id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
32,114 |
b \cdot a - a - b = -b + a \cdot (\left(-1\right) + b)
|
46,250 |
8 \frac{7!}{x! (7 - x!)} = \frac{1}{x! (8 + (-1) - x)!} 8! = \frac{8!}{x! \left(8 - x + 1\right)!}
|
8,710 |
1 + m^5 \cdot 6 + 15 \cdot m^4 + 20 \cdot m^3 + 15 \cdot m^2 + m \cdot 6 = -m^6 + (1 + m)^6
|
11,096 |
|gNg^{-1}|=|N|\implies gNg^{-1}=N
|
1,458 |
1 + n = 2^n - \left((-1) + n\right)\cdot 2^{2\cdot \left(-1\right) + n} + 2^{4\cdot (-1) + n}\cdot \frac{1}{2!}\cdot (n + 3\cdot (-1))\cdot \left(n + 2\cdot (-1)\right) - \dots
|
16,514 |
1 * 1 (1 + 1)^2/4 = \frac{4}{4} = 2
|
-7,503 |
\frac{1}{2} \cdot 15 = \frac16 \cdot 45
|
25,690 |
\mathbb{E}(h\cdot k) = \mathbb{E}(h)\cdot \mathbb{E}(k)
|
17,530 |
\frac{3}{2} \dfrac{1/2}{2}3 = \frac{3}{2}*\frac{3}{4} = \frac{1}{8}9
|
-1,869 |
-5/6*\pi = -\pi*11/12 + \pi/12
|
-9,272 |
-55*x^2 = -5*11*x*x
|
27,274 |
\xi\cdot x\cdot b = x\cdot \xi\cdot b
|
23,289 |
208=256-48
|
29,766 |
\frac{\partial}{\partial f} \left(u \cdot x\right) = \frac{\partial}{\partial f} (u \cdot x)
|
16,187 |
-z + z*2 = z
|
-6,341 |
\dfrac{1}{30*(-1) + z^2 - 7*z}*4 = \frac{4}{\left(z + 10*(-1)\right)*\left(3 + z\right)}
|
-26,170 |
\frac64 + \frac{1}{4} \cdot 14 = 1.5 + 3.5 = 5
|
30,260 |
z\cdot x + i\cdot y = x\cdot z + i\cdot y + y\cdot z
|
-22,289 |
p^2 + 4\cdot p + 12\cdot (-1) = (2\cdot (-1) + p)\cdot (6 + p)
|
11,497 |
(d\cdot f)^{1 - n} = d\cdot f\cdot (d\cdot f)^{-n} = d\cdot f\cdot f^{-n}\cdot d^{-n} = d\cdot f^{1 - n}\cdot d^{-n}
|
5,075 |
\left(-1\right) + z/2 = \dfrac{100}{2} - z \implies z = 34
|
-22,307 |
C^2 + C*3 + 2 = (1 + C)*(C + 2)
|
19,729 |
-\cos\left(x\right) = \cos(x - \pi)
|
1,421 |
\dfrac{1}{(-1) \cdot x} = \frac{1}{(-1) \cdot x} + \tfrac{0}{x} = \frac{1}{(-1) \cdot x} + \frac1x \cdot (1 - 1) = \frac{1}{(-1) \cdot x} + 1/x - \frac{1}{x}
|
14,890 |
0 = \sin(x)\Longrightarrow 0 = x
|
26,074 |
5 \cdot 1109 + 4999 \left(-1\right) = 546
|
19,685 |
4*k + k^2 - 2*k + 1 = 1 + k^2 + k*2
|
22,911 |
2^{1 + n}\cdot (1 + n) = \left(n + 1\right)\cdot 2\cdot 2^n
|
-6,137 |
\frac{1}{3*(x + 9)}*4 = \frac{4}{27 + 3*x}
|
11,771 |
-1/(\sqrt{3}) = \tan(5\cdot \pi/6)
|
43,245 |
80 \cdot 11 + 1 = 881
|
19,626 |
|1/x - \frac{1}{3}| = \frac{1}{3 \cdot x} \cdot |x + 3 \cdot (-1)| \lt \dfrac16 \cdot |x + 3 \cdot (-1)|
|
1,431 |
-\frac{1}{n + 1} + \tfrac{1}{(-1) + n} = \dfrac{2}{(-1) + n^2}
|
34,889 |
3\left(-1\right) + 36 = 33
|
8,223 |
\cos^\sin{z}{z} = (\cos^2{z})^{\tfrac{1}{2} \cdot \sin{z}} = \left(1 - \sin^2{z}\right)^{\sin{z/2}}
|
980 |
\left(\frac1a\cdot a\cdot x\right)^2 = \dfrac{x}{a}\cdot \frac{a\cdot x}{a}\cdot a
|
-29,004 |
-35.5 = \dfrac{1}{2}(-27 - 44)
|
2,764 |
1 = 15*x + 4*\gamma\Longrightarrow x = -1,\gamma = 4
|
29,454 |
\tan\left(z + 2 \cdot \pi\right) = \tan(z)
|
34,249 |
\sin{5/2} - \left(\frac{5}{5 + 1}\right)^{1/2} = -0.314 \dots < 0
|
31,933 |
(-1) + 2 + 2 + 2 + (-1) + (-1) = 3
|
5,703 |
\bar{z}\cdot (T^2 - \lambda^2) = \bar{z}\cdot (T + \lambda)\cdot (-\lambda + T)
|
-9,145 |
t*2*3*7*t = 42*t^2
|
-18,420 |
\frac{x + x^2}{x^2 - 6x + 7(-1)} = \frac{x*\left(x + 1\right)}{(x + 1) (x + 7(-1))}
|
6,250 |
\mathbb{E}(D_2*D_1) = \mathbb{E}(D_2)*\mathbb{E}(D_1)
|
25,243 |
π = π\times 2/2
|
-12,152 |
\dfrac15 = \frac{s}{8 \cdot \pi} \cdot 8 \cdot \pi = s
|
6,590 |
\frac{1}{2} (-1 + 9) = 4
|
16,595 |
\sin(x + π*2) = \sin{x}
|
30,199 |
B = X^2 \Rightarrow B^{\dfrac{1}{2}} = X
|
8,802 |
a \cdot p \cdot x + d \cdot x \cdot q = x \cdot (d \cdot q + a \cdot p)
|
-25,073 |
\sec^2{4*x}*\tan{4*x}*8 = d/dx \sec^2{4*x}
|
41,584 |
4\cdot 17 + 3\cdot (-1) - 2\cdot 5 = 68 + 3\cdot \left(-1\right) + 10\cdot (-1) = 55
|
30,446 |
1 = x \cdot e^{x \cdot 6} \Rightarrow x \approx 0.2387
|
11,938 |
n \cdot 4 + 4 = 4 \cdot (1 + n)
|
-20,803 |
\dfrac11 10*5/5 = \frac{1}{5} 50
|
-16,424 |
28^{1 / 2}*8 = (4*7)^{1 / 2}*8
|
-679 |
e^{12*i*\pi/12} = (e^{\pi*i/12})^{12}
|
11,325 |
1/\left(\dfrac56\cdot 6\right) = \dfrac15
|
51,535 |
\cos{x} = \cos(\dfrac12\times x + \frac12\times x) = \cos^2{\frac{x}{2}} - \sin^2{\frac{x}{2}} = 1 - 2\times \sin^2{\frac{x}{2}}
|
23,483 |
r \cdot r^r = r^{r + 1}
|
-1,817 |
\tfrac{\pi}{12} + \pi = \pi \frac{13}{12}
|
-18,617 |
5x + 5 = 7 \cdot (3x + 9) = 21 x + 63
|
27,892 |
a\cdot z + d = \dfrac{1}{z} rightarrow z^2\cdot a + d\cdot z + (-1) = 0
|
-20,648 |
-\frac{48}{24 - t \cdot 60} = 6/6 \cdot (-\frac{1}{4 - 10 \cdot t} \cdot 8)
|
-549 |
(e^{\frac{1}{12}\cdot 19\cdot π\cdot i})^6 = e^{6\cdot π\cdot i\cdot 19/12}
|
7,151 |
(1 + x + \dots + x^5)^8 = (\frac{1 - x^6}{1 - x})^8 = \frac{1}{\left(1 - x\right)^8}\cdot (1 - x^6)^8
|
3,021 |
\sin\left(x + z\right) = \cos(z)\cdot \sin(x) + \sin(z)\cdot \cos(x)
|
25,371 |
\pi*20 = \pi*8 + 8*\pi + \pi*4
|
35,409 |
\binom{F}{-k + F} = \binom{F}{k}
|
-4,464 |
x^2 - x + 20*(-1) = (x + 5*\left(-1\right))*(x + 4)
|
-20,080 |
-\frac{54}{54 \cdot (-1) + 6 \cdot l} = -\frac{1}{l + 9 \cdot (-1)} \cdot 9 \cdot \frac{6}{6}
|
27,160 |
1/52 - \dfrac{1}{52} \cdot 1/51 = \frac{1}{52} \cdot 50/51
|
2,880 |
x \cdot 2 + (-1) = (-\dfrac12 + x) \cdot 2
|
17,473 |
2^x + (-1) + 2^x = 2 \cdot 2^x + (-1) = 2^{x + 1} + \left(-1\right)
|
-22,347 |
(p + 1) \cdot (p + 10 \cdot (-1)) = 10 \cdot \left(-1\right) + p^2 - p \cdot 9
|
-20,969 |
\dfrac{1}{z*9 + 18 (-1)} (90 \left(-1\right) + 9 z) = \frac{10 (-1) + z}{2 (-1) + z}*9/9
|
25,094 |
b < -2 \Rightarrow 2 \lt -b
|
53,102 |
\frac{\text{d}y}{\text{d}x} = (y + x) \cdot (y + x) \Rightarrow 1 + \frac{\text{d}y}{\text{d}x} = \frac{\partial}{\partial x} (y + x) = 1 + (y + x)^2
|
-23,404 |
\frac{4\cdot 1/5}{6} = \frac{2}{15}
|
9,156 |
x*f = x * x * x*f^3 = (f*x) * \left(f*x\right)^2 = f*x
|
-2,772 |
48^{1 / 2} + 12^{1 / 2} + 3^{1 / 2} = (4*3)^{1 / 2} + 3^{1 / 2} + (16*3)^{\dfrac{1}{2}}
|
-7,956 |
\frac{i + 8}{-2 + i} = \dfrac{1}{i - 2}\cdot (i + 8)\cdot \dfrac{1}{-2 - i}\cdot \left(-2 - i\right)
|
-10,475 |
-\frac{21}{2} = -\frac12 \cdot 21
|
14,658 |
k*r_0*\pi*2/\left(2*\pi*r_1\right) = k*r_0/r_1
|
27,177 |
\dfrac{1}{(2 \cdot l + 2) \cdot (1 + 2 \cdot l)} = \frac{1}{(2 + l \cdot 2)!} \cdot (2 \cdot l)!
|
-493 |
\dfrac{\pi}{2} = \frac{17}{2}*\pi - 8*\pi
|
18,741 |
\frac{1}{5 + V^2} \times (20 + V \times V \times 2) = 2 + \frac{10}{V^2 + 5}
|
6,103 |
px + pz = p \cdot (z + x)
|
35,414 |
5 - \frac17 = \frac{1}{7}\times ((-1) + 35)
|
-30,803 |
4\times x^2 + 24 = 4\times (x^2 + 6)
|
8,636 |
b \cdot C \cdot \frac{l}{b \cdot C} \cdot C = l \cdot C = b \cdot \frac{l}{b} \cdot C
|
42,433 |
\|g + 0*(-1)\| = \|g\|
|
7,402 |
A^{2n} = 0 \Rightarrow 0 = A^n
|
-15,700 |
\frac{\dfrac1a \frac{1}{z^4}}{a^3 z^3} = \dfrac{1/a \frac{1}{z^4}}{z^3 a^3}1
|
18,857 |
\frac{50}{17 \cdot 16} = \frac{1}{16} \cdot 2 + \tfrac{1}{17}
|
-1,378 |
\frac45 \cdot \frac13 \cdot 2 = \dfrac{4 \cdot 1/5}{3 \cdot \dfrac{1}{2}}
|
-9,351 |
-y \cdot y\cdot 121 = -y\cdot 11\cdot 11 y
|
31,549 |
z^3 + z^2 - 10*z + 8 = (4 + z)*(z + \left(-1\right))*(z + 2*(-1))
|
20,314 |
9 \cdot x^4 \cdot 2 \cdot x + 6 \cdot x^5 + x \cdot x \cdot 5 \cdot 4 \cdot x^3 = 44 \cdot x^5
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.