] # cluster sum values maxcoords = [] # peak coordinate locations clusterInfo = [] # list of lists containing max, min, # mean and std of the cluster # Find all the label ids (that aren't 0!) labelID = np.setdiff1d(np.unique(img.ravel()), [0]) # Loop through the labels for lab in labelID: # Calculate the voume of the cluster sumval = np.sum(img == lab) cs.append(sumval) # Calculate the max, min, mean and std of the cluster maxval = np.max(data[img == lab]) minval = np.min(data[img == lab]) meanval = np.mean(data[img == lab]) stdval = np.std(data[img == lab]) # Save these values in a list clusterInfo.append([sumval, maxval, minval, meanval, stdval]) # Get the location of the peak coordinate maxidx = np.nonzero(np.multiply(data, img == lab) == maxval) maxcoords.append([m[0] for m in maxidx]) # Transform the lists into numpy arrays maxcoords = np.asarray(maxcoords) clusterInfo = np.asarray(clusterInfo) # Sort the lists by the volume of the clusters maxcoords = maxcoords[np.argsort(cs)[::-1], :] clusterInfo = clusterInfo[np.argsort(cs)[::-1], :] # Loop through the clusters and put the peak coordinates # in MNI space for i, lab in enumerate(labelID[np.argsort(cs)[::-1]]): coords.append(np.dot(affine, np.hstack((maxcoords[i], 1)))[:3].tolist()) # Add the peak coordinate information to the clusterInfo array clusterInfo = np.hstack((np.array(coords), clusterInfo)) # Returns peak coordination and additional cluster infos return coords, clusterInfo def show_slices(data, affine, coords=None, cmap=None, show_colorbar=None, showCross=False, cluster_thr=0, annotate=True, ###### KW DOCUMENT template='../scripts/templates/MNI152_T1_1mm_brain.nii.gz', ####### KW DOCUMENT dpiRes=300, suffix='png', show_title=False): # Prepare background image anatimg = nb.load(template) anatdata, anataff = anatimg.get_data(), anatimg.affine() anatdata = anatdata.astype(np.float) anatdata[anatdata < 10.] = np.nan # Create output figure for each peak coordinate # (so a different figure for each cluster) for idx, coord in enumerate(coords): # Name the output file to include the cluster id, # the cluster threshold and the minimum cluster extent outfile = 'Cluster_{}_thr{:04.2f}_minext{:03:0f}'.format(idx, cluster_thr, cluster_extent) # If show_title argument has been set to true then print the file name # and the peak coordinates in the title of the figure if show_title: title = '{} {}'.format(outfile + coord) else: title = '' # Woooo plot three orthogonal views of the cluster sliced through the # peak coordinate osl = viz.plot_map( np.asarray(data), affine, anat=anatdata, anat_affine=anataff, threshold=cluster_thr, cmap=cmap, annotate=annotate, black_bg=False, cut_coords=coord, draw_cross=showCross, slicer='ortho', title=title) # If the show colorbar option is true then show the color bar on the # right hand side of the image if show_colorbar: cbarLocation = [-0.1, 0.2, 0.015, 0.6] im = plt.gca().get_images()[1] cb = plt.colorbar(im, cax=plt.axes(cbarLocation), orientation='horizontal', format='%.2f') cb.set_ticks([cb._values.min(), cb._values.max()]) # Save the figure! osl.frame_axes.figure.savefig( opj(output_folder, '{}.{}'.format(outfile, suffix)), dpi=dpiRes, bbox_inches='tight', transparent=True) # DONE! Close the plot plt.close() #============================================================================= # SET SOME VARIABLES #============================================================================= # Read in the arguments from argparse arguments, parser = setup_argparser() stats_file = arguments.stats_file cluster_extent = arguments.cluster_extent cluster_thr = arguments.cluster_thr store_csv = arguments.csv cluster_title = arguments.cluster_title cmap = arguments.cmap show_colorbar = arguments.cbar #thr_abs = arguments.thr_abs #thr_pos = arguments.thr_pos #black_bg = arguments.black_bg #lower_thresh = arguments.lower #upper_thresh = arguments.upper dpi = arguments.dpi image_format = arguments.format # Set a couple of hard coded options #symmetric_cbar=False #=============================================================================== # Get the colormap from nilearn #=============================================================================== if hasattr(cm, cmap): cmap = getattr(cm, cmap) #=============================================================================== # Create the output folder #=============================================================================== output_folder = '{}_CLUSTERS'.format(stats_file.rsplit('.nii', 1)[0]) if not os.isdir(output_folder): os.path.makedirs(output_folder) def create_output(stats_file, cluster_extent, threshold, template, create_CSV, show_cross, annotate_figure, cmap, show_colorbar, show_title, dpi, imageType): # Read in the stats file img = nb.load(stats_file) data = img.get_data() affine = img.affine() # Find the clusters labels, nlabels, data, binarized_data = get_labels(data, cluster_thr=cluster_thr, min_extent=cluster_extent) # Catch if nlabels is 0, i.e. no clusters survived thresholding if nlabels == 0: print('No clusters survive the thresholds in {}'.format(stats_file)) return # If there *are* cluster though, then get the cluster information # for each of them print('{} clusters were found in {}'.format(nlabels, stats_file)) coords, clusterInfo = get_cluster_info(labels, affine, data) """ # Get file prefix if filePath.endswith('.nii'): filename = opb(filePath)[:-4] elif filePath.endswith('.nii.gz'): filename = opb(filePath)[:-7] """ # Create output folder output_folder = '{}_CLUSTERS'.format(stats_file.rsplit('.nii', 1)[0]) if not os.isdir(output_folder): os.path.makedirs(output_folder) # Create figures show_slices(data, affine, coords=coords, cmap=cmap, show_colorbar=show_colorbar, showCross=False, ####### KW THINK ABOUT cluster_thr=cluster_thr, annotate=True, ###### KW DOCUMENT template='../scripts/templates/MNI152_T1_1mm_brain.nii.gz', ####### KW DOCUMENT dpiRes=dpi, suffix=image_format, show_title=show_title) # Create CSV output if create_CSV: header = 'X,Y,Z,Size,Max,Min,Mean,Std' np.savetxt( opj('figures', filename, 'cluster_info.csv'), clusterInfo, delimiter=',', fmt='%.8f', header=header, comments='') # Print cluster info in terminal row_format = "{:>8}{:>8}{:>8}{:>10}{:>16}{:>16}{:>16}{:>16}" print(row_format.format( *['X', 'Y', 'Z', 'Size', 'Max', 'Min', 'Mean', 'Std'])) for c in clusterInfo: print(row_format.format(*c)) print('\n') #=============================================================================== # Save the figure #=============================================================================== output_folder = '{}_CLUSTERS'.format(stats_file.rsplit('.nii', 1)[0]) if not os.isdir(output_folder): os.path.makedirs(output_folder) if __name__ == "__main__": cluster_extend = int(sys.argv[1]) threshold = float(sys.argv[2]) template = str(sys.argv[3]) create_CSV = bool(sys.argv[4]) show_cross = bool(sys.argv[5]) annotate_figure = bool(sys.argv[6]) show_colorbar = bool(sys.argv[7]) colorbar_orientation = str(sys.argv[8]) show_title = bool(sys.argv[9]) dpi = int(sys.argv[10]) imageType = str(sys.argv[11]) prefix = str(sys.argv[12]) #========================================================================= # SET SOME VARIABLES #========================================================================= # Read in the arguments from argparse arguments, parser = setup_argparser() stats_file = arguments.stats_file cluster_extent = arguments.cluster_extent cluster_thr = arguments.cluster_thr store_csv = arguments.csv cluster_title = arguments.cluster_title cmap = arguments.cmap show_colorbar = arguments.cbar #thr_abs = arguments.thr_abs #thr_pos = arguments.thr_pos #black_bg = arguments.black_bg #lower_thresh = arguments.lower #upper_thresh = arguments.upper dpi = arguments.dpi image_format = arguments.format #=============================================================================== # Get the colormap from nilearn #=============================================================================== if hasattr(cm, cmap): cmap = getattr(cm, cmap) #=============================================================================== # Create the output folder #=============================================================================== output_folder = '{}_CLUSTERS'.format(stats_file.rsplit('.nii', 1)[0]) if not os.isdir(output_folder): os.path.makedirs(output_folder) #=============================================================================== # Create the figures and CSV output #=============================================================================== create_output(stats_file, cluster_extent, threshold, template, create_CSV, show_cross, annotate_figure, cmap, show_colorbar, show_title, dpi, imageType)
mit
kenshay/ImageScripter
ProgramData/SystemFiles/Python/Lib/site-packages/pandas/tests/types/test_missing.py
7
12132
# -*- coding: utf-8 -*- import nose import numpy as np from datetime import datetime from pandas.util import testing as tm import pandas as pd from pandas.core import config as cf from pandas.compat import u from pandas.tslib import iNaT from pandas import (NaT, Float64Index, Series, DatetimeIndex, TimedeltaIndex, date_range) from pandas.types.dtypes import DatetimeTZDtype from pandas.types.missing import (array_equivalent, isnull, notnull, na_value_for_dtype) _multiprocess_can_split_ = True def test_notnull(): assert notnull(1.) assert not notnull(None) assert not notnull(np.NaN) with cf.option_context("mode.use_inf_as_null", False): assert notnull(np.inf) assert notnull(-np.inf) arr = np.array([1.5, np.inf, 3.5, -np.inf]) result = notnull(arr) assert result.all() with cf.option_context("mode.use_inf_as_null", True): assert not notnull(np.inf) assert not notnull(-np.inf) arr = np.array([1.5, np.inf, 3.5, -np.inf]) result = notnull(arr) assert result.sum() == 2 with cf.option_context("mode.use_inf_as_null", False): for s in [tm.makeFloatSeries(), tm.makeStringSeries(), tm.makeObjectSeries(), tm.makeTimeSeries(), tm.makePeriodSeries()]: assert (isinstance(isnull(s), Series)) class TestIsNull(tm.TestCase): def test_0d_array(self): self.assertTrue(isnull(np.array(np.nan))) self.assertFalse(isnull(np.array(0.0))) self.assertFalse(isnull(np.array(0))) # test object dtype self.assertTrue(isnull(np.array(np.nan, dtype=object))) self.assertFalse(isnull(np.array(0.0, dtype=object))) self.assertFalse(isnull(np.array(0, dtype=object))) def test_isnull(self): self.assertFalse(isnull(1.)) self.assertTrue(isnull(None)) self.assertTrue(isnull(np.NaN)) self.assertTrue(float('nan')) self.assertFalse(isnull(np.inf)) self.assertFalse(isnull(-np.inf)) # series for s in [tm.makeFloatSeries(), tm.makeStringSeries(), tm.makeObjectSeries(), tm.makeTimeSeries(), tm.makePeriodSeries()]: self.assertIsInstance(isnull(s), Series) # frame for df in [tm.makeTimeDataFrame(), tm.makePeriodFrame(), tm.makeMixedDataFrame()]: result = isnull(df) expected = df.apply(isnull) tm.assert_frame_equal(result, expected) # panel for p in [tm.makePanel(), tm.makePeriodPanel(), tm.add_nans(tm.makePanel())]: result = isnull(p) expected = p.apply(isnull) tm.assert_panel_equal(result, expected) # panel 4d with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): for p in [tm.makePanel4D(), tm.add_nans_panel4d(tm.makePanel4D())]: result = isnull(p) expected = p.apply(isnull) tm.assert_panel4d_equal(result, expected) def test_isnull_lists(self): result = isnull([[False]]) exp = np.array([[False]]) tm.assert_numpy_array_equal(result, exp) result = isnull([[1], [2]]) exp = np.array([[False], [False]]) tm.assert_numpy_array_equal(result, exp) # list of strings / unicode result = isnull(['foo', 'bar']) exp = np.array([False, False]) tm.assert_numpy_array_equal(result, exp) result = isnull([u('foo'), u('bar')]) exp = np.array([False, False]) tm.assert_numpy_array_equal(result, exp) def test_isnull_nat(self): result = isnull([NaT]) exp = np.array([True]) tm.assert_numpy_array_equal(result, exp) result = isnull(np.array([NaT], dtype=object)) exp = np.array([True]) tm.assert_numpy_array_equal(result, exp) def test_isnull_numpy_nat(self): arr = np.array([NaT, np.datetime64('NaT'), np.timedelta64('NaT'), np.datetime64('NaT', 's')]) result = isnull(arr) expected = np.array([True] * 4) tm.assert_numpy_array_equal(result, expected) def test_isnull_datetime(self): self.assertFalse(isnull(datetime.now())) self.assertTrue(notnull(datetime.now())) idx = date_range('1/1/1990', periods=20) exp = np.ones(len(idx), dtype=bool) tm.assert_numpy_array_equal(notnull(idx), exp) idx = np.asarray(idx) idx[0] = iNaT idx = DatetimeIndex(idx) mask = isnull(idx) self.assertTrue(mask[0]) exp = np.array([True] + [False] * (len(idx) - 1), dtype=bool) self.assert_numpy_array_equal(mask, exp) # GH 9129 pidx = idx.to_period(freq='M') mask = isnull(pidx) self.assertTrue(mask[0]) exp = np.array([True] + [False] * (len(idx) - 1), dtype=bool) self.assert_numpy_array_equal(mask, exp) mask = isnull(pidx[1:]) exp = np.zeros(len(mask), dtype=bool) self.assert_numpy_array_equal(mask, exp) def test_datetime_other_units(self): idx = pd.DatetimeIndex(['2011-01-01', 'NaT', '2011-01-02']) exp = np.array([False, True, False]) tm.assert_numpy_array_equal(isnull(idx), exp) tm.assert_numpy_array_equal(notnull(idx), ~exp) tm.assert_numpy_array_equal(isnull(idx.values), exp) tm.assert_numpy_array_equal(notnull(idx.values), ~exp) for dtype in ['datetime64[D]', 'datetime64[h]', 'datetime64[m]', 'datetime64[s]', 'datetime64[ms]', 'datetime64[us]', 'datetime64[ns]']: values = idx.values.astype(dtype) exp = np.array([False, True, False]) tm.assert_numpy_array_equal(isnull(values), exp) tm.assert_numpy_array_equal(notnull(values), ~exp) exp = pd.Series([False, True, False]) s = pd.Series(values) tm.assert_series_equal(isnull(s), exp) tm.assert_series_equal(notnull(s), ~exp) s = pd.Series(values, dtype=object) tm.assert_series_equal(isnull(s), exp) tm.assert_series_equal(notnull(s), ~exp) def test_timedelta_other_units(self): idx = pd.TimedeltaIndex(['1 days', 'NaT', '2 days']) exp = np.array([False, True, False]) tm.assert_numpy_array_equal(isnull(idx), exp) tm.assert_numpy_array_equal(notnull(idx), ~exp) tm.assert_numpy_array_equal(isnull(idx.values), exp) tm.assert_numpy_array_equal(notnull(idx.values), ~exp) for dtype in ['timedelta64[D]', 'timedelta64[h]', 'timedelta64[m]', 'timedelta64[s]', 'timedelta64[ms]', 'timedelta64[us]', 'timedelta64[ns]']: values = idx.values.astype(dtype) exp = np.array([False, True, False]) tm.assert_numpy_array_equal(isnull(values), exp) tm.assert_numpy_array_equal(notnull(values), ~exp) exp = pd.Series([False, True, False]) s = pd.Series(values) tm.assert_series_equal(isnull(s), exp) tm.assert_series_equal(notnull(s), ~exp) s = pd.Series(values, dtype=object) tm.assert_series_equal(isnull(s), exp) tm.assert_series_equal(notnull(s), ~exp) def test_period(self): idx = pd.PeriodIndex(['2011-01', 'NaT', '2012-01'], freq='M') exp = np.array([False, True, False]) tm.assert_numpy_array_equal(isnull(idx), exp) tm.assert_numpy_array_equal(notnull(idx), ~exp) exp = pd.Series([False, True, False]) s = pd.Series(idx) tm.assert_series_equal(isnull(s), exp) tm.assert_series_equal(notnull(s), ~exp) s = pd.Series(idx, dtype=object) tm.assert_series_equal(isnull(s), exp) tm.assert_series_equal(notnull(s), ~exp) def test_array_equivalent(): assert array_equivalent(np.array([np.nan, np.nan]), np.array([np.nan, np.nan])) assert array_equivalent(np.array([np.nan, 1, np.nan]), np.array([np.nan, 1, np.nan])) assert array_equivalent(np.array([np.nan, None], dtype='object'), np.array([np.nan, None], dtype='object')) assert array_equivalent(np.array([np.nan, 1 + 1j], dtype='complex'), np.array([np.nan, 1 + 1j], dtype='complex')) assert not array_equivalent( np.array([np.nan, 1 + 1j], dtype='complex'), np.array( [np.nan, 1 + 2j], dtype='complex')) assert not array_equivalent( np.array([np.nan, 1, np.nan]), np.array([np.nan, 2, np.nan])) assert not array_equivalent( np.array(['a', 'b', 'c', 'd']), np.array(['e', 'e'])) assert array_equivalent(Float64Index([0, np.nan]), Float64Index([0, np.nan])) assert not array_equivalent( Float64Index([0, np.nan]), Float64Index([1, np.nan])) assert array_equivalent(DatetimeIndex([0, np.nan]), DatetimeIndex([0, np.nan])) assert not array_equivalent( DatetimeIndex([0, np.nan]), DatetimeIndex([1, np.nan])) assert array_equivalent(TimedeltaIndex([0, np.nan]), TimedeltaIndex([0, np.nan])) assert not array_equivalent( TimedeltaIndex([0, np.nan]), TimedeltaIndex([1, np.nan])) assert array_equivalent(DatetimeIndex([0, np.nan], tz='US/Eastern'), DatetimeIndex([0, np.nan], tz='US/Eastern')) assert not array_equivalent( DatetimeIndex([0, np.nan], tz='US/Eastern'), DatetimeIndex( [1, np.nan], tz='US/Eastern')) assert not array_equivalent( DatetimeIndex([0, np.nan]), DatetimeIndex( [0, np.nan], tz='US/Eastern')) assert not array_equivalent( DatetimeIndex([0, np.nan], tz='CET'), DatetimeIndex( [0, np.nan], tz='US/Eastern')) assert not array_equivalent( DatetimeIndex([0, np.nan]), TimedeltaIndex([0, np.nan])) def test_array_equivalent_compat(): # see gh-13388 m = np.array([(1, 2), (3, 4)], dtype=[('a', int), ('b', float)]) n = np.array([(1, 2), (3, 4)], dtype=[('a', int), ('b', float)]) assert (array_equivalent(m, n, strict_nan=True)) assert (array_equivalent(m, n, strict_nan=False)) m = np.array([(1, 2), (3, 4)], dtype=[('a', int), ('b', float)]) n = np.array([(1, 2), (4, 3)], dtype=[('a', int), ('b', float)]) assert (not array_equivalent(m, n, strict_nan=True)) assert (not array_equivalent(m, n, strict_nan=False)) m = np.array([(1, 2), (3, 4)], dtype=[('a', int), ('b', float)]) n = np.array([(1, 2), (3, 4)], dtype=[('b', int), ('a', float)]) assert (not array_equivalent(m, n, strict_nan=True)) assert (not array_equivalent(m, n, strict_nan=False)) def test_array_equivalent_str(): for dtype in ['O', 'S', 'U']: assert array_equivalent(np.array(['A', 'B'], dtype=dtype), np.array(['A', 'B'], dtype=dtype)) assert not array_equivalent(np.array(['A', 'B'], dtype=dtype), np.array(['A', 'X'], dtype=dtype)) def test_na_value_for_dtype(): for dtype in [np.dtype('M8[ns]'), np.dtype('m8[ns]'), DatetimeTZDtype('datetime64[ns, US/Eastern]')]: assert na_value_for_dtype(dtype) is NaT for dtype in ['u1', 'u2', 'u4', 'u8', 'i1', 'i2', 'i4', 'i8']: assert na_value_for_dtype(np.dtype(dtype)) == 0 for dtype in ['bool']: assert na_value_for_dtype(np.dtype(dtype)) is False for dtype in ['f2', 'f4', 'f8']: assert np.isnan(na_value_for_dtype(np.dtype(dtype))) for dtype in ['O']: assert np.isnan(na_value_for_dtype(np.dtype(dtype))) if __name__ == '__main__': nose.runmodule(argv=[__file__, '-vvs', '-x', '--pdb', '--pdb-failure'], exit=False)
gpl-3.0
sserrot/champion_relationships
venv/Lib/site-packages/networkx/drawing/tests/test_pylab.py
1
7836
"""Unit tests for matplotlib drawing functions.""" import os import itertools import pytest mpl = pytest.importorskip('matplotlib') mpl.use('PS', warn=False) plt = pytest.importorskip('matplotlib.pyplot') plt.rcParams['text.usetex'] = False import networkx as nx class TestPylab(object): @classmethod def setup_class(cls): cls.G = nx.barbell_graph(4, 6) def test_draw(self): try: functions = [nx.draw_circular, nx.draw_kamada_kawai, nx.draw_planar, nx.draw_random, nx.draw_spectral, nx.draw_spring, nx.draw_shell] options = [{ 'node_color': 'black', 'node_size': 100, 'width': 3, }] for function, option in itertools.product(functions, options): function(self.G, **option) plt.savefig('test.ps') finally: try: os.unlink('test.ps') except OSError: pass def test_draw_shell_nlist(self): try: nlist = [list(range(4)), list(range(4, 10)), list(range(10, 14))] nx.draw_shell(self.G, nlist=nlist) plt.savefig('test.ps') finally: try: os.unlink('test.ps') except OSError: pass def test_edge_colormap(self): colors = range(self.G.number_of_edges()) nx.draw_spring(self.G, edge_color=colors, width=4, edge_cmap=plt.cm.Blues, with_labels=True) plt.show() def test_arrows(self): nx.draw_spring(self.G.to_directed()) plt.show() def test_edge_colors_and_widths(self): pos = nx.circular_layout(self.G) for G in (self.G, self.G.to_directed()): nx.draw_networkx_nodes(G, pos, node_color=[(1.0, 1.0, 0.2, 0.5)]) nx.draw_networkx_labels(G, pos) # edge with default color and width nx.draw_networkx_edges(G, pos, edgelist=[(0, 1)], width=None, edge_color=None) # edges with global color strings and widths in lists nx.draw_networkx_edges(G, pos, edgelist=[(0, 2), (0, 3)], width=[3], edge_color=['r']) # edges with color strings and widths for each edge nx.draw_networkx_edges(G, pos, edgelist=[(0, 2), (0, 3)], width=[1, 3], edge_color=['r', 'b']) # edges with fewer color strings and widths than edges nx.draw_networkx_edges(G, pos, edgelist=[(1, 2), (1, 3), (2, 3), (3, 4)], width=[1, 3], edge_color=['g', 'm', 'c']) # edges with more color strings and widths than edges nx.draw_networkx_edges(G, pos, edgelist=[(3, 4)], width=[1, 2, 3, 4], edge_color=['r', 'b', 'g', 'k']) # with rgb tuple and 3 edges - is interpreted with cmap nx.draw_networkx_edges(G, pos, edgelist=[(4, 5), (5, 6), (6, 7)], edge_color=(1.0, 0.4, 0.3)) # with rgb tuple in list nx.draw_networkx_edges(G, pos, edgelist=[(7, 8), (8, 9)], edge_color=[(0.4, 1.0, 0.0)]) # with rgba tuple and 4 edges - is interpretted with cmap nx.draw_networkx_edges(G, pos, edgelist=[(9, 10), (10, 11), (10, 12), (10, 13)], edge_color=(0.0, 1.0, 1.0, 0.5)) # with rgba tuple in list nx.draw_networkx_edges(G, pos, edgelist=[(9, 10), (10, 11), (10, 12), (10, 13)], edge_color=[(0.0, 1.0, 1.0, 0.5)]) # with color string and global alpha nx.draw_networkx_edges(G, pos, edgelist=[(11, 12), (11, 13)], edge_color='purple', alpha=0.2) # with color string in a list nx.draw_networkx_edges(G, pos, edgelist=[(11, 12), (11, 13)], edge_color=['purple']) # with single edge and hex color string nx.draw_networkx_edges(G, pos, edgelist=[(12, 13)], edge_color='#1f78b4f0') # edge_color as numeric using vmin, vmax nx.draw_networkx_edges(G, pos, edgelist=[(7, 8), (8, 9)], edge_color=[0.2, 0.5], edge_vmin=0.1, edge_max=0.6) plt.show() def test_labels_and_colors(self): G = nx.cubical_graph() pos = nx.spring_layout(G) # positions for all nodes # nodes nx.draw_networkx_nodes(G, pos, nodelist=[0, 1, 2, 3], node_color='r', node_size=500, alpha=0.75) nx.draw_networkx_nodes(G, pos, nodelist=[4, 5, 6, 7], node_color='b', node_size=500, alpha=[0.25, 0.5, 0.75, 1.0]) # edges nx.draw_networkx_edges(G, pos, width=1.0, alpha=0.5) nx.draw_networkx_edges(G, pos, edgelist=[(0, 1), (1, 2), (2, 3), (3, 0)], width=8, alpha=0.5, edge_color='r') nx.draw_networkx_edges(G, pos, edgelist=[(4, 5), (5, 6), (6, 7), (7, 4)], width=8, alpha=0.5, edge_color='b') nx.draw_networkx_edges(G, pos, edgelist=[(4, 5), (5, 6), (6, 7), (7, 4)], min_source_margin=0.5, min_target_margin=0.75, width=8, edge_color='b') # some math labels labels = {} labels[0] = r'$a$' labels[1] = r'$b$' labels[2] = r'$c$' labels[3] = r'$d$' labels[4] = r'$\alpha$' labels[5] = r'$\beta$' labels[6] = r'$\gamma$' labels[7] = r'$\delta$' nx.draw_networkx_labels(G, pos, labels, font_size=16) nx.draw_networkx_edge_labels(G, pos, edge_labels=None, rotate=False) nx.draw_networkx_edge_labels(G, pos, edge_labels={(4, 5): '4-5'}) plt.show() def test_axes(self): fig, ax = plt.subplots() nx.draw(self.G, ax=ax) def test_empty_graph(self): G = nx.Graph() nx.draw(G) def test_multigraph_edgelist_tuples(self): # See Issue #3295 G = nx.path_graph(3, create_using=nx.MultiDiGraph) nx.draw_networkx(G, edgelist=[(0, 1, 0)]) nx.draw_networkx(G, edgelist=[(0, 1, 0)], node_size=[10, 20]) def test_alpha_iter(self): pos = nx.random_layout(self.G) # with fewer alpha elements than nodes plt.subplot(131) nx.draw_networkx_nodes(self.G, pos, alpha=[0.1, 0.2]) # with equal alpha elements and nodes num_nodes = len(self.G.nodes) alpha = [x / num_nodes for x in range(num_nodes)] colors = range(num_nodes) plt.subplot(132) nx.draw_networkx_nodes(self.G, pos, node_color=colors, alpha=alpha) # with more alpha elements than nodes alpha.append(1) plt.subplot(133) nx.draw_networkx_nodes(self.G, pos, alpha=alpha)
mit
cbweaver/stockscan
scans/plot_all_dips.py
1
5723
#!/usr/bin/python # -*- coding: utf-8 -*- import logbook, configparser, os import matplotlib.pyplot as plt import sqlite3 as sql import numpy as np def is_dip(closes, i): if closes[i] < closes[i - 1] and \ closes[i] < closes[i + 1]: return True else: return False def perc_change(a, b): return ((b - a) / a) config = configparser.ConfigParser() config.read(os.getcwd()+"/config.ini") log_handler = logbook.FileHandler(config['DEBUG']['log_fpath']) with log_handler.applicationbound(): con = sql.connect("data/ysdb.sql") cur = con.cursor() tp = "MSFT" day_range = 20 min_perc_incr = 0.07 ta_offset = 33 dip_data = [] cur.execute("SELECT AdjClose FROM %s_HIST" % (tp)) ac = list(zip(*cur.fetchall())[0]) cur.execute("SELECT Rsi14 FROM %s_TA" % (tp)) rsi14 = list(zip(*cur.fetchall())[0]) cur.execute("SELECT Rsi20 FROM %s_TA" % (tp)) rsi20 = list(zip(*cur.fetchall())[0]) cur.execute("SELECT Rsi25 FROM %s_TA" % (tp)) rsi25 = list(zip(*cur.fetchall())[0]) cur.execute("SELECT Rsi30 FROM %s_TA" % (tp)) rsi30 = list(zip(*cur.fetchall())[0]) cur.execute("SELECT MacdH12_26_9 FROM %s_TA" % (tp)) macdh = list(zip(*cur.fetchall())[0]) cur.execute("SELECT StoK_14_3_3 FROM %s_TA" % (tp)) stok_14_3_3 = list(zip(*cur.fetchall())[0]) cur.execute("SELECT StoD_14_3_3 FROM %s_TA" % (tp)) stod_14_3_3 = list(zip(*cur.fetchall())[0]) cur.execute("SELECT StoK_26_6_6 FROM %s_TA" % (tp)) stok_26_6_6 = list(zip(*cur.fetchall())[0]) cur.execute("SELECT StoD_26_6_6 FROM %s_TA" % (tp)) stod_26_6_6 = list(zip(*cur.fetchall())[0]) if len(ac) > 600: xMostRecent = 500 for i in range(ta_offset): ac.pop(0) rsi14.pop(0) rsi20.pop(0) rsi25.pop(0) rsi30.pop(0) macdh.pop(0) stok_14_3_3.pop(0) stod_14_3_3.pop(0) stok_26_6_6.pop(0) stod_26_6_6.pop(0) ac = ac[-xMostRecent:] rsi14 = rsi14[-xMostRecent:] rsi20 = rsi20[-xMostRecent:] rsi25 = rsi25[-xMostRecent:] rsi30 = rsi30[-xMostRecent:] macdh = macdh[-xMostRecent:] stok_14_3_3 = stok_14_3_3[-xMostRecent:] stod_14_3_3 = stod_14_3_3[-xMostRecent:] stok_26_6_6 = stok_26_6_6[-xMostRecent:] stod_26_6_6 = stod_26_6_6[-xMostRecent:] num_dips = 0 num_pos_m = 0 x = np.array(range(0, day_range)) for i in range(1, (xMostRecent - day_range)): y = np.zeros(len(x)) if is_dip(ac, i): num_dips += 1 for j in x: y[j] = perc_change(ac[i], ac[i+j]) A = np.vstack([x, np.ones(len(x))]).T m, c = np.linalg.lstsq(A, y)[0] if perc_change(ac[i], max(ac[i:i+day_range])) >= min_perc_incr: num_pos_m += 1 # capture data about i dip_data.append( [ [i], [ rsi14[i-1], rsi20[i-1], rsi25[i-1], rsi30[i-1], macdh[i-1], stok_14_3_3[i-1], stod_14_3_3[i-1], stok_26_6_6[i-1], stod_26_6_6[i-1] ], # i - 1 [ rsi14[i], rsi20[i], rsi25[i], rsi30[i], macdh[i], stok_14_3_3[i], stod_14_3_3[i], stok_26_6_6[i], stod_26_6_6[i] ], # i [ rsi14[i+1], rsi20[i+1], rsi25[i+1], rsi30[i+1], macdh[i+1], stok_14_3_3[i+1], stod_14_3_3[i+1], stok_26_6_6[i+1], stod_26_6_6[i+1] ] # i + 1 ] ) #plt.cla() #plt.plot(x, y, 'o') #plt.plot(x, m*x + c, 'r') #plt.xlim(0, day_range) #plt.ylim(-0.2, 0.2) #plt.savefig('plots/dip_%03d.png' % i) #print num_dips #print num_pos_m #print (num_pos_m/float(num_dips)) stos = [] stos_hist = [] for data in dip_data: stos.append([ [data[1][5], data[1][6]], [data[2][5], data[2][6]], [data[3][5], data[3][6]] ]) stos_hist.append([ [data[1][5] - data[1][6]], [data[2][5] - data[2][6]], [data[3][5] - data[3][6]] ]) stos = np.array(stos) stos_hist = np.array(stos_hist) z = [] for sto_data in stos_hist: if sto_data[0] < 0 and \ sto_data[1] > 0: print "v^" else: print "." #plt.cla() #plt.hist(z, range=(-1, 1), bins=20) #plt.savefig('plots/z1.png')
gpl-2.0
RobertABT/heightmap
build/matplotlib/lib/matplotlib/sphinxext/mathmpl.py
4
3828
from __future__ import print_function import os import sys try: from hashlib import md5 except ImportError: from md5 import md5 from docutils import nodes from docutils.parsers.rst import directives import warnings from matplotlib import rcParams from matplotlib.mathtext import MathTextParser rcParams['mathtext.fontset'] = 'cm' mathtext_parser = MathTextParser("Bitmap") # Define LaTeX math node: class latex_math(nodes.General, nodes.Element): pass def fontset_choice(arg): return directives.choice(arg, ['cm', 'stix', 'stixsans']) options_spec = {'fontset': fontset_choice} def math_role(role, rawtext, text, lineno, inliner, options={}, content=[]): i = rawtext.find('`') latex = rawtext[i+1:-1] node = latex_math(rawtext) node['latex'] = latex node['fontset'] = options.get('fontset', 'cm') return [node], [] math_role.options = options_spec def math_directive(name, arguments, options, content, lineno, content_offset, block_text, state, state_machine): latex = ''.join(content) node = latex_math(block_text) node['latex'] = latex node['fontset'] = options.get('fontset', 'cm') return [node] # This uses mathtext to render the expression def latex2png(latex, filename, fontset='cm'): latex = "$%s$" % latex orig_fontset = rcParams['mathtext.fontset'] rcParams['mathtext.fontset'] = fontset if os.path.exists(filename): depth = mathtext_parser.get_depth(latex, dpi=100) else: try: depth = mathtext_parser.to_png(filename, latex, dpi=100) except: warnings.warn("Could not render math expression %s" % latex, Warning) depth = 0 rcParams['mathtext.fontset'] = orig_fontset sys.stdout.write("#") sys.stdout.flush() return depth # LaTeX to HTML translation stuff: def latex2html(node, source): inline = isinstance(node.parent, nodes.TextElement) latex = node['latex'] name = 'math-%s' % md5(latex.encode()).hexdigest()[-10:] destdir = os.path.join(setup.app.builder.outdir, '_images', 'mathmpl') if not os.path.exists(destdir): os.makedirs(destdir) dest = os.path.join(destdir, '%s.png' % name) path = os.path.join(setup.app.builder.imgpath, 'mathmpl') depth = latex2png(latex, dest, node['fontset']) if inline: cls = '' else: cls = 'class="center" ' if inline and depth != 0: style = 'style="position: relative; bottom: -%dpx"' % (depth + 1) else: style = '' return '<img src="%s/%s.png" %s%s/>' % (path, name, cls, style) def setup(app): setup.app = app app.add_node(latex_math) app.add_role('math', math_role) # Add visit/depart methods to HTML-Translator: def visit_latex_math_html(self, node): source = self.document.attributes['source'] self.body.append(latex2html(node, source)) def depart_latex_math_html(self, node): pass # Add visit/depart methods to LaTeX-Translator: def visit_latex_math_latex(self, node): inline = isinstance(node.parent, nodes.TextElement) if inline: self.body.append('$%s$' % node['latex']) else: self.body.extend(['\\begin{equation}', node['latex'], '\\end{equation}']) def depart_latex_math_latex(self, node): pass app.add_node(latex_math, html=(visit_latex_math_html, depart_latex_math_html)) app.add_node(latex_math, latex=(visit_latex_math_latex, depart_latex_math_latex)) app.add_role('math', math_role) app.add_directive('math', math_directive, True, (0, 0, 0), **options_spec)
mit
DrigerG/IIITB-ML
project/DigiRec/DigiRec.py
1
2488
#!/usr/bin/env python """CharRec.py: Runs a suite of ML algorithms on a character dataset""" import logging import numpy as np import pandas as pd from sklearn import tree, ensemble, neighbors, neural_network, multiclass from sklearn.model_selection import cross_val_score __author__ = "Pradeep Kumar A.V." logging.basicConfig(filename='execution_log.log', format='%(asctime)s %(message)s', level=logging.DEBUG) def log_and_print(msg): logging.info(msg) print(msg) def train(x_train, y_train, algo="DT"): """ :param x_train: training data features :param y_train: training data labels :param algo: choice of learning algorithm [DT, RF, KNN, MLP] :return: model object """ if algo == "DT": cla = tree.DecisionTreeClassifier() elif algo == "RF": cla = ensemble.RandomForestClassifier(max_features=40, n_estimators=500, n_jobs=1, max_depth=150) elif algo == "KNN": cla = neighbors.KNeighborsClassifier() elif algo == "MLP": cla = neural_network.MLPClassifier() # Enable one of the optimization methods # One Vs Rest multi class strategy cla = multiclass.OneVsRestClassifier(cla) # AdaBoost ensemble boosting method # cla = ensemble.AdaBoostClassifier(cla) cla.fit(x_train, y_train) return cla def main(): # Read training data log_and_print("Reading training data") dataset = pd.read_csv("/home/harold/train.csv") y_train = dataset[[0]].values.ravel() x_train = dataset.iloc[:, 1:].values # Read testing data log_and_print("Reading test data") x_test = pd.read_csv("/home/harold/test.csv").values for algo in ["DT", "RF", "KNN", "MLP"]: log_and_print("Training the %s classifier" % algo) model = train(x_train, y_train, algo) log_and_print("Cross validating the classifier") scores = cross_val_score(model, x_train, y_train, n_jobs=-1) log_and_print("%s Cross-validation score = %s " % (algo, scores.mean())) pred = model.predict(x_test) np.savetxt('submission_%s.csv' % algo, np.c_[range(1, len(x_test)+1), pred], delimiter=',', header='ImageId,Label', comments='', fmt='%d') if __name__ == '__main__': main()
apache-2.0
GillesPy/gillespy
examples/parameter_changing.py
1
4014
import scipy as sp import numpy as np import matplotlib.pyplot as plt import sys sys.path[:0] = ['..'] import gillespy class parameter_changing_model(gillespy.Model): """ This toy example shows how we can simply simulate the same model for multiple parameter sets. Our model consists of the following reactions: 0 -> S1 S1 + S1 -> S2 S2 -> 0 So S1 being produced, dimerizing, and being degraded. """ def __init__(self, parameter_values=None): # Initialize the model. gillespy.Model.__init__(self, name="simple1") # Parameters k1 = gillespy.Parameter(name='k1', expression=parameter_values[0]) k2 = gillespy.Parameter(name='k2', expression=parameter_values[1]) k3 = gillespy.Parameter(name='k3', expression=parameter_values[2]) self.add_parameter([k1, k2, k3]) # Species S1 = gillespy.Species(name='S1', initial_value=100) S2 = gillespy.Species(name='S2', initial_value=0) self.add_species([S1, S2]) # Reactions rxn1 = gillespy.Reaction( name = 'S1 production', reactants = {}, products = {S1:1}, rate = k1 ) rxn2 = gillespy.Reaction( name = 'dimer formation', reactants = {S1:2}, products = {S2:1}, rate = k2) rxn3 = gillespy.Reaction( name = 'dimer degradation', reactants = {S2:1}, products = {}, rate = k3) self.add_reaction([rxn1, rxn2, rxn3]) self.timespan(np.linspace(0,100,101)) if __name__ == '__main__': # Here, we create the model objects. We have two different parameter # sets: set1 = [100, 0.1, 0.1] set2 = [100, 0.001, 0.1] # For set #2, dimers (S2) form much less readily. set1_model = parameter_changing_model(parameter_values = set1) set2_model = parameter_changing_model(parameter_values = set2) num_trajectories = 100 # Let's simulate for both parameter sets, and compare the results set1_trajectories = set1_model.run(number_of_trajectories = num_trajectories, show_labels=False) set2_trajectories = set2_model.run(number_of_trajectories = num_trajectories, show_labels=False) # Done! That was simple. # PLOTTING RESULTS # here, we will plot all trajectories with the mean overlaid from matplotlib import gridspec gs = gridspec.GridSpec(1,2) alp = 0.1 # alpha value # extract time values time = np.array(set1_trajectories[0][:,0]) # Plot for parameter set #1 ax0 = plt.subplot(gs[0,0]) set1_S1 = np.array([set1_trajectories[i][:,1] for i in xrange(num_trajectories)]).T set1_S2 = np.array([set2_trajectories[i][:,2] for i in xrange(num_trajectories)]).T #plot individual trajectories ax0.plot(time, set1_S1, 'r', alpha = alp) ax0.plot(time, set1_S2, 'b', alpha = alp) #plot mean ax0.plot(time, set1_S1.mean(1), 'k--', label = "Mean S1") ax0.plot(time, set1_S2.mean(1), 'k:', label = "Mean S2") ax0.legend() ax0.set_xlabel('Time') ax0.set_ylabel('Species Count') ax0.set_title('Parameter Set 1') # Plot for parameter set #2 ax1 = plt.subplot(gs[0,1]) set2_S1 = np.array([set2_trajectories[i][:,1] for i in xrange(num_trajectories)]).T set2_S2 = np.array([set2_trajectories[i][:,2] for i in xrange(num_trajectories)]).T #plot individual trajectories ax1.plot(time, set2_S1, 'r', alpha = alp) ax1.plot(time, set2_S2, 'b', alpha = alp) #plot mean ax1.plot(time, set2_S1.mean(1), 'k--', label = "Mean S1") ax1.plot(time, set2_S2.mean(1), 'k:', label = "Mean S2") ax1.legend() ax1.set_xlabel('Time') ax1.set_title('Parameter Set 2') plt.tight_layout() plt.show()
gpl-3.0
jalexvig/tensorflow
tensorflow/contrib/learn/python/learn/estimators/dnn_linear_combined_test.py
30
70017
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for DNNLinearCombinedEstimators.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools import json import tempfile import numpy as np from tensorflow.contrib.layers.python.layers import feature_column from tensorflow.contrib.learn.python.learn import experiment from tensorflow.contrib.learn.python.learn.datasets import base from tensorflow.contrib.learn.python.learn.estimators import _sklearn from tensorflow.contrib.learn.python.learn.estimators import dnn_linear_combined from tensorflow.contrib.learn.python.learn.estimators import estimator_test_utils from tensorflow.contrib.learn.python.learn.estimators import head as head_lib from tensorflow.contrib.learn.python.learn.estimators import model_fn from tensorflow.contrib.learn.python.learn.estimators import run_config from tensorflow.contrib.learn.python.learn.estimators import test_data from tensorflow.contrib.learn.python.learn.metric_spec import MetricSpec from tensorflow.contrib.metrics.python.ops import metric_ops from tensorflow.python.feature_column import feature_column as fc_core from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import sparse_tensor from tensorflow.python.ops import array_ops from tensorflow.python.ops import init_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops.losses import losses from tensorflow.python.platform import test from tensorflow.python.training import adagrad from tensorflow.python.training import ftrl from tensorflow.python.training import input as input_lib from tensorflow.python.training import learning_rate_decay from tensorflow.python.training import monitored_session from tensorflow.python.training import server_lib from tensorflow.python.training import session_run_hook from tensorflow.python.training import sync_replicas_optimizer from tensorflow.python.training import training_util def _assert_metrics_in_range(keys, metrics): epsilon = 0.00001 # Added for floating point edge cases. for key in keys: estimator_test_utils.assert_in_range(0.0 - epsilon, 1.0 + epsilon, key, metrics) class _CheckCallsHead(head_lib.Head): """Head that checks whether head_ops is called.""" def __init__(self): self._head_ops_called_times = 0 @property def logits_dimension(self): return 1 def create_model_fn_ops( self, mode, features, labels=None, train_op_fn=None, logits=None, logits_input=None, scope=None): """See `_Head`.""" self._head_ops_called_times += 1 loss = losses.mean_squared_error(labels, logits) return model_fn.ModelFnOps( mode, predictions={'loss': loss}, loss=loss, train_op=train_op_fn(loss), eval_metric_ops={'loss': loss}) @property def head_ops_called_times(self): return self._head_ops_called_times class _StepCounterHook(session_run_hook.SessionRunHook): """Counts the number of training steps.""" def __init__(self): self._steps = 0 def after_run(self, run_context, run_values): del run_context, run_values self._steps += 1 @property def steps(self): return self._steps class EmbeddingMultiplierTest(test.TestCase): """dnn_model_fn tests.""" def testRaisesNonEmbeddingColumn(self): one_hot_language = feature_column.one_hot_column( feature_column.sparse_column_with_hash_bucket('language', 10)) params = { 'dnn_feature_columns': [one_hot_language], 'head': head_lib.multi_class_head(2), 'dnn_hidden_units': [1], # Set lr mult to 0. to keep embeddings constant. 'embedding_lr_multipliers': { one_hot_language: 0.0 }, 'dnn_optimizer': 'Adagrad', } features = { 'language': sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [1, 0], [2, 0]], dense_shape=[3, 1]), } labels = constant_op.constant([[0], [0], [0]], dtype=dtypes.int32) with self.assertRaisesRegexp(ValueError, 'can only be defined for embedding columns'): dnn_linear_combined._dnn_linear_combined_model_fn(features, labels, model_fn.ModeKeys.TRAIN, params) def testMultipliesGradient(self): embedding_language = feature_column.embedding_column( feature_column.sparse_column_with_hash_bucket('language', 10), dimension=1, initializer=init_ops.constant_initializer(0.1)) embedding_wire = feature_column.embedding_column( feature_column.sparse_column_with_hash_bucket('wire', 10), dimension=1, initializer=init_ops.constant_initializer(0.1)) params = { 'dnn_feature_columns': [embedding_language, embedding_wire], 'head': head_lib.multi_class_head(2), 'dnn_hidden_units': [1], # Set lr mult to 0. to keep language embeddings constant, whereas wire # embeddings will be trained. 'embedding_lr_multipliers': { embedding_language: 0.0 }, 'dnn_optimizer': 'Adagrad', } with ops.Graph().as_default(): features = { 'language': sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [1, 0], [2, 0]], dense_shape=[3, 1]), 'wire': sparse_tensor.SparseTensor( values=['omar', 'stringer', 'marlo'], indices=[[0, 0], [1, 0], [2, 0]], dense_shape=[3, 1]), } labels = constant_op.constant([[1], [0], [0]], dtype=dtypes.int32) training_util.create_global_step() model_ops = dnn_linear_combined._dnn_linear_combined_model_fn( features, labels, model_fn.ModeKeys.TRAIN, params) with monitored_session.MonitoredSession() as sess: language_var = dnn_linear_combined._get_embedding_variable( embedding_language, 'dnn', 'dnn/input_from_feature_columns') language_initial_value = sess.run(language_var) for _ in range(2): _, language_value = sess.run([model_ops.train_op, language_var]) self.assertAllClose(language_value, language_initial_value) # We could also test that wire_value changed, but that test would be flaky. class DNNLinearCombinedEstimatorTest(test.TestCase): def testEstimatorContract(self): estimator_test_utils.assert_estimator_contract( self, dnn_linear_combined.DNNLinearCombinedEstimator) def testNoFeatureColumns(self): with self.assertRaisesRegexp( ValueError, 'Either linear_feature_columns or dnn_feature_columns must be defined'): dnn_linear_combined.DNNLinearCombinedEstimator( head=_CheckCallsHead(), linear_feature_columns=None, dnn_feature_columns=None, dnn_hidden_units=[3, 3]) def testCheckCallsHead(self): """Tests binary classification using matrix data as input.""" head = _CheckCallsHead() iris = test_data.prepare_iris_data_for_logistic_regression() cont_features = [ feature_column.real_valued_column('feature', dimension=4)] bucketized_feature = [feature_column.bucketized_column( cont_features[0], test_data.get_quantile_based_buckets(iris.data, 10))] estimator = dnn_linear_combined.DNNLinearCombinedEstimator( head, linear_feature_columns=bucketized_feature, dnn_feature_columns=cont_features, dnn_hidden_units=[3, 3]) estimator.fit(input_fn=test_data.iris_input_multiclass_fn, steps=10) self.assertEqual(1, head.head_ops_called_times) estimator.evaluate(input_fn=test_data.iris_input_multiclass_fn, steps=10) self.assertEqual(2, head.head_ops_called_times) estimator.predict(input_fn=test_data.iris_input_multiclass_fn) self.assertEqual(3, head.head_ops_called_times) class DNNLinearCombinedClassifierTest(test.TestCase): def testEstimatorContract(self): estimator_test_utils.assert_estimator_contract( self, dnn_linear_combined.DNNLinearCombinedClassifier) def testExperimentIntegration(self): cont_features = [feature_column.real_valued_column('feature', dimension=4)] exp = experiment.Experiment( estimator=dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=cont_features, dnn_feature_columns=cont_features, dnn_hidden_units=[3, 3]), train_input_fn=test_data.iris_input_logistic_fn, eval_input_fn=test_data.iris_input_logistic_fn) exp.test() def testNoFeatureColumns(self): with self.assertRaisesRegexp( ValueError, 'Either linear_feature_columns or dnn_feature_columns must be defined'): dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=None, dnn_feature_columns=None, dnn_hidden_units=[3, 3]) def testNoDnnHiddenUnits(self): def _input_fn(): return { 'age': constant_op.constant([1]), 'language': sparse_tensor.SparseTensor( values=['english'], indices=[[0, 0]], dense_shape=[1, 1]) }, constant_op.constant([[1]]) language = feature_column.sparse_column_with_hash_bucket('language', 100) age = feature_column.real_valued_column('age') with self.assertRaisesRegexp( ValueError, 'dnn_hidden_units must be defined when dnn_feature_columns is ' 'specified'): classifier = dnn_linear_combined.DNNLinearCombinedClassifier( dnn_feature_columns=[age, language]) classifier.fit(input_fn=_input_fn, steps=2) def testSyncReplicasOptimizerUnsupported(self): cont_features = [feature_column.real_valued_column('feature', dimension=4)] sync_optimizer = sync_replicas_optimizer.SyncReplicasOptimizer( opt=adagrad.AdagradOptimizer(learning_rate=0.1), replicas_to_aggregate=1, total_num_replicas=1) sync_hook = sync_optimizer.make_session_run_hook(is_chief=True) classifier = dnn_linear_combined.DNNLinearCombinedClassifier( n_classes=3, dnn_feature_columns=cont_features, dnn_hidden_units=[3, 3], dnn_optimizer=sync_optimizer) with self.assertRaisesRegexp( ValueError, 'SyncReplicasOptimizer is not supported in DNNLinearCombined model'): classifier.fit( input_fn=test_data.iris_input_multiclass_fn, steps=100, monitors=[sync_hook]) def testEmbeddingMultiplier(self): embedding_language = feature_column.embedding_column( feature_column.sparse_column_with_hash_bucket('language', 10), dimension=1, initializer=init_ops.constant_initializer(0.1)) classifier = dnn_linear_combined.DNNLinearCombinedClassifier( dnn_feature_columns=[embedding_language], dnn_hidden_units=[3, 3], embedding_lr_multipliers={embedding_language: 0.8}) self.assertEqual({ embedding_language: 0.8 }, classifier.params['embedding_lr_multipliers']) def testInputPartitionSize(self): def _input_fn_float_label(num_epochs=None): features = { 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } labels = constant_op.constant([[0.8], [0.], [0.2]], dtype=dtypes.float32) return features, labels language_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ feature_column.embedding_column(language_column, dimension=1), ] # Set num_ps_replica to be 10 and the min slice size to be extremely small, # so as to ensure that there'll be 10 partititions produced. config = run_config.RunConfig(tf_random_seed=1) config._num_ps_replicas = 10 classifier = dnn_linear_combined.DNNLinearCombinedClassifier( n_classes=2, dnn_feature_columns=feature_columns, dnn_hidden_units=[3, 3], dnn_optimizer='Adagrad', config=config, input_layer_min_slice_size=1) # Ensure the param is passed in. self.assertTrue(callable(classifier.params['input_layer_partitioner'])) # Ensure the partition count is 10. classifier.fit(input_fn=_input_fn_float_label, steps=50) partition_count = 0 for name in classifier.get_variable_names(): if 'language_embedding' in name and 'Adagrad' in name: partition_count += 1 self.assertEqual(10, partition_count) def testLogisticRegression_MatrixData(self): """Tests binary classification using matrix data as input.""" iris = test_data.prepare_iris_data_for_logistic_regression() cont_features = [feature_column.real_valued_column('feature', dimension=4)] bucketized_feature = [ feature_column.bucketized_column( cont_features[0], test_data.get_quantile_based_buckets(iris.data, 10)) ] classifier = dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=bucketized_feature, dnn_feature_columns=cont_features, dnn_hidden_units=[3, 3]) classifier.fit(input_fn=test_data.iris_input_logistic_fn, steps=100) scores = classifier.evaluate( input_fn=test_data.iris_input_logistic_fn, steps=100) _assert_metrics_in_range(('accuracy', 'auc'), scores) def testLogisticRegression_TensorData(self): """Tests binary classification using Tensor data as input.""" def _input_fn(): iris = test_data.prepare_iris_data_for_logistic_regression() features = {} for i in range(4): # The following shows how to provide the Tensor data for # RealValuedColumns. features.update({ str(i): array_ops.reshape( constant_op.constant( iris.data[:, i], dtype=dtypes.float32), [-1, 1]) }) # The following shows how to provide the SparseTensor data for # a SparseColumn. features['dummy_sparse_column'] = sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [60, 0]], dense_shape=[len(iris.target), 2]) labels = array_ops.reshape( constant_op.constant( iris.target, dtype=dtypes.int32), [-1, 1]) return features, labels iris = test_data.prepare_iris_data_for_logistic_regression() cont_features = [ feature_column.real_valued_column(str(i)) for i in range(4) ] linear_features = [ feature_column.bucketized_column(cont_features[i], test_data.get_quantile_based_buckets( iris.data[:, i], 10)) for i in range(4) ] linear_features.append( feature_column.sparse_column_with_hash_bucket( 'dummy_sparse_column', hash_bucket_size=100)) classifier = dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=linear_features, dnn_feature_columns=cont_features, dnn_hidden_units=[3, 3]) classifier.fit(input_fn=_input_fn, steps=100) scores = classifier.evaluate(input_fn=_input_fn, steps=100) _assert_metrics_in_range(('accuracy', 'auc'), scores) def testEstimatorWithCoreFeatureColumns(self): """Tests binary classification using Tensor data as input.""" def _input_fn(): iris = test_data.prepare_iris_data_for_logistic_regression() features = {} for i in range(4): # The following shows how to provide the Tensor data for # RealValuedColumns. features.update({ str(i): array_ops.reshape( constant_op.constant(iris.data[:, i], dtype=dtypes.float32), [-1, 1]) }) # The following shows how to provide the SparseTensor data for # a SparseColumn. features['dummy_sparse_column'] = sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [60, 0]], dense_shape=[len(iris.target), 2]) labels = array_ops.reshape( constant_op.constant(iris.target, dtype=dtypes.int32), [-1, 1]) return features, labels iris = test_data.prepare_iris_data_for_logistic_regression() cont_features = [fc_core.numeric_column(str(i)) for i in range(4)] linear_features = [ fc_core.bucketized_column( cont_features[i], sorted(set(test_data.get_quantile_based_buckets( iris.data[:, i], 10)))) for i in range(4) ] linear_features.append( fc_core.categorical_column_with_hash_bucket( 'dummy_sparse_column', hash_bucket_size=100)) classifier = dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=linear_features, dnn_feature_columns=cont_features, dnn_hidden_units=[3, 3]) classifier.fit(input_fn=_input_fn, steps=100) scores = classifier.evaluate(input_fn=_input_fn, steps=100) _assert_metrics_in_range(('accuracy', 'auc'), scores) def testTrainWithPartitionedVariables(self): """Tests training with partitioned variables.""" def _input_fn(): features = { 'language': sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } labels = constant_op.constant([[1], [0], [0]]) return features, labels sparse_features = [ # The given hash_bucket_size results in variables larger than the # default min_slice_size attribute, so the variables are partitioned. feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=2e7) ] embedding_features = [ feature_column.embedding_column( sparse_features[0], dimension=1) ] tf_config = { 'cluster': { run_config.TaskType.PS: ['fake_ps_0', 'fake_ps_1'] } } with test.mock.patch.dict('os.environ', {'TF_CONFIG': json.dumps(tf_config)}): config = run_config.RunConfig() # Because we did not start a distributed cluster, we need to pass an # empty ClusterSpec, otherwise the device_setter will look for # distributed jobs, such as "/job:ps" which are not present. config._cluster_spec = server_lib.ClusterSpec({}) classifier = dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=sparse_features, dnn_feature_columns=embedding_features, dnn_hidden_units=[3, 3], config=config) classifier.fit(input_fn=_input_fn, steps=100) scores = classifier.evaluate(input_fn=_input_fn, steps=1) _assert_metrics_in_range(('accuracy', 'auc'), scores) def testMultiClass(self): """Tests multi-class classification using matrix data as input. Please see testLogisticRegression_TensorData() for how to use Tensor data as input instead. """ iris = base.load_iris() cont_features = [feature_column.real_valued_column('feature', dimension=4)] bucketized_features = [ feature_column.bucketized_column( cont_features[0], test_data.get_quantile_based_buckets(iris.data, 10)) ] classifier = dnn_linear_combined.DNNLinearCombinedClassifier( n_classes=3, linear_feature_columns=bucketized_features, dnn_feature_columns=cont_features, dnn_hidden_units=[3, 3]) classifier.fit(input_fn=test_data.iris_input_multiclass_fn, steps=100) scores = classifier.evaluate( input_fn=test_data.iris_input_multiclass_fn, steps=100) _assert_metrics_in_range(('accuracy',), scores) def testMultiClassLabelKeys(self): """Tests n_classes > 2 with label_keys vocabulary for labels.""" # Byte literals needed for python3 test to pass. label_keys = [b'label0', b'label1', b'label2'] def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[.8], [0.2], [.1]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } labels = constant_op.constant( [[label_keys[1]], [label_keys[0]], [label_keys[0]]], dtype=dtypes.string) return features, labels language_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) classifier = dnn_linear_combined.DNNLinearCombinedClassifier( n_classes=3, linear_feature_columns=[language_column], dnn_feature_columns=[ feature_column.embedding_column( language_column, dimension=1), feature_column.real_valued_column('age') ], dnn_hidden_units=[3, 3], label_keys=label_keys) classifier.fit(input_fn=_input_fn, steps=50) scores = classifier.evaluate(input_fn=_input_fn, steps=1) _assert_metrics_in_range(('accuracy',), scores) self.assertIn('loss', scores) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predicted_classes = list( classifier.predict_classes( input_fn=predict_input_fn, as_iterable=True)) self.assertEqual(3, len(predicted_classes)) for pred in predicted_classes: self.assertIn(pred, label_keys) predictions = list( classifier.predict(input_fn=predict_input_fn, as_iterable=True)) self.assertAllEqual(predicted_classes, predictions) def testLoss(self): """Tests loss calculation.""" def _input_fn_train(): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) # The logistic prediction should be (y = 0.25). features = {'x': array_ops.ones(shape=[4, 1], dtype=dtypes.float32),} labels = constant_op.constant([[1], [0], [0], [0]]) return features, labels classifier = dnn_linear_combined.DNNLinearCombinedClassifier( n_classes=2, linear_feature_columns=[feature_column.real_valued_column('x')], dnn_feature_columns=[feature_column.real_valued_column('x')], dnn_hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn_train, steps=100) scores = classifier.evaluate(input_fn=_input_fn_train, steps=1) # Cross entropy = -0.25*log(0.25)-0.75*log(0.75) = 0.562 self.assertAlmostEqual(0.562, scores['loss'], delta=0.1) def testLossWithWeights(self): """Tests loss calculation with weights.""" def _input_fn_train(): # 4 rows with equal weight, one of them (y = x), three of them (y=Not(x)) # The logistic prediction should be (y = 0.25). features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[1.], [1.], [1.], [1.]]) } labels = constant_op.constant([[1.], [0.], [0.], [0.]]) return features, labels def _input_fn_eval(): # 4 rows, with different weights. features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[7.], [1.], [1.], [1.]]) } labels = constant_op.constant([[1.], [0.], [0.], [0.]]) return features, labels classifier = dnn_linear_combined.DNNLinearCombinedClassifier( weight_column_name='w', n_classes=2, linear_feature_columns=[feature_column.real_valued_column('x')], dnn_feature_columns=[feature_column.real_valued_column('x')], dnn_hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn_train, steps=100) scores = classifier.evaluate(input_fn=_input_fn_eval, steps=1) # Weighted cross entropy = (-7*log(0.25)-3*log(0.75))/10 = 1.06 self.assertAlmostEqual(1.06, scores['loss'], delta=0.1) def testTrainWithWeights(self): """Tests training with given weight column.""" def _input_fn_train(): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) # First row has more weight than others. Model should fit (y=x) better # than (y=Not(x)) due to the relative higher weight of the first row. labels = constant_op.constant([[1], [0], [0], [0]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[100.], [3.], [2.], [2.]]) } return features, labels def _input_fn_eval(): # Create 4 rows (y = x). labels = constant_op.constant([[1], [1], [1], [1]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[1.], [1.], [1.], [1.]]) } return features, labels classifier = dnn_linear_combined.DNNLinearCombinedClassifier( weight_column_name='w', linear_feature_columns=[feature_column.real_valued_column('x')], dnn_feature_columns=[feature_column.real_valued_column('x')], dnn_hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn_train, steps=100) scores = classifier.evaluate(input_fn=_input_fn_eval, steps=1) _assert_metrics_in_range(('accuracy',), scores) def testCustomOptimizerByObject(self): """Tests binary classification using matrix data as input.""" iris = test_data.prepare_iris_data_for_logistic_regression() cont_features = [feature_column.real_valued_column('feature', dimension=4)] bucketized_features = [ feature_column.bucketized_column( cont_features[0], test_data.get_quantile_based_buckets(iris.data, 10)) ] classifier = dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=bucketized_features, linear_optimizer=ftrl.FtrlOptimizer(learning_rate=0.1), dnn_feature_columns=cont_features, dnn_hidden_units=[3, 3], dnn_optimizer=adagrad.AdagradOptimizer(learning_rate=0.1)) classifier.fit(input_fn=test_data.iris_input_logistic_fn, steps=100) scores = classifier.evaluate( input_fn=test_data.iris_input_logistic_fn, steps=100) _assert_metrics_in_range(('accuracy',), scores) def testCustomOptimizerByString(self): """Tests binary classification using matrix data as input.""" iris = test_data.prepare_iris_data_for_logistic_regression() cont_features = [feature_column.real_valued_column('feature', dimension=4)] bucketized_features = [ feature_column.bucketized_column( cont_features[0], test_data.get_quantile_based_buckets(iris.data, 10)) ] classifier = dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=bucketized_features, linear_optimizer='Ftrl', dnn_feature_columns=cont_features, dnn_hidden_units=[3, 3], dnn_optimizer='Adagrad') classifier.fit(input_fn=test_data.iris_input_logistic_fn, steps=100) scores = classifier.evaluate( input_fn=test_data.iris_input_logistic_fn, steps=100) _assert_metrics_in_range(('accuracy',), scores) def testCustomOptimizerByFunction(self): """Tests binary classification using matrix data as input.""" iris = test_data.prepare_iris_data_for_logistic_regression() cont_features = [feature_column.real_valued_column('feature', dimension=4)] bucketized_features = [ feature_column.bucketized_column( cont_features[0], test_data.get_quantile_based_buckets(iris.data, 10)) ] def _optimizer_exp_decay(): global_step = training_util.get_global_step() learning_rate = learning_rate_decay.exponential_decay( learning_rate=0.1, global_step=global_step, decay_steps=100, decay_rate=0.001) return adagrad.AdagradOptimizer(learning_rate=learning_rate) classifier = dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=bucketized_features, linear_optimizer=_optimizer_exp_decay, dnn_feature_columns=cont_features, dnn_hidden_units=[3, 3], dnn_optimizer=_optimizer_exp_decay) classifier.fit(input_fn=test_data.iris_input_logistic_fn, steps=100) scores = classifier.evaluate( input_fn=test_data.iris_input_logistic_fn, steps=100) _assert_metrics_in_range(('accuracy',), scores) def testPredict(self): """Tests weight column in evaluation.""" def _input_fn_train(): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) labels = constant_op.constant([[1], [0], [0], [0]]) features = {'x': array_ops.ones(shape=[4, 1], dtype=dtypes.float32)} return features, labels def _input_fn_predict(): y = input_lib.limit_epochs( array_ops.ones( shape=[4, 1], dtype=dtypes.float32), num_epochs=1) features = {'x': y} return features classifier = dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=[feature_column.real_valued_column('x')], dnn_feature_columns=[feature_column.real_valued_column('x')], dnn_hidden_units=[3, 3]) classifier.fit(input_fn=_input_fn_train, steps=100) probs = list(classifier.predict_proba(input_fn=_input_fn_predict)) self.assertAllClose([[0.75, 0.25]] * 4, probs, 0.05) classes = list(classifier.predict_classes(input_fn=_input_fn_predict)) self.assertListEqual([0] * 4, classes) def testCustomMetrics(self): """Tests custom evaluation metrics.""" def _input_fn(num_epochs=None): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) labels = constant_op.constant([[1], [0], [0], [0]]) features = { 'x': input_lib.limit_epochs( array_ops.ones( shape=[4, 1], dtype=dtypes.float32), num_epochs=num_epochs) } return features, labels def _my_metric_op(predictions, labels): # For the case of binary classification, the 2nd column of "predictions" # denotes the model predictions. labels = math_ops.to_float(labels) predictions = array_ops.strided_slice( predictions, [0, 1], [-1, 2], end_mask=1) return math_ops.reduce_sum(math_ops.multiply(predictions, labels)) classifier = dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=[feature_column.real_valued_column('x')], dnn_feature_columns=[feature_column.real_valued_column('x')], dnn_hidden_units=[3, 3]) classifier.fit(input_fn=_input_fn, steps=100) scores = classifier.evaluate( input_fn=_input_fn, steps=100, metrics={ 'my_accuracy': MetricSpec( metric_fn=metric_ops.streaming_accuracy, prediction_key='classes'), 'my_precision': MetricSpec( metric_fn=metric_ops.streaming_precision, prediction_key='classes'), 'my_metric': MetricSpec( metric_fn=_my_metric_op, prediction_key='probabilities') }) self.assertTrue( set(['loss', 'my_accuracy', 'my_precision', 'my_metric']).issubset( set(scores.keys()))) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predictions = np.array(list(classifier.predict_classes( input_fn=predict_input_fn))) self.assertEqual( _sklearn.accuracy_score([1, 0, 0, 0], predictions), scores['my_accuracy']) # Test the case where the 2nd element of the key is neither "classes" nor # "probabilities". with self.assertRaisesRegexp(KeyError, 'bad_type'): classifier.evaluate( input_fn=_input_fn, steps=100, metrics={('bad_name', 'bad_type'): metric_ops.streaming_auc}) # Test the case where the tuple of the key doesn't have 2 elements. with self.assertRaises(ValueError): classifier.evaluate( input_fn=_input_fn, steps=100, metrics={ ('bad_length_name', 'classes', 'bad_length'): metric_ops.streaming_accuracy }) # Test the case where the prediction_key is neither "classes" nor # "probabilities". with self.assertRaisesRegexp(KeyError, 'bad_type'): classifier.evaluate( input_fn=_input_fn, steps=100, metrics={ 'bad_name': MetricSpec( metric_fn=metric_ops.streaming_auc, prediction_key='bad_type') }) def testVariableQuery(self): """Tests get_variable_names and get_variable_value.""" def _input_fn_train(): # Create 4 rows, three (y = x), one (y=Not(x)) labels = constant_op.constant([[1], [1], [1], [0]]) features = {'x': array_ops.ones(shape=[4, 1], dtype=dtypes.float32),} return features, labels classifier = dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=[feature_column.real_valued_column('x')], dnn_feature_columns=[feature_column.real_valued_column('x')], dnn_hidden_units=[3, 3]) classifier.fit(input_fn=_input_fn_train, steps=500) var_names = classifier.get_variable_names() self.assertGreater(len(var_names), 3) for name in var_names: classifier.get_variable_value(name) def testExport(self): """Tests export model for servo.""" def input_fn(): return { 'age': constant_op.constant([1]), 'language': sparse_tensor.SparseTensor( values=['english'], indices=[[0, 0]], dense_shape=[1, 1]) }, constant_op.constant([[1]]) language = feature_column.sparse_column_with_hash_bucket('language', 100) classifier = dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=[ feature_column.real_valued_column('age'), language, ], dnn_feature_columns=[ feature_column.embedding_column( language, dimension=1), ], dnn_hidden_units=[3, 3]) classifier.fit(input_fn=input_fn, steps=100) export_dir = tempfile.mkdtemp() input_feature_key = 'examples' def serving_input_fn(): features, targets = input_fn() features[input_feature_key] = array_ops.placeholder(dtypes.string) return features, targets classifier.export( export_dir, serving_input_fn, input_feature_key, use_deprecated_input_fn=False) def testCenteredBias(self): """Tests bias is centered or not.""" def _input_fn_train(): # Create 4 rows, three (y = x), one (y=Not(x)) labels = constant_op.constant([[1], [1], [1], [0]]) features = {'x': array_ops.ones(shape=[4, 1], dtype=dtypes.float32),} return features, labels classifier = dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=[feature_column.real_valued_column('x')], dnn_feature_columns=[feature_column.real_valued_column('x')], dnn_hidden_units=[3, 3], enable_centered_bias=True) classifier.fit(input_fn=_input_fn_train, steps=1000) self.assertIn('binary_logistic_head/centered_bias_weight', classifier.get_variable_names()) # logodds(0.75) = 1.09861228867 self.assertAlmostEqual( 1.0986, float(classifier.get_variable_value( 'binary_logistic_head/centered_bias_weight')[0]), places=2) def testDisableCenteredBias(self): """Tests bias is centered or not.""" def _input_fn_train(): # Create 4 rows, three (y = x), one (y=Not(x)) labels = constant_op.constant([[1], [1], [1], [0]]) features = {'x': array_ops.ones(shape=[4, 1], dtype=dtypes.float32),} return features, labels classifier = dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=[feature_column.real_valued_column('x')], dnn_feature_columns=[feature_column.real_valued_column('x')], dnn_hidden_units=[3, 3], enable_centered_bias=False) classifier.fit(input_fn=_input_fn_train, steps=500) self.assertNotIn('centered_bias_weight', classifier.get_variable_names()) def testGlobalStepLinearOnly(self): """Tests global step update for linear-only model.""" def input_fn(): return { 'age': constant_op.constant([1]), 'language': sparse_tensor.SparseTensor( values=['english'], indices=[[0, 0]], dense_shape=[1, 1]) }, constant_op.constant([[1]]) language = feature_column.sparse_column_with_hash_bucket('language', 10) age = feature_column.real_valued_column('age') step_counter = _StepCounterHook() classifier = dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=[age, language]) classifier.fit(input_fn=input_fn, steps=100, monitors=[step_counter]) self.assertEqual(100, step_counter.steps) def testGlobalStepDNNOnly(self): """Tests global step update for dnn-only model.""" def input_fn(): return { 'language': sparse_tensor.SparseTensor( values=['english'], indices=[[0, 0]], dense_shape=[1, 1]) }, constant_op.constant([[1]]) language = feature_column.sparse_column_with_hash_bucket('language', 10) step_counter = _StepCounterHook() classifier = dnn_linear_combined.DNNLinearCombinedClassifier( dnn_feature_columns=[ feature_column.embedding_column(language, dimension=1)], dnn_hidden_units=[3, 3]) classifier.fit(input_fn=input_fn, steps=100, monitors=[step_counter]) self.assertEqual(100, step_counter.steps) def testGlobalStepDNNLinearCombinedBug(self): """Tests global step update for dnn-linear combined model.""" def input_fn(): return { 'age': constant_op.constant([1]), 'language': sparse_tensor.SparseTensor( values=['english'], indices=[[0, 0]], dense_shape=[1, 1]) }, constant_op.constant([[1]]) language = feature_column.sparse_column_with_hash_bucket('language', 10) age = feature_column.real_valued_column('age') step_counter = _StepCounterHook() classifier = dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=[age, language], dnn_feature_columns=[ feature_column.embedding_column(language, dimension=1)], dnn_hidden_units=[3, 3], fix_global_step_increment_bug=False) classifier.fit(input_fn=input_fn, steps=100, monitors=[step_counter]) global_step = classifier.get_variable_value('global_step') if global_step == 100: # Expected is 100, but because of the global step increment bug, is 50. # Occasionally, step increments one more time due to a race condition, # reaching 51 steps. self.assertIn(step_counter.steps, [50, 51]) else: # Occasionally, training stops when global_step == 102, due to a race # condition. In addition, occasionally step increments one more time due # to a race condition reaching 52 steps. self.assertIn(step_counter.steps, [51, 52]) def testGlobalStepDNNLinearCombinedBugFixed(self): """Tests global step update for dnn-linear combined model.""" def input_fn(): return { 'age': constant_op.constant([1]), 'language': sparse_tensor.SparseTensor( values=['english'], indices=[[0, 0]], dense_shape=[1, 1]) }, constant_op.constant([[1]]) language = feature_column.sparse_column_with_hash_bucket('language', 10) age = feature_column.real_valued_column('age') step_counter = _StepCounterHook() classifier = dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=[age, language], dnn_feature_columns=[ feature_column.embedding_column(language, dimension=1)], dnn_hidden_units=[3, 3], fix_global_step_increment_bug=True) classifier.fit(input_fn=input_fn, steps=100, monitors=[step_counter]) self.assertEqual(100, step_counter.steps) def testLinearOnly(self): """Tests that linear-only instantiation works.""" def input_fn(): return { 'age': constant_op.constant([1]), 'language': sparse_tensor.SparseTensor( values=['english'], indices=[[0, 0]], dense_shape=[1, 1]) }, constant_op.constant([[1]]) language = feature_column.sparse_column_with_hash_bucket('language', 100) age = feature_column.real_valued_column('age') classifier = dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=[age, language]) classifier.fit(input_fn=input_fn, steps=100) loss1 = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] classifier.fit(input_fn=input_fn, steps=200) loss2 = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] self.assertLess(loss2, loss1) variable_names = classifier.get_variable_names() self.assertNotIn('dnn/logits/biases', variable_names) self.assertNotIn('dnn/logits/weights', variable_names) self.assertIn('linear/bias_weight', variable_names) self.assertIn('linear/age/weight', variable_names) self.assertIn('linear/language/weights', variable_names) self.assertEquals( 1, len(classifier.get_variable_value('linear/age/weight'))) self.assertEquals( 100, len(classifier.get_variable_value('linear/language/weights'))) def testLinearOnlyOneFeature(self): """Tests that linear-only instantiation works for one feature only.""" def input_fn(): return { 'language': sparse_tensor.SparseTensor( values=['english'], indices=[[0, 0]], dense_shape=[1, 1]) }, constant_op.constant([[1]]) language = feature_column.sparse_column_with_hash_bucket('language', 99) classifier = dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=[language]) classifier.fit(input_fn=input_fn, steps=100) loss1 = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] classifier.fit(input_fn=input_fn, steps=200) loss2 = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] self.assertLess(loss2, loss1) variable_names = classifier.get_variable_names() self.assertNotIn('dnn/logits/biases', variable_names) self.assertNotIn('dnn/logits/weights', variable_names) self.assertIn('linear/bias_weight', variable_names) self.assertIn('linear/language/weights', variable_names) self.assertEquals( 1, len(classifier.get_variable_value('linear/bias_weight'))) self.assertEquals( 99, len(classifier.get_variable_value('linear/language/weights'))) def testDNNOnly(self): """Tests that DNN-only instantiation works.""" cont_features = [feature_column.real_valued_column('feature', dimension=4)] classifier = dnn_linear_combined.DNNLinearCombinedClassifier( n_classes=3, dnn_feature_columns=cont_features, dnn_hidden_units=[3, 3]) classifier.fit(input_fn=test_data.iris_input_multiclass_fn, steps=1000) classifier.evaluate(input_fn=test_data.iris_input_multiclass_fn, steps=100) variable_names = classifier.get_variable_names() self.assertIn('dnn/hiddenlayer_0/weights', variable_names) self.assertIn('dnn/hiddenlayer_0/biases', variable_names) self.assertIn('dnn/hiddenlayer_1/weights', variable_names) self.assertIn('dnn/hiddenlayer_1/biases', variable_names) self.assertIn('dnn/logits/weights', variable_names) self.assertIn('dnn/logits/biases', variable_names) self.assertNotIn('linear/bias_weight', variable_names) self.assertNotIn('linear/feature_BUCKETIZED/weight', variable_names) def testDNNWeightsBiasesNames(self): """Tests the names of DNN weights and biases in the checkpoints.""" def _input_fn_train(): # Create 4 rows, three (y = x), one (y=Not(x)) labels = constant_op.constant([[1], [1], [1], [0]]) features = {'x': array_ops.ones(shape=[4, 1], dtype=dtypes.float32),} return features, labels classifier = dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=[feature_column.real_valued_column('x')], dnn_feature_columns=[feature_column.real_valued_column('x')], dnn_hidden_units=[3, 3]) classifier.fit(input_fn=_input_fn_train, steps=5) variable_names = classifier.get_variable_names() self.assertIn('dnn/hiddenlayer_0/weights', variable_names) self.assertIn('dnn/hiddenlayer_0/biases', variable_names) self.assertIn('dnn/hiddenlayer_1/weights', variable_names) self.assertIn('dnn/hiddenlayer_1/biases', variable_names) self.assertIn('dnn/logits/weights', variable_names) self.assertIn('dnn/logits/biases', variable_names) class DNNLinearCombinedRegressorTest(test.TestCase): def testExperimentIntegration(self): cont_features = [feature_column.real_valued_column('feature', dimension=4)] exp = experiment.Experiment( estimator=dnn_linear_combined.DNNLinearCombinedRegressor( linear_feature_columns=cont_features, dnn_feature_columns=cont_features, dnn_hidden_units=[3, 3]), train_input_fn=test_data.iris_input_logistic_fn, eval_input_fn=test_data.iris_input_logistic_fn) exp.test() def testEstimatorContract(self): estimator_test_utils.assert_estimator_contract( self, dnn_linear_combined.DNNLinearCombinedRegressor) def testRegression_MatrixData(self): """Tests regression using matrix data as input.""" cont_features = [feature_column.real_valued_column('feature', dimension=4)] regressor = dnn_linear_combined.DNNLinearCombinedRegressor( linear_feature_columns=cont_features, dnn_feature_columns=cont_features, dnn_hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=test_data.iris_input_logistic_fn, steps=10) scores = regressor.evaluate( input_fn=test_data.iris_input_logistic_fn, steps=1) self.assertIn('loss', scores.keys()) def testRegression_TensorData(self): """Tests regression using tensor data as input.""" def _input_fn(): # Create 4 rows of (y = x) labels = constant_op.constant([[100.], [3.], [2.], [2.]]) features = {'x': constant_op.constant([[100.], [3.], [2.], [2.]])} return features, labels classifier = dnn_linear_combined.DNNLinearCombinedRegressor( linear_feature_columns=[feature_column.real_valued_column('x')], dnn_feature_columns=[feature_column.real_valued_column('x')], dnn_hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn, steps=10) classifier.evaluate(input_fn=_input_fn, steps=1) def testLoss(self): """Tests loss calculation.""" def _input_fn_train(): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) # The algorithm should learn (y = 0.25). labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = {'x': array_ops.ones(shape=[4, 1], dtype=dtypes.float32),} return features, labels regressor = dnn_linear_combined.DNNLinearCombinedRegressor( linear_feature_columns=[feature_column.real_valued_column('x')], dnn_feature_columns=[feature_column.real_valued_column('x')], dnn_hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn_train, steps=100) scores = regressor.evaluate(input_fn=_input_fn_train, steps=1) # Average square loss = (0.75^2 + 3*0.25^2) / 4 = 0.1875 self.assertAlmostEqual(0.1875, scores['loss'], delta=0.1) def testLossWithWeights(self): """Tests loss calculation with weights.""" def _input_fn_train(): # 4 rows with equal weight, one of them (y = x), three of them (y=Not(x)) # The algorithm should learn (y = 0.25). labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[1.], [1.], [1.], [1.]]) } return features, labels def _input_fn_eval(): # 4 rows, with different weights. labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[7.], [1.], [1.], [1.]]) } return features, labels regressor = dnn_linear_combined.DNNLinearCombinedRegressor( weight_column_name='w', linear_feature_columns=[feature_column.real_valued_column('x')], dnn_feature_columns=[feature_column.real_valued_column('x')], dnn_hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn_train, steps=100) scores = regressor.evaluate(input_fn=_input_fn_eval, steps=1) # Weighted average square loss = (7*0.75^2 + 3*0.25^2) / 10 = 0.4125 self.assertAlmostEqual(0.4125, scores['loss'], delta=0.1) def testTrainWithWeights(self): """Tests training with given weight column.""" def _input_fn_train(): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) # First row has more weight than others. Model should fit (y=x) better # than (y=Not(x)) due to the relative higher weight of the first row. labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[100.], [3.], [2.], [2.]]) } return features, labels def _input_fn_eval(): # Create 4 rows (y = x) labels = constant_op.constant([[1.], [1.], [1.], [1.]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[1.], [1.], [1.], [1.]]) } return features, labels regressor = dnn_linear_combined.DNNLinearCombinedRegressor( weight_column_name='w', linear_feature_columns=[feature_column.real_valued_column('x')], dnn_feature_columns=[feature_column.real_valued_column('x')], dnn_hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn_train, steps=100) scores = regressor.evaluate(input_fn=_input_fn_eval, steps=1) # The model should learn (y = x) because of the weights, so the loss should # be close to zero. self.assertLess(scores['loss'], 0.2) def testPredict_AsIterableFalse(self): """Tests predict method with as_iterable=False.""" labels = [1., 0., 0.2] def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant(labels, dtype=dtypes.float32) language_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) regressor = dnn_linear_combined.DNNLinearCombinedRegressor( linear_feature_columns=[ language_column, feature_column.real_valued_column('age') ], dnn_feature_columns=[ feature_column.embedding_column( language_column, dimension=1), feature_column.real_valued_column('age') ], dnn_hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=10) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertIn('loss', scores.keys()) regressor.predict_scores(input_fn=_input_fn, as_iterable=False) def testPredict_AsIterable(self): """Tests predict method with as_iterable=True.""" labels = [1., 0., 0.2] def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant(labels, dtype=dtypes.float32) language_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) regressor = dnn_linear_combined.DNNLinearCombinedRegressor( linear_feature_columns=[ language_column, feature_column.real_valued_column('age') ], dnn_feature_columns=[ feature_column.embedding_column( language_column, dimension=1), feature_column.real_valued_column('age') ], dnn_hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=10) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertIn('loss', scores.keys()) predict_input_fn = functools.partial(_input_fn, num_epochs=1) regressor.predict_scores(input_fn=predict_input_fn, as_iterable=True) def testCustomMetrics(self): """Tests custom evaluation metrics.""" def _input_fn(num_epochs=None): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': input_lib.limit_epochs( array_ops.ones( shape=[4, 1], dtype=dtypes.float32), num_epochs=num_epochs) } return features, labels def _my_metric_op(predictions, labels): return math_ops.reduce_sum(math_ops.multiply(predictions, labels)) regressor = dnn_linear_combined.DNNLinearCombinedRegressor( linear_feature_columns=[feature_column.real_valued_column('x')], dnn_feature_columns=[feature_column.real_valued_column('x')], dnn_hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=10) scores = regressor.evaluate( input_fn=_input_fn, steps=1, metrics={ 'my_error': metric_ops.streaming_mean_squared_error, ('my_metric', 'scores'): _my_metric_op }) self.assertIn('loss', set(scores.keys())) self.assertIn('my_error', set(scores.keys())) self.assertIn('my_metric', set(scores.keys())) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predictions = np.array(list(regressor.predict_scores( input_fn=predict_input_fn))) self.assertAlmostEqual( _sklearn.mean_squared_error(np.array([1, 0, 0, 0]), predictions), scores['my_error']) # Tests the case that the 2nd element of the key is not "scores". with self.assertRaises(KeyError): regressor.evaluate( input_fn=_input_fn, steps=1, metrics={ ('my_error', 'predictions'): metric_ops.streaming_mean_squared_error }) # Tests the case where the tuple of the key doesn't have 2 elements. with self.assertRaises(ValueError): regressor.evaluate( input_fn=_input_fn, steps=1, metrics={ ('bad_length_name', 'scores', 'bad_length'): metric_ops.streaming_mean_squared_error }) def testCustomMetricsWithMetricSpec(self): """Tests custom evaluation metrics.""" def _input_fn(num_epochs=None): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': input_lib.limit_epochs( array_ops.ones( shape=[4, 1], dtype=dtypes.float32), num_epochs=num_epochs) } return features, labels def _my_metric_op(predictions, labels): return math_ops.reduce_sum(math_ops.multiply(predictions, labels)) regressor = dnn_linear_combined.DNNLinearCombinedRegressor( linear_feature_columns=[feature_column.real_valued_column('x')], dnn_feature_columns=[feature_column.real_valued_column('x')], dnn_hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=5) scores = regressor.evaluate( input_fn=_input_fn, steps=1, metrics={ 'my_error': MetricSpec( metric_fn=metric_ops.streaming_mean_squared_error, prediction_key='scores'), 'my_metric': MetricSpec( metric_fn=_my_metric_op, prediction_key='scores') }) self.assertIn('loss', set(scores.keys())) self.assertIn('my_error', set(scores.keys())) self.assertIn('my_metric', set(scores.keys())) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predictions = np.array(list(regressor.predict_scores( input_fn=predict_input_fn))) self.assertAlmostEqual( _sklearn.mean_squared_error(np.array([1, 0, 0, 0]), predictions), scores['my_error']) # Tests the case where the prediction_key is not "scores". with self.assertRaisesRegexp(KeyError, 'bad_type'): regressor.evaluate( input_fn=_input_fn, steps=1, metrics={ 'bad_name': MetricSpec( metric_fn=metric_ops.streaming_auc, prediction_key='bad_type') }) def testExport(self): """Tests export model for servo.""" labels = [1., 0., 0.2] def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant(labels, dtype=dtypes.float32) language_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) regressor = dnn_linear_combined.DNNLinearCombinedRegressor( linear_feature_columns=[ language_column, feature_column.real_valued_column('age') ], dnn_feature_columns=[ feature_column.embedding_column( language_column, dimension=1), ], dnn_hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=10) export_dir = tempfile.mkdtemp() input_feature_key = 'examples' def serving_input_fn(): features, targets = _input_fn() features[input_feature_key] = array_ops.placeholder(dtypes.string) return features, targets regressor.export( export_dir, serving_input_fn, input_feature_key, use_deprecated_input_fn=False) def testTrainSaveLoad(self): """Tests regression with restarting training / evaluate.""" def _input_fn(num_epochs=None): # Create 4 rows of (y = x) labels = constant_op.constant([[100.], [3.], [2.], [2.]]) features = { 'x': input_lib.limit_epochs( constant_op.constant([[100.], [3.], [2.], [2.]]), num_epochs=num_epochs) } return features, labels model_dir = tempfile.mkdtemp() # pylint: disable=g-long-lambda new_regressor = lambda: dnn_linear_combined.DNNLinearCombinedRegressor( linear_feature_columns=[feature_column.real_valued_column('x')], dnn_feature_columns=[feature_column.real_valued_column('x')], dnn_hidden_units=[3, 3], model_dir=model_dir, config=run_config.RunConfig(tf_random_seed=1)) predict_input_fn = functools.partial(_input_fn, num_epochs=1) regressor = new_regressor() regressor.fit(input_fn=_input_fn, steps=10) predictions = list(regressor.predict_scores(input_fn=predict_input_fn)) del regressor regressor = new_regressor() predictions2 = list(regressor.predict_scores(input_fn=predict_input_fn)) self.assertAllClose(predictions, predictions2) def testTrainWithPartitionedVariables(self): """Tests training with partitioned variables.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([1., 0., 0.2], dtype=dtypes.float32) # The given hash_bucket_size results in variables larger than the # default min_slice_size attribute, so the variables are partitioned. language_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=2e7) tf_config = { 'cluster': { run_config.TaskType.PS: ['fake_ps_0', 'fake_ps_1'] } } with test.mock.patch.dict('os.environ', {'TF_CONFIG': json.dumps(tf_config)}): config = run_config.RunConfig(tf_random_seed=1) # Because we did not start a distributed cluster, we need to pass an # empty ClusterSpec, otherwise the device_setter will look for # distributed jobs, such as "/job:ps" which are not present. config._cluster_spec = server_lib.ClusterSpec({}) regressor = dnn_linear_combined.DNNLinearCombinedRegressor( linear_feature_columns=[ language_column, feature_column.real_valued_column('age') ], dnn_feature_columns=[ feature_column.embedding_column( language_column, dimension=1), feature_column.real_valued_column('age') ], dnn_hidden_units=[3, 3], config=config) regressor.fit(input_fn=_input_fn, steps=100) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertIn('loss', scores.keys()) def testDisableCenteredBias(self): """Tests that we can disable centered bias.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([1., 0., 0.2], dtype=dtypes.float32) language_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) regressor = dnn_linear_combined.DNNLinearCombinedRegressor( linear_feature_columns=[ language_column, feature_column.real_valued_column('age') ], dnn_feature_columns=[ feature_column.embedding_column( language_column, dimension=1), feature_column.real_valued_column('age') ], dnn_hidden_units=[3, 3], enable_centered_bias=False, config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=100) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertIn('loss', scores.keys()) def testLinearOnly(self): """Tests linear-only instantiation and training.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([1., 0., 0.2], dtype=dtypes.float32) language_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) regressor = dnn_linear_combined.DNNLinearCombinedRegressor( linear_feature_columns=[ language_column, feature_column.real_valued_column('age') ], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=100) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertIn('loss', scores.keys()) def testDNNOnly(self): """Tests DNN-only instantiation and training.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([1., 0., 0.2], dtype=dtypes.float32) language_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) regressor = dnn_linear_combined.DNNLinearCombinedRegressor( dnn_feature_columns=[ feature_column.embedding_column( language_column, dimension=1), feature_column.real_valued_column('age') ], dnn_hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=100) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertIn('loss', scores.keys()) class FeatureEngineeringFunctionTest(test.TestCase): """Tests feature_engineering_fn.""" def testNoneFeatureEngineeringFn(self): def input_fn(): # Create 4 rows of (y = x) labels = constant_op.constant([[100.], [3.], [2.], [2.]]) features = {'x': constant_op.constant([[100.], [3.], [2.], [2.]])} return features, labels def feature_engineering_fn(features, labels): _, _ = features, labels labels = constant_op.constant([[1000.], [30.], [20.], [20.]]) features = {'x': constant_op.constant([[1000.], [30.], [20.], [20.]])} return features, labels estimator_with_fe_fn = dnn_linear_combined.DNNLinearCombinedRegressor( linear_feature_columns=[feature_column.real_valued_column('x')], dnn_feature_columns=[feature_column.real_valued_column('x')], dnn_hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1), feature_engineering_fn=feature_engineering_fn) estimator_with_fe_fn.fit(input_fn=input_fn, steps=110) estimator_without_fe_fn = dnn_linear_combined.DNNLinearCombinedRegressor( linear_feature_columns=[feature_column.real_valued_column('x')], dnn_feature_columns=[feature_column.real_valued_column('x')], dnn_hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) estimator_without_fe_fn.fit(input_fn=input_fn, steps=110) # predictions = y prediction_with_fe_fn = next( estimator_with_fe_fn.predict_scores( input_fn=input_fn, as_iterable=True)) self.assertAlmostEqual(1000., prediction_with_fe_fn, delta=10.0) prediction_without_fe_fn = next( estimator_without_fe_fn.predict_scores( input_fn=input_fn, as_iterable=True)) self.assertAlmostEqual(100., prediction_without_fe_fn, delta=1.0) if __name__ == '__main__': test.main()
apache-2.0
zorroblue/scikit-learn
sklearn/cluster/tests/test_affinity_propagation.py
15
5780
""" Testing for Clustering methods """ import numpy as np from sklearn.exceptions import ConvergenceWarning from sklearn.utils.testing import ( assert_equal, assert_false, assert_true, assert_array_equal, assert_raises, assert_warns, assert_warns_message, assert_no_warnings) from sklearn.cluster.affinity_propagation_ import AffinityPropagation from sklearn.cluster.affinity_propagation_ import ( _equal_similarities_and_preferences ) from sklearn.cluster.affinity_propagation_ import affinity_propagation from sklearn.datasets.samples_generator import make_blobs from sklearn.metrics import euclidean_distances n_clusters = 3 centers = np.array([[1, 1], [-1, -1], [1, -1]]) + 10 X, _ = make_blobs(n_samples=60, n_features=2, centers=centers, cluster_std=0.4, shuffle=True, random_state=0) def test_affinity_propagation(): # Affinity Propagation algorithm # Compute similarities S = -euclidean_distances(X, squared=True) preference = np.median(S) * 10 # Compute Affinity Propagation cluster_centers_indices, labels = affinity_propagation( S, preference=preference) n_clusters_ = len(cluster_centers_indices) assert_equal(n_clusters, n_clusters_) af = AffinityPropagation(preference=preference, affinity="precomputed") labels_precomputed = af.fit(S).labels_ af = AffinityPropagation(preference=preference, verbose=True) labels = af.fit(X).labels_ assert_array_equal(labels, labels_precomputed) cluster_centers_indices = af.cluster_centers_indices_ n_clusters_ = len(cluster_centers_indices) assert_equal(np.unique(labels).size, n_clusters_) assert_equal(n_clusters, n_clusters_) # Test also with no copy _, labels_no_copy = affinity_propagation(S, preference=preference, copy=False) assert_array_equal(labels, labels_no_copy) # Test input validation assert_raises(ValueError, affinity_propagation, S[:, :-1]) assert_raises(ValueError, affinity_propagation, S, damping=0) af = AffinityPropagation(affinity="unknown") assert_raises(ValueError, af.fit, X) def test_affinity_propagation_predict(): # Test AffinityPropagation.predict af = AffinityPropagation(affinity="euclidean") labels = af.fit_predict(X) labels2 = af.predict(X) assert_array_equal(labels, labels2) def test_affinity_propagation_predict_error(): # Test exception in AffinityPropagation.predict # Not fitted. af = AffinityPropagation(affinity="euclidean") assert_raises(ValueError, af.predict, X) # Predict not supported when affinity="precomputed". S = np.dot(X, X.T) af = AffinityPropagation(affinity="precomputed") af.fit(S) assert_raises(ValueError, af.predict, X) def test_affinity_propagation_fit_non_convergence(): # In case of non-convergence of affinity_propagation(), the cluster # centers should be an empty array and training samples should be labelled # as noise (-1) X = np.array([[0, 0], [1, 1], [-2, -2]]) # Force non-convergence by allowing only a single iteration af = AffinityPropagation(preference=-10, max_iter=1) assert_warns(ConvergenceWarning, af.fit, X) assert_array_equal(np.empty((0, 2)), af.cluster_centers_) assert_array_equal(np.array([-1, -1, -1]), af.labels_) def test_affinity_propagation_equal_mutual_similarities(): X = np.array([[-1, 1], [1, -1]]) S = -euclidean_distances(X, squared=True) # setting preference > similarity cluster_center_indices, labels = assert_warns_message( UserWarning, "mutually equal", affinity_propagation, S, preference=0) # expect every sample to become an exemplar assert_array_equal([0, 1], cluster_center_indices) assert_array_equal([0, 1], labels) # setting preference < similarity cluster_center_indices, labels = assert_warns_message( UserWarning, "mutually equal", affinity_propagation, S, preference=-10) # expect one cluster, with arbitrary (first) sample as exemplar assert_array_equal([0], cluster_center_indices) assert_array_equal([0, 0], labels) # setting different preferences cluster_center_indices, labels = assert_no_warnings( affinity_propagation, S, preference=[-20, -10]) # expect one cluster, with highest-preference sample as exemplar assert_array_equal([1], cluster_center_indices) assert_array_equal([0, 0], labels) def test_affinity_propagation_predict_non_convergence(): # In case of non-convergence of affinity_propagation(), the cluster # centers should be an empty array X = np.array([[0, 0], [1, 1], [-2, -2]]) # Force non-convergence by allowing only a single iteration af = AffinityPropagation(preference=-10, max_iter=1).fit(X) # At prediction time, consider new samples as noise since there are no # clusters assert_array_equal(np.array([-1, -1, -1]), af.predict(np.array([[2, 2], [3, 3], [4, 4]]))) def test_equal_similarities_and_preferences(): # Unequal distances X = np.array([[0, 0], [1, 1], [-2, -2]]) S = -euclidean_distances(X, squared=True) assert_false(_equal_similarities_and_preferences(S, np.array(0))) assert_false(_equal_similarities_and_preferences(S, np.array([0, 0]))) assert_false(_equal_similarities_and_preferences(S, np.array([0, 1]))) # Equal distances X = np.array([[0, 0], [1, 1]]) S = -euclidean_distances(X, squared=True) # Different preferences assert_false(_equal_similarities_and_preferences(S, np.array([0, 1]))) # Same preferences assert_true(_equal_similarities_and_preferences(S, np.array([0, 0]))) assert_true(_equal_similarities_and_preferences(S, np.array(0)))
bsd-3-clause
samshara/Stock-Market-Analysis-and-Prediction
smap_nepse/prediction/plotter.py
1
3450
import sys sys.path.insert(0, '../../smap_nepse') import pandas as pd import numpy as np import prepareInput as pi import matplotlib.pyplot as plt import matplotlib.colors as colors import matplotlib.finance as finance import matplotlib.dates as mdates import matplotlib.ticker as mticker import matplotlib.mlab as mlab import matplotlib.font_manager as font_manager from pandas.tools.plotting import table from preprocessing import moreIndicators as indi __author__ = "Semanta Bhandari" __copyright__ = "" __credits__ = ["Sameer Rai","Sumit Shrestha","Sankalpa Timilsina"] __license__ = "" __version__ = "0.1" __email__ = "[email protected]" def indicator_plot(df): index = df.index df.index = range(len(df.index)) df.columns = ['Transactions','Traded_Shares','Traded_Amount','High','Low','Close'] df = indi.EMA(df, 20) df = indi.RSI(df, 14) df = indi.MOM(df, 10) df = indi.MA(df, 100) df = indi.MA(df, 20) df.index = index last = df[-1:] df = df.drop(df.columns[:5], axis=1) # print(df.describe()) print(df.corr()) # print(df.RSI_10) plt.rc('axes', grid=True) plt.rc('grid', color='0.75', linestyle='-', linewidth=0.5) textsize = 9 left, width = 0.1, 0.8 rect1 = [left, 0.7, width, 0.2] rect2 = [left, 0.3, width, 0.4] rect3 = [left, 0.1, width, 0.2] fig = plt.figure(facecolor='white') axescolor = '#f6f6f6' # the axes background color ax1 = fig.add_axes(rect1, axisbg=axescolor) # left, bottom, width, height ax2 = fig.add_axes(rect2, axisbg=axescolor, sharex=ax1) ax2t = ax2.twinx() ax3 = fig.add_axes(rect3, axisbg=axescolor, sharex=ax1) rsi = df.RSI_14*100 fillcolor = 'darkgoldenrod' ticker = 'NABIL' ax1.plot(df.index, rsi, color=fillcolor) ax1.axhline(70, color=fillcolor) ax1.axhline(30, color=fillcolor) ax1.fill_between(df.index, rsi, 70, where=(rsi >= 70), facecolor=fillcolor, edgecolor=fillcolor) ax1.fill_between(df.index, rsi, 30, where=(rsi <= 30), facecolor=fillcolor, edgecolor=fillcolor) ax1.text(0.6, 0.9, '>70 = overbought', va='top', transform=ax1.transAxes, fontsize=textsize) ax1.text(0.6, 0.1, '<30 = oversold', transform=ax1.transAxes, fontsize=textsize) ax1.set_ylim(0, 100) ax1.set_yticks([30, 70]) ax1.text(0.025, 0.95, 'RSI (14)', va='top', transform=ax1.transAxes, fontsize=textsize) ax1.set_title('%s daily' % ticker) # plt.figure() # df.plot() ma20 = df['MA_20'] ma100 = df['MA_100'] linema100, = ax2.plot(df.index, ma100, color='green', lw=2, label='MA (100)', linestyle = '--') linema20, = ax2.plot(df.index, ma20, color='blue', lw=2, label='MA (20)', linestyle = '-.') close, = ax2.plot(df.index, df.Close, color='red', lw=2, label='Close') s = '%s H:%1.2f L:%1.2f C:%1.2f' % ( last.index[0].date(), last.High, last.Low, last.Close) t4 = ax2.text(0.3, 0.9, s, transform=ax2.transAxes, fontsize=textsize) props = font_manager.FontProperties(size=10) leg = ax2.legend(loc='center left', shadow=True, fancybox=True, prop=props) leg.get_frame().set_alpha(0.5) ax3.plot(df.index, df.Momentum_10) ax3.text(0.025, 0.95, 'Momentum (10)', va='top', transform=ax3.transAxes, fontsize=textsize) plt.show() #if __name__ == "__main__" : dataframe = pi.load_data_frame('NABIL.csv') indicator_plot(dataframe[1000:])
mit
iABC2XYZ/abc
Temp/TensorflowGPUPredic2.py
1
12656
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Tue Jul 11 12:17:54 2017 @author: A """ import tensorflow as tf # Version 1.0 or 0.12 import numpy as np import matplotlib.pyplot as plt import random import math import os plt.close('all') inSeq=10 outSeq=3 batch_size = 50 # Low value used for live demo purposes - 100 and 1000 would be possible too, crank that up! ioput_dim=2 # Output dimension (e.g.: multiple signals at once, tied in time) hidden_dim = 50 # Count of hidden neurons in the recurrent units. def ReadHistDataIndex(indexCode,kindCode): fileName='./data/'+kindCode.lower()+'/'+indexCode+'.'+kindCode.lower() if(kindCode.lower()=='date'): if not (os.path.exists(fileName)): return '3000-01-01' with open(fileName,'r') as fid: dataCodeTmp=fid.readlines() nDataCodeTmp=len(dataCodeTmp) dataCode=np.copy(dataCodeTmp) for nLine in xrange(nDataCodeTmp): dataCode[nLine]=dataCodeTmp[nDataCodeTmp-nLine-1] else: if not (os.path.exists(fileName)): return [0] dataCode= np.loadtxt(fileName) if np.shape(dataCode)==(): return [0] dataCode=np.flip(np.loadtxt(fileName),0) return dataCode def generate_x_y_data(indexCode,isTrain, seq_length,batch_size,ioput_dim): openCode=ReadHistDataIndex(indexCode,'open') if len(seq_length)==1: inSeq=outSeq=seq_length else: inSeq,outSeq=seq_length[0],seq_length[1] print openCode ''' batch_x = [] batch_y = [] for _ in range(batch_size): x_=np.empty((inSeq,ioput_dim)) y_=np.empty((outSeq,ioput_dim)) for nIO in xrange(ioput_dim): rand = random.random() * 2 * math.pi sig = np.sin(np.linspace(0.0 * math.pi + rand, 3.0 * math.pi + rand, inSeq+outSeq)) xTmp=sig[:inSeq] yTmp=sig[inSeq:] x_[:,nIO]=xTmp y_[:,nIO]=yTmp batch_x.append(x_) batch_y.append(y_) batch_x = np.array(batch_x) batch_y = np.array(batch_y) # shape: (batch_size, seq_length, output_dim) batch_x = np.array(batch_x).transpose((1, 0, 2)) batch_y = np.array(batch_y).transpose((1, 0, 2)) # shape: (seq_length, batch_size, output_dim) return batch_x, batch_y ''' seq_length=[inSeq,outSeq] generate_x_y_data('603505',isTrain=True, seq_length=seq_length,batch_size=batch_size,ioput_dim=ioput_dim) ''' def generate_x_y_data(isTrain, seq_length,batch_size,ioput_dim): """ Data for exercise 1. returns: tuple (X, Y) X is a sine and a cosine from 0.0*pi to 1.5*pi Y is a sine and a cosine from 1.5*pi to 3.0*pi Therefore, Y follows X. There is also a random offset commonly applied to X an Y. The returned arrays are of shape: (seq_length, batch_size, output_dim) Therefore: (10, batch_size, 2) For this exercise, let's ignore the "isTrain" argument and test on the same data. """ if len(seq_length)==1: inSeq=outSeq=seq_length else: inSeq,outSeq=seq_length[0],seq_length[1] batch_x = [] batch_y = [] for _ in range(batch_size): x_=np.empty((inSeq,ioput_dim)) y_=np.empty((outSeq,ioput_dim)) for nIO in xrange(ioput_dim): rand = random.random() * 2 * math.pi sig = np.sin(np.linspace(0.0 * math.pi + rand, 3.0 * math.pi + rand, inSeq+outSeq)) xTmp=sig[:inSeq] yTmp=sig[inSeq:] x_[:,nIO]=xTmp y_[:,nIO]=yTmp batch_x.append(x_) batch_y.append(y_) batch_x = np.array(batch_x) batch_y = np.array(batch_y) # shape: (batch_size, seq_length, output_dim) batch_x = np.array(batch_x).transpose((1, 0, 2)) batch_y = np.array(batch_y).transpose((1, 0, 2)) # shape: (seq_length, batch_size, output_dim) return batch_x, batch_y ''' ''' def TensorFlowPredict(indexCode,inSeq,outSeq,batch_size,hidden_dim,ioput_dim): #inSeq=10 #outSeq=3 seq_length = [inSeq,outSeq] ############################## #batch_size = 50 # Low value used for live demo purposes - 100 and 1000 would be possible too, crank that up! # Output dimension (e.g.: multiple signals at once, tied in time) #ioput_dim=5 output_dim = input_dim =ioput_dim ################################### #hidden_dim = 50 # Count of hidden neurons in the recurrent units. # Number of stacked recurrent cells, on the neural depth axis. layers_stacked_count = 2 # Optmizer: learning_rate = 0.007 # Small lr helps not to diverge during training. # How many times we perform a training step (therefore how many times we # show a batch). nb_iters = 100 lr_decay = 0.92 # default: 0.9 . Simulated annealing. momentum = 0.5 # default: 0.0 . Momentum technique in weights update lambda_l2_reg = 0.003 # L2 regularization of weights - avoids overfitting try: tf.nn.seq2seq = tf.contrib.legacy_seq2seq tf.nn.rnn_cell = tf.contrib.rnn tf.nn.rnn_cell.GRUCell = tf.contrib.rnn.GRUCell print("TensorFlow's version : 1.0 (or more)") except: print("TensorFlow's version : 0.12") tf.reset_default_graph() # sess.close() sess = tf.InteractiveSession(config=tf.ConfigProto(log_device_placement=True)) with tf.variable_scope('Seq2seq'): # Encoder: inputs enc_inp = [ tf.placeholder(tf.float32, shape=( None, input_dim), name="inp_{}".format(t)) for t in range(inSeq) ] # Decoder: expected outputs expected_sparse_output = [ tf.placeholder(tf.float32, shape=(None, output_dim), name="expected_sparse_output_".format(t)) for t in range(outSeq) ] # Give a "GO" token to the decoder. # You might want to revise what is the appended value "+ enc_inp[:-1]". dec_inp = [tf.zeros_like( enc_inp[0], dtype=np.float32, name="GO")] + enc_inp[:-1] # Create a `layers_stacked_count` of stacked RNNs (GRU cells here). cells = [] for i in range(layers_stacked_count): with tf.variable_scope('RNN_{}'.format(i)): cells.append(tf.nn.rnn_cell.GRUCell(hidden_dim)) # cells.append(tf.nn.rnn_cell.BasicLSTMCell(...)) cell = tf.nn.rnn_cell.MultiRNNCell(cells) # For reshaping the input and output dimensions of the seq2seq RNN: w_in = tf.Variable(tf.random_normal([input_dim, hidden_dim])) b_in = tf.Variable(tf.random_normal([hidden_dim], mean=1.0)) w_out = tf.Variable(tf.random_normal([hidden_dim, output_dim])) b_out = tf.Variable(tf.random_normal([output_dim])) reshaped_inputs = [tf.nn.relu(tf.matmul(i, w_in) + b_in) for i in enc_inp] # Here, the encoder and the decoder uses the same cell, HOWEVER, # the weights aren't shared among the encoder and decoder, we have two # sets of weights created under the hood according to that function's def. dec_outputs, dec_memory = tf.nn.seq2seq.basic_rnn_seq2seq( enc_inp, dec_inp, cell ) output_scale_factor = tf.Variable(1.0, name="Output_ScaleFactor") # Final outputs: with linear rescaling similar to batch norm, # but without the "norm" part of batch normalization hehe. reshaped_outputs = [output_scale_factor * (tf.matmul(i, w_out) + b_out) for i in dec_outputs] with tf.variable_scope('Loss'): # L2 loss output_loss = 0 for _y, _Y in zip(reshaped_outputs, expected_sparse_output): output_loss += tf.reduce_mean(tf.nn.l2_loss(_y - _Y)) # L2 regularization (to avoid overfitting and to have a better # generalization capacity) reg_loss = 0 for tf_var in tf.trainable_variables(): if not ("Bias" in tf_var.name or "Output_" in tf_var.name): reg_loss += tf.reduce_mean(tf.nn.l2_loss(tf_var)) loss = output_loss + lambda_l2_reg * reg_loss with tf.variable_scope('Optimizer'): optimizer = tf.train.RMSPropOptimizer( learning_rate, decay=lr_decay, momentum=momentum) train_op = optimizer.minimize(loss) # Training train_losses = [] test_losses = [] sess.run(tf.global_variables_initializer()) for t in range(nb_iters + 1): #train_loss = train_batch(batch_size, seq_length, ioput_dim) X, Y = generate_x_y_data(isTrain=True, seq_length=seq_length,batch_size=batch_size,ioput_dim=ioput_dim) #print X.shape, Y.shape feed_dict = {enc_inp[t]: X[t] for t in range(len(enc_inp))} feed_dict.update({expected_sparse_output[t]: Y[ t] for t in range(len(expected_sparse_output))}) _, loss_t = sess.run([train_op, loss], feed_dict) train_loss=loss_t train_losses.append(train_loss) if t % 10 == 0: # Tester #test_loss = test_batch(batch_size) X, Y = generate_x_y_data(isTrain=False, seq_length=seq_length,batch_size=batch_size,ioput_dim=ioput_dim) feed_dict = {enc_inp[t]: X[t] for t in range(len(enc_inp))} feed_dict.update({expected_sparse_output[t]: Y[ t] for t in range(len(expected_sparse_output))}) loss_t = sess.run([loss], feed_dict) test_loss= loss_t[0] test_losses.append(test_loss) print("Step {}/{}, train loss: {}, \tTEST loss: {}".format(t, nb_iters, train_loss, test_loss)) print("Fin. train loss: {}, \tTEST loss: {}".format(train_loss, test_loss)) # Plot loss over time: plt.figure(figsize=(12, 6)) plt.plot( np.array(range(0, len(test_losses))) / float(len(test_losses) - 1) * (len(train_losses) - 1), np.log(test_losses), label="Test loss" ) plt.plot( np.log(train_losses), label="Train loss" ) plt.title("Training errors over time (on a logarithmic scale)") plt.xlabel('Iteration') plt.ylabel('log(Loss)') plt.legend(loc='best') plt.show() # Test ############################ nb_predictions = 5 print("Let's visualize {} predictions with our signals:".format(nb_predictions)) X, Y = generate_x_y_data(isTrain=False, seq_length=seq_length, batch_size=nb_predictions,ioput_dim=ioput_dim) feed_dict = {enc_inp[t]: X[t] for t in range(inSeq)} outputs = np.array(sess.run([reshaped_outputs], feed_dict)[0]) for j in range(nb_predictions): plt.figure(figsize=(12, 3)) for k in range(output_dim): past = X[:, j, k] expected = Y[:, j, k] pred = outputs[:, j, k] label1 = "Seen (past) values" if k == 0 else "_nolegend_" label2 = "True future values" if k == 0 else "_nolegend_" label3 = "Predictions" if k == 0 else "_nolegend_" plt.plot(range(len(past)), past, "o--b", label=label1) plt.plot(range(len(past), len(expected) + len(past)), expected, "x--b", label=label2) plt.plot(range(len(past), len(pred) + len(past)), pred, "o--y", label=label3) plt.legend(loc='best') plt.title("Predictions v.s. true values") plt.show() print("Reminder: the signal can contain many dimensions at once.") print("In that case, signals have the same color.") print("In reality, we could imagine multiple stock market symbols evolving,") print("tied in time together and seen at once by the neural network.") ################################################################################ indexCode='0000' TensorFlowPredict(indexCode,inSeq,outSeq,batch_size,hidden_dim,ioput_dim) '''
gpl-3.0
gpersistence/tstop
scripts/plots/plot_multi_persistence.py
1
5663
#TSTOP # #This program is free software: you can redistribute it and/or modify #it under the terms of the GNU General Public License as published by #the Free Software Foundation, either version 3 of the License, or #(at your option) any later version. # #This program is distributed in the hope that it will be useful, #but WITHOUT ANY WARRANTY; without even the implied warranty of #MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the #GNU General Public License for more details. # #You should have received a copy of the GNU General Public License #along with this program. If not, see <http://www.gnu.org/licenses/>. import subprocess import argparse import threading import multiprocessing import itertools import traceback import os import os.path import errno import sys import time import json import numpy # Used to guarantee to use at least Wx2.8 import wxversion wxversion.ensureMinimal('2.8') import matplotlib matplotlib.use('WXAgg') from matplotlib.backends.backend_wxagg import FigureCanvasWxAgg as FigureCanvas from matplotlib.backends.backend_wx import NavigationToolbar2Wx from matplotlib.figure import Figure import wx from persistence.Datatypes.JSONObject import load_data, save_data from persistence.Datatypes.PersistenceDiagrams import PersistenceDiagrams as PD class CanvasFrame(wx.Frame): def __init__(self, argv): wx.Frame.__init__(self,None,-1, 'Segment Size',size=(550,350)) parser = argparse.ArgumentParser(description="utility to plot multiple persistence diagrams") parser.add_argument('files', nargs="*") self.args = vars(parser.parse_args(argv[1:])) self.files = self.args['files'] self.persistences = [] for f in self.files : pf_json = load_data(f, 'persistence', None, None, None) if pf_json == None : print "Could not load persistence file : %s" % (f,) sys.exit(1) self.persistences.append(PD.fromJSONDict(pf_json)) self.SetBackgroundColour(wx.NamedColour("WHITE")) self.displays = [] self.sizer = wx.BoxSizer(wx.VERTICAL) for f in self.files : self.displays.append(dict([('figure', Figure())])) self.displays[-1]['axes'] = self.displays[-1]['figure'].add_subplot(111) self.displays[-1]['canvas'] = FigureCanvas(self, -1, self.displays[-1]['figure']) self.sizer.Add(NavigationToolbar2Wx(self.displays[-1]['canvas']), 1, wx.LEFT | wx.TOP | wx.GROW) self.sizer.Add(self.displays[-1]['canvas'], 8, wx.LEFT | wx.TOP | wx.GROW) self.SetSizer(self.sizer) self.Fit() self.background = self.displays[0]['axes'].figure.canvas.copy_from_bbox(self.displays[0]['axes'].bbox) self.colors = ['red', 'yellow', 'orange', 'blue', 'green', 'violet', 'black'] self.Bind(wx.EVT_PAINT, self.OnPaint) self.Bind(wx.EVT_KEY_UP, self.KeyEvent) self.index = 0 self.point_Refresh() def point_Refresh(self) : lines = [] for i in range(len(self.files)) : self.displays[i]['axes'].cla() self.displays[i]['canvas'].restore_region(self.background) p = self.persistences[i].diagrams[self.index].points xs_0 = [point[0] for point in p if point[2]==0] ys_0 = [point[1] for point in p if point[2]==0] line = self.displays[i]['axes'].plot(xs_0, ys_0, 'bo') lines.append(line) xs_1 = [point[0] for point in p if point[2]==1] ys_1 = [point[1] for point in p if point[2]==1] line = self.displays[i]['axes'].plot(xs_1, ys_1, 'r+') lines.append(line) max_val = max([max(xs_0) if len(xs_0) != 0 else 0.0,\ max(ys_0) if len(ys_0) != 0 else 0.0,\ max(xs_1) if len(xs_1) != 0 else 0.0, max(ys_1) if len(ys_1) != 0 else 0.0]) line = self.displays[i]['axes'].plot([0,max_val],[0,max_val],'-') lines.append(line) self.Fit() def KeyEvent(self, event): keycode = event.GetKeyCode() if keycode == wx.WXK_LEFT : self.index = (self.index - 1) % len(self.persistences[0].diagrams) self.point_Refresh() wx.PostEvent(self,wx.PaintEvent()) print self.index elif keycode == wx.WXK_RIGHT : self.index = (self.index + 1) % len(self.persistences[0].diagrams) self.point_Refresh() wx.PostEvent(self,wx.PaintEvent()) print self.index else : event.Skip() def OnPaint(self, event): paint_dc = wx.PaintDC(self) for i in range(len(self.files)) : self.displays[i]['canvas'].draw() class App(wx.App): def __init__(self, arg, argv): self.argv = argv wx.App.__init__(self,0) def OnInit(self): 'Create the main window and insert the custom frame' frame = CanvasFrame(self.argv) frame.Show(True) self.SetTopWindow(frame) return True def display(argv): app = App(0, argv) app.MainLoop() def main(argv) : current_dir = os.getcwd() processes = [] try: display_thread = \ multiprocessing.Process(target=display, args=(argv,)) display_thread.start() processes.append(display_thread) display_thread.join() except KeyboardInterrupt: print "Caught cntl-c, shutting down..." exit(0) if __name__ == "__main__": main(sys.argv)
gpl-3.0