id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
28,656 |
z^2 + z + 1 = (1/2 + z)^2 + 3/4
|
19,436 |
( a'^2*4 + b'^2*8 + 10, 20) = ( 5 + 2 a'^2 + 4 b'^2, 10)*2
|
-6,020 |
\frac{2}{2 \cdot \left(y + 8 \cdot (-1)\right)} = \frac{2}{y \cdot 2 + 16 \cdot (-1)}
|
31,477 |
(2*n)^2 + (2 + n*2)^2 + \left(n*2 + 4\right)^2 = (n^2*3 + n*6 + 5)*4
|
7,715 |
A \cdot t^{A + (-1)} = \frac{\partial}{\partial t} t^A
|
-23,475 |
\frac{5}{14} = 5\cdot 1/7/2
|
5,135 |
\frac{1}{3}\times 392 + 1120/3 = \tfrac13\times 1512 = 504
|
10,881 |
\frac{60.0}{5} = 12.0
|
-3,188 |
\sqrt{16*5} - \sqrt{9*5} = -\sqrt{45} + \sqrt{80}
|
22,109 |
\frac1b\cdot c = \frac{c}{b}
|
26,413 |
153 = \frac{17*18}{2}
|
2,301 |
(8\cdot l)^2/2 = 32\cdot l \cdot l
|
23,245 |
5278 = 13\cdot \frac{29}{2}\cdot 28
|
-1,581 |
\pi/6 + \pi*\frac{23}{12} = \frac{1}{12}*25*\pi
|
18,042 |
(1 + \sqrt{-5})\cdot (1 - \sqrt{-5}) = 6
|
-20,458 |
-9/2*\frac{-l + 1}{-l + 1} = \frac{9*(-1) + 9*l}{2 - 2*l}
|
13,945 |
b^y = \left(\frac{1}{b}\right)^{-y} = (\frac{1}{b})^{-y}
|
8,724 |
\sin(2\cdot q) = 2\cdot \sin(q)\cdot \cos\left(q\right)
|
1,584 |
n = 316^2 - 3^6 \cdot 17 = 316^2 - 3^4 \cdot 3^2 \cdot 17 = 316 \cdot 316 - 3^4 \cdot (296^2 - n)
|
26,938 |
(-1) + y\cdot 2/z = \dfrac1z (-z + y\cdot 2)
|
-20,911 |
\left(10\cdot p + 10\right)/(p\cdot \left(-60\right)) = (1 + p)/(p\cdot (-6))\cdot 10/10
|
4,767 |
n + 4 \cdot (-1) = 1\Longrightarrow 5 = n
|
-716 |
-\pi \cdot 24 + \pi \cdot 25 = \pi
|
-4,336 |
\frac{1}{2s * s} = \dfrac{1}{2s^2}
|
-25,784 |
\dfrac{11}{4}\frac{1}{12} = 11/48
|
19,418 |
1/(1/(1/25)) = 1/25*1^{-1}/1 = 1/25
|
3,739 |
-\frac{1}{100} + \frac{1}{10} + \frac{1}{10} = \frac{19}{100}
|
6,934 |
t^{(-1) + a}*t = t^a
|
11,325 |
\frac15 = 1/(6*\frac{5}{6})
|
-1,884 |
-π \dfrac74 + π\cdot 3/2 = -π/4
|
3,037 |
\frac{\sin x^5}{x} = x^4 \frac{\sin x^5}{x^5} \to 0 \cdot 1 = 0
|
-29,556 |
\dfrac{1}{x}\cdot (6\cdot x^2 - x\cdot 4 + 3\cdot \left(-1\right)) = -3/x + \dfrac{x^2\cdot 6}{x} - \dfrac{4\cdot x}{x}\cdot 1
|
14,959 |
|-x \cdot I + X \cdot B| = |-I \cdot x + B \cdot X|
|
-25,809 |
5\cdot 1/4/10 = \frac{5}{40}
|
9,042 |
9 = -4\times p \Rightarrow -\dfrac{9}{4} = p
|
-13,445 |
\frac{6}{10 + 4 \cdot (-1)} = \frac{1}{6} \cdot 6 = \dfrac16 \cdot 6 = 1
|
8,066 |
3^2 + 4^2 + 5^2 = 5^2 + 5^2 = 2 \cdot 5^2
|
-1,162 |
\frac{1}{6 \cdot \dfrac15} \cdot (\tfrac19 \cdot \left(-5\right)) = 5/6 \cdot (-\tfrac{5}{9})
|
12,342 |
2*y'*z + x*2 = (-x + 2*x * x + 2*z * z)*2*((-1) + 4*x + 4*y'*z)
|
10,935 |
\cot(\frac{1}{2}*\pi + x) = -\tan\left(x\right)
|
29,697 |
13 = -3 \cdot 6 + 31
|
31,879 |
2^{2^2} =16
|
10,912 |
2*135689^2 = 39^5 + 75^5 + 128^5
|
15,835 |
\pi + \tan^{-1}{-1} = \pi - \frac{\pi}{4} = \frac{3}{4} \cdot \pi
|
28,045 |
0.5441 = \left(1 - 0.01\right)*0.51 + 0.08*0.49
|
-30,556 |
-200/(-100) = -\dfrac{100}{-50} = -\frac{50}{-25} = 2
|
18,033 |
N = \sqrt{(-N)^2} = \sqrt{-N}*\sqrt{-N}
|
20,276 |
x\cdot y^2\cdot y = x\cdot y^3
|
1,978 |
\cos\left(\tfrac32\pi\right) = 0
|
4,860 |
(120 + 20)*(x + 3*\left(-1\right)) = 140*(x + 3*(-1)) = 140*x + 420*\left(-1\right)
|
4,000 |
x^3 + 8\left(-1\right) = (x^2 + 2x + 4) (x + 2(-1))
|
12,848 |
\sqrt{b^2 - 4\cdot c} = i\cdot \sqrt{4\cdot c - b \cdot b} = i\cdot \sqrt{\|b^2 - 4\cdot c\|}
|
-7,019 |
4/35 = \frac{1}{5} \times 2 \times 3/6 \times 4/7
|
-5,709 |
\frac{4}{4n + 36} = \dfrac{4}{4(n + 9)}
|
-4,903 |
3.65\cdot 10 = \dfrac{3.65\cdot 10}{100} = \dfrac{3.65}{10}
|
30,049 |
\cos\left(\operatorname{acos}(t)\right) = t
|
-6,344 |
\dfrac{4}{2 (r + 8) (r + 6)} = \dfrac{1}{(6 + r) \left(r + 8\right)} 2*\frac{2}{2}
|
-16,594 |
9\sqrt{25*7} = \sqrt{175}*9
|
10,672 |
1 - \sin^2\left(\frac{t}{2}\right)\cdot 2 = \cos(t)
|
20,629 |
3^2 = 11 + 2*\left(-1\right)
|
6,852 |
e^{-i\cdot y} = \cos\left(-y\right) + i\cdot \sin(-y) = \cos(y) - i\cdot \sin\left(y\right)
|
-5,862 |
\dfrac{3}{10 + t \cdot 5} = \dfrac{3}{(t + 2) \cdot 5}
|
24,647 |
\left(\pi/2\right) \left(\pi/2\right)/2 = \pi \pi/8
|
17,425 |
m^2 - m + \frac{1}{1 + m}\cdot m = \frac{m^3}{1 + m}
|
1,242 |
l*x + n'*x = \left(l + n'\right)*x
|
-25,073 |
\sec^2(4x) \tan(4x)*8 = \frac{\mathrm{d}}{\mathrm{d}x} \sec^2\left(4x\right)
|
34,010 |
\int (-a)\,\mathrm{d}z = -\int a\,\mathrm{d}z
|
5,442 |
63 = (-1) + 4 \cdot 4 \cdot 4
|
31,404 |
\tan(x + π) = \tan\left(x\right)
|
14,710 |
(y^T Ay)^T = y^T A^T y = -y^T Ay
|
7,280 |
0 = (1 - z)\cdot z = z - z^2
|
-1,415 |
\frac{7}{1} \cdot \frac94 = 1/4 \cdot 9/(1/7)
|
22,503 |
\cos^2(x) = 1 - \sin^2(x) > 1 - x^2
|
35,517 |
(1 + p + (-1))^n = p^n
|
15,145 |
(2\cdot (-1) + n)! = (n + 2\cdot (-1))\cdot (3\cdot (-1) + n)\cdot (n + 4\cdot (-1))!
|
10,944 |
\left((2 + i)\times \left(i + 1\right)\times (i + 3)\times ...\times (x + 2\times (-1))\times (x + (-1))\times x\right)^{-1} = \frac{1}{x!}\times i!
|
9,458 |
\sin(x) = \frac{1}{1 + \frac{1}{2 \cdot 3 - x^2 + \dotsm} \cdot x^2} \cdot x
|
8,666 |
\cos(2 p) = 2 \cos^2\left(p\right) + (-1) = 1 - 2 \sin^2(p)
|
33,921 |
216 + x^3*125 = 6^3 + (5*x)^3
|
21,435 |
KtY = Yt K
|
42,157 |
|\varphi - y| = |-\varphi + y|
|
29,238 |
\dfrac{1}{l^{2 p}} (1 + l) = \frac{1}{l^{p*2}} + \dfrac{l}{l^{p*2}}
|
29,022 |
u^2 + w^2*3 = (-w + u) * (-w + u) + (u - w)*2w + (w*2) * (w*2)
|
33,856 |
h = \frac{h\cdot 2}{2}
|
12,887 |
-4/(-1) + A + 5 = \frac{(2 + 7)*(2 + 5*(-1))}{1*(2*(-1) + 1)}\Longrightarrow A = 18
|
14,857 |
\binom{3}{1} \binom{3}{2} \binom{5}{2} \binom{2}{1} = 180
|
-22,034 |
\frac{1}{15}*24 = 8/5
|
-24,186 |
7\cdot \left(5 + 7\right) = 7\cdot 12 = 84
|
-24,261 |
\frac{126}{9 + 5} = 126/14 = \dfrac{126}{14} = 9
|
14,931 |
Y = Z \cdot R \Rightarrow \frac{dY}{dR} = R \cdot \frac{dZ}{dR} + Z
|
14,282 |
\sin\left(2 \cdot A\right) = 2 \cdot \sin(A) \cdot \cos(A)
|
-507 |
(e^{\frac{3}{4} \cdot \pi \cdot i})^{14} = e^{14 \cdot \frac34 \cdot \pi \cdot i}
|
25,404 |
1 + 1 + 1 + \ldots + 1 + 1 = m = m
|
21,482 |
\frac{\left(-2\right)^l}{3^{1 + l}} = (-\frac23)^l/3
|
21,920 |
1 + (2*1 + 1*2) + (3*1 + 2*2+1*3) + (1*2 + 2*3 + 3*2 + 2*1) + (1*1 + 2*2 + 3*3 + 2*2 + 1*1)+ (1*2 + 2*3 + 3*2 + 2*1) + (3*1 + 2*2+1*3) + (2*1 + 1*2)+1 = 1+4 + (1+0) + (1+6)+ (1+9) + (1+6) +(1+0) + 4 +1 = 36
|
25,105 |
\cos(3 \cdot z) = \cos(z + 2 \cdot z) = \cos(z) \cdot \cos(2 \cdot z) - \sin(z) \cdot \sin(2 \cdot z)
|
4,082 |
0 = (1 - 1)/2
|
-3,788 |
\dfrac{2*\frac13}{s^2} = \tfrac{2}{s^2*3}
|
22,442 |
400/375*100/80*120 = 160
|
14,217 |
n*(m + 1) = nm + n
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.