id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
12,496 |
y\times 0.1 + y = 1.1\times y
|
7,379 |
l + j - 2j = l - j
|
11,609 |
1/2 = \frac32\frac18 + \frac{1}{8}\cdot 5/2
|
5,960 |
\sin(x)*3 - \sin^3(x)*4 = \sin(x*3)
|
-2,076 |
13/12 \cdot \pi = \pi \cdot \frac14 \cdot 3 + \pi/3
|
6,294 |
8A = 1 \Rightarrow \frac18 = A
|
20,966 |
zx + zy = (x + y) z
|
10,461 |
(y \cdot p)^2 = (p \cdot y)^2
|
21,676 |
h/c = 1/\left(\frac1h c\right)
|
24,697 |
i + x - 2 \cdot i = x - i
|
1,184 |
\gamma = \tfrac{\gamma}{π}\cdot π
|
-12,035 |
31/45 = \dfrac{1}{18 \cdot \pi} \cdot x \cdot 18 \cdot \pi = x
|
6,372 |
Y\cdot U = U\cdot Y
|
7,858 |
-(p^2 + q^2 + s^2) + (s + p + q) \cdot (s + p + q) = 2\cdot (p\cdot q + q\cdot s + p\cdot s)
|
31,854 |
-\frac{i\cdot π}{4}\cdot 1 + \frac{i\cdot π}{4}\cdot 1 = 0
|
24,871 |
x\cdot 2 = x + (-1) + x + 1
|
20,398 |
\int_1^0 \dotsm\,\mathrm{d}z = -\int\limits_0^1 \dotsm\,\mathrm{d}z
|
14,528 |
1/\left(x\cdot y\right) = 1/(x\cdot y)
|
-22,725 |
\frac{35}{15} = \frac{7 \cdot 5}{5 \cdot 3}
|
24,259 |
\left(x + v\right)\times g = v\times g + x\times g
|
-10,601 |
\frac{35}{s\cdot 5 + 15\cdot (-1)} = 5/5\cdot \frac{1}{3\cdot (-1) + s}\cdot 7
|
-20,918 |
\tfrac16 \cdot (18 \cdot k + 24) = \dfrac12 \cdot \left(6 \cdot k + 8\right) \cdot 3/3
|
25,203 |
l \gt 3 = 2 + 1\Longrightarrow 1 \lt l + 2*(-1)
|
-16,579 |
\sqrt{25\cdot 7}\cdot 11 = 11\cdot \sqrt{175}
|
11,668 |
-Y^2*3 + \left(2*Y + X\right)^2 = X^2 + 4*Y*X + Y^2
|
15,162 |
\sin(C + A) = \sin(A) \cos(C) + \sin(C) \cos(A)
|
19,264 |
\frac{2}{16} = \tfrac18\cdot 7 < 1
|
-2,885 |
2\sqrt{3} = \sqrt{3}*\left(5 + 1 + 4(-1)\right)
|
20,681 |
21557 \times (3 \times 7 \times 11 \times 13)^2 = 194401220013
|
5,911 |
a^2 - 4 a + 5 (-1) = (a + 5 (-1)) (a + 1) = 0 \Rightarrow -1 = a, 5
|
-24,192 |
2 + \dfrac{15}{5} = 2 + 3 = 5
|
31,287 |
\tfrac{A}{m^N} = \tfrac{1}{m^N}*A
|
-3,111 |
\sqrt{5} \cdot (4 + 2 + (-1)) = 5\sqrt{5}
|
21,212 |
(\frac12*2) * (\frac12*2)*1*2 + 2*\left(\frac21\right)^2 = 10
|
390 |
e^{(-1) + z \cdot 2} \cdot 2 = \frac{\mathrm{d}}{\mathrm{d}z} (1 + e^{(-1) + 2 \cdot z})
|
-1,824 |
\pi \cdot \dfrac{11}{6} + \frac{4}{3} \cdot \pi = \pi \cdot \frac{19}{6}
|
17,432 |
-\left(X - Y\right)^2/4 + \frac{1}{4}(X + Y)^2 = YX
|
15,380 |
15 = w*5 \Rightarrow 3 = w
|
-12,030 |
2/3 = r/(8*\pi)*8*\pi = r
|
31,272 |
420 = \dfrac{1}{2!*3!}7!
|
16,573 |
2 \cdot 2^k + (-1) = 2^k \cdot 3 + \left(-1\right) - 2^k
|
5,112 |
l \cdot 2 + 1 = \left(1 + l\right) \cdot 2 + (-1)
|
16,339 |
p^2 + (-p + m) \times p + (-p + n) \times p = p \times (m + n - p)
|
7,508 |
v*(A + B) = B v + v A
|
30,364 |
e\cdot e^{(-1) + x} = e^x
|
7,934 |
\dfrac{3!}{0! \times 3! \times 0!} = 1
|
2,888 |
(\left(-1\right) + y)*(y + 1) = \left(-1\right) + y^2
|
51,562 |
30^2\cdot 75^4 = \left(3\cdot 10\right)^2\cdot (3\cdot 25)^4 = 3^2\cdot 10^2\cdot 3^4\cdot 25^4 = 3^6\cdot 10^2\cdot 25^4
|
35,734 |
-6485 \cdot 6485\cdot 13 + 23382 \cdot 23382 = -1
|
25,682 |
\left(-y + z\right)/2 = s \implies s^2 + 1 = \frac14 (z^2 - 2 z y + y^2) + 1
|
13,491 |
w_3*w_1*w_2 = w_1*w_2*w_3
|
28,425 |
f_2^{f_1}\cdot f_2 = f_2^{1 + f_1}
|
2,115 |
\frac{y}{z} = \dfrac{y}{z}
|
-7,088 |
5/33 = 4/11*5/12
|
2,361 |
-\dfrac{1}{4} + 1 = \dfrac{3}{4}
|
6,702 |
2c\sqrt{c} = 2c^{3/2}
|
16,909 |
\dfrac{361}{10000} = (\frac{19}{100})^2
|
-17,702 |
91 + 62 (-1) = 29
|
-19,583 |
\tfrac{\frac{3}{7}}{\frac{1}{7} \cdot 8} \cdot 1 = 7/8 \cdot 3/7
|
-4,662 |
x^2 + 4*(-1) = (2*(-1) + x)*(2 + x)
|
32,600 |
\frac{2}{M\cdot N} = 1/\left(N\cdot M\right) = N^T\cdot M^T = (M\cdot N)^T
|
18,444 |
\binom{3}{2} \binom{2}{1}*2! \binom{5}{3} \binom{3}{1} = 360
|
6,354 |
(1 + 1) \cdot \left(1 + 1\right) \cdot (2 + 1) \cdot (4 + 1) = 60
|
39,097 |
-(-b + f) \cdot (-b + f) = \left(a - x\right)^2 \Rightarrow (a - x)^2 + (-b + f)^2 = 0
|
9,980 |
\frac{1}{-x \cdot x + (-x + 1) \cdot (1 - x \cdot 2)} \cdot x = \tfrac{1}{x^2 + 1 - x \cdot 3} \cdot x
|
-5,732 |
\frac{4}{\left(q + (-1)\right)*5} = \frac{4}{5q + 5(-1)}
|
27,866 |
-y^2 + x^2 = (x + y)\times (x - y)
|
27,828 |
y + z^2*y = z + z*y^2 \Rightarrow z = y
|
2,814 |
\cos{\tfrac{x}{2}}\cdot \sin{\dfrac{x}{2}}\cdot 2 = \sin{x}
|
39,901 |
x = x = x*(5*3 - 14*2)
|
-10,781 |
\dfrac12*2*(-\frac{1}{25*q + 20*(-1)}*6) = -\frac{1}{40*\left(-1\right) + 50*q}*12
|
2,284 |
\sin(\dfrac{\pi x}{2})/x = \frac{1}{2}\pi \frac{\sin(\frac{x\pi}{2}1)}{x\pi \frac12}
|
38,931 |
-i + 2*i + 1 = i + 1
|
1,842 |
2/3 = 1/3 + 1/3 + 2/3 \cdot 0
|
21,000 |
5 = 12 + 3(-1) + 4(-1)
|
15,153 |
\sqrt{1 + 4h^2} < \sqrt{1 + 4h + 4h^2} = \sqrt{\left(1 + 2h\right)^2} = 1 + 2h
|
-4,454 |
-\frac{1}{(-1) + y}2 - \frac{1}{3 + y}2 = \frac{1}{3(-1) + y^2 + y \cdot 2}\left(4(-1) - 4y\right)
|
17,250 |
\binom{1}{0}\cdot \binom{2}{2}\cdot \binom{3}{1} = \binom{3}{2}\cdot \binom{2}{0}\cdot \binom{1}{1}
|
-4,323 |
\frac{6}{y^2} \cdot 1/5 = \frac{6}{5 \cdot y^2}
|
3,215 |
|y|/|w| = |y/w|
|
17,021 |
\cos\left(3 \cdot x + x\right) = \cos(4 \cdot x)
|
115 |
\frac{1}{49} 34 - 18/49 = 16/49
|
27,242 |
(2\cdot g + 2\cdot b + d)/3 = \frac{1}{5}\cdot (3\cdot g + 4\cdot d) = (2\cdot g + b + 2\cdot d)/3
|
-15,144 |
\frac{1}{y^4\cdot \frac{1}{q^4}}\cdot q^3 = \frac{q^3}{\frac{1}{q^4\cdot \frac{1}{y^4}}}
|
-4,671 |
\frac{z + 14 \cdot (-1)}{z^2 + 4 \cdot (-1)} = -\frac{3}{2 \cdot (-1) + z} + \frac{4}{z + 2}
|
24,823 |
\frac{1}{z\cdot \gamma} = 1/(\gamma\cdot z)
|
-29,571 |
\frac{5*x^2}{x} + \dfrac1x*x + 7/x = \frac1x*(5*x^2 + x + 7)
|
-19,208 |
\frac{1}{5} = \frac{A_r}{16 \cdot π} \cdot 16 \cdot π = A_r
|
35,362 |
100 = 2^x\cdot \left(1 + x\right) = \dfrac{1}{2}\cdot 2^{1 + x}\cdot (1 + x)
|
14,071 |
5\cdot (1/6)^{19}\cdot 19 = \tfrac{95}{609359740010496}
|
-5,495 |
\frac{3}{r \cdot 2 + 12} = \frac{3}{2 \cdot (r + 6)}
|
1,968 |
7/17 = \frac{1}{\dfrac{1}{\frac{1}{3} + 2} + 2}
|
22,462 |
\tan^{-1}{z} = z - z^3/3 + \frac{z^5}{5} + z^7/7 - \dots
|
1,564 |
\binom{5}{2} = \frac{5}{2} \cdot 4 = 10
|
-3,924 |
\tfrac{6\cdot r^4}{22\cdot r^5} = \frac{6}{22}\cdot \frac{r^4}{r^5}
|
35,843 |
7*5=35
|
6,618 |
v_1 - 1/(v_1) = v_2 - \frac{1}{v_2} \Rightarrow 1/(v_1) - 1/(v_2) = -v_2 + v_1
|
30,842 |
a\times \frac12\times a = a^2/2
|
23,523 |
\frac{1}{161} \times 7 = 1/23
|
21,467 |
\left(x + n\right) \cdot \left(x + n\right) = n \cdot n + x \cdot x + 2\cdot n\cdot x
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.