id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
14,182 |
\frac{90\cdot 2}{1.5 \cdot 1.5} = 80
|
755 |
\|E \cdot z\|^2 - \|Z \cdot z\|^2 = ( E \cdot z, E \cdot z) - ( Z \cdot z, Z \cdot z) = ( E^2 \cdot z, z) - ( Z^2 \cdot z, z) = ( \left(E^2 - Z^2\right) \cdot z, z)
|
27,116 |
(h - f)^2/12 + \left((h + f)/2\right)^2 = \frac13(f^2 + h * h + fh)
|
-1,470 |
2*\dfrac{1}{7}/\left(\left(-4\right)*1/9\right) = -9/4*\dfrac{2}{7}
|
14,022 |
x^3 + 2 x^2 + x + 2 = (1 + x^2 + 0 x) (2 + x)
|
18,899 |
|g| - \ln\left(|b|\right) = -\ln(|b|) + |g|
|
22,565 |
e^y \cdot e^{y + 1} = e^{y + y + 1} = e^{2 \cdot y + 1}
|
-18,423 |
\dfrac{1}{(x + 10)*x}*(x + 10)*(x + 4*(-1)) = \frac{1}{x * x + 10*x}*(x * x + x*6 + 40*(-1))
|
4,323 |
1^3 + 2 \times 2 \times 2 + ... + l^3 = (1 + 2 + ... + l)^2
|
7,613 |
\mathbb{E}[X] \times \mathbb{E}[Y] = \mathbb{E}[Y \times X]
|
22,180 |
x + \left(-6x + 240\right)/12 = x/2 + 20
|
5,036 |
\frac 1{\cos^2 t }= 1 + \tan^2 t
|
33,455 |
1\cdot 3+3 \cdot 3+3\cdot6 = 30
|
19,132 |
0 \leq z + 3 \cdot (-1) \Rightarrow 3 \leq z
|
8,400 |
\tfrac{1}{2} - x/2 = (1 - x)/2
|
8,961 |
-D \cdot A + B \cdot A + B \cdot D = -A \cdot D + B \cdot A + B \cdot D
|
-3,807 |
\frac{18 t^5}{t\cdot 42} = \tfrac{t^5}{t}\cdot 18/42
|
-4,152 |
\frac{36}{66}\cdot \frac{q^5}{q^4} = \dfrac{36\cdot q^5}{66\cdot q^4}
|
25,082 |
r \cdot r\cdot A\cdot x = x\cdot r^2\cdot A
|
-20,849 |
\frac{1}{2 + x}(x + 2)\cdot 7/1 = \frac{1}{2 + x}(x\cdot 7 + 14)
|
36,888 |
5400 = \binom{5}{2}*3!*3*6*5
|
4,563 |
\frac{1}{\left(-a/y + 1\right)^2\cdot y \cdot y} = \frac{1}{(y - a)^2}
|
-14,128 |
6 + \dfrac{56}{7} = 6 + 8 = 6 + 8 = 14
|
2,954 |
x \cdot f = -(1 - x \cdot f) + 1
|
9,179 |
(f + a) \cdot (f + a) = a^2 + 2 \cdot a \cdot f + f^2
|
18,537 |
\frac{1}{3}*(d + 2) = 2 \Rightarrow d = 4
|
18,118 |
(x^2 + z * z)^2/2 + \frac12*(x^2 - z^2) * (x^2 - z^2) = x^4 + z^4 = (x^2 + z * z)^2 - 2*(x*z)^2
|
5,542 |
\cot(-\dfrac{1}{2}*37*\pi) = 0
|
3,645 |
D \cap Y = Y\Longrightarrow \left\{Y, D\right\}
|
12,576 |
\frac{1}{G X} = 1/(X G)
|
32,970 |
(0, ∞) = (0, 1)
|
22,989 |
y + \frac{p}{y} = q\Longrightarrow y = \left(q \pm \sqrt{-p*4 + q^2}\right)/2
|
19,099 |
x \cdot x^{l + (-1)} = x^l
|
8,153 |
\tan^2(z\times d) = \tan^2(-z\times d)
|
6,538 |
\left(-1\right) + k*2 = ((-1) + k*2) (2 + (-1))
|
-4,345 |
\dfrac{p^3}{p^2} = \dfrac{pp p}{pp} = p
|
29,676 |
z*y*y = y*z*y
|
-10,590 |
-\dfrac{1}{60 \cdot t} \cdot 4 = -\frac{1}{15 \cdot t} \cdot \frac{1}{4} \cdot 4
|
19,751 |
\frac{1}{\sqrt{2}}\cdot \pi = \tfrac{\pi\cdot \sqrt{2}}{2}
|
1,095 |
2a - a + 1 = 2a - a + \left(-1\right) = a + (-1)
|
16,212 |
991 + 109 \times (-1) + 840 \times 883 = 882 + 840 \times 883
|
-1,325 |
(\tfrac17*(-5))/(\frac12*(-9)) = -\frac57*\left(-\frac{2}{9}\right)
|
16,159 |
(3 + 6 + 9)/2 + \dfrac12 \cdot (3 + 9) = 9 + 6 = 15
|
18,920 |
(\frac12\cdot e)^n = (1/2)^n\cdot e^n
|
27,056 |
-o + 21 = 3\cdot 7 - o
|
38,714 |
\sum_{i=1}^{n + 1} a_i\cdot x_i = \sum_{i=1}^n a_i\cdot x_i + a_{n + 1}\cdot x_{n + 1} = (1 - a_{n + 1})\cdot \sum_{i=1}^n \frac{1}{1 - a_{n + 1}}\cdot a_i\cdot x_i + a_{n + 1}\cdot x_{n + 1}
|
28,026 |
\frac{1}{2 + (-1)} \cdot (2 \cdot (-1) + 10) = 8
|
49,490 |
8\cdot (-1) + 32 = 24
|
32,891 |
\sin{8\cdot x} = \sin{8\cdot \left(T + x\right)}\Longrightarrow 2\cdot \pi + 8\cdot x = (T + x)\cdot 8
|
-11,764 |
\frac{1}{100} = (10^{-1})^2
|
-9,846 |
-1^{-1} \cdot \tfrac{8}{25}/20 = \frac{1}{1 \cdot 25 \cdot 20} \cdot ((-1) \cdot 8) = -\frac{1}{500} \cdot 8 = -\frac{2}{125}
|
20,514 |
\binom{20}{7} = \frac{1}{7! \left(20 + 7(-1)\right)!}20! = 77520
|
-19,203 |
\frac{1}{3} = A_s/\left(81\cdot \pi\right)\cdot 81\cdot \pi = A_s
|
-9,598 |
0.01\cdot \left(-37\right) = -\dfrac{1}{100}\cdot 37.5 = -3/8
|
-11,627 |
i \cdot 21 + 3 = -9 + 12 + 21 i
|
5,409 |
r_i\cdot p_i + p_x\cdot r_j - p_x\cdot p_i\cdot r_j = \left(1 - p_i\right)\cdot r_j\cdot p_x + r_i\cdot p_i
|
-3,863 |
9/4\cdot z^3 = \frac{9}{4}\cdot z^3
|
568 |
g*f = (-g^2 + (f + g)^2 - f * f)/2
|
3,706 |
1 - \cos{x} = 2\cdot \sin^2{x/2} \leq \frac{1}{2}\cdot x^2
|
9,896 |
-a + a \cdot d \cdot a = \tfrac{1}{-\frac{1}{a} + \tfrac{1}{a - \frac{1}{d}}}
|
-4,565 |
(2 + x)\times \left(3 + x\right) = x^2 + x\times 5 + 6
|
-29,730 |
\frac{\mathrm{d}}{\mathrm{d}y} (3 + y^4 \cdot 4 - y^3 \cdot 7) = -y^2 \cdot 21 + 16 \cdot y^3
|
24,610 |
1 + 34/55 = \frac{1}{55} \cdot 89
|
17,414 |
\cos{\tfrac{1}{6} \cdot \pi} = \sqrt{3}/2
|
-457 |
\left(e^{i*\pi*5/4}\right)^6 = e^{6*\frac54*\pi*i}
|
38,837 |
\frac{3}{1 - \frac{1}{10}} = \frac{10}{3}
|
9,198 |
1/f = f^{\frac{a}{y}}\cdot f^{\frac1a\cdot y} = f^{a/y}\cdot f^y
|
6,247 |
\left( 3, 4, 2\right)^T - 2/3 ( 2, 6, 3)^T = ( 5/3, 0, 0)^T = \frac135 ( 1, 0, 0)^T
|
43,953 |
937\cdot 13 = 1 + 2436\cdot 5
|
2,681 |
\binom{(-1) + m}{0} = \binom{m}{0}
|
37,877 |
3\cdot 4 + 5\cdot 4 + 4\cdot 3 = 8\cdot 8 - 5\cdot 4
|
16,697 |
80 = 40 + 2 \cdot 10^2 - 16 \cdot 10
|
3,797 |
-x*(f + g) = -x*(g + f)
|
12,753 |
(q - (q + (q\cdot \ldots)^{1/2})^{1/2})^{1/2} = \left(\left(1 + 4\cdot (q + \left(-1\right))\right)^{1/2} + (-1)\right)/2
|
15,029 |
\frac{1}{4 + (y + (-1))^2} = \frac{1}{5 + y^2 - 2\cdot y}
|
25,373 |
\frac{1}{4}\cdot (1 + 1)\cdot \left(1 + 3\right)\cdot (1 + 2) = 6
|
21,241 |
\frac{12!}{4!*1!*1!*6!} = 27720
|
25,807 |
0 - 1/\left(2\cdot 6\right) = -1/12
|
3,279 |
1 + 2^0 + 2^1 \cdots*2^{n + (-1)} = 2^n
|
11,805 |
\dfrac{2\cdot \tan\left(z/2\right)}{1 + \tan^2\left(z/2\right)}\cdot 1 = \sin\left(z\right)
|
2,241 |
p - 1/2 = p - \tfrac{1}{2} \cdot (p + 1) = \dfrac{1}{2} \cdot (p + (-1))
|
25,513 |
(y + 1)^2 = y^2 + 2y + 1
|
28,214 |
3 \cdot \frac{1}{10}/2 = \frac{1}{20} \cdot 3
|
22,889 |
4\cdot y = 2\cdot 2\cdot y
|
-4,616 |
5*(-1) + x^2 - 4*x = (1 + x)*(x + 5*\left(-1\right))
|
19,958 |
1000 = 30 \cdot 30 + 10 \cdot 10
|
4,852 |
d/dx e^x = d/dx (x \cdot 4)
|
14,422 |
\frac{3}{3 + 5}*\left(1 - 0.4\right)*0.4*\frac{1}{8 + 4} 8 = 3/50
|
10,400 |
-x - x \times x = \frac{1}{1 - x}\times (x^3 - x) = \frac{1}{1 - x}
|
33,618 |
2^{b/2} = (\sqrt{2})^b
|
18,441 |
f*l + l*h = l*(f + h)
|
-6,732 |
20/100 + 2/100 = 2/10 + 2/100
|
39,359 |
5^{2k} = (5^2)^k = 25^k
|
6,122 |
\frac{1}{HA} = 1/(HA)
|
2,165 |
1/(T\cdot S) = \dfrac{1}{T\cdot S}
|
15,161 |
\frac{x^3-1}{x-1}=x^2+x+1
|
5,385 |
15/28 = 180/336
|
18,819 |
c_1 \cdot c_2 = \frac12 \cdot (c_2 + c_1)^2 - c_2^2/2 - \frac{c_1^2}{2}
|
15,687 |
1-\frac{6}{36}=\frac{30}{36}=\frac{5}{6}
|
24,181 |
b \cdot c \cdot c = c = b \cdot c \cdot c
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.