modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
huggingtweets/dakami
1cbc81417e5bffb5ca9aaac1654631509288d4ff
2021-05-22T00:15:49.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/dakami
1
null
transformers
29,300
--- language: en thumbnail: https://www.huggingtweets.com/dakami/1617343658924/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1781434177/kaminsky2_400x400.png')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Dan Kaminsky 🤖 AI Bot </div> <div style="font-size: 15px">@dakami bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@dakami's tweets](https://twitter.com/dakami). | Data | Quantity | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 133 | | Short tweets | 395 | | Tweets kept | 2722 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1lgryhzp/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dakami's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/tgfiubli) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/tgfiubli/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/dakami') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/damydothedishes
ea3045e9d24bfec5f17fc8375dc655de041a5a20
2021-05-22T00:23:40.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/damydothedishes
1
null
transformers
29,301
--- language: en thumbnail: https://www.huggingtweets.com/damydothedishes/1614113189615/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1349936650680492033/89ovSSF7_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Himbo Slice 🤖 AI Bot </div> <div style="font-size: 15px">@damydothedishes bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@damydothedishes's tweets](https://twitter.com/damydothedishes). | Data | Quantity | | --- | --- | | Tweets downloaded | 3150 | | Retweets | 510 | | Short tweets | 341 | | Tweets kept | 2299 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3jntufpd/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @damydothedishes's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2awoazq2) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2awoazq2/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/damydothedishes') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/danellisscience
ba19f04fa36d123da151ca20c5340ce2a0d13741
2021-05-22T00:31:09.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/danellisscience
1
null
transformers
29,302
--- language: en thumbnail: https://www.huggingtweets.com/danellisscience/1602254637048/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1188087980721950721/98ji2Wwq_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Daniel Ellis 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@danellisscience bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@danellisscience's tweets](https://twitter.com/danellisscience). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>532</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>107</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>30</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>395</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/3pv1wmct/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @danellisscience's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/1whytzxk) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/1whytzxk/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/danellisscience'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets) <!--- random size file -->
huggingtweets/dead__bug
ced6853c1f16b615a1e36ccca874d5f25f93a5f5
2021-07-25T16:53:13.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/dead__bug
1
null
transformers
29,303
--- language: en thumbnail: https://www.huggingtweets.com/dead__bug/1627231954071/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1349980097168740352/GSthZg8p_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">persona non greta</div> <div style="text-align: center; font-size: 14px;">@dead__bug</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from persona non greta. | Data | persona non greta | | --- | --- | | Tweets downloaded | 3095 | | Retweets | 449 | | Short tweets | 623 | | Tweets kept | 2023 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/oyzjw1jc/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dead__bug's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/20dghuyx) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/20dghuyx/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/dead__bug') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/deathbattlebot
3270a66bf4b8797d3bb2a3ce727b2a631691cee5
2021-07-19T06:42:58.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/deathbattlebot
1
null
transformers
29,304
--- language: en thumbnail: https://www.huggingtweets.com/deathbattlebot/1626676974616/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1295317265257238529/8q3IptgS_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Death Battle Bot</div> <div style="text-align: center; font-size: 14px;">@deathbattlebot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Death Battle Bot. | Data | Death Battle Bot | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 1 | | Short tweets | 20 | | Tweets kept | 3229 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1hcf8oqg/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @deathbattlebot's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2d0vuhj5) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2d0vuhj5/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/deathbattlebot') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/deddogoon
16620abf711a436a5a62cc22f1caee68e00c23d8
2022-04-29T03:16:19.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/deddogoon
1
null
transformers
29,305
--- language: en thumbnail: http://www.huggingtweets.com/deddogoon/1651202174338/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1460219777574907905/vsqt8Fcx_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">sadie 🦝</div> <div style="text-align: center; font-size: 14px;">@deddogoon</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from sadie 🦝. | Data | sadie 🦝 | | --- | --- | | Tweets downloaded | 2566 | | Retweets | 461 | | Short tweets | 788 | | Tweets kept | 1317 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2xu99dv1/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @deddogoon's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2i09ou5n) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2i09ou5n/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/deddogoon') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/deepleffen-dodo82j
89680517e2407ee5bacd9e1882b0af4f16cb70a3
2021-08-12T03:40:59.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/deepleffen-dodo82j
1
null
transformers
29,306
--- language: en thumbnail: https://www.huggingtweets.com/deepleffen-dodo82j/1628739655504/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1241879678455078914/e2EdZIrr_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1383905819217911808/AIWNRt5y_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Deep Leffen Bot & dodo82.jp</div> <div style="text-align: center; font-size: 14px;">@deepleffen-dodo82j</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Deep Leffen Bot & dodo82.jp. | Data | Deep Leffen Bot | dodo82.jp | | --- | --- | --- | | Tweets downloaded | 505 | 220 | | Retweets | 13 | 32 | | Short tweets | 26 | 26 | | Tweets kept | 466 | 162 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/q5s6fe5u/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @deepleffen-dodo82j's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3gbchfdc) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3gbchfdc/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/deepleffen-dodo82j') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/deliveroo_fr
adbda2d6f1aac6a63c28a2ec78a9d62bb7c7d20d
2021-12-10T19:38:51.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/deliveroo_fr
1
null
transformers
29,307
--- language: en thumbnail: http://www.huggingtweets.com/deliveroo_fr/1639165126235/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1460542430357381120/3QwgzK9N_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">🍕 Deliveroo France</div> <div style="text-align: center; font-size: 14px;">@deliveroo_fr</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from 🍕 Deliveroo France. | Data | 🍕 Deliveroo France | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 5 | | Short tweets | 209 | | Tweets kept | 3036 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/35lhnvsx/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @deliveroo_fr's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3544md47) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3544md47/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/deliveroo_fr') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/deliverydace
d198247a75c09200e00c922171f949af97525017
2021-05-22T01:17:16.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/deliverydace
1
null
transformers
29,308
--- language: en thumbnail: https://www.huggingtweets.com/deliverydace/1613630846956/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1335071835403284481/HWmtRssm_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Dace🐛🏠 🤖 AI Bot </div> <div style="font-size: 15px">@deliverydace bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@deliverydace's tweets](https://twitter.com/deliverydace). | Data | Quantity | | --- | --- | | Tweets downloaded | 2003 | | Retweets | 169 | | Short tweets | 329 | | Tweets kept | 1505 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1826o3k3/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @deliverydace's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/24r42zx0) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/24r42zx0/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/deliverydace') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/dervine7
b60a0a32c9d8c5f8414050cf458c0a6fcc97eede
2021-10-05T05:53:32.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/dervine7
1
null
transformers
29,309
--- language: en thumbnail: https://www.huggingtweets.com/dervine7/1633413178103/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1374540783202734082/5l7zt3RK_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Dev, Bride of Kripkenstein</div> <div style="text-align: center; font-size: 14px;">@dervine7</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Dev, Bride of Kripkenstein. | Data | Dev, Bride of Kripkenstein | | --- | --- | | Tweets downloaded | 3237 | | Retweets | 177 | | Short tweets | 272 | | Tweets kept | 2788 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2j2ia8ja/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dervine7's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/287itbe2) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/287itbe2/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/dervine7') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/derweise91
a8fda2efa72e1bb95eec7d64505955f60c81b0bc
2021-05-22T01:26:05.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/derweise91
1
null
transformers
29,310
--- language: en thumbnail: https://www.huggingtweets.com/derweise91/1616691639404/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1156676050576801792/_i8SOLw3_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">nathan, stuck on magic mountain 🤖 AI Bot </div> <div style="font-size: 15px">@derweise91 bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@derweise91's tweets](https://twitter.com/derweise91). | Data | Quantity | | --- | --- | | Tweets downloaded | 3233 | | Retweets | 468 | | Short tweets | 408 | | Tweets kept | 2357 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2cgk3c79/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @derweise91's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/yxo7yhz5) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/yxo7yhz5/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/derweise91') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/detnewsopinion
501ca4aa51a9058103c8182b8c57757ee60f17d6
2021-12-13T22:00:29.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/detnewsopinion
1
null
transformers
29,311
--- language: en thumbnail: http://www.huggingtweets.com/detnewsopinion/1639432824211/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/2096229264/tdn_stacked_onblack_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Detroit News Opinion</div> <div style="text-align: center; font-size: 14px;">@detnewsopinion</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Detroit News Opinion. | Data | Detroit News Opinion | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 527 | | Short tweets | 0 | | Tweets kept | 2723 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/gpe3yyem/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @detnewsopinion's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/zezrwsaf) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/zezrwsaf/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/detnewsopinion') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/deusdairyland
b278baddf09204c2c552f52ec6f7bfe5ff7901c1
2021-05-22T01:28:20.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/deusdairyland
1
null
transformers
29,312
--- language: en thumbnail: https://www.huggingtweets.com/deusdairyland/1616653373811/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1316517962736701441/OM7fxPiG_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Riley 🇺🇸 🤖 AI Bot </div> <div style="font-size: 15px">@deusdairyland bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@deusdairyland's tweets](https://twitter.com/deusdairyland). | Data | Quantity | | --- | --- | | Tweets downloaded | 908 | | Retweets | 136 | | Short tweets | 219 | | Tweets kept | 553 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/e8tma1u2/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @deusdairyland's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/146925y8) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/146925y8/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/deusdairyland') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/devtesla
793b8ca8ecb8f1f2b3290fa1387338eeed7bfb41
2021-05-22T01:32:41.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/devtesla
1
null
transformers
29,313
--- language: en thumbnail: https://www.huggingtweets.com/devtesla/1614137580281/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1059117502054195202/0NYJNcaD_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">an actual dog 🤖 AI Bot </div> <div style="font-size: 15px">@devtesla bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@devtesla's tweets](https://twitter.com/devtesla). | Data | Quantity | | --- | --- | | Tweets downloaded | 3164 | | Retweets | 1246 | | Short tweets | 222 | | Tweets kept | 1696 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3mgmikdu/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @devtesla's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/8vrkz503) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/8vrkz503/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/devtesla') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/diaz_de_leon
a785bb0e67215b3940e6c5bb62089e16c4d5755c
2021-05-22T01:39:44.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/diaz_de_leon
1
null
transformers
29,314
--- language: en thumbnail: https://www.huggingtweets.com/diaz_de_leon/1603509315873/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1245735185787822080/riKefvZr_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Carlos 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@diaz_de_leon bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@diaz_de_leon's tweets](https://twitter.com/diaz_de_leon). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>718</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>167</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>66</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>485</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/w8v47wri/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @diaz_de_leon's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/17bl278f) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/17bl278f/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/diaz_de_leon'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets) <!--- random size file -->
huggingtweets/digitalsolver1
5fb4615b23f3619a09ef37b4466d1eb917b1788c
2021-05-22T01:42:12.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/digitalsolver1
1
null
transformers
29,315
--- language: en thumbnail: https://www.huggingtweets.com/digitalsolver1/1616653735166/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1233161774444113920/7La7pvBs_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Digitalsolver 🤖 AI Bot </div> <div style="font-size: 15px">@digitalsolver1 bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@digitalsolver1's tweets](https://twitter.com/digitalsolver1). | Data | Quantity | | --- | --- | | Tweets downloaded | 291 | | Retweets | 112 | | Short tweets | 70 | | Tweets kept | 109 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/23z4oayh/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @digitalsolver1's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/237vwzkl) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/237vwzkl/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/digitalsolver1') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/digitalsoyboy
86d92c0d8a2a9ef3e82bd92dfe355185258eafd3
2021-05-22T01:43:24.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/digitalsoyboy
1
null
transformers
29,316
--- language: en thumbnail: https://www.huggingtweets.com/digitalsoyboy/1617805776990/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1305154265267212292/BSD6EVuq_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">george w kush 🤖 AI Bot </div> <div style="font-size: 15px">@digitalsoyboy bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@digitalsoyboy's tweets](https://twitter.com/digitalsoyboy). | Data | Quantity | | --- | --- | | Tweets downloaded | 3170 | | Retweets | 462 | | Short tweets | 369 | | Tweets kept | 2339 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/26qiav6i/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @digitalsoyboy's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3b4m8rf4) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3b4m8rf4/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/digitalsoyboy') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/disconcision
7504d70f658114b6659078716fcfce1ac5a3b83a
2021-05-22T01:46:36.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/disconcision
1
null
transformers
29,317
--- language: en thumbnail: https://www.huggingtweets.com/disconcision/1616643733458/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/983773516880232448/XsKqt1c8_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">andrew blinn 🤖 AI Bot </div> <div style="font-size: 15px">@disconcision bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@disconcision's tweets](https://twitter.com/disconcision). | Data | Quantity | | --- | --- | | Tweets downloaded | 2262 | | Retweets | 453 | | Short tweets | 159 | | Tweets kept | 1650 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/n4jrdsqh/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @disconcision's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2f36wyoh) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2f36wyoh/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/disconcision') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/divorceenforcer
28daaeff925acfb4caf8e3e4296a9fdadae7fb50
2021-05-22T01:47:53.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/divorceenforcer
1
null
transformers
29,318
--- language: en thumbnail: https://www.huggingtweets.com/divorceenforcer/1614097005501/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1362528219908476928/DGdEDaOH_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">malignant tzara 🤖 AI Bot </div> <div style="font-size: 15px">@divorceenforcer bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@divorceenforcer's tweets](https://twitter.com/divorceenforcer). | Data | Quantity | | --- | --- | | Tweets downloaded | 3148 | | Retweets | 1127 | | Short tweets | 574 | | Tweets kept | 1447 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2b3i6627/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @divorceenforcer's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/13x1aewb) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/13x1aewb/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/divorceenforcer') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/dkulchar
f0293bdb39e9160ffe768e8195426f3d84225972
2021-05-22T01:49:00.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/dkulchar
1
null
transformers
29,319
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1373813806179225602/dfnXLAJp_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">memphis milano enthusiast 🤖 AI Bot </div> <div style="font-size: 15px">@dkulchar bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@dkulchar's tweets](https://twitter.com/dkulchar). | Data | Quantity | | --- | --- | | Tweets downloaded | 3236 | | Retweets | 551 | | Short tweets | 569 | | Tweets kept | 2116 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3ar0h0xc/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dkulchar's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/v3hyz25i) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/v3hyz25i/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/dkulchar') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/drake
983c99a07a5332c534ec88beff9b45364871cbea
2021-09-14T23:32:28.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/drake
1
null
transformers
29,320
--- language: en thumbnail: https://www.huggingtweets.com/drake/1631662344811/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/563843814725402624/Vb8k670S_400x400.png&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Drizzy</div> <div style="text-align: center; font-size: 14px;">@drake</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Drizzy. | Data | Drizzy | | --- | --- | | Tweets downloaded | 1766 | | Retweets | 396 | | Short tweets | 151 | | Tweets kept | 1219 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/178j75wb/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @drake's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1gvmezqz) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1gvmezqz/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/drake') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/drew106
ca1083d803018e7c9fcf64b26e9100186094f633
2021-07-23T15:58:39.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/drew106
1
null
transformers
29,321
--- language: en thumbnail: https://www.huggingtweets.com/drew106/1627055915329/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1414914440231800840/vRSW6t9i_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Andrew Maragni 🇺🇸</div> <div style="text-align: center; font-size: 14px;">@drew106</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Andrew Maragni 🇺🇸. | Data | Andrew Maragni 🇺🇸 | | --- | --- | | Tweets downloaded | 3244 | | Retweets | 786 | | Short tweets | 176 | | Tweets kept | 2282 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/pfjcjeb0/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @drew106's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3e1rv18u) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3e1rv18u/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/drew106') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/dril-drilbot_neo-jril_bot
fb2af2182f287388a0274109d58b6be639184edb
2022-02-04T09:52:05.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/dril-drilbot_neo-jril_bot
1
null
transformers
29,322
--- language: en thumbnail: http://www.huggingtweets.com/dril-drilbot_neo-jril_bot/1643968320729/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/847818629840228354/VXyQHfn0_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1468502340634296326/gbl8-ltv_400x400.png&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1374924360780242944/-Q8NfgEr_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">wint & Jril & wintbot_neo</div> <div style="text-align: center; font-size: 14px;">@dril-drilbot_neo-jril_bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from wint & Jril & wintbot_neo. | Data | wint | Jril | wintbot_neo | | --- | --- | --- | --- | | Tweets downloaded | 3228 | 113 | 3241 | | Retweets | 475 | 0 | 315 | | Short tweets | 305 | 0 | 453 | | Tweets kept | 2448 | 113 | 2473 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/27nmrlyy/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dril-drilbot_neo-jril_bot's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/i64hq9wb) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/i64hq9wb/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/dril-drilbot_neo-jril_bot') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/dril-horse_ebooks
a4ca02707aecefd961382a99cd414b8613654423
2021-05-22T02:13:54.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/dril-horse_ebooks
1
null
transformers
29,323
--- language: en thumbnail: https://www.huggingtweets.com/dril-horse_ebooks/1621254059055/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/847818629840228354/VXyQHfn0_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1096005346/1_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">wint & Horse ebooks</div> <div style="text-align: center; font-size: 14px;">@dril-horse_ebooks</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from wint & Horse ebooks. | Data | wint | Horse ebooks | | --- | --- | --- | | Tweets downloaded | 3225 | 3200 | | Retweets | 458 | 0 | | Short tweets | 302 | 421 | | Tweets kept | 2465 | 2779 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/im94xdk8/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dril-horse_ebooks's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/8vo03p09) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/8vo03p09/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/dril-horse_ebooks') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/drsweety303
75ff2c36ad5a4fd9fea42e6cb20b73bb53c900fd
2022-06-05T12:49:47.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/drsweety303
1
null
transformers
29,324
--- language: en thumbnail: http://www.huggingtweets.com/drsweety303/1654433312789/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1377788200199065611/vkwcelvm_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Dr. Roberta Bobby</div> <div style="text-align: center; font-size: 14px;">@drsweety303</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Dr. Roberta Bobby. | Data | Dr. Roberta Bobby | | --- | --- | | Tweets downloaded | 3227 | | Retweets | 415 | | Short tweets | 346 | | Tweets kept | 2466 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3s665txj/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @drsweety303's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2eynd20x) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2eynd20x/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/drsweety303') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/drumbunkerdrag1
93a230f8f80582ed10c8605a23bb1348b0e09a6b
2021-05-22T02:21:16.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/drumbunkerdrag1
1
null
transformers
29,325
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1338105955188355074/gOecZ4jM_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Night the aeromorph 🤖 AI Bot </div> <div style="font-size: 15px">@drumbunkerdrag1 bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@drumbunkerdrag1's tweets](https://twitter.com/drumbunkerdrag1). | Data | Quantity | | --- | --- | | Tweets downloaded | 148 | | Retweets | 8 | | Short tweets | 27 | | Tweets kept | 113 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1sfm2bdn/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @drumbunkerdrag1's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2trykl4g) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2trykl4g/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/drumbunkerdrag1') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/dumb4funbp
e4af3e02373ce5b1e4b3062d370f18fd2b505db5
2021-05-22T02:25:06.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/dumb4funbp
1
null
transformers
29,326
--- language: en thumbnail: https://www.huggingtweets.com/dumb4funbp/1618513729086/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1376994919835787265/DzgB2L8i_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">cmeptb 🏴‍☠️🦜 🤖 AI Bot </div> <div style="font-size: 15px">@dumb4funbp bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@dumb4funbp's tweets](https://twitter.com/dumb4funbp). | Data | Quantity | | --- | --- | | Tweets downloaded | 2079 | | Retweets | 26 | | Short tweets | 354 | | Tweets kept | 1699 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/39zhdbbd/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dumb4funbp's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3pcmvoxb) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3pcmvoxb/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/dumb4funbp') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/earlofkaleb
4c67b425f46469cef16456656a675506b1682aef
2021-05-22T02:30:42.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/earlofkaleb
1
null
transformers
29,327
--- language: en thumbnail: https://www.huggingtweets.com/earlofkaleb/1616731018755/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1364741581018857478/341A0WZO_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Kaleb Earl 🤖 AI Bot </div> <div style="font-size: 15px">@earlofkaleb bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@earlofkaleb's tweets](https://twitter.com/earlofkaleb). | Data | Quantity | | --- | --- | | Tweets downloaded | 3178 | | Retweets | 2115 | | Short tweets | 179 | | Tweets kept | 884 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/sbhg8e8n/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @earlofkaleb's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2uv3mv45) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2uv3mv45/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/earlofkaleb') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/easimernull
a85e950ea173784085c1fe0923965466a71d19a8
2021-05-22T02:31:49.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/easimernull
1
null
transformers
29,328
--- language: en thumbnail: https://www.huggingtweets.com/easimernull/1617915987800/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1344636770613342209/ehNuDMEU_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">easimer 🤖 AI Bot </div> <div style="font-size: 15px">@easimernull bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@easimernull's tweets](https://twitter.com/easimernull). | Data | Quantity | | --- | --- | | Tweets downloaded | 3153 | | Retweets | 254 | | Short tweets | 1449 | | Tweets kept | 1450 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2v2cfr2j/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @easimernull's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3sm4oxtn) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3sm4oxtn/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/easimernull') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/eddiefisher24
cc539fc75e1ab049e58dae52e21387119ca4b23a
2021-12-06T23:41:47.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/eddiefisher24
1
null
transformers
29,329
--- language: en thumbnail: http://www.huggingtweets.com/eddiefisher24/1638834103068/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/913915780819013633/aE1adt7G_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Edward Fisher JR</div> <div style="text-align: center; font-size: 14px;">@eddiefisher24</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Edward Fisher JR. | Data | Edward Fisher JR | | --- | --- | | Tweets downloaded | 1339 | | Retweets | 212 | | Short tweets | 125 | | Tweets kept | 1002 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/26fekxoi/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @eddiefisher24's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/264vgsyc) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/264vgsyc/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/eddiefisher24') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/eggprophet
2f12c88d118546d1dcf29aeed0e89c732588b5d5
2021-05-22T02:43:43.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/eggprophet
1
null
transformers
29,330
--- language: en thumbnail: https://www.huggingtweets.com/eggprophet/1616613691016/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1373704622196527108/MBVtWtQp_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">egg of carton 🤖 AI Bot </div> <div style="font-size: 15px">@eggprophet bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@eggprophet's tweets](https://twitter.com/eggprophet). | Data | Quantity | | --- | --- | | Tweets downloaded | 3239 | | Retweets | 567 | | Short tweets | 744 | | Tweets kept | 1928 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3mzoiyit/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @eggprophet's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/11pgnwdu) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/11pgnwdu/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/eggprophet') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/elonmusk-iamcardib
5b12f8b73e34096634681aec2dda2d3591208a3c
2021-05-22T02:56:38.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/elonmusk-iamcardib
1
null
transformers
29,331
--- language: en thumbnail: https://www.huggingtweets.com/elonmusk-iamcardib/1620368852987/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('USER_PROFILE')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Elon Musk & iamcardib 🤖 AI Bot </div> <div style="font-size: 15px">@elonmusk-iamcardib bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@elonmusk-iamcardib's tweets](https://twitter.com/elonmusk-iamcardib). | Data | Quantity | | --- | --- | | Tweets downloaded | 1 | | Retweets | 1 | | Short tweets | 1 | | Tweets kept | 1 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/r5j6mpbw/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @elonmusk-iamcardib's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3dmpw314) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3dmpw314/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/elonmusk-iamcardib') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/elonmusk-kanyewest
124bf7d0ca9b88f5b2e27fe6834de6803dec6f0b
2021-10-29T17:29:10.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/elonmusk-kanyewest
1
null
transformers
29,332
--- language: en thumbnail: https://www.huggingtweets.com/elonmusk-kanyewest/1635528546431/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1442634650703237120/mXIcYtIs_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1276461929934942210/cqNhNk6v_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Elon Musk & ye</div> <div style="text-align: center; font-size: 14px;">@elonmusk-kanyewest</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Elon Musk & ye. | Data | Elon Musk | ye | | --- | --- | --- | | Tweets downloaded | 3249 | 1856 | | Retweets | 185 | 186 | | Short tweets | 853 | 573 | | Tweets kept | 2211 | 1097 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3ceinvzc/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @elonmusk-kanyewest's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/16csk8qn) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/16csk8qn/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/elonmusk-kanyewest') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/elonmusk-lateriser12-officialfpl
a01bbc25402da178f93b0e5f159417d5449aed5f
2021-06-23T08:14:10.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/elonmusk-lateriser12-officialfpl
1
null
transformers
29,333
--- language: en thumbnail: https://www.huggingtweets.com/elonmusk-lateriser12-officialfpl/1624436046730/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1404334078388670466/DgO3WL4S_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/935069556929941504/K-1hWYqV_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1041289003381604352/feioKyKN_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Elon Musk & Fantasy Premier League & Lateriser12</div> <div style="text-align: center; font-size: 14px;">@elonmusk-lateriser12-officialfpl</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Elon Musk & Fantasy Premier League & Lateriser12. | Data | Elon Musk | Fantasy Premier League | Lateriser12 | | --- | --- | --- | --- | | Tweets downloaded | 1600 | 3250 | 3247 | | Retweets | 97 | 732 | 158 | | Short tweets | 420 | 112 | 633 | | Tweets kept | 1083 | 2406 | 2456 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/kzv5wz9k/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @elonmusk-lateriser12-officialfpl's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/31sjj826) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/31sjj826/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/elonmusk-lateriser12-officialfpl') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/elonmusk-sagnikdatta129
213d538ec19a4f8a3a31d7f0a2305160ea069a67
2021-08-18T07:08:28.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/elonmusk-sagnikdatta129
1
null
transformers
29,334
--- language: en thumbnail: https://www.huggingtweets.com/elonmusk-sagnikdatta129/1629270504228/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1423663740344406029/l_-QOIHY_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/883987458408407041/AYnDxDBU_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Elon Musk & Sagnik Datta</div> <div style="text-align: center; font-size: 14px;">@elonmusk-sagnikdatta129</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Elon Musk & Sagnik Datta. | Data | Elon Musk | Sagnik Datta | | --- | --- | --- | | Tweets downloaded | 2040 | 3154 | | Retweets | 100 | 1014 | | Short tweets | 544 | 186 | | Tweets kept | 1396 | 1954 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/230voi17/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @elonmusk-sagnikdatta129's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2stw479u) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2stw479u/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/elonmusk-sagnikdatta129') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/elvisquote
b9f71e8c28a6f179aaf538b870d51d918c763164
2021-05-22T02:59:03.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/elvisquote
1
null
transformers
29,335
--- language: en thumbnail: https://www.huggingtweets.com/elvisquote/1613325734267/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/505353950682697729/s-q9Gw2u_400x400.jpeg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Elvis Presley Quotes 🤖 AI Bot </div> <div style="font-size: 15px">@elvisquote bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@elvisquote's tweets](https://twitter.com/elvisquote). | Data | Quantity | | --- | --- | | Tweets downloaded | 63 | | Retweets | 0 | | Short tweets | 0 | | Tweets kept | 63 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/50bwnf2r/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @elvisquote's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2i2fv6f9) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2i2fv6f9/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/elvisquote') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/emanon_knockoff
71e3ad7ff049c195c01350b42786562f47614d0b
2021-05-22T03:01:46.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/emanon_knockoff
1
null
transformers
29,336
--- language: en thumbnail: https://www.huggingtweets.com/emanon_knockoff/1617907141642/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1364619185129668609/2KgW1cQR_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">laine 🤖 AI Bot </div> <div style="font-size: 15px">@emanon_knockoff bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@emanon_knockoff's tweets](https://twitter.com/emanon_knockoff). | Data | Quantity | | --- | --- | | Tweets downloaded | 3211 | | Retweets | 448 | | Short tweets | 639 | | Tweets kept | 2124 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3v97qkp1/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @emanon_knockoff's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/afwvvpm6) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/afwvvpm6/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/emanon_knockoff') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/endlessoffal
f278ce86eb2c7f7768f8ca39e9b792f4c057d453
2021-05-22T03:08:50.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/endlessoffal
1
null
transformers
29,337
--- language: en thumbnail: https://www.huggingtweets.com/endlessoffal/1617845283715/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1372304475486965764/JrTJe3i9_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Great Value Abu Ghraib 🤖 AI Bot </div> <div style="font-size: 15px">@endlessoffal bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@endlessoffal's tweets](https://twitter.com/endlessoffal). | Data | Quantity | | --- | --- | | Tweets downloaded | 677 | | Retweets | 354 | | Short tweets | 104 | | Tweets kept | 219 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3a9boxro/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @endlessoffal's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3mfqyzwf) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3mfqyzwf/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/endlessoffal') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/entirelyuseles
73b96ca3aaa345369c86bbb4d646a5c52637dbe2
2021-05-22T03:14:14.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/entirelyuseles
1
null
transformers
29,338
--- language: en thumbnail: https://www.huggingtweets.com/entirelyuseles/1617928940747/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://abs.twimg.com/sticky/default_profile_images/default_profile_400x400.png')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">entirelyuseless 🤖 AI Bot </div> <div style="font-size: 15px">@entirelyuseles bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@entirelyuseles's tweets](https://twitter.com/entirelyuseles). | Data | Quantity | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 2 | | Short tweets | 87 | | Tweets kept | 3161 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3hx68b7j/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @entirelyuseles's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2egv4x12) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2egv4x12/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/entirelyuseles') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/erictopol
55ef3e57c05fc0c371e931ab88b90d4632d8cca6
2021-05-22T03:23:47.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/erictopol
1
null
transformers
29,339
--- language: en thumbnail: https://www.huggingtweets.com/erictopol/1603504337198/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1115688713424519169/kHgDk5TV_400x400.png')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Eric Topol 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@erictopol bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@erictopol's tweets](https://twitter.com/erictopol). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3215</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>217</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>110</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>2888</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/3uqm4l1s/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @erictopol's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/2r98oz1j) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/2r98oz1j/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/erictopol'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets) <!--- random size file -->
huggingtweets/erikmcoronado
9229e8be87d8913517d7f57a9fa931fefc161ef6
2021-05-22T03:25:05.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/erikmcoronado
1
null
transformers
29,340
--- language: en thumbnail: https://www.huggingtweets.com/erikmcoronado/1616696972159/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1372627176911212551/zTl50P7T_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Erik 🤖 AI Bot </div> <div style="font-size: 15px">@erikmcoronado bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@erikmcoronado's tweets](https://twitter.com/erikmcoronado). | Data | Quantity | | --- | --- | | Tweets downloaded | 3153 | | Retweets | 880 | | Short tweets | 865 | | Tweets kept | 1408 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1fdtxazs/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @erikmcoronado's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3m6lni5s) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3m6lni5s/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/erikmcoronado') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/erilies
e1f5834f3a67a1f1845c50d0d1b9cc0577deec46
2021-06-08T10:39:49.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
huggingtweets
null
huggingtweets/erilies
1
null
transformers
29,341
<?xml version="1.0" encoding="utf-8"?> <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> <html> <head> <title>503 Service Unavailable</title> </head> <body> <h1>Error 503 Service Unavailable</h1> <p>Service Unavailable</p> <h3>Guru Mediation:</h3> <p>Details: cache-wdc5522-WDC 1623148785 664418368</p> <hr> <p>Varnish cache server</p> </body> </html>
huggingtweets/esjhanez
8ec96d0ae8d2f992e077b823c88bf777d336b727
2021-05-22T03:27:54.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/esjhanez
1
null
transformers
29,342
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1240625242072023044/Jruquom7_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">jhanez jhobbes, jhilosopher 🤖 AI Bot </div> <div style="font-size: 15px">@esjhanez bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@esjhanez's tweets](https://twitter.com/esjhanez). | Data | Quantity | | --- | --- | | Tweets downloaded | 2313 | | Retweets | 266 | | Short tweets | 197 | | Tweets kept | 1850 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3cebik9o/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @esjhanez's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3ot7nfwp) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3ot7nfwp/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/esjhanez') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/evandknox
95dd2b82b2278e42c47ab365726f79af28776021
2021-05-22T03:35:25.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/evandknox
1
null
transformers
29,343
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1343999703776518144/ZWju8o9V_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Evan Knox 🤖 AI Bot </div> <div style="font-size: 15px">@evandknox bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@evandknox's tweets](https://twitter.com/evandknox). | Data | Quantity | | --- | --- | | Tweets downloaded | 848 | | Retweets | 98 | | Short tweets | 53 | | Tweets kept | 697 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1oe57zgg/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @evandknox's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1zossq8w) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1zossq8w/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/evandknox') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/fastfwdco
11310878e60213fafa698c2c991064063f4da557
2021-09-30T16:24:59.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/fastfwdco
1
null
transformers
29,344
--- language: en thumbnail: https://www.huggingtweets.com/fastfwdco/1633019095463/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/713653445262237696/mdyVSGoj_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">fastfwd</div> <div style="text-align: center; font-size: 14px;">@fastfwdco</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from fastfwd. | Data | fastfwd | | --- | --- | | Tweets downloaded | 947 | | Retweets | 60 | | Short tweets | 5 | | Tweets kept | 882 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/35uhk2zt/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @fastfwdco's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/24nk44tw) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/24nk44tw/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/fastfwdco') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/femawalmart
a36772173154b806cb9cee3fcec78c28f1d372d2
2021-05-22T04:03:07.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/femawalmart
1
null
transformers
29,345
--- language: en thumbnail: https://www.huggingtweets.com/femawalmart/1609143235673/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1301465003308982273/R8kAG77__400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">liam 🎅🗡🔜 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@femawalmart bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@femawalmart's tweets](https://twitter.com/femawalmart). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3077</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>497</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>620</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>1960</td> </tr> </tbody> </table> [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2q9q9o6r/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @femawalmart's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3ogpvjlp) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3ogpvjlp/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/femawalmart'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/fkuhlmeier
eba1b39e3f8423a56542b4067c725bae1802fd82
2021-05-22T04:17:58.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/fkuhlmeier
1
null
transformers
29,346
--- language: en thumbnail: https://www.huggingtweets.com/fkuhlmeier/1603890209601/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1302368056266625024/DjCeJU-T_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Florian Onur 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@fkuhlmeier bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@fkuhlmeier's tweets](https://twitter.com/fkuhlmeier). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>168</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>96</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>12</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>60</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/yb58yalp/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @fkuhlmeier's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/9cqebx43) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/9cqebx43/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/fkuhlmeier'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets) <!--- random size file -->
huggingtweets/florestantan
1b72a63ce9c87790892673d05e26dca6478768b3
2021-05-22T04:23:05.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/florestantan
1
null
transformers
29,347
--- language: en thumbnail: https://www.huggingtweets.com/florestantan/1617209255342/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1374903267277340679/T2ztG3zQ_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">lucas 🤖 AI Bot </div> <div style="font-size: 15px">@florestantan bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@florestantan's tweets](https://twitter.com/florestantan). | Data | Quantity | | --- | --- | | Tweets downloaded | 3235 | | Retweets | 137 | | Short tweets | 509 | | Tweets kept | 2589 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/35n5ntba/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @florestantan's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1uo0luuy) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1uo0luuy/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/florestantan') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/foraburton
89ad5b99bb169e80c0796e6d82947c44f7be2f18
2021-05-22T04:26:52.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/foraburton
1
null
transformers
29,348
--- language: en thumbnail: https://www.huggingtweets.com/foraburton/1617034949571/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1340949437397385217/g_G-ZToS_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Andrew Burton 🤖 AI Bot </div> <div style="font-size: 15px">@foraburton bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@foraburton's tweets](https://twitter.com/foraburton). | Data | Quantity | | --- | --- | | Tweets downloaded | 1512 | | Retweets | 276 | | Short tweets | 72 | | Tweets kept | 1164 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/35eak77p/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @foraburton's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/zrto18xz) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/zrto18xz/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/foraburton') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/formernumber-wmason_iv-wyattmaxon
8eb6ce6dce05c14554e2d36a603d71b02bd82076
2021-08-23T19:46:02.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/formernumber-wmason_iv-wyattmaxon
1
null
transformers
29,349
--- language: en thumbnail: https://www.huggingtweets.com/formernumber-wmason_iv-wyattmaxon/1629747957743/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1426270160311099396/RCvfusRc_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1426556736610226179/6XDFWyJh_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1416488512300503052/FgE6teHE_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">NaN & MaX 🎤 & ivy 🥩🎙️</div> <div style="text-align: center; font-size: 14px;">@formernumber-wmason_iv-wyattmaxon</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from NaN & MaX 🎤 & ivy 🥩🎙️. | Data | NaN | MaX 🎤 | ivy 🥩🎙️ | | --- | --- | --- | --- | | Tweets downloaded | 3250 | 3250 | 3249 | | Retweets | 148 | 420 | 266 | | Short tweets | 507 | 232 | 372 | | Tweets kept | 2595 | 2598 | 2611 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1s1v908g/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @formernumber-wmason_iv-wyattmaxon's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3j3kexu1) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3j3kexu1/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/formernumber-wmason_iv-wyattmaxon') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/frankietime
07ad076e099051272c51912e733316714e539f41
2021-05-22T04:31:28.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/frankietime
1
null
transformers
29,350
--- language: en thumbnail: https://www.huggingtweets.com/frankietime/1614097133105/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1358283159759167489/6h6CFiXX_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Frankie i'm going to die 🤖 AI Bot </div> <div style="font-size: 15px">@frankietime bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@frankietime's tweets](https://twitter.com/frankietime). | Data | Quantity | | --- | --- | | Tweets downloaded | 1336 | | Retweets | 511 | | Short tweets | 167 | | Tweets kept | 658 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2gnhwo1u/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @frankietime's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2mifzn5p) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2mifzn5p/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/frankietime') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/fredricksonra
a9b759483922e448fb73579d32ad05c725a2e942
2021-09-28T02:27:24.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/fredricksonra
1
null
transformers
29,351
--- language: en thumbnail: https://www.huggingtweets.com/fredricksonra/1632796041349/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1421105879408066565/hBHx-Rvl_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Rica af, she/her 🗽🏳️‍🌈</div> <div style="text-align: center; font-size: 14px;">@fredricksonra</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Rica af, she/her 🗽🏳️‍🌈. | Data | Rica af, she/her 🗽🏳️‍🌈 | | --- | --- | | Tweets downloaded | 3208 | | Retweets | 2893 | | Short tweets | 47 | | Tweets kept | 268 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3k0pcnmp/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @fredricksonra's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/123sil9f) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/123sil9f/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/fredricksonra') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/frootcakee
f8623558836c4498a65759c25fb1e64fa5591acc
2021-05-22T04:45:02.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/frootcakee
1
null
transformers
29,352
--- language: en thumbnail: https://www.huggingtweets.com/frootcakee/1617907737980/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1345057374625738753/UORuzXiL_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Froo 🤖 AI Bot </div> <div style="font-size: 15px">@frootcakee bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@frootcakee's tweets](https://twitter.com/frootcakee). | Data | Quantity | | --- | --- | | Tweets downloaded | 3189 | | Retweets | 993 | | Short tweets | 723 | | Tweets kept | 1473 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3l5bwy96/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @frootcakee's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2fx0tm4j) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2fx0tm4j/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/frootcakee') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/ftuuky
7a8747930b7a741ca41b001360101cfed792d51c
2021-05-22T04:46:06.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/ftuuky
1
null
transformers
29,353
--- language: en thumbnail: https://www.huggingtweets.com/ftuuky/1616618051190/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1200867464466317313/_Q24D6X9_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">FM 🤖 AI Bot </div> <div style="font-size: 15px">@ftuuky bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@ftuuky's tweets](https://twitter.com/ftuuky). | Data | Quantity | | --- | --- | | Tweets downloaded | 966 | | Retweets | 342 | | Short tweets | 74 | | Tweets kept | 550 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3ogn4aj0/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ftuuky's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/11u77t7x) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/11u77t7x/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/ftuuky') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/gaybats1999
5f4708728f8b1ea5c564f6be3cafd2d54aa3f59c
2021-05-22T05:07:04.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/gaybats1999
1
null
transformers
29,354
--- language: en thumbnail: https://www.huggingtweets.com/gaybats1999/1614135497450/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1361159012990013445/rVk0X1DL_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">alphonse⛓️🦇🌹 🤖 AI Bot </div> <div style="font-size: 15px">@gaybats1999 bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@gaybats1999's tweets](https://twitter.com/gaybats1999). | Data | Quantity | | --- | --- | | Tweets downloaded | 2783 | | Retweets | 999 | | Short tweets | 225 | | Tweets kept | 1559 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/39y8clnw/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @gaybats1999's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2mzsqlq3) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2mzsqlq3/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/gaybats1999') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/gaypizzaboy
6ab149977446a737f31739f4b24b633e0966a546
2021-05-22T05:10:40.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/gaypizzaboy
1
null
transformers
29,355
--- language: en thumbnail: https://www.huggingtweets.com/gaypizzaboy/1614169105934/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1350934729525178370/VHPqhIcr_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">value bastard 🤖 AI Bot </div> <div style="font-size: 15px">@gaypizzaboy bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@gaypizzaboy's tweets](https://twitter.com/gaypizzaboy). | Data | Quantity | | --- | --- | | Tweets downloaded | 3138 | | Retweets | 1548 | | Short tweets | 147 | | Tweets kept | 1443 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1vxwbfva/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @gaypizzaboy's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2t6winba) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2t6winba/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/gaypizzaboy') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/geckogirl0
9553524f5f55d5e0dd4fbb970624045b46112f88
2021-05-22T05:12:50.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/geckogirl0
1
null
transformers
29,356
--- language: en thumbnail: https://www.huggingtweets.com/geckogirl0/1617784269558/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1377855294655623169/hlahDP3v_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">craz 🗿 🤖 AI Bot </div> <div style="font-size: 15px">@geckogirl0 bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@geckogirl0's tweets](https://twitter.com/geckogirl0). | Data | Quantity | | --- | --- | | Tweets downloaded | 3132 | | Retweets | 1313 | | Short tweets | 225 | | Tweets kept | 1594 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2qub6zq7/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @geckogirl0's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1wc0a99s) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1wc0a99s/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/geckogirl0') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/geilehirnbude
fbefa676d7c105b5ee952b9df23eedcda672cc2a
2021-05-22T05:15:11.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/geilehirnbude
1
null
transformers
29,357
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo_share.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('http://pbs.twimg.com/profile_images/517689241812627456/pyBGyEo__400x400.jpeg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Lutz Büch 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@geilehirnbude bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@geilehirnbude's tweets](https://twitter.com/geilehirnbude). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3116</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>2906</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>53</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>157</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/wt8lffrr/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @geilehirnbude's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/1u8augcw) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/1u8augcw/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/geilehirnbude'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/gilational
98a82eaeeca23fb6f68f14a86e842916b418e396
2021-05-22T05:26:44.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/gilational
1
null
transformers
29,358
--- language: en thumbnail: https://www.huggingtweets.com/gilational/1616731790752/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1227031157088411648/E3Tx20nH_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Gilational 🤖 AI Bot </div> <div style="font-size: 15px">@gilational bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@gilational's tweets](https://twitter.com/gilational). | Data | Quantity | | --- | --- | | Tweets downloaded | 32 | | Retweets | 0 | | Short tweets | 1 | | Tweets kept | 31 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3b638003/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @gilational's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/37tpk9wh) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/37tpk9wh/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/gilational') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/gimoyin
dc9de6bfe3e16a8eb77a2be6ee550e50b6d1c59f
2021-05-22T05:28:08.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/gimoyin
1
null
transformers
29,359
--- language: en thumbnail: https://www.huggingtweets.com/gimoyin/1614111899984/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1241598015405621251/RfMwNmc__400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Lake Yin 🤖 AI Bot </div> <div style="font-size: 15px">@gimoyin bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@gimoyin's tweets](https://twitter.com/gimoyin). | Data | Quantity | | --- | --- | | Tweets downloaded | 961 | | Retweets | 636 | | Short tweets | 31 | | Tweets kept | 294 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1leyvbxk/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @gimoyin's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/y78zi5ra) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/y78zi5ra/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/gimoyin') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/glacius_gaming
cf9c82fce6f36478f25b53f4fe6a29677a09e909
2021-05-22T05:37:00.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/glacius_gaming
1
null
transformers
29,360
--- language: en thumbnail: https://www.huggingtweets.com/glacius_gaming/1609012743315/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1338234899430600708/CGlmDFfZ_400x400.png')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Glacius 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@glacius_gaming bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@glacius_gaming's tweets](https://twitter.com/glacius_gaming). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3197</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>352</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>851</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>1994</td> </tr> </tbody> </table> [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3udvez1f/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @glacius_gaming's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1w01n2c4) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1w01n2c4/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/glacius_gaming'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/gojomo
5ca54d6de82ffad56b3da28aee14d054cb5fd99f
2021-05-22T05:50:12.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/gojomo
1
null
transformers
29,361
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/752977934562959361/V2ZYUvDN_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Gordon Mohr ꧁👁👁꧂ 🤖 AI Bot </div> <div style="font-size: 15px">@gojomo bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@gojomo's tweets](https://twitter.com/gojomo). | Data | Quantity | | --- | --- | | Tweets downloaded | 3248 | | Retweets | 224 | | Short tweets | 251 | | Tweets kept | 2773 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3n28dkpx/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @gojomo's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/uusd4gca) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/uusd4gca/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/gojomo') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/goodtweet_man
fa78c1dd6270cf94ec5f8c38687e7639e80fe49c
2021-07-26T06:09:24.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/goodtweet_man
1
null
transformers
29,362
--- language: en thumbnail: https://www.huggingtweets.com/goodtweet_man/1627279760723/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1347063976585293826/11EjcLnX_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Good Tweetman</div> <div style="text-align: center; font-size: 14px;">@goodtweet_man</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Good Tweetman. | Data | Good Tweetman | | --- | --- | | Tweets downloaded | 3225 | | Retweets | 734 | | Short tweets | 643 | | Tweets kept | 1848 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2czt5qbq/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @goodtweet_man's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/tanvki3u) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/tanvki3u/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/goodtweet_man') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/gpt2drilpapa
fc120df506a8461eb2077b98dee909b50cf955c6
2021-05-22T06:00:25.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/gpt2drilpapa
1
null
transformers
29,363
--- language: en thumbnail: https://www.huggingtweets.com/gpt2drilpapa/1611164765660/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1317293570496266241/skdF2SBu_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">AI Wint Pontifex 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@gpt2drilpapa bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@gpt2drilpapa's tweets](https://twitter.com/gpt2drilpapa). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>218</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>22</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>3</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>193</td> </tr> </tbody> </table> [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1yjlghvn/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @gpt2drilpapa's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/m5q357m9) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/m5q357m9/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/gpt2drilpapa'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/gr8ful_ted
266c5077ff7510a75da2de16029c9d552937fab0
2021-05-22T06:03:05.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/gr8ful_ted
1
null
transformers
29,364
--- language: en thumbnail: https://www.huggingtweets.com/gr8ful_ted/1614111887321/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1362578535244648451/QGyOr2Y6_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">🌈ISⒶ//TED🃏🪳🍋 🤖 AI Bot </div> <div style="font-size: 15px">@gr8ful_ted bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@gr8ful_ted's tweets](https://twitter.com/gr8ful_ted). | Data | Quantity | | --- | --- | | Tweets downloaded | 3192 | | Retweets | 347 | | Short tweets | 657 | | Tweets kept | 2188 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2pvs8733/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @gr8ful_ted's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/evv8duo0) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/evv8duo0/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/gr8ful_ted') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/guilleangeris
e8a875d59022f1827491045bb3a3b66a652ea17a
2021-05-22T06:20:27.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/guilleangeris
1
null
transformers
29,365
--- language: en thumbnail: https://www.huggingtweets.com/guilleangeris/1616612740170/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1374400679704363008/amonFoGB_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Guillermo Angeris 🤖 AI Bot </div> <div style="font-size: 15px">@guilleangeris bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@guilleangeris's tweets](https://twitter.com/guilleangeris). | Data | Quantity | | --- | --- | | Tweets downloaded | 3230 | | Retweets | 273 | | Short tweets | 303 | | Tweets kept | 2654 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1tg19y8a/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @guilleangeris's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2shp18hb) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2shp18hb/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/guilleangeris') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/guyfoxday
08a2a17cfa8947313b15c9f74939051500f983e8
2021-05-22T06:21:31.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/guyfoxday
1
null
transformers
29,366
--- language: en thumbnail: https://www.huggingtweets.com/guyfoxday/1617809504933/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1281714306749468672/ksZeHrw5_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">GuyFoxDay 🤖 AI Bot </div> <div style="font-size: 15px">@guyfoxday bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@guyfoxday's tweets](https://twitter.com/guyfoxday). | Data | Quantity | | --- | --- | | Tweets downloaded | 3244 | | Retweets | 561 | | Short tweets | 316 | | Tweets kept | 2367 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/o580jv43/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @guyfoxday's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3rf94m3w) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3rf94m3w/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/guyfoxday') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/habiba_shoukry-yourfavhwhw
aff86221bd6bdd59000933c3c91a0ea68b78d7b5
2021-08-26T14:27:29.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/habiba_shoukry-yourfavhwhw
1
null
transformers
29,367
--- language: en thumbnail: https://www.huggingtweets.com/habiba_shoukry-yourfavhwhw/1629988046175/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1423284698046865415/vfSSZ3t9_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1419852056282681354/8GlUQCan_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">🥴 & Habiba.</div> <div style="text-align: center; font-size: 14px;">@habiba_shoukry-yourfavhwhw</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from 🥴 & Habiba.. | Data | 🥴 | Habiba. | | --- | --- | --- | | Tweets downloaded | 3246 | 3239 | | Retweets | 57 | 188 | | Short tweets | 524 | 842 | | Tweets kept | 2665 | 2209 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/9yp9ftet/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @habiba_shoukry-yourfavhwhw's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/30vbu11w) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/30vbu11w/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/habiba_shoukry-yourfavhwhw') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/hansvestberg
ba42e2887463ae81343c35422ce553625a551e53
2021-05-22T06:36:06.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/hansvestberg
1
null
transformers
29,368
--- language: en thumbnail: https://www.huggingtweets.com/hansvestberg/1603208643411/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1131567101620236288/5xgFhTdC_400x400.png')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Hans Vestberg 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@hansvestberg bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@hansvestberg's tweets](https://twitter.com/hansvestberg). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>2015</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>724</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>38</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>1253</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/1igrey9f/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @hansvestberg's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/1zzvxvhc) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/1zzvxvhc/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/hansvestberg'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets) <!--- random size file -->
huggingtweets/harishkgarg
2f5bd5b1e8eaeb92277b8dd31ffd9eeb536ec0cf
2021-07-03T11:49:01.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/harishkgarg
1
null
transformers
29,369
--- language: en thumbnail: https://www.huggingtweets.com/harishkgarg/1625312937710/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1320617833106006017/Quwape-G_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Harish Garg</div> <div style="text-align: center; font-size: 14px;">@harishkgarg</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Harish Garg. | Data | Harish Garg | | --- | --- | | Tweets downloaded | 3246 | | Retweets | 328 | | Short tweets | 366 | | Tweets kept | 2552 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2tl8dz55/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @harishkgarg's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3853sjv0) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3853sjv0/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/harishkgarg') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/harmchair
f91081869370dc1f6636b3239b2e5c5a5027bd97
2021-05-22T06:38:47.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/harmchair
1
null
transformers
29,370
--- language: en thumbnail: https://www.huggingtweets.com/harmchair/1621198521107/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1365265161108488199/iHbOA3pa_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">OldOldboy</div> <div style="text-align: center; font-size: 14px;">@harmchair</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from OldOldboy. | Data | OldOldboy | | --- | --- | | Tweets downloaded | 2989 | | Retweets | 1909 | | Short tweets | 119 | | Tweets kept | 961 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/7np3bbn9/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @harmchair's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2maud2dh) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2maud2dh/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/harmchair') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/hbmmaster
78bd6aa6ad674cdcda406f4916a5fb76def6c68a
2021-05-22T06:42:13.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/hbmmaster
1
null
transformers
29,371
--- language: en thumbnail: https://www.huggingtweets.com/hbmmaster/1617594144648/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/752645987496321024/aqxY2YGQ_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">jan Misali 🤖 AI Bot </div> <div style="font-size: 15px">@hbmmaster bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@hbmmaster's tweets](https://twitter.com/hbmmaster). | Data | Quantity | | --- | --- | | Tweets downloaded | 3184 | | Retweets | 1022 | | Short tweets | 670 | | Tweets kept | 1492 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/142ozrj7/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @hbmmaster's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1lbhksi6) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1lbhksi6/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/hbmmaster') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/history
92ed578d363298c4879c6c319cf741879febba12
2021-05-22T06:56:58.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/history
1
null
transformers
29,372
--- language: en thumbnail: https://www.huggingtweets.com/history/1605859215676/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1323296791060729856/knWLBrkl_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">HISTORY 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@history bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@history's tweets](https://twitter.com/history). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3204</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>202</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>83</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>2919</td> </tr> </tbody> </table> [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2p707drp/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @history's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/dvbo5tvs) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/dvbo5tvs/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/history'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets) <!--- random size file -->
huggingtweets/hustlenconquer-nocodepiper
9add93f170dad02816aa82a9c884c68025b6d40f
2021-07-07T08:38:19.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/hustlenconquer-nocodepiper
1
null
transformers
29,373
--- language: en thumbnail: https://www.huggingtweets.com/hustlenconquer-nocodepiper/1625647094650/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1410198055534710787/MWQhi2jp_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1404094020150693888/LQnyM5vj_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Nocodepiper & HUSTLE & CONQUER</div> <div style="text-align: center; font-size: 14px;">@hustlenconquer-nocodepiper</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Nocodepiper & HUSTLE & CONQUER. | Data | Nocodepiper | HUSTLE & CONQUER | | --- | --- | --- | | Tweets downloaded | 1652 | 2721 | | Retweets | 281 | 19 | | Short tweets | 259 | 240 | | Tweets kept | 1112 | 2462 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/vdyvbiis/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @hustlenconquer-nocodepiper's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/sltkk6jw) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/sltkk6jw/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/hustlenconquer-nocodepiper') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/hva
4c48db1d679318b10031fb545ea90cb7e0ae4e41
2021-05-22T07:22:21.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/hva
1
null
transformers
29,374
--- language: en thumbnail: https://www.huggingtweets.com/hva/1606144762147/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1315573755066961920/I3tZCUi1_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Hogeschool van Amsterdam (HvA) 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@hva bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@hva's tweets](https://twitter.com/hva). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3241</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>840</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>94</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>2307</td> </tr> </tbody> </table> [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2esbwpsa/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @hva's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/xbh9gr6f) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/xbh9gr6f/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/hva'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets) <!--- random size file -->
huggingtweets/i_am_kirook
55e1ae29cb431f6dd7c65d58e6e3c125a5606dd3
2021-05-22T07:27:15.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/i_am_kirook
1
null
transformers
29,375
--- language: en thumbnail: https://www.huggingtweets.com/i_am_kirook/1614143839460/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1161880961904103427/JVRYr0AS_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Kirook 🤖 AI Bot </div> <div style="font-size: 15px">@i_am_kirook bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@i_am_kirook's tweets](https://twitter.com/i_am_kirook). | Data | Quantity | | --- | --- | | Tweets downloaded | 3036 | | Retweets | 2210 | | Short tweets | 98 | | Tweets kept | 728 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/eha93a65/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @i_am_kirook's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1oalyp1r) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1oalyp1r/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/i_am_kirook') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/i_run_i_think
91dc5aec1f35e5f7346fa9af68738e7a9fbf335c
2021-05-22T07:30:49.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/i_run_i_think
1
null
transformers
29,376
--- language: en thumbnail: https://www.huggingtweets.com/i_run_i_think/1616778591703/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1268449773406822400/hVJx4jei_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Fabio Tollon 🤖 AI Bot </div> <div style="font-size: 15px">@i_run_i_think bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@i_run_i_think's tweets](https://twitter.com/i_run_i_think). | Data | Quantity | | --- | --- | | Tweets downloaded | 185 | | Retweets | 35 | | Short tweets | 14 | | Tweets kept | 136 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1b5v8pky/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @i_run_i_think's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1v3tivge) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1v3tivge/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/i_run_i_think') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/ian_thefemale
5c953ef3a579e63e9ae5272af8808c79a47dccda
2021-05-22T07:38:39.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/ian_thefemale
1
null
transformers
29,377
--- language: en thumbnail: https://www.huggingtweets.com/ian_thefemale/1603890036259/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1318561335144255493/nFRJb6rV_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Ëen 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@ian_thefemale bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@ian_thefemale's tweets](https://twitter.com/ian_thefemale). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3176</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>1505</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>237</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>1434</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/68w7ljwn/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ian_thefemale's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/1gt4fg11) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/1gt4fg11/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/ian_thefemale'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets) <!--- random size file -->
huggingtweets/ibaillanos
7bcd5a1502d8aed45440ed8f83ba94df8ccf8714
2022-01-09T18:36:11.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/ibaillanos
1
null
transformers
29,378
--- language: en thumbnail: http://www.huggingtweets.com/ibaillanos/1641753367000/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1476303212672131074/kuPm3Cvp_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Ibai</div> <div style="text-align: center; font-size: 14px;">@ibaillanos</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Ibai. | Data | Ibai | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 28 | | Short tweets | 669 | | Tweets kept | 2553 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3qyv6lsf/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ibaillanos's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/cxnkmkg6) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/cxnkmkg6/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/ibaillanos') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/ica_csab
dd6cc42483612e23d599ea9c2c6c9c73a8584413
2021-05-22T07:43:28.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/ica_csab
1
null
transformers
29,379
--- language: en thumbnail: https://www.huggingtweets.com/ica_csab/1609602488446/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1129436437219168257/eYJ-Fjl9_400x400.png')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Comm Sci 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@ica_csab bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@ica_csab's tweets](https://twitter.com/ica_csab). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>1867</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>947</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>32</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>888</td> </tr> </tbody> </table> [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/qqqm6bwp/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ica_csab's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2oqp0es9) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2oqp0es9/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/ica_csab'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/idph
5ad8ec75b030e852a60b48f24735810497e41fcf
2021-05-22T07:45:36.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/idph
1
null
transformers
29,380
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/875446048998789125/iVF4liQA_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">IDPH 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@idph bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@idph's tweets](https://twitter.com/idph). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3199</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>686</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>39</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>2474</td> </tr> </tbody> </table> [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/awgsk010/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @idph's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/dkm56a09) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/dkm56a09/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/idph'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/ifalioncould
ee3f24b0fcdb951c580697ddd55295641f6c1ba0
2021-05-22T07:46:44.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/ifalioncould
1
null
transformers
29,381
--- language: en thumbnail: https://www.huggingtweets.com/ifalioncould/1616645565200/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/936385475966853122/aupJEMFs_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">dr talking lion 🤖 AI Bot </div> <div style="font-size: 15px">@ifalioncould bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@ifalioncould's tweets](https://twitter.com/ifalioncould). | Data | Quantity | | --- | --- | | Tweets downloaded | 2009 | | Retweets | 128 | | Short tweets | 216 | | Tweets kept | 1665 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/e4hxlqen/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ifalioncould's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2vgstw4b) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2vgstw4b/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/ifalioncould') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/igorbrigadir
c200c9bd908ed36330d4ca24961f24fd1681ba9f
2021-05-22T07:49:20.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/igorbrigadir
1
null
transformers
29,382
--- language: en thumbnail: https://www.huggingtweets.com/igorbrigadir/1602255688129/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/2538946114/xiveugt78rc97y1dasxf_400x400.jpeg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Igor Brigadir 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@igorbrigadir bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@igorbrigadir's tweets](https://twitter.com/igorbrigadir). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3223</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>203</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>467</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>2553</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/3ojr6cz9/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @igorbrigadir's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/1ccw9bid) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/1ccw9bid/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/igorbrigadir'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets) <!--- random size file -->
huggingtweets/ihyjuju
feb1cd4947ef994adbecab38a5e3e48ed6f84b8f
2021-12-29T01:31:59.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/ihyjuju
1
null
transformers
29,383
--- language: en thumbnail: http://www.huggingtweets.com/ihyjuju/1640741515385/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1448859687449862147/frVD6mW3_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">juju 💰</div> <div style="text-align: center; font-size: 14px;">@ihyjuju</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from juju 💰. | Data | juju 💰 | | --- | --- | | Tweets downloaded | 3248 | | Retweets | 1 | | Short tweets | 478 | | Tweets kept | 2769 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3n82hqbg/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ihyjuju's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1t6rclcz) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1t6rclcz/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/ihyjuju') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/ildiazm
6290831a8572b569402dd6c58c5e3993cfd104fb
2021-05-22T07:52:21.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/ildiazm
1
null
transformers
29,384
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('http://pbs.twimg.com/profile_images/2429657879/vq8ux7qvn4ljg9oh7zzu_400x400.jpeg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Iván Díaz 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@ildiazm bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@ildiazm's tweets](https://twitter.com/ildiazm). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>574</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>72</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>12</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>490</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/3cn99ecb/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ildiazm's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/167ssmah) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/167ssmah/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/ildiazm'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/infinitedodge
835a8a716d82031ea288318d6488d39cbe24d0e8
2021-05-22T08:15:54.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/infinitedodge
1
null
transformers
29,385
--- language: en thumbnail: https://www.huggingtweets.com/infinitedodge/1614135156383/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1346117150621257728/FeSBhcrN_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">RIP TO THE VILLIAN 🤖 AI Bot </div> <div style="font-size: 15px">@infinitedodge bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@infinitedodge's tweets](https://twitter.com/infinitedodge). | Data | Quantity | | --- | --- | | Tweets downloaded | 2774 | | Retweets | 1524 | | Short tweets | 123 | | Tweets kept | 1127 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/qerz9onf/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @infinitedodge's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2gw3u22x) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2gw3u22x/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/infinitedodge') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/ingroupist
35a6e4f4fc7edc38f5e4263c7168da378f668348
2021-05-22T08:20:19.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/ingroupist
1
null
transformers
29,386
--- language: en thumbnail: https://www.huggingtweets.com/ingroupist/1616685344882/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1346164467130884098/8w4pqpbj_400x400.png')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">borghisattva 🤖 AI Bot </div> <div style="font-size: 15px">@ingroupist bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@ingroupist's tweets](https://twitter.com/ingroupist). | Data | Quantity | | --- | --- | | Tweets downloaded | 154 | | Retweets | 0 | | Short tweets | 0 | | Tweets kept | 154 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/fl5icybp/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ingroupist's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/218gj8om) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/218gj8om/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/ingroupist') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/insharamin-prathkum-saviomartin7
fc6bf5ade791c579906c4f93c8b36a25185da8b5
2021-11-26T10:18:51.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/insharamin-prathkum-saviomartin7
1
null
transformers
29,387
--- language: en thumbnail: http://www.huggingtweets.com/insharamin-prathkum-saviomartin7/1637920907734/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1418652395119153153/dvMUbHmM_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1449364913890074627/SNmSlTYD_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1450840619132260357/r9rdJtIp_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Pratham & Insha & Savio Martin ⚡️</div> <div style="text-align: center; font-size: 14px;">@insharamin-prathkum-saviomartin7</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Pratham & Insha & Savio Martin ⚡️. | Data | Pratham | Insha | Savio Martin ⚡️ | | --- | --- | --- | --- | | Tweets downloaded | 3246 | 3249 | 3249 | | Retweets | 461 | 24 | 118 | | Short tweets | 317 | 457 | 201 | | Tweets kept | 2468 | 2768 | 2930 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/o7jfvmhp/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @insharamin-prathkum-saviomartin7's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/p2md0wva) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/p2md0wva/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/insharamin-prathkum-saviomartin7') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/interro__bang
3024eb16161ecefa7e68a9051f5cdd432e027476
2021-05-22T08:26:56.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/interro__bang
1
null
transformers
29,388
--- language: en thumbnail: https://www.huggingtweets.com/interro__bang/1616611219490/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1374410731358019593/eBVT1vhW_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Spark Of Inquiry 🤖 AI Bot </div> <div style="font-size: 15px">@interro__bang bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@interro__bang's tweets](https://twitter.com/interro__bang). | Data | Quantity | | --- | --- | | Tweets downloaded | 114 | | Retweets | 2 | | Short tweets | 19 | | Tweets kept | 93 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1k112d2n/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @interro__bang's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/uppi8vz0) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/uppi8vz0/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/interro__bang') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/investorstheory-steveonspeed
ef67e1336bfc88a94c1152ff12cd09feea99d9f4
2021-05-27T02:01:11.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/investorstheory-steveonspeed
1
null
transformers
29,389
--- language: en thumbnail: https://www.huggingtweets.com/investorstheory-steveonspeed/1622080865723/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1306312443388334081/oABG6C1L_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1393211665001459713/gobLbDve_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Steve | Millionaire Habits & Investor's Theory</div> <div style="text-align: center; font-size: 14px;">@investorstheory-steveonspeed</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Steve | Millionaire Habits & Investor's Theory. | Data | Steve | Millionaire Habits | Investor's Theory | | --- | --- | --- | | Tweets downloaded | 3245 | 3250 | | Retweets | 330 | 168 | | Short tweets | 320 | 660 | | Tweets kept | 2595 | 2422 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2yk0pwia/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @investorstheory-steveonspeed's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3hmaq3cx) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3hmaq3cx/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/investorstheory-steveonspeed') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/itsbigian
bc341c64d06fd1b5d323093fc7fbae44db5b79fd
2021-05-22T08:39:20.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/itsbigian
1
null
transformers
29,390
--- language: en thumbnail: https://www.huggingtweets.com/itsbigian/1616883483325/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1346051916556623875/e66ZNvO2_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Big Ian 🤖 AI Bot </div> <div style="font-size: 15px">@itsbigian bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@itsbigian's tweets](https://twitter.com/itsbigian). | Data | Quantity | | --- | --- | | Tweets downloaded | 3238 | | Retweets | 218 | | Short tweets | 552 | | Tweets kept | 2468 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2oczo3b8/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @itsbigian's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/245obnds) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/245obnds/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/itsbigian') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/jackieracc_
09d6944d9bc642313383c306bae28cd30f4d8bbc
2021-05-22T08:56:27.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/jackieracc_
1
null
transformers
29,391
--- language: en thumbnail: https://www.huggingtweets.com/jackieracc_/1620680912006/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1365531191470923776/iPBbGURg_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">JackieRacc_VTuber</div> <div style="text-align: center; font-size: 14px;">@jackieracc_</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from JackieRacc_VTuber. | Data | JackieRacc_VTuber | | --- | --- | | Tweets downloaded | 3249 | | Retweets | 252 | | Short tweets | 827 | | Tweets kept | 2170 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/gx7e8h18/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @jackieracc_'s tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1cvwo68s) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1cvwo68s/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/jackieracc_') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/jagedn
387e4f457ace77738072d915ae4b974f56f46f98
2021-06-30T14:12:02.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/jagedn
1
null
transformers
29,392
--- language: en thumbnail: https://www.huggingtweets.com/jagedn/1625062317603/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1410183697534439426/Db5MDUaw_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Programo, luego existo</div> <div style="text-align: center; font-size: 14px;">@jagedn</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Programo, luego existo. | Data | Programo, luego existo | | --- | --- | | Tweets downloaded | 3244 | | Retweets | 549 | | Short tweets | 220 | | Tweets kept | 2475 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/ptz28obp/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @jagedn's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1i8g6srp) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1i8g6srp/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/jagedn') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/jamesclear
bdec06a55dd80bdedac5dbe5038218e4e0b4f342
2021-05-22T09:04:48.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/jamesclear
1
null
transformers
29,393
--- language: en thumbnail: https://www.huggingtweets.com/jamesclear/1616666243525/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/958932211973152769/FUpkmn4u_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">James Clear 🤖 AI Bot </div> <div style="font-size: 15px">@jamesclear bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@jamesclear's tweets](https://twitter.com/jamesclear). | Data | Quantity | | --- | --- | | Tweets downloaded | 3247 | | Retweets | 190 | | Short tweets | 385 | | Tweets kept | 2672 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2hvyoab9/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @jamesclear's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/v67076s3) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/v67076s3/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/jamesclear') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/jamz5251
d98bed39abd4ef9a2dbe3472ba3b70b7a1b60958
2021-05-30T10:30:56.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/jamz5251
1
null
transformers
29,394
--- language: en thumbnail: https://www.huggingtweets.com/jamz5251/1622370618440/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1375502415240122373/JO1DArJT_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Jamila Husain</div> <div style="text-align: center; font-size: 14px;">@jamz5251</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Jamila Husain. | Data | Jamila Husain | | --- | --- | | Tweets downloaded | 3234 | | Retweets | 900 | | Short tweets | 65 | | Tweets kept | 2269 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/r9z40rld/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @jamz5251's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/20gadkdv) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/20gadkdv/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/jamz5251') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/jattazo
2de3be4ecedc440ec95d197691c1956ecd7fa045
2021-05-22T09:13:32.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/jattazo
1
null
transformers
29,395
--- language: en thumbnail: https://www.huggingtweets.com/jattazo/1620679164511/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1370572501269553152/Tl_3viV2_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">🧠Jattazo Shin🧠 !!COMMISSIONS OPEN!!</div> <div style="text-align: center; font-size: 14px;">@jattazo</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from 🧠Jattazo Shin🧠 !!COMMISSIONS OPEN!!. | Data | 🧠Jattazo Shin🧠 !!COMMISSIONS OPEN!! | | --- | --- | | Tweets downloaded | 3243 | | Retweets | 196 | | Short tweets | 757 | | Tweets kept | 2290 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/oc8tbgql/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @jattazo's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/7n3lt4bb) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/7n3lt4bb/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/jattazo') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/jattazoshin
6b8b20a1514220b9cf10bcff57ae65536dd32265
2021-05-22T09:14:46.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/jattazoshin
1
null
transformers
29,396
--- language: en thumbnail: https://www.huggingtweets.com/jattazoshin/1613105660546/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1356081411762040834/9L5GPrEi_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">🧠Jattazo Shin🧠 🤖 AI Bot </div> <div style="font-size: 15px">@jattazoshin bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@jattazoshin's tweets](https://twitter.com/jattazoshin). | Data | Quantity | | --- | --- | | Tweets downloaded | 2768 | | Retweets | 179 | | Short tweets | 414 | | Tweets kept | 2175 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2gto8yaa/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @jattazoshin's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1gdg6xx3) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1gdg6xx3/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/jattazoshin') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/javorszky
4f7198091f20e0e1dca7feec4aa169e212c933e9
2021-05-22T09:19:38.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/javorszky
1
null
transformers
29,397
--- language: en thumbnail: https://www.huggingtweets.com/javorszky/1602234108282/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/922569683420794880/bk2ERDe2_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Gabor Javorszky 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@javorszky bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@javorszky's tweets](https://twitter.com/javorszky). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3137</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>2139</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>67</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>931</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/1cyr2cuz/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @javorszky's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/2sa503ur) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/2sa503ur/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/javorszky'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets) <!--- random size file -->
huggingtweets/jematrics
aa22ed5facba3e2fb370d89a55a1aa1a279e740f
2021-05-22T09:31:15.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/jematrics
1
null
transformers
29,398
--- language: en thumbnail: https://www.huggingtweets.com/jematrics/1617891433167/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1280520627531780096/1kM9No10_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Jemma 🤖 AI Bot </div> <div style="font-size: 15px">@jematrics bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@jematrics's tweets](https://twitter.com/jematrics). | Data | Quantity | | --- | --- | | Tweets downloaded | 1860 | | Retweets | 131 | | Short tweets | 437 | | Tweets kept | 1292 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/mkienuu2/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @jematrics's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2ztizvjf) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2ztizvjf/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/jematrics') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/jmlepstein
c29736bdea3b891e53dbaf9a97a20a480f46d4bf
2021-05-22T09:45:14.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/jmlepstein
1
null
transformers
29,399
--- language: en thumbnail: https://www.huggingtweets.com/jmlepstein/1616644934198/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1361886758514827264/9c2tO5mH_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Jeffrey Mark Epstein 🤖 AI Bot </div> <div style="font-size: 15px">@jmlepstein bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@jmlepstein's tweets](https://twitter.com/jmlepstein). | Data | Quantity | | --- | --- | | Tweets downloaded | 687 | | Retweets | 136 | | Short tweets | 31 | | Tweets kept | 520 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2nouh38r/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @jmlepstein's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/wraxaefs) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/wraxaefs/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/jmlepstein') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)