modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
income/jpq-genq-bioasq-question_encoder-base-msmarco-distilbert-tas-b
3fc4d529a7df18305926dc915d774105ad511131
2022-06-16T18:34:00.000Z
[ "pytorch", "distilbert", "transformers", "license:apache-2.0" ]
null
false
income
null
income/jpq-genq-bioasq-question_encoder-base-msmarco-distilbert-tas-b
0
null
transformers
38,200
--- license: apache-2.0 ---
income/jpq-genq-bioasq-document_encoder-base-msmarco-distilbert-tas-b
7335c0e4daf8c460f5c0702b485136097497fdb9
2022-06-16T18:34:34.000Z
[ "pytorch", "distilbert", "transformers", "license:apache-2.0" ]
null
false
income
null
income/jpq-genq-bioasq-document_encoder-base-msmarco-distilbert-tas-b
0
null
transformers
38,201
--- license: apache-2.0 ---
income/jpq-gpl-bioasq-question_encoder-base-msmarco-distilbert-tas-b
4c02275cf5f0604f0133400d4fa2861075d89a79
2022-06-16T18:35:51.000Z
[ "pytorch", "distilbert", "transformers", "license:apache-2.0" ]
null
false
income
null
income/jpq-gpl-bioasq-question_encoder-base-msmarco-distilbert-tas-b
0
null
transformers
38,202
--- license: apache-2.0 ---
income/jpq-gpl-bioasq-document_encoder-base-msmarco-distilbert-tas-b
b3cca6331820bd8ff9b37805e5149eafb0d569bd
2022-06-16T18:36:57.000Z
[ "pytorch", "distilbert", "transformers", "license:apache-2.0" ]
null
false
income
null
income/jpq-gpl-bioasq-document_encoder-base-msmarco-distilbert-tas-b
0
null
transformers
38,203
--- license: apache-2.0 ---
huggingtweets/alanrmacleod-karl_was_right-yaboihakim
7af682f4d4dee25a3016adda5f3612ef9a29e23b
2022-06-16T19:29:02.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/alanrmacleod-karl_was_right-yaboihakim
0
null
transformers
38,204
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1521992020977348609/RrM3MB-G_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1412117139071418386/3bmc9Vk7_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1067405915077468161/tRoXWi8G_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Michael Parenti’s Stache 🚩☭ & Alan MacLeod & Hakim</div> <div style="text-align: center; font-size: 14px;">@alanrmacleod-karl_was_right-yaboihakim</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Michael Parenti’s Stache 🚩☭ & Alan MacLeod & Hakim. | Data | Michael Parenti’s Stache 🚩☭ | Alan MacLeod | Hakim | | --- | --- | --- | --- | | Tweets downloaded | 3236 | 3244 | 2415 | | Retweets | 283 | 480 | 709 | | Short tweets | 360 | 177 | 139 | | Tweets kept | 2593 | 2587 | 1567 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/38bj8kvf/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @alanrmacleod-karl_was_right-yaboihakim's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1klcaw4v) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1klcaw4v/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/alanrmacleod-karl_was_right-yaboihakim') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
philmunz/poc_ud
73a43eda245a9e8b997ad5d8d89a400e8c8393cf
2022-06-16T19:32:02.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
philmunz
null
philmunz/poc_ud
0
null
transformers
38,205
Entry not found
ouiame/bertGpt2Summ
0cc039f2a24ea33d49430cad31c9a7dda8c11b0f
2022-06-17T00:38:07.000Z
[ "pytorch", "encoder-decoder", "text2text-generation", "unk", "dataset:ouiame/autotrain-data-Robertatogpt2", "transformers", "autotrain", "co2_eq_emissions", "autotrain_compatible" ]
text2text-generation
false
ouiame
null
ouiame/bertGpt2Summ
0
null
transformers
38,206
--- tags: autotrain language: unk widget: - text: "I love AutoTrain 🤗" datasets: - ouiame/autotrain-data-Robertatogpt2 co2_eq_emissions: 2.4722651844547827 --- # Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 995132940 - CO2 Emissions (in grams): 2.4722651844547827 ## Validation Metrics - Loss: 3.5972988605499268 - Rouge1: 16.1218 - Rouge2: 2.9195 - RougeL: 13.0085 - RougeLsum: 13.2975 - Gen Len: 19.9962 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/ouiame/autotrain-Robertatogpt2-995132940 ```
ouiame/autotrain-Robertatogpt2-995132944
233288662c0f9d701a7d174bd461cfc1057b4cd2
2022-06-17T01:09:06.000Z
[ "pytorch", "encoder-decoder", "text2text-generation", "unk", "dataset:ouiame/autotrain-data-Robertatogpt2", "transformers", "autotrain", "co2_eq_emissions", "autotrain_compatible" ]
text2text-generation
false
ouiame
null
ouiame/autotrain-Robertatogpt2-995132944
0
null
transformers
38,207
--- tags: autotrain language: unk widget: - text: "I love AutoTrain 🤗" datasets: - ouiame/autotrain-data-Robertatogpt2 co2_eq_emissions: 611.0958349328379 --- # Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 995132944 - CO2 Emissions (in grams): 611.0958349328379 ## Validation Metrics - Loss: 3.8850467205047607 - Rouge1: 16.6344 - Rouge2: 2.9899 - RougeL: 13.5872 - RougeLsum: 13.9042 - Gen Len: 20.0 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/ouiame/autotrain-Robertatogpt2-995132944 ```
usaf/ztranslate
a8b41ea9dc45287b7195035fe2c1deec0d585bbf
2022-06-16T23:32:24.000Z
[ "pytorch", "marian", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
usaf
null
usaf/ztranslate
0
null
transformers
38,208
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: ztranslate results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ztranslate This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-sw](https://huggingface.co/Helsinki-NLP/opus-mt-en-sw) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | No log | 1.0 | 113 | 0.9276 | 48.8401 | 19.9436 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0 - Datasets 2.2.2 - Tokenizers 0.12.1
huggingtweets/chrisevans-robertdowneyjr
828b3796cebc9a3001ff43989c79d1c241065e72
2022-06-16T20:34:01.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/chrisevans-robertdowneyjr
0
null
transformers
38,209
--- language: en thumbnail: http://www.huggingtweets.com/chrisevans-robertdowneyjr/1655411636421/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1353806309397655553/0zEtkDvx_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1320917504013848577/-VTJLuI9_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Robert Downey Jr & Chris Evans</div> <div style="text-align: center; font-size: 14px;">@chrisevans-robertdowneyjr</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Robert Downey Jr & Chris Evans. | Data | Robert Downey Jr | Chris Evans | | --- | --- | --- | | Tweets downloaded | 875 | 2075 | | Retweets | 154 | 684 | | Short tweets | 70 | 209 | | Tweets kept | 651 | 1182 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2a0abddd/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @chrisevans-robertdowneyjr's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/hfbdxz6f) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/hfbdxz6f/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/chrisevans-robertdowneyjr') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/leisha_hailey
dd76a73877d52356613afeb4b26d78beb79e50b8
2022-06-16T22:08:08.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/leisha_hailey
0
null
transformers
38,210
--- language: en thumbnail: http://www.huggingtweets.com/leisha_hailey/1655417283179/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1601201593/Screen_shot_2011-10-20_at_8.42.01_PM_400x400.png&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Leisha Hailey</div> <div style="text-align: center; font-size: 14px;">@leisha_hailey</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Leisha Hailey. | Data | Leisha Hailey | | --- | --- | | Tweets downloaded | 1084 | | Retweets | 77 | | Short tweets | 66 | | Tweets kept | 941 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3ecfevcj/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @leisha_hailey's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/vat0dsmp) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/vat0dsmp/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/leisha_hailey') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/jbsalvagno
20e4b35147db51851b11ed7f75a624dd4b06c3f6
2022-06-16T22:41:16.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/jbsalvagno
0
null
transformers
38,211
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/817874051146412032/rPvqTOFF_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Javier Bustos</div> <div style="text-align: center; font-size: 14px;">@jbsalvagno</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Javier Bustos. | Data | Javier Bustos | | --- | --- | | Tweets downloaded | 3179 | | Retweets | 2756 | | Short tweets | 30 | | Tweets kept | 393 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/29wlz981/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @jbsalvagno's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/k72pz4ho) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/k72pz4ho/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/jbsalvagno') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
openclimatefix/graph-weather-forecaster-2.0deg
472840e5bb102fed3970217fef30d8d02a468a40
2022-07-04T06:47:16.000Z
[ "pytorch" ]
null
false
openclimatefix
null
openclimatefix/graph-weather-forecaster-2.0deg
0
null
null
38,212
Entry not found
gary109/ai-light-dance_singing_ft_wav2vec2-large-xlsr-53-5gram
eb891439357dca31c51d684e736315056eb5b148
2022-06-18T02:02:29.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
gary109
null
gary109/ai-light-dance_singing_ft_wav2vec2-large-xlsr-53-5gram
0
null
transformers
38,213
Entry not found
neuralmagic/oBERT-12-upstream-pruned-unstructured-90-v2
a57aeb0634e93606c033f2b23e58afc7af8e5b2d
2022-06-20T11:36:51.000Z
[ "pytorch", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:2203.07259", "bert", "oBERT", "sparsity", "pruning", "compression" ]
null
false
neuralmagic
null
neuralmagic/oBERT-12-upstream-pruned-unstructured-90-v2
0
null
null
38,214
--- tags: - bert - oBERT - sparsity - pruning - compression language: en datasets: - bookcorpus - wikipedia --- # oBERT-12-upstream-pruned-unstructured-90-v2 This model is obtained with [The Optimal BERT Surgeon: Scalable and Accurate Second-Order Pruning for Large Language Models](https://arxiv.org/abs/2203.07259). It corresponds to the upstream pruned model used as a starting point for sparse-transfer learning to downstream tasks presented in the `Table 2 - oBERT - {SQuADv1, MNLI, QQP} - 90%` (in the upcoming updated version of the paper). Finetuned versions of this model for each downstream task are: - SQuADv1: `neuralmagic/oBERT-12-upstream-pruned-unstructured-90-finetuned-squadv1-v2` - MNLI: `neuralmagic/oBERT-12-upstream-pruned-unstructured-90-finetuned-mnli-v2` - QQP: `neuralmagic/oBERT-12-upstream-pruned-unstructured-90-finetuned-qqp-v2` ``` Pruning method: oBERT upstream unstructured Paper: https://arxiv.org/abs/2203.07259 Dataset: BookCorpus and English Wikipedia Sparsity: 90% Number of layers: 12 ``` Code: _coming soon_ ## BibTeX entry and citation info ```bibtex @article{kurtic2022optimal, title={The Optimal BERT Surgeon: Scalable and Accurate Second-Order Pruning for Large Language Models}, author={Kurtic, Eldar and Campos, Daniel and Nguyen, Tuan and Frantar, Elias and Kurtz, Mark and Fineran, Benjamin and Goin, Michael and Alistarh, Dan}, journal={arXiv preprint arXiv:2203.07259}, year={2022} } ```
neuralmagic/oBERT-12-upstream-pruned-unstructured-97-v2
0f66c665cfbc8f9926befaae96562c9453e17692
2022-06-20T11:36:51.000Z
[ "pytorch", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:2203.07259", "bert", "oBERT", "sparsity", "pruning", "compression" ]
null
false
neuralmagic
null
neuralmagic/oBERT-12-upstream-pruned-unstructured-97-v2
0
null
null
38,215
--- tags: - bert - oBERT - sparsity - pruning - compression language: en datasets: - bookcorpus - wikipedia --- # oBERT-12-upstream-pruned-unstructured-97-v2 This model is obtained with [The Optimal BERT Surgeon: Scalable and Accurate Second-Order Pruning for Large Language Models](https://arxiv.org/abs/2203.07259). It corresponds to the upstream pruned model used as a starting point for sparse-transfer learning to downstream tasks presented in the `Table 2 - oBERT - {SQuADv1, MNLI, QQP} - 97%` (in the upcoming updated version of the paper). Finetuned versions of this model for each downstream task are: - SQuADv1: `neuralmagic/oBERT-12-upstream-pruned-unstructured-97-finetuned-squadv1-v2` - MNLI: `neuralmagic/oBERT-12-upstream-pruned-unstructured-97-finetuned-mnli-v2` - QQP: `neuralmagic/oBERT-12-upstream-pruned-unstructured-97-finetuned-qqp-v2` ``` Pruning method: oBERT upstream unstructured Paper: https://arxiv.org/abs/2203.07259 Dataset: BookCorpus and English Wikipedia Sparsity: 97% Number of layers: 12 ``` Code: _coming soon_ ## BibTeX entry and citation info ```bibtex @article{kurtic2022optimal, title={The Optimal BERT Surgeon: Scalable and Accurate Second-Order Pruning for Large Language Models}, author={Kurtic, Eldar and Campos, Daniel and Nguyen, Tuan and Frantar, Elias and Kurtz, Mark and Fineran, Benjamin and Goin, Michael and Alistarh, Dan}, journal={arXiv preprint arXiv:2203.07259}, year={2022} } ```
neuralmagic/oBERT-12-upstream-pruned-unstructured-90-finetuned-squadv1-v2
b75c87c3ff3c68e83244700a14fe54fdb2b01be6
2022-06-20T11:36:50.000Z
[ "pytorch", "en", "dataset:squad", "arxiv:2203.07259", "bert", "oBERT", "sparsity", "pruning", "compression" ]
null
false
neuralmagic
null
neuralmagic/oBERT-12-upstream-pruned-unstructured-90-finetuned-squadv1-v2
0
null
null
38,216
--- tags: - bert - oBERT - sparsity - pruning - compression language: en datasets: squad --- # oBERT-12-upstream-pruned-unstructured-90-finetuned-squadv1-v2 This model is obtained with [The Optimal BERT Surgeon: Scalable and Accurate Second-Order Pruning for Large Language Models](https://arxiv.org/abs/2203.07259). It corresponds to the model presented in the `Table 2 - oBERT - SQuADv1 90%` (in the upcoming updated version of the paper). ``` Pruning method: oBERT upstream unstructured + sparse-transfer to downstream Paper: https://arxiv.org/abs/2203.07259 Dataset: SQuADv1 Sparsity: 90% Number of layers: 12 ``` The dev-set performance reported in the paper is averaged over four seeds, and we release the best model (marked with `(*)`): ``` | oBERT 90% | F1 | EM | | ------------ | ----- | ----- | | seed=42 | 88.55 | 81.48 | | seed=3407 | 88.34 | 81.25 | | seed=123 (*)| 88.64 | 81.57 | | seed=12345 | 88.44 | 81.43 | | ------------ | ----- | ----- | | mean | 88.49 | 81.43 | | stdev | 0.130 | 0.134 | ``` Code: _coming soon_ ## BibTeX entry and citation info ```bibtex @article{kurtic2022optimal, title={The Optimal BERT Surgeon: Scalable and Accurate Second-Order Pruning for Large Language Models}, author={Kurtic, Eldar and Campos, Daniel and Nguyen, Tuan and Frantar, Elias and Kurtz, Mark and Fineran, Benjamin and Goin, Michael and Alistarh, Dan}, journal={arXiv preprint arXiv:2203.07259}, year={2022} } ```
neuralmagic/oBERT-12-upstream-pruned-unstructured-97-finetuned-squadv1-v2
6d5b9d18b4a5593678b43da70847b31ddd8e5767
2022-06-20T11:36:51.000Z
[ "pytorch", "en", "dataset:squad", "arxiv:2203.07259", "bert", "oBERT", "sparsity", "pruning", "compression" ]
null
false
neuralmagic
null
neuralmagic/oBERT-12-upstream-pruned-unstructured-97-finetuned-squadv1-v2
0
null
null
38,217
--- tags: - bert - oBERT - sparsity - pruning - compression language: en datasets: squad --- # oBERT-12-upstream-pruned-unstructured-97-finetuned-squadv1-v2 This model is obtained with [The Optimal BERT Surgeon: Scalable and Accurate Second-Order Pruning for Large Language Models](https://arxiv.org/abs/2203.07259). It corresponds to the model presented in the `Table 2 - oBERT - SQuADv1 97%` (in the upcoming updated version of the paper). ``` Pruning method: oBERT upstream unstructured + sparse-transfer to downstream Paper: https://arxiv.org/abs/2203.07259 Dataset: SQuADv1 Sparsity: 97% Number of layers: 12 ``` The dev-set performance reported in the paper is averaged over four seeds, and we release the best model (marked with `(*)`): ``` | oBERT 97% | F1 | EM | | ------------- | ----- | ----- | | seed=42 | 84.92 | 76.94 | | seed=3407 | 84.87 | 76.71 | | seed=123 | 84.95 | 77.06 | | seed=12345 (*)| 84.95 | 76.90 | | ------------- | ----- | ----- | | mean | 84.92 | 76.90 | | stdev | 0.037 | 0.145 | ``` Code: _coming soon_ ## BibTeX entry and citation info ```bibtex @article{kurtic2022optimal, title={The Optimal BERT Surgeon: Scalable and Accurate Second-Order Pruning for Large Language Models}, author={Kurtic, Eldar and Campos, Daniel and Nguyen, Tuan and Frantar, Elias and Kurtz, Mark and Fineran, Benjamin and Goin, Michael and Alistarh, Dan}, journal={arXiv preprint arXiv:2203.07259}, year={2022} } ```
neuralmagic/oBERT-12-upstream-pruned-unstructured-90-finetuned-mnli-v2
7c106710dcac94a4ecf008ff75b657739c62beb6
2022-06-20T11:36:50.000Z
[ "pytorch", "en", "dataset:mnli", "arxiv:2203.07259", "bert", "oBERT", "sparsity", "pruning", "compression" ]
null
false
neuralmagic
null
neuralmagic/oBERT-12-upstream-pruned-unstructured-90-finetuned-mnli-v2
0
null
null
38,218
--- tags: - bert - oBERT - sparsity - pruning - compression language: en datasets: mnli --- # oBERT-12-upstream-pruned-unstructured-90-finetuned-mnli-v2 This model is obtained with [The Optimal BERT Surgeon: Scalable and Accurate Second-Order Pruning for Large Language Models](https://arxiv.org/abs/2203.07259). It corresponds to the model presented in the `Table 2 - oBERT - MNLI 90%` (in the upcoming updated version of the paper). ``` Pruning method: oBERT upstream unstructured + sparse-transfer to downstream Paper: https://arxiv.org/abs/2203.07259 Dataset: MNLI Sparsity: 90% Number of layers: 12 ``` The dev-set performance reported in the paper is averaged over four seeds, and we release the best model (marked with `(*)`): ``` | oBERT 90% | m-acc | mm-acc| | ------------ | ----- | ----- | | seed=42 | 83.45 | 84.13 | | seed=3407 (*)| 83.45 | 83.72 | | seed=12345 | 83.27 | 83.57 | | seed=123 | 83.42 | 83.71 | | ------------ | ----- | ----- | | mean | 83.40 | 83.78 | | stdev | 0.086 | 0.241 | ``` Code: _coming soon_ ## BibTeX entry and citation info ```bibtex @article{kurtic2022optimal, title={The Optimal BERT Surgeon: Scalable and Accurate Second-Order Pruning for Large Language Models}, author={Kurtic, Eldar and Campos, Daniel and Nguyen, Tuan and Frantar, Elias and Kurtz, Mark and Fineran, Benjamin and Goin, Michael and Alistarh, Dan}, journal={arXiv preprint arXiv:2203.07259}, year={2022} } ```
neuralmagic/oBERT-12-upstream-pruned-unstructured-90-finetuned-qqp-v2
b62c1834614d446926cb778f2e632442b9f48944
2022-06-20T11:36:50.000Z
[ "pytorch", "en", "dataset:qqp", "arxiv:2203.07259", "bert", "oBERT", "sparsity", "pruning", "compression" ]
null
false
neuralmagic
null
neuralmagic/oBERT-12-upstream-pruned-unstructured-90-finetuned-qqp-v2
0
null
null
38,219
--- tags: - bert - oBERT - sparsity - pruning - compression language: en datasets: qqp --- # oBERT-12-upstream-pruned-unstructured-90-finetuned-qqp-v2 This model is obtained with [The Optimal BERT Surgeon: Scalable and Accurate Second-Order Pruning for Large Language Models](https://arxiv.org/abs/2203.07259). It corresponds to the model presented in the `Table 2 - oBERT - QQP 90%` (in the upcoming updated version of the paper). ``` Pruning method: oBERT upstream unstructured + sparse-transfer to downstream Paper: https://arxiv.org/abs/2203.07259 Dataset: QQP Sparsity: 90% Number of layers: 12 ``` The dev-set performance reported in the paper is averaged over four seeds, and we release the best model (marked with `(*)`): ``` | oBERT 90% | acc | F1 | | ------------- | ----- | ----- | | seed=42 | 90.94 | 87.79 | | seed=3407 | 91.00 | 87.81 | | seed=123 | 90.94 | 87.73 | | seed=12345 (*)| 91.07 | 87.92 | | ------------- | ----- | ----- | | mean | 90.99 | 87.81 | | stdev | 0.061 | 0.079 | ``` Code: _coming soon_ ## BibTeX entry and citation info ```bibtex @article{kurtic2022optimal, title={The Optimal BERT Surgeon: Scalable and Accurate Second-Order Pruning for Large Language Models}, author={Kurtic, Eldar and Campos, Daniel and Nguyen, Tuan and Frantar, Elias and Kurtz, Mark and Fineran, Benjamin and Goin, Michael and Alistarh, Dan}, journal={arXiv preprint arXiv:2203.07259}, year={2022} } ```
neuralmagic/oBERT-12-upstream-pruned-unstructured-97-finetuned-qqp-v2
ed7c12aba3c65881e5bc521bce0335fb08835a65
2022-06-20T11:36:51.000Z
[ "pytorch", "en", "dataset:qqp", "arxiv:2203.07259", "bert", "oBERT", "sparsity", "pruning", "compression" ]
null
false
neuralmagic
null
neuralmagic/oBERT-12-upstream-pruned-unstructured-97-finetuned-qqp-v2
0
null
null
38,220
--- tags: - bert - oBERT - sparsity - pruning - compression language: en datasets: qqp --- # oBERT-12-upstream-pruned-unstructured-97-finetuned-qqp-v2 This model is obtained with [The Optimal BERT Surgeon: Scalable and Accurate Second-Order Pruning for Large Language Models](https://arxiv.org/abs/2203.07259). It corresponds to the model presented in the `Table 2 - oBERT - QQP 97%` (in the upcoming updated version of the paper). ``` Pruning method: oBERT upstream unstructured + sparse-transfer to downstream Paper: https://arxiv.org/abs/2203.07259 Dataset: QQP Sparsity: 97% Number of layers: 12 ``` The dev-set performance reported in the paper is averaged over four seeds, and we release the best model (marked with `(*)`): ``` | oBERT 97% | acc | F1 | | ------------ | ----- | ----- | | seed=42 (*)| 90.42 | 87.09 | | seed=3407 | 90.31 | 86.87 | | seed=123 | 90.20 | 86.76 | | seed=12345 | 90.39 | 87.16 | | ------------ | ----- | ----- | | mean | 90.33 | 86.97 | | stdev | 0.098 | 0.186 | ``` Code: _coming soon_ ## BibTeX entry and citation info ```bibtex @article{kurtic2022optimal, title={The Optimal BERT Surgeon: Scalable and Accurate Second-Order Pruning for Large Language Models}, author={Kurtic, Eldar and Campos, Daniel and Nguyen, Tuan and Frantar, Elias and Kurtz, Mark and Fineran, Benjamin and Goin, Michael and Alistarh, Dan}, journal={arXiv preprint arXiv:2203.07259}, year={2022} } ```
marcomameli01/segformer-b0-finetuned-segments-gear2
87726a2ce74d2f2d4ddcb4e74bc351728bceadbd
2022-06-17T08:03:25.000Z
[ "pytorch", "tensorboard", "segformer", "transformers", "vision", "gear-segmentation", "generated_from_trainer", "license:apache-2.0", "model-index" ]
null
false
marcomameli01
null
marcomameli01/segformer-b0-finetuned-segments-gear2
0
null
transformers
38,221
--- license: apache-2.0 tags: - vision - gear-segmentation - generated_from_trainer model-index: - name: segformer-b0-finetuned-segments-gear2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # segformer-b0-finetuned-segments-gear2 This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the marcomameli01/gear dataset. It achieves the following results on the evaluation set: - Loss: 0.1268 - Mean Iou: 0.1254 - Mean Accuracy: 0.2509 - Overall Accuracy: 0.2509 - Per Category Iou: [0.0, 0.2508641975308642] - Per Category Accuracy: [nan, 0.2508641975308642] ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Per Category Iou | Per Category Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:--------------------------:|:--------------------------:| | 0.4614 | 5.0 | 20 | 0.4427 | 0.0741 | 0.1481 | 0.1481 | [0.0, 0.14814814814814814] | [nan, 0.14814814814814814] | | 0.3327 | 10.0 | 40 | 0.2933 | 0.1726 | 0.3453 | 0.3453 | [0.0, 0.34528395061728395] | [nan, 0.34528395061728395] | | 0.2305 | 15.0 | 60 | 0.2244 | 0.0382 | 0.0763 | 0.0763 | [0.0, 0.07634567901234568] | [nan, 0.07634567901234568] | | 0.2011 | 20.0 | 80 | 0.2130 | 0.0374 | 0.0748 | 0.0748 | [0.0, 0.07476543209876543] | [nan, 0.07476543209876543] | | 0.1846 | 25.0 | 100 | 0.1672 | 0.1037 | 0.2073 | 0.2073 | [0.0, 0.20730864197530866] | [nan, 0.20730864197530866] | | 0.1622 | 30.0 | 120 | 0.1532 | 0.0805 | 0.1611 | 0.1611 | [0.0, 0.1610864197530864] | [nan, 0.1610864197530864] | | 0.139 | 35.0 | 140 | 0.1396 | 0.0971 | 0.1942 | 0.1942 | [0.0, 0.19417283950617284] | [nan, 0.19417283950617284] | | 0.1342 | 40.0 | 160 | 0.1283 | 0.0748 | 0.1496 | 0.1496 | [0.0, 0.14962962962962964] | [nan, 0.14962962962962964] | | 0.128 | 45.0 | 180 | 0.1224 | 0.1128 | 0.2256 | 0.2256 | [0.0, 0.22558024691358025] | [nan, 0.22558024691358025] | | 0.1243 | 50.0 | 200 | 0.1268 | 0.1254 | 0.2509 | 0.2509 | [0.0, 0.2508641975308642] | [nan, 0.2508641975308642] | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
huggingtweets/iantdr
d71f7a37b1a94fb91412994903ead7dd466e42d4
2022-06-17T09:09:33.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/iantdr
0
null
transformers
38,222
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1365703183/YT_Croydon_Flyer_twitter_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">ian anderson</div> <div style="text-align: center; font-size: 14px;">@iantdr</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from ian anderson. | Data | ian anderson | | --- | --- | | Tweets downloaded | 3201 | | Retweets | 2052 | | Short tweets | 316 | | Tweets kept | 833 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1bopfm9o/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @iantdr's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1papgk0r) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1papgk0r/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/iantdr') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/aiww-bbcworld-elonmusk
0f615df728e594fedda865f900887585bce1a619
2022-06-17T14:04:23.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/aiww-bbcworld-elonmusk
0
null
transformers
38,223
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1529956155937759233/Nyn1HZWF_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1529107170448523264/q3VwEx38_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/2972716369/e27a35486a2ec507063cb19c89e3ce82_400x400.jpeg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Elon Musk & BBC News (World) & 艾未未 Ai Weiwei</div> <div style="text-align: center; font-size: 14px;">@aiww-bbcworld-elonmusk</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Elon Musk & BBC News (World) & 艾未未 Ai Weiwei. | Data | Elon Musk | BBC News (World) | 艾未未 Ai Weiwei | | --- | --- | --- | --- | | Tweets downloaded | 3200 | 3250 | 3243 | | Retweets | 145 | 240 | 680 | | Short tweets | 966 | 0 | 2116 | | Tweets kept | 2089 | 3010 | 447 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1xg6gwun/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @aiww-bbcworld-elonmusk's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3f692l8n) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3f692l8n/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/aiww-bbcworld-elonmusk') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
tmc/xbert2
bfbeb652e95ce587fbb31851ea4bef989ac06a13
2022-06-17T15:29:41.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
tmc
null
tmc/xbert2
0
null
transformers
38,224
Entry not found
huggingtweets/hillaryclinton
5acb83cd70d4df04f1095e134724bb5092b277d9
2022-06-17T17:56:06.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/hillaryclinton
0
null
transformers
38,225
--- language: en thumbnail: http://www.huggingtweets.com/hillaryclinton/1655488304536/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1291192333199958017/SvH8J8_P_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Hillary Clinton</div> <div style="text-align: center; font-size: 14px;">@hillaryclinton</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Hillary Clinton. | Data | Hillary Clinton | | --- | --- | | Tweets downloaded | 3205 | | Retweets | 781 | | Short tweets | 63 | | Tweets kept | 2361 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/29ye0y4d/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @hillaryclinton's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/oqt4g13v) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/oqt4g13v/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/hillaryclinton') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/pdchina
d19ddce2835e11c5472d2f92ad1bd16d433d47a2
2022-06-17T18:03:08.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/pdchina
0
null
transformers
38,226
--- language: en thumbnail: http://www.huggingtweets.com/pdchina/1655488982839/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1246469365089939456/jAjE_fKB_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">People's Daily, China</div> <div style="text-align: center; font-size: 14px;">@pdchina</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from People's Daily, China. | Data | People's Daily, China | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 20 | | Short tweets | 2 | | Tweets kept | 3228 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3b8is5jg/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @pdchina's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3rg0kmkg) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3rg0kmkg/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/pdchina') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/itsamedevdev
e5de039f81ec6321f0a41c556642ef56d0dfa4ca
2022-06-17T20:01:28.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/itsamedevdev
0
null
transformers
38,227
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1502217816421941249/jOIqVIE2_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">ItAMeDevDev</div> <div style="text-align: center; font-size: 14px;">@itsamedevdev</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from ItAMeDevDev. | Data | ItAMeDevDev | | --- | --- | | Tweets downloaded | 2842 | | Retweets | 1052 | | Short tweets | 474 | | Tweets kept | 1316 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/lr4yyk0f/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @itsamedevdev's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2advtlvo) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2advtlvo/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/itsamedevdev') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
ouiame/bert2gpt2frenchSumm
a9db5822d3fe2ccf1d788938948cd9a9a6890a9a
2022-06-18T06:31:16.000Z
[ "pytorch", "encoder-decoder", "text2text-generation", "unk", "dataset:ouiame/autotrain-data-orangesum", "transformers", "autotrain", "co2_eq_emissions", "autotrain_compatible" ]
text2text-generation
false
ouiame
null
ouiame/bert2gpt2frenchSumm
0
1
transformers
38,228
--- tags: autotrain language: unk widget: - text: "I love AutoTrain 🤗" datasets: - ouiame/autotrain-data-orangesum co2_eq_emissions: 999.838587232387 --- # Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 1000833138 - CO2 Emissions (in grams): 999.838587232387 ## Validation Metrics - Loss: 2.4244203567504883 - Rouge1: 25.7023 - Rouge2: 8.5872 - RougeL: 18.6776 - RougeLsum: 19.821 - Gen Len: 39.732 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/ouiame/autotrain-orangesum-1000833138 ```
panapelli/nlp-udesa-BertXNLI_uxv
1150d6ddac2d8192c8dcde62adb113390c78ad48
2022-06-18T03:17:24.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
panapelli
null
panapelli/nlp-udesa-BertXNLI_uxv
0
null
transformers
38,229
Entry not found
kjunelee/pegasus-samsum
fc39fdf7a0ca41285a21a4c609c1ca864d9280f6
2022-06-18T22:35:27.000Z
[ "pytorch", "tensorboard", "pegasus", "text2text-generation", "dataset:samsum", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
kjunelee
null
kjunelee/pegasus-samsum
0
null
transformers
38,230
--- tags: - generated_from_trainer datasets: - samsum model-index: - name: pegasus-samsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-samsum This model is a fine-tuned version of [google/pegasus-cnn_dailymail](https://huggingface.co/google/pegasus-cnn_dailymail) on the samsum dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0 - Datasets 2.2.3.dev0 - Tokenizers 0.12.1
pinot/wav2vec2-large-xls-r-300m-turkish-colab
3b94bd766e1f61a42973d25b14957e46dce35fa6
2022-06-18T15:04:03.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
pinot
null
pinot/wav2vec2-large-xls-r-300m-turkish-colab
0
null
transformers
38,231
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-turkish-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-turkish-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 2.7642 - Wer: 0.5894 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 24.5372 | 9.76 | 400 | 5.2857 | 0.9738 | | 4.3812 | 19.51 | 800 | 3.6782 | 0.7315 | | 1.624 | 29.27 | 1200 | 2.7642 | 0.5894 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
varie/poetry-generation-firstline-mbart-all-fi-unsorted
9f061c333d05312e1f1157c39f492b4948273c00
2022-06-18T13:14:21.000Z
[ "pytorch" ]
null
false
varie
null
varie/poetry-generation-firstline-mbart-all-fi-unsorted
0
null
null
38,232
# poetry-generation-firstline-mbart-all-fi-unsorted * `firstline`: generates the first poem line from keywords * `mbart`: base model is [facebook/mbart-large-cc25](https://huggingface.co/facebook/mbart-large-cc25) * `all`: trained on data from Project Gutenberg, Wikisource, Poesia publishing house * `fi`: Finnish language * `unsorted`: the order of input keywords does not matter when generating candidates
varie/poetry-generation-nextline-mbart-ws-sv-multi
9e73938898cc2cfab934139665536a9a75ce0657
2022-07-15T16:16:45.000Z
[ "pytorch" ]
null
false
varie
null
varie/poetry-generation-nextline-mbart-ws-sv-multi
0
null
null
38,233
# poetry-generation-nextline-mbart-ws-sv-multi * `nextline`: generates a poem line from previous line(s) * `mbart`: base model is [facebook/mbart-large-50](https://huggingface.co/facebook/mbart-large-50) * `ws`: trained on Wikisource data * `sv`: Swedish language * `multi`: uses first, second, and third last lines as input for generation
lmqg/t5-small-squadshifts-vanilla-new_wiki
ca8e91e60af78c5c55d0b7a9dda2d996c8f5ab05
2022-06-18T13:55:18.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
lmqg
null
lmqg/t5-small-squadshifts-vanilla-new_wiki
0
null
transformers
38,234
Entry not found
lmqg/t5-small-squadshifts-vanilla-nyt
a08136dff403749c4e87f1dcc27b3b4eaab4d03a
2022-06-20T09:54:38.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
lmqg
null
lmqg/t5-small-squadshifts-vanilla-nyt
0
null
transformers
38,235
Entry not found
lmqg/t5-small-squadshifts-vanilla-reddit
74dcd3a00f12307ffb9da845ab48949f9b04b16c
2022-06-18T13:58:10.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
lmqg
null
lmqg/t5-small-squadshifts-vanilla-reddit
0
null
transformers
38,236
Entry not found
lmqg/t5-base-subjqa-vanilla-electronics
fc2293bdbd53d25290ae0a3c88312d8372873057
2022-06-18T13:59:33.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
lmqg
null
lmqg/t5-base-subjqa-vanilla-electronics
0
null
transformers
38,237
Entry not found
lmqg/t5-small-squadshifts-vanilla-amazon
886be36ce99cd5adbcb946cc52ebff07deda2924
2022-06-18T13:59:24.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
lmqg
null
lmqg/t5-small-squadshifts-vanilla-amazon
0
null
transformers
38,238
Entry not found
lmqg/t5-base-subjqa-vanilla-grocery
a749be8f6af1b24f56080b12d557e5a450c9862c
2022-06-18T14:02:29.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
lmqg
null
lmqg/t5-base-subjqa-vanilla-grocery
0
null
transformers
38,239
Entry not found
lmqg/t5-base-subjqa-vanilla-movies
b932e5395de4503a7ecec22a1acfcb060fe3a096
2022-06-18T14:05:23.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
lmqg
null
lmqg/t5-base-subjqa-vanilla-movies
0
null
transformers
38,240
Entry not found
lmqg/t5-base-subjqa-vanilla-restaurants
6eeeef5212b8d34fba8250a9b395635dde71107f
2022-06-18T14:08:29.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
lmqg
null
lmqg/t5-base-subjqa-vanilla-restaurants
0
null
transformers
38,241
Entry not found
lmqg/t5-base-subjqa-vanilla-tripadvisor
0875c707d7e5fb953e3f775aa46b572c0da301c9
2022-06-18T14:11:02.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
lmqg
null
lmqg/t5-base-subjqa-vanilla-tripadvisor
0
null
transformers
38,242
Entry not found
lmqg/t5-small-subjqa-vanilla-electronics
010c812f6c93ae009ca2b2240b22ebd5d1d40dc3
2022-06-20T09:54:53.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
lmqg
null
lmqg/t5-small-subjqa-vanilla-electronics
0
null
transformers
38,243
Entry not found
lmqg/t5-small-subjqa-vanilla-grocery
627180da03bddc137c501d325fbee85738692235
2022-06-18T14:15:46.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
lmqg
null
lmqg/t5-small-subjqa-vanilla-grocery
0
null
transformers
38,244
Entry not found
lmqg/t5-small-subjqa-vanilla-movies
875183f114b95ad2bb536e45d3c2a4f42402536f
2022-06-20T09:55:04.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
lmqg
null
lmqg/t5-small-subjqa-vanilla-movies
0
null
transformers
38,245
Entry not found
lmqg/t5-small-subjqa-vanilla-restaurants
acdc49b34e65867781501926ad1a010209b4d83d
2022-06-20T09:55:29.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
lmqg
null
lmqg/t5-small-subjqa-vanilla-restaurants
0
null
transformers
38,246
Entry not found
lmqg/t5-small-subjqa-vanilla-tripadvisor
5db47dc5502273380cecbd907fe5873072ed1ab5
2022-06-18T14:20:28.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
lmqg
null
lmqg/t5-small-subjqa-vanilla-tripadvisor
0
null
transformers
38,247
Entry not found
vai6hav/wav2vec2-large-xls-r-300m-hindi-epochs15-colab
4d4c0bc6e8b62802c35eede813e6555d33a00d8b
2022-06-18T17:42:12.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
vai6hav
null
vai6hav/wav2vec2-large-xls-r-300m-hindi-epochs15-colab
0
null
transformers
38,248
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-hindi-epochs15-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-hindi-epochs15-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 3.5705 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | 20.2764 | 5.53 | 50 | 8.1197 | 1.0 | | 5.2964 | 11.11 | 100 | 3.5705 | 1.0 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
varie/poetry-generation-nextline-mbart-all-fi-single
1e6967b4ff151e6aa7963821c8e25977f327b61c
2022-06-18T17:52:23.000Z
[ "pytorch" ]
null
false
varie
null
varie/poetry-generation-nextline-mbart-all-fi-single
0
null
null
38,249
# poetry-generation-nextline-mbart-ws-fi-single * `nextline`: generates a poem line from previous line(s) * `mbart`: base model is [facebook/mbart-large-cc25](https://huggingface.co/facebook/mbart-large-cc25) * `all`: trained on data from Project Gutenberg, Wikisource, Poesia publishing house * `fi`: Finnish language * `single`: uses only last poem line as input for generation
zakria/Project_NLP
6750d09ec9590bd4803a0db03f836de82c2a38a4
2022-06-18T20:44:06.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
zakria
null
zakria/Project_NLP
0
null
transformers
38,250
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: Project_NLP results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Project_NLP This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5324 - Wer: 0.3355 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.5697 | 1.0 | 500 | 2.1035 | 0.9979 | | 0.8932 | 2.01 | 1000 | 0.5649 | 0.5621 | | 0.4363 | 3.01 | 1500 | 0.4326 | 0.4612 | | 0.3035 | 4.02 | 2000 | 0.4120 | 0.4191 | | 0.2343 | 5.02 | 2500 | 0.4199 | 0.3985 | | 0.1921 | 6.02 | 3000 | 0.4380 | 0.4043 | | 0.1549 | 7.03 | 3500 | 0.4456 | 0.3925 | | 0.1385 | 8.03 | 4000 | 0.4264 | 0.3871 | | 0.1217 | 9.04 | 4500 | 0.4744 | 0.3774 | | 0.1041 | 10.04 | 5000 | 0.4498 | 0.3745 | | 0.0968 | 11.04 | 5500 | 0.4716 | 0.3628 | | 0.0893 | 12.05 | 6000 | 0.4680 | 0.3764 | | 0.078 | 13.05 | 6500 | 0.5100 | 0.3623 | | 0.0704 | 14.06 | 7000 | 0.4893 | 0.3552 | | 0.0659 | 15.06 | 7500 | 0.4956 | 0.3565 | | 0.0578 | 16.06 | 8000 | 0.5450 | 0.3595 | | 0.0563 | 17.07 | 8500 | 0.4891 | 0.3614 | | 0.0557 | 18.07 | 9000 | 0.5307 | 0.3548 | | 0.0447 | 19.08 | 9500 | 0.4923 | 0.3493 | | 0.0456 | 20.08 | 10000 | 0.5156 | 0.3479 | | 0.0407 | 21.08 | 10500 | 0.4979 | 0.3389 | | 0.0354 | 22.09 | 11000 | 0.5549 | 0.3462 | | 0.0322 | 23.09 | 11500 | 0.5601 | 0.3439 | | 0.0342 | 24.1 | 12000 | 0.5131 | 0.3451 | | 0.0276 | 25.1 | 12500 | 0.5206 | 0.3392 | | 0.0245 | 26.1 | 13000 | 0.5337 | 0.3373 | | 0.0226 | 27.11 | 13500 | 0.5311 | 0.3353 | | 0.0229 | 28.11 | 14000 | 0.5375 | 0.3373 | | 0.0225 | 29.12 | 14500 | 0.5324 | 0.3355 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.12.1
nicolasfeyer/t5-small-finetuned-la-to-en
181f793e0095af7570451210fadf6bb8c6979ef8
2022-06-19T02:21:23.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
nicolasfeyer
null
nicolasfeyer/t5-small-finetuned-la-to-en
0
null
transformers
38,251
--- license: apache-2.0 tags: - generated_from_trainer metrics: - bleu model-index: - name: t5-small-finetuned-la-to-en results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-la-to-en This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.2297 - Bleu: 5.8915 - Gen Len: 16.2252 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:------:|:-------:| | 3.0883 | 1.0 | 4384 | 2.7499 | 2.8172 | 16.4068 | | 2.8854 | 2.0 | 8768 | 2.5664 | 3.8141 | 16.4581 | | 2.746 | 3.0 | 13152 | 2.4524 | 4.3903 | 16.3977 | | 2.6617 | 4.0 | 17536 | 2.3761 | 4.7858 | 16.3473 | | 2.6185 | 5.0 | 21920 | 2.3205 | 5.2502 | 16.3161 | | 2.573 | 6.0 | 26304 | 2.2763 | 5.4374 | 16.2916 | | 2.5285 | 7.0 | 30688 | 2.2489 | 5.628 | 16.2875 | | 2.4944 | 8.0 | 35072 | 2.2276 | 5.7201 | 16.291 | | 2.4749 | 9.0 | 39456 | 2.2164 | 5.8387 | 16.2795 | | 2.4741 | 10.0 | 43840 | 2.2129 | 5.8654 | 16.2789 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
huggingtweets/alpharad
759478816fa765d497ac0d1bc5cad6e7f86f39f6
2022-06-18T23:23:24.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/alpharad
0
null
transformers
38,252
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1529214002256965632/3nndhYzR_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">jacob alpharad</div> <div style="text-align: center; font-size: 14px;">@alpharad</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from jacob alpharad. | Data | jacob alpharad | | --- | --- | | Tweets downloaded | 3233 | | Retweets | 166 | | Short tweets | 762 | | Tweets kept | 2305 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1ebzgfhl/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @alpharad's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1cdy6a8d) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1cdy6a8d/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/alpharad') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
panapelli/BertinXNLI_uxv
26409988bdde9a923ff74fe62091520dd9cbeb4e
2022-06-19T00:41:56.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
panapelli
null
panapelli/BertinXNLI_uxv
0
null
transformers
38,253
Entry not found
gary109/ai-light-dance_singing_ft_wav2vec2-large-xlsr-53-5gram-v2
0e37304afcd04d6b5995e28f3d0f6440181e5bdf
2022-06-19T12:14:27.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "gary109/AI_Light_Dance", "generated_from_trainer", "model-index" ]
automatic-speech-recognition
false
gary109
null
gary109/ai-light-dance_singing_ft_wav2vec2-large-xlsr-53-5gram-v2
0
1
transformers
38,254
--- tags: - automatic-speech-recognition - gary109/AI_Light_Dance - generated_from_trainer model-index: - name: ai-light-dance_singing_ft_wav2vec2-large-xlsr-53-5gram-v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ai-light-dance_singing_ft_wav2vec2-large-xlsr-53-5gram-v2 This model is a fine-tuned version of [gary109/ai-light-dance_singing_ft_wav2vec2-large-xlsr-53-5gram-v1](https://huggingface.co/gary109/ai-light-dance_singing_ft_wav2vec2-large-xlsr-53-5gram-v1) on the GARY109/AI_LIGHT_DANCE - ONSET-SINGING dataset. It achieves the following results on the evaluation set: - Loss: 0.4313 - Wer: 0.1645 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 500 - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.148 | 1.0 | 552 | 0.4313 | 0.1645 | | 0.1301 | 2.0 | 1104 | 0.4365 | 0.1618 | | 0.1237 | 3.0 | 1656 | 0.4470 | 0.1595 | | 0.1063 | 4.0 | 2208 | 0.4593 | 0.1576 | | 0.128 | 5.0 | 2760 | 0.4525 | 0.1601 | | 0.1099 | 6.0 | 3312 | 0.4593 | 0.1567 | | 0.0969 | 7.0 | 3864 | 0.4625 | 0.1550 | | 0.0994 | 8.0 | 4416 | 0.4672 | 0.1543 | | 0.125 | 9.0 | 4968 | 0.4636 | 0.1544 | | 0.0887 | 10.0 | 5520 | 0.4601 | 0.1538 | ### Framework versions - Transformers 4.21.0.dev0 - Pytorch 1.9.1+cu102 - Datasets 2.3.3.dev0 - Tokenizers 0.12.1
lmqg/t5-large-squadshifts-vanilla-new_wiki
a59ab256976a21dae75dbc352c53fe1358b88aa5
2022-06-19T00:39:14.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
lmqg
null
lmqg/t5-large-squadshifts-vanilla-new_wiki
0
null
transformers
38,255
Entry not found
huggingtweets/mysta_rias
d7443490fb8163fd3ca00f5816e23ff95b339a96
2022-06-19T03:40:55.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/mysta_rias
0
null
transformers
38,256
--- language: en thumbnail: http://www.huggingtweets.com/mysta_rias/1655610050415/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1533221230102433792/Dz_O5gZ7_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Mysta Rias 🕵️‍♂️🦊 NIJISANJI EN</div> <div style="text-align: center; font-size: 14px;">@mysta_rias</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Mysta Rias 🕵️‍♂️🦊 NIJISANJI EN. | Data | Mysta Rias 🕵️‍♂️🦊 NIJISANJI EN | | --- | --- | | Tweets downloaded | 3245 | | Retweets | 296 | | Short tweets | 1005 | | Tweets kept | 1944 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3r8af65s/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mysta_rias's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/zqhadryd) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/zqhadryd/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/mysta_rias') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
zakria/NLP_Project
6243cd8203f1a6ab8dd70ca94d12a49f8be6076c
2022-06-19T09:55:56.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
zakria
null
zakria/NLP_Project
0
null
transformers
38,257
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: NLP_Project results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # NLP_Project This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5308 - Wer: 0.3428 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.5939 | 1.0 | 500 | 2.1356 | 1.0014 | | 0.9126 | 2.01 | 1000 | 0.5469 | 0.5354 | | 0.4491 | 3.01 | 1500 | 0.4636 | 0.4503 | | 0.3008 | 4.02 | 2000 | 0.4269 | 0.4330 | | 0.2229 | 5.02 | 2500 | 0.4164 | 0.4073 | | 0.188 | 6.02 | 3000 | 0.4717 | 0.4107 | | 0.1739 | 7.03 | 3500 | 0.4306 | 0.4031 | | 0.159 | 8.03 | 4000 | 0.4394 | 0.3993 | | 0.1342 | 9.04 | 4500 | 0.4462 | 0.3904 | | 0.1093 | 10.04 | 5000 | 0.4387 | 0.3759 | | 0.1005 | 11.04 | 5500 | 0.5033 | 0.3847 | | 0.0857 | 12.05 | 6000 | 0.4805 | 0.3876 | | 0.0779 | 13.05 | 6500 | 0.5269 | 0.3810 | | 0.072 | 14.06 | 7000 | 0.5109 | 0.3710 | | 0.0641 | 15.06 | 7500 | 0.4865 | 0.3638 | | 0.0584 | 16.06 | 8000 | 0.5041 | 0.3646 | | 0.0552 | 17.07 | 8500 | 0.4987 | 0.3537 | | 0.0535 | 18.07 | 9000 | 0.4947 | 0.3586 | | 0.0475 | 19.08 | 9500 | 0.5237 | 0.3647 | | 0.042 | 20.08 | 10000 | 0.5338 | 0.3561 | | 0.0416 | 21.08 | 10500 | 0.5068 | 0.3483 | | 0.0358 | 22.09 | 11000 | 0.5126 | 0.3532 | | 0.0334 | 23.09 | 11500 | 0.5213 | 0.3536 | | 0.0331 | 24.1 | 12000 | 0.5378 | 0.3496 | | 0.03 | 25.1 | 12500 | 0.5167 | 0.3470 | | 0.0254 | 26.1 | 13000 | 0.5245 | 0.3418 | | 0.0233 | 27.11 | 13500 | 0.5393 | 0.3456 | | 0.0232 | 28.11 | 14000 | 0.5279 | 0.3425 | | 0.022 | 29.12 | 14500 | 0.5308 | 0.3428 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.12.1
gary109/ai-light-dance_singing_ft_wav2vec2-large-xlsr-53-5gram-v3
77de3512121a6d01305204940b6d79d2a4d0118c
2022-06-20T00:32:38.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "gary109/AI_Light_Dance", "generated_from_trainer", "model-index" ]
automatic-speech-recognition
false
gary109
null
gary109/ai-light-dance_singing_ft_wav2vec2-large-xlsr-53-5gram-v3
0
null
transformers
38,258
--- tags: - automatic-speech-recognition - gary109/AI_Light_Dance - generated_from_trainer model-index: - name: ai-light-dance_singing_ft_wav2vec2-large-xlsr-53-5gram-v3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ai-light-dance_singing_ft_wav2vec2-large-xlsr-53-5gram-v3 This model is a fine-tuned version of [gary109/ai-light-dance_singing_ft_wav2vec2-large-xlsr-53-5gram-v1](https://huggingface.co/gary109/ai-light-dance_singing_ft_wav2vec2-large-xlsr-53-5gram-v1) on the GARY109/AI_LIGHT_DANCE - ONSET-SINGING dataset. It achieves the following results on the evaluation set: - Loss: 0.4301 - Wer: 0.1633 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 500 - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.1517 | 1.0 | 552 | 0.4301 | 0.1633 | | 0.1309 | 2.0 | 1104 | 0.4348 | 0.1629 | | 0.1237 | 3.0 | 1656 | 0.4611 | 0.1604 | | 0.1056 | 4.0 | 2208 | 0.4541 | 0.1574 | | 0.1236 | 5.0 | 2760 | 0.4669 | 0.1603 | | 0.1118 | 6.0 | 3312 | 0.4640 | 0.1567 | | 0.0916 | 7.0 | 3864 | 0.4678 | 0.1555 | | 0.1 | 8.0 | 4416 | 0.4705 | 0.1550 | | 0.1301 | 9.0 | 4968 | 0.4740 | 0.1551 | | 0.0885 | 10.0 | 5520 | 0.4702 | 0.1546 | ### Framework versions - Transformers 4.21.0.dev0 - Pytorch 1.9.1+cu102 - Datasets 2.3.3.dev0 - Tokenizers 0.12.1
lmqg/t5-large-squadshifts-vanilla-nyt
6bfe0f8664bc1c1030a383ffee84639da5e9e45a
2022-06-19T13:05:23.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
lmqg
null
lmqg/t5-large-squadshifts-vanilla-nyt
0
null
transformers
38,259
Entry not found
parinzee/mT5-small-thai-multiple-e2e-qg-numsep
2ff65422437fc86a0ca2ca4969f669e823ca9e33
2022-06-20T03:21:19.000Z
[ "pytorch", "mt5", "text2text-generation", "transformers", "license:agpl-3.0", "autotrain_compatible" ]
text2text-generation
false
parinzee
null
parinzee/mT5-small-thai-multiple-e2e-qg-numsep
0
null
transformers
38,260
--- license: agpl-3.0 ---
lmqg/t5-base-squadshifts-vanilla-reddit
2fa99f326e27b8cadfcda503b0780d24e9233798
2022-06-19T14:12:15.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
lmqg
null
lmqg/t5-base-squadshifts-vanilla-reddit
0
null
transformers
38,261
Entry not found
lmqg/t5-base-squadshifts-vanilla-amazon
ba68230c8e0b612a0a4e682a99a2eddd2421b3d9
2022-06-19T14:14:51.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
lmqg
null
lmqg/t5-base-squadshifts-vanilla-amazon
0
null
transformers
38,262
Entry not found
sasuke/opus-mt-en-ro-finetuned-en-to-ro
1cf1587a47127940cdd84cb32693aa938ab2290f
2022-06-20T01:17:24.000Z
[ "pytorch", "tensorboard", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
sasuke
null
sasuke/opus-mt-en-ro-finetuned-en-to-ro
0
null
transformers
38,263
Entry not found
huggingtweets/aktualnecz-lidovky-respekt_cz
5087d7ad3d038cd03f1d65c1377826454e80132a
2022-06-19T17:46:17.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/aktualnecz-lidovky-respekt_cz
0
null
transformers
38,264
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/869087268560134144/cn6Lujpu_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1496879672726110210/EFcjfPOD_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1415312701044232192/_2a0LBVd_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Lidovky.cz & Aktuálně.cz & Týdeník Respekt</div> <div style="text-align: center; font-size: 14px;">@aktualnecz-lidovky-respekt_cz</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Lidovky.cz & Aktuálně.cz & Týdeník Respekt. | Data | Lidovky.cz | Aktuálně.cz | Týdeník Respekt | | --- | --- | --- | --- | | Tweets downloaded | 3250 | 3250 | 3250 | | Retweets | 16 | 1284 | 1600 | | Short tweets | 0 | 1 | 29 | | Tweets kept | 3234 | 1965 | 1621 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2pw8532j/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @aktualnecz-lidovky-respekt_cz's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3jss7bff) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3jss7bff/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/aktualnecz-lidovky-respekt_cz') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/soundersfc
1709f93ea08f9f3c12231c0287c13701e9f183c9
2022-07-04T00:05:39.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/soundersfc
0
null
transformers
38,265
--- language: en thumbnail: http://www.huggingtweets.com/soundersfc/1656893134824/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1542935688026370048/DofQNu_P_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Seattle Sounders FC</div> <div style="text-align: center; font-size: 14px;">@soundersfc</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Seattle Sounders FC. | Data | Seattle Sounders FC | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 476 | | Short tweets | 148 | | Tweets kept | 2626 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/29216l8g/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @soundersfc's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/31kt4kvm) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/31kt4kvm/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/soundersfc') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
joshanashakya/codebert_sourcecode_nmt_ja2pn_50E_2e-05LR_16B_12E_12D
6930a2ed624385ddb0c5aa4e5833b0a402ec782e
2022-06-20T01:35:08.000Z
[ "pytorch", "encoder-decoder", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
joshanashakya
null
joshanashakya/codebert_sourcecode_nmt_ja2pn_50E_2e-05LR_16B_12E_12D
0
null
transformers
38,266
Entry not found
lmqg/t5-large-squadshifts-vanilla-reddit
3b9e8d2da774cdf6f9677c51a69df399717ca73b
2022-06-20T02:04:43.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
lmqg
null
lmqg/t5-large-squadshifts-vanilla-reddit
0
null
transformers
38,267
Entry not found
joshanashakya/codebert_sourcecode_nmt_pn2ja_50E_2e-05LR_16B_6E_6D
f4374a8a10e361a1c0b0f45520f2010916f8a4c4
2022-06-20T02:26:32.000Z
[ "pytorch", "encoder-decoder", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
joshanashakya
null
joshanashakya/codebert_sourcecode_nmt_pn2ja_50E_2e-05LR_16B_6E_6D
0
null
transformers
38,268
Entry not found
joshanashakya/codebert_sourcecode_nmt_ja2pn_50E_2e-05LR_16B_6E_6D
3d1b9aad7ffbedc165139c74af1a33520d3cfcfc
2022-06-20T02:29:12.000Z
[ "pytorch", "encoder-decoder", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
joshanashakya
null
joshanashakya/codebert_sourcecode_nmt_ja2pn_50E_2e-05LR_16B_6E_6D
0
null
transformers
38,269
Entry not found
huggingtweets/bartoszmilewski
379abd60f3fb37f770b50747853042aaf8723d73
2022-06-20T02:35:22.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/bartoszmilewski
0
null
transformers
38,270
--- language: en thumbnail: http://www.huggingtweets.com/bartoszmilewski/1655692518288/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1000136690/IslandBartosz_400x400.JPG&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Bartosz Milewski</div> <div style="text-align: center; font-size: 14px;">@bartoszmilewski</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Bartosz Milewski. | Data | Bartosz Milewski | | --- | --- | | Tweets downloaded | 3248 | | Retweets | 79 | | Short tweets | 778 | | Tweets kept | 2391 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2689vaqz/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bartoszmilewski's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1f1jpc3z) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1f1jpc3z/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/bartoszmilewski') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
sotoespinosa32/dummy-model
dc4204a29384bc30c703068b72daf43e46d7ecb0
2022-06-20T02:49:32.000Z
[ "pytorch", "camembert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
sotoespinosa32
null
sotoespinosa32/dummy-model
0
null
transformers
38,271
Entry not found
raesti/opus-mt-en-ro-finetuned-en-to-ro
bbd76066927ef823704c57d4a28809a26e41bf80
2022-06-20T04:33:54.000Z
[ "pytorch", "tensorboard", "marian", "text2text-generation", "dataset:wmt16", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
raesti
null
raesti/opus-mt-en-ro-finetuned-en-to-ro
0
null
transformers
38,272
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wmt16 metrics: - bleu model-index: - name: opus-mt-en-ro-finetuned-en-to-ro results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: wmt16 type: wmt16 args: ro-en metrics: - name: Bleu type: bleu value: 28.1507 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-en-ro-finetuned-en-to-ro This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-ro](https://huggingface.co/Helsinki-NLP/opus-mt-en-ro) on the wmt16 dataset. It achieves the following results on the evaluation set: - Loss: 1.2886 - Bleu: 28.1507 - Gen Len: 34.1136 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:| | 0.7437 | 1.0 | 38145 | 1.2886 | 28.1507 | 34.1136 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
joshanashakya/codebert_sourcecode_nmt_ja2pn_100E_2e-05LR_16B_12E_12D
753728dcd3a1f042d06f5f084123f298d92ccf51
2022-06-20T03:41:36.000Z
[ "pytorch", "encoder-decoder", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
joshanashakya
null
joshanashakya/codebert_sourcecode_nmt_ja2pn_100E_2e-05LR_16B_12E_12D
0
null
transformers
38,273
Entry not found
joshanashakya/codebert_sourcecode_nmt_ja2pn_100E_2e-05LR_16B_6E_6D
138d182e39c04319ea7ead5b9a384b8902750e8e
2022-06-20T06:24:28.000Z
[ "pytorch", "encoder-decoder", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
joshanashakya
null
joshanashakya/codebert_sourcecode_nmt_ja2pn_100E_2e-05LR_16B_6E_6D
0
null
transformers
38,274
Entry not found
taprosoft/layoutxlm-no-visual
b9a4afc4288f7da783e7ea72e944369efbe751d3
2022-06-20T07:28:01.000Z
[ "pytorch", "layoutlmv2", "transformers", "license:apache-2.0" ]
null
false
taprosoft
null
taprosoft/layoutxlm-no-visual
0
null
transformers
38,275
--- license: apache-2.0 ---
jacobbieker/dgmr
8a811fe7b2eb077cf5de69945e3c387dab9bf386
2022-06-20T07:43:41.000Z
[ "pytorch", "transformers", "nowcasting", "forecasting", "timeseries", "remote-sensing", "gan", "license:mit" ]
null
false
jacobbieker
null
jacobbieker/dgmr
0
1
transformers
38,276
--- license: mit tags: - nowcasting - forecasting - timeseries - remote-sensing - gan --- # DGMR ## Model description [More information needed] ## Intended uses & limitations [More information needed] ## How to use [More information needed] ## Limitations and bias [More information needed] ## Training data [More information needed] ## Training procedure [More information needed] ## Evaluation results [More information needed]
jacobbieker/dgmr-sampler
fb216ce042aafe3ae157f34cb0ec46d67fda3fc0
2022-06-20T07:50:50.000Z
[ "pytorch" ]
null
false
jacobbieker
null
jacobbieker/dgmr-sampler
0
null
null
38,277
Entry not found
jacobbieker/dgmr-discriminator
d631588c2cb6d5634c6cbd927bd22e2e0e64a379
2022-06-20T07:53:59.000Z
[ "pytorch" ]
null
false
jacobbieker
null
jacobbieker/dgmr-discriminator
0
null
null
38,278
Entry not found
jacobbieker/dgmr-latent-conditioning-stack
e4442a9ab5ab4c30fafa7ce388d98691f8bb0f17
2022-06-20T07:59:02.000Z
[ "pytorch" ]
null
false
jacobbieker
null
jacobbieker/dgmr-latent-conditioning-stack
0
null
null
38,279
Entry not found
jacobbieker/dgmr-context-conditioning-stack
c2ee62b4a5ec36a9a6966fbe2e96fd2e7fcec121
2022-06-20T08:00:11.000Z
[ "pytorch" ]
null
false
jacobbieker
null
jacobbieker/dgmr-context-conditioning-stack
0
null
null
38,280
Entry not found
sanchit-gandhi/wav2vec2-ctc-earnings22-baseline
c35a5f92d2d9b9bedec08dcbbbd30f41e95ac175
2022-06-20T12:12:32.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
sanchit-gandhi
null
sanchit-gandhi/wav2vec2-ctc-earnings22-baseline
0
null
transformers
38,281
Unrolled PT and FX weights of https://huggingface.co/sanchit-gandhi/flax-wav2vec2-ctc-earnings22-baseline/tree/main
Sampson2022/test
e8c530e049b610ed476b5b3ac084bcb5a417634d
2022-06-22T12:20:37.000Z
[ "pytorch" ]
null
false
Sampson2022
null
Sampson2022/test
0
null
null
38,282
Entry not found
lmqg/t5-large-squadshifts-vanilla-amazon
c4bb6c88290003e4db06fde28efb4355fe631c35
2022-06-20T13:44:02.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
lmqg
null
lmqg/t5-large-squadshifts-vanilla-amazon
0
null
transformers
38,283
Entry not found
lmqg/t5-large-subjqa-vanilla-books
d957daabe50bbf83ff53d4975fa5acd584d92652
2022-06-20T15:12:53.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
lmqg
null
lmqg/t5-large-subjqa-vanilla-books
0
null
transformers
38,284
Entry not found
varie/poetry-generation-nextline-mbart-all-fi-multi
1da3dd877fa79f51fa3c3a3bb06ef1c9ede761c8
2022-07-15T16:09:57.000Z
[ "pytorch" ]
null
false
varie
null
varie/poetry-generation-nextline-mbart-all-fi-multi
0
null
null
38,285
# poetry-generation-nextline-mbart-all-fi-multi * `nextline`: generates a poem line from previous line(s) * `mbart`: base model is [facebook/mbart-large-cc25](https://huggingface.co/facebook/mbart-large-cc25) * `all`: trained on data from Project Gutenberg, Wikisource, Poesia publishing house * `fi`: Finnish language * `multi`: uses first, second, and third last lines as input for generation
furyhawk/xlm-roberta-base-finetuned-panx-de
e5a43e4ff69b04d147491e31fbf6684a98856f85
2022-06-21T03:44:32.000Z
[ "pytorch", "xlm-roberta", "token-classification", "dataset:xtreme", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
furyhawk
null
furyhawk/xlm-roberta-base-finetuned-panx-de
0
null
transformers
38,286
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.865423959990907 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1360 - F1: 0.8654 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2552 | 1.0 | 525 | 0.1621 | 0.8216 | | 0.1292 | 2.0 | 1050 | 0.1409 | 0.8445 | | 0.084 | 3.0 | 1575 | 0.1360 | 0.8654 | ### Framework versions - Transformers 4.14.1 - Pytorch 1.9.1 - Datasets 1.12.1 - Tokenizers 0.10.3
huggingtweets/dougjballoon
4878057c95fddefe7f06b13118ead8de760ccca1
2022-06-20T16:22:56.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/dougjballoon
0
null
transformers
38,287
--- language: en thumbnail: http://www.huggingtweets.com/dougjballoon/1655742171463/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1449034383420182531/Ava9u8mK_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">New York Times Pitchbot</div> <div style="text-align: center; font-size: 14px;">@dougjballoon</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from New York Times Pitchbot. | Data | New York Times Pitchbot | | --- | --- | | Tweets downloaded | 3242 | | Retweets | 471 | | Short tweets | 214 | | Tweets kept | 2557 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1yayozkb/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dougjballoon's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3sese3rg) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3sese3rg/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/dougjballoon') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
ornil1/distilbert-base-uncased-finetuned-imdb
8d2d069f50775acfe696f455e634e405194e7263
2022-06-20T19:19:34.000Z
[ "pytorch", "tensorboard", "distilbert", "fill-mask", "dataset:imdb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
ornil1
null
ornil1/distilbert-base-uncased-finetuned-imdb
0
null
transformers
38,288
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 2.4721 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.7086 | 1.0 | 157 | 2.4897 | | 2.5796 | 2.0 | 314 | 2.4230 | | 2.5269 | 3.0 | 471 | 2.4354 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
mcimmy/DialoGPT-small-bob
e20a67712342911d217de2344e2cd628b186a9d1
2022-06-20T20:25:17.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
mcimmy
null
mcimmy/DialoGPT-small-bob
0
null
transformers
38,289
--- tags: - conversational --- # Spongebob DialoGPT
parinzee/mT5-small-thai-multiple-e2e-qg-aug-numsep
d06bd465d81eb9233576a65d28aef6aefa8c0dbb
2022-06-21T05:47:30.000Z
[ "pytorch", "mt5", "text2text-generation", "transformers", "license:agpl-3.0", "autotrain_compatible" ]
text2text-generation
false
parinzee
null
parinzee/mT5-small-thai-multiple-e2e-qg-aug-numsep
0
null
transformers
38,290
--- license: agpl-3.0 ---
gary109/ai-light-dance_singing_ft_wav2vec2-large-xlsr-53-5gram-v4
6a26f8b6eae5fc11bda226637f4aab6494058167
2022-06-22T02:22:03.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "gary109/AI_Light_Dance", "generated_from_trainer", "model-index" ]
automatic-speech-recognition
false
gary109
null
gary109/ai-light-dance_singing_ft_wav2vec2-large-xlsr-53-5gram-v4
0
1
transformers
38,291
--- tags: - automatic-speech-recognition - gary109/AI_Light_Dance - generated_from_trainer model-index: - name: ai-light-dance_singing_ft_wav2vec2-large-xlsr-53-5gram-v4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ai-light-dance_singing_ft_wav2vec2-large-xlsr-53-5gram-v4 This model is a fine-tuned version of [gary109/ai-light-dance_singing_ft_wav2vec2-large-xlsr-53-5gram-v2](https://huggingface.co/gary109/ai-light-dance_singing_ft_wav2vec2-large-xlsr-53-5gram-v2) on the GARY109/AI_LIGHT_DANCE - ONSET-SINGING dataset. It achieves the following results on the evaluation set: - Loss: 0.4231 - Wer: 0.1597 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.1335 | 1.0 | 138 | 0.4256 | 0.1605 | | 0.1288 | 2.0 | 276 | 0.4234 | 0.1602 | | 0.1278 | 3.0 | 414 | 0.4243 | 0.1597 | | 0.1345 | 4.0 | 552 | 0.4231 | 0.1597 | | 0.1344 | 5.0 | 690 | 0.4246 | 0.1597 | | 0.1237 | 6.0 | 828 | 0.4279 | 0.1595 | | 0.1109 | 7.0 | 966 | 0.4354 | 0.1573 | | 0.1247 | 8.0 | 1104 | 0.4318 | 0.1570 | | 0.1372 | 9.0 | 1242 | 0.4341 | 0.1573 | | 0.1256 | 10.0 | 1380 | 0.4328 | 0.1575 | ### Framework versions - Transformers 4.21.0.dev0 - Pytorch 1.9.1+cu102 - Datasets 2.3.3.dev0 - Tokenizers 0.12.1
huggingtweets/coinmamba
74a27714e8f24f8b10c3b32e5f66d75094a4a985
2022-06-21T10:44:21.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/coinmamba
0
null
transformers
38,292
--- language: en thumbnail: http://www.huggingtweets.com/coinmamba/1655808256840/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1523748536168464384/feZm38Pe_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">CoinMamba</div> <div style="text-align: center; font-size: 14px;">@coinmamba</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from CoinMamba. | Data | CoinMamba | | --- | --- | | Tweets downloaded | 3243 | | Retweets | 41 | | Short tweets | 608 | | Tweets kept | 2594 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2as2s722/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @coinmamba's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1zewdmar) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1zewdmar/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/coinmamba') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
kravchenko/uk-mt5-small-gec-synthetic
d76b4d198adc1fa2af7eff940cf9454c49591064
2022-06-21T12:59:30.000Z
[ "pytorch", "mt5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
kravchenko
null
kravchenko/uk-mt5-small-gec-synthetic
0
null
transformers
38,293
Entry not found
nielsr/test-flair-model
218b67f0c9a460213c160db5cc35f21e8ac30d7c
2022-06-21T13:06:55.000Z
[ "pytorch" ]
null
false
nielsr
null
nielsr/test-flair-model
0
null
null
38,294
Entry not found
lmqg/t5-large-subjqa-vanilla-movies
c464b7c98e6a245c7a67ceab115e737c51250ac6
2022-06-21T14:12:14.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
lmqg
null
lmqg/t5-large-subjqa-vanilla-movies
0
null
transformers
38,295
Entry not found
kravchenko/uk-mt5-small-gec-synthetic-2
8b7f9b414593fcfe49bc653b9ff4d0ddac1c3e89
2022-06-21T15:53:24.000Z
[ "pytorch", "mt5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
kravchenko
null
kravchenko/uk-mt5-small-gec-synthetic-2
0
null
transformers
38,296
Entry not found
lmqg/t5-large-subjqa-vanilla-restaurants
9527a00b24a547a65005d5fd22bdb40b030a824e
2022-06-21T15:32:37.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
lmqg
null
lmqg/t5-large-subjqa-vanilla-restaurants
0
null
transformers
38,297
Entry not found
lmqg/t5-large-subjqa-vanilla-tripadvisor
8aba68a9e689c073fe59fb2e1d891f3a57d320df
2022-06-21T17:21:22.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
lmqg
null
lmqg/t5-large-subjqa-vanilla-tripadvisor
0
null
transformers
38,298
Entry not found
lmqg/bart-large-squadshifts-new_wiki
b1e6a532040f53def77ac40a7bf2dd34bc7e5ac3
2022-06-22T10:45:16.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
lmqg
null
lmqg/bart-large-squadshifts-new_wiki
0
null
transformers
38,299
Entry not found