modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
list
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
KoichiYasuoka/deberta-large-japanese-wikipedia-ud-head
dc69690b1b09df5edc6ff779f06b069239ecb1a3
2022-07-23T14:44:12.000Z
[ "pytorch", "deberta-v2", "question-answering", "ja", "dataset:universal_dependencies", "transformers", "japanese", "wikipedia", "dependency-parsing", "license:cc-by-sa-4.0", "autotrain_compatible" ]
question-answering
false
KoichiYasuoka
null
KoichiYasuoka/deberta-large-japanese-wikipedia-ud-head
16
null
transformers
9,400
--- language: - "ja" tags: - "japanese" - "wikipedia" - "question-answering" - "dependency-parsing" datasets: - "universal_dependencies" license: "cc-by-sa-4.0" pipeline_tag: "question-answering" widget: - text: "国語" context: "全学年にわたって小学校の国語の教科書に挿し絵が用いられている" - text: "教科書" context: "全学年にわたって小学校の国語の教科書に挿し絵が用いられている" - text: "の" context: "全学年にわたって小学校の国語[MASK]教科書に挿し絵が用いられている" --- # deberta-large-japanese-wikipedia-ud-head ## Model Description This is a DeBERTa(V2) model pretrained on Japanese Wikipedia and 青空文庫 texts for dependency-parsing (head-detection on long-unit-words) as question-answering, derived from [deberta-large-japanese-wikipedia](https://huggingface.co/KoichiYasuoka/deberta-large-japanese-wikipedia) and [UD_Japanese-GSDLUW](https://github.com/UniversalDependencies/UD_Japanese-GSDLUW). Use [MASK] inside `context` to avoid ambiguity when specifying a multiple-used word as `question`. ## How to Use ```py import torch from transformers import AutoTokenizer,AutoModelForQuestionAnswering tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/deberta-large-japanese-wikipedia-ud-head") model=AutoModelForQuestionAnswering.from_pretrained("KoichiYasuoka/deberta-large-japanese-wikipedia-ud-head") question="国語" context="全学年にわたって小学校の国語の教科書に挿し絵が用いられている" inputs=tokenizer(question,context,return_tensors="pt",return_offsets_mapping=True) offsets=inputs.pop("offset_mapping").tolist()[0] outputs=model(**inputs) start,end=torch.argmax(outputs.start_logits),torch.argmax(outputs.end_logits) print(context[offsets[start][0]:offsets[end][-1]]) ``` or (with [ufal.chu-liu-edmonds](https://pypi.org/project/ufal.chu-liu-edmonds/)) ```py class TransformersUD(object): def __init__(self,bert): import os from transformers import (AutoTokenizer,AutoModelForQuestionAnswering, AutoModelForTokenClassification,AutoConfig,TokenClassificationPipeline) self.tokenizer=AutoTokenizer.from_pretrained(bert) self.model=AutoModelForQuestionAnswering.from_pretrained(bert) x=AutoModelForTokenClassification.from_pretrained if os.path.isdir(bert): d,t=x(os.path.join(bert,"deprel")),x(os.path.join(bert,"tagger")) else: from transformers.file_utils import hf_bucket_url c=AutoConfig.from_pretrained(hf_bucket_url(bert,"deprel/config.json")) d=x(hf_bucket_url(bert,"deprel/pytorch_model.bin"),config=c) s=AutoConfig.from_pretrained(hf_bucket_url(bert,"tagger/config.json")) t=x(hf_bucket_url(bert,"tagger/pytorch_model.bin"),config=s) self.deprel=TokenClassificationPipeline(model=d,tokenizer=self.tokenizer, aggregation_strategy="simple") self.tagger=TokenClassificationPipeline(model=t,tokenizer=self.tokenizer) def __call__(self,text): import numpy,torch,ufal.chu_liu_edmonds w=[(t["start"],t["end"],t["entity_group"]) for t in self.deprel(text)] z,n={t["start"]:t["entity"].split("|") for t in self.tagger(text)},len(w) r,m=[text[s:e] for s,e,p in w],numpy.full((n+1,n+1),numpy.nan) v,c=self.tokenizer(r,add_special_tokens=False)["input_ids"],[] for i,t in enumerate(v): q=[self.tokenizer.cls_token_id]+t+[self.tokenizer.sep_token_id] c.append([q]+v[0:i]+[[self.tokenizer.mask_token_id]]+v[i+1:]+[[q[-1]]]) b=[[len(sum(x[0:j+1],[])) for j in range(len(x))] for x in c] with torch.no_grad(): d=self.model(input_ids=torch.tensor([sum(x,[]) for x in c]), token_type_ids=torch.tensor([[0]*x[0]+[1]*(x[-1]-x[0]) for x in b])) s,e=d.start_logits.tolist(),d.end_logits.tolist() for i in range(n): for j in range(n): m[i+1,0 if i==j else j+1]=s[i][b[i][j]]+e[i][b[i][j+1]-1] h=ufal.chu_liu_edmonds.chu_liu_edmonds(m)[0] if [0 for i in h if i==0]!=[0]: i=([p for s,e,p in w]+["root"]).index("root") j=i+1 if i<n else numpy.nanargmax(m[:,0]) m[0:j,0]=m[j+1:,0]=numpy.nan h=ufal.chu_liu_edmonds.chu_liu_edmonds(m)[0] u="# text = "+text.replace("\n"," ")+"\n" for i,(s,e,p) in enumerate(w,1): p="root" if h[i]==0 else "dep" if p=="root" else p u+="\t".join([str(i),r[i-1],"_",z[s][0][2:],"_","|".join(z[s][1:]), str(h[i]),p,"_","_" if i<n and e<w[i][0] else "SpaceAfter=No"])+"\n" return u+"\n" nlp=TransformersUD("KoichiYasuoka/deberta-large-japanese-wikipedia-ud-head") print(nlp("全学年にわたって小学校の国語の教科書に挿し絵が用いられている")) ``` ## Reference 安岡孝一: [青空文庫DeBERTaモデルによる国語研長単位係り受け解析](http://hdl.handle.net/2433/275409), 東洋学へのコンピュータ利用, 第35回研究セミナー (2022年7月), pp.29-43.
ArneD/xlm-roberta-base-finetuned-panx-de
3bd67234019724b0b9ba066e85fa83233e793041
2022-07-06T07:23:24.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "token-classification", "dataset:xtreme", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
ArneD
null
ArneD/xlm-roberta-base-finetuned-panx-de
16
null
transformers
9,401
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8620945214069894 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1372 - F1: 0.8621 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2575 | 1.0 | 525 | 0.1621 | 0.8292 | | 0.1287 | 2.0 | 1050 | 0.1378 | 0.8526 | | 0.0831 | 3.0 | 1575 | 0.1372 | 0.8621 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
bhadresh-savani/distilbert-base-uncased-finetuned-emotion
11350faca8e85c4861766cec4c30dec55fd06bb9
2022-07-14T06:59:49.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "model-index" ]
text-classification
false
bhadresh-savani
null
bhadresh-savani/distilbert-base-uncased-finetuned-emotion
16
null
transformers
9,402
--- tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: bertweet-base-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9365 - name: F1 type: f1 value: 0.9371 - task: type: text-classification name: Text Classification dataset: name: emotion type: emotion config: default split: test metrics: - name: Accuracy type: accuracy value: 0.923 verified: true - name: Precision Macro type: precision value: 0.8676576686813523 verified: true - name: Precision Micro type: precision value: 0.923 verified: true - name: Precision Weighted type: precision value: 0.9268406401714973 verified: true - name: Recall Macro type: recall value: 0.8945488803260702 verified: true - name: Recall Micro type: recall value: 0.923 verified: true - name: Recall Weighted type: recall value: 0.923 verified: true - name: F1 Macro type: f1 value: 0.8798961895301041 verified: true - name: F1 Micro type: f1 value: 0.923 verified: true - name: F1 Weighted type: f1 value: 0.9241278880972197 verified: true - name: loss type: loss value: 0.24626904726028442 verified: true --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1995 - Accuracy: 0.9365 - F1: 0.9371 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.475 | 1.0 | 503 | 0.2171 | 0.928 | 0.9292 | | 0.1235 | 2.0 | 1006 | 0.1764 | 0.9365 | 0.9372 | | 0.0802 | 3.0 | 1509 | 0.1788 | 0.938 | 0.9388 | | 0.0531 | 4.0 | 2012 | 0.2005 | 0.938 | 0.9388 | | 0.0367 | 5.0 | 2515 | 0.1995 | 0.9365 | 0.9371 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.11.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
tj-solergibert/distilbert-base-uncased-finetuned-emotion
38145055ffaf8d9d170279a7a206d4977eab3d9d
2022-07-11T21:58:32.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
tj-solergibert
null
tj-solergibert/distilbert-base-uncased-finetuned-emotion
16
null
transformers
9,403
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9285 - name: F1 type: f1 value: 0.9285646975197546 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2158 - Accuracy: 0.9285 - F1: 0.9286 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8235 | 1.0 | 250 | 0.3085 | 0.915 | 0.9127 | | 0.2493 | 2.0 | 500 | 0.2158 | 0.9285 | 0.9286 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
userGagan/segformer-b0-finetuned-segments-sidewalk-3
7885a555d2b3db4d72e38194169ffbb9dd9267de
2022-07-14T04:32:19.000Z
[ "pytorch", "tensorboard", "segformer", "transformers" ]
null
false
userGagan
null
userGagan/segformer-b0-finetuned-segments-sidewalk-3
16
null
transformers
9,404
Entry not found
juliensimon/distilbert-base-uncased-finetuned-cola
314e8179c7d225ac0e135183caba52dcda653ca9
2022-07-12T14:05:14.000Z
[ "pytorch", "distilbert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
juliensimon
null
juliensimon/distilbert-base-uncased-finetuned-cola
16
null
transformers
9,405
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5334876461854267 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.7737 - Matthews Correlation: 0.5335 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5225 | 1.0 | 535 | 0.5170 | 0.4007 | | 0.3509 | 2.0 | 1070 | 0.5220 | 0.4837 | | 0.2405 | 3.0 | 1605 | 0.6164 | 0.5186 | | 0.1777 | 4.0 | 2140 | 0.7737 | 0.5335 | | 0.1295 | 5.0 | 2675 | 0.8374 | 0.5162 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
omarxadel/wav2vec2-large-xlsr-53-arabic-egyptian
6d87f4de2e66a964f6fb19790092360ede673c57
2022-07-12T14:40:36.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "ar", "dataset:MGB-3", "dataset:egyptian-arabic-conversational-speech-corpus", "transformers", "CTC", "Attention", "Transformer", "license:cc-by-nc-4.0", "model-index" ]
automatic-speech-recognition
false
omarxadel
null
omarxadel/wav2vec2-large-xlsr-53-arabic-egyptian
16
null
transformers
9,406
--- language: "ar" pipeline_tag: automatic-speech-recognition tags: - CTC - Attention - pytorch - Transformer license: "cc-by-nc-4.0" datasets: - MGB-3 - egyptian-arabic-conversational-speech-corpus metrics: - wer model-index: - name: omarxadel/hubert-large-arabic-egyptian results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition metrics: - name: Test WER type: wer value: 29.3755 - name: Validation WER type: wer value: 29.1828 --- # Wav2Vec2-XLSR-53 - with CTC fine-tuned on MGB-3 and Egyptian Arabic Conversational Speech Corpus (No LM) This model is a fine-tuned version of [Wav2Vec2-XLSR-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53). We finetuned this model on the MGB-3 and Egyptian Arabic Conversational Speech Corpus datasets, acheiving WER of `29.3755%`. The performance of the model on the datasets is the following: | Valid WER | Test WER | |:---------:|:--------:| | 29.18 | 29.37 | # Acknowledgement Model fine-tuning and data processing for this work were performed as a part of a Graduation Project from Faculty of Engineering, Alexandria University, CCE Program.
huggingtweets/scottduncanwx
e6542ec5ddde78c6b36050e3c0f3e87bccfd3da6
2022-07-12T14:43:36.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/scottduncanwx
16
1
transformers
9,407
--- language: en thumbnail: http://www.huggingtweets.com/scottduncanwx/1657637010818/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1535379125296418821/ntSMv4LC_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Scott Duncan</div> <div style="text-align: center; font-size: 14px;">@scottduncanwx</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Scott Duncan. | Data | Scott Duncan | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 186 | | Short tweets | 223 | | Tweets kept | 2841 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/tziokng8/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @scottduncanwx's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2swonujn) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2swonujn/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/scottduncanwx') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Loc/lucky-model
4a9b4b268227f847173d63ac90db746de7fc9566
2022-07-13T07:06:05.000Z
[ "pytorch", "tf", "jax", "vit", "image-classification", "dataset:imagenet-1k", "dataset:imagenet-21k", "arxiv:2010.11929", "arxiv:2006.03677", "transformers", "vision", "license:apache-2.0" ]
image-classification
false
Loc
null
Loc/lucky-model
16
null
transformers
9,408
--- license: apache-2.0 tags: - vision - image-classification datasets: - imagenet-1k - imagenet-21k widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace --- # Vision Transformer (base-sized model) Vision Transformer (ViT) model pre-trained on ImageNet-21k (14 million images, 21,843 classes) at resolution 224x224, and fine-tuned on ImageNet 2012 (1 million images, 1,000 classes) at resolution 224x224. It was introduced in the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Dosovitskiy et al. and first released in [this repository](https://github.com/google-research/vision_transformer). However, the weights were converted from the [timm repository](https://github.com/rwightman/pytorch-image-models) by Ross Wightman, who already converted the weights from JAX to PyTorch. Credits go to him. Disclaimer: The team releasing ViT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description The Vision Transformer (ViT) is a transformer encoder model (BERT-like) pretrained on a large collection of images in a supervised fashion, namely ImageNet-21k, at a resolution of 224x224 pixels. Next, the model was fine-tuned on ImageNet (also referred to as ILSVRC2012), a dataset comprising 1 million images and 1,000 classes, also at resolution 224x224. Images are presented to the model as a sequence of fixed-size patches (resolution 16x16), which are linearly embedded. One also adds a [CLS] token to the beginning of a sequence to use it for classification tasks. One also adds absolute position embeddings before feeding the sequence to the layers of the Transformer encoder. By pre-training the model, it learns an inner representation of images that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled images for instance, you can train a standard classifier by placing a linear layer on top of the pre-trained encoder. One typically places a linear layer on top of the [CLS] token, as the last hidden state of this token can be seen as a representation of an entire image. ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=google/vit) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import ViTFeatureExtractor, ViTForImageClassification from PIL import Image import requests url = 'http://images.cocodataset.org/val2017/000000039769.jpg' image = Image.open(requests.get(url, stream=True).raw) feature_extractor = ViTFeatureExtractor.from_pretrained('google/vit-base-patch16-224') model = ViTForImageClassification.from_pretrained('google/vit-base-patch16-224') inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits # model predicts one of the 1000 ImageNet classes predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) ``` For more code examples, we refer to the [documentation](https://huggingface.co/transformers/model_doc/vit.html#). ## Training data The ViT model was pretrained on [ImageNet-21k](http://www.image-net.org/), a dataset consisting of 14 million images and 21k classes, and fine-tuned on [ImageNet](http://www.image-net.org/challenges/LSVRC/2012/), a dataset consisting of 1 million images and 1k classes. ## Training procedure ### Preprocessing The exact details of preprocessing of images during training/validation can be found [here](https://github.com/google-research/vision_transformer/blob/master/vit_jax/input_pipeline.py). Images are resized/rescaled to the same resolution (224x224) and normalized across the RGB channels with mean (0.5, 0.5, 0.5) and standard deviation (0.5, 0.5, 0.5). ### Pretraining The model was trained on TPUv3 hardware (8 cores). All model variants are trained with a batch size of 4096 and learning rate warmup of 10k steps. For ImageNet, the authors found it beneficial to additionally apply gradient clipping at global norm 1. Training resolution is 224. ## Evaluation results For evaluation results on several image classification benchmarks, we refer to tables 2 and 5 of the original paper. Note that for fine-tuning, the best results are obtained with a higher resolution (384x384). Of course, increasing the model size will result in better performance. ### BibTeX entry and citation info ```bibtex @misc{wu2020visual, title={Visual Transformers: Token-based Image Representation and Processing for Computer Vision}, author={Bichen Wu and Chenfeng Xu and Xiaoliang Dai and Alvin Wan and Peizhao Zhang and Zhicheng Yan and Masayoshi Tomizuka and Joseph Gonzalez and Kurt Keutzer and Peter Vajda}, year={2020}, eprint={2006.03677}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` ```bibtex @inproceedings{deng2009imagenet, title={Imagenet: A large-scale hierarchical image database}, author={Deng, Jia and Dong, Wei and Socher, Richard and Li, Li-Jia and Li, Kai and Fei-Fei, Li}, booktitle={2009 IEEE conference on computer vision and pattern recognition}, pages={248--255}, year={2009}, organization={Ieee} } ```
ClassCat/gpt2-small-catalan-v2
6561d0e78fa1726176f84513d8becef7fa914007
2022-07-16T11:35:57.000Z
[ "pytorch", "gpt2", "text-generation", "ca", "dataset:cc100", "dataset:oscar", "dataset:wikipedia", "transformers", "license:cc-by-sa-4.0" ]
text-generation
false
ClassCat
null
ClassCat/gpt2-small-catalan-v2
16
1
transformers
9,409
--- language: ca license: cc-by-sa-4.0 datasets: - cc100 - oscar - wikipedia widget: - text: "Vas jugar a" - text: "M'agrada el clima i el menjar" - text: "Ell està una mica" --- ## GPT2 Catalan small model Version 2 (Uncased) ### Prerequisites transformers==4.19.2 ### Model architecture This model uses GPT2 base model settings, but the size of embedding dimensions are half the size of them. ### Tokenizer Using BPE tokenizer with vocabulary size 50,000. ### Training Data * [wiki40b/ca](https://www.tensorflow.org/datasets/catalog/wiki40b#wiki40bca) (Catalan Wikipedia) * Subset of [oscar](https://huggingface.co/datasets/oscar) * Subset of [CC-100/ca](https://data.statmt.org/cc-100/) : Monolingual Datasets from Web Crawl Data ### Usage ```python from transformers import pipeline unmasker = pipeline('fill-mask', model='ClassCat/gpt2-small-catalan-v2') unmasker("Ell està una mica") ```
peerawatchomp/t5-base-grammar-mcq
c1def3a1894a97b60c1262daf6b816179921276a
2022-07-14T09:30:17.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "license:mit", "autotrain_compatible" ]
text2text-generation
false
peerawatchomp
null
peerawatchomp/t5-base-grammar-mcq
16
null
transformers
9,410
--- license: mit ---
yochen/distilroberta-base-wiki-mark
b5be2720718f457f9e5c2f10b26d14a72154b280
2022-07-25T09:49:23.000Z
[ "pytorch", "tensorboard", "roberta", "fill-mask", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
yochen
null
yochen/distilroberta-base-wiki-mark
16
null
transformers
9,411
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilroberta-base-wiki-mark results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-base-wiki-mark This model is a fine-tuned version of [yochen/distilroberta-base-wiki-mark](https://huggingface.co/yochen/distilroberta-base-wiki-mark) on the None dataset. It achieves the following results on the evaluation set: - eval_loss: 2.2695 - eval_runtime: 4.3489 - eval_samples_per_second: 431.836 - eval_steps_per_second: 54.037 - epoch: 10.1 - step: 20489 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5000 ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
Team-PIXEL/pixel-base-finetuned-tydiqa-goldp
33ef613a5d626a620bbea29069fcf30797d2d5d4
2022-07-14T12:54:13.000Z
[ "pytorch", "pixel", "question-answering", "dataset:tydiqa", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
question-answering
false
Team-PIXEL
null
Team-PIXEL/pixel-base-finetuned-tydiqa-goldp
16
null
transformers
9,412
--- tags: - generated_from_trainer datasets: - tydiqa model-index: - name: pixel-base-finetuned-tydiqa-goldp results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pixel-base-finetuned-tydiqa-goldp This model is a fine-tuned version of [Team-PIXEL/pixel-base](https://huggingface.co/Team-PIXEL/pixel-base) on the tydiqa secondary_task dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 20000 - mixed_precision_training: Apex, opt level O1 ### Training results ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0 - Datasets 2.0.0 - Tokenizers 0.12.1
jinwooChoi/SKKU_AP_SA_KBT2
62ededa202f736fa875bb072e68f3d5b0941fb30
2022-07-25T06:59:43.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
jinwooChoi
null
jinwooChoi/SKKU_AP_SA_KBT2
16
null
transformers
9,413
Entry not found
AbhirupGhosh/opus-mt-finetuned-hi-en
2de898dab31cb37b0d9b0234b6297fa67bea10f5
2022-07-16T17:29:33.000Z
[ "pytorch", "tf", "marian", "text2text-generation", "hi", "en", "arxiv:1706.03762", "transformers", "translation", "Hindi", "generated_from_keras_callback", "license:apache-2.0", "model-index", "autotrain_compatible" ]
translation
false
AbhirupGhosh
null
AbhirupGhosh/opus-mt-finetuned-hi-en
16
null
transformers
9,414
--- license: apache-2.0 language: - hi - en tags: - translation - Hindi - generated_from_keras_callback model-index: - name: opus-mt-finetuned-hi-en results: [] --- # opus-mt-finetuned-hi-en This model is a fine-tuned version of [Helsinki-NLP/opus-mt-hi-en](https://huggingface.co/Helsinki-NLP/opus-mt-hi-en) on [HindiEnglish Corpora](https://www.clarin.eu/resource-families/parallel-corpora) ## Model description The model is a transformer model similar to the [Transformer](https://arxiv.org/abs/1706.03762?context=cs) as defined in Attention Is All You Need et al ## Training and evaluation data More information needed ## Training procedure The model was trained on 2 NVIDIA_TESLA_A100 GPU's on Google's vertex AI platform. ### Training hyperparameters The following hyperparameters were used during training: - optimizer: AdamWeightDecay - training_precision: float32 ### Training results ### Framework versions - Transformers 4.20.1 - TensorFlow 2.8.2 - Datasets 2.3.2 - Tokenizers 0.12.1
Prafuld3/distilbert-base-uncased-finetuned-emotion
a19386973207ae4f836d4c061b6707046d76b9b9
2022-07-18T08:17:49.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
Prafuld3
null
Prafuld3/distilbert-base-uncased-finetuned-emotion
16
null
transformers
9,415
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.923 - name: F1 type: f1 value: 0.9232089605669606 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2185 - Accuracy: 0.923 - F1: 0.9232 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8274 | 1.0 | 250 | 0.3172 | 0.907 | 0.9036 | | 0.2501 | 2.0 | 500 | 0.2185 | 0.923 | 0.9232 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.12.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
Fagen/OxxxyBlok
7e8979ebf8d10868747928bedd7e34a2215d8c03
2022-07-18T14:46:34.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "license:unlicense" ]
text-generation
false
Fagen
null
Fagen/OxxxyBlok
16
null
transformers
9,416
--- license: unlicense ---
Atharvgarg/bert-small2bert-small-finetuned-cnn_daily_mail-summarization-finetuned-multi-news
ea3bcd4ddd1278d321ab52c89046a94681ea9ed4
2022-07-19T14:09:31.000Z
[ "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "dataset:multi_news", "transformers", "summarisation", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
Atharvgarg
null
Atharvgarg/bert-small2bert-small-finetuned-cnn_daily_mail-summarization-finetuned-multi-news
16
1
transformers
9,417
--- license: apache-2.0 tags: - summarisation - generated_from_trainer datasets: - multi_news metrics: - rouge model-index: - name: bert-small2bert-small-finetuned-cnn_daily_mail-summarization-finetuned-multi-news results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: multi_news type: multi_news args: default metrics: - name: Rouge1 type: rouge value: 38.9616 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-small2bert-small-finetuned-cnn_daily_mail-summarization-finetuned-multi-news This model is a fine-tuned version of [mrm8488/bert-small2bert-small-finetuned-cnn_daily_mail-summarization](https://huggingface.co/mrm8488/bert-small2bert-small-finetuned-cnn_daily_mail-summarization) on the multi_news dataset. It achieves the following results on the evaluation set: - Loss: 3.0185 - Rouge1: 38.9616 - Rouge2: 14.1539 - Rougel: 21.1788 - Rougelsum: 35.314 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:| | 3.3679 | 1.0 | 11243 | 3.1314 | 38.4459 | 13.7777 | 20.8772 | 34.8321 | | 3.1115 | 2.0 | 22486 | 3.0589 | 38.7419 | 13.9355 | 20.9911 | 35.0988 | | 2.9826 | 3.0 | 33729 | 3.0311 | 38.7345 | 14.0365 | 21.0571 | 35.1604 | | 2.8986 | 4.0 | 44972 | 3.0185 | 38.9616 | 14.1539 | 21.1788 | 35.314 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
sam34738/xlm-kabita
d2137a0ad8a1b03ac8db1f5266f7ed97c58af3d7
2022-07-19T17:36:42.000Z
[ "pytorch", "roberta", "text-classification", "transformers", "generated_from_trainer", "model-index" ]
text-classification
false
sam34738
null
sam34738/xlm-kabita
16
null
transformers
9,418
--- tags: - generated_from_trainer model-index: - name: xlm-kabita results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-kabita This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-emotion](https://huggingface.co/cardiffnlp/twitter-roberta-base-emotion) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4984 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.0929 | 1.0 | 460 | 0.5814 | | 0.4287 | 2.0 | 920 | 0.4984 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Tokenizers 0.12.1
Ahmed007/T5-ibn-Shaddad
e0f6a904bc9c7ad18e80fe736c429ed18a85e554
2022-07-20T11:31:51.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
Ahmed007
null
Ahmed007/T5-ibn-Shaddad
16
null
transformers
9,419
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: T5-ibn-Shaddad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # T5-ibn-Shaddad This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0342 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.0365 | 1.0 | 4989 | 0.0342 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
buddhist-nlp/classical-tibetan-english
ee0c403b60aadfe2faef10cd478cd19e1b64fe3e
2022-07-21T14:00:47.000Z
[ "pytorch", "mbart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
buddhist-nlp
null
buddhist-nlp/classical-tibetan-english
16
null
transformers
9,420
Entry not found
helliun/article_pol
554083e6e79c5ec4e8d6e354ff1cbf8d0a9e3667
2022-07-26T19:52:04.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
helliun
null
helliun/article_pol
16
null
transformers
9,421
Entry not found
benjamyu/autotrain-ms-2-1174443640
935af3eced3f2d3c6378b3a8e7b9f16fa323dd09
2022-07-25T13:26:05.000Z
[ "pytorch", "t5", "text2text-generation", "en", "dataset:benjamyu/autotrain-data-ms-2", "transformers", "autotrain", "co2_eq_emissions", "autotrain_compatible" ]
text2text-generation
false
benjamyu
null
benjamyu/autotrain-ms-2-1174443640
16
null
transformers
9,422
--- tags: autotrain language: en widget: - text: "I love AutoTrain 🤗" datasets: - benjamyu/autotrain-data-ms-2 co2_eq_emissions: 4.619328856849087 --- # Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 1174443640 - CO2 Emissions (in grams): 4.619328856849087 ## Validation Metrics - Loss: 2.689530849456787 - Rouge1: 15.9713 - Rouge2: 2.1067 - RougeL: 12.1778 - RougeLsum: 13.5772 - Gen Len: 18.9798 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/benjamyu/autotrain-ms-2-1174443640 ```
sysresearch101/t5-large-finetuned-xsum-cnn
0fd59c0db86eab4b8354fb4ccf1dc664d515c38d
2022-07-29T08:06:26.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
sysresearch101
null
sysresearch101/t5-large-finetuned-xsum-cnn
16
null
transformers
9,423
Entry not found
BramVanroy/bert-base-dutch-cased-hebban-reviews
23ba004d071f15e144e58ae01454b139e2db27d9
2022-07-29T09:36:46.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "nl", "dataset:BramVanroy/hebban-reviews", "transformers", "sentiment-analysis", "dutch", "text", "license:mit", "model-index" ]
text-classification
false
BramVanroy
null
BramVanroy/bert-base-dutch-cased-hebban-reviews
16
null
transformers
9,424
--- datasets: - BramVanroy/hebban-reviews language: - nl license: mit metrics: - accuracy - f1 - precision - qwk - recall model-index: - name: bert-base-dutch-cased-hebban-reviews results: - dataset: config: filtered_sentiment name: BramVanroy/hebban-reviews - filtered_sentiment - 2.0.0 revision: 2.0.0 split: test type: BramVanroy/hebban-reviews metrics: - name: Test accuracy type: accuracy value: 0.8042406311637081 - name: Test f1 type: f1 value: 0.8125977499178383 - name: Test precision type: precision value: 0.8283602308368182 - name: Test qwk type: qwk value: 0.7301452890386257 - name: Test recall type: recall value: 0.8042406311637081 task: name: sentiment analysis type: text-classification tags: - sentiment-analysis - dutch - text widget: - text: Wauw, wat een leuk boek! Ik heb me er er goed mee vermaakt. - text: Nee, deze vond ik niet goed. De auteur doet zijn best om je als lezer mee te trekken in het verhaal maar mij overtuigt het alleszins niet. - text: Ik vind het niet slecht maar de schrijfstijl trekt me ook niet echt aan. Het wordt een beetje saai vanaf het vijfde hoofdstuk --- # bert-base-dutch-cased-hebban-reviews # Dataset - dataset_name: BramVanroy/hebban-reviews - dataset_config: filtered_sentiment - dataset_revision: 2.0.0 - labelcolumn: review_sentiment - textcolumn: review_text_without_quotes # Training - optim: adamw_hf - learning_rate: 5e-05 - per_device_train_batch_size: 64 - per_device_eval_batch_size: 64 - gradient_accumulation_steps: 1 - max_steps: 5001 - save_steps: 500 - metric_for_best_model: qwk # Best checkedpoint based on validation - best_metric: 0.732569302631819 - best_model_checkpoint: trained/hebban-reviews/bert-base-dutch-cased/checkpoint-3000 # Test results of best checkpoint - accuracy: 0.8042406311637081 - f1: 0.8125977499178383 - precision: 0.8283602308368182 - qwk: 0.7301452890386257 - recall: 0.8042406311637081 ## Confusion matric ![cfm](fig/test_confusion_matrix.png) ## Normalized confusion matrix ![norm cfm](fig/test_confusion_matrix_norm.png) # Environment - cuda_capabilities: 8.0; 8.0 - cuda_device_count: 2 - cuda_devices: NVIDIA A100-SXM4-80GB; NVIDIA A100-SXM4-80GB - finetuner_commit: 48bb3434fa8bbfc9b2d0061ca6c8feb87f78a7ef - platform: Linux-4.18.0-305.49.1.el8_4.x86_64-x86_64-with-glibc2.28 - python_version: 3.9.5 - toch_version: 1.10.0 - transformers_version: 4.21.0
Den4ikAI/rugpt3_2ch
ca577ccc7f995143c4b48cae6a1adf21cf91829d
2022-07-26T16:43:28.000Z
[ "pytorch", "gpt2", "text-generation", "rus", "transformers", "license:mit" ]
text-generation
false
Den4ikAI
null
Den4ikAI/rugpt3_2ch
16
1
transformers
9,425
--- license: mit language: rus --- RUGPT-3 обученная на диалогах с имиджборд по типу 2ch Для генерации ответа в модель нужно ввести такой формат данных: "- Привет\n-" Пример инференса тут: https://github.com/Den4ikAI/rugpt3_2ch
abdulmatinomotoso/xsum_headline_generator
399026c6a176223c947f8bac235ee164a24355e8
2022-07-27T00:03:58.000Z
[ "pytorch", "tensorboard", "pegasus", "text2text-generation", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
abdulmatinomotoso
null
abdulmatinomotoso/xsum_headline_generator
16
null
transformers
9,426
--- tags: - generated_from_trainer model-index: - name: xsum_headline_generator results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xsum_headline_generator This model is a fine-tuned version of [google/pegasus-multi_news](https://huggingface.co/google/pegasus-multi_news) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4956 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.6447 | 0.8 | 500 | 0.4956 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
Go2Heart/BERT_Mod_1
d8a7bccac709fdabfbf164509c9e2478c1b5e3f2
2022-07-27T16:17:44.000Z
[ "pytorch", "distilbert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
Go2Heart
null
Go2Heart/BERT_Mod_1
16
null
transformers
9,427
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: BERT_Mod_1 results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.541934635424655 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BERT_Mod_1 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 1.1787 - Matthews Correlation: 0.5419 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.1616 | 1.0 | 535 | 0.9278 | 0.4979 | | 0.1128 | 2.0 | 1070 | 1.0487 | 0.5046 | | 0.0712 | 3.0 | 1605 | 1.0155 | 0.5306 | | 0.0952 | 4.0 | 2140 | 1.1860 | 0.5147 | | 0.0698 | 5.0 | 2675 | 1.1787 | 0.5419 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0 - Datasets 2.4.0 - Tokenizers 0.12.1
relbert/relbert-roberta-large-conceptnet-hc-average-prompt-a-nce
2d9b5c7d7f9d218e12ac24b06c0a21b412242bef
2022-07-28T07:17:13.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
relbert
null
relbert/relbert-roberta-large-conceptnet-hc-average-prompt-a-nce
16
null
transformers
9,428
Entry not found
bheshaj/bart-large-billsum-epochs20
cc4e8902cee6387a6c8dc561277aeecb2f3081a0
2022-07-28T11:12:53.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
bheshaj
null
bheshaj/bart-large-billsum-epochs20
16
null
transformers
9,429
--- license: apache-2.0 ---
yanaiela/roberta-base-epoch_82
f0007ec36644f58d5197e76ca83bd2945d1ae61d
2022-07-29T23:09:44.000Z
[ "pytorch", "roberta", "fill-mask", "en", "dataset:wikipedia", "dataset:bookcorpus", "arxiv:1907.11692", "arxiv:2207.14251", "transformers", "roberta-base", "roberta-base-epoch_82", "license:mit", "autotrain_compatible" ]
fill-mask
false
yanaiela
null
yanaiela/roberta-base-epoch_82
16
null
transformers
9,430
--- language: en tags: - roberta-base - roberta-base-epoch_82 license: mit datasets: - wikipedia - bookcorpus --- # RoBERTa, Intermediate Checkpoint - Epoch 82 This model is part of our reimplementation of the [RoBERTa model](https://arxiv.org/abs/1907.11692), trained on Wikipedia and the Book Corpus only. We train this model for almost 100K steps, corresponding to 83 epochs. We provide the 84 checkpoints (including the randomly initialized weights before the training) to provide the ability to study the training dynamics of such models, and other possible use-cases. These models were trained in part of a work that studies how simple statistics from data, such as co-occurrences affects model predictions, which are described in the paper [Measuring Causal Effects of Data Statistics on Language Model's `Factual' Predictions](https://arxiv.org/abs/2207.14251). This is RoBERTa-base epoch_82. ## Model Description This model was captured during a reproduction of [RoBERTa-base](https://huggingface.co/roberta-base), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM). The intended uses, limitations, training data and training procedure for the fully trained model are similar to [RoBERTa-base](https://huggingface.co/roberta-base). Two major differences with the original model: * We trained our model for 100K steps, instead of 500K * We only use Wikipedia and the Book Corpus, as corpora which are publicly available. ### How to use Using code from [RoBERTa-base](https://huggingface.co/roberta-base), here is an example based on PyTorch: ``` from transformers import pipeline model = pipeline("fill-mask", model='yanaiela/roberta-base-epoch_83', device=-1, top_k=10) model("Hello, I'm the <mask> RoBERTa-base language model") ``` ## Citation info ```bibtex @article{2207.14251, Author = {Yanai Elazar and Nora Kassner and Shauli Ravfogel and Amir Feder and Abhilasha Ravichander and Marius Mosbach and Yonatan Belinkov and Hinrich Schütze and Yoav Goldberg}, Title = {Measuring Causal Effects of Data Statistics on Language Model's `Factual' Predictions}, Year = {2022}, Eprint = {arXiv:2207.14251}, } ```
Andrija/SRoBERTa
7edd3d8a779ff36a48f8d23394ddfd5079fc865a
2021-08-09T19:38:58.000Z
[ "pytorch", "roberta", "fill-mask", "hr", "sr", "dataset:leipzig", "transformers", "masked-lm", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
Andrija
null
Andrija/SRoBERTa
15
1
transformers
9,431
--- datasets: - leipzig language: - hr - sr tags: - masked-lm widget: - text: "Gde je <mask>." license: apache-2.0 --- # Transformer language model for Croatian and Serbian Trained on 0.7GB dataset Croatian and Serbian language for one epoch. Dataset from Leipzig Corpora. # Information of dataset | Model | #params | Arch. | Training data | |--------------------------------|--------------------------------|-------|-----------------------------------| | `Andrija/SRoBERTa` | 120M | First | Leipzig Corpus (0.7 GB of text) | # How to use in code ```python from transformers import AutoTokenizer, AutoModelForMaskedLM tokenizer = AutoTokenizer.from_pretrained("Andrija/SRoBERTa") model = AutoModelForMaskedLM.from_pretrained("Andrija/SRoBERTa") ```
Bagus/wav2vec2-xlsr-japanese-speech-emotion-recognition
3430ab406e1b1fdc23284372b19d1bc235d18c67
2021-10-20T05:41:55.000Z
[ "pytorch", "wav2vec2", "audio-classification", "jp", "dataset:jtes", "transformers", "audio", "speech", "speech-emotion-recognition" ]
audio-classification
false
Bagus
null
Bagus/wav2vec2-xlsr-japanese-speech-emotion-recognition
15
null
transformers
9,432
--- language: jp datasets: - jtes tags: - audio - audio-classification - speech - speech-emotion-recognition --- This is for (private) DEMO only.
BigSalmon/InformalToFormalLincolnDistilledGPT2
6d1979b4571951ca14150f004e5045aa0bd9a2c4
2021-12-23T03:39:15.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
BigSalmon
null
BigSalmon/InformalToFormalLincolnDistilledGPT2
15
null
transformers
9,433
Informal to Formal: ``` from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincolnDistilledGPT2") model = AutoModelWithLMHead.from_pretrained("BigSalmon/InformalToFormalLincolnDistilledGPT2") ``` ``` https://huggingface.co/spaces/BigSalmon/GPT2 (The model for this space changes over time) ``` ``` https://huggingface.co/spaces/BigSalmon/GPT2_Most_Probable (The model for this space changes over time) ``` ``` How To Make Prompt: informal english: i am very ready to do that just that. Translated into the Style of Abraham Lincoln: you can assure yourself of my readiness to work toward this end. Translated into the Style of Abraham Lincoln: please be assured that i am most ready to undertake this laborious task. informal english: space is huge and needs to be explored. Translated into the Style of Abraham Lincoln: space awaits traversal, a new world whose boundaries are endless. Translated into the Style of Abraham Lincoln: space is a ( limitless / boundless ) expanse, a vast virgin domain awaiting exploration. informal english: ````
Buntan/bert-finetuned-ner
e4df0b1baad36dc465cdc99ce21d659300c7d7ce
2021-12-11T10:26:36.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "dataset:conll2003", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
Buntan
null
Buntan/bert-finetuned-ner
15
null
transformers
9,434
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9328604420983174 - name: Recall type: recall value: 0.9516997643890945 - name: F1 type: f1 value: 0.9421859380206598 - name: Accuracy type: accuracy value: 0.986342497203744 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0612 - Precision: 0.9329 - Recall: 0.9517 - F1: 0.9422 - Accuracy: 0.9863 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0904 | 1.0 | 1756 | 0.0686 | 0.9227 | 0.9355 | 0.9291 | 0.9820 | | 0.0385 | 2.0 | 3512 | 0.0586 | 0.9381 | 0.9490 | 0.9435 | 0.9862 | | 0.0215 | 3.0 | 5268 | 0.0612 | 0.9329 | 0.9517 | 0.9422 | 0.9863 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
Cameron/BERT-Jigsaw
fb180e502cbd5b82bc54be2858317eb8cc62c392
2021-05-18T17:21:10.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
Cameron
null
Cameron/BERT-Jigsaw
15
null
transformers
9,435
Entry not found
Contrastive-Tension/BERT-Base-CT
f1cafceb4374b5b374defd6ca7a8391d5b3d58d9
2021-05-18T17:49:20.000Z
[ "pytorch", "tf", "jax", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Contrastive-Tension
null
Contrastive-Tension/BERT-Base-CT
15
null
transformers
9,436
Entry not found
EhsanYB/bert-ehsan-ner-accelerate
33d6d1c725c98d56c77a0da5329c07a177b4b458
2022-01-14T10:50:23.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
EhsanYB
null
EhsanYB/bert-ehsan-ner-accelerate
15
null
transformers
9,437
Entry not found
GeniusVoice/bert-base-dutch-cased-finetuned-gem
ca9b0b4e758ee2138e02db8595c8b19be436d412
2021-07-13T14:06:42.000Z
[ "pytorch", "tensorboard", "bert", "fill-mask", "nl", "transformers", "generated_from_trainer", "autotrain_compatible" ]
fill-mask
false
GeniusVoice
null
GeniusVoice/bert-base-dutch-cased-finetuned-gem
15
null
transformers
9,438
--- language: - nl tags: - generated_from_trainer model_index: - name: bert-base-dutch-cased-finetuned-gem results: - task: name: Masked Language Modeling type: fill-mask --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-dutch-cased-finetuned-gem This model is a fine-tuned version of [GroNLP/bert-base-dutch-cased](https://huggingface.co/GroNLP/bert-base-dutch-cased) on an unkown dataset. It achieves the following results on the evaluation set: - Loss: 1.8767 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.7518 | 1.0 | 2133 | 1.8428 | | 1.5679 | 2.0 | 4266 | 1.8729 | | 1.3332 | 3.0 | 6399 | 1.8767 | ### Framework versions - Transformers 4.8.2 - Pytorch 1.9.0+cu102 - Datasets 1.9.0 - Tokenizers 0.10.3
Geotrend/bert-base-de-cased
d54397485533eb9eb0171915fcb720c47f8472c3
2021-05-18T18:58:49.000Z
[ "pytorch", "tf", "jax", "bert", "fill-mask", "de", "dataset:wikipedia", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
Geotrend
null
Geotrend/bert-base-de-cased
15
null
transformers
9,439
--- language: de datasets: wikipedia license: apache-2.0 --- # bert-base-de-cased We are sharing smaller versions of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) that handle a custom number of languages. Unlike [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased), our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/bert-base-de-cased") model = AutoModel.from_pretrained("Geotrend/bert-base-de-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact [email protected] for any question, feedback or request.
Geotrend/bert-base-en-tr-cased
68e431759fc6bd131395b23376b8a39837291fbd
2021-05-18T19:48:09.000Z
[ "pytorch", "tf", "jax", "bert", "fill-mask", "multilingual", "dataset:wikipedia", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
Geotrend
null
Geotrend/bert-base-en-tr-cased
15
null
transformers
9,440
--- language: multilingual datasets: wikipedia license: apache-2.0 widget: - text: "Google generated 46 billion [MASK] in revenue." - text: "Paris is the capital of [MASK]." - text: "Algiers is the largest city in [MASK]." --- # bert-base-en-tr-cased We are sharing smaller versions of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) that handle a custom number of languages. Unlike [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased), our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/bert-base-en-tr-cased") model = AutoModel.from_pretrained("Geotrend/bert-base-en-tr-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact [email protected] for any question, feedback or request.
Geotrend/distilbert-base-ar-cased
a82a605cb4f8cd866483123be3c5283c811ff456
2021-08-16T13:19:01.000Z
[ "pytorch", "distilbert", "fill-mask", "ar", "dataset:wikipedia", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
Geotrend
null
Geotrend/distilbert-base-ar-cased
15
null
transformers
9,441
--- language: ar datasets: wikipedia license: apache-2.0 --- # distilbert-base-ar-cased We are sharing smaller versions of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) that handle a custom number of languages. Our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/distilbert-base-ar-cased") model = AutoModel.from_pretrained("Geotrend/distilbert-base-ar-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermdistilbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact [email protected] for any question, feedback or request.
Harveenchadha/hindi_large_wav2vec2
0053bf147465b0101391b4d5a7dd7777f58d4230
2022-03-23T18:28:53.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "hi", "dataset:Harveenchadha/indic-voice", "transformers", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
Harveenchadha
null
Harveenchadha/hindi_large_wav2vec2
15
null
transformers
9,442
--- license: apache-2.0 language: - hi tags: - automatic-speech-recognition - hf-asr-leaderboard - hi - model_for_talk - mozilla-foundation/common_voice_7_0 - robust-speech-event datasets: - Harveenchadha/indic-voice model-index: - name: Hindi Large results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice type: common_voice args: hi metrics: - name: Test WER type: wer value: 23.08 - name: Test CER type: cer value: 8.11 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice-7.0 type: mozilla-foundation/common_voice_7_0 args: hi metrics: - name: Test WER type: wer value: 23.36 - name: Test CER type: cer value: 8.94 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice-8.0 type: mozilla-foundation/common_voice_8_0 args: hi metrics: - name: Test WER type: wer value: 24.85 - name: Test CER type: cer value: 9.99 ---
Helsinki-NLP/opus-mt-art-en
a4c1384d26ca671492bfa97342442040305f8c0e
2021-01-18T07:47:57.000Z
[ "pytorch", "marian", "text2text-generation", "eo", "io", "art", "en", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-art-en
15
null
transformers
9,443
--- language: - eo - io - art - en tags: - translation license: apache-2.0 --- ### art-eng * source group: Artificial languages * target group: English * OPUS readme: [art-eng](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/art-eng/README.md) * model: transformer * source language(s): afh_Latn avk_Latn dws_Latn epo ido ido_Latn ile_Latn ina_Latn jbo jbo_Cyrl jbo_Latn ldn_Latn lfn_Cyrl lfn_Latn nov_Latn qya qya_Latn sjn_Latn tlh_Latn tzl tzl_Latn vol_Latn * target language(s): eng * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus2m-2020-07-31.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/art-eng/opus2m-2020-07-31.zip) * test set translations: [opus2m-2020-07-31.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/art-eng/opus2m-2020-07-31.test.txt) * test set scores: [opus2m-2020-07-31.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/art-eng/opus2m-2020-07-31.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.afh-eng.afh.eng | 1.2 | 0.099 | | Tatoeba-test.avk-eng.avk.eng | 0.4 | 0.105 | | Tatoeba-test.dws-eng.dws.eng | 1.6 | 0.076 | | Tatoeba-test.epo-eng.epo.eng | 34.6 | 0.530 | | Tatoeba-test.ido-eng.ido.eng | 12.7 | 0.310 | | Tatoeba-test.ile-eng.ile.eng | 4.6 | 0.218 | | Tatoeba-test.ina-eng.ina.eng | 5.8 | 0.254 | | Tatoeba-test.jbo-eng.jbo.eng | 0.2 | 0.115 | | Tatoeba-test.ldn-eng.ldn.eng | 0.7 | 0.083 | | Tatoeba-test.lfn-eng.lfn.eng | 1.8 | 0.172 | | Tatoeba-test.multi.eng | 11.6 | 0.287 | | Tatoeba-test.nov-eng.nov.eng | 5.1 | 0.215 | | Tatoeba-test.qya-eng.qya.eng | 0.7 | 0.113 | | Tatoeba-test.sjn-eng.sjn.eng | 0.9 | 0.090 | | Tatoeba-test.tlh-eng.tlh.eng | 0.2 | 0.124 | | Tatoeba-test.tzl-eng.tzl.eng | 1.4 | 0.109 | | Tatoeba-test.vol-eng.vol.eng | 0.5 | 0.115 | ### System Info: - hf_name: art-eng - source_languages: art - target_languages: eng - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/art-eng/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['eo', 'io', 'art', 'en'] - src_constituents: {'sjn_Latn', 'tzl', 'vol_Latn', 'qya', 'tlh_Latn', 'ile_Latn', 'ido_Latn', 'tzl_Latn', 'jbo_Cyrl', 'jbo', 'lfn_Latn', 'nov_Latn', 'dws_Latn', 'ldn_Latn', 'avk_Latn', 'lfn_Cyrl', 'ina_Latn', 'jbo_Latn', 'epo', 'afh_Latn', 'qya_Latn', 'ido'} - tgt_constituents: {'eng'} - src_multilingual: True - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/art-eng/opus2m-2020-07-31.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/art-eng/opus2m-2020-07-31.test.txt - src_alpha3: art - tgt_alpha3: eng - short_pair: art-en - chrF2_score: 0.287 - bleu: 11.6 - brevity_penalty: 1.0 - ref_len: 73037.0 - src_name: Artificial languages - tgt_name: English - train_date: 2020-07-31 - src_alpha2: art - tgt_alpha2: en - prefer_old: False - long_pair: art-eng - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-ceb-es
94ff5e6902541d95fc1890e7e5e185477d922271
2021-09-09T21:28:26.000Z
[ "pytorch", "marian", "text2text-generation", "ceb", "es", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-ceb-es
15
null
transformers
9,444
--- tags: - translation license: apache-2.0 --- ### opus-mt-ceb-es * source languages: ceb * target languages: es * OPUS readme: [ceb-es](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/ceb-es/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-15.zip](https://object.pouta.csc.fi/OPUS-MT-models/ceb-es/opus-2020-01-15.zip) * test set translations: [opus-2020-01-15.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/ceb-es/opus-2020-01-15.test.txt) * test set scores: [opus-2020-01-15.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/ceb-es/opus-2020-01-15.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.ceb.es | 31.6 | 0.508 |
Helsinki-NLP/opus-mt-chk-sv
de1bf0196adc388148bb52c5388fd795c46191b6
2021-09-09T21:28:52.000Z
[ "pytorch", "marian", "text2text-generation", "chk", "sv", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-chk-sv
15
null
transformers
9,445
--- tags: - translation license: apache-2.0 --- ### opus-mt-chk-sv * source languages: chk * target languages: sv * OPUS readme: [chk-sv](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/chk-sv/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-08.zip](https://object.pouta.csc.fi/OPUS-MT-models/chk-sv/opus-2020-01-08.zip) * test set translations: [opus-2020-01-08.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/chk-sv/opus-2020-01-08.test.txt) * test set scores: [opus-2020-01-08.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/chk-sv/opus-2020-01-08.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.chk.sv | 23.6 | 0.406 |
Helsinki-NLP/opus-mt-efi-de
cedf2694630c1ee2ea1d75dffead02c4dc49ef80
2021-09-09T21:33:29.000Z
[ "pytorch", "marian", "text2text-generation", "efi", "de", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-efi-de
15
null
transformers
9,446
--- tags: - translation license: apache-2.0 --- ### opus-mt-efi-de * source languages: efi * target languages: de * OPUS readme: [efi-de](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/efi-de/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-20.zip](https://object.pouta.csc.fi/OPUS-MT-models/efi-de/opus-2020-01-20.zip) * test set translations: [opus-2020-01-20.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/efi-de/opus-2020-01-20.test.txt) * test set scores: [opus-2020-01-20.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/efi-de/opus-2020-01-20.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.efi.de | 21.0 | 0.401 |
Helsinki-NLP/opus-mt-en-bi
b3e9ed52697fffab06a733a23c37d843a3464976
2021-09-09T21:34:19.000Z
[ "pytorch", "marian", "text2text-generation", "en", "bi", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-en-bi
15
null
transformers
9,447
--- tags: - translation license: apache-2.0 --- ### opus-mt-en-bi * source languages: en * target languages: bi * OPUS readme: [en-bi](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/en-bi/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-20.zip](https://object.pouta.csc.fi/OPUS-MT-models/en-bi/opus-2020-01-20.zip) * test set translations: [opus-2020-01-20.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-bi/opus-2020-01-20.test.txt) * test set scores: [opus-2020-01-20.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-bi/opus-2020-01-20.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.en.bi | 36.4 | 0.543 |
Helsinki-NLP/opus-mt-en-eo
20a8920034dfbb6b2e5909f5065a32d6b1b5990b
2021-09-09T21:35:10.000Z
[ "pytorch", "marian", "text2text-generation", "en", "eo", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-en-eo
15
null
transformers
9,448
--- tags: - translation license: apache-2.0 --- ### opus-mt-en-eo * source languages: en * target languages: eo * OPUS readme: [en-eo](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/en-eo/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2019-12-18.zip](https://object.pouta.csc.fi/OPUS-MT-models/en-eo/opus-2019-12-18.zip) * test set translations: [opus-2019-12-18.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-eo/opus-2019-12-18.test.txt) * test set scores: [opus-2019-12-18.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-eo/opus-2019-12-18.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba.en.eo | 49.5 | 0.682 |
Helsinki-NLP/opus-mt-en-mkh
6115f953f19da66145fa3f8f54e02516e0272bec
2021-01-18T08:12:39.000Z
[ "pytorch", "marian", "text2text-generation", "en", "vi", "km", "mkh", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-en-mkh
15
null
transformers
9,449
--- language: - en - vi - km - mkh tags: - translation license: apache-2.0 --- ### eng-mkh * source group: English * target group: Mon-Khmer languages * OPUS readme: [eng-mkh](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/eng-mkh/README.md) * model: transformer * source language(s): eng * target language(s): kha khm khm_Latn mnw vie vie_Hani * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * a sentence initial language token is required in the form of `>>id<<` (id = valid target language ID) * download original weights: [opus-2020-07-27.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-mkh/opus-2020-07-27.zip) * test set translations: [opus-2020-07-27.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-mkh/opus-2020-07-27.test.txt) * test set scores: [opus-2020-07-27.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-mkh/opus-2020-07-27.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.eng-kha.eng.kha | 0.1 | 0.015 | | Tatoeba-test.eng-khm.eng.khm | 0.2 | 0.226 | | Tatoeba-test.eng-mnw.eng.mnw | 0.7 | 0.003 | | Tatoeba-test.eng.multi | 16.5 | 0.330 | | Tatoeba-test.eng-vie.eng.vie | 33.7 | 0.513 | ### System Info: - hf_name: eng-mkh - source_languages: eng - target_languages: mkh - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/eng-mkh/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['en', 'vi', 'km', 'mkh'] - src_constituents: {'eng'} - tgt_constituents: {'vie_Hani', 'mnw', 'vie', 'kha', 'khm_Latn', 'khm'} - src_multilingual: False - tgt_multilingual: True - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/eng-mkh/opus-2020-07-27.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/eng-mkh/opus-2020-07-27.test.txt - src_alpha3: eng - tgt_alpha3: mkh - short_pair: en-mkh - chrF2_score: 0.33 - bleu: 16.5 - brevity_penalty: 1.0 - ref_len: 34734.0 - src_name: English - tgt_name: Mon-Khmer languages - train_date: 2020-07-27 - src_alpha2: en - tgt_alpha2: mkh - prefer_old: False - long_pair: eng-mkh - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-en-tiv
7365b6468e5560ea672006d5b06076b9353f7f08
2021-09-09T21:39:45.000Z
[ "pytorch", "marian", "text2text-generation", "en", "tiv", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-en-tiv
15
null
transformers
9,450
--- tags: - translation license: apache-2.0 --- ### opus-mt-en-tiv * source languages: en * target languages: tiv * OPUS readme: [en-tiv](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/en-tiv/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-08.zip](https://object.pouta.csc.fi/OPUS-MT-models/en-tiv/opus-2020-01-08.zip) * test set translations: [opus-2020-01-08.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-tiv/opus-2020-01-08.test.txt) * test set scores: [opus-2020-01-08.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-tiv/opus-2020-01-08.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.en.tiv | 31.6 | 0.497 |
Helsinki-NLP/opus-mt-es-is
c5c5198f9f6adf74222b27f27395f18683cca091
2021-01-18T08:25:44.000Z
[ "pytorch", "marian", "text2text-generation", "es", "is", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-es-is
15
null
transformers
9,451
--- language: - es - is tags: - translation license: apache-2.0 --- ### spa-isl * source group: Spanish * target group: Icelandic * OPUS readme: [spa-isl](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/spa-isl/README.md) * model: transformer-align * source language(s): spa * target language(s): isl * model: transformer-align * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-06-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/spa-isl/opus-2020-06-17.zip) * test set translations: [opus-2020-06-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/spa-isl/opus-2020-06-17.test.txt) * test set scores: [opus-2020-06-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/spa-isl/opus-2020-06-17.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.spa.isl | 27.1 | 0.528 | ### System Info: - hf_name: spa-isl - source_languages: spa - target_languages: isl - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/spa-isl/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['es', 'is'] - src_constituents: {'spa'} - tgt_constituents: {'isl'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/spa-isl/opus-2020-06-17.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/spa-isl/opus-2020-06-17.test.txt - src_alpha3: spa - tgt_alpha3: isl - short_pair: es-is - chrF2_score: 0.528 - bleu: 27.1 - brevity_penalty: 1.0 - ref_len: 1220.0 - src_name: Spanish - tgt_name: Icelandic - train_date: 2020-06-17 - src_alpha2: es - tgt_alpha2: is - prefer_old: False - long_pair: spa-isl - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-es-mfs
951cb2605294fb1fcea04c6f1db797405ea64a4d
2021-09-09T21:43:38.000Z
[ "pytorch", "marian", "text2text-generation", "es", "mfs", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-es-mfs
15
null
transformers
9,452
--- tags: - translation license: apache-2.0 --- ### opus-mt-es-mfs * source languages: es * target languages: mfs * OPUS readme: [es-mfs](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/es-mfs/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/es-mfs/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/es-mfs/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/es-mfs/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.es.mfs | 88.6 | 0.907 |
Helsinki-NLP/opus-mt-es-mt
5c5e7195a17a805eb1371b3124c50b58fed0a7d0
2021-09-09T21:43:42.000Z
[ "pytorch", "marian", "text2text-generation", "es", "mt", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-es-mt
15
null
transformers
9,453
--- tags: - translation license: apache-2.0 --- ### opus-mt-es-mt * source languages: es * target languages: mt * OPUS readme: [es-mt](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/es-mt/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/es-mt/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/es-mt/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/es-mt/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.es.mt | 28.1 | 0.460 |
Helsinki-NLP/opus-mt-es-pon
959fa9d70c13cf7125e75cb5259b840f49ac7153
2021-09-09T21:44:16.000Z
[ "pytorch", "marian", "text2text-generation", "es", "pon", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-es-pon
15
null
transformers
9,454
--- tags: - translation license: apache-2.0 --- ### opus-mt-es-pon * source languages: es * target languages: pon * OPUS readme: [es-pon](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/es-pon/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/es-pon/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/es-pon/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/es-pon/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.es.pon | 21.6 | 0.448 |
Helsinki-NLP/opus-mt-es-prl
b827848e11171694a0673824ceb956120f711790
2021-09-09T21:44:20.000Z
[ "pytorch", "marian", "text2text-generation", "es", "prl", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-es-prl
15
null
transformers
9,455
--- tags: - translation license: apache-2.0 --- ### opus-mt-es-prl * source languages: es * target languages: prl * OPUS readme: [es-prl](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/es-prl/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/es-prl/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/es-prl/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/es-prl/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.es.prl | 92.2 | 0.950 |
Helsinki-NLP/opus-mt-es-rw
ed856c7464b8bf9da5b6c630d3c2fdc44805b33b
2021-09-09T21:44:31.000Z
[ "pytorch", "marian", "text2text-generation", "es", "rw", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-es-rw
15
null
transformers
9,456
--- tags: - translation license: apache-2.0 --- ### opus-mt-es-rw * source languages: es * target languages: rw * OPUS readme: [es-rw](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/es-rw/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/es-rw/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/es-rw/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/es-rw/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.es.rw | 22.6 | 0.472 |
Helsinki-NLP/opus-mt-es-tl
eb444bac2f8ed359035320beb28d65f0a77d4886
2021-01-18T08:28:51.000Z
[ "pytorch", "marian", "text2text-generation", "es", "tl", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-es-tl
15
null
transformers
9,457
--- language: - es - tl tags: - translation license: apache-2.0 --- ### spa-tgl * source group: Spanish * target group: Tagalog * OPUS readme: [spa-tgl](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/spa-tgl/README.md) * model: transformer-align * source language(s): spa * target language(s): tgl_Latn * model: transformer-align * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-06-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/spa-tgl/opus-2020-06-17.zip) * test set translations: [opus-2020-06-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/spa-tgl/opus-2020-06-17.test.txt) * test set scores: [opus-2020-06-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/spa-tgl/opus-2020-06-17.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.spa.tgl | 24.7 | 0.538 | ### System Info: - hf_name: spa-tgl - source_languages: spa - target_languages: tgl - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/spa-tgl/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['es', 'tl'] - src_constituents: {'spa'} - tgt_constituents: {'tgl_Latn'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/spa-tgl/opus-2020-06-17.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/spa-tgl/opus-2020-06-17.test.txt - src_alpha3: spa - tgt_alpha3: tgl - short_pair: es-tl - chrF2_score: 0.5379999999999999 - bleu: 24.7 - brevity_penalty: 1.0 - ref_len: 4422.0 - src_name: Spanish - tgt_name: Tagalog - train_date: 2020-06-17 - src_alpha2: es - tgt_alpha2: tl - prefer_old: False - long_pair: spa-tgl - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-es-tvl
dc0caf7004cf3005068fd8e1a3069a74bd32d904
2021-09-09T21:45:15.000Z
[ "pytorch", "marian", "text2text-generation", "es", "tvl", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-es-tvl
15
null
transformers
9,458
--- tags: - translation license: apache-2.0 --- ### opus-mt-es-tvl * source languages: es * target languages: tvl * OPUS readme: [es-tvl](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/es-tvl/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/es-tvl/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/es-tvl/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/es-tvl/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.es.tvl | 28.3 | 0.464 |
Helsinki-NLP/opus-mt-fi-nl
c73058f4a1d704b0cd150b8bb2daaf3bcec7cc62
2021-09-09T21:49:54.000Z
[ "pytorch", "marian", "text2text-generation", "fi", "nl", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-fi-nl
15
null
transformers
9,459
--- tags: - translation license: apache-2.0 --- ### opus-mt-fi-nl * source languages: fi * target languages: nl * OPUS readme: [fi-nl](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/fi-nl/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-02-26.zip](https://object.pouta.csc.fi/OPUS-MT-models/fi-nl/opus-2020-02-26.zip) * test set translations: [opus-2020-02-26.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/fi-nl/opus-2020-02-26.test.txt) * test set scores: [opus-2020-02-26.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/fi-nl/opus-2020-02-26.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.fi.nl | 30.5 | 0.557 |
Helsinki-NLP/opus-mt-fi-pon
a77e72b770a53dcfc98a7080aa71d49ae5f5291b
2021-09-09T21:50:17.000Z
[ "pytorch", "marian", "text2text-generation", "fi", "pon", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-fi-pon
15
null
transformers
9,460
--- tags: - translation license: apache-2.0 --- ### opus-mt-fi-pon * source languages: fi * target languages: pon * OPUS readme: [fi-pon](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/fi-pon/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-08.zip](https://object.pouta.csc.fi/OPUS-MT-models/fi-pon/opus-2020-01-08.zip) * test set translations: [opus-2020-01-08.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/fi-pon/opus-2020-01-08.test.txt) * test set scores: [opus-2020-01-08.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/fi-pon/opus-2020-01-08.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.fi.pon | 23.7 | 0.475 |
Helsinki-NLP/opus-mt-fi-tw
233d33e2877c2a05e745c0d16fb1eaa39e0b0b19
2021-09-09T21:51:52.000Z
[ "pytorch", "marian", "text2text-generation", "fi", "tw", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-fi-tw
15
null
transformers
9,461
--- tags: - translation license: apache-2.0 --- ### opus-mt-fi-tw * source languages: fi * target languages: tw * OPUS readme: [fi-tw](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/fi-tw/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-24.zip](https://object.pouta.csc.fi/OPUS-MT-models/fi-tw/opus-2020-01-24.zip) * test set translations: [opus-2020-01-24.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/fi-tw/opus-2020-01-24.test.txt) * test set scores: [opus-2020-01-24.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/fi-tw/opus-2020-01-24.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.fi.tw | 29.2 | 0.504 |
Helsinki-NLP/opus-mt-fr-hu
9c28a82b5b2c2ad7ceb7082d4996a39d4ea18839
2021-09-09T21:54:27.000Z
[ "pytorch", "marian", "text2text-generation", "fr", "hu", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-fr-hu
15
null
transformers
9,462
--- tags: - translation license: apache-2.0 --- ### opus-mt-fr-hu * source languages: fr * target languages: hu * OPUS readme: [fr-hu](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/fr-hu/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-26.zip](https://object.pouta.csc.fi/OPUS-MT-models/fr-hu/opus-2020-01-26.zip) * test set translations: [opus-2020-01-26.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/fr-hu/opus-2020-01-26.test.txt) * test set scores: [opus-2020-01-26.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/fr-hu/opus-2020-01-26.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba.fr.hu | 41.3 | 0.629 |
Helsinki-NLP/opus-mt-gaa-de
9841f10ed27c405ea99e3fc17d9b04ea901cc16d
2021-09-09T21:58:37.000Z
[ "pytorch", "marian", "text2text-generation", "gaa", "de", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-gaa-de
15
null
transformers
9,463
--- tags: - translation license: apache-2.0 --- ### opus-mt-gaa-de * source languages: gaa * target languages: de * OPUS readme: [gaa-de](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/gaa-de/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-20.zip](https://object.pouta.csc.fi/OPUS-MT-models/gaa-de/opus-2020-01-20.zip) * test set translations: [opus-2020-01-20.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/gaa-de/opus-2020-01-20.test.txt) * test set scores: [opus-2020-01-20.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/gaa-de/opus-2020-01-20.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.gaa.de | 23.3 | 0.438 |
Helsinki-NLP/opus-mt-gaa-fi
26934ba91ba7db634fbcc603d78e94ddc3d302f1
2021-09-09T21:58:50.000Z
[ "pytorch", "marian", "text2text-generation", "gaa", "fi", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-gaa-fi
15
null
transformers
9,464
--- tags: - translation license: apache-2.0 --- ### opus-mt-gaa-fi * source languages: gaa * target languages: fi * OPUS readme: [gaa-fi](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/gaa-fi/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/gaa-fi/opus-2020-01-09.zip) * test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/gaa-fi/opus-2020-01-09.test.txt) * test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/gaa-fi/opus-2020-01-09.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.gaa.fi | 26.4 | 0.498 |
Helsinki-NLP/opus-mt-he-fi
4b31cd72be66646814d83bc37650d6c44f959a86
2021-09-09T22:00:25.000Z
[ "pytorch", "marian", "text2text-generation", "he", "fi", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-he-fi
15
null
transformers
9,465
--- tags: - translation license: apache-2.0 --- ### opus-mt-he-fi * source languages: he * target languages: fi * OPUS readme: [he-fi](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/he-fi/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/he-fi/opus-2020-01-09.zip) * test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/he-fi/opus-2020-01-09.test.txt) * test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/he-fi/opus-2020-01-09.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.he.fi | 23.3 | 0.492 |
Helsinki-NLP/opus-mt-hr-es
f4ca116c634fa05e5bbe7bad0a65f6740a3b7d1c
2021-09-09T22:10:14.000Z
[ "pytorch", "marian", "text2text-generation", "hr", "es", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-hr-es
15
null
transformers
9,466
--- tags: - translation license: apache-2.0 --- ### opus-mt-hr-es * source languages: hr * target languages: es * OPUS readme: [hr-es](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/hr-es/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/hr-es/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/hr-es/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/hr-es/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.hr.es | 27.9 | 0.498 |
Helsinki-NLP/opus-mt-id-fi
b14365126d6c908803119e0596368048b54e1cd0
2021-09-09T22:11:18.000Z
[ "pytorch", "marian", "text2text-generation", "id", "fi", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-id-fi
15
null
transformers
9,467
--- tags: - translation license: apache-2.0 --- ### opus-mt-id-fi * source languages: id * target languages: fi * OPUS readme: [id-fi](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/id-fi/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/id-fi/opus-2020-01-09.zip) * test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/id-fi/opus-2020-01-09.test.txt) * test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/id-fi/opus-2020-01-09.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.id.fi | 27.4 | 0.522 |
Helsinki-NLP/opus-mt-iso-en
9f2814bcff0ed0eac0900523d9ea7af8a9c291a7
2021-09-09T22:12:24.000Z
[ "pytorch", "marian", "text2text-generation", "iso", "en", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-iso-en
15
null
transformers
9,468
--- tags: - translation license: apache-2.0 --- ### opus-mt-iso-en * source languages: iso * target languages: en * OPUS readme: [iso-en](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/iso-en/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/iso-en/opus-2020-01-09.zip) * test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/iso-en/opus-2020-01-09.test.txt) * test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/iso-en/opus-2020-01-09.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.iso.en | 35.5 | 0.506 |
Helsinki-NLP/opus-mt-lua-fi
090f03999b05affad136c4419b14dd638cadf39d
2021-09-10T13:56:11.000Z
[ "pytorch", "marian", "text2text-generation", "lua", "fi", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-lua-fi
15
null
transformers
9,469
--- tags: - translation license: apache-2.0 --- ### opus-mt-lua-fi * source languages: lua * target languages: fi * OPUS readme: [lua-fi](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/lua-fi/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/lua-fi/opus-2020-01-09.zip) * test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/lua-fi/opus-2020-01-09.test.txt) * test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/lua-fi/opus-2020-01-09.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.lua.fi | 23.5 | 0.450 |
Helsinki-NLP/opus-mt-sal-en
0d8861d4c529b7055c3127a4d832a5b4c13c8131
2020-08-21T14:42:49.000Z
[ "pytorch", "marian", "text2text-generation", "sal", "en", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-sal-en
15
null
transformers
9,470
--- language: - sal - en tags: - translation license: apache-2.0 --- ### sal-eng * source group: Salishan languages * target group: English * OPUS readme: [sal-eng](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/sal-eng/README.md) * model: transformer * source language(s): shs_Latn * target language(s): eng * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-07-14.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/sal-eng/opus-2020-07-14.zip) * test set translations: [opus-2020-07-14.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/sal-eng/opus-2020-07-14.test.txt) * test set scores: [opus-2020-07-14.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/sal-eng/opus-2020-07-14.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.multi.eng | 38.7 | 0.572 | | Tatoeba-test.shs.eng | 2.2 | 0.097 | | Tatoeba-test.shs-eng.shs.eng | 2.2 | 0.097 | ### System Info: - hf_name: sal-eng - source_languages: sal - target_languages: eng - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/sal-eng/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['sal', 'en'] - src_constituents: {'shs_Latn'} - tgt_constituents: {'eng'} - src_multilingual: True - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/sal-eng/opus-2020-07-14.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/sal-eng/opus-2020-07-14.test.txt - src_alpha3: sal - tgt_alpha3: eng - short_pair: sal-en - chrF2_score: 0.09699999999999999 - bleu: 2.2 - brevity_penalty: 0.8190000000000001 - ref_len: 222.0 - src_name: Salishan languages - tgt_name: English - train_date: 2020-07-14 - src_alpha2: sal - tgt_alpha2: en - prefer_old: False - long_pair: sal-eng - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-sl-es
b954a6f496ba57beeddcefaca4585c1dd13d5d80
2021-09-10T14:03:39.000Z
[ "pytorch", "marian", "text2text-generation", "sl", "es", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-sl-es
15
null
transformers
9,471
--- tags: - translation license: apache-2.0 --- ### opus-mt-sl-es * source languages: sl * target languages: es * OPUS readme: [sl-es](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/sl-es/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-21.zip](https://object.pouta.csc.fi/OPUS-MT-models/sl-es/opus-2020-01-21.zip) * test set translations: [opus-2020-01-21.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/sl-es/opus-2020-01-21.test.txt) * test set scores: [opus-2020-01-21.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/sl-es/opus-2020-01-21.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.sl.es | 26.3 | 0.483 |
Helsinki-NLP/opus-mt-zh-uk
0b56f660a08577efe742068f467cc97d8c138bb0
2020-08-21T14:42:52.000Z
[ "pytorch", "marian", "text2text-generation", "zh", "uk", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-zh-uk
15
null
transformers
9,472
--- language: - zh - uk tags: - translation license: apache-2.0 --- ### zho-ukr * source group: Chinese * target group: Ukrainian * OPUS readme: [zho-ukr](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/zho-ukr/README.md) * model: transformer-align * source language(s): cmn cmn_Bopo cmn_Hang cmn_Hani cmn_Kana cmn_Latn cmn_Yiii yue_Bopo yue_Hang yue_Hani yue_Hira yue_Kana * target language(s): ukr * model: transformer-align * pre-processing: normalization + SentencePiece (spm32k,spm4k) * download original weights: [opus-2020-06-16.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/zho-ukr/opus-2020-06-16.zip) * test set translations: [opus-2020-06-16.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zho-ukr/opus-2020-06-16.test.txt) * test set scores: [opus-2020-06-16.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zho-ukr/opus-2020-06-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.zho.ukr | 10.4 | 0.259 | ### System Info: - hf_name: zho-ukr - source_languages: zho - target_languages: ukr - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/zho-ukr/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['zh', 'uk'] - src_constituents: {'cmn_Hans', 'nan', 'nan_Hani', 'gan', 'yue', 'cmn_Kana', 'yue_Hani', 'wuu_Bopo', 'cmn_Latn', 'yue_Hira', 'cmn_Hani', 'cjy_Hans', 'cmn', 'lzh_Hang', 'lzh_Hira', 'cmn_Hant', 'lzh_Bopo', 'zho', 'zho_Hans', 'zho_Hant', 'lzh_Hani', 'yue_Hang', 'wuu', 'yue_Kana', 'wuu_Latn', 'yue_Bopo', 'cjy_Hant', 'yue_Hans', 'lzh', 'cmn_Hira', 'lzh_Yiii', 'lzh_Hans', 'cmn_Bopo', 'cmn_Hang', 'hak_Hani', 'cmn_Yiii', 'yue_Hant', 'lzh_Kana', 'wuu_Hani'} - tgt_constituents: {'ukr'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm4k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/zho-ukr/opus-2020-06-16.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/zho-ukr/opus-2020-06-16.test.txt - src_alpha3: zho - tgt_alpha3: ukr - short_pair: zh-uk - chrF2_score: 0.259 - bleu: 10.4 - brevity_penalty: 0.9059999999999999 - ref_len: 9193.0 - src_name: Chinese - tgt_name: Ukrainian - train_date: 2020-06-16 - src_alpha2: zh - tgt_alpha2: uk - prefer_old: False - long_pair: zho-ukr - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Intel/bert-base-uncased-mnli-sparse-70-unstructured
f43011e5ac09d8ab1aae35dd16d343b958e74dac
2021-05-24T17:47:03.000Z
[ "pytorch", "bert", "text-classification", "en", "transformers" ]
text-classification
false
Intel
null
Intel/bert-base-uncased-mnli-sparse-70-unstructured
15
null
transformers
9,473
--- language: en --- # Sparse BERT base model fine tuned to MNLI (uncased) Fine tuned sparse BERT base to MNLI (GLUE Benchmark) task from [bert-base-uncased-sparse-70-unstructured](https://huggingface.co/Intel/bert-base-uncased-sparse-70-unstructured). <br><br> Note: This model requires `transformers==2.10.0` ## Evaluation Results Matched: 82.5% Mismatched: 83.3% This model can be further fine-tuned to other tasks and achieve the following evaluation results: | Task | QQP (Acc/F1) | QNLI (Acc) | SST-2 (Acc) | STS-B (Pears/Spear) | SQuADv1.1 (Acc/F1) | |------|--------------|------------|-------------|---------------------|--------------------| | | 90.2/86.7 | 90.3 | 91.5 | 88.9/88.6 | 80.5/88.2 |
Irina/trans_cyoa_GPT3Medium
286d7f6c9495a8d3a9a78b4d05e08a04ac4fc59f
2021-11-14T16:58:45.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
Irina
null
Irina/trans_cyoa_GPT3Medium
15
null
transformers
9,474
Entry not found
Itcast/bert-base-cnc
775a1b4495ea1f36cc6abe9b0f5d819fc445aa22
2021-05-18T21:09:34.000Z
[ "pytorch", "jax", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Itcast
null
Itcast/bert-base-cnc
15
null
transformers
9,475
Entry not found
JAlexis/PruebaBert
e4700db931182e3f15c035445754705fcf878437
2022-02-25T13:58:51.000Z
[ "pytorch", "bert", "question-answering", "en", "dataset:squad2", "dataset:cord19", "transformers", "autotrain_compatible" ]
question-answering
false
JAlexis
null
JAlexis/PruebaBert
15
null
transformers
9,476
--- language: en tags: - pytorch - question-answering datasets: - squad2 - cord19 metrics: - f1 widget: - text: "How can I protect myself against covid-19?" context: "Preventative measures consist of recommendations to wear a mask in public, maintain social distancing of at least six feet, wash hands regularly, and use hand sanitizer. To facilitate this aim, we adapt the conceptual model and measures of Liao et al. [6] to the current context of the COVID-19 pandemic and the culture of the USA. Applying this model in a different time and context provides an opportunity to make comparisons of reactions to information sources across a decade of evolving attitudes toward media and government, between two cultures (Hong Kong vs. the USA), and between two considerably different global pandemics (H1N1 vs. COVID-19)." - text: "How can I protect myself against covid-19?" context: " " --- ## Model description This model was obtained by fine-tuning deepset/bert-base-cased-squad2 on Cord19 Dataset. ## How to use ```python from transformers.pipelines import pipeline model_name = "JAlexis/PruebaBert" nlp = pipeline('question-answering', model=model_name, tokenizer=model_name) inputs = { 'question': 'How can I protect myself against covid-19?', 'context': 'Preventative measures consist of recommendations to wear a mask in public, maintain social distancing of at least six feet, wash hands regularly, and use hand sanitizer. To facilitate this aim, we adapt the conceptual model and measures of Liao et al. [6] to the current context of the COVID-19 pandemic and the culture of the USA. Applying this model in a different time and context provides an opportunity to make comparisons of reactions to information sources across a decade of evolving attitudes toward media and government, between two cultures (Hong Kong vs. the USA), and between two considerably different global pandemics (H1N1 vs. COVID-19). ', 'question': 'How can I protect myself against covid-19?', 'context': ' ', } nlp(inputs) ``` ## Overview ``` Language model: deepset/bert-base-cased-squad2 Language: English Downstream-task: Q&A Datasets: CORD-19 from 31rd January 2022 Code: Haystack and FARM Infrastructure: Tesla T4 ``` ## Hyperparameters ``` batch_size = 8 n_epochs = 9 max_seq_len = max_length learning_rate = AdamW: 1e-5 ```
JonatanGk/roberta-base-ca-finetuned-cyberbullying-catalan
7ad8e3da1280e25299b4f8137afb35a3a4b9e7cd
2021-10-10T09:50:17.000Z
[ "pytorch", "roberta", "text-classification", "ca", "transformers", "catalan" ]
text-classification
false
JonatanGk
null
JonatanGk/roberta-base-ca-finetuned-cyberbullying-catalan
15
1
transformers
9,477
--- language: ca tags: - "catalan" metrics: - accuracy widget: - text: "Ets més petita que un barrufet!!" - text: "Ets tan lletja que et donaven de menjar per sota la porta." --- # roberta-base-ca-finetuned-cyberbullying-catalan This model is a fine-tuned version of [BSC-TeMU/roberta-base-ca](https://huggingface.co/BSC-TeMU/roberta-base-ca) on the dataset generated scrapping all social networks (Twitter, Youtube ...) to detect cyberbullying on Catalan. It achieves the following results on the evaluation set: - Loss: 0.1508 - Accuracy: 0.9665 ## Training and evaluation data I use the concatenation from multiple datasets generated scrapping social networks (Twitter,Youtube,Discord...) to fine-tune this model. The total number of sentence pairs is above 410k sentences. Trained similar method at [roberta-base-bne-finetuned-cyberbullying-spanish](https://huggingface.co/JonatanGk/roberta-base-bne-finetuned-cyberbullying-spanish) ## Training procedure <details> ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 </details> ### Model in action 🚀 Fast usage with **pipelines**: ```python from transformers import pipeline model_path = "JonatanGk/roberta-base-ca-finetuned-ciberbullying-catalan" bullying_analysis = pipeline("text-classification", model=model_path, tokenizer=model_path) bullying_analysis( "Des que et vaig veure m'en vaig enamorar de tu." ) # Output: [{'label': 'Not_bullying', 'score': 0.9996786117553711}] bullying_analysis( "Ets tan lletja que et donaven de menjar per sota la porta." ) # Output: [{'label': 'Bullying', 'score': 0.9927878975868225}] ``` [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/JonatanGk/Shared-Colab/blob/master/Cyberbullying_detection_(CATALAN).ipynb) ### Framework versions - Transformers 4.10.3 - Pytorch 1.9.0+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3 ## Citation ```bibtex @inproceedings{armengol-estape-etal-2021-multilingual, title = "Are Multilingual Models the Best Choice for Moderately Under-resourced Languages? {A} Comprehensive Assessment for {C}atalan", author = "Armengol-Estap{\'e}, Jordi and Carrino, Casimiro Pio and Rodriguez-Penagos, Carlos and de Gibert Bonet, Ona and Armentano-Oller, Carme and Gonzalez-Agirre, Aitor and Melero, Maite and Villegas, Marta", booktitle = "Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021", month = aug, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.findings-acl.437", doi = "10.18653/v1/2021.findings-acl.437", pages = "4933--4946", } ``` > Special thx to [Manuel Romero/@mrm8488](https://huggingface.co/mrm8488) as my mentor & R.C. > Created by [Jonatan Luna](https://JonatanGk.github.io) | [LinkedIn](https://www.linkedin.com/in/JonatanGk/)
Lysa/subheading_generator_nl
63b2ded0e36c0c1c0bce8f92012d97c47bafbb66
2021-06-11T21:15:39.000Z
[ "pytorch", "mbart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Lysa
null
Lysa/subheading_generator_nl
15
null
transformers
9,478
Entry not found
MoritzLaurer/xtremedistil-l6-h256-mnli-fever-anli-ling-binary
9fa230d1a8490cce78522f02ea154ad67f49ef70
2022-02-08T21:37:01.000Z
[ "pytorch", "bert", "text-classification", "en", "dataset:multi_nli", "dataset:anli", "dataset:fever", "dataset:lingnli", "arxiv:2104.07179", "transformers", "zero-shot-classification" ]
zero-shot-classification
false
MoritzLaurer
null
MoritzLaurer/xtremedistil-l6-h256-mnli-fever-anli-ling-binary
15
null
transformers
9,479
--- language: - en tags: - text-classification - zero-shot-classification metrics: - accuracy datasets: - multi_nli - anli - fever - lingnli pipeline_tag: zero-shot-classification --- # xtremedistil-l6-h256-mnli-fever-anli-ling-binary ## Model description This model was trained on 782 357 hypothesis-premise pairs from 4 NLI datasets: [MultiNLI](https://huggingface.co/datasets/multi_nli), [Fever-NLI](https://github.com/easonnie/combine-FEVER-NSMN/blob/master/other_resources/nli_fever.md), [LingNLI](https://arxiv.org/abs/2104.07179) and [ANLI](https://github.com/facebookresearch/anli). Note that the model was trained on binary NLI to predict either "entailment" or "not-entailment". This is specifically designed for zero-shot classification, where the difference between "neutral" and "contradiction" is irrelevant. The base model is [xtremedistil-l6-h256-uncased from Microsoft](https://huggingface.co/microsoft/xtremedistil-l6-h256-uncased). ## Intended uses & limitations #### How to use the model ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch model_name = "MoritzLaurer/xtremedistil-l6-h256-mnli-fever-anli-ling-binary" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name) premise = "I first thought that I liked the movie, but upon second thought it was actually disappointing." hypothesis = "The movie was good." input = tokenizer(premise, hypothesis, truncation=True, return_tensors="pt") output = model(input["input_ids"].to(device)) # device = "cuda:0" or "cpu" prediction = torch.softmax(output["logits"][0], -1).tolist() label_names = ["entailment", "not_entailment"] prediction = {name: round(float(pred) * 100, 1) for pred, name in zip(prediction, label_names)} print(prediction) ``` ### Training data This model was trained on 782 357 hypothesis-premise pairs from 4 NLI datasets: [MultiNLI](https://huggingface.co/datasets/multi_nli), [Fever-NLI](https://github.com/easonnie/combine-FEVER-NSMN/blob/master/other_resources/nli_fever.md), [LingNLI](https://arxiv.org/abs/2104.07179) and [ANLI](https://github.com/facebookresearch/anli). ### Training procedure xtremedistil-l6-h256-mnli-fever-anli-ling-binary was trained using the Hugging Face trainer with the following hyperparameters. ``` training_args = TrainingArguments( num_train_epochs=5, # total number of training epochs learning_rate=2e-05, per_device_train_batch_size=32, # batch size per device during training per_device_eval_batch_size=32, # batch size for evaluation warmup_ratio=0.1, # number of warmup steps for learning rate scheduler weight_decay=0.06, # strength of weight decay fp16=True # mixed precision training ) ``` ### Eval results The model was evaluated using the binary test sets for MultiNLI, ANLI, LingNLI and the binary dev set for Fever-NLI (two classes instead of three). The metric used is accuracy. dataset | mnli-m-2c | mnli-mm-2c | fever-nli-2c | anli-all-2c | anli-r3-2c | lingnli-2c --------|---------|----------|---------|----------|----------|------ accuracy | 0.897 | 0.898 | 0.861 | 0.607 | 0.62 | 0.827 speed (text/sec, GPU Tesla P100, 128 batch) | 1490 | 1485 | 760 | 1186 | 1062 | 1791 ## Limitations and bias Please consult the original paper and literature on different NLI datasets for potential biases. ### BibTeX entry and citation info If you want to cite this model, please cite the original paper, the respective NLI datasets and include a link to this model on the Hugging Face hub. ### Ideas for cooperation or questions? If you have questions or ideas for cooperation, contact me at m{dot}laurer{at}vu{dot}nl or [LinkedIn](https://www.linkedin.com/in/moritz-laurer/) ### Debugging and issues Note that the model was released recently and older versions of HF Transformers seem to have issues running the model (e.g. resulting in an issue with the tokenizer). Using Transformers==4.13 might solve some issues.
NDugar/1epochv3
0d1323e84ae4a91f657975f83785f9afc66f2aa0
2021-11-30T20:05:36.000Z
[ "pytorch", "deberta-v2", "text-classification", "en", "arxiv:2006.03654", "transformers", "deberta-v3", "deberta-v2`", "deberta-mnli", "license:mit", "zero-shot-classification" ]
zero-shot-classification
false
NDugar
null
NDugar/1epochv3
15
null
transformers
9,480
--- language: en tags: - deberta-v3 - deberta-v2` - deberta-mnli tasks: mnli thumbnail: https://huggingface.co/front/thumbnails/microsoft.png license: mit pipeline_tag: zero-shot-classification --- ## DeBERTa: Decoding-enhanced BERT with Disentangled Attention [DeBERTa](https://arxiv.org/abs/2006.03654) improves the BERT and RoBERTa models using disentangled attention and enhanced mask decoder. It outperforms BERT and RoBERTa on majority of NLU tasks with 80GB training data. Please check the [official repository](https://github.com/microsoft/DeBERTa) for more details and updates. This is the DeBERTa V2 xxlarge model with 48 layers, 1536 hidden size. The total parameters are 1.5B and it is trained with 160GB raw data. ### Fine-tuning on NLU tasks We present the dev results on SQuAD 1.1/2.0 and several GLUE benchmark tasks. | Model | SQuAD 1.1 | SQuAD 2.0 | MNLI-m/mm | SST-2 | QNLI | CoLA | RTE | MRPC | QQP |STS-B | |---------------------------|-----------|-----------|-------------|-------|------|------|--------|-------|-------|------| | | F1/EM | F1/EM | Acc | Acc | Acc | MCC | Acc |Acc/F1 |Acc/F1 |P/S | | BERT-Large | 90.9/84.1 | 81.8/79.0 | 86.6/- | 93.2 | 92.3 | 60.6 | 70.4 | 88.0/- | 91.3/- |90.0/- | | RoBERTa-Large | 94.6/88.9 | 89.4/86.5 | 90.2/- | 96.4 | 93.9 | 68.0 | 86.6 | 90.9/- | 92.2/- |92.4/- | | XLNet-Large | 95.1/89.7 | 90.6/87.9 | 90.8/- | 97.0 | 94.9 | 69.0 | 85.9 | 90.8/- | 92.3/- |92.5/- | | [DeBERTa-Large](https://huggingface.co/microsoft/deberta-large)<sup>1</sup> | 95.5/90.1 | 90.7/88.0 | 91.3/91.1| 96.5|95.3| 69.5| 91.0| 92.6/94.6| 92.3/- |92.8/92.5 | | [DeBERTa-XLarge](https://huggingface.co/microsoft/deberta-xlarge)<sup>1</sup> | -/- | -/- | 91.5/91.2| 97.0 | - | - | 93.1 | 92.1/94.3 | - |92.9/92.7| | [DeBERTa-V2-XLarge](https://huggingface.co/microsoft/deberta-v2-xlarge)<sup>1</sup>|95.8/90.8| 91.4/88.9|91.7/91.6| **97.5**| 95.8|71.1|**93.9**|92.0/94.2|92.3/89.8|92.9/92.9| |**[DeBERTa-V2-XXLarge](https://huggingface.co/microsoft/deberta-v2-xxlarge)<sup>1,2</sup>**|**96.1/91.4**|**92.2/89.7**|**91.7/91.9**|97.2|**96.0**|**72.0**| 93.5| **93.1/94.9**|**92.7/90.3** |**93.2/93.1** | -------- #### Notes. - <sup>1</sup> Following RoBERTa, for RTE, MRPC, STS-B, we fine-tune the tasks based on [DeBERTa-Large-MNLI](https://huggingface.co/microsoft/deberta-large-mnli), [DeBERTa-XLarge-MNLI](https://huggingface.co/microsoft/deberta-xlarge-mnli), [DeBERTa-V2-XLarge-MNLI](https://huggingface.co/microsoft/deberta-v2-xlarge-mnli), [DeBERTa-V2-XXLarge-MNLI](https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli). The results of SST-2/QQP/QNLI/SQuADv2 will also be slightly improved when start from MNLI fine-tuned models, however, we only report the numbers fine-tuned from pretrained base models for those 4 tasks. - <sup>2</sup> To try the **XXLarge** model with **[HF transformers](https://huggingface.co/transformers/main_classes/trainer.html)**, we recommand using **deepspeed** as it's faster and saves memory. Run with `Deepspeed`, ```bash pip install datasets pip install deepspeed # Download the deepspeed config file wget https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/ds_config.json -O ds_config.json export TASK_NAME=mnli output_dir="ds_results" num_gpus=8 batch_size=8 python -m torch.distributed.launch --nproc_per_node=${num_gpus} \\ run_glue.py \\ --model_name_or_path microsoft/deberta-v2-xxlarge \\ --task_name $TASK_NAME \\ --do_train \\ --do_eval \\ --max_seq_length 256 \\ --per_device_train_batch_size ${batch_size} \\ --learning_rate 3e-6 \\ --num_train_epochs 3 \\ --output_dir $output_dir \\ --overwrite_output_dir \\ --logging_steps 10 \\ --logging_dir $output_dir \\ --deepspeed ds_config.json ``` You can also run with `--sharded_ddp` ```bash cd transformers/examples/text-classification/ export TASK_NAME=mnli python -m torch.distributed.launch --nproc_per_node=8 run_glue.py --model_name_or_path microsoft/deberta-v2-xxlarge \\ --task_name $TASK_NAME --do_train --do_eval --max_seq_length 256 --per_device_train_batch_size 8 \\ --learning_rate 3e-6 --num_train_epochs 3 --output_dir /tmp/$TASK_NAME/ --overwrite_output_dir --sharded_ddp --fp16 ``` ### Citation If you find DeBERTa useful for your work, please cite the following paper: ``` latex @inproceedings{ he2021deberta, title={DEBERTA: DECODING-ENHANCED BERT WITH DISENTANGLED ATTENTION}, author={Pengcheng He and Xiaodong Liu and Jianfeng Gao and Weizhu Chen}, booktitle={International Conference on Learning Representations}, year={2021}, url={https://openreview.net/forum?id=XPZIaotutsD} } ```
NYTK/summarization-nol-bart-hungarian
7efa234c7d823f5fb1a2779cb2c642994717589c
2022-02-14T13:27:53.000Z
[ "pytorch", "bart", "text2text-generation", "hu", "transformers", "summarization", "license:gpl", "autotrain_compatible" ]
summarization
false
NYTK
null
NYTK/summarization-nol-bart-hungarian
15
null
transformers
9,481
--- language: - hu tags: - summarization license: gpl metrics: - rouge widget: - text: "A Tisza-parti város állatkertjében régóta tartanak szurikátákat ( Suricata suricatta ) , de tavaly tavaszig nem sikerült szaporítani őket , annak ellenére , hogy tágas ház és kifutó épült számukra - közölte Veprik Róbert igazgató . 2010-ben alakult ki az új - három Amszterdamból származó nőstényből és egy budapesti fiatal hímből álló - csapat , amely szaporodni kezdett . 2011-ben három , idén pedig egy utóddal örvendeztették meg a gondozókat és az állatbarátokat . A szurikáták utódai - tizenegy hetes vemhesség után - október és március között vakon és szőrtelenül jönnek a világra . A kicsinyek háromhetesen bújnak elő az üregből , és nevelésükben mindkét szülő részt vesz . A szurikátacsapatokban a család tagjai nagyon szoros kapcsolatban állnak egymással , viszont nagyon harciasan fellépnek az idegenekkel szemben , akár meg is ölhetik azt az állatot , amelyet betolakodónak tekintenek . Bár a Dél-Afrikában , a Kalahári sivatagban őshonos cibetmacskaféle ragadozókat a szegedi állatkertben természetes élőhelyükhöz képest kevesebb veszély fenyegeti , a vadasparki erdőben ragadozó madarak is élnek , amelyek akár zsákmányként is tekinthetnének a szurikátákra . A szegedi csapatnál azonban szigorú őrség van , mindig lesi valaki két lábra állva a veszélyforrásokat . Az őrszemek figyelmét még a sárkányrepülők is felkeltik , és felbukkanásakor valamennyi egyed biztos helyre menekül . A szurikáták a Kalahári sivatag bozótos , sziklás területein csapatokban élnek . A 700 gramm körüli testtömegű ragadozók rovarokkal , lárvákkal , skorpiókkal táplálkoznak , de néha elfogyasztják a kisebb gerinceseket , tojásokat és növényi gumókat is . A nappal aktív állatok földalatti üregrendszert ásnak , amelynek több bejárata is van . Ha a szurikáták idegen csapattal vagy ragadozóval kerülnek szembe , azonnal elkezdenek ásni , nagy porfelhőt kavarva . Az is gyakorta előfordul , hogy szorosan egymáshoz bújnak , felborzolják szőrüket , megnyújtják testüket , hogy minél nagyobbnak látszódjanak . Az előadásuk csúcspontján pedig az egész csapat a levegőbe ugrik , közben pedig morog . A hangadás egyébként is fontos a szurikáták kapcsolatában , az egyedek legalább tízféle jelzést használnak a kolónián belül ." --- # Hungarian Abstractive Summarization BART model For further models, scripts and details, see [our repository](https://github.com/nytud/neural-models) or [our demo site](https://juniper.nytud.hu/demo/nlp). - BART base model (see Results Table - bold): - Pretrained on Webcorpus 2.0 - Finetuned NOL corpus (nol.hu) - Segments: 397,343 ## Limitations - tokenized input text (tokenizer: [HuSpaCy](https://huggingface.co/huspacy)) - max_source_length = 512 - max_target_length = 256 ## Results | Model | HI | NOL | | ------------- | ------------- | ------------- | | BART-base-512 | 30.18/13.86/22.92 | **46.48/32.40/39.45** | | BART-base-1024| 31.86/14.59/23.79 | 47.01/32.91/39.97 | ## Citation If you use this model, please cite the following paper: ``` @inproceedings {yang-bart, title = {{BARTerezzünk! - Messze, messze, messze a világtól, - BART kísérleti modellek magyar nyelvre}}, booktitle = {XVIII. Magyar Számítógépes Nyelvészeti Konferencia}, year = {2022}, publisher = {Szegedi Tudományegyetem, Informatikai Intézet}, address = {Szeged, Magyarország}, author = {{Yang Zijian Győző}}, pages = {15--29} } ```
NbAiLab/nb-roberta-base
32d3881e0f3bc87f28330d66833a9e5915e8abce
2021-12-01T07:42:23.000Z
[ "pytorch", "jax", "tensorboard", "roberta", "fill-mask", "no", "transformers", "norwegian", "license:cc-by-4.0", "autotrain_compatible" ]
fill-mask
false
NbAiLab
null
NbAiLab/nb-roberta-base
15
null
transformers
9,482
--- language: no license: cc-by-4.0 tags: - norwegian - roberta pipeline_tag: fill-mask widget: - text: På biblioteket kan du <mask> en bok. - text: Dette er et <mask> eksempel. - text: Av og til kan en språkmodell gi et <mask> resultat. - text: Som ansat får du <mask> for at bidrage til borgernes adgang til dansk kulturarv, til forskning og til samfundets demokratiske udvikling. --- norwegian-roberta-base but with higher learning rate and batch size
OnsElleuch/logisgenerator
097814d1541082ca59bb2fc6af093859597df233
2021-08-11T16:29:29.000Z
[ "pytorch", "t5", "text2text-generation", "en", "dataset:WebNLG", "dataset:Dart", "transformers", "keytotext", "k2t", "Keywords to Sentences", "license:mit", "model-index", "autotrain_compatible" ]
text2text-generation
false
OnsElleuch
null
OnsElleuch/logisgenerator
15
null
transformers
9,483
--- language: "en" thumbnail: "Keywords to Sentences" tags: - keytotext - k2t - Keywords to Sentences license: "MIT" datasets: - WebNLG - Dart metrics: - NLG model-index: - name: logisgenerator --- #keytotext [![pypi Version](https://img.shields.io/pypi/v/keytotext.svg?logo=pypi&logoColor=white)](https://pypi.org/project/keytotext/) [![Downloads](https://static.pepy.tech/personalized-badge/keytotext?period=total&units=none&left_color=grey&right_color=orange&left_text=Pip%20Downloads)](https://pepy.tech/project/keytotext) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/gagan3012/keytotext/blob/master/notebooks/K2T.ipynb) [![Streamlit App](https://static.streamlit.io/badges/streamlit_badge_black_white.svg)](https://share.streamlit.io/gagan3012/keytotext/UI/app.py) [![API Call](https://img.shields.io/badge/-FastAPI-red?logo=fastapi&labelColor=white)](https://github.com/gagan3012/keytotext#api) [![Docker Call](https://img.shields.io/badge/-Docker%20Image-blue?logo=docker&labelColor=white)](https://hub.docker.com/r/gagan30/keytotext) [![HuggingFace](https://img.shields.io/badge/%F0%9F%A4%97-Models%20on%20Hub-yellow)](https://huggingface.co/models?filter=keytotext) [![Documentation Status](https://readthedocs.org/projects/keytotext/badge/?version=latest)](https://keytotext.readthedocs.io/en/latest/?badge=latest) [![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black) ![keytotext](https://socialify.git.ci/gagan3012/keytotext/image?description=1&forks=1&language=1&owner=1&stargazers=1&theme=Light) Idea is to build a model which will take keywords as inputs and generate sentences as outputs. Potential use case can include: - Marketing - Search Engine Optimization - Topic generation etc. - Fine tuning of topic modeling models
Rolv-Arild/xls-r-300m-npsc-4
00a6ac8768ca33d9a1956ebccbe0aabedf3a161a
2022-02-04T16:36:33.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "NbAiLab/NPSC", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
Rolv-Arild
null
Rolv-Arild/xls-r-300m-npsc-4
15
null
transformers
9,484
--- license: apache-2.0 tags: - automatic-speech-recognition - NbAiLab/NPSC - generated_from_trainer model-index: - name: '' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the NBAILAB/NPSC - 16K_MP3 dataset. It achieves the following results on the evaluation set: - Loss: 0.1957 - Wer: 0.1697 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 20.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 4.4527 | 0.28 | 250 | 4.0144 | 1.0 | | 3.1828 | 0.56 | 500 | 3.1369 | 1.0 | | 2.9927 | 0.85 | 750 | 3.0183 | 1.0 | | 2.9591 | 1.13 | 1000 | 2.9991 | 1.0 | | 2.8989 | 1.41 | 1250 | 2.9000 | 1.0000 | | 2.4286 | 1.69 | 1500 | 1.7688 | 0.9550 | | 1.6765 | 1.98 | 1750 | 0.6842 | 0.4855 | | 1.4521 | 2.26 | 2000 | 0.5096 | 0.3736 | | 1.3589 | 2.54 | 2250 | 0.4479 | 0.3335 | | 1.3136 | 2.82 | 2500 | 0.4056 | 0.3123 | | 1.2856 | 3.11 | 2750 | 0.3870 | 0.2987 | | 1.2283 | 3.39 | 3000 | 0.3646 | 0.2828 | | 1.2053 | 3.67 | 3250 | 0.3499 | 0.2748 | | 1.2087 | 3.95 | 3500 | 0.3345 | 0.2603 | | 1.2002 | 4.24 | 3750 | 0.3320 | 0.2523 | | 1.1383 | 4.52 | 4000 | 0.3117 | 0.2439 | | 1.1364 | 4.8 | 4250 | 0.3198 | 0.2383 | | 1.158 | 5.08 | 4500 | 0.3071 | 0.2342 | | 1.108 | 5.37 | 4750 | 0.3011 | 0.2314 | | 1.1025 | 5.65 | 5000 | 0.2875 | 0.2289 | | 1.0697 | 5.93 | 5250 | 0.2926 | 0.2256 | | 1.0904 | 6.21 | 5500 | 0.2695 | 0.2245 | | 1.0802 | 6.5 | 5750 | 0.2602 | 0.2189 | | 1.0882 | 6.78 | 6000 | 0.2603 | 0.2168 | | 1.0881 | 7.06 | 6250 | 0.2540 | 0.2293 | | 1.0378 | 7.34 | 6500 | 0.2614 | 0.2193 | | 1.0397 | 7.63 | 6750 | 0.2707 | 0.2104 | | 1.0296 | 7.91 | 7000 | 0.2483 | 0.2119 | | 1.0249 | 8.19 | 7250 | 0.2483 | 0.2047 | | 1.013 | 8.47 | 7500 | 0.2487 | 0.2042 | | 1.0064 | 8.76 | 7750 | 0.2456 | 0.2016 | | 1.0668 | 9.04 | 8000 | 0.2397 | 0.1995 | | 1.0129 | 9.32 | 8250 | 0.2374 | 0.1994 | | 1.0164 | 9.6 | 8500 | 0.2206 | 0.1992 | | 0.975 | 9.89 | 8750 | 0.2247 | 0.1973 | | 0.9849 | 10.17 | 9000 | 0.2325 | 0.1953 | | 0.9826 | 10.45 | 9250 | 0.2301 | 0.1934 | | 0.9835 | 10.73 | 9500 | 0.2192 | 0.1942 | | 0.9676 | 11.02 | 9750 | 0.2266 | 0.1913 | | 0.9627 | 11.3 | 10000 | 0.2193 | 0.1921 | | 0.976 | 11.58 | 10250 | 0.2309 | 0.1882 | | 0.969 | 11.86 | 10500 | 0.2268 | 0.1886 | | 0.9611 | 12.15 | 10750 | 0.2322 | 0.1863 | | 0.9397 | 12.43 | 11000 | 0.2197 | 0.1844 | | 0.9601 | 12.71 | 11250 | 0.2211 | 0.1871 | | 0.9718 | 12.99 | 11500 | 0.2079 | 0.1898 | | 0.9347 | 13.28 | 11750 | 0.2054 | 0.1843 | | 0.9377 | 13.56 | 12000 | 0.2031 | 0.1842 | | 0.934 | 13.84 | 12250 | 0.2059 | 0.1806 | | 0.9295 | 14.12 | 12500 | 0.2122 | 0.1861 | | 0.935 | 14.41 | 12750 | 0.2072 | 0.1787 | | 0.9021 | 14.69 | 13000 | 0.2105 | 0.1781 | | 0.9193 | 14.97 | 13250 | 0.2035 | 0.1786 | | 0.9214 | 15.25 | 13500 | 0.2035 | 0.1766 | | 0.9048 | 15.54 | 13750 | 0.1964 | 0.1758 | | 0.9006 | 15.82 | 14000 | 0.1984 | 0.1757 | | 0.9027 | 16.1 | 14250 | 0.2022 | 0.1743 | | 0.9083 | 16.38 | 14500 | 0.1969 | 0.1744 | | 0.9761 | 16.67 | 14750 | 0.1963 | 0.1728 | | 0.9311 | 16.95 | 15000 | 0.1960 | 0.1737 | | 0.886 | 17.23 | 15250 | 0.1929 | 0.1726 | | 0.8969 | 17.51 | 15500 | 0.1928 | 0.1734 | | 0.9084 | 17.8 | 15750 | 0.1937 | 0.1713 | | 0.8795 | 18.08 | 16000 | 0.1978 | 0.1709 | | 0.8883 | 18.36 | 16250 | 0.1956 | 0.1703 | | 0.8901 | 18.64 | 16500 | 0.1933 | 0.1705 | | 0.8922 | 18.93 | 16750 | 0.1962 | 0.1711 | | 0.8765 | 19.21 | 17000 | 0.1962 | 0.1711 | | 0.8992 | 19.49 | 17250 | 0.1965 | 0.1703 | | 0.8778 | 19.77 | 17500 | 0.1957 | 0.1699 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.0+cu113 - Datasets 1.18.1 - Tokenizers 0.11.0
SEBIS/code_trans_t5_small_source_code_summarization_python
094368e02efa964e165d7d6391de61b2230acd7e
2021-06-23T10:22:03.000Z
[ "pytorch", "jax", "t5", "feature-extraction", "transformers", "summarization" ]
summarization
false
SEBIS
null
SEBIS/code_trans_t5_small_source_code_summarization_python
15
null
transformers
9,485
--- tags: - summarization widget: - text: '''with open ( CODE_STRING , CODE_STRING ) as in_file : buf = in_file . readlines ( ) with open ( CODE_STRING , CODE_STRING ) as out_file : for line in buf : if line == " ; Include this text " : line = line + " Include below " out_file . write ( line ) ''' --- # CodeTrans model for source code summarization python Pretrained model on programming language python using the t5 small model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized python code functions: it works best with tokenized python functions. ## Model description This CodeTrans model is based on the `t5-small` model. It has its own SentencePiece vocabulary model. It used single-task training on source code summarization python dataset. ## Intended uses & limitations The model could be used to generate the description for the python function or be fine-tuned on other python code tasks. It can be used on unparsed and untokenized python code. However, if the python code is tokenized, the performance should be better. ### How to use Here is how to use this model to generate python function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_small_source_code_summarization_python"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_small_source_code_summarization_python", skip_special_tokens=True), device=0 ) tokenized_code = '''with open ( CODE_STRING , CODE_STRING ) as in_file : buf = in_file . readlines ( ) with open ( CODE_STRING , CODE_STRING ) as out_file : for line in buf : if line == " ; Include this text " : line = line + " Include below " out_file . write ( line ) ''' pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/single%20task/source%20code%20summarization/python/small_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Evaluation results For the source code summarization tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Python | SQL | C# | | -------------------- | :------------: | :------------: | :------------: | | CodeTrans-ST-Small | 8.45 | 17.55 | 19.74 | | CodeTrans-ST-Base | 9.12 | 15.00 | 18.65 | | CodeTrans-TF-Small | 10.06 | 17.71 | 20.40 | | CodeTrans-TF-Base | 10.94 | 17.66 | 21.12 | | CodeTrans-TF-Large | 12.41 | 18.40 | 21.43 | | CodeTrans-MT-Small | 13.11 | 19.15 | 22.39 | | CodeTrans-MT-Base | **13.37** | 19.24 | 23.20 | | CodeTrans-MT-Large | 13.24 | 19.40 | **23.57** | | CodeTrans-MT-TF-Small | 12.10 | 18.25 | 22.03 | | CodeTrans-MT-TF-Base | 10.64 | 16.91 | 21.40 | | CodeTrans-MT-TF-Large | 12.14 | **19.98** | 21.10 | | CODE-NN | -- | 18.40 | 20.50 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
Sam2021/xlm_rober_base_finetuned_squd_v1
c90b0ab25f74efdd59c583c055a6f9815ee56ff4
2021-08-15T16:06:19.000Z
[ "pytorch", "xlm-roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
Sam2021
null
Sam2021/xlm_rober_base_finetuned_squd_v1
15
null
transformers
9,486
Entry not found
SarahhhUwU/DialoGPT-small-ally
04f52e21b9562bbdc68f1c43e10a4731c8a94f71
2021-08-25T08:36:23.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
SarahhhUwU
null
SarahhhUwU/DialoGPT-small-ally
15
null
transformers
9,487
--- tags: - conversational --- #Ally DialoGPT Model
UBC-NLP/IndT5
c0db442ef5b0f8d0ef5faf3a6584f91d019ae413
2021-08-30T22:03:01.000Z
[ "pytorch", "t5", "transformers" ]
null
false
UBC-NLP
null
UBC-NLP/IndT5
15
null
transformers
9,488
# IndT5: A Text-to-Text Transformer for 10 Indigenous Languages &nbsp; <img src="https://huggingface.co/UBC-NLP/IndT5/raw/main/IND_langs_large7.png" alt="drawing" width="45%" height="45%" align="right"/> In this work, we introduce IndT5, the first Transformer language model for Indigenous languages. To train IndT5, we build IndCorpu, a new corpus for 10 Indigenous languages and Spanish. &nbsp; # IndT5 We train an Indigenous language model adopting the unified and flexible text-to-text transfer Transformer (T5) approach. T5 treats every text-based language task as a “text-to-text" problem, taking text format as input and producing new text format as output. T5 is essentially an encoder-decoder Transformer, with the encoder and decoder similar in configuration and size to a BERT<sub>Base</sub> but with some architectural modifications. Modifications include applying a normalization layer before a sub-block and adding a pre-norm (i.e., initial input to the sub-block output). # IndCourpus We build IndCorpus, a collection of 10 Indigeous languages and Spanish comprising 1.17GB of text, from both Wikipedia and the Bible. ### Data size and number of sentences in monolingual dataset (collected from Wikipedia and Bible) | **Target Language** | **Wiki Size (MB)** | **Wiki #Sentences** | **Bible Size (MB)** | **Bible #Sentences**| |-------------------|------------------|-------------------|------------------------|-| |Hñähñu | - | - | 1.4 | 7.5K | |Wixarika | - | - | 1.3 | 7.5K| |Nahuatl | 5.8 | 61.1K | 1.5 | 7.5K| |Guarani | 3.7 | 28.2K | 1.3 | 7.5K | |Bribri | - | - | 1.5 | 7.5K | |Rarámuri | - | - | 1.9 | 7.5K | |Quechua | 5.9 | 97.3K | 4.9 | 31.1K | |Aymara | 1.7 | 32.9K | 5 | 30.7K| |Shipibo-Konibo | - | - | 1 | 7.9K | |Asháninka | - | - | 1.4 | 7.8K | |Spanish | 1.13K | 5M | - | - | |Total | 1.15K | 5.22M | 19.8 | 125.3K| # Github More details about our model can be found here: https://github.com/UBC-NLP/IndT5 # BibTex ```bibtex @inproceedings{nagoudi-etal-2021-indt5, title = "{I}nd{T}5: A Text-to-Text Transformer for 10 Indigenous Languages", author = "Nagoudi, El Moatez Billah and Chen, Wei-Rui and Abdul-Mageed, Muhammad and Cavusoglu, Hasan", booktitle = "Proceedings of the First Workshop on Natural Language Processing for Indigenous Languages of the Americas", month = jun, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.americasnlp-1.30", doi = "10.18653/v1/2021.americasnlp-1.30", pages = "265--271" } ```
Violeta/ArmBERTa_Model
8db5dcefa79cd31a41626d399361c63606c7cb3a
2021-05-20T12:31:26.000Z
[ "pytorch", "jax", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
Violeta
null
Violeta/ArmBERTa_Model
15
null
transformers
9,489
Entry not found
Yanjie/message-intent
86855f912587f2aca42207022aba888bd207a222
2022-03-21T18:08:08.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
Yanjie
null
Yanjie/message-intent
15
1
transformers
9,490
This is the concierge intent model. Fined tuned on DistilBert uncased model.
ZhangCheng/T5v1.1-Base-Fine-Tuned-for-Question-Generation
908433206be097de9d1303b23679c5c3eff296cf
2021-12-14T17:48:57.000Z
[ "pytorch", "t5", "text2text-generation", "en", "dataset:squad", "transformers", "Question Generation", "autotrain_compatible" ]
text2text-generation
false
ZhangCheng
null
ZhangCheng/T5v1.1-Base-Fine-Tuned-for-Question-Generation
15
1
transformers
9,491
--- language: en datasets: - squad tags: - Question Generation widget: - text: "<answer> T5v1.1 <context> Cheng fine-tuned T5v1.1 on SQuAD for question generation." example_title: "Example 1" - text: "<answer> SQuAD <context> Cheng fine-tuned T5v1.1 on SQuAD dataset for question generation." example_title: "Example 2" - text: "<answer> thousands <context> Transformers provides thousands of pre-trained models to perform tasks on different modalities such as text, vision, and audio." example_title: "Example 3" --- # T5v1.1-Base Fine-Tuned on SQuAD for Question Generation ### Model in Action: ```python import torch from transformers import T5Tokenizer, T5ForConditionalGeneration trained_model_path = 'ZhangCheng/T5v1.1-Base-Fine-Tuned-for-Question-Generation' trained_tokenizer_path = 'ZhangCheng/T5v1.1-Base-Fine-Tuned-for-Question-Generation' class QuestionGeneration: def __init__(self): self.model = T5ForConditionalGeneration.from_pretrained(trained_model_path) self.tokenizer = T5Tokenizer.from_pretrained(trained_tokenizer_path) self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') self.model = self.model.to(self.device) self.model.eval() def generate(self, answer:str, context:str): input_text = '<answer> %s <context> %s ' % (answer, context) encoding = self.tokenizer.encode_plus( input_text, return_tensors='pt' ) input_ids = encoding['input_ids'].to(self.device) attention_mask = encoding['attention_mask'].to(self.device) outputs = self.model.generate( input_ids = input_ids, attention_mask = attention_mask ) question = self.tokenizer.decode( outputs[0], skip_special_tokens = True, clean_up_tokenization_spaces = True ) return {'question': question, 'answer': answer} if __name__ == "__main__": context = 'ZhangCheng fine-tuned T5v1.1 on SQuAD dataset for question generation.' answer = 'ZhangCheng' QG = QuestionGeneration() qa = QG.generate(answer, context) print(qa['question']) # Output: # Who fine-tuned T5v1.1 on SQuAD? ```
aditi2222/automatic_title_generation
07b9632d71a7d6d9dcb8a00e9eac478db96c6116
2022-01-23T18:01:45.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
aditi2222
null
aditi2222/automatic_title_generation
15
null
transformers
9,492
Entry not found
airKlizz/distilbart-12-3-multi-combine-wiki-news
fc2460258985430c8a754644b0a8b81ebcee7eb7
2020-08-26T10:25:17.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
airKlizz
null
airKlizz/distilbart-12-3-multi-combine-wiki-news
15
null
transformers
9,493
Entry not found
airKlizz/gbert-base-germeval21-toxic
8fb266deb431a8fedb9845f6f249bb4f5cfafcb9
2021-07-12T17:45:46.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
airKlizz
null
airKlizz/gbert-base-germeval21-toxic
15
null
transformers
9,494
Entry not found
akdeniz27/mbert-base-albanian-cased-ner
9ac7ea70630ba1190fd53bf34cf3572cb692364a
2021-10-20T10:03:06.000Z
[ "pytorch", "bert", "token-classification", "sq", "transformers", "autotrain_compatible" ]
token-classification
false
akdeniz27
null
akdeniz27/mbert-base-albanian-cased-ner
15
1
transformers
9,495
--- language: sq widget: - text: "Varianti AY.4.2 është më i lehtë për t'u transmetuar, thotë Francois Balu, drejtor i Institutit të Gjenetikës në Londër." --- # Albanian Named Entity Recognition (NER) Model This model is the fine-tuned model of "bert-base-multilingual-cased" using the famous WikiANN dataset presented in the "Cross-lingual Name Tagging and Linking for 282 Languages" [paper](https://aclanthology.org/P17-1178.pdf). # Fine-tuning parameters: ``` task = "ner" model_checkpoint = "bert-base-multilingual-cased" batch_size = 8 label_list = ['O', 'B-PER', 'I-PER', 'B-ORG', 'I-ORG', 'B-LOC', 'I-LOC'] max_length = 512 learning_rate = 2e-5 num_train_epochs = 3 weight_decay = 0.01 ``` # How to use: ``` model = AutoModelForTokenClassification.from_pretrained("akdeniz27/mbert-base-albanian-cased-ner") tokenizer = AutoTokenizer.from_pretrained("akdeniz27/mbert-base-albanian-cased-ner") ner = pipeline('ner', model=model, tokenizer=tokenizer, aggregation_strategy="first") ner("<your text here>") ``` Pls refer "https://huggingface.co/transformers/_modules/transformers/pipelines/token_classification.html" for entity grouping with aggregation_strategy parameter. # Reference test results: * accuracy: 0.9719268816143276 * f1: 0.9192366826444787 * precision: 0.9171629669734704 * recall: 0.9213197969543148
allenai/unifiedqa-v2-t5-small-1363200
e8b5669a71c0f8fb7560e9a967c37470d204bb4c
2022-02-21T23:12:00.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
allenai
null
allenai/unifiedqa-v2-t5-small-1363200
15
null
transformers
9,496
# Further details: https://github.com/allenai/unifiedqa
andi611/distilbert-base-uncased-ner-agnews
2832236d07511bab77ecc7ab3662bb7c046efbc3
2021-08-02T01:25:13.000Z
[ "pytorch", "distilbert", "text-classification", "en", "dataset:ag_news", "transformers", "generated_from_trainer", "license:apache-2.0" ]
text-classification
false
andi611
null
andi611/distilbert-base-uncased-ner-agnews
15
1
transformers
9,497
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - ag_news metrics: - accuracy model_index: - name: distilbert-base-uncased-agnews results: - dataset: name: ag_news type: ag_news args: default metric: name: Accuracy type: accuracy value: 0.9473684210526315 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-agnews This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the ag_news dataset. It achieves the following results on the evaluation set: - Loss: 0.1652 - Accuracy: 0.9474 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 2.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1916 | 1.0 | 3375 | 0.1741 | 0.9412 | | 0.123 | 2.0 | 6750 | 0.1631 | 0.9483 | ### Framework versions - Transformers 4.8.2 - Pytorch 1.8.1+cu111 - Datasets 1.8.0 - Tokenizers 0.10.3
baykenney/bert-large-gpt2detector-topk40
90c370d72632ab59769908a16adbcf021ea00fe8
2021-05-19T12:19:13.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
baykenney
null
baykenney/bert-large-gpt2detector-topk40
15
null
transformers
9,498
Entry not found
bergum/xtremedistil-l6-h384-emotion
f7116c84b9db139008882ed1620eaf0ff520e6a8
2022-07-14T08:30:26.000Z
[ "pytorch", "bert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
bergum
null
bergum/xtremedistil-l6-h384-emotion
15
null
transformers
9,499
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy model-index: - name: xtremedistil-l6-h384-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.928 --- # xtremedistil-l6-h384-emotion This model is a fine-tuned version of [microsoft/xtremedistil-l6-h384-uncased](https://huggingface.co/microsoft/xtremedistil-l6-h384-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Accuracy: 0.928 This model can be quantized to int8 and retain accuracy - Accuracy 0.912 <pre> import transformers import transformers.convert_graph_to_onnx as onnx_convert from pathlib import Path pipeline = transformers.pipeline("text-classification",model=model,tokenizer=tokenizer) onnx_convert.convert_pytorch(pipeline, opset=11, output=Path("xtremedistil-l6-h384-emotion.onnx"), use_external_format=False) from onnxruntime.quantization import quantize_dynamic, QuantType quantize_dynamic("xtremedistil-l6-h384-emotion.onnx", "xtremedistil-l6-h384-emotion-int8.onnx", weight_type=QuantType.QUInt8) </pre> ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 128 - eval_batch_size: 8 - seed: 42 - num_epochs: 14 ### Training results <pre> Epoch Training Loss Validation Loss Accuracy 1 No log 0.960511 0.689000 2 No log 0.620671 0.824000 3 No log 0.435741 0.880000 4 0.797900 0.341771 0.896000 5 0.797900 0.294780 0.916000 6 0.797900 0.250572 0.918000 7 0.797900 0.232976 0.924000 8 0.277300 0.216347 0.924000 9 0.277300 0.202306 0.930500 10 0.277300 0.192530 0.930000 11 0.277300 0.192500 0.926500 12 0.181700 0.187347 0.928500 13 0.181700 0.185896 0.929500 14 0.181700 0.185154 0.928000 </pre>