repo_id
stringlengths 4
110
| author
stringlengths 2
27
⌀ | model_type
stringlengths 2
29
⌀ | files_per_repo
int64 2
15.4k
| downloads_30d
int64 0
19.9M
| library
stringlengths 2
37
⌀ | likes
int64 0
4.34k
| pipeline
stringlengths 5
30
⌀ | pytorch
bool 2
classes | tensorflow
bool 2
classes | jax
bool 2
classes | license
stringlengths 2
30
| languages
stringlengths 4
1.63k
⌀ | datasets
stringlengths 2
2.58k
⌀ | co2
stringclasses 29
values | prs_count
int64 0
125
| prs_open
int64 0
120
| prs_merged
int64 0
15
| prs_closed
int64 0
28
| discussions_count
int64 0
218
| discussions_open
int64 0
148
| discussions_closed
int64 0
70
| tags
stringlengths 2
513
| has_model_index
bool 2
classes | has_metadata
bool 1
class | has_text
bool 1
class | text_length
int64 401
598k
| is_nc
bool 1
class | readme
stringlengths 0
598k
| hash
stringlengths 32
32
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
cafeai/cafe-instagram-sd-1-5-v6 | cafeai | null | 4 | 0 | null | 62 | null | false | false | false | agpl-3.0 | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | [] | false | true | true | 1,645 | false |
# Cafe Instagram Unofficial Test v2
This is a test model created to assess the Waifu Diffusion training code, and not intended to be a full-featured or official release.
This model has been trained from `runwayml/stable-diffusion-v1-5` for approximately 1.6 epochs on 1.2m images total from various Instagram accounts (primarily Japanese). As the model is undertrained, its performance is marginal. Mixing the model is recommended for better performance.
Natural language descriptions (using BLIP), as well as [booru tags](https://huggingface.co/SmilingWolf/wd-v1-4-vit-tagger) have been used to assist in captioning. Any Instagram hashtags were also included in the caption data.
*Note: Training was done using various aspect ratios, with a base resolution of 768x768, as well as the penultimate CLIP layer. Clip skip of 2 and a resolution of 768x768 or higher is recommended for generations.*

Example:
```
waifu, instagram, cute girl, japaneseidol, idol, アイドル, 自撮り女子, photorealistic, photo, 可愛い, kawaii, cute, gravure, fashion, 1girl, solo, cleavage, cowboy shot
Negative prompt: (((mutated hands and fingers))), ((poorly drawn hands)), ((poorly drawn face)), (((mutation))), (((deformed face))), ((ugly)), ((bad anatomy)), (((bad proportions))), (((extra limbs))), extra face, ((double head)), ((extra head)), (big breast), (((extra feet))), monster, (text), (logo), (blurry), text, english text, watermark, logo, (((anime)))
```
This model is released under the aGPL. You can use this for whatever you like. If you make changes, share them.
| 4563c92c96812209b1bc54e465375264 |
JiachengLi/uctopic-base | JiachengLi | luke | 10 | 128 | transformers | 0 | null | true | false | false | mit | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | [] | false | true | true | 16,354 | false | # UCTopic
This repository contains the code of model UCTopic and an easy-to-use tool UCTopicTool used for <strong>Topic Mining</strong>, <strong>Unsupervised Aspect Extractioin</strong> or <strong>Phrase Retrieval</strong>.
Our ACL 2022 paper [UCTopic: Unsupervised Contrastive Learning for Phrase Representations and Topic Mining](https://arxiv.org/abs/2202.13469).
# Quick Links
- [Overview](#overview)
- [Pretrained Model](#pretrained-model)
- [Getting Started](#getting-started)
- [UCTopic Model](#uctopic-model)
- [UCTopicTool](#uctopictool)
- [Experiments in Paper](#experiments)
- [Requirements](#requirements)
- [Datasets](#datasets)
- [Entity Clustering](#entity-clustering)
- [Topic Mining](#topic-mining)
- [Pretraining](#pretraining)
- [Contact](#contact)
- [Citation](#citation)
# Overview
We propose UCTopic, a novel unsupervised contrastive learning framework for context-aware phrase representations and topic mining. UCTopic is pretrained in a large scale to distinguish if the contexts of two phrase mentions have the same semantics. The key to pretraining is positive pair construction from our phrase-oriented assumptions. However, we find traditional in-batch negatives cause performance decay when finetuning on a dataset with small topic numbers. Hence, we propose cluster-assisted contrastive learning(CCL) which largely reduces noisy negatives by selecting negatives from clusters and further improves phrase representations for topics accordingly.
# Pretrained Model
Our released model:
| Model | Note|
|:-------------------------------|------|
|[uctopic-base](https://drive.google.com/file/d/1XQzi4E9ctdI373CK5O-pXQyBvOONssp1/view?usp=sharing)| Pretrained UCTopic model based on [LUKE-BASE](https://arxiv.org/abs/2010.01057)
Unzip to get `uctopic-base` folder.
# Getting Started
We provide an easy-to-use phrase representation tool based on our UCTopic model. To use the tool, first install the uctopic package from PyPI
```bash
pip install uctopic
```
Or directly install it from our code
```bash
python setup.py install
```
## UCTopic Model
After installing the package, you can load our model by just two lines of code
```python
from uctopic import UCTopic
model = UCTopic.from_pretrained('JiachengLi/uctopic-base')
```
The model will automatically download pre-trained parameters from [HuggingFace's models](https://huggingface.co/models). If you encounter any problem when directly loading the models by HuggingFace's API, you can also download the models manually from the above table and use `model = UCTopic.from_pretrained({PATH TO THE DOWNLOAD MODEL})`.
To get pre-trained <strong>phrase representations</strong>, our model inputs are same as [LUKE](https://huggingface.co/docs/transformers/model_doc/luke). Note: please input only <strong>ONE</strong> span each time, otherwise, will have performance decay according to our empirical results.
```python
from uctopic import UCTopicTokenizer, UCTopic
tokenizer = UCTopicTokenizer.from_pretrained('JiachengLi/uctopic-base')
model = UCTopic.from_pretrained('JiachengLi/uctopic-base')
text = "Beyoncé lives in Los Angeles."
entity_spans = [(17, 28)] # character-based entity span corresponding to "Los Angeles"
inputs = tokenizer(text, entity_spans=entity_spans, add_prefix_space=True, return_tensors="pt")
outputs, phrase_repr = model(**inputs)
```
`phrase_repr` is the phrase embedding (size `[768]`) of the phrase `Los Angeles`. `outputs` has the same format as the outputs from `LUKE`.
## UCTopicTool
We provide a tool `UCTopicTool` built on `UCTopic` for efficient phrase encoding, topic mining (or unsupervised aspect extraction) or phrase retrieval.
### Initialization
`UCTopicTool` is initialized by giving the `model_name_or_path` and `device`.
```python
from uctopic import UCTopicTool
topic_tool = UCTopicTool('JiachengLi/uctopic-base', device='cuda:0')
```
### Phrase Encoding
Phrases are encoded by our method `UCTopicTool.encode` in batches, which is more efficient than `UCTopic`.
```python
phrases = [["This place is so much bigger than others!", (0, 10)],
["It was totally packed and loud.", (15, 21)],
["Service was on the slower side.", (0, 7)],
["I ordered 2 mojitos: 1 lime and 1 mango.", (12, 19)],
["The ingredient weren't really fresh.", (4, 14)]]
embeddings = topic_tool.encode(phrases) # len(embeddings) is equal to len(phrases)
```
**Note**: Each instance in `phrases` contains only one sentence and one span (character-level position) in format `[sentence, span]`.
Arguments for `UCTopicTool.encode` are as follows,
* **phrase** (List) - A list of `[sentence, span]` to be encoded.
* **return_numpy** (bool, *optional*, defaults to `False`) - Return `numpy.array` or `torch.Tensor`.
* **normalize_to_unit** (bool, *optional*, defaults to `True`) - Normalize all embeddings to unit vectors.
* **keepdim** (bool, *optional*, defaults to `True`) - Keep dimension size `[instance_number, hidden_size]`.
* **batch_size** (int, *optional*, defaults to `64`) - The size of mini-batch in the model.
### Topic Mining and Unsupervised Aspect Extraction
The method `UCTopicTool.topic_mining` can mine topical phrases or conduct aspect extraction from sentences with or without spans.
```python
sentences = ["This place is so much bigger than others!",
"It was totally packed and loud.",
"Service was on the slower side.",
"I ordered 2 mojitos: 1 lime and 1 mango.",
"The ingredient weren't really fresh."]
spans = [[(0, 10)], # This place
[(15, 21), (26, 30)], # packed; loud
[(0, 7)], # Service
[(12, 19), (21, 27), (32, 39)], # mojitos; 1 lime; 1 mango
[(4, 14)]] # ingredient
# len(sentences) is equal to len(spans)
output_data, topic_phrase_dict = tool.topic_mining(sentences, spans, \
n_clusters=[15, 25])
# predict topic for new phrases
phrases = [["The food here is amazing!", (4, 8)],
["Lovely ambiance with live music!", (21, 31)]]
topics = tool.predict_topic(phrases)
```
**Note**: If `spans` is not given, `UCTopicTool` will extract noun phrases by [spaCy](https://spacy.io/).
Arguments for `UCTopicTool.topic_mining` are as follows,
Data arguments:
* **sentences** (List) - A List of sentences for topic mining.
* **spans** (List, *optional*, defaults to `None`) - A list of span list corresponding sentences, e.g., `[[(0, 9), (5, 7)], [(1, 2)]]` and `len(sentences)==len(spans)`. If None, automatically mine phrases from noun chunks.
Clustering arguments:
* **n_clusters** (int or List, *optional*, defaults to `2`) - The number of topics. When `n_clusters` is a list, `n_clusters[0]` and `n_clusters[1]` will be the minimum and maximum numbers to search, `n_clusters[2]` is the search step length (if not provided, default to 1).
* **meric** (str, *optional*, defaults to `"cosine"`) - The metric to measure the distance between vectors. `"cosine"` or `"euclidean"`.
* **batch_size** (int, *optional*, defaults to `64`) - The size of mini-batch for phrase encoding.
* **max_iter** (int, *optional*, defaults to `300`) - The maximum iteration number of kmeans.
CCL-finetune arguments:
* **ccl_finetune** (bool, *optional*, defaults to `True`) - Whether to conduct CCL-finetuning in the paper.
* **batch_size_finetune** (int, *optional*, defaults to `8`) - The size of mini-batch for finetuning.
* **max_finetune_num** (int, *optional*, defaults to `100000`) - The maximum number of training instances for finetuning.
* **finetune_step** (int, *optional*, defaults to `2000`) - The number of training steps for finetuning.
* **contrastive_num** (int, *optional*, defaults to `5`) - The number of negatives in contrastive learning.
* **positive_ratio** (float, *optional*, defaults to `0.1`) - The ratio of the most confident instances for finetuning.
* **n_sampling** (int, *optional*, defaults to `10000`) - The number of sampled examples for cluster number confirmation and finetuning. Set to `-1` to use the whole dataset.
* **n_workers** (int, *optional*, defaults to `8`) - The number of workers for preprocessing data.
Returns for `UCTopicTool.topic_mining` are as follows,
* **output_data** (List) - A list of sentences and corresponding phrases and topic numbers. Each element is `[sentence, [[start1, end1, topic1], [start2, end2, topic2]]]`.
* **topic_phrase_dict** (Dict) - A dictionary of topics and the list of phrases under a topic. The phrases are sorted by their confidence scores. E.g., `{topic: [[phrase1, score1], [phrase2, score2]]}`.
The method `UCTopicTool.predict_topic` predicts the topic ids for new phrases based on your training results from `UCTopicTool.topic_mining`. The inputs of `UCTopicTool.predict_topic` are same as `UCTopicTool.encode` and returns a list of topic ids (int).
### Phrase Similarities and Retrieval
The method `UCTopicTool.similarity` compute the cosine similarities between two groups of phrases:
```python
phrases_a = [["This place is so much bigger than others!", (0, 10)],
["It was totally packed and loud.", (15, 21)]]
phrases_b = [["Service was on the slower side.", (0, 7)],
["I ordered 2 mojitos: 1 lime and 1 mango.", (12, 19)],
["The ingredient weren't really fresh.", (4, 14)]]
similarities = tool.similarity(phrases_a, phrases_b)
```
Arguments for `UCTopicTool.similarity` are as follows,
* **queries** (List) - A list of `[sentence, span]` as queries.
* **keys** (List or `numpy.array`) - A list of `[sentence, span]` as keys or phrase representations (`numpy.array`) from `UCTopicTool.encode`.
* **batch_size** (int, *optional*, defaults to `64`) - The size of mini-batch in the model.
`UCTopicTool.similarity` returns a `numpy.array` contains the similarities between phrase pairs in two groups.
The methods `UCTopicTool.build_index` and `UCTopicTool.search` are used for phrase retrieval:
```python
phrases = [["This place is so much bigger than others!", (0, 10)],
["It was totally packed and loud.", (15, 21)],
["Service was on the slower side.", (0, 7)],
["I ordered 2 mojitos: 1 lime and 1 mango.", (12, 19)],
["The ingredient weren't really fresh.", (4, 14)]]
# query multiple phrases
query1 = [["The food here is amazing!", (4, 8)],
["Lovely ambiance with live music!", (21, 31)]]
# query single phrases
query2 = ["The food here is amazing!", (4, 8)]
tool.build_index(phrases)
results = tool.search(query1, top_k=3)
# or
results = tool.search(query2, top_k=3)
```
We also support [faiss](https://github.com/facebookresearch/faiss), an efficient similarity search library. Just install the package following [instructions](https://github.com/facebookresearch/faiss/blob/main/INSTALL.md) here and `UCTopicTool` will automatically use `faiss` for efficient search.
`UCTopicTool.search` returns the ranked top k phrases for each query.
### Save and Load finetuned UCTopicTool
The methods `UCTopicTool.save` and `UCTopicTool.load` are used for save and load all paramters of `UCTopicTool`.
Save:
```python
tool = UCTopicTool('JiachengLi/uctopic-base', 'cuda:0')
# finetune UCTopic with CCL
output_data, topic_phrase_dict = tool.topic_mining(sentences, spans, \
n_clusters=[15, 25])
tool.save(**your directory**)
```
Load:
```python
tool = UCTopicTool('JiachengLi/uctopic-base', 'cuda:0')
tool.load(**your directory**)
```
The loaded parameters will be used for all methods (for encoding, topic mining, phrase similarities and retrieval) introduced above.
# Experiments
In this section, we re-implement experiments in our paper.
## Requirements
First, install PyTorch by following the instructions from [the official website](https://pytorch.org). To faithfully reproduce our results, please use the correct `1.9.0` version corresponding to your platforms/CUDA versions.
Then run the following script to install the remaining dependencies,
```bash
pip install -r requirements.txt
```
Download `en_core_web_sm` model from spacy,
```bash
python -m spacy download en_core_web_sm
```
## Datasets
The downstream datasets used in our experiments can be downloaded from [here](https://drive.google.com/file/d/1dVIp9li1Wdh0JgU8slsWm0ObcitbQtSL/view?usp=sharing).
## Entity Clustering
The config file of entity clustering is `clustering/consts.py` and most arguments are self-explained. Please setup `--gpu` and `--data_path` before running. The clustering scores will be printed.
Clustering with our pre-trained phrase embeddings.
```bash
python clustering.py --gpu 0
```
Clustering with our pre-trained phrase embeddings and Cluster-Assisted Constrastive Learning (CCL) proposed in our paper.
```bash
python clustering_ccl_finetune.py --gpu 0
```
## Topic Mining
The config file of entity clustering is `topic_modeling/consts.py`.
**Key Argument Table**
| Arguments | Description |
|:-----------------|:-----------:|
| --num_classes |**Min** and **Max** number of classes, e.g., `[5, 15]`. Our model will find the class number by [silhouette_score](https://scikit-learn.org/stable/modules/generated/sklearn.metrics.silhouette_score.html).|
| --sample_num_cluster |Number of sampled phrases to confirm class number.|
| --sample_num_finetune|Number of sampled phrases for CCL finetuning.|
| --contrastive_num|Number of negative classes for CCL finetuning.|
| --finetune_step | CCL finetuning steps (maximum global steps for finetuning).|
**Tips**: Please tune `--batch_size` or `--contrastive_num` for suitable GPU memory usage.
Topic mining with our pre-trained phrase embeddings and Cluster-Assisted Constrastive Learning (CCL) proposed in our paper.
```bash
python find_topic.py --gpu 0
```
**Outputs**
We output three files under `topic_results`:
| File Name | Description |
|:-----------------|:-----------:|
| `merged_phraes_pred_prob.pickle` |A dictionary of phrases and their topic number and prediction probability. A topic of a phrase is merged from all phrase mentioins. `{phrase: [topic_id, probability]}`, e.g., {'fair prices': [0, 0.34889686]}|
| `phrase_instances_pred.json`| A list of all mined phrase mentions. Each element is `[[doc_id, start, end, phrase_mention], topic_id]`.|
| `topics_phrases.json`|A dictionary of topics and corresponding phrases sorted by probability. `{'topic_id': [[phrase1, prob1], [phrase2, prob2]]}`|
### Pretraining
**Data**
For unsupervised pretraining of UCTopic, we use article and span with links from English Wikipedia and Wikidata. Our processed dataset can be downloaded from [here](https://drive.google.com/file/d/1wflsmhPI9J0ZA6aVRl2mQjHIE6JIvzAv/view?usp=sharing).
**Training scripts**
We provide example training scripts and our default training parameters for unsupervised training of UCTopic in `run_example.sh`.
```bash
bash run_example.sh
```
Arguments description can be found in `pretrain.py`. All the other arguments are standard Huggingface's `transformers` training arguments.
**Convert models**
Our pretrained checkpoints are slightly different from the checkpoint `uctopic-base`. Please refer `convert_uctopic_parameters.py` to convert it.
# Contact
If you have any questions related to the code or the paper, feel free to email Jiacheng (`[email protected]`). If you encounter any problems when using the code, or want to report a bug, you can open an issue. Please try to specify the problem with details so we can help you better and quicker!
# Citation
Please cite our paper if you use UCTopic in your work:
```bibtex
@inproceedings{Li2022UCTopicUC,
title = "{UCT}opic: Unsupervised Contrastive Learning for Phrase Representations and Topic Mining",
author = "Li, Jiacheng and
Shang, Jingbo and
McAuley, Julian",
booktitle = "Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = may,
year = "2022",
address = "Dublin, Ireland",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.acl-long.426",
doi = "10.18653/v1/2022.acl-long.426",
pages = "6159--6169"
}
``` | 31a0b0f6a1d0e82a610d66a2e89765ca |
orhanxakarsu/turkishPoe-generation-1 | orhanxakarsu | gpt2 | 9 | 2 | transformers | 0 | text-generation | false | true | false | mit | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['generated_from_keras_callback'] | true | true | true | 1,509 | false |
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# orhanxakarsu/turkishPoe-generation-1
This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 6.7319
- Validation Loss: 5.8020
- Epoch: 0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 5e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 12731, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.003}
- training_precision: mixed_float16
### Training results
| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 6.7319 | 5.8020 | 0 |
### Framework versions
- Transformers 4.20.1
- TensorFlow 2.6.4
- Datasets 2.1.0
- Tokenizers 0.12.1
| 3913c6fc936a4cc0e5b18c5fd4ef8923 |
jonatasgrosman/exp_w2v2t_zh-cn_wavlm_s368 | jonatasgrosman | wavlm | 10 | 5 | transformers | 0 | automatic-speech-recognition | true | false | false | apache-2.0 | ['zh-CN'] | ['mozilla-foundation/common_voice_7_0'] | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['automatic-speech-recognition', 'zh-CN'] | false | true | true | 445 | false | # exp_w2v2t_zh-cn_wavlm_s368
Fine-tuned [microsoft/wavlm-large](https://huggingface.co/microsoft/wavlm-large) for speech recognition using the train split of [Common Voice 7.0 (zh-CN)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
| d230f167fb11f4438cfacd741ba47580 |
Tanhim/translation-En2De | Tanhim | marian | 15 | 14 | transformers | 3 | translation | true | false | false | gpl | ['de'] | ['wmt19'] | null | 1 | 1 | 0 | 0 | 0 | 0 | 0 | ['translation'] | false | true | true | 624 | false |
<h2> English to German Translation </h2>
Model Name: Tanhim/translation-En2De <br />
language: German or Deutsch <br />
thumbnail: https://huggingface.co/Tanhim/translation-En2De <br />
### How to use
You can use this model directly with a pipeline for machine translation. Since the generation relies on some randomness, I
set a seed for reproducibility:
```python
>>> from transformers import pipeline, set_seed
>>> text_En2De= pipeline('translation', model='Tanhim/translation-En2De', tokenizer='Tanhim/translation-En2De')
>>> set_seed(42)
>>> text_En2De("My name is Karl and I live in Aachen")
```
### beta version | 09c78446ba2455bbadeda97b724e0aae |
mrm8488/flan-t5-xl-finetuned-gsm8k | mrm8488 | t5 | 13 | 8 | transformers | 0 | text2text-generation | true | false | false | apache-2.0 | null | ['gsm8k'] | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['generated_from_trainer'] | true | true | true | 1,364 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# flan-t5-xl-finetuned-gsm8k
This model is a fine-tuned version of [google/flan-t5-xl](https://huggingface.co/google/flan-t5-xl) on the gsm8k dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2853
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.2845 | 1.0 | 1868 | 0.2778 |
| 0.2204 | 2.0 | 3736 | 0.2718 |
| 0.1803 | 3.0 | 5604 | 0.2762 |
| 0.1578 | 4.0 | 7472 | 0.2853 |
### Framework versions
- Transformers 4.24.0
- Pytorch 1.12.1+cu113
- Datasets 2.6.1
- Tokenizers 0.13.2
| e13a4d284b4e2ac62ee601dc35a91b1f |
taqwa92/whisper-small-ArabicT11 | taqwa92 | whisper | 16 | 2 | transformers | 0 | automatic-speech-recognition | true | false | false | apache-2.0 | ['ar'] | ['taqwa92/tm_data'] | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['hf-asr-leaderboard', 'generated_from_trainer'] | true | true | true | 1,288 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Small Arabic- Taqwa
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the tm_data dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5306
- Wer: 46.4256
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 500
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.2375 | 4.85 | 500 | 0.5306 | 46.4256 |
### Framework versions
- Transformers 4.27.0.dev0
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2
| 0b49e8bc46ed974aeecaae8af778b115 |
gokuls/distilbert_add_GLUE_Experiment_logit_kd_wnli_384 | gokuls | distilbert | 17 | 3 | transformers | 0 | text-classification | true | false | false | apache-2.0 | ['en'] | ['glue'] | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['generated_from_trainer'] | true | true | true | 1,814 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert_add_GLUE_Experiment_logit_kd_wnli_384
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE WNLI dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3434
- Accuracy: 0.5634
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 256
- eval_batch_size: 256
- seed: 10
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.368 | 1.0 | 3 | 0.3481 | 0.4366 |
| 0.3551 | 2.0 | 6 | 0.3499 | 0.4366 |
| 0.3472 | 3.0 | 9 | 0.3441 | 0.5634 |
| 0.3518 | 4.0 | 12 | 0.3434 | 0.5634 |
| 0.3492 | 5.0 | 15 | 0.3494 | 0.4366 |
| 0.3495 | 6.0 | 18 | 0.3481 | 0.4366 |
| 0.3495 | 7.0 | 21 | 0.3440 | 0.5634 |
| 0.3463 | 8.0 | 24 | 0.3437 | 0.5634 |
| 0.349 | 9.0 | 27 | 0.3444 | 0.5634 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.14.0a0+410ce96
- Datasets 2.9.0
- Tokenizers 0.13.2
| fe52272d6697cdf5bfb63fbdef80cbfd |
huxxx657/roberta-base-finetuned-squad | huxxx657 | roberta | 23 | 6 | transformers | 0 | question-answering | true | false | false | mit | null | ['squad_v2'] | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['generated_from_trainer'] | true | true | true | 1,147 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-base-finetuned-squad
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad_v2 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8152
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.8557 | 1.0 | 8239 | 0.8152 |
### Framework versions
- Transformers 4.18.0
- Pytorch 1.11.0+cu113
- Datasets 2.1.0
- Tokenizers 0.12.1
| 904904c5c4249a286115495afd83e435 |
KoichiYasuoka/deberta-large-japanese-aozora | KoichiYasuoka | deberta-v2 | 8 | 6 | transformers | 5 | fill-mask | true | false | false | cc-by-sa-4.0 | ['ja'] | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['japanese', 'masked-lm'] | false | true | true | 846 | false |
# deberta-large-japanese-aozora
## Model Description
This is a DeBERTa(V2) model pre-trained on 青空文庫 texts. NVIDIA A100-SXM4-40GB took 127 hours 8 minutes for training. You can fine-tune `deberta-large-japanese-aozora` for downstream tasks, such as [POS-tagging](https://huggingface.co/KoichiYasuoka/deberta-large-japanese-luw-upos), [dependency-parsing](https://huggingface.co/KoichiYasuoka/deberta-large-japanese-aozora-ud-head), and so on.
## How to Use
```py
from transformers import AutoTokenizer,AutoModelForMaskedLM
tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/deberta-large-japanese-aozora")
model=AutoModelForMaskedLM.from_pretrained("KoichiYasuoka/deberta-large-japanese-aozora")
```
## Reference
安岡孝一: [青空文庫DeBERTaモデルによる国語研長単位係り受け解析](http://hdl.handle.net/2433/275409), 東洋学へのコンピュータ利用, 第35回研究セミナー (2022年7月), pp.29-43.
| 6f18c7da462d3b28dd66dcb87b2f5a3b |
spacy/ca_core_news_md | spacy | null | 28 | 5 | spacy | 0 | token-classification | false | false | false | gpl-3.0 | ['ca'] | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['spacy', 'token-classification'] | false | true | true | 16,957 | false | ### Details: https://spacy.io/models/ca#ca_core_news_md
Catalan pipeline optimized for CPU. Components: tok2vec, morphologizer, parser, senter, ner, attribute_ruler, lemmatizer.
| Feature | Description |
| --- | --- |
| **Name** | `ca_core_news_md` |
| **Version** | `3.5.0` |
| **spaCy** | `>=3.5.0,<3.6.0` |
| **Default Pipeline** | `tok2vec`, `morphologizer`, `parser`, `attribute_ruler`, `lemmatizer`, `ner` |
| **Components** | `tok2vec`, `morphologizer`, `parser`, `senter`, `attribute_ruler`, `lemmatizer`, `ner` |
| **Vectors** | 500000 keys, 20000 unique vectors (300 dimensions) |
| **Sources** | [UD Catalan AnCora v2.8](https://github.com/UniversalDependencies/UD_Catalan-AnCora) (Martínez Alonso, Héctor; Pascual, Elena; Zeman, Daniel)<br />[UD Catalan AnCora v2.8 + NER v3.2.8](https://github.com/TeMU-BSC/spacy/releases/tag/3.2.8) (Carlos Rodríguez-Penagos and Carme Armentano-Oller)<br />[Catalan Lemmatizer](https://github.com/explosion/spacy-lookups-data) (Text Mining Unit, Barcelona Supercomputing Center)<br />[Catalan Word Embeddings in FastText (Version 1.0)](http://doi.org/10.5281/zenodo.4522041) (Gutiérrez-Fandiño, Asier, Armengol-Estapé, Jordi, Gonzalez-Agirre, Aitor, Carrino, Casimiro Pio, de Gibert, Ona, & Villegas, Marta) |
| **License** | `GNU GPL 3.0` |
| **Author** | [Explosion](https://explosion.ai) |
### Label Scheme
<details>
<summary>View label scheme (317 labels for 3 components)</summary>
| Component | Labels |
| --- | --- |
| **`morphologizer`** | `Definite=Def\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `POS=PROPN`, `POS=PUNCT\|PunctSide=Ini\|PunctType=Brck`, `POS=PUNCT\|PunctSide=Fin\|PunctType=Brck`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Definite=Def\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Gender=Fem\|Number=Sing\|POS=NOUN`, `POS=ADP`, `NumType=Card\|Number=Plur\|POS=NUM`, `Gender=Masc\|Number=Plur\|POS=NOUN`, `Number=Sing\|POS=ADJ`, `POS=CCONJ`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Ind`, `NumForm=Digit\|NumType=Card\|POS=NUM`, `NumForm=Digit\|POS=NOUN`, `Gender=Masc\|Number=Plur\|POS=ADJ`, `POS=PUNCT\|PunctType=Comm`, `POS=AUX\|VerbForm=Inf`, `Case=Acc,Dat\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes`, `Definite=Def\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Art`, `POS=PRON\|PronType=Rel`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Gender=Fem\|Number=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Definite=Def\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Art`, `Gender=Fem\|Number=Plur\|POS=NOUN`, `Gender=Fem\|Number=Plur\|POS=ADJ`, `POS=VERB\|VerbForm=Inf`, `Case=Acc,Dat\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Number=Plur\|POS=ADJ`, `POS=PUNCT\|PunctType=Peri`, `Number=Sing\|POS=PRON\|PronType=Rel`, `Gender=Masc\|Number=Sing\|POS=NOUN`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|VerbForm=Fin`, `Gender=Masc\|Number=Plur\|POS=ADJ\|VerbForm=Part`, `POS=SCONJ`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Definite=Def\|Number=Sing\|POS=DET\|PronType=Art`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Ind`, `Gender=Fem\|Number=Plur\|POS=ADJ\|VerbForm=Part`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `POS=VERB\|VerbForm=Ger`, `POS=NOUN`, `Gender=Fem\|NumType=Card\|Number=Sing\|POS=NUM`, `Gender=Fem\|Number=Sing\|POS=ADJ\|VerbForm=Part`, `Gender=Fem\|NumType=Ord\|Number=Plur\|POS=ADJ`, `POS=SYM`, `Gender=Masc\|Number=Sing\|POS=ADJ`, `Gender=Masc\|Number=Sing\|POS=ADJ\|VerbForm=Part`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `POS=ADV\|Polarity=Neg`, `POS=ADV`, `Number=Sing\|POS=PRON\|PronType=Dem`, `Number=Sing\|POS=NOUN`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Number=Plur\|POS=NOUN`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|POS=ADJ`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Tot`, `Case=Loc\|POS=PRON\|Person=3\|PronType=Prs`, `Gender=Fem\|NumType=Ord\|Number=Sing\|POS=ADJ`, `Degree=Cmp\|POS=ADV`, `Gender=Fem\|Number=Plur\|POS=DET\|PronType=Art`, `Gender=Fem\|Number=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Gender=Masc\|NumType=Ord\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Fut\|VerbForm=Fin`, `NumType=Card\|POS=NUM`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Number=Sing\|POS=PRON\|PronType=Ind`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Number=Plur\|POS=DET\|PronType=Ind`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Gender=Masc\|NumType=Card\|Number=Sing\|POS=NUM`, `Mood=Sub\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Number=Sing\|POS=DET\|PronType=Ind`, `POS=PUNCT`, `Number=Sing\|POS=DET\|PronType=Rel`, `Case=Gen\|POS=PRON\|Person=3\|PronType=Prs`, `Gender=Fem\|NumType=Card\|Number=Plur\|POS=NUM`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `POS=DET\|PronType=Ind`, `POS=AUX`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc,Dat\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Degree=Cmp\|Number=Sing\|POS=ADJ`, `Number=Sing\|POS=VERB`, `Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Ind`, `Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Gender=Masc\|Number=Plur\|POS=DET\|PronType=Art`, `Gender=Masc\|Number=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Fem,Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Ind`, `Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Ind`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Number=Plur\|POS=PRON\|PronType=Rel`, `Gender=Masc\|Number=Plur\|POS=DET\|PronType=Int`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Imp\|VerbForm=Fin`, `AdvType=Tim\|POS=NOUN`, `Gender=Masc\|Number=Plur\|POS=DET\|PronType=Ind`, `Gender=Fem\|Number=Plur\|POS=DET\|PronType=Ind`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int`, `Mood=Cnd\|Number=Sing\|POS=AUX\|Person=3\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Number=Sing\|POS=DET\|PronType=Art`, `Gender=Masc\|Number=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Int`, `POS=PUNCT\|PunctType=Semi`, `Mood=Cnd\|Number=Plur\|POS=AUX\|Person=3\|VerbForm=Fin`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Gender=Masc\|NumType=Card\|Number=Plur\|POS=NUM`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Ind`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=3\|Tense=Imp\|VerbForm=Fin`, `NumForm=Digit\|POS=SYM`, `Gender=Masc\|Number=Sing\|POS=AUX\|Tense=Past\|VerbForm=Part`, `Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Int`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Int`, `POS=PRON\|PronType=Int`, `Gender=Fem\|Number=Plur\|POS=DET\|PronType=Int`, `Mood=Cnd\|Number=Sing\|POS=VERB\|Person=3\|VerbForm=Fin`, `Mood=Cnd\|Number=Plur\|POS=VERB\|Person=3\|VerbForm=Fin`, `POS=PART`, `Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Dem`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Tot`, `Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Dem`, `POS=ADJ`, `Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Degree=Cmp\|Number=Plur\|POS=ADJ`, `POS=PUNCT\|PunctType=Dash`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Imp\|VerbForm=Fin`, `POS=SPACE`, `Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Gender=Masc\|POS=NOUN`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Int`, `Gender=Masc\|NumType=Ord\|Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Fut\|VerbForm=Fin`, `POS=PUNCT\|PunctType=Colo`, `Gender=Masc\|NumType=Card\|POS=NUM`, `Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Number=Sing\|POS=PRON\|PronType=Int`, `POS=PUNCT\|PunctType=Quot`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=3\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Gender=Masc\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin`, `POS=AUX\|VerbForm=Ger`, `Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Mood=Imp\|Number=Sing\|POS=AUX\|Person=3\|VerbForm=Fin`, `Number=Plur\|POS=PRON\|PronType=Ind`, `Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Acc,Dat\|Number=Sing\|POS=PRON\|Person=2\|Polite=Infm\|PrepCase=Npr\|PronType=Prs`, `Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Int`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `NumForm=Digit\|NumType=Frac\|POS=NUM`, `POS=VERB`, `Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Dem`, `Gender=Fem\|POS=NOUN`, `Case=Acc,Dat\|Number=Sing\|POS=PRON\|Person=1\|PrepCase=Npr\|PronType=Prs`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Tense=Fut\|VerbForm=Fin`, `Mood=Sub\|Number=Plur\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Mood=Sub\|Number=Plur\|POS=AUX\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=2\|Polite=Infm\|PronType=Prs`, `POS=X`, `Mood=Cnd\|Number=Plur\|POS=AUX\|Person=1\|VerbForm=Fin`, `Number=Sing\|POS=DET\|PronType=Dem`, `POS=DET`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `POS=DET\|PronType=Art`, `Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `NumType=Ord\|Number=Sing\|POS=ADJ`, `Gender=Fem\|Number=Sing\|POS=AUX\|Tense=Past\|VerbForm=Part`, `Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Gender=Fem\|Number=Plur\|POS=AUX\|Tense=Past\|VerbForm=Part`, `Gender=Masc\|Number=Plur\|POS=AUX\|Tense=Past\|VerbForm=Part`, `Number=Plur\|POS=PRON\|PronType=Dem`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=1\|VerbForm=Fin`, `POS=PRON\|PronType=Ind`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=3\|VerbForm=Fin`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=1\|PrepCase=Pre\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Imp\|VerbForm=Fin`, `POS=PUNCT\|PunctSide=Fin\|PunctType=Qest`, `NumForm=Digit\|NumType=Ord\|POS=ADJ`, `Case=Acc\|POS=PRON\|Person=3\|PrepCase=Pre\|PronType=Prs\|Reflex=Yes`, `NumForm=Digit\|NumType=Frac\|POS=SYM`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `POS=PUNCT\|PunctSide=Ini\|PunctType=Qest`, `NumType=Card\|Number=Sing\|POS=NUM`, `Foreign=Yes\|POS=PRON\|PronType=Int`, `Foreign=Yes\|Mood=Ind\|POS=VERB\|VerbForm=Fin`, `Foreign=Yes\|POS=ADP`, `Gender=Masc\|Number=Sing\|POS=PROPN`, `POS=PUNCT\|PunctSide=Ini\|PunctType=Excl`, `POS=PUNCT\|PunctSide=Fin\|PunctType=Excl`, `Mood=Cnd\|Number=Sing\|POS=AUX\|Person=1\|VerbForm=Fin`, `Number=Plur\|POS=PRON\|Person=2\|Polite=Form\|PronType=Prs`, `Mood=Sub\|POS=AUX\|Person=1\|Tense=Imp\|VerbForm=Fin`, `POS=PUNCT\|PunctSide=Ini\|PunctType=Comm`, `POS=PUNCT\|PunctSide=Fin\|PunctType=Comm`, `Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Case=Acc,Dat\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Mood=Cnd\|Number=Sing\|POS=VERB\|Person=1\|VerbForm=Fin`, `Mood=Cnd\|Number=Plur\|POS=VERB\|Person=1\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Gender=Masc\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Number=Sing\|POS=PRON\|Person=2\|Polite=Form\|PronType=Prs`, `Gender=Masc\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Imp\|VerbForm=Fin`, `POS=VERB\|Tense=Past\|VerbForm=Part`, `Mood=Imp\|Number=Plur\|POS=AUX\|Person=3\|VerbForm=Fin`, `Case=Nom\|POS=PRON\|Person=3\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Rel`, `Definite=Ind\|Number=Sing\|POS=DET\|PronType=Art`, `Gender=Masc\|Number=Sing\|Number[psor]=Plur\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Number=Plur\|Number[psor]=Plur\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `POS=AUX\|Tense=Past\|VerbForm=Part`, `Gender=Fem\|NumType=Card\|POS=NUM`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Fut\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin`, `AdvType=Tim\|Degree=Cmp\|POS=ADV`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=2\|Polite=Infm\|PrepCase=Pre\|PronType=Prs`, `POS=DET\|PronType=Rel`, `Definite=Ind\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Art`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Fut\|VerbForm=Fin`, `POS=INTJ`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `POS=VERB\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `Definite=Ind\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Mood=Sub\|Number=Plur\|POS=AUX\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|Number[psor]=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Foreign=Yes\|POS=NOUN`, `Foreign=Yes\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Foreign=Yes\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Foreign=Yes\|POS=SCONJ`, `Foreign=Yes\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Gender=Masc\|POS=SYM`, `Gender=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Number=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Gender=Masc\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Gender=Fem\|Number=Sing\|POS=PROPN`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Definite=Def\|Foreign=Yes\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Foreign=Yes\|POS=VERB`, `Foreign=Yes\|POS=ADJ`, `Foreign=Yes\|POS=DET`, `Foreign=Yes\|POS=ADV`, `POS=PUNCT\|PunctSide=Fin\|Punta d'aignctType=Brck`, `Degree=Cmp\|POS=ADJ`, `AdvType=Tim\|POS=SYM`, `Number=Plur\|POS=DET\|PronType=Dem`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Fut\|VerbForm=Fin` |
| **`parser`** | `ROOT`, `acl`, `advcl`, `advmod`, `amod`, `appos`, `aux`, `case`, `cc`, `ccomp`, `compound`, `conj`, `cop`, `csubj`, `dep`, `det`, `expl:pass`, `fixed`, `flat`, `iobj`, `mark`, `nmod`, `nsubj`, `nummod`, `obj`, `obl`, `parataxis`, `punct`, `xcomp` |
| **`ner`** | `LOC`, `MISC`, `ORG`, `PER` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `TOKEN_ACC` | 99.93 |
| `TOKEN_P` | 99.78 |
| `TOKEN_R` | 99.79 |
| `TOKEN_F` | 99.79 |
| `POS_ACC` | 98.42 |
| `MORPH_ACC` | 98.05 |
| `MORPH_MICRO_P` | 99.45 |
| `MORPH_MICRO_R` | 98.93 |
| `MORPH_MICRO_F` | 99.19 |
| `SENTS_P` | 99.18 |
| `SENTS_R` | 99.18 |
| `SENTS_F` | 99.18 |
| `DEP_UAS` | 91.88 |
| `DEP_LAS` | 88.92 |
| `TAG_ACC` | 98.42 |
| `LEMMA_ACC` | 98.02 |
| `ENTS_P` | 84.34 |
| `ENTS_R` | 83.63 |
| `ENTS_F` | 83.98 | | 5a2b86dc852a7fc79ebe80d5f2205063 |
Graphcore/gpt2-medium-wikitext-103 | Graphcore | gpt2 | 15 | 3 | transformers | 1 | text-generation | true | false | false | apache-2.0 | null | ['wikitext'] | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['generated_from_trainer'] | true | true | true | 3,854 | false |
# Graphcore/gpt2-medium-wikitext-103
Optimum Graphcore is a new open-source library and toolkit that enables developers to access IPU-optimized models certified by Hugging Face. It is an extension of Transformers, providing a set of performance optimization tools enabling maximum efficiency to train and run models on Graphcore’s IPUs - a completely new kind of massively parallel processor to accelerate machine intelligence. Learn more about how to take train Transformer models faster with IPUs at [hf.co/hardware/graphcore](https://huggingface.co/hardware/graphcore).
Through HuggingFace Optimum, Graphcore released ready-to-use IPU-trained model checkpoints and IPU configuration files to make it easy to train models with maximum efficiency in the IPU. Optimum shortens the development lifecycle of your AI models by letting you plug-and-play any public dataset and allows a seamless integration to our State-of-the-art hardware giving you a quicker time-to-value for your AI project.
## Model description
GPT2 is a large transformer-based language model. It is built using transformer decoder blocks. BERT, on the other hand, uses transformer encoder blocks. It adds Layer normalisation to the input of each sub-block, similar to a pre-activation residual networks and an additional layer normalisation.
Paper link : [Language Models are Unsupervised Multitask Learners](https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf)
## Intended uses & limitations
This model is a fine-tuned version of [gpt2-medium](https://huggingface.co/gpt2-medium) on the [wikitext-103-raw-v1](https://huggingface.co/datasets/wikitext) dataset.
It achieves the following results on the evaluation set:
- Loss: 2.6973
## Training and evaluation data
Trained on wikipedia dataset:
- [HuggingFace/wikitext-103-raw-v1](https://huggingface.co/datasets/wikitext) dataset
## Training procedure
Trained on 16 Graphcore Mk2 IPUs using [optimum-graphcore](https://github.com/huggingface/optimum-graphcore).
Command line:
```
python examples/language-modeling/run_clm.py \
--model_name_or_path gpt2-medium \
--ipu_config_name Graphcore/gpt2-medium-ipu \
--dataset_name wikitext \
--dataset_config_name wikitext-103-raw-v1 \
--do_train \
--do_eval \
--num_train_epochs 10 \
--dataloader_num_workers 64 \
--per_device_train_batch_size 1 \
--per_device_eval_batch_size 1 \
--gradient_accumulation_steps 256 \
--output_dir /tmp/clm_output_medium \
--logging_steps 5 \
--learning_rate 1e-5 \
--lr_scheduler_type linear \
--loss_scaling 16384 \
--weight_decay 0.01 \
--warmup_ratio 0.1 \
--ipu_config_overrides="embedding_serialization_factor=5,inference_device_iterations=9,replication_factor=2,inference_replication_factor=2,ipus_per_replica=8,layers_per_ipu=[0 3 3 3 3 4 4 4],matmul_proportion=0.25" \
--dataloader_drop_last \
--pod_type pod16
```
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: IPU
- gradient_accumulation_steps: 256
- total_train_batch_size: 1024
- total_eval_batch_size: 18
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10.0
- training precision: Mixed Precision
### Training results
```
***** train metrics *****
"epoch": 10.0,
"train_loss": 2.8070910754504506,
"train_runtime": 11217.8167,
"train_samples": 114248,
"train_samples_per_second": 101.845,
"train_steps_per_second": 0.099
***** eval metrics *****
"eval_loss": 2.697265625,
"eval_samples": 240,
"perplexity": 14.83910053420958
```
### Framework versions
- Transformers 4.18.0.dev0
- Pytorch 1.10.0+cpu
- Datasets 2.0.0
- Tokenizers 0.11.6
| 6598b8602322fb7b692557769e65ded0 |
Karnezis/finetuning-sentiment-model-3000-samples | Karnezis | distilbert | 19 | 12 | transformers | 0 | text-classification | true | false | false | apache-2.0 | null | ['imdb'] | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['generated_from_trainer'] | true | true | true | 1,055 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuning-sentiment-model-3000-samples
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3136
- Accuracy: 0.8767
- F1: 0.8771
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
### Framework versions
- Transformers 4.23.1
- Pytorch 1.12.1+cu113
- Datasets 2.6.1
- Tokenizers 0.13.1
| be70f47e07a642c7f209b913c21858eb |
Rocketknight1/distilgpt2-finetuned-wikitext2 | Rocketknight1 | gpt2 | 19 | 26 | transformers | 0 | text-generation | false | true | false | apache-2.0 | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['generated_from_keras_callback'] | true | true | true | 1,192 | false |
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# Rocketknight1/distilgpt2-finetuned-wikitext2
This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 3.8577
- Validation Loss: 3.6752
- Epoch: 0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 3.8577 | 3.6752 | 0 |
### Framework versions
- Transformers 4.16.0.dev0
- TensorFlow 2.8.0-rc0
- Datasets 1.17.0
- Tokenizers 0.11.0
| fb69c73ae3cd38d3e1330d76c9dc553e |
Luciano/xlm-roberta-base-finetuned-lener_br-finetuned-lener-br | Luciano | xlm-roberta | 12 | 7 | transformers | 0 | token-classification | true | false | false | mit | ['pt'] | ['lener_br'] | null | 4 | 2 | 2 | 0 | 0 | 0 | 0 | ['generated_from_trainer'] | true | true | true | 2,767 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-lener_br-finetuned-lener-br
This model is a fine-tuned version of [Luciano/xlm-roberta-base-finetuned-lener_br](https://huggingface.co/Luciano/xlm-roberta-base-finetuned-lener_br) on the lener_br dataset.
It achieves the following results on the evaluation set:
- Loss: nan
- Precision: 0.9206
- Recall: 0.9294
- F1: 0.9250
- Accuracy: 0.9833
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.0657 | 1.0 | 1957 | nan | 0.7780 | 0.8687 | 0.8209 | 0.9718 |
| 0.0321 | 2.0 | 3914 | nan | 0.8755 | 0.8708 | 0.8731 | 0.9793 |
| 0.0274 | 3.0 | 5871 | nan | 0.8096 | 0.9124 | 0.8579 | 0.9735 |
| 0.0216 | 4.0 | 7828 | nan | 0.7913 | 0.8842 | 0.8352 | 0.9718 |
| 0.0175 | 5.0 | 9785 | nan | 0.7735 | 0.9248 | 0.8424 | 0.9721 |
| 0.0117 | 6.0 | 11742 | nan | 0.9206 | 0.9294 | 0.9250 | 0.9833 |
| 0.0121 | 7.0 | 13699 | nan | 0.8988 | 0.9318 | 0.9150 | 0.9819 |
| 0.0086 | 8.0 | 15656 | nan | 0.8922 | 0.9175 | 0.9047 | 0.9801 |
| 0.007 | 9.0 | 17613 | nan | 0.8482 | 0.8997 | 0.8732 | 0.9769 |
| 0.0051 | 10.0 | 19570 | nan | 0.8730 | 0.9274 | 0.8994 | 0.9798 |
| 0.0045 | 11.0 | 21527 | nan | 0.9172 | 0.9051 | 0.9111 | 0.9819 |
| 0.0014 | 12.0 | 23484 | nan | 0.9138 | 0.9155 | 0.9147 | 0.9823 |
| 0.0029 | 13.0 | 25441 | nan | 0.9099 | 0.9287 | 0.9192 | 0.9834 |
| 0.0035 | 14.0 | 27398 | nan | 0.9019 | 0.9294 | 0.9155 | 0.9831 |
| 0.0005 | 15.0 | 29355 | nan | 0.8886 | 0.9343 | 0.9109 | 0.9825 |
### Framework versions
- Transformers 4.23.1
- Pytorch 1.12.1+cu113
- Datasets 2.6.1
- Tokenizers 0.13.1
| 8f511f38e280e28920057863e61a9251 |
okho0653/Bio_ClinicalBERT-zero-shot-finetuned-all-cad | okho0653 | bert | 13 | 1 | transformers | 0 | text-classification | true | false | false | mit | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['generated_from_trainer'] | true | true | true | 972 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Bio_ClinicalBERT-zero-shot-finetuned-all-cad
This model is a fine-tuned version of [emilyalsentzer/Bio_ClinicalBERT](https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
### Framework versions
- Transformers 4.21.1
- Pytorch 1.12.0+cu113
- Datasets 2.4.0
- Tokenizers 0.12.1
| ddea40bb3f2c7f00ebd955378af2fca4 |
jonatasgrosman/exp_w2v2t_fa_unispeech-ml_s998 | jonatasgrosman | unispeech | 10 | 8 | transformers | 0 | automatic-speech-recognition | true | false | false | apache-2.0 | ['fa'] | ['mozilla-foundation/common_voice_7_0'] | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['automatic-speech-recognition', 'fa'] | false | true | true | 500 | false | # exp_w2v2t_fa_unispeech-ml_s998
Fine-tuned [microsoft/unispeech-large-multi-lingual-1500h-cv](https://huggingface.co/microsoft/unispeech-large-multi-lingual-1500h-cv) for speech recognition using the train split of [Common Voice 7.0 (fa)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
| 23656522f30941488e778548280c9ecc |
nandysoham16/14-clustered_aug | nandysoham16 | distilbert | 8 | 0 | keras | 0 | null | false | true | false | mit | ['en'] | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | [] | false | true | true | 4,805 | false |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
# Model Details
## Model Description
<!-- Provide a longer summary of what this model is. -->
['The_Legend_of_Zelda:_Twilight_Princess', 'Symbiosis', 'Tristan_da_Cunha', 'Hokkien', 'Thuringia', 'Samoa', 'Chinese_characters', 'Digimon', 'Tuvalu', 'Geological_history_of_Earth']
- **Developed by:** nandysoham
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** en
- **License:** mit
- **Finetuned from model [optional]:** [More Information Needed]
## Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
# Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
## Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
## Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
## Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
# Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
## Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
# Training Details
## Training Data
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
## Training Procedure [optional]
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
### Preprocessing
[More Information Needed]
### Speeds, Sizes, Times
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
# Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
## Testing Data, Factors & Metrics
### Testing Data
<!-- This should link to a Data Card if possible. -->
[More Information Needed]
### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
## Results
[More Information Needed]
### Summary
# Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
# Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
# Technical Specifications [optional]
## Model Architecture and Objective
[More Information Needed]
## Compute Infrastructure
[More Information Needed]
### Hardware
[More Information Needed]
### Software
[More Information Needed]
# Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
# Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
# More Information [optional]
[More Information Needed]
# Model Card Authors [optional]
[More Information Needed]
# Model Card Contact
[More Information Needed]
| 3b308a6668dc2d5a5c9e7fac8c68eb01 |
Graphcore/groupbert-base-uncased | Graphcore | groupbert | 14 | 1,128 | transformers | 1 | null | true | false | false | apache-2.0 | ['en'] | ['Graphcore/wikipedia-bert-128', 'Graphcore/wikipedia-bert-512'] | null | 1 | 0 | 1 | 0 | 0 | 0 | 0 | ['generated_from_trainer'] | true | true | true | 7,551 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Graphcore/groupbert-base-uncased
Optimum Graphcore is a new open-source library and toolkit that enables developers to access IPU-optimized models certified by Hugging Face. It is an extension of Transformers, providing a set of performance optimization tools enabling maximum efficiency to train and run models on Graphcore’s IPUs - a completely new kind of massively parallel processor to accelerate machine intelligence. Learn more about how to take train Transformer models faster with IPUs at [hf.co/hardware/graphcore](https://huggingface.co/hardware/graphcore).
Through HuggingFace Optimum, Graphcore released ready-to-use IPU-trained model checkpoints and IPU configuration files to make it easy to train models with maximum efficiency in the IPU. Optimum shortens the development lifecycle of your AI models by letting you plug-and-play any public dataset and allows a seamless integration to our State-of-the-art hardware giving you a quicker time-to-value for your AI project.
## Model description
GroupBERT (Bidirectional Encoder Representations from Transformers) is a transformers model which is designed by Graphcore to pretrain bidirectional representations from unlabelled texts. GroupBERT uses grouped convolutions and matmuls in the encoder, which allows to parallelize computation and achieve higher parameter efficiency. More details are described in the [GroupBERT paper](https://arxiv.org/pdf/2106.05822.pdf).
It was trained with two objectives in pretraining : Masked language modelling (MLM) and Next sentence prediction(NSP). First, MLM is different from traditional LM which sees the words one after another while BERT allows the model to learn a bidirectional representation. In addition to MLM, NSP is used for jointly pertaining text-pair representations. Similarly to BERT it enables easy and fast fine-tuning for different downstream tasks such as Sequence Classification, Named Entity Recognition, Question Answering, Multiple Choice and MaskedLM.
It reduces the need of many engineering efforts for building task specific architectures through pre-trained representation. And achieves state-of-the-art performance on a large suite of sentence-level and token-level tasks.
## Intended uses & limitations
This model is a pre-trained GroupBERT-Base trained in two phases on the [Graphcore/wikipedia-bert-128](https://huggingface.co/datasets/Graphcore/wikipedia-bert-128) and [Graphcore/wikipedia-bert-512](https://huggingface.co/datasets/Graphcore/wikipedia-bert-512) datasets.
It was trained on a Graphcore IPU-POD16 using [`optimum-graphcore`](https://github.com/huggingface/optimum-graphcore).
Graphcore and Hugging Face are working together to make training of Transformer models on IPUs fast and easy. Learn more about how to take advantage of the power of Graphcore IPUs to train Transformers models at [hf.co/hardware/graphcore](https://huggingface.co/hardware/graphcore).
## Training and evaluation data
Trained on wikipedia datasets:
- [Graphcore/wikipedia-bert-128](https://huggingface.co/datasets/Graphcore/wikipedia-bert-128)
- [Graphcore/wikipedia-bert-512](https://huggingface.co/datasets/Graphcore/wikipedia-bert-512)
## Fine-tuning with these weights
These weights can be used in either `transformers` or [`optimum-graphcore`](https://github.com/huggingface/optimum-graphcore).
For example, to fine-tune the SQuAD v1 with `optimum-graphcore` you can do:
```
python examples/question-answering/run_qa.py \
--model_name_or_path Graphcore/groupbert-base-uncased \
--ipu_config_name Graphcore/groupbert-base-uncased \
--dataset_name squad \
--version_2_with_negative False \
--do_train \
--do_eval \
--pad_on_batch_axis \
--num_train_epochs 1 \
--per_device_train_batch_size 1 \
--per_device_eval_batch_size 16 \
--gradient_accumulation_steps 10 \
--pod_type pod16 \
--learning_rate 4e-4 \
--max_seq_length 384 \
--doc_stride 128 \
--seed 42 \
--lr_scheduler_type linear \
--lamb \
--loss_scaling 64 \
--weight_decay 0.01 \
--warmup_ratio 0.1 \
--logging_steps 5 \
--save_steps -1 \
--dataloader_num_workers 64 \
--output_dir output/squad_groupbert_base
```
## Training procedure
Trained MLM and NSP pre-training scheme from [Large Batch Optimization for Deep Learning: Training BERT in 76 minutes](https://arxiv.org/abs/1904.00962).
Trained on a Graphcore IPU-POD16 using [`optimum-graphcore`](https://github.com/huggingface/optimum-graphcore).
It was trained with the IPUConfig [Graphcore/bert-base-ipu](https://huggingface.co/Graphcore/bert-base-ipu/).
Command lines:
Phase 1:
```
python examples/language-modeling/run_pretraining.py \
--model_type groupbert \
--tokenizer_name bert-base-uncased \
--ipu_config_name Graphcore/bert-base-ipu \
--dataset_name Graphcore/wikipedia-bert-128 \
--do_train \
--logging_steps 5 \
--max_seq_length 128 \
--max_steps 10500 \
--is_already_preprocessed \
--dataloader_num_workers 64 \
--dataloader_mode async_rebatched \
--lamb \
--per_device_train_batch_size 8 \
--gradient_accumulation_steps 2000 \
--pod_type pod16 \
--learning_rate 0.012 \
--loss_scaling 16384 \
--weight_decay 0.01 \
--warmup_ratio 0.15 \
--groupbert_schedule \
--config_overrides "hidden_dropout_prob=0.0,attention_probs_dropout_prob=0.0" \
--ipu_config_overrides device_iterations="1,matmul_proportion=0.22,layers_per_ipu=[1 3 4 4]" \
--output_dir output-pretrain-groupbert-base-phase1
```
Phase 2:
```
python examples/language-modeling/run_pretraining.py \
--model_type groupbert \
--tokenizer_name bert-base-uncased \
--ipu_config_name Graphcore/bert-base-ipu \
--dataset_name Graphcore/wikipedia-bert-512 \
--model_name_or_path ./output-pretrain-bert-base-phase1 \
--do_train \
--logging_steps 5 \
--max_seq_length 512 \
--max_steps 2038 \
--is_already_preprocessed \
--dataloader_num_workers 128 \
--dataloader_mode async_rebatched \
--lamb \
--per_device_train_batch_size 2 \
--gradient_accumulation_steps 2048 \
--pod_type pod16 \
--learning_rate 0.01 \
--loss_scaling 128 \
--weight_decay 0.01 \
--warmup_ratio 0.15 \
--groupbert_schedule \
--config_overrides "hidden_dropout_prob=0.0,attention_probs_dropout_prob=0.0" \
--ipu_config_overrides "device_iterations=1,embedding_serialization_factor=2,matmul_proportion=0.22,layers_per_ipu=[1 3 4 4]" \
--output_dir output-pretrain-groupbert-base-phase2
```
### Training hyperparameters
The following hyperparameters were used during phase 1 training:
- learning_rate: 0.012
- train_batch_size: 8
- eval_batch_size: 1
- seed: 42
- distributed_type: IPU
- gradient_accumulation_steps: 200
- total_train_batch_size: 64000
- total_eval_batch_size: 20
- optimizer: LAMB
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.15
- training_steps: 10500
- training precision: Mixed Precision
The following hyperparameters were used during phase 2 training:
- learning_rate: 0.01
- train_batch_size: 2
- eval_batch_size: 1
- seed: 42
- distributed_type: IPU
- gradient_accumulation_steps: 2048
- total_train_batch_size: 16384
- total_eval_batch_size: 20
- optimizer: LAMB
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.15
- training_steps: 2038
- training precision: Mixed Precision
### Training results
### Framework versions
- Transformers 4.20.1
- Pytorch 1.10.0+cpu
- Datasets 2.6.1
- Tokenizers 0.12.1 | 44a49877783e91806822b76229070271 |
ViktorDo/distilbert-base-uncased-finetuned-powo_all | ViktorDo | distilbert | 4 | 2 | transformers | 0 | fill-mask | false | true | false | apache-2.0 | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['generated_from_keras_callback'] | true | true | true | 1,365 | false |
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-powo_all
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': -343, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
### Framework versions
- Transformers 4.18.0
- TensorFlow 2.8.0
- Datasets 2.1.0
- Tokenizers 0.12.1
| 36fd5ed06a9df53d6c04ddd5b2c75984 |
ShadoWxShinigamI/SD-2-MJart | ShadoWxShinigamI | null | 4 | 0 | null | 17 | null | false | false | false | creativeml-openrail-m | null | null | null | 0 | 0 | 0 | 0 | 1 | 1 | 0 | [] | false | true | true | 957 | false | ##Textual Inversion Embed + Hypernetwork For SD 2 models by ShadoWxShinigamI
Trained on 200 BLIP Captioned images from my personal MJ Generations. Meant to be used with 768 Models.
16 Vectors - 625 Steps - TI Embed
Swish - 10000 Steps - Hypernetwork.
The Hypernetwork is meant to be an augment to be used alongside the embed. Using at 0.5 Strength tends to produce the best output (YMMV)
Examples :-





| 62b12d2b1250275c1e024131a97592f9 |
HAriGa/my_awesome_model | HAriGa | bert | 14 | 17 | transformers | 0 | text-classification | true | false | false | mit | null | ['gnad10'] | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['generated_from_trainer'] | true | true | true | 1,264 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# my_awesome_model
This model is a fine-tuned version of [bert-base-german-cased](https://huggingface.co/bert-base-german-cased) on the gnad10 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3414
- F1: 0.9001
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.5884 | 1.0 | 578 | 0.3510 | 0.8940 |
| 0.2389 | 2.0 | 1156 | 0.3414 | 0.9001 |
### Framework versions
- Transformers 4.26.0
- Pytorch 2.0.0.dev20230126+cu117
- Datasets 2.9.0
- Tokenizers 0.13.2
| a587b6b812d092941d05675e98a7b228 |
pritoms/distilgpt2-YTTranscriptTrial2 | pritoms | gpt2 | 9 | 4 | transformers | 0 | text-generation | true | false | false | apache-2.0 | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['generated_from_trainer'] | true | true | true | 1,243 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilgpt2-YTTranscriptTrial2
This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 5.8738
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 1.0 | 70 | 6.0027 |
| No log | 2.0 | 140 | 5.9072 |
| No log | 3.0 | 210 | 5.8738 |
### Framework versions
- Transformers 4.16.2
- Pytorch 1.10.0+cu111
- Datasets 1.18.3
- Tokenizers 0.11.0
| 141816358dc304eef378c7613e4117b1 |
anuragshas/whisper-large-v2-as | anuragshas | whisper | 22 | 0 | transformers | 0 | automatic-speech-recognition | true | false | false | apache-2.0 | ['as'] | ['mozilla-foundation/common_voice_11_0'] | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['whisper-event', 'generated_from_trainer'] | true | true | true | 1,389 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Large-v2 Assamese
This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the mozilla-foundation/common_voice_11_0 as dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3451
- Wer: 23.6961
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- training_steps: 500
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.0008 | 8.47 | 500 | 0.3451 | 23.6961 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu117
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2
| bc4956fa8358f5b41715b04c297bc6f4 |
adityay1221/cat.5.32 | adityay1221 | t5 | 9 | 3 | transformers | 0 | text2text-generation | true | false | false | apache-2.0 | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['generated_from_trainer'] | true | true | true | 979 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# cat.5.32
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.0293
- Bleu: 25.3811
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 121
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
### Framework versions
- Transformers 4.18.0
- Pytorch 1.11.0+cu102
- Datasets 2.1.0
- Tokenizers 0.12.1
| 473f169b463d5a5f71335f5ec81c4c74 |
tkesonia/xlm-roberta-base-finetuned-marc-en | tkesonia | xlm-roberta | 14 | 3 | transformers | 0 | text-classification | true | false | false | mit | null | ['amazon_reviews_multi'] | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['generated_from_trainer'] | true | true | true | 1,274 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-marc-en
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the amazon_reviews_multi dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9211
- Mae: 0.5122
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mae |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 1.1436 | 1.0 | 235 | 1.0181 | 0.5366 |
| 0.9756 | 2.0 | 470 | 0.9211 | 0.5122 |
### Framework versions
- Transformers 4.12.3
- Pytorch 1.9.0+cu111
- Datasets 1.15.1
- Tokenizers 0.10.3
| 05415165d2b55de5ce9cdc574b2a4415 |
timm/convnext_nano.in12k_ft_in1k | timm | null | 4 | 3,490 | timm | 0 | image-classification | true | false | false | apache-2.0 | null | ['imagenet-1k', 'imagenet-12k'] | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['image-classification', 'timm'] | false | true | true | 21,681 | false | # Model card for convnext_nano.in12k_ft_in1k
A ConvNeXt image classification model. Pretrained in `timm` on ImageNet-12k (a 11821 class subset of full ImageNet-22k) and fine-tuned on ImageNet-1k by Ross Wightman.
ImageNet-12k training done on TPUs thanks to support of the [TRC](https://sites.research.google/trc/about/) program.
Fine-tuning performed on 8x GPU [Lambda Labs](https://lambdalabs.com/) cloud instances.
## Model Details
- **Model Type:** Image classification / feature backbone
- **Model Stats:**
- Params (M): 15.6
- GMACs: 2.5
- Activations (M): 8.4
- Image size: 224 x 224
- **Papers:**
- A ConvNet for the 2020s: https://arxiv.org/abs/2201.03545
- **Original:** https://github.com/rwightman/pytorch-image-models
- **Dataset:** ImageNet-1k
- **Pretrain Dataset:** ImageNet-12k
## Model Usage
### Image Classification
```python
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(
urlopen('https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'))
model = timm.create_model('convnext_nano.in12k_ft_in1k', pretrained=True)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
```
### Feature Map Extraction
```python
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(
urlopen('https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'))
model = timm.create_model(
'convnext_nano.in12k_ft_in1k',
pretrained=True,
features_only=True,
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
for o in output:
# print shape of each feature map in output
# e.g. for convnext_base:
# torch.Size([1, 128, 56, 56])
# torch.Size([1, 256, 28, 28])
# torch.Size([1, 512, 14, 14])
# torch.Size([1, 1024, 7, 7])
print(o.shape)
```
### Image Embeddings
```python
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(
urlopen('https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'))
model = timm.create_model(
'convnext_nano.in12k_ft_in1k',
pretrained=True,
num_classes=0, # remove classifier nn.Linear
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor
# or equivalently (without needing to set num_classes=0)
output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled (ie.e a (batch_size, num_features, H, W) tensor
output = model.forward_head(output, pre_logits=True)
# output is (batch_size, num_features) tensor
```
## Model Comparison
### By Top-1
All timing numbers from eager model PyTorch 1.13 on RTX 3090 w/ AMP.
|model |top1 |top5 |img_size|param_count|gmacs |macts |samples_per_sec|batch_size|
|----------------------------------------------|------|------|--------|-----------|------|------|---------------|----------|
|[convnextv2_huge.fcmae_ft_in22k_in1k_512](https://huggingface.co/timm/convnextv2_huge.fcmae_ft_in22k_in1k_512)|88.848|98.742|512 |660.29 |600.81|413.07|28.58 |48 |
|[convnextv2_huge.fcmae_ft_in22k_in1k_384](https://huggingface.co/timm/convnextv2_huge.fcmae_ft_in22k_in1k_384)|88.668|98.738|384 |660.29 |337.96|232.35|50.56 |64 |
|[convnextv2_large.fcmae_ft_in22k_in1k_384](https://huggingface.co/timm/convnextv2_large.fcmae_ft_in22k_in1k_384)|88.196|98.532|384 |197.96 |101.1 |126.74|128.94 |128 |
|[convnext_xlarge.fb_in22k_ft_in1k_384](https://huggingface.co/timm/convnext_xlarge.fb_in22k_ft_in1k_384)|87.75 |98.556|384 |350.2 |179.2 |168.99|124.85 |192 |
|[convnextv2_base.fcmae_ft_in22k_in1k_384](https://huggingface.co/timm/convnextv2_base.fcmae_ft_in22k_in1k_384)|87.646|98.422|384 |88.72 |45.21 |84.49 |209.51 |256 |
|[convnext_large.fb_in22k_ft_in1k_384](https://huggingface.co/timm/convnext_large.fb_in22k_ft_in1k_384)|87.476|98.382|384 |197.77 |101.1 |126.74|194.66 |256 |
|[convnext_large_mlp.clip_laion2b_augreg_ft_in1k](https://huggingface.co/timm/convnext_large_mlp.clip_laion2b_augreg_ft_in1k)|87.344|98.218|256 |200.13 |44.94 |56.33 |438.08 |256 |
|[convnextv2_large.fcmae_ft_in22k_in1k](https://huggingface.co/timm/convnextv2_large.fcmae_ft_in22k_in1k)|87.26 |98.248|224 |197.96 |34.4 |43.13 |376.84 |256 |
|[convnext_xlarge.fb_in22k_ft_in1k](https://huggingface.co/timm/convnext_xlarge.fb_in22k_ft_in1k)|87.002|98.208|224 |350.2 |60.98 |57.5 |368.01 |256 |
|[convnext_base.fb_in22k_ft_in1k_384](https://huggingface.co/timm/convnext_base.fb_in22k_ft_in1k_384)|86.796|98.264|384 |88.59 |45.21 |84.49 |366.54 |256 |
|[convnextv2_base.fcmae_ft_in22k_in1k](https://huggingface.co/timm/convnextv2_base.fcmae_ft_in22k_in1k)|86.74 |98.022|224 |88.72 |15.38 |28.75 |624.23 |256 |
|[convnext_large.fb_in22k_ft_in1k](https://huggingface.co/timm/convnext_large.fb_in22k_ft_in1k)|86.636|98.028|224 |197.77 |34.4 |43.13 |581.43 |256 |
|[convnext_base.clip_laiona_augreg_ft_in1k_384](https://huggingface.co/timm/convnext_base.clip_laiona_augreg_ft_in1k_384)|86.504|97.97 |384 |88.59 |45.21 |84.49 |368.14 |256 |
|[convnextv2_huge.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_huge.fcmae_ft_in1k)|86.256|97.75 |224 |660.29 |115.0 |79.07 |154.72 |256 |
|[convnext_small.in12k_ft_in1k_384](https://huggingface.co/timm/convnext_small.in12k_ft_in1k_384)|86.182|97.92 |384 |50.22 |25.58 |63.37 |516.19 |256 |
|[convnext_base.clip_laion2b_augreg_ft_in1k](https://huggingface.co/timm/convnext_base.clip_laion2b_augreg_ft_in1k)|86.154|97.68 |256 |88.59 |20.09 |37.55 |819.86 |256 |
|[convnext_base.fb_in22k_ft_in1k](https://huggingface.co/timm/convnext_base.fb_in22k_ft_in1k)|85.822|97.866|224 |88.59 |15.38 |28.75 |1037.66 |256 |
|[convnext_small.fb_in22k_ft_in1k_384](https://huggingface.co/timm/convnext_small.fb_in22k_ft_in1k_384)|85.778|97.886|384 |50.22 |25.58 |63.37 |518.95 |256 |
|[convnextv2_large.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_large.fcmae_ft_in1k)|85.742|97.584|224 |197.96 |34.4 |43.13 |375.23 |256 |
|[convnext_small.in12k_ft_in1k](https://huggingface.co/timm/convnext_small.in12k_ft_in1k)|85.174|97.506|224 |50.22 |8.71 |21.56 |1474.31 |256 |
|[convnext_tiny.in12k_ft_in1k_384](https://huggingface.co/timm/convnext_tiny.in12k_ft_in1k_384)|85.118|97.608|384 |28.59 |13.14 |39.48 |856.76 |256 |
|[convnextv2_tiny.fcmae_ft_in22k_in1k_384](https://huggingface.co/timm/convnextv2_tiny.fcmae_ft_in22k_in1k_384)|85.112|97.63 |384 |28.64 |13.14 |39.48 |491.32 |256 |
|[convnextv2_base.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_base.fcmae_ft_in1k)|84.874|97.09 |224 |88.72 |15.38 |28.75 |625.33 |256 |
|[convnext_small.fb_in22k_ft_in1k](https://huggingface.co/timm/convnext_small.fb_in22k_ft_in1k)|84.562|97.394|224 |50.22 |8.71 |21.56 |1478.29 |256 |
|[convnext_large.fb_in1k](https://huggingface.co/timm/convnext_large.fb_in1k)|84.282|96.892|224 |197.77 |34.4 |43.13 |584.28 |256 |
|[convnext_tiny.in12k_ft_in1k](https://huggingface.co/timm/convnext_tiny.in12k_ft_in1k)|84.186|97.124|224 |28.59 |4.47 |13.44 |2433.7 |256 |
|[convnext_tiny.fb_in22k_ft_in1k_384](https://huggingface.co/timm/convnext_tiny.fb_in22k_ft_in1k_384)|84.084|97.14 |384 |28.59 |13.14 |39.48 |862.95 |256 |
|[convnextv2_tiny.fcmae_ft_in22k_in1k](https://huggingface.co/timm/convnextv2_tiny.fcmae_ft_in22k_in1k)|83.894|96.964|224 |28.64 |4.47 |13.44 |1452.72 |256 |
|[convnext_base.fb_in1k](https://huggingface.co/timm/convnext_base.fb_in1k)|83.82 |96.746|224 |88.59 |15.38 |28.75 |1054.0 |256 |
|[convnextv2_nano.fcmae_ft_in22k_in1k_384](https://huggingface.co/timm/convnextv2_nano.fcmae_ft_in22k_in1k_384)|83.37 |96.742|384 |15.62 |7.22 |24.61 |801.72 |256 |
|[convnext_small.fb_in1k](https://huggingface.co/timm/convnext_small.fb_in1k)|83.142|96.434|224 |50.22 |8.71 |21.56 |1464.0 |256 |
|[convnextv2_tiny.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_tiny.fcmae_ft_in1k)|82.92 |96.284|224 |28.64 |4.47 |13.44 |1425.62 |256 |
|[convnext_tiny.fb_in22k_ft_in1k](https://huggingface.co/timm/convnext_tiny.fb_in22k_ft_in1k)|82.898|96.616|224 |28.59 |4.47 |13.44 |2480.88 |256 |
|[convnext_nano.in12k_ft_in1k](https://huggingface.co/timm/convnext_nano.in12k_ft_in1k)|82.282|96.344|224 |15.59 |2.46 |8.37 |3926.52 |256 |
|[convnext_tiny_hnf.a2h_in1k](https://huggingface.co/timm/convnext_tiny_hnf.a2h_in1k)|82.216|95.852|224 |28.59 |4.47 |13.44 |2529.75 |256 |
|[convnext_tiny.fb_in1k](https://huggingface.co/timm/convnext_tiny.fb_in1k)|82.066|95.854|224 |28.59 |4.47 |13.44 |2346.26 |256 |
|[convnextv2_nano.fcmae_ft_in22k_in1k](https://huggingface.co/timm/convnextv2_nano.fcmae_ft_in22k_in1k)|82.03 |96.166|224 |15.62 |2.46 |8.37 |2300.18 |256 |
|[convnextv2_nano.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_nano.fcmae_ft_in1k)|81.83 |95.738|224 |15.62 |2.46 |8.37 |2321.48 |256 |
|[convnext_nano_ols.d1h_in1k](https://huggingface.co/timm/convnext_nano_ols.d1h_in1k)|80.866|95.246|224 |15.65 |2.65 |9.38 |3523.85 |256 |
|[convnext_nano.d1h_in1k](https://huggingface.co/timm/convnext_nano.d1h_in1k)|80.768|95.334|224 |15.59 |2.46 |8.37 |3915.58 |256 |
|[convnextv2_pico.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_pico.fcmae_ft_in1k)|80.304|95.072|224 |9.07 |1.37 |6.1 |3274.57 |256 |
|[convnext_pico.d1_in1k](https://huggingface.co/timm/convnext_pico.d1_in1k)|79.526|94.558|224 |9.05 |1.37 |6.1 |5686.88 |256 |
|[convnext_pico_ols.d1_in1k](https://huggingface.co/timm/convnext_pico_ols.d1_in1k)|79.522|94.692|224 |9.06 |1.43 |6.5 |5422.46 |256 |
|[convnextv2_femto.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_femto.fcmae_ft_in1k)|78.488|93.98 |224 |5.23 |0.79 |4.57 |4264.2 |256 |
|[convnext_femto_ols.d1_in1k](https://huggingface.co/timm/convnext_femto_ols.d1_in1k)|77.86 |93.83 |224 |5.23 |0.82 |4.87 |6910.6 |256 |
|[convnext_femto.d1_in1k](https://huggingface.co/timm/convnext_femto.d1_in1k)|77.454|93.68 |224 |5.22 |0.79 |4.57 |7189.92 |256 |
|[convnextv2_atto.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_atto.fcmae_ft_in1k)|76.664|93.044|224 |3.71 |0.55 |3.81 |4728.91 |256 |
|[convnext_atto_ols.a2_in1k](https://huggingface.co/timm/convnext_atto_ols.a2_in1k)|75.88 |92.846|224 |3.7 |0.58 |4.11 |7963.16 |256 |
|[convnext_atto.d2_in1k](https://huggingface.co/timm/convnext_atto.d2_in1k)|75.664|92.9 |224 |3.7 |0.55 |3.81 |8439.22 |256 |
### By Throughput (samples / sec)
All timing numbers from eager model PyTorch 1.13 on RTX 3090 w/ AMP.
|model |top1 |top5 |img_size|param_count|gmacs |macts |samples_per_sec|batch_size|
|----------------------------------------------|------|------|--------|-----------|------|------|---------------|----------|
|[convnext_atto.d2_in1k](https://huggingface.co/timm/convnext_atto.d2_in1k)|75.664|92.9 |224 |3.7 |0.55 |3.81 |8439.22 |256 |
|[convnext_atto_ols.a2_in1k](https://huggingface.co/timm/convnext_atto_ols.a2_in1k)|75.88 |92.846|224 |3.7 |0.58 |4.11 |7963.16 |256 |
|[convnext_femto.d1_in1k](https://huggingface.co/timm/convnext_femto.d1_in1k)|77.454|93.68 |224 |5.22 |0.79 |4.57 |7189.92 |256 |
|[convnext_femto_ols.d1_in1k](https://huggingface.co/timm/convnext_femto_ols.d1_in1k)|77.86 |93.83 |224 |5.23 |0.82 |4.87 |6910.6 |256 |
|[convnext_pico.d1_in1k](https://huggingface.co/timm/convnext_pico.d1_in1k)|79.526|94.558|224 |9.05 |1.37 |6.1 |5686.88 |256 |
|[convnext_pico_ols.d1_in1k](https://huggingface.co/timm/convnext_pico_ols.d1_in1k)|79.522|94.692|224 |9.06 |1.43 |6.5 |5422.46 |256 |
|[convnextv2_atto.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_atto.fcmae_ft_in1k)|76.664|93.044|224 |3.71 |0.55 |3.81 |4728.91 |256 |
|[convnextv2_femto.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_femto.fcmae_ft_in1k)|78.488|93.98 |224 |5.23 |0.79 |4.57 |4264.2 |256 |
|[convnext_nano.in12k_ft_in1k](https://huggingface.co/timm/convnext_nano.in12k_ft_in1k)|82.282|96.344|224 |15.59 |2.46 |8.37 |3926.52 |256 |
|[convnext_nano.d1h_in1k](https://huggingface.co/timm/convnext_nano.d1h_in1k)|80.768|95.334|224 |15.59 |2.46 |8.37 |3915.58 |256 |
|[convnext_nano_ols.d1h_in1k](https://huggingface.co/timm/convnext_nano_ols.d1h_in1k)|80.866|95.246|224 |15.65 |2.65 |9.38 |3523.85 |256 |
|[convnextv2_pico.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_pico.fcmae_ft_in1k)|80.304|95.072|224 |9.07 |1.37 |6.1 |3274.57 |256 |
|[convnext_tiny_hnf.a2h_in1k](https://huggingface.co/timm/convnext_tiny_hnf.a2h_in1k)|82.216|95.852|224 |28.59 |4.47 |13.44 |2529.75 |256 |
|[convnext_tiny.fb_in22k_ft_in1k](https://huggingface.co/timm/convnext_tiny.fb_in22k_ft_in1k)|82.898|96.616|224 |28.59 |4.47 |13.44 |2480.88 |256 |
|[convnext_tiny.in12k_ft_in1k](https://huggingface.co/timm/convnext_tiny.in12k_ft_in1k)|84.186|97.124|224 |28.59 |4.47 |13.44 |2433.7 |256 |
|[convnext_tiny.fb_in1k](https://huggingface.co/timm/convnext_tiny.fb_in1k)|82.066|95.854|224 |28.59 |4.47 |13.44 |2346.26 |256 |
|[convnextv2_nano.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_nano.fcmae_ft_in1k)|81.83 |95.738|224 |15.62 |2.46 |8.37 |2321.48 |256 |
|[convnextv2_nano.fcmae_ft_in22k_in1k](https://huggingface.co/timm/convnextv2_nano.fcmae_ft_in22k_in1k)|82.03 |96.166|224 |15.62 |2.46 |8.37 |2300.18 |256 |
|[convnext_small.fb_in22k_ft_in1k](https://huggingface.co/timm/convnext_small.fb_in22k_ft_in1k)|84.562|97.394|224 |50.22 |8.71 |21.56 |1478.29 |256 |
|[convnext_small.in12k_ft_in1k](https://huggingface.co/timm/convnext_small.in12k_ft_in1k)|85.174|97.506|224 |50.22 |8.71 |21.56 |1474.31 |256 |
|[convnext_small.fb_in1k](https://huggingface.co/timm/convnext_small.fb_in1k)|83.142|96.434|224 |50.22 |8.71 |21.56 |1464.0 |256 |
|[convnextv2_tiny.fcmae_ft_in22k_in1k](https://huggingface.co/timm/convnextv2_tiny.fcmae_ft_in22k_in1k)|83.894|96.964|224 |28.64 |4.47 |13.44 |1452.72 |256 |
|[convnextv2_tiny.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_tiny.fcmae_ft_in1k)|82.92 |96.284|224 |28.64 |4.47 |13.44 |1425.62 |256 |
|[convnext_base.fb_in1k](https://huggingface.co/timm/convnext_base.fb_in1k)|83.82 |96.746|224 |88.59 |15.38 |28.75 |1054.0 |256 |
|[convnext_base.fb_in22k_ft_in1k](https://huggingface.co/timm/convnext_base.fb_in22k_ft_in1k)|85.822|97.866|224 |88.59 |15.38 |28.75 |1037.66 |256 |
|[convnext_tiny.fb_in22k_ft_in1k_384](https://huggingface.co/timm/convnext_tiny.fb_in22k_ft_in1k_384)|84.084|97.14 |384 |28.59 |13.14 |39.48 |862.95 |256 |
|[convnext_tiny.in12k_ft_in1k_384](https://huggingface.co/timm/convnext_tiny.in12k_ft_in1k_384)|85.118|97.608|384 |28.59 |13.14 |39.48 |856.76 |256 |
|[convnext_base.clip_laion2b_augreg_ft_in1k](https://huggingface.co/timm/convnext_base.clip_laion2b_augreg_ft_in1k)|86.154|97.68 |256 |88.59 |20.09 |37.55 |819.86 |256 |
|[convnextv2_nano.fcmae_ft_in22k_in1k_384](https://huggingface.co/timm/convnextv2_nano.fcmae_ft_in22k_in1k_384)|83.37 |96.742|384 |15.62 |7.22 |24.61 |801.72 |256 |
|[convnextv2_base.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_base.fcmae_ft_in1k)|84.874|97.09 |224 |88.72 |15.38 |28.75 |625.33 |256 |
|[convnextv2_base.fcmae_ft_in22k_in1k](https://huggingface.co/timm/convnextv2_base.fcmae_ft_in22k_in1k)|86.74 |98.022|224 |88.72 |15.38 |28.75 |624.23 |256 |
|[convnext_large.fb_in1k](https://huggingface.co/timm/convnext_large.fb_in1k)|84.282|96.892|224 |197.77 |34.4 |43.13 |584.28 |256 |
|[convnext_large.fb_in22k_ft_in1k](https://huggingface.co/timm/convnext_large.fb_in22k_ft_in1k)|86.636|98.028|224 |197.77 |34.4 |43.13 |581.43 |256 |
|[convnext_small.fb_in22k_ft_in1k_384](https://huggingface.co/timm/convnext_small.fb_in22k_ft_in1k_384)|85.778|97.886|384 |50.22 |25.58 |63.37 |518.95 |256 |
|[convnext_small.in12k_ft_in1k_384](https://huggingface.co/timm/convnext_small.in12k_ft_in1k_384)|86.182|97.92 |384 |50.22 |25.58 |63.37 |516.19 |256 |
|[convnextv2_tiny.fcmae_ft_in22k_in1k_384](https://huggingface.co/timm/convnextv2_tiny.fcmae_ft_in22k_in1k_384)|85.112|97.63 |384 |28.64 |13.14 |39.48 |491.32 |256 |
|[convnext_large_mlp.clip_laion2b_augreg_ft_in1k](https://huggingface.co/timm/convnext_large_mlp.clip_laion2b_augreg_ft_in1k)|87.344|98.218|256 |200.13 |44.94 |56.33 |438.08 |256 |
|[convnextv2_large.fcmae_ft_in22k_in1k](https://huggingface.co/timm/convnextv2_large.fcmae_ft_in22k_in1k)|87.26 |98.248|224 |197.96 |34.4 |43.13 |376.84 |256 |
|[convnextv2_large.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_large.fcmae_ft_in1k)|85.742|97.584|224 |197.96 |34.4 |43.13 |375.23 |256 |
|[convnext_base.clip_laiona_augreg_ft_in1k_384](https://huggingface.co/timm/convnext_base.clip_laiona_augreg_ft_in1k_384)|86.504|97.97 |384 |88.59 |45.21 |84.49 |368.14 |256 |
|[convnext_xlarge.fb_in22k_ft_in1k](https://huggingface.co/timm/convnext_xlarge.fb_in22k_ft_in1k)|87.002|98.208|224 |350.2 |60.98 |57.5 |368.01 |256 |
|[convnext_base.fb_in22k_ft_in1k_384](https://huggingface.co/timm/convnext_base.fb_in22k_ft_in1k_384)|86.796|98.264|384 |88.59 |45.21 |84.49 |366.54 |256 |
|[convnextv2_base.fcmae_ft_in22k_in1k_384](https://huggingface.co/timm/convnextv2_base.fcmae_ft_in22k_in1k_384)|87.646|98.422|384 |88.72 |45.21 |84.49 |209.51 |256 |
|[convnext_large.fb_in22k_ft_in1k_384](https://huggingface.co/timm/convnext_large.fb_in22k_ft_in1k_384)|87.476|98.382|384 |197.77 |101.1 |126.74|194.66 |256 |
|[convnextv2_huge.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_huge.fcmae_ft_in1k)|86.256|97.75 |224 |660.29 |115.0 |79.07 |154.72 |256 |
|[convnextv2_large.fcmae_ft_in22k_in1k_384](https://huggingface.co/timm/convnextv2_large.fcmae_ft_in22k_in1k_384)|88.196|98.532|384 |197.96 |101.1 |126.74|128.94 |128 |
|[convnext_xlarge.fb_in22k_ft_in1k_384](https://huggingface.co/timm/convnext_xlarge.fb_in22k_ft_in1k_384)|87.75 |98.556|384 |350.2 |179.2 |168.99|124.85 |192 |
|[convnextv2_huge.fcmae_ft_in22k_in1k_384](https://huggingface.co/timm/convnextv2_huge.fcmae_ft_in22k_in1k_384)|88.668|98.738|384 |660.29 |337.96|232.35|50.56 |64 |
|[convnextv2_huge.fcmae_ft_in22k_in1k_512](https://huggingface.co/timm/convnextv2_huge.fcmae_ft_in22k_in1k_512)|88.848|98.742|512 |660.29 |600.81|413.07|28.58 |48 |
## Citation
```bibtex
@misc{rw2019timm,
author = {Ross Wightman},
title = {PyTorch Image Models},
year = {2019},
publisher = {GitHub},
journal = {GitHub repository},
doi = {10.5281/zenodo.4414861},
howpublished = {\url{https://github.com/rwightman/pytorch-image-models}}
}
```
```bibtex
@article{liu2022convnet,
author = {Zhuang Liu and Hanzi Mao and Chao-Yuan Wu and Christoph Feichtenhofer and Trevor Darrell and Saining Xie},
title = {A ConvNet for the 2020s},
journal = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
year = {2022},
}
```
| 21c1b955afc8150bdf1881d16c2703c4 |
tzvc/375132eb-61b1-49ec-83f3-04676640d6c9 | tzvc | null | 31 | 2 | diffusers | 0 | text-to-image | false | false | false | creativeml-openrail-m | null | null | null | 1 | 1 | 0 | 0 | 0 | 0 | 0 | ['text-to-image'] | false | true | true | 1,743 | false | ### 375132eb-61b1-49ec-83f3-04676640d6c9 Dreambooth model trained by tzvc with [Hugging Face Dreambooth Training Space](https://huggingface.co/spaces/multimodalart/dreambooth-training) with the v1-5 base model
You run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb). Don't forget to use the concept prompts!
Sample pictures of:
sdcid (use that on your prompt)

| 07f18fbf18cbe1ed96b1a69e9e21f1d2 |
aXhyra/demo_hate_31415 | aXhyra | distilbert | 10 | 6 | transformers | 0 | text-classification | true | false | false | apache-2.0 | null | ['tweet_eval'] | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['generated_from_trainer'] | true | true | true | 1,387 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# demo_hate_31415
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8697
- F1: 0.7773
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7.320702985778492e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 0
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| No log | 1.0 | 282 | 0.4850 | 0.7645 |
| 0.3877 | 2.0 | 564 | 0.5160 | 0.7856 |
| 0.3877 | 3.0 | 846 | 0.6927 | 0.7802 |
| 0.1343 | 4.0 | 1128 | 0.8697 | 0.7773 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.9.1
- Datasets 1.16.1
- Tokenizers 0.10.3
| 805efd4f36985070c25e2727c3cd19c9 |
pig4431/TUF_ELECTRA_5E | pig4431 | electra | 10 | 3 | transformers | 0 | text-classification | true | false | false | apache-2.0 | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['generated_from_trainer'] | true | true | true | 4,254 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# TUF_ELECTRA_5E
This model is a fine-tuned version of [google/electra-small-discriminator](https://huggingface.co/google/electra-small-discriminator) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1195
- Accuracy: 0.94
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.6021 | 0.1 | 50 | 0.5770 | 0.7533 |
| 0.5301 | 0.2 | 100 | 0.5460 | 0.7533 |
| 0.4958 | 0.3 | 150 | 0.4943 | 0.7533 |
| 0.4347 | 0.4 | 200 | 0.4112 | 0.8467 |
| 0.3565 | 0.5 | 250 | 0.3601 | 0.88 |
| 0.3515 | 0.59 | 300 | 0.3465 | 0.9 |
| 0.301 | 0.69 | 350 | 0.3214 | 0.9067 |
| 0.2963 | 0.79 | 400 | 0.2996 | 0.9 |
| 0.2848 | 0.89 | 450 | 0.2511 | 0.9267 |
| 0.2548 | 0.99 | 500 | 0.2493 | 0.8933 |
| 0.2527 | 1.09 | 550 | 0.2381 | 0.9333 |
| 0.2484 | 1.19 | 600 | 0.2099 | 0.9333 |
| 0.2267 | 1.29 | 650 | 0.1834 | 0.9333 |
| 0.2147 | 1.39 | 700 | 0.1919 | 0.94 |
| 0.1961 | 1.49 | 750 | 0.1751 | 0.9333 |
| 0.1868 | 1.58 | 800 | 0.1772 | 0.9267 |
| 0.2393 | 1.68 | 850 | 0.1726 | 0.92 |
| 0.1747 | 1.78 | 900 | 0.1509 | 0.9467 |
| 0.2236 | 1.88 | 950 | 0.1532 | 0.94 |
| 0.174 | 1.98 | 1000 | 0.1752 | 0.9267 |
| 0.1983 | 2.08 | 1050 | 0.1563 | 0.94 |
| 0.2015 | 2.18 | 1100 | 0.1494 | 0.9467 |
| 0.1563 | 2.28 | 1150 | 0.1876 | 0.9333 |
| 0.168 | 2.38 | 1200 | 0.1802 | 0.9333 |
| 0.2074 | 2.48 | 1250 | 0.1669 | 0.94 |
| 0.1726 | 2.57 | 1300 | 0.1348 | 0.9533 |
| 0.1373 | 2.67 | 1350 | 0.1549 | 0.9533 |
| 0.1694 | 2.77 | 1400 | 0.1339 | 0.96 |
| 0.1782 | 2.87 | 1450 | 0.1417 | 0.9533 |
| 0.1771 | 2.97 | 1500 | 0.1228 | 0.96 |
| 0.1886 | 3.07 | 1550 | 0.1415 | 0.9533 |
| 0.1507 | 3.17 | 1600 | 0.1350 | 0.9467 |
| 0.1435 | 3.27 | 1650 | 0.1294 | 0.9467 |
| 0.1548 | 3.37 | 1700 | 0.1316 | 0.96 |
| 0.1475 | 3.47 | 1750 | 0.1314 | 0.9333 |
| 0.1764 | 3.56 | 1800 | 0.1195 | 0.94 |
| 0.1668 | 3.66 | 1850 | 0.1199 | 0.94 |
| 0.1336 | 3.76 | 1900 | 0.1210 | 0.9467 |
| 0.1452 | 3.86 | 1950 | 0.1259 | 0.9467 |
| 0.206 | 3.96 | 2000 | 0.1247 | 0.96 |
| 0.1704 | 4.06 | 2050 | 0.1253 | 0.9533 |
| 0.1489 | 4.16 | 2100 | 0.1194 | 0.94 |
| 0.1766 | 4.26 | 2150 | 0.1278 | 0.96 |
| 0.1387 | 4.36 | 2200 | 0.1179 | 0.94 |
| 0.1269 | 4.46 | 2250 | 0.1270 | 0.96 |
| 0.154 | 4.55 | 2300 | 0.1208 | 0.94 |
| 0.1481 | 4.65 | 2350 | 0.1210 | 0.94 |
| 0.1676 | 4.75 | 2400 | 0.1196 | 0.94 |
| 0.1202 | 4.85 | 2450 | 0.1194 | 0.94 |
| 0.1323 | 4.95 | 2500 | 0.1195 | 0.94 |
### Framework versions
- Transformers 4.24.0
- Pytorch 1.13.0
- Datasets 2.7.1
- Tokenizers 0.13.2
| c8077571b48a42aabbe8e99f8f0eb3d5 |
PlanTL-GOB-ES/ca_anonimization_core_lg | PlanTL-GOB-ES | null | 23 | 5 | spacy | 0 | token-classification | false | false | false | mit | ['es', 'ca'] | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['spacy', 'token-classification'] | false | true | true | 16,424 | false |
This is a Spacy multilingual (Catalan & Spanish) anonimization model, for use with BSC's AnonymizationPipeline at:
https://github.com/TeMU-BSC/AnonymizationPipeline.
The anonymization pipeline is a library for performing sensitive data identification and ultimately anonymization of the detected data in Spanish and Catalan user generated plain text.
This is not a standalone model and is meant to work within the pipeline.
The model can detect the following entities: `EMAIL`, `FINANCIAL`, `ID`, `LOC`, `MISC`, `ORG`, `PER`, `TELEPHONE`, `VEHICLE`, `ZIP`
| Feature | Description |
| --- | --- |
| **Name** | `ca_anonimization_core_lg` |
| **Version** | `1.0.0` |
| **spaCy** | `>=3.2.3,<3.3.0` |
| **Default Pipeline** | `tok2vec`, `morphologizer`, `parser`, `attribute_ruler`, `lemmatizer`, `ner` |
| **Components** | `tok2vec`, `morphologizer`, `parser`, `attribute_ruler`, `lemmatizer`, `ner` |
| **Vectors** | 500000 keys, 500000 unique vectors (300 dimensions) |
| **Sources** | n/a |
| **License** | `MIT` |
| **Author** | [Joaquin Silveira](https://github.com/TeMU-BSC/AnonymizationPipeline) |
### Label Scheme
<details>
<summary>View label scheme (322 labels for 3 components)</summary>
| Component | Labels |
| --- | --- |
| **`morphologizer`** | `Definite=Def\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `POS=PROPN`, `POS=PUNCT\|PunctSide=Ini\|PunctType=Brck`, `POS=PUNCT\|PunctSide=Fin\|PunctType=Brck`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Definite=Def\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Gender=Fem\|Number=Sing\|POS=NOUN`, `POS=ADP`, `NumType=Card\|Number=Plur\|POS=NUM`, `Gender=Masc\|Number=Plur\|POS=NOUN`, `Number=Sing\|POS=ADJ`, `POS=CCONJ`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Ind`, `NumForm=Digit\|NumType=Card\|POS=NUM`, `NumForm=Digit\|POS=NOUN`, `Gender=Masc\|Number=Plur\|POS=ADJ`, `POS=PUNCT\|PunctType=Comm`, `POS=AUX\|VerbForm=Inf`, `Case=Acc,Dat\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes`, `Definite=Def\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Art`, `POS=PRON\|PronType=Rel`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Gender=Fem\|Number=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Definite=Def\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Art`, `Gender=Fem\|Number=Plur\|POS=NOUN`, `Gender=Fem\|Number=Plur\|POS=ADJ`, `POS=VERB\|VerbForm=Inf`, `Case=Acc,Dat\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Number=Plur\|POS=ADJ`, `POS=PUNCT\|PunctType=Peri`, `Number=Sing\|POS=PRON\|PronType=Rel`, `Gender=Masc\|Number=Sing\|POS=NOUN`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|VerbForm=Fin`, `Gender=Masc\|Number=Plur\|POS=ADJ\|VerbForm=Part`, `POS=SCONJ`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Definite=Def\|Number=Sing\|POS=DET\|PronType=Art`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Ind`, `Gender=Fem\|Number=Plur\|POS=ADJ\|VerbForm=Part`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `POS=VERB\|VerbForm=Ger`, `POS=NOUN`, `Gender=Fem\|NumType=Card\|Number=Sing\|POS=NUM`, `Gender=Fem\|Number=Sing\|POS=ADJ\|VerbForm=Part`, `Gender=Fem\|NumType=Ord\|Number=Plur\|POS=ADJ`, `POS=SYM`, `Gender=Masc\|Number=Sing\|POS=ADJ`, `Gender=Masc\|Number=Sing\|POS=ADJ\|VerbForm=Part`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `POS=ADV\|Polarity=Neg`, `POS=ADV`, `Number=Sing\|POS=PRON\|PronType=Dem`, `Number=Sing\|POS=NOUN`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Number=Plur\|POS=NOUN`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|POS=ADJ`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Tot`, `Case=Loc\|POS=PRON\|Person=3\|PronType=Prs`, `Gender=Fem\|NumType=Ord\|Number=Sing\|POS=ADJ`, `Degree=Cmp\|POS=ADV`, `Gender=Fem\|Number=Plur\|POS=DET\|PronType=Art`, `Gender=Fem\|Number=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Gender=Masc\|NumType=Ord\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Fut\|VerbForm=Fin`, `NumType=Card\|POS=NUM`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Number=Sing\|POS=PRON\|PronType=Ind`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Number=Plur\|POS=DET\|PronType=Ind`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Gender=Masc\|NumType=Card\|Number=Sing\|POS=NUM`, `Mood=Sub\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Number=Sing\|POS=DET\|PronType=Ind`, `POS=PUNCT`, `Number=Sing\|POS=DET\|PronType=Rel`, `Case=Gen\|POS=PRON\|Person=3\|PronType=Prs`, `Gender=Fem\|NumType=Card\|Number=Plur\|POS=NUM`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `POS=DET\|PronType=Ind`, `POS=AUX`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc,Dat\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Degree=Cmp\|Number=Sing\|POS=ADJ`, `Number=Sing\|POS=VERB`, `Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Ind`, `Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Gender=Masc\|Number=Plur\|POS=DET\|PronType=Art`, `Gender=Masc\|Number=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Fem,Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Ind`, `Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Ind`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Number=Plur\|POS=PRON\|PronType=Rel`, `Gender=Masc\|Number=Plur\|POS=DET\|PronType=Int`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Imp\|VerbForm=Fin`, `AdvType=Tim\|POS=NOUN`, `Gender=Masc\|Number=Plur\|POS=DET\|PronType=Ind`, `Gender=Fem\|Number=Plur\|POS=DET\|PronType=Ind`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int`, `Mood=Cnd\|Number=Sing\|POS=AUX\|Person=3\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Number=Sing\|POS=DET\|PronType=Art`, `Gender=Masc\|Number=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Int`, `POS=PUNCT\|PunctType=Semi`, `Mood=Cnd\|Number=Plur\|POS=AUX\|Person=3\|VerbForm=Fin`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Gender=Masc\|NumType=Card\|Number=Plur\|POS=NUM`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Ind`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=3\|Tense=Imp\|VerbForm=Fin`, `NumForm=Digit\|POS=SYM`, `Gender=Masc\|Number=Sing\|POS=AUX\|Tense=Past\|VerbForm=Part`, `Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Int`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Int`, `POS=PRON\|PronType=Int`, `Gender=Fem\|Number=Plur\|POS=DET\|PronType=Int`, `Mood=Cnd\|Number=Sing\|POS=VERB\|Person=3\|VerbForm=Fin`, `Mood=Cnd\|Number=Plur\|POS=VERB\|Person=3\|VerbForm=Fin`, `POS=PART`, `Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Dem`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Tot`, `Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Dem`, `POS=ADJ`, `Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Degree=Cmp\|Number=Plur\|POS=ADJ`, `POS=PUNCT\|PunctType=Dash`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Gender=Masc\|POS=NOUN`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Int`, `Gender=Masc\|NumType=Ord\|Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Fut\|VerbForm=Fin`, `POS=PUNCT\|PunctType=Colo`, `Gender=Masc\|NumType=Card\|POS=NUM`, `Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Number=Sing\|POS=PRON\|PronType=Int`, `POS=PUNCT\|PunctType=Quot`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=3\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Gender=Masc\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin`, `POS=AUX\|VerbForm=Ger`, `Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Mood=Imp\|Number=Sing\|POS=AUX\|Person=3\|VerbForm=Fin`, `Number=Plur\|POS=PRON\|PronType=Ind`, `Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Acc,Dat\|Number=Sing\|POS=PRON\|Person=2\|Polite=Infm\|PrepCase=Npr\|PronType=Prs`, `Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Int`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `NumForm=Digit\|NumType=Frac\|POS=NUM`, `POS=VERB`, `Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Dem`, `Gender=Fem\|POS=NOUN`, `Case=Acc,Dat\|Number=Sing\|POS=PRON\|Person=1\|PrepCase=Npr\|PronType=Prs`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Tense=Fut\|VerbForm=Fin`, `Mood=Sub\|Number=Plur\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Mood=Sub\|Number=Plur\|POS=AUX\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=2\|Polite=Infm\|PronType=Prs`, `POS=X`, `Mood=Cnd\|Number=Plur\|POS=AUX\|Person=1\|VerbForm=Fin`, `Number=Sing\|POS=DET\|PronType=Dem`, `POS=DET`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `POS=DET\|PronType=Art`, `Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `NumType=Ord\|Number=Sing\|POS=ADJ`, `Gender=Fem\|Number=Sing\|POS=AUX\|Tense=Past\|VerbForm=Part`, `Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Gender=Fem\|Number=Plur\|POS=AUX\|Tense=Past\|VerbForm=Part`, `Gender=Masc\|Number=Plur\|POS=AUX\|Tense=Past\|VerbForm=Part`, `Number=Plur\|POS=PRON\|PronType=Dem`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=1\|VerbForm=Fin`, `POS=PRON\|PronType=Ind`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=3\|VerbForm=Fin`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=1\|PrepCase=Pre\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Imp\|VerbForm=Fin`, `POS=PUNCT\|PunctSide=Fin\|PunctType=Qest`, `NumForm=Digit\|NumType=Ord\|POS=ADJ`, `Case=Acc\|POS=PRON\|Person=3\|PrepCase=Pre\|PronType=Prs\|Reflex=Yes`, `NumForm=Digit\|NumType=Frac\|POS=SYM`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `POS=PUNCT\|PunctSide=Ini\|PunctType=Qest`, `NumType=Card\|Number=Sing\|POS=NUM`, `Foreign=Yes\|POS=PRON\|PronType=Int`, `Foreign=Yes\|Mood=Ind\|POS=VERB\|VerbForm=Fin`, `Foreign=Yes\|POS=ADP`, `Gender=Masc\|Number=Sing\|POS=PROPN`, `POS=PUNCT\|PunctSide=Ini\|PunctType=Excl`, `POS=PUNCT\|PunctSide=Fin\|PunctType=Excl`, `Mood=Cnd\|Number=Sing\|POS=AUX\|Person=1\|VerbForm=Fin`, `Number=Plur\|POS=PRON\|Person=2\|Polite=Form\|PronType=Prs`, `Mood=Sub\|POS=AUX\|Person=1\|Tense=Imp\|VerbForm=Fin`, `POS=PUNCT\|PunctSide=Ini\|PunctType=Comm`, `POS=PUNCT\|PunctSide=Fin\|PunctType=Comm`, `Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Case=Acc,Dat\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Mood=Cnd\|Number=Sing\|POS=VERB\|Person=1\|VerbForm=Fin`, `Mood=Cnd\|Number=Plur\|POS=VERB\|Person=1\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Gender=Masc\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Number=Sing\|POS=PRON\|Person=2\|Polite=Form\|PronType=Prs`, `Gender=Masc\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Imp\|VerbForm=Fin`, `POS=VERB\|Tense=Past\|VerbForm=Part`, `Mood=Imp\|Number=Plur\|POS=AUX\|Person=3\|VerbForm=Fin`, `Case=Nom\|POS=PRON\|Person=3\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Rel`, `Definite=Ind\|Number=Sing\|POS=DET\|PronType=Art`, `Gender=Masc\|Number=Sing\|Number[psor]=Plur\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Number=Plur\|Number[psor]=Plur\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `POS=AUX\|Tense=Past\|VerbForm=Part`, `Gender=Fem\|NumType=Card\|POS=NUM`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Fut\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin`, `AdvType=Tim\|Degree=Cmp\|POS=ADV`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=2\|Polite=Infm\|PrepCase=Pre\|PronType=Prs`, `POS=DET\|PronType=Rel`, `Definite=Ind\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Art`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Fut\|VerbForm=Fin`, `POS=INTJ`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `POS=VERB\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `Definite=Ind\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Mood=Sub\|Number=Plur\|POS=AUX\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|Number[psor]=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Foreign=Yes\|POS=NOUN`, `Foreign=Yes\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Foreign=Yes\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Foreign=Yes\|POS=SCONJ`, `Foreign=Yes\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Gender=Masc\|POS=SYM`, `Gender=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Number=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Gender=Masc\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Gender=Fem\|Number=Sing\|POS=PROPN`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Definite=Def\|Foreign=Yes\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Foreign=Yes\|POS=VERB`, `Foreign=Yes\|POS=ADJ`, `Foreign=Yes\|POS=DET`, `Foreign=Yes\|POS=ADV`, `POS=PUNCT\|PunctSide=Fin\|Punta d'aignctType=Brck`, `Degree=Cmp\|POS=ADJ`, `AdvType=Tim\|POS=SYM`, `Number=Plur\|POS=DET\|PronType=Dem`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Fut\|VerbForm=Fin` |
| **`parser`** | `ROOT`, `acl`, `advcl`, `advmod`, `amod`, `appos`, `aux`, `case`, `cc`, `ccomp`, `compound`, `conj`, `cop`, `csubj`, `dep`, `det`, `expl:pass`, `fixed`, `flat`, `iobj`, `mark`, `nmod`, `nsubj`, `nummod`, `obj`, `obl`, `parataxis`, `punct`, `xcomp` |
| **`ner`** | `EMAIL`, `FINANCIAL`, `ID`, `LOC`, `MISC`, `ORG`, `PER`, `TELEPHONE`, `VEHICLE`, `ZIP` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `ENTS_F` | 69.12 |
| `ENTS_P` | 74.60 |
| `ENTS_R` | 64.38 |
| `NER_LOSS` | 26573.78 |
| dd7cdfef753a925cba62fc9f10e7b9f9 |
henryscheible/mnli_roberta-base_125 | henryscheible | null | 14 | 0 | null | 0 | null | true | false | false | mit | ['en'] | ['glue'] | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['generated_from_trainer'] | true | true | true | 1,003 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mnli_roberta-base_125
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the GLUE MNLI dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3804
- Accuracy: 0.8695
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 400
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0
### Training results
### Framework versions
- Transformers 4.23.1
- Pytorch 1.12.1
- Datasets 2.6.1
- Tokenizers 0.13.1
| 11677a9c11c9ba229ec51b59bde161cf |
AkshatSurolia/BEiT-FaceMask-Finetuned | AkshatSurolia | beit | 10 | 6 | transformers | 0 | image-classification | true | false | false | apache-2.0 | null | ['Face-Mask18K'] | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['image-classification'] | false | true | true | 2,495 | false |
# BEiT for Face Mask Detection
BEiT model pre-trained and fine-tuned on Self Currated Custom Face-Mask18K Dataset (18k images, 2 classes) at resolution 224x224. It was introduced in the paper BEIT: BERT Pre-Training of Image Transformers by Hangbo Bao, Li Dong and Furu Wei.
## Model description
The BEiT model is a Vision Transformer (ViT), which is a transformer encoder model (BERT-like). In contrast to the original ViT model, BEiT is pretrained on a large collection of images in a self-supervised fashion, namely ImageNet-21k, at a resolution of 224x224 pixels. The pre-training objective for the model is to predict visual tokens from the encoder of OpenAI's DALL-E's VQ-VAE, based on masked patches. Next, the model was fine-tuned in a supervised fashion on ImageNet (also referred to as ILSVRC2012), a dataset comprising 1 million images and 1,000 classes, also at resolution 224x224.
Images are presented to the model as a sequence of fixed-size patches (resolution 16x16), which are linearly embedded. Contrary to the original ViT models, BEiT models do use relative position embeddings (similar to T5) instead of absolute position embeddings, and perform classification of images by mean-pooling the final hidden states of the patches, instead of placing a linear layer on top of the final hidden state of the [CLS] token.
By pre-training the model, it learns an inner representation of images that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled images for instance, you can train a standard classifier by placing a linear layer on top of the pre-trained encoder. One typically places a linear layer on top of the [CLS] token, as the last hidden state of this token can be seen as a representation of an entire image. Alternatively, one can mean-pool the final hidden states of the patch embeddings, and place a linear layer on top of that.
## Training Metrics
epoch = 0.55
total_flos = 576468516GF
train_loss = 0.151
train_runtime = 0:58:16.56
train_samples_per_second = 16.505
train_steps_per_second = 1.032
---
## Evaluation Metrics
epoch = 0.55
eval_accuracy = 0.975
eval_loss = 0.0803
eval_runtime = 0:03:13.02
eval_samples_per_second = 18.629
eval_steps_per_second = 2.331 | f5843d670fad8c0545f9ac510084f965 |
jonatasgrosman/exp_w2v2t_es_wav2vec2_s596 | jonatasgrosman | wav2vec2 | 10 | 2 | transformers | 0 | automatic-speech-recognition | true | false | false | apache-2.0 | ['es'] | ['mozilla-foundation/common_voice_7_0'] | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['automatic-speech-recognition', 'es'] | false | true | true | 456 | false | # exp_w2v2t_es_wav2vec2_s596
Fine-tuned [facebook/wav2vec2-large-lv60](https://huggingface.co/facebook/wav2vec2-large-lv60) for speech recognition using the train split of [Common Voice 7.0 (es)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
| 7f5595e31ce52cd8005a185d4e5d0285 |
tau/splinter-base | tau | splinter | 7 | 971 | transformers | 1 | question-answering | true | false | false | apache-2.0 | ['en'] | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['splinter', 'SplinterModel'] | false | true | true | 2,593 | false |
# Splinter base model
Splinter-base is the pretrained model discussed in the paper [Few-Shot Question Answering by Pretraining Span Selection](https://aclanthology.org/2021.acl-long.239/) (at ACL 2021). Its original repository can be found [here](https://github.com/oriram/splinter). The model is case-sensitive.
Note: This model **doesn't** contain the pretrained weights for the QASS layer (see paper for details), and therefore the QASS layer is randomly initialized upon loading it. For the model **with** those weights, see [tau/splinter-base-qass](https://huggingface.co/tau/splinter-base-qass).
## Model description
Splinter is a model that is pretrained in a self-supervised fashion for few-shot question answering. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts.
More precisely, it was pretrained with the Recurring Span Selection (RSS) objective, which emulates the span selection process involved in extractive question answering. Given a text, clusters of recurring spans (n-grams that appear more than once in the text) are first identified. For each such cluster, all of its instances but one are replaced with a special `[QUESTION]` token, and the model should select the correct (i.e., unmasked) span for each masked one. The model also defines the Question-Aware Span selection (QASS) layer, which selects spans conditioned on a specific question (in order to perform multiple predictions).
## Intended uses & limitations
The prime use for this model is few-shot extractive QA.
## Pretraining
The model was pretrained on a v3-8 TPU for 2.4M steps. The training data is based on **Wikipedia** and **BookCorpus**. See the paper for more details.
### BibTeX entry and citation info
```bibtex
@inproceedings{ram-etal-2021-shot,
title = "Few-Shot Question Answering by Pretraining Span Selection",
author = "Ram, Ori and
Kirstain, Yuval and
Berant, Jonathan and
Globerson, Amir and
Levy, Omer",
booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)",
month = aug,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.acl-long.239",
doi = "10.18653/v1/2021.acl-long.239",
pages = "3066--3079",
}
``` | f186f5d83e196f2fa807b46a59596fc3 |
MeshalAlamr/wav2vec2-xls-r-300m-arabic_speech_commands_10s_one_speaker_all_classes_3_aug | MeshalAlamr | wav2vec2 | 10 | 3 | transformers | 0 | audio-classification | true | false | false | apache-2.0 | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['generated_from_trainer'] | true | true | true | 5,025 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-xls-r-300m-arabic_speech_commands_10s_one_speaker_all_classes_3_aug
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.1190
- Accuracy: 0.7137
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 60
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 3.6888 | 0.96 | 12 | 3.6887 | 0.025 |
| 3.8686 | 1.96 | 24 | 3.6837 | 0.0488 |
| 3.844 | 2.96 | 36 | 3.5466 | 0.1062 |
| 3.7114 | 3.96 | 48 | 3.2589 | 0.1133 |
| 2.8339 | 4.96 | 60 | 2.9553 | 0.1883 |
| 2.5667 | 5.96 | 72 | 2.8784 | 0.1963 |
| 2.1911 | 6.96 | 84 | 2.6379 | 0.2771 |
| 1.8461 | 7.96 | 96 | 2.8874 | 0.2929 |
| 1.6044 | 8.96 | 108 | 2.4989 | 0.34 |
| 1.0916 | 9.96 | 120 | 2.3111 | 0.425 |
| 0.9371 | 10.96 | 132 | 2.0899 | 0.4829 |
| 0.8177 | 11.96 | 144 | 2.0116 | 0.4971 |
| 0.6366 | 12.96 | 156 | 2.0598 | 0.5558 |
| 0.549 | 13.96 | 168 | 2.0084 | 0.5575 |
| 0.2917 | 14.96 | 180 | 1.8231 | 0.6038 |
| 0.2283 | 15.96 | 192 | 1.9943 | 0.6079 |
| 0.2382 | 16.96 | 204 | 2.2098 | 0.6083 |
| 0.2475 | 17.96 | 216 | 2.3519 | 0.5992 |
| 0.1612 | 18.96 | 228 | 2.2483 | 0.5929 |
| 0.133 | 19.96 | 240 | 2.2263 | 0.6079 |
| 0.1301 | 20.96 | 252 | 2.6094 | 0.5683 |
| 0.0993 | 21.96 | 264 | 2.0289 | 0.6417 |
| 0.0779 | 22.96 | 276 | 1.9693 | 0.6479 |
| 0.0824 | 23.96 | 288 | 2.2471 | 0.6258 |
| 0.0872 | 24.96 | 300 | 2.3715 | 0.6538 |
| 0.0694 | 25.96 | 312 | 2.5367 | 0.6325 |
| 0.0704 | 26.96 | 324 | 2.4467 | 0.6388 |
| 0.061 | 27.96 | 336 | 2.1581 | 0.6621 |
| 0.0835 | 28.96 | 348 | 2.1672 | 0.6792 |
| 0.0402 | 29.96 | 360 | 2.2166 | 0.6596 |
| 0.0329 | 30.96 | 372 | 2.6316 | 0.6217 |
| 0.0516 | 31.96 | 384 | 2.0840 | 0.6908 |
| 0.0455 | 32.96 | 396 | 2.2299 | 0.67 |
| 0.0449 | 33.96 | 408 | 2.4341 | 0.6733 |
| 0.0332 | 34.96 | 420 | 2.2830 | 0.6725 |
| 0.0334 | 35.96 | 432 | 2.2060 | 0.6829 |
| 0.025 | 36.96 | 444 | 2.2836 | 0.6554 |
| 0.0351 | 37.96 | 456 | 2.5417 | 0.6517 |
| 0.0372 | 38.96 | 468 | 2.2738 | 0.6779 |
| 0.0136 | 39.96 | 480 | 2.4606 | 0.6525 |
| 0.0178 | 40.96 | 492 | 2.1996 | 0.675 |
| 0.0116 | 41.96 | 504 | 2.2557 | 0.6763 |
| 0.0113 | 42.96 | 516 | 2.2061 | 0.6863 |
| 0.014 | 43.96 | 528 | 2.1279 | 0.6925 |
| 0.015 | 44.96 | 540 | 2.2151 | 0.6871 |
| 0.0197 | 45.96 | 552 | 2.1506 | 0.6929 |
| 0.0102 | 46.96 | 564 | 2.1609 | 0.685 |
| 0.0115 | 47.96 | 576 | 2.1685 | 0.6854 |
| 0.0097 | 48.96 | 588 | 2.2892 | 0.6821 |
| 0.0148 | 49.96 | 600 | 2.4085 | 0.6921 |
| 0.0114 | 50.96 | 612 | 2.2171 | 0.7104 |
| 0.0141 | 51.96 | 624 | 2.1458 | 0.7075 |
| 0.0066 | 52.96 | 636 | 2.2046 | 0.7013 |
| 0.0128 | 53.96 | 648 | 2.1424 | 0.705 |
| 0.0063 | 54.96 | 660 | 2.1425 | 0.7075 |
| 0.0094 | 55.96 | 672 | 2.1554 | 0.7087 |
| 0.0161 | 56.96 | 684 | 2.1892 | 0.7063 |
| 0.0067 | 57.96 | 696 | 2.1819 | 0.7067 |
| 0.0099 | 58.96 | 708 | 2.1341 | 0.7125 |
| 0.0067 | 59.96 | 720 | 2.1190 | 0.7137 |
### Framework versions
- Transformers 4.21.1
- Pytorch 1.12.1
- Datasets 2.4.0
- Tokenizers 0.12.1
| cc1cafec8f2644fcebe1e766525d54cc |
maretamasaeva/thesis-freeform-yesno | maretamasaeva | roberta | 13 | 4 | transformers | 0 | text-classification | true | false | false | mit | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['generated_from_trainer'] | true | true | true | 1,413 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# thesis-freeform-yesno
This model is a fine-tuned version of [maretamasaeva/thesis-freeform](https://huggingface.co/maretamasaeva/thesis-freeform) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.4547
- Accuracy: 0.0194
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 2.5001 | 1.0 | 9052 | 2.4600 | 0.0194 |
| 2.4921 | 2.0 | 18104 | 2.4595 | 0.0194 |
| 2.4879 | 3.0 | 27156 | 2.4576 | 0.0194 |
| 2.4793 | 4.0 | 36208 | 2.4547 | 0.0194 |
### Framework versions
- Transformers 4.18.0
- Pytorch 1.10.0+cu111
- Datasets 2.1.0
- Tokenizers 0.12.1
| bcfe60aca20098e46bd3a6bcbb2c5a44 |
pomercier/Francois_Legault | pomercier | null | 24 | 20 | diffusers | 0 | text-to-image | false | false | false | lgpl-3.0 | null | null | null | 2 | 0 | 2 | 0 | 0 | 0 | 0 | ['text-to-image'] | false | true | true | 1,270 | false | ### Francois Legault
This is a Hugging Face model that utilizes Stable Diffusion 1.5, which is a technique used to improve the quality and stability of generated images. The model is prompted with the name "Francois Legault", the current Premier of Quebec, Canada, as input and generates an image of him, that could be a portrait, a photo of him in a meeting, him giving a speech, etc.
The generated image can be used in a variety of applications, such as in creating avatars for virtual assistants, generating images for news articles, or creating personalized images for social media. For example, in a virtual assistant, the model can generate an image of Francois Legault, which can be used as an avatar for the virtual assistant. In a news article, the model can generate an image of Francois Legault giving a speech, which can be used as the featured image for the article. And in a social media, the model can generate an image of Francois Legault, which can be used as a personalized image for a user's profile.
This model is a powerful tool for anyone looking to generate high-quality images based on a specific prompt. It can be used in a wide range of applications and can help save time and resources when it comes to creating images for various projects. | 367eb63845186d5581e016416345bdf4 |
DOOGLAK/Tagged_Uni_100v9_NER_Model_3Epochs_AUGMENTED | DOOGLAK | bert | 13 | 5 | transformers | 0 | token-classification | true | false | false | apache-2.0 | null | ['tagged_uni100v9_wikigold_split'] | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['generated_from_trainer'] | true | true | true | 1,565 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Tagged_Uni_100v9_NER_Model_3Epochs_AUGMENTED
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the tagged_uni100v9_wikigold_split dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4080
- Precision: 0.3227
- Recall: 0.2305
- F1: 0.2689
- Accuracy: 0.8557
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 39 | 0.4881 | 0.2185 | 0.0487 | 0.0797 | 0.8066 |
| No log | 2.0 | 78 | 0.4431 | 0.2831 | 0.1536 | 0.1992 | 0.8387 |
| No log | 3.0 | 117 | 0.4080 | 0.3227 | 0.2305 | 0.2689 | 0.8557 |
### Framework versions
- Transformers 4.17.0
- Pytorch 1.11.0+cu113
- Datasets 2.4.0
- Tokenizers 0.11.6
| 8edc917be658ede291538f7e4b2989d9 |
armamoyl/xlm-roberta-base-finetuned-panx-de | armamoyl | xlm-roberta | 44 | 7 | transformers | 0 | token-classification | true | false | false | mit | null | ['xtreme'] | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['generated_from_trainer'] | true | true | true | 1,299 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-panx-de
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1711
- F1: 0.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 6
- eval_batch_size: 6
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:---:|
| No log | 1.0 | 2097 | 0.1970 | 0.0 |
| No log | 2.0 | 4194 | 0.1686 | 0.0 |
| No log | 3.0 | 6291 | 0.1711 | 0.0 |
### Framework versions
- Transformers 4.21.3
- Pytorch 1.12.1+cu116
- Datasets 2.6.1
- Tokenizers 0.12.1
| aefcd30186b4da89a9910ed39578db00 |
Wiebke/bert-base-casedepoch3_sexist_baseline_with_reddit_and_gab | Wiebke | bert | 12 | 18 | transformers | 0 | text-classification | true | false | false | apache-2.0 | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['generated_from_trainer'] | true | true | true | 1,683 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-casedepoch3_sexist_baseline_with_reddit_and_gab
This model is a fine-tuned version of [Wiebke/bert-base-casedepoch3_sexist_baseline](https://huggingface.co/Wiebke/bert-base-casedepoch3_sexist_baseline) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4434
- Accuracy: 0.8707
- F1: 0.8699
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.0279 | 0.16 | 500 | 0.5257 | 0.8564 | 0.8540 |
| 0.0273 | 0.31 | 1000 | 0.4614 | 0.8607 | 0.8607 |
| 0.0235 | 0.47 | 1500 | 0.4873 | 0.8657 | 0.8620 |
| 0.0201 | 0.63 | 2000 | 0.4544 | 0.8729 | 0.8694 |
| 0.0215 | 0.78 | 2500 | 0.4597 | 0.865 | 0.8653 |
| 0.0184 | 0.94 | 3000 | 0.4434 | 0.8707 | 0.8699 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2
| b1bcfd81b722f84bd82a964a37552903 |
ConvLab/roberta-base-trippy-dst-multiwoz21 | ConvLab | roberta | 4 | 12 | transformers | 0 | null | true | false | false | apache-2.0 | ['en'] | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['dialogue state tracking', 'task-oriented dialog'] | false | true | true | 1,748 | false |
# roberta-base-trippy-dst-multiwoz21
This is a TripPy model trained on [MultiWOZ 2.1](https://github.com/budzianowski/multiwoz) for use in [ConvLab-3](https://github.com/ConvLab/ConvLab-3).
This model predicts informable slots, requestable slots, general actions and domain indicator slots.
Expected joint goal accuracy for MultiWOZ 2.1 is in the range of 55-56\%.
For information about TripPy DST, refer to [TripPy: A Triple Copy Strategy for Value Independent Neural Dialog State Tracking](https://aclanthology.org/2020.sigdial-1.4/).
The training and evaluation code is available at the official [TripPy repository](https://gitlab.cs.uni-duesseldorf.de/general/dsml/trippy-public).
## Training procedure
The model was trained on MultiWOZ 2.1 data via supervised learning using the [TripPy codebase](https://gitlab.cs.uni-duesseldorf.de/general/dsml/trippy-public).
MultiWOZ 2.1 data was loaded via ConvLab-3's unified data format dataloader.
The pre-trained encoder is [RoBERTa](https://huggingface.co/docs/transformers/model_doc/roberta) (base).
Fine-tuning the encoder and training the DST specific classification heads was conducted for 10 epochs.
### Training hyperparameters
```
python3 run_dst.py \
--task_name="unified" \
--model_type="roberta" \
--model_name_or_path="roberta-base" \
--dataset_config=dataset_config/unified_multiwoz21.json \
--do_lower_case \
--learning_rate=1e-4 \
--num_train_epochs=10 \
--max_seq_length=180 \
--per_gpu_train_batch_size=24 \
--per_gpu_eval_batch_size=32 \
--output_dir=results \
--save_epochs=2 \
--eval_all_checkpoints \
--warmup_proportion=0.1 \
--adam_epsilon=1e-6 \
--weight_decay=0.01 \
--fp16 \
--do_train \
--predict_type=dummy \
--seed=42
```
| f5d80b9ccb528893479603f7aeaeda7e |
bookbot/wav2vec2-ljspeech-gruut | bookbot | wav2vec2 | 20 | 2,944 | transformers | 0 | automatic-speech-recognition | true | false | false | apache-2.0 | ['en'] | ['w11wo/ljspeech_phonemes'] | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['phoneme-recognition', 'generated_from_trainer'] | true | true | true | 6,730 | false |
# Wav2Vec2 LJSpeech Gruut
Wav2Vec2 LJSpeech Gruut is an automatic speech recognition model based on the [wav2vec 2.0](https://arxiv.org/abs/2006.11477) architecture. This model is a fine-tuned version of [Wav2Vec2-Base](https://huggingface.co/facebook/wav2vec2-base) on the [LJSpech Phonemes](https://huggingface.co/datasets/w11wo/ljspeech_phonemes) dataset.
Instead of being trained to predict sequences of words, this model was trained to predict sequence of phonemes, e.g. `["h", "ɛ", "l", "ˈoʊ", "w", "ˈɚ", "l", "d"]`. Therefore, the model's [vocabulary](https://huggingface.co/bookbot/wav2vec2-ljspeech-gruut/blob/main/vocab.json) contains the different IPA phonemes found in [gruut](https://github.com/rhasspy/gruut).
This model was trained using HuggingFace's PyTorch framework. All training was done on a Google Cloud Engine VM with a Tesla A100 GPU. All necessary scripts used for training could be found in the [Files and versions](https://huggingface.co/bookbot/wav2vec2-ljspeech-gruut/tree/main) tab, as well as the [Training metrics](https://huggingface.co/bookbot/wav2vec2-ljspeech-gruut/tensorboard) logged via Tensorboard.
## Model
| Model | #params | Arch. | Training/Validation data (text) |
| ------------------------- | ------- | ----------- | ------------------------------- |
| `wav2vec2-ljspeech-gruut` | 94M | wav2vec 2.0 | `LJSpech Phonemes` Dataset |
## Evaluation Results
The model achieves the following results on evaluation:
| Dataset | PER (w/o stress) | CER (w/o stress) |
| ---------------------------- | :--------------: | :--------------: |
| `LJSpech Phonemes` Test Data | 0.99% | 0.58% |
## Usage
```py
from transformers import AutoProcessor, AutoModelForCTC, Wav2Vec2Processor
import librosa
import torch
from itertools import groupby
from datasets import load_dataset
def decode_phonemes(
ids: torch.Tensor, processor: Wav2Vec2Processor, ignore_stress: bool = False
) -> str:
"""CTC-like decoding. First removes consecutive duplicates, then removes special tokens."""
# removes consecutive duplicates
ids = [id_ for id_, _ in groupby(ids)]
special_token_ids = processor.tokenizer.all_special_ids + [
processor.tokenizer.word_delimiter_token_id
]
# converts id to token, skipping special tokens
phonemes = [processor.decode(id_) for id_ in ids if id_ not in special_token_ids]
# joins phonemes
prediction = " ".join(phonemes)
# whether to ignore IPA stress marks
if ignore_stress == True:
prediction = prediction.replace("ˈ", "").replace("ˌ", "")
return prediction
checkpoint = "bookbot/wav2vec2-ljspeech-gruut"
model = AutoModelForCTC.from_pretrained(checkpoint)
processor = AutoProcessor.from_pretrained(checkpoint)
sr = processor.feature_extractor.sampling_rate
# load dummy dataset and read soundfiles
ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation")
audio_array = ds[0]["audio"]["array"]
# or, read a single audio file
# audio_array, _ = librosa.load("myaudio.wav", sr=sr)
inputs = processor(audio_array, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs["input_values"]).logits
predicted_ids = torch.argmax(logits, dim=-1)
prediction = decode_phonemes(predicted_ids[0], processor, ignore_stress=True)
# => should give 'b ɪ k ʌ z j u ɚ z s l i p ɪ ŋ ɪ n s t ɛ d ə v k ɔ ŋ k ɚ ɪ ŋ ð ə l ʌ v l i ɹ z p ɹ ɪ n s ə s h æ z b ɪ k ʌ m ə v f ɪ t ə l w ɪ θ n b oʊ p ɹ ə ʃ æ ɡ i s ɪ t s ð ɛ ɹ ə k u ɪ ŋ d ʌ v'
```
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- `learning_rate`: 0.0001
- `train_batch_size`: 16
- `eval_batch_size`: 8
- `seed`: 42
- `gradient_accumulation_steps`: 2
- `total_train_batch_size`: 32
- `optimizer`: Adam with `betas=(0.9,0.999)` and `epsilon=1e-08`
- `lr_scheduler_type`: linear
- `lr_scheduler_warmup_steps`: 1000
- `num_epochs`: 30.0
- `mixed_precision_training`: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
| :-----------: | :---: | :---: | :-------------: | :----: | :----: |
| No log | 1.0 | 348 | 2.2818 | 1.0 | 1.0 |
| 2.6692 | 2.0 | 696 | 0.2045 | 0.0527 | 0.0299 |
| 0.2225 | 3.0 | 1044 | 0.1162 | 0.0319 | 0.0189 |
| 0.2225 | 4.0 | 1392 | 0.0927 | 0.0235 | 0.0147 |
| 0.0868 | 5.0 | 1740 | 0.0797 | 0.0218 | 0.0143 |
| 0.0598 | 6.0 | 2088 | 0.0715 | 0.0197 | 0.0128 |
| 0.0598 | 7.0 | 2436 | 0.0652 | 0.0160 | 0.0103 |
| 0.0447 | 8.0 | 2784 | 0.0571 | 0.0152 | 0.0095 |
| 0.0368 | 9.0 | 3132 | 0.0608 | 0.0163 | 0.0112 |
| 0.0368 | 10.0 | 3480 | 0.0586 | 0.0137 | 0.0083 |
| 0.0303 | 11.0 | 3828 | 0.0641 | 0.0141 | 0.0085 |
| 0.0273 | 12.0 | 4176 | 0.0656 | 0.0131 | 0.0079 |
| 0.0232 | 13.0 | 4524 | 0.0690 | 0.0133 | 0.0082 |
| 0.0232 | 14.0 | 4872 | 0.0598 | 0.0128 | 0.0079 |
| 0.0189 | 15.0 | 5220 | 0.0671 | 0.0121 | 0.0074 |
| 0.017 | 16.0 | 5568 | 0.0654 | 0.0114 | 0.0069 |
| 0.017 | 17.0 | 5916 | 0.0751 | 0.0118 | 0.0073 |
| 0.0146 | 18.0 | 6264 | 0.0653 | 0.0112 | 0.0068 |
| 0.0127 | 19.0 | 6612 | 0.0682 | 0.0112 | 0.0069 |
| 0.0127 | 20.0 | 6960 | 0.0678 | 0.0114 | 0.0068 |
| 0.0114 | 21.0 | 7308 | 0.0656 | 0.0111 | 0.0066 |
| 0.0101 | 22.0 | 7656 | 0.0669 | 0.0109 | 0.0066 |
| 0.0092 | 23.0 | 8004 | 0.0677 | 0.0108 | 0.0065 |
| 0.0092 | 24.0 | 8352 | 0.0653 | 0.0104 | 0.0063 |
| 0.0088 | 25.0 | 8700 | 0.0673 | 0.0102 | 0.0063 |
| 0.0074 | 26.0 | 9048 | 0.0669 | 0.0105 | 0.0064 |
| 0.0074 | 27.0 | 9396 | 0.0707 | 0.0101 | 0.0061 |
| 0.0066 | 28.0 | 9744 | 0.0673 | 0.0100 | 0.0060 |
| 0.0058 | 29.0 | 10092 | 0.0689 | 0.0100 | 0.0059 |
| 0.0058 | 30.0 | 10440 | 0.0683 | 0.0099 | 0.0058 |
## Disclaimer
Do consider the biases which came from pre-training datasets that may be carried over into the results of this model.
## Authors
Wav2Vec2 LJSpeech Gruut was trained and evaluated by [Wilson Wongso](https://w11wo.github.io/). All computation and development are done on Google Cloud.
## Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.10.0
- Datasets 2.7.1
- Tokenizers 0.13.2
- Gruut 2.3.4 | 28281abd2b834ea784f81db1f7b19267 |
MK096/finetuning-sentiment-model-3000-samples | MK096 | distilbert | 23 | 1 | transformers | 0 | text-classification | true | false | false | apache-2.0 | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['generated_from_trainer'] | true | true | true | 1,055 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuning-sentiment-model-3000-samples
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2453
- Accuracy: 0.92
- F1: 0.9098
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
### Framework versions
- Transformers 4.22.1
- Pytorch 1.12.1+cu113
- Datasets 2.4.0
- Tokenizers 0.12.1
| a432774109dcc192a4ad56db01b02012 |
anhtv/distilbert-base-uncased-finetuned-cola | anhtv | distilbert | 13 | 2 | transformers | 0 | text-classification | true | false | false | apache-2.0 | null | ['glue'] | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['generated_from_trainer'] | true | true | true | 1,571 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-cola
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7992
- Matthews Correlation: 0.5530
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Matthews Correlation |
|:-------------:|:-----:|:----:|:---------------:|:--------------------:|
| 0.523 | 1.0 | 535 | 0.5411 | 0.4128 |
| 0.3479 | 2.0 | 1070 | 0.5195 | 0.4901 |
| 0.2357 | 3.0 | 1605 | 0.5492 | 0.5444 |
| 0.1758 | 4.0 | 2140 | 0.7339 | 0.5387 |
| 0.1244 | 5.0 | 2675 | 0.7992 | 0.5530 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2
| 891e6a6b6e436c3380d40e2fe105b87c |
tomekkorbak/gifted_shirley | tomekkorbak | null | 2 | 0 | null | 0 | null | false | false | false | mit | ['en'] | ['tomekkorbak/detoxify-pile-chunk3-0-50000', 'tomekkorbak/detoxify-pile-chunk3-50000-100000', 'tomekkorbak/detoxify-pile-chunk3-100000-150000', 'tomekkorbak/detoxify-pile-chunk3-150000-200000', 'tomekkorbak/detoxify-pile-chunk3-200000-250000', 'tomekkorbak/detoxify-pile-chunk3-250000-300000', 'tomekkorbak/detoxify-pile-chunk3-300000-350000', 'tomekkorbak/detoxify-pile-chunk3-350000-400000', 'tomekkorbak/detoxify-pile-chunk3-400000-450000', 'tomekkorbak/detoxify-pile-chunk3-450000-500000', 'tomekkorbak/detoxify-pile-chunk3-500000-550000', 'tomekkorbak/detoxify-pile-chunk3-550000-600000', 'tomekkorbak/detoxify-pile-chunk3-600000-650000', 'tomekkorbak/detoxify-pile-chunk3-650000-700000', 'tomekkorbak/detoxify-pile-chunk3-700000-750000', 'tomekkorbak/detoxify-pile-chunk3-750000-800000', 'tomekkorbak/detoxify-pile-chunk3-800000-850000', 'tomekkorbak/detoxify-pile-chunk3-850000-900000', 'tomekkorbak/detoxify-pile-chunk3-900000-950000', 'tomekkorbak/detoxify-pile-chunk3-950000-1000000', 'tomekkorbak/detoxify-pile-chunk3-1000000-1050000', 'tomekkorbak/detoxify-pile-chunk3-1050000-1100000', 'tomekkorbak/detoxify-pile-chunk3-1100000-1150000', 'tomekkorbak/detoxify-pile-chunk3-1150000-1200000', 'tomekkorbak/detoxify-pile-chunk3-1200000-1250000', 'tomekkorbak/detoxify-pile-chunk3-1250000-1300000', 'tomekkorbak/detoxify-pile-chunk3-1300000-1350000', 'tomekkorbak/detoxify-pile-chunk3-1350000-1400000', 'tomekkorbak/detoxify-pile-chunk3-1400000-1450000', 'tomekkorbak/detoxify-pile-chunk3-1450000-1500000', 'tomekkorbak/detoxify-pile-chunk3-1500000-1550000', 'tomekkorbak/detoxify-pile-chunk3-1550000-1600000', 'tomekkorbak/detoxify-pile-chunk3-1600000-1650000', 'tomekkorbak/detoxify-pile-chunk3-1650000-1700000', 'tomekkorbak/detoxify-pile-chunk3-1700000-1750000', 'tomekkorbak/detoxify-pile-chunk3-1750000-1800000', 'tomekkorbak/detoxify-pile-chunk3-1800000-1850000', 'tomekkorbak/detoxify-pile-chunk3-1850000-1900000', 'tomekkorbak/detoxify-pile-chunk3-1900000-1950000'] | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['generated_from_trainer'] | true | true | true | 8,997 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# gifted_shirley
This model was trained from scratch on the tomekkorbak/detoxify-pile-chunk3-0-50000, the tomekkorbak/detoxify-pile-chunk3-50000-100000, the tomekkorbak/detoxify-pile-chunk3-100000-150000, the tomekkorbak/detoxify-pile-chunk3-150000-200000, the tomekkorbak/detoxify-pile-chunk3-200000-250000, the tomekkorbak/detoxify-pile-chunk3-250000-300000, the tomekkorbak/detoxify-pile-chunk3-300000-350000, the tomekkorbak/detoxify-pile-chunk3-350000-400000, the tomekkorbak/detoxify-pile-chunk3-400000-450000, the tomekkorbak/detoxify-pile-chunk3-450000-500000, the tomekkorbak/detoxify-pile-chunk3-500000-550000, the tomekkorbak/detoxify-pile-chunk3-550000-600000, the tomekkorbak/detoxify-pile-chunk3-600000-650000, the tomekkorbak/detoxify-pile-chunk3-650000-700000, the tomekkorbak/detoxify-pile-chunk3-700000-750000, the tomekkorbak/detoxify-pile-chunk3-750000-800000, the tomekkorbak/detoxify-pile-chunk3-800000-850000, the tomekkorbak/detoxify-pile-chunk3-850000-900000, the tomekkorbak/detoxify-pile-chunk3-900000-950000, the tomekkorbak/detoxify-pile-chunk3-950000-1000000, the tomekkorbak/detoxify-pile-chunk3-1000000-1050000, the tomekkorbak/detoxify-pile-chunk3-1050000-1100000, the tomekkorbak/detoxify-pile-chunk3-1100000-1150000, the tomekkorbak/detoxify-pile-chunk3-1150000-1200000, the tomekkorbak/detoxify-pile-chunk3-1200000-1250000, the tomekkorbak/detoxify-pile-chunk3-1250000-1300000, the tomekkorbak/detoxify-pile-chunk3-1300000-1350000, the tomekkorbak/detoxify-pile-chunk3-1350000-1400000, the tomekkorbak/detoxify-pile-chunk3-1400000-1450000, the tomekkorbak/detoxify-pile-chunk3-1450000-1500000, the tomekkorbak/detoxify-pile-chunk3-1500000-1550000, the tomekkorbak/detoxify-pile-chunk3-1550000-1600000, the tomekkorbak/detoxify-pile-chunk3-1600000-1650000, the tomekkorbak/detoxify-pile-chunk3-1650000-1700000, the tomekkorbak/detoxify-pile-chunk3-1700000-1750000, the tomekkorbak/detoxify-pile-chunk3-1750000-1800000, the tomekkorbak/detoxify-pile-chunk3-1800000-1850000, the tomekkorbak/detoxify-pile-chunk3-1850000-1900000 and the tomekkorbak/detoxify-pile-chunk3-1900000-1950000 datasets.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 64
- total_train_batch_size: 1024
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.01
- training_steps: 1562
- mixed_precision_training: Native AMP
### Framework versions
- Transformers 4.24.0
- Pytorch 1.11.0+cu113
- Datasets 2.5.1
- Tokenizers 0.11.6
# Full config
{'dataset': {'datasets': ['tomekkorbak/detoxify-pile-chunk3-0-50000',
'tomekkorbak/detoxify-pile-chunk3-50000-100000',
'tomekkorbak/detoxify-pile-chunk3-100000-150000',
'tomekkorbak/detoxify-pile-chunk3-150000-200000',
'tomekkorbak/detoxify-pile-chunk3-200000-250000',
'tomekkorbak/detoxify-pile-chunk3-250000-300000',
'tomekkorbak/detoxify-pile-chunk3-300000-350000',
'tomekkorbak/detoxify-pile-chunk3-350000-400000',
'tomekkorbak/detoxify-pile-chunk3-400000-450000',
'tomekkorbak/detoxify-pile-chunk3-450000-500000',
'tomekkorbak/detoxify-pile-chunk3-500000-550000',
'tomekkorbak/detoxify-pile-chunk3-550000-600000',
'tomekkorbak/detoxify-pile-chunk3-600000-650000',
'tomekkorbak/detoxify-pile-chunk3-650000-700000',
'tomekkorbak/detoxify-pile-chunk3-700000-750000',
'tomekkorbak/detoxify-pile-chunk3-750000-800000',
'tomekkorbak/detoxify-pile-chunk3-800000-850000',
'tomekkorbak/detoxify-pile-chunk3-850000-900000',
'tomekkorbak/detoxify-pile-chunk3-900000-950000',
'tomekkorbak/detoxify-pile-chunk3-950000-1000000',
'tomekkorbak/detoxify-pile-chunk3-1000000-1050000',
'tomekkorbak/detoxify-pile-chunk3-1050000-1100000',
'tomekkorbak/detoxify-pile-chunk3-1100000-1150000',
'tomekkorbak/detoxify-pile-chunk3-1150000-1200000',
'tomekkorbak/detoxify-pile-chunk3-1200000-1250000',
'tomekkorbak/detoxify-pile-chunk3-1250000-1300000',
'tomekkorbak/detoxify-pile-chunk3-1300000-1350000',
'tomekkorbak/detoxify-pile-chunk3-1350000-1400000',
'tomekkorbak/detoxify-pile-chunk3-1400000-1450000',
'tomekkorbak/detoxify-pile-chunk3-1450000-1500000',
'tomekkorbak/detoxify-pile-chunk3-1500000-1550000',
'tomekkorbak/detoxify-pile-chunk3-1550000-1600000',
'tomekkorbak/detoxify-pile-chunk3-1600000-1650000',
'tomekkorbak/detoxify-pile-chunk3-1650000-1700000',
'tomekkorbak/detoxify-pile-chunk3-1700000-1750000',
'tomekkorbak/detoxify-pile-chunk3-1750000-1800000',
'tomekkorbak/detoxify-pile-chunk3-1800000-1850000',
'tomekkorbak/detoxify-pile-chunk3-1850000-1900000',
'tomekkorbak/detoxify-pile-chunk3-1900000-1950000'],
'is_split_by_sentences': True,
'skip_tokens': 1661599744},
'generation': {'every_n_steps': 16,
'metrics_configs': [{}, {'n': 1}, {'n': 2}, {'n': 5}],
'scenario_configs': [{'generate_kwargs': {'do_sample': True,
'max_length': 128,
'min_length': 10,
'temperature': 0.7,
'top_k': 0,
'top_p': 0.9},
'name': 'unconditional',
'num_samples': 2048},
{'generate_kwargs': {'do_sample': True,
'max_length': 128,
'min_length': 10,
'temperature': 0.7,
'top_k': 0,
'top_p': 0.9},
'name': 'challenging_rtp',
'num_samples': 2048,
'prompts_path': 'resources/challenging_rtp.jsonl'}],
'scorer_config': {'device': 'cuda:0'}},
'kl_gpt3_callback': {'every_n_steps': 16,
'max_tokens': 64,
'num_samples': 4096},
'model': {'from_scratch': False,
'gpt2_config_kwargs': {'reorder_and_upcast_attn': True,
'scale_attn_by': True},
'model_kwargs': {'revision': '81a1701e025d2c65ae6e8c2103df559071523ee0',
'value_head_config': {'is_detached': False}},
'path_or_name': 'tomekkorbak/goofy_pasteur'},
'objective': {'alpha': 0.5, 'beta': 10, 'name': 'AWR'},
'tokenizer': {'path_or_name': 'gpt2'},
'training': {'dataloader_num_workers': 0,
'effective_batch_size': 1024,
'evaluation_strategy': 'no',
'fp16': True,
'hub_model_id': 'gifted_shirley',
'hub_strategy': 'all_checkpoints',
'learning_rate': 0.001,
'logging_first_step': True,
'logging_steps': 1,
'num_tokens': 3300000000,
'output_dir': 'training_output104340',
'per_device_train_batch_size': 16,
'push_to_hub': True,
'remove_unused_columns': False,
'save_steps': 1673,
'save_strategy': 'steps',
'seed': 42,
'tokens_already_seen': 1661599744,
'warmup_ratio': 0.01,
'weight_decay': 0.1}}
# Wandb URL:
https://wandb.ai/tomekkorbak/apo/runs/1rminqjf | d029d1797b63bf4122bb97ecd5a3e495 |
jonatasgrosman/exp_w2v2t_uk_xlsr-53_s324 | jonatasgrosman | wav2vec2 | 10 | 5 | transformers | 0 | automatic-speech-recognition | true | false | false | apache-2.0 | ['uk'] | ['mozilla-foundation/common_voice_7_0'] | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['automatic-speech-recognition', 'uk'] | false | true | true | 461 | false | # exp_w2v2t_uk_xlsr-53_s324
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) for speech recognition using the train split of [Common Voice 7.0 (uk)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
| 14b03d0d2f22a6edc4ae8ab591c55de3 |
gokuls/distilbert_sa_GLUE_Experiment_logit_kd_data_aug_cola_256 | gokuls | distilbert | 17 | 0 | transformers | 0 | text-classification | true | false | false | apache-2.0 | ['en'] | ['glue'] | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['generated_from_trainer'] | true | true | true | 1,744 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert_sa_GLUE_Experiment_logit_kd_data_aug_cola_256
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE COLA dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6912
- Matthews Correlation: 0.1233
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 256
- eval_batch_size: 256
- seed: 10
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Matthews Correlation |
|:-------------:|:-----:|:----:|:---------------:|:--------------------:|
| 0.6278 | 1.0 | 835 | 0.6912 | 0.1233 |
| 0.5109 | 2.0 | 1670 | 0.7554 | 0.1039 |
| 0.4467 | 3.0 | 2505 | 0.7497 | 0.1097 |
| 0.3975 | 4.0 | 3340 | 0.7609 | 0.1608 |
| 0.3601 | 5.0 | 4175 | 0.7996 | 0.1259 |
| 0.3298 | 6.0 | 5010 | 0.7797 | 0.1247 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.14.0a0+410ce96
- Datasets 2.9.0
- Tokenizers 0.13.2
| 7f97e265ff429e50a1d5a6167f6d6165 |
Haakf/distilbert-base-uncased-padded_right_allsides_news | Haakf | distilbert | 8 | 2 | transformers | 0 | fill-mask | false | true | false | apache-2.0 | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['generated_from_keras_callback'] | true | true | true | 1,893 | false |
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# Haakf/distilbert-base-uncased-padded_right_allsides_news
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 2.0256
- Validation Loss: 1.9353
- Epoch: 8
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': -797, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: mixed_float16
### Training results
| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 2.1715 | 2.0552 | 0 |
| 2.1470 | 1.9776 | 1 |
| 2.1101 | 1.9531 | 2 |
| 2.0782 | 1.9760 | 3 |
| 2.0417 | 1.9202 | 4 |
| 2.0219 | 1.9425 | 5 |
| 2.0121 | 1.9255 | 6 |
| 2.0290 | 1.9868 | 7 |
| 2.0256 | 1.9353 | 8 |
### Framework versions
- Transformers 4.24.0
- TensorFlow 2.9.2
- Datasets 2.7.1
- Tokenizers 0.13.2
| 97dcd72541202454c3a5d0e51e99952c |
XLab/rst-sentiment-classification-11b | XLab | t5 | 6 | 1 | transformers | 2 | text2text-generation | true | false | false | afl-3.0 | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | [] | false | true | true | 11,247 | false | <p align="center">
<br>
<img src="https://expressai-xlab.s3.amazonaws.com/rst/intro_rst.png" width="1000"/>
<br>
</p>
# reStructured Pre-training (RST)
official [repository](https://github.com/ExpressAI/reStructured-Pretraining), [paper](https://arxiv.org/pdf/2206.11147.pdf), [easter eggs](http://expressai.co/peripherals/emoji-eng.html)
#### RST is a new paradigm for language pre-training, which
* unifies **26** different types of signal from **10** data sources (Totten Tomatoes, Dailymail, Wikipedia, Wikidata, Wikihow, Wordnet, arXiv etc ) in the world structurally, being pre-trained with a monolithcal model,
* surpasses strong competitors (e.g., T0) on **52/55** popular datasets from a variety of NLP tasks (classification, IE, retrieval, generation etc)
* achieves superior performance in National College Entrance Examination **(Gaokao-English, 高考-英语)** achieves **40** points higher than the average scores made by students and 15 points higher than GPT3 with **1/16** parameters. In particular, Qin gets a high score of **138.5** (the full mark is 150) in the 2018 English exam
In such a pre-training paradigm,
* Data-centric Pre-training: the role of data will be re-emphasized, and model pre-training and fine-tuning of downstream tasks are viewed as a process of data storing and accessing
* Pre-training over JSON instead of TEXT: a good storage mechanism should not only have the ability to cache a large amount of data but also consider the ease of access.
## Model Description
We release all models introduced in our [paper](https://arxiv.org/pdf/2206.11147.pdf), covering 13 different application scenarios. Each model contains 11 billion parameters.
| Model | Description | Recommended Application
| ----------- | ----------- |----------- |
| rst-all-11b | Trained with all the signals below except signals that are used to train Gaokao models | All applications below (specialized models are recommended first if high performance is preferred) |
| rst-fact-retrieval-11b | Trained with the following signals: WordNet meaning, WordNet part-of-speech, WordNet synonym, WordNet antonym, wikiHow category hierarchy, Wikidata relation, Wikidata entity typing, Paperswithcode entity typing | Knowledge intensive tasks, information extraction tasks,factual checker |
| rst-summarization-11b | Trained with the following signals: DailyMail summary, Paperswithcode summary, arXiv summary, wikiHow summary | Summarization or other general generation tasks, meta-evaluation (e.g., BARTScore) |
| rst-temporal-reasoning-11b | Trained with the following signals: DailyMail temporal information, wikiHow procedure | Temporal reasoning, relation extraction, event-based extraction |
| rst-information-extraction-11b | Trained with the following signals: Paperswithcode entity, Paperswithcode entity typing, Wikidata entity typing, Wikidata relation, Wikipedia entity | Named entity recognition, relation extraction and other general IE tasks in the news, scientific or other domains|
| rst-intent-detection-11b | Trained with the following signals: wikiHow goal-step relation | Intent prediction, event prediction |
| rst-topic-classification-11b | Trained with the following signals: DailyMail category, arXiv category, wikiHow text category, Wikipedia section title | general text classification |
| rst-word-sense-disambiguation-11b | Trained with the following signals: WordNet meaning, WordNet part-of-speech, WordNet synonym, WordNet antonym | Word sense disambiguation, part-of-speech tagging, general IE tasks, common sense reasoning |
| rst-natural-language-inference-11b | Trained with the following signals: ConTRoL dataset, DREAM dataset, LogiQA dataset, RACE & RACE-C dataset, ReClor dataset, DailyMail temporal information | Natural language inference, multiple-choice question answering, reasoning |
| **rst-sentiment-classification-11b** | **Trained with the following signals: Rotten Tomatoes sentiment, Wikipedia sentiment** | **Sentiment classification, emotion classification** |
| rst-gaokao-rc-11b | Trained with multiple-choice QA datasets that are used to train the [T0pp](https://huggingface.co/bigscience/T0pp) model | General multiple-choice question answering|
| rst-gaokao-cloze-11b | Trained with manually crafted cloze datasets | General cloze filling|
| rst-gaokao-writing-11b | Trained with example essays from past Gaokao-English exams and grammar error correction signals | Essay writing, story generation, grammar error correction and other text generation tasks |
## Have a try?
```python
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
tokenizer = AutoTokenizer.from_pretrained("XLab/rst-all-11b")
model = AutoModelForSeq2SeqLM.from_pretrained("XLab/rst-all-11b")
inputs = tokenizer.encode("TEXT: this is the best cast iron skillet you will ever buy. QUERY: Is this review \"positive\" or \"negative\"", return_tensors="pt")
outputs = model.generate(inputs)
print(tokenizer.decode(outputs[0], skip_special_tokens=True, clean_up_tokenization_spaces=True))
```
## Data for reStructure Pre-training
This dataset is a precious treasure, containing a variety of naturally occurring signals. Any downstream task you can think of (e.g., the college entrance exam mentioned in the RST paper) can benefit from being pre-trained on some of our provided signals. We spent several months collecting the following 29 signal types, accounting for a total of 46,926,447 data samples. We hope this dataset will be a valuable asset for everyone in natural language processing research.
We provide collected signals through [DataLab](https://github.com/ExpressAI/DataLab). For efficiency, we only provide 50,000 samples at most for each signal type. If you want all the samples we collected, please fill this [form](https://docs.google.com/forms/d/e/1FAIpQLSdPO50vSdfwoO3D7DQDVlupQnHgrXrwfF3ePE4X1H6BwgTn5g/viewform?usp=sf_link). More specifically, we collected the following signals.
###### We will be happy :smiley: to know if the resource is helpful for your work, and please cite our [work](https://github.com/ExpressAI/reStructured-Pretraining/blob/main/README.md#Bib) :blush:
| Mine | Signal | #Sample | Use in DataLab | Some Applications |
| --- | --- | --- | --- | --- |
| [Rotten Tomatoes](https://www.rottentomatoes.com/) | (review, rating) | 5,311,109 | `load_dataset("rst", "rotten_tomatoes_sentiment")` | Sentiment classification |
| [Daily Mail](https://www.dailymail.co.uk/home/index.html) | (text, category) | 899,904 | `load_dataset("rst", "daily_mail_category")`| Topic classification |
| [Daily Mail](https://www.dailymail.co.uk/home/index.html) | (title, text, summary) | 1,026,616 | `load_dataset("rst", "daily_mail_summary")` | Summarization; Sentence expansion|
| [Daily Mail](https://www.dailymail.co.uk/home/index.html) | (text, events) | 1,006,412 | `load_dataset("rst", "daily_mail_temporal")` | Temporal reasoning|
| [Wikidata](https://www.wikidata.org/wiki/Wikidata:Main_Page) | (entity, entity_type, text) | 2,214,274 | `load_dataset("rst", "wikidata_entity")` | Entity typing|
| [Wikidata](https://www.wikidata.org/wiki/Wikidata:Main_Page) | (subject, object, relation, text) | 1,526,674 | `load_dataset("rst", "wikidata_relation")` | Relation extraction; Fact retrieval|
| [wikiHow](https://www.wikihow.com/Main-Page) | (text, category) | 112,109 | `load_dataset("rst", "wikihow_text_category")` | Topic classification |
| [wikiHow](https://www.wikihow.com/Main-Page) | (low_category, high_category) | 4,868 | `load_dataset("rst", "wikihow_category_hierarchy")` | Relation extraction; Commonsense reasoning|
| [wikiHow](https://www.wikihow.com/Main-Page) | (goal, steps) | 47,956 | `load_dataset("rst", "wikihow_goal_step")` | Intent detection|
| [wikiHow](https://www.wikihow.com/Main-Page) | (text, summary) | 703,278 | `load_dataset("rst", "wikihow_summary")` | Summarization; Sentence expansion |
| [wikiHow](https://www.wikihow.com/Main-Page) | (goal, first_step, second_step) | 47,787 | `load_dataset("rst", "wikihow_procedure")` | Temporal reasoning |
| [wikiHow](https://www.wikihow.com/Main-Page) | (question, description, answer, related_questions) | 47,705 | `load_dataset("rst", "wikihow_question")` | Question generation|
| [Wikipedia](https://www.wikipedia.org/) | (text, entities) |22,231,011 | `load_dataset("rst", "wikipedia_entities")` | Entity recognition|
[Wikipedia](https://www.wikipedia.org/) | (texts, titles) | 3,296,225 | `load_dataset("rst", "wikipedia_sections")` | Summarization|
| [WordNet](https://wordnet.princeton.edu/) | (word, sentence, pos) | 27,123 | `load_dataset("rst", "wordnet_pos")` | Part-of-speech tagging|
| [WordNet](https://wordnet.princeton.edu/) | (word, sentence, meaning, possible_meanings) | 27,123 | `load_dataset("rst", "wordnet_meaning")` | Word sense disambiguation|
| [WordNet](https://wordnet.princeton.edu/) | (word, sentence, synonyms) | 17,804 | `load_dataset("rst", "wordnet_synonym")`| Paraphrasing|
| [WordNet](https://wordnet.princeton.edu/) | (word, sentence, antonyms) | 6,408 | `load_dataset("rst", "wordnet_antonym")` |Negation |
| [ConTRoL]() | (premise, hypothesis, label) | 8,323 | `load_dataset("rst", "qa_control")` | Natural language inference|
|[DREAM](https://transacl.org/ojs/index.php/tacl/article/view/1534)| (context, question, options, answer) | 9,164 | `load_dataset("rst", "qa_dream")` | Reading comprehension|
| [LogiQA](https://doi.org/10.24963/ijcai.2020/501) | (context, question, options, answer) | 7,974 | `load_dataset("rst", "qa_logiqa")` | Reading comprehension|
| [ReClor](https://openreview.net/forum?id=HJgJtT4tvB) | (context, question, options, answer) | 5,138 | `load_dataset("rst", "qa_reclor")` |Reading comprehension |
| [RACE](https://doi.org/10.18653/v1/d17-1082) | (context, question, options, answer) | 44,880 | `load_dataset("rst", "qa_race")` | Reading comprehension|
| [RACE-C](http://proceedings.mlr.press/v101/liang19a.html) | (context, question, options, answer) | 5,093 | `load_dataset("rst", "qa_race_c")` | Reading comprehension|
| [TriviaQA](https://doi.org/10.18653/v1/P17-1147) | (context, question, answer) | 46,636 | `load_dataset("rst", "qa_triviaqa")` |Reading comprehension |
| [Arxiv](https://arxiv.org/) | (text, category) | 1,696,348 | `load_dataset("rst", "arxiv_category")` |Topic classification|
| [Arxiv](https://arxiv.org/) | (text, summary) | 1,696,348 | `load_dataset("rst", "arxiv_summary")` | Summarization; Sentence expansion|
| [Paperswithcode](https://paperswithcode.com/) | (text, entities, datasets, methods, tasks, metrics) | 4,731,233 | `load_dataset("rst", "paperswithcode_entity")` | Entity recognition|
| [Paperswithcode](https://paperswithcode.com/) | (text, summary) | 120,924 | `load_dataset("rst", "paperswithcode_summary")` | Summarization; Sentence expansion|
## Bibtext for Citation Info
```
@article{yuan2022restructured,
title={reStructured Pre-training},
author={Yuan, Weizhe and Liu, Pengfei},
journal={arXiv preprint arXiv:2206.11147},
year={2022}
}
``` | fcfd1e5ec3fbcd1cec2452260b89f125 |
yasu320001/xlm-roberta-base-finetuned-panx-all | yasu320001 | xlm-roberta | 10 | 3 | transformers | 0 | token-classification | true | false | false | mit | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['generated_from_trainer'] | true | true | true | 1,319 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-panx-all
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1656
- F1: 0.8589
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.2905 | 1.0 | 715 | 0.1783 | 0.8310 |
| 0.1461 | 2.0 | 1430 | 0.1600 | 0.8455 |
| 0.0948 | 3.0 | 2145 | 0.1656 | 0.8589 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.13.0+cu116
- Datasets 1.16.1
- Tokenizers 0.10.3
| b40cc788b02505378c0968c2892433e8 |
julien-c/kan-bayashi-jsut_tts_train_tacotron2 | julien-c | null | 17 | 3 | espnet | 0 | text-to-speech | false | false | false | cc-by-4.0 | ['ja'] | ['jsut'] | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['espnet', 'audio', 'text-to-speech'] | false | true | true | 1,903 | false |
## Example ESPnet2 TTS model
### `kan-bayashi/jsut_tts_train_tacotron2_raw_phn_jaconv_pyopenjtalk_accent_train.loss.ave`
♻️ Imported from https://zenodo.org/record/4381098/
This model was trained by kan-bayashi using jsut/tts1 recipe in [espnet](https://github.com/espnet/espnet/).
### Training

### Citing ESPnet
```BibTex
@inproceedings{watanabe2018espnet,
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
title={{ESPnet}: End-to-End Speech Processing Toolkit},
year={2018},
booktitle={Proceedings of Interspeech},
pages={2207--2211},
doi={10.21437/Interspeech.2018-1456},
url={http://dx.doi.org/10.21437/Interspeech.2018-1456}
}
@inproceedings{hayashi2020espnet,
title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit},
author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu},
booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
pages={7654--7658},
year={2020},
organization={IEEE}
}
```
or arXiv:
```bibtex
@misc{watanabe2018espnet,
title={ESPnet: End-to-End Speech Processing Toolkit},
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
year={2018},
eprint={1804.00015},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
| 3be44f9755f55eea813472fbb092214a |
Helsinki-NLP/opus-mt-zlw-fiu | Helsinki-NLP | marian | 12 | 9 | transformers | 0 | translation | true | true | false | apache-2.0 | ['dsb', 'cs', 'csb_Latn', 'hsb', 'pl', 'zlw', 'hu', 'vro', 'fi', 'liv_Latn', 'mdf', 'krl', 'fkv_Latn', 'mhr', 'et', 'sma', 'udm', 'vep', 'myv', 'kpv', 'se', 'izh', 'fiu'] | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['translation'] | false | true | true | 3,471 | false | ### zlw-fiu
* source language name: West Slavic languages
* target language name: Finno-Ugrian languages
* OPUS readme: [README.md](https://object.pouta.csc.fi/Tatoeba-MT-models/zlw-fiu/README.md)
* model: transformer
* source language codes: dsb, cs, csb_Latn, hsb, pl, zlw
* target language codes: hu, vro, fi, liv_Latn, mdf, krl, fkv_Latn, mhr, et, sma, udm, vep, myv, kpv, se, izh, fiu
* dataset: opus
* release date: 2021-02-18
* pre-processing: normalization + SentencePiece (spm32k,spm32k)
* download original weights: [opus-2021-02-18.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/zlw-fiu/opus-2021-02-18.zip/zlw-fiu/opus-2021-02-18.zip)
* a sentence-initial language token is required in the form of >>id<<(id = valid, usually three-letter target language ID)
* Training data:
* ces-fin: Tatoeba-train (1000000)
* ces-hun: Tatoeba-train (1000000)
* pol-est: Tatoeba-train (1000000)
* pol-fin: Tatoeba-train (1000000)
* pol-hun: Tatoeba-train (1000000)
* Validation data:
* ces-fin: Tatoeba-dev, 1000
* ces-hun: Tatoeba-dev, 1000
* est-pol: Tatoeba-dev, 1000
* fin-pol: Tatoeba-dev, 1000
* hun-pol: Tatoeba-dev, 1000
* mhr-pol: Tatoeba-dev, 461
* total-size-shuffled: 5426
* devset-selected: top 5000 lines of Tatoeba-dev.src.shuffled!
* Test data:
* newssyscomb2009.ces-hun: 502/9733
* newstest2009.ces-hun: 2525/54965
* Tatoeba-test.ces-fin: 88/408
* Tatoeba-test.ces-hun: 1911/10336
* Tatoeba-test.multi-multi: 4562/25497
* Tatoeba-test.pol-chm: 5/36
* Tatoeba-test.pol-est: 15/98
* Tatoeba-test.pol-fin: 609/3293
* Tatoeba-test.pol-hun: 1934/11285
* test set translations file: [test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zlw-fiu/opus-2021-02-18.zip/zlw-fiu/opus-2021-02-18.test.txt)
* test set scores file: [eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zlw-fiu/opus-2021-02-18.zip/zlw-fiu/opus-2021-02-18.eval.txt)
* BLEU-scores
|Test set|score|
|---|---|
|Tatoeba-test.ces-fin|57.2|
|Tatoeba-test.ces-hun|42.6|
|Tatoeba-test.multi-multi|39.4|
|Tatoeba-test.pol-hun|36.6|
|Tatoeba-test.pol-fin|36.1|
|Tatoeba-test.pol-est|20.9|
|newssyscomb2009.ces-hun|13.9|
|newstest2009.ces-hun|13.9|
|Tatoeba-test.pol-chm|2.0|
* chr-F-scores
|Test set|score|
|---|---|
|Tatoeba-test.ces-fin|0.71|
|Tatoeba-test.ces-hun|0.637|
|Tatoeba-test.multi-multi|0.616|
|Tatoeba-test.pol-hun|0.605|
|Tatoeba-test.pol-fin|0.592|
|newssyscomb2009.ces-hun|0.449|
|newstest2009.ces-hun|0.443|
|Tatoeba-test.pol-est|0.372|
|Tatoeba-test.pol-chm|0.007|
### System Info:
* hf_name: zlw-fiu
* source_languages: dsb,cs,csb_Latn,hsb,pl,zlw
* target_languages: hu,vro,fi,liv_Latn,mdf,krl,fkv_Latn,mhr,et,sma,udm,vep,myv,kpv,se,izh,fiu
* opus_readme_url: https://object.pouta.csc.fi/Tatoeba-MT-models/zlw-fiu/opus-2021-02-18.zip/README.md
* original_repo: Tatoeba-Challenge
* tags: ['translation']
* languages: ['dsb', 'cs', 'csb_Latn', 'hsb', 'pl', 'zlw', 'hu', 'vro', 'fi', 'liv_Latn', 'mdf', 'krl', 'fkv_Latn', 'mhr', 'et', 'sma', 'udm', 'vep', 'myv', 'kpv', 'se', 'izh', 'fiu']
* src_constituents: ['dsb', 'ces', 'csb_Latn', 'hsb', 'pol']
* tgt_constituents: ['hun', 'vro', 'fin', 'liv_Latn', 'mdf', 'krl', 'fkv_Latn', 'mhr', 'est', 'sma', 'udm', 'vep', 'myv', 'kpv', 'sme', 'izh']
* src_multilingual: True
* tgt_multilingual: True
* helsinki_git_sha: a0966db6db0ae616a28471ff0faf461b36fec07d
* transformers_git_sha: 3857f2b4e34912c942694489c2b667d9476e55f5
* port_machine: bungle
* port_time: 2021-06-29-15:24 | d32abd34e24a214c6df0bc3ed4967e8f |
Helsinki-NLP/opus-mt-en-de | Helsinki-NLP | marian | 12 | 147,323 | transformers | 9 | translation | true | true | true | cc-by-4.0 | null | null | null | 2 | 0 | 2 | 0 | 1 | 0 | 1 | ['translation'] | false | true | true | 3,263 | false |
### opus-mt-en-de
## Table of Contents
- [Model Details](#model-details)
- [Uses](#uses)
- [Risks, Limitations and Biases](#risks-limitations-and-biases)
- [Training](#training)
- [Evaluation](#evaluation)
- [Citation Information](#citation-information)
- [How to Get Started With the Model](#how-to-get-started-with-the-model)
## Model Details
**Model Description:**
- **Developed by:** Language Technology Research Group at the University of Helsinki
- **Model Type:** Translation
- **Language(s):**
- Source Language: English
- Target Language: German
- **License:** CC-BY-4.0
- **Resources for more information:**
- [GitHub Repo](https://github.com/Helsinki-NLP/OPUS-MT-train)
## Uses
#### Direct Use
This model can be used for translation and text-to-text generation.
## Risks, Limitations and Biases
**CONTENT WARNING: Readers should be aware this section contains content that is disturbing, offensive, and can propagate historical and current stereotypes.**
Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)).
Further details about the dataset for this model can be found in the OPUS readme: [en-de](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/en-de/README.md)
#### Training Data
##### Preprocessing
* pre-processing: normalization + SentencePiece
* dataset: [opus](https://github.com/Helsinki-NLP/Opus-MT)
* download original weights: [opus-2020-02-26.zip](https://object.pouta.csc.fi/OPUS-MT-models/en-de/opus-2020-02-26.zip)
* test set translations: [opus-2020-02-26.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-de/opus-2020-02-26.test.txt)
## Evaluation
#### Results
* test set scores: [opus-2020-02-26.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-de/opus-2020-02-26.eval.txt)
#### Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| newssyscomb2009.en.de | 23.5 | 0.540 |
| news-test2008.en.de | 23.5 | 0.529 |
| newstest2009.en.de | 22.3 | 0.530 |
| newstest2010.en.de | 24.9 | 0.544 |
| newstest2011.en.de | 22.5 | 0.524 |
| newstest2012.en.de | 23.0 | 0.525 |
| newstest2013.en.de | 26.9 | 0.553 |
| newstest2015-ende.en.de | 31.1 | 0.594 |
| newstest2016-ende.en.de | 37.0 | 0.636 |
| newstest2017-ende.en.de | 29.9 | 0.586 |
| newstest2018-ende.en.de | 45.2 | 0.690 |
| newstest2019-ende.en.de | 40.9 | 0.654 |
| Tatoeba.en.de | 47.3 | 0.664 |
## Citation Information
```bibtex
@InProceedings{TiedemannThottingal:EAMT2020,
author = {J{\"o}rg Tiedemann and Santhosh Thottingal},
title = {{OPUS-MT} — {B}uilding open translation services for the {W}orld},
booktitle = {Proceedings of the 22nd Annual Conferenec of the European Association for Machine Translation (EAMT)},
year = {2020},
address = {Lisbon, Portugal}
}
```
## How to Get Started With the Model
```python
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-de")
model = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-en-de")
```
| 3349a9b424364b03df86ff3f6db70e6d |
Helsinki-NLP/opus-mt-bem-en | Helsinki-NLP | marian | 10 | 13 | transformers | 0 | translation | true | true | false | apache-2.0 | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['translation'] | false | true | true | 776 | false |
### opus-mt-bem-en
* source languages: bem
* target languages: en
* OPUS readme: [bem-en](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/bem-en/README.md)
* dataset: opus
* model: transformer-align
* pre-processing: normalization + SentencePiece
* download original weights: [opus-2019-12-18.zip](https://object.pouta.csc.fi/OPUS-MT-models/bem-en/opus-2019-12-18.zip)
* test set translations: [opus-2019-12-18.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/bem-en/opus-2019-12-18.test.txt)
* test set scores: [opus-2019-12-18.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/bem-en/opus-2019-12-18.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| JW300.bem.en | 33.4 | 0.491 |
| 66b4f9b2f6185b2cfd2320470fd365eb |
sd-concepts-library/rd-chaos | sd-concepts-library | null | 9 | 0 | null | 0 | null | false | false | false | mit | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | [] | false | true | true | 1,008 | false | ### RD chaos on Stable Diffusion
This is the `<rd-chaos>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb).
Here is the new concept you will be able to use as a `style`:




| fbdd2647aa22012c596cfa2fdd2b7dfe |
Sushant45/Pub-clustered | Sushant45 | distilbert | 8 | 24 | transformers | 0 | question-answering | false | true | false | mit | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['generated_from_keras_callback'] | true | true | true | 1,858 | false |
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# Sushant45/Pub-clustered
This model is a fine-tuned version of [nandysoham16/16-clustered_aug](https://huggingface.co/nandysoham16/16-clustered_aug) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.3589
- Train End Logits Accuracy: 0.8889
- Train Start Logits Accuracy: 0.8924
- Validation Loss: 0.4049
- Validation End Logits Accuracy: 0.9231
- Validation Start Logits Accuracy: 0.9231
- Epoch: 0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 18, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch |
|:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:|
| 0.3589 | 0.8889 | 0.8924 | 0.4049 | 0.9231 | 0.9231 | 0 |
### Framework versions
- Transformers 4.26.0
- TensorFlow 2.9.2
- Datasets 2.9.0
- Tokenizers 0.13.2
| 4a0bb1026f005adee00c5ef975f12aa4 |
doyoungkim/bert-base-uncased-sst2-distilled | doyoungkim | bert | 10 | 3 | transformers | 0 | text-classification | true | false | false | apache-2.0 | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['generated_from_trainer'] | false | true | true | 1,458 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-uncased-sst2-distilled
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unkown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2676
- Accuracy: 0.9025
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.3797 | 1.0 | 2105 | 0.2512 | 0.9002 |
| 0.3036 | 2.0 | 4210 | 0.2643 | 0.8933 |
| 0.2609 | 3.0 | 6315 | 0.2831 | 0.8956 |
| 0.2417 | 4.0 | 8420 | 0.2676 | 0.9025 |
| 0.2305 | 5.0 | 10525 | 0.2740 | 0.9025 |
### Framework versions
- Transformers 4.9.1
- Pytorch 1.8.1
- Datasets 1.11.0
- Tokenizers 0.10.1
| 67005e8ff25b177aa581c743aed8d631 |
vumichien/whisper-medium-mix-jp-ver2 | vumichien | whisper | 22 | 22 | transformers | 0 | automatic-speech-recognition | true | false | false | apache-2.0 | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['generated_from_trainer'] | true | true | true | 1,971 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# openai/whisper-medium
This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2790
- Wer: 8.3986
- Cer: 5.2582
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 10000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|
| 0.1691 | 1.01 | 1000 | 0.1871 | 10.1740 | 6.3509 |
| 0.0916 | 2.02 | 2000 | 0.1691 | 8.9797 | 5.5499 |
| 0.0452 | 3.03 | 3000 | 0.1902 | 8.9814 | 5.5867 |
| 0.0213 | 4.04 | 4000 | 0.2062 | 8.9375 | 5.6531 |
| 0.0096 | 5.05 | 5000 | 0.2284 | 8.7331 | 5.6202 |
| 0.0041 | 6.05 | 6000 | 0.2395 | 8.5051 | 5.3009 |
| 0.0022 | 7.06 | 7000 | 0.2535 | 8.5507 | 5.3640 |
| 0.001 | 8.07 | 8000 | 0.2656 | 8.5557 | 5.3791 |
| 0.0006 | 9.08 | 9000 | 0.2721 | 8.4037 | 5.2739 |
| 0.0004 | 10.09 | 10000 | 0.2790 | 8.3986 | 5.2582 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu117
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2
| ae18c9e98fa8a7984f72e60e1f4276b9 |
Helsinki-NLP/opus-mt-de-pag | Helsinki-NLP | marian | 10 | 7 | transformers | 0 | translation | true | true | false | apache-2.0 | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['translation'] | false | true | true | 776 | false |
### opus-mt-de-pag
* source languages: de
* target languages: pag
* OPUS readme: [de-pag](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/de-pag/README.md)
* dataset: opus
* model: transformer-align
* pre-processing: normalization + SentencePiece
* download original weights: [opus-2020-01-20.zip](https://object.pouta.csc.fi/OPUS-MT-models/de-pag/opus-2020-01-20.zip)
* test set translations: [opus-2020-01-20.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/de-pag/opus-2020-01-20.test.txt)
* test set scores: [opus-2020-01-20.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/de-pag/opus-2020-01-20.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| JW300.de.pag | 24.3 | 0.469 |
| e7ef6277167414aa2d682e6751f49eae |
Aldraz/distilbert-base-uncased-finetuned-emotion | Aldraz | distilbert | 12 | 1 | transformers | 0 | text-classification | true | false | false | apache-2.0 | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['generated_from_trainer'] | true | true | true | 1,339 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-emotion
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2319
- Accuracy: 0.921
- F1: 0.9214
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 250 | 0.3369 | 0.8985 | 0.8947 |
| No log | 2.0 | 500 | 0.2319 | 0.921 | 0.9214 |
### Framework versions
- Transformers 4.17.0
- Pytorch 1.9.1+cpu
- Datasets 2.1.0
- Tokenizers 0.11.6
| bb04fc9bfab40f6c1b10b0bec9c105af |
jonatasgrosman/exp_w2v2t_ja_vp-es_s673 | jonatasgrosman | wav2vec2 | 10 | 3 | transformers | 0 | automatic-speech-recognition | true | false | false | apache-2.0 | ['ja'] | ['mozilla-foundation/common_voice_7_0'] | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['automatic-speech-recognition', 'ja'] | false | true | true | 469 | false | # exp_w2v2t_ja_vp-es_s673
Fine-tuned [facebook/wav2vec2-large-es-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-es-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (ja)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
| bd5691055bd1ccb45d6290726e073e61 |
robertou2/roberta-base-bne-finetuned-amazon_reviews_multi | robertou2 | roberta | 13 | 1 | transformers | 0 | text-classification | true | false | false | apache-2.0 | null | ['amazon_reviews_multi'] | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['generated_from_trainer'] | true | true | true | 1,346 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-base-bne-finetuned-amazon_reviews_multi
This model is a fine-tuned version of [BSC-TeMU/roberta-base-bne](https://huggingface.co/BSC-TeMU/roberta-base-bne) on the amazon_reviews_multi dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2368
- Accuracy: 0.9325
## Model description
Modelo de prueba del curso NLP de 0 a 100 sesion 4
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.1919 | 1.0 | 1250 | 0.1690 | 0.933 |
| 0.0972 | 2.0 | 2500 | 0.2368 | 0.9325 |
### Framework versions
- Transformers 4.17.0
- Pytorch 1.10.0+cu111
- Datasets 1.18.4
- Tokenizers 0.11.6
| 22d6e31ce63302c720ff28c6fd1e0c13 |
espnet/ftshijt_mls_asr_transformer_valid.acc.best | espnet | null | 31 | 3 | espnet | 0 | automatic-speech-recognition | false | false | false | cc-by-4.0 | ['es'] | ['mls'] | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['espnet', 'audio', 'automatic-speech-recognition'] | false | true | true | 1,805 | false | ## Example ESPnet2 ASR model
### `ftshijt/mls_asr_transformer_valid.acc.best`
♻️ Imported from https://zenodo.org/record/4458452/
This model was trained by ftshijt using mls/asr1 recipe in [espnet](https://github.com/espnet/espnet/).
### Demo: How to use in ESPnet2
```python
# coming soon
```
### Citing ESPnet
```BibTex
@inproceedings{watanabe2018espnet,
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
title={{ESPnet}: End-to-End Speech Processing Toolkit},
year={2018},
booktitle={Proceedings of Interspeech},
pages={2207--2211},
doi={10.21437/Interspeech.2018-1456},
url={http://dx.doi.org/10.21437/Interspeech.2018-1456}
}
@inproceedings{hayashi2020espnet,
title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit},
author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu},
booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
pages={7654--7658},
year={2020},
organization={IEEE}
}
```
or arXiv:
```bibtex
@misc{watanabe2018espnet,
title={ESPnet: End-to-End Speech Processing Toolkit},
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
year={2018},
eprint={1804.00015},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
``` | 2ec5a13d6a1504315ff87a708628d1d8 |
mariagrandury/roberta-base-finetuned-sms-spam-detection | mariagrandury | roberta | 13 | 333 | transformers | 2 | text-classification | true | false | false | mit | null | ['sms_spam'] | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['generated_from_trainer'] | true | true | true | 1,274 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-base-finetuned-sms-spam-detection
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the sms_spam dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0133
- Accuracy: 0.998
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.0363 | 1.0 | 250 | 0.0156 | 0.996 |
| 0.0147 | 2.0 | 500 | 0.0133 | 0.998 |
### Framework versions
- Transformers 4.16.2
- Pytorch 1.10.0+cu111
- Datasets 1.18.3
- Tokenizers 0.11.0
| 80c106671253535fbeadaad7b3cab90d |
anas-awadalla/gpt2-span-head-few-shot-k-512-finetuned-squad-seed-4 | anas-awadalla | gpt2 | 20 | 5 | transformers | 0 | question-answering | true | false | false | mit | null | ['squad'] | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['generated_from_trainer'] | true | true | true | 966 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# gpt2-span-head-few-shot-k-512-finetuned-squad-seed-4
This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the squad dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 12
- eval_batch_size: 8
- seed: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10.0
### Training results
### Framework versions
- Transformers 4.20.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.11.6
| 9206421965902a33ca5564a0cfef8685 |
mrojas/roberta-clinical-wl-es-finetuned-ner | mrojas | roberta | 14 | 8 | transformers | 0 | token-classification | true | false | false | apache-2.0 | null | ['wl'] | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['generated_from_trainer'] | true | true | true | 1,559 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-clinical-wl-es-finetuned-ner
This model is a fine-tuned version of [plncmm/roberta-clinical-wl-es](https://huggingface.co/plncmm/roberta-clinical-wl-es) on the wl dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6227
- Precision: 0.6865
- Recall: 0.7355
- F1: 0.7102
- Accuracy: 0.8268
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 1.028 | 1.0 | 500 | 0.6870 | 0.6558 | 0.6855 | 0.6703 | 0.8035 |
| 0.5923 | 2.0 | 1000 | 0.6248 | 0.6851 | 0.7235 | 0.7038 | 0.8244 |
| 0.4928 | 3.0 | 1500 | 0.6227 | 0.6865 | 0.7355 | 0.7102 | 0.8268 |
### Framework versions
- Transformers 4.24.0
- Pytorch 1.12.1+cu113
- Datasets 2.6.1
- Tokenizers 0.13.2
| fcd5e320e441f696671b369b980f379b |
RANG012/SENATOR | RANG012 | distilbert | 13 | 6 | transformers | 0 | text-classification | true | false | false | apache-2.0 | null | ['imdb'] | null | 1 | 1 | 0 | 0 | 0 | 0 | 0 | ['generated_from_trainer'] | true | true | true | 1,022 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# SENATOR
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2707
- Accuracy: 0.916
- F1: 0.9167
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
### Framework versions
- Transformers 4.19.2
- Pytorch 1.11.0+cu113
- Datasets 2.2.2
- Tokenizers 0.12.1
| fc98eb5d4a4703c0179b8cbbb6029114 |
dfurman/Swin-base-chesapeake-land-cover-v0 | dfurman | swin | 14 | 7 | transformers | 0 | image-classification | true | false | false | apache-2.0 | null | ['imagefolder'] | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['image-classification', 'generated_from_trainer'] | true | true | true | 1,436 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Swin-base-chesapeake-land-cover-v0
This model is a fine-tuned version of [microsoft/swin-base-patch4-window7-224-in22k](https://huggingface.co/microsoft/swin-base-patch4-window7-224-in22k) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0430
- Accuracy: 0.9899
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 128
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.0326 | 1.15 | 100 | 0.1309 | 0.9588 |
| 0.0102 | 2.3 | 200 | 0.0430 | 0.9899 |
| 0.0082 | 3.45 | 300 | 0.0466 | 0.9914 |
### Framework versions
- Transformers 4.24.0
- Pytorch 1.12.1+cu113
- Datasets 2.7.0
- Tokenizers 0.13.2
| 873981c1da3378cb5cc8c84e85cb567d |
explosion/vi_udv25_vietnamesevtb_trf | explosion | null | 28 | 2 | spacy | 0 | token-classification | false | false | false | cc-by-sa-4.0 | ['vi'] | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['spacy', 'token-classification'] | false | true | true | 2,085 | false | UD v2.5 benchmarking pipeline for UD_Vietnamese-VTB
| Feature | Description |
| --- | --- |
| **Name** | `vi_udv25_vietnamesevtb_trf` |
| **Version** | `0.0.1` |
| **spaCy** | `>=3.2.1,<3.3.0` |
| **Default Pipeline** | `experimental_char_ner_tokenizer`, `transformer`, `tagger`, `morphologizer`, `parser`, `experimental_edit_tree_lemmatizer` |
| **Components** | `experimental_char_ner_tokenizer`, `transformer`, `senter`, `tagger`, `morphologizer`, `parser`, `experimental_edit_tree_lemmatizer` |
| **Vectors** | 0 keys, 0 unique vectors (0 dimensions) |
| **Sources** | [Universal Dependencies v2.5](https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-3105) (Zeman, Daniel; et al.) |
| **License** | `CC BY-SA 4.0` |
| **Author** | [Explosion](https://explosion.ai) |
### Label Scheme
<details>
<summary>View label scheme (81 labels for 6 components)</summary>
| Component | Labels |
| --- | --- |
| **`experimental_char_ner_tokenizer`** | `TOKEN` |
| **`senter`** | `I`, `S` |
| **`tagger`** | `!`, `"`, `,`, `-`, `.`, `...`, `:`, `;`, `?`, `@`, `A`, `C`, `CC`, `E`, `I`, `L`, `LBKT`, `M`, `N`, `NP`, `Nb`, `Nc`, `Np`, `Nu`, `Ny`, `P`, `R`, `RBKT`, `T`, `V`, `VP`, `X`, `Y`, `Z` |
| **`morphologizer`** | `POS=NOUN`, `POS=ADP`, `POS=X\|Polarity=Neg`, `POS=VERB`, `POS=ADJ`, `POS=PUNCT`, `POS=X`, `POS=SCONJ`, `NumType=Card\|POS=NUM`, `POS=DET`, `POS=CCONJ`, `POS=PROPN`, `POS=AUX`, `POS=PART`, `POS=INTJ` |
| **`parser`** | `ROOT`, `advcl`, `advmod`, `amod`, `appos`, `aux`, `aux:pass`, `case`, `cc`, `ccomp`, `compound`, `conj`, `cop`, `csubj`, `dep`, `det`, `discourse`, `iobj`, `list`, `mark`, `nmod`, `nsubj`, `nummod`, `obj`, `obl`, `parataxis`, `punct`, `xcomp` |
| **`experimental_edit_tree_lemmatizer`** | `0` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `TOKEN_F` | 87.90 |
| `TOKEN_P` | 86.84 |
| `TOKEN_R` | 89.00 |
| `TOKEN_ACC` | 98.42 |
| `SENTS_F` | 94.33 |
| `SENTS_P` | 96.23 |
| `SENTS_R` | 92.50 |
| `TAG_ACC` | 88.05 |
| `POS_ACC` | 90.19 |
| `MORPH_ACC` | 96.95 |
| `DEP_UAS` | 68.08 |
| `DEP_LAS` | 60.64 |
| `LEMMA_ACC` | 89.35 | | 21ad063c6f1a6f4fce967aec44a20ae2 |
Meow412/finetuning-sentiment-model-A3 | Meow412 | distilbert | 13 | 5 | transformers | 0 | text-classification | true | false | false | apache-2.0 | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['generated_from_trainer'] | true | true | true | 1,045 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuning-sentiment-model-A3
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3212
- Accuracy: 0.8760
- F1: 0.3516
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
### Framework versions
- Transformers 4.24.0
- Pytorch 1.12.1+cu113
- Datasets 2.6.1
- Tokenizers 0.13.2
| c8aebbdc342ed781d4ba3c705a2111c0 |
PaddlePaddle/ernie-2.0-large-zh | PaddlePaddle | ernie | 7 | 0 | paddlenlp | 0 | null | false | false | false | apache-2.0 | ['zh'] | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | [] | false | true | true | 1,590 | false | # PaddlePaddle/ernie-2.0-large-zh
## Introduction
Recently, pre-trained models have achieved state-of-the-art results in various language understanding tasks, which indicates that pre-training on large-scale corpora may play a crucial role in natural language processing.
Current pre-training procedures usually focus on training the model with several simple tasks to grasp the co-occurrence of words or sentences. However, besides co-occurring,
there exists other valuable lexical, syntactic and semantic information in training corpora, such as named entity, semantic closeness and discourse relations.
In order to extract to the fullest extent, the lexical, syntactic and semantic information from training corpora, we propose a continual pre-training framework named ERNIE 2.0
which builds and learns incrementally pre-training tasks through constant multi-task learning.
Experimental results demonstrate that ERNIE 2.0 outperforms BERT and XLNet on 16 tasks including English tasks on GLUE benchmarks and several common tasks in Chinese.
More detail: https://arxiv.org/abs/1907.12412
## Available Models
- ernie-2.0-base-en
- ernie-2.0-large-en
- ernie-2.0-base-zh
- ernie-2.0-large-zh
## How to Use?
Click on the *Use in paddlenlp* button on the top right!
## Citation Info
```text
@article{ernie2.0,
title = {ERNIE 2.0: A Continual Pre-training Framework for Language Understanding},
author = {Sun, Yu and Wang, Shuohuan and Li, Yukun and Feng, Shikun and Tian, Hao and Wu, Hua and Wang, Haifeng},
journal={arXiv preprint arXiv:1907.12412},
year = {2019},
}
``` | 442869cbd7f31d29188e3be2e5b9040c |
HyperMoon/wav2vec2-base-finetuned-deepfake-0919 | HyperMoon | wav2vec2 | 10 | 12 | transformers | 0 | audio-classification | true | false | false | apache-2.0 | null | ['asvspoof2019'] | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['generated_from_trainer'] | true | true | true | 1,574 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-base-finetuned-deepfake-0919
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the asvspoof2019 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3335
- Accuracy: 0.8974
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.3025 | 1.0 | 1586 | 0.3335 | 0.8974 |
| 0.4214 | 2.0 | 3172 | 0.3331 | 0.8974 |
| 0.4378 | 3.0 | 4758 | 0.3307 | 0.8974 |
| 0.3993 | 4.0 | 6344 | 0.3331 | 0.8974 |
| 0.2839 | 5.0 | 7930 | 0.3315 | 0.8974 |
### Framework versions
- Transformers 4.22.1
- Pytorch 1.12.1+cu113
- Datasets 2.4.0
- Tokenizers 0.12.1
| 24043b57b27f66a03239031e805ef5ab |
commanderstrife/ADE-Bio_ClinicalBERT-NER | commanderstrife | bert | 12 | 7 | transformers | 0 | token-classification | true | false | false | mit | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['generated_from_trainer'] | true | true | true | 1,739 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# ADE-Bio_ClinicalBERT-NER
This model is a fine-tuned version of [emilyalsentzer/Bio_ClinicalBERT](https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1926
- Precision: 0.7830
- Recall: 0.8811
- F1: 0.8291
- Accuracy: 0.9437
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.2389 | 1.0 | 201 | 0.2100 | 0.7155 | 0.8292 | 0.7681 | 0.9263 |
| 0.0648 | 2.0 | 402 | 0.1849 | 0.7716 | 0.8711 | 0.8183 | 0.9392 |
| 0.2825 | 3.0 | 603 | 0.1856 | 0.7834 | 0.8788 | 0.8284 | 0.9422 |
| 0.199 | 4.0 | 804 | 0.1875 | 0.7796 | 0.8781 | 0.8259 | 0.9430 |
| 0.0404 | 5.0 | 1005 | 0.1926 | 0.7830 | 0.8811 | 0.8291 | 0.9437 |
### Framework versions
- Transformers 4.21.0
- Pytorch 1.12.0+cu113
- Datasets 2.4.0
- Tokenizers 0.12.1
| 58f04d17b09f3258645dcdeeeeb2b8d0 |
spacy/es_core_news_lg | spacy | null | 28 | 38 | spacy | 1 | token-classification | false | false | false | gpl-3.0 | ['es'] | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['spacy', 'token-classification'] | false | true | true | 29,913 | false | ### Details: https://spacy.io/models/es#es_core_news_lg
Spanish pipeline optimized for CPU. Components: tok2vec, morphologizer, parser, senter, ner, attribute_ruler, lemmatizer.
| Feature | Description |
| --- | --- |
| **Name** | `es_core_news_lg` |
| **Version** | `3.5.0` |
| **spaCy** | `>=3.5.0,<3.6.0` |
| **Default Pipeline** | `tok2vec`, `morphologizer`, `parser`, `attribute_ruler`, `lemmatizer`, `ner` |
| **Components** | `tok2vec`, `morphologizer`, `parser`, `senter`, `attribute_ruler`, `lemmatizer`, `ner` |
| **Vectors** | 500000 keys, 500000 unique vectors (300 dimensions) |
| **Sources** | [UD Spanish AnCora v2.8](https://github.com/UniversalDependencies/UD_Spanish-AnCora) (Martínez Alonso, Héctor; Zeman, Daniel)<br />[WikiNER](https://figshare.com/articles/Learning_multilingual_named_entity_recognition_from_Wikipedia/5462500) (Joel Nothman, Nicky Ringland, Will Radford, Tara Murphy, James R Curran)<br />[spaCy lookups data](https://github.com/explosion/spacy-lookups-data) (Explosion)<br />[Explosion fastText Vectors (cbow, OSCAR Common Crawl + Wikipedia)](https://spacy.io) (Explosion) |
| **License** | `GNU GPL 3.0` |
| **Author** | [Explosion](https://explosion.ai) |
### Label Scheme
<details>
<summary>View label scheme (468 labels for 3 components)</summary>
| Component | Labels |
| --- | --- |
| **`morphologizer`** | `Definite=Def\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Gender=Masc\|Number=Sing\|POS=NOUN`, `Definite=Def\|Gender=Masc\|Number=Sing\|POS=ADP\|PronType=Art`, `Gender=Masc\|Number=Sing\|POS=ADJ`, `POS=ADP`, `Definite=Def\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Art`, `POS=PROPN`, `Case=Acc\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `POS=VERB\|VerbForm=Inf`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Gender=Fem\|Number=Sing\|POS=NOUN`, `Gender=Fem\|Number=Plur\|POS=NOUN`, `Gender=Fem\|Number=Plur\|POS=DET\|PronType=Ind`, `POS=PRON\|PronType=Int,Rel`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Definite=Def\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `POS=SCONJ`, `POS=NOUN`, `Definite=Def\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Art`, `Number=Plur\|POS=NOUN`, `Gender=Masc\|Number=Plur\|POS=DET\|PronType=Ind`, `Gender=Masc\|Number=Plur\|POS=NOUN`, `POS=PUNCT\|PunctType=Peri`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `POS=PUNCT\|PunctType=Comm`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Person=3\|PrepCase=Npr\|PronType=Prs\|VerbForm=Inf`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Number=Plur\|POS=ADJ`, `POS=CCONJ`, `Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Ind`, `POS=ADV`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Gender=Masc\|NumType=Card\|Number=Plur\|POS=DET\|PronType=Dem`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Number=Sing\|POS=ADJ`, `Gender=Masc\|Number=Plur\|POS=ADJ\|VerbForm=Part`, `Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Tot`, `POS=PRON\|PronType=Ind`, `POS=ADV\|Polarity=Neg`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs`, `Gender=Fem\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `Number=Plur\|POS=PRON\|PronType=Int,Rel`, `POS=PUNCT\|PunctType=Quot`, `POS=PUNCT`, `Gender=Masc\|Number=Sing\|POS=ADJ\|VerbForm=Part`, `POS=PUNCT\|PunctSide=Ini\|PunctType=Brck`, `POS=PUNCT\|PunctSide=Fin\|PunctType=Brck`, `NumForm=Digit\|NumType=Card\|POS=NUM`, `NumType=Card\|POS=NUM`, `POS=VERB\|VerbForm=Ger`, `Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Gender=Fem\|NumType=Ord\|Number=Plur\|POS=ADJ`, `Number=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Number=Sing\|POS=NOUN`, `Gender=Masc\|Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|POS=ADJ\|VerbForm=Part`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Degree=Cmp\|POS=ADV`, `POS=AUX\|VerbForm=Inf`, `Number=Plur\|POS=DET\|PronType=Ind`, `Number=Plur\|POS=DET\|PronType=Dem`, `POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes`, `Degree=Cmp\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Case=Acc\|POS=VERB\|Person=3\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Inf`, `Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Definite=Ind\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `AdvType=Tim\|POS=NOUN`, `Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Ind`, `NumType=Card\|Number=Plur\|POS=NUM`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Person=3\|PrepCase=Npr\|PronType=Prs\|VerbForm=Inf`, `NumForm=Digit\|POS=NOUN`, `Number=Sing\|POS=PRON\|PronType=Dem`, `Number=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Gender=Fem\|Number=Plur\|POS=ADJ`, `Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Ind`, `Gender=Masc\|Number=Plur\|POS=DET\|PronType=Tot`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin`, `Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Gender=Masc\|NumType=Ord\|Number=Sing\|POS=ADJ`, `Gender=Masc\|NumType=Ord\|Number=Plur\|POS=ADJ`, `Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Gender=Masc\|Number=Sing\|POS=AUX\|Tense=Past\|VerbForm=Part`, `Number=Sing\|POS=DET\|PronType=Tot`, `Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Dat\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Degree=Cmp\|Number=Plur\|POS=ADJ`, `POS=AUX\|VerbForm=Ger`, `Gender=Fem\|POS=NOUN`, `Gender=Fem\|NumType=Ord\|Number=Sing\|POS=ADJ`, `AdvType=Tim\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Gender=Fem\|Number=Plur\|POS=ADJ\|VerbForm=Part`, `Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Gender=Masc\|Number=Sing\|POS=PRON\|Poss=Yes\|PronType=Int,Rel`, `Number=Sing\|POS=PRON\|PronType=Int,Rel`, `POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Gender=Fem\|Number=Plur\|POS=DET\|PronType=Tot`, `Case=Acc,Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Definite=Ind\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Acc,Nom\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs`, `POS=SPACE`, `Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Dem`, `Mood=Cnd\|Number=Sing\|POS=VERB\|Person=1\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Tot`, `Number=Plur\|POS=PRON\|PronType=Ind`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `POS=PART`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Ind`, `Number=Sing\|POS=DET\|PronType=Ind`, `Gender=Masc\|NumType=Card\|Number=Plur\|POS=DET\|PronType=Ind`, `Mood=Cnd\|Number=Plur\|POS=AUX\|Person=3\|VerbForm=Fin`, `NumForm=Digit\|POS=SYM`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|VerbForm=Fin`, `Case=Dat\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|VerbForm=Inf`, `Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Dem`, `Mood=Cnd\|Number=Sing\|POS=AUX\|Person=1\|VerbForm=Fin`, `NumForm=Digit\|NumType=Frac\|POS=NUM`, `Gender=Fem\|Number=Sing\|POS=PRON\|Poss=Yes\|PronType=Int,Rel`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=1\|PrepCase=Npr\|PronType=Prs`, `Definite=Ind\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Art`, `POS=PUNCT\|PunctType=Colo`, `Mood=Sub\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=3\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Neg`, `Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs`, `Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=AUX\|Person=3\|PrepCase=Npr\|PronType=Prs\|VerbForm=Inf`, `Number=Sing\|POS=PRON\|PronType=Neg`, `POS=PUNCT\|PunctType=Semi`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Number=Sing\|POS=PRON\|PronType=Ind`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Case=Acc,Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `POS=INTJ`, `Gender=Masc\|NumType=Card\|Number=Sing\|POS=PRON\|PronType=Dem`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Number=Plur\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Dat\|POS=VERB\|Person=3\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Inf`, `POS=PUNCT\|PunctType=Dash`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=1\|PrepCase=Npr\|PronType=Prs`, `Mood=Cnd\|Number=Plur\|POS=VERB\|Person=1\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Neg`, `Gender=Fem\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=VERB\|Person=3\|PrepCase=Npr\|PronType=Prs\|VerbForm=Inf`, `Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Tot`, `Gender=Masc\|NumType=Card\|Number=Plur\|POS=NUM`, `Gender=Masc\|POS=NOUN`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=1\|PrepCase=Npr\|PronType=Prs`, `Gender=Fem\|NumType=Card\|Number=Sing\|POS=DET\|PronType=Ind`, `Gender=Fem\|NumType=Card\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Acc\|POS=VERB\|Person=3\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Ger`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Imp\|VerbForm=Fin`, `POS=NOUN\|VerbForm=Inf`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=1\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Gender=Masc\|NumType=Card\|Number=Sing\|POS=NUM`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Gender=Masc\|Number=Plur\|POS=PRON\|Poss=Yes\|PronType=Int,Rel`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|Person=3\|PrepCase=Npr\|PronType=Prs\|VerbForm=Inf`, `Gender=Fem\|NumType=Card\|Number=Sing\|POS=DET\|PronType=Dem`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=3\|VerbForm=Fin`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Neg`, `Case=Acc\|Number=Plur\|POS=VERB\|Person=1\|PrepCase=Npr\|PronType=Prs\|VerbForm=Inf`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin`, `Degree=Abs\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Acc,Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Imp\|Number=Sing\|POS=AUX\|Person=3\|VerbForm=Fin`, `Case=Acc\|Number=Plur\|POS=VERB\|Person=1\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Inf`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Tot`, `POS=DET\|PronType=Ind`, `POS=DET\|PronType=Int,Rel`, `AdvType=Tim\|POS=ADV`, `POS=VERB\|Person=3\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Inf`, `Mood=Cnd\|Number=Sing\|POS=AUX\|Person=3\|VerbForm=Fin`, `Case=Dat\|Number=Plur\|POS=VERB\|Person=1\|PrepCase=Npr\|PronType=Prs\|VerbForm=Inf`, `POS=PUNCT\|PunctSide=Ini\|PunctType=Qest`, `POS=PUNCT\|PunctSide=Fin\|PunctType=Qest`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=1\|PrepCase=Npr\|PronType=Prs`, `Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Gender=Masc\|NumType=Card\|Number=Sing\|POS=DET\|PronType=Ind`, `Mood=Cnd\|Number=Plur\|POS=VERB\|Person=3\|VerbForm=Fin`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Person=3\|PrepCase=Npr\|PronType=Prs\|VerbForm=Ger`, `Degree=Abs\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=1\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=1\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes`, `POS=PUNCT\|PunctSide=Ini\|PunctType=Excl`, `POS=PUNCT\|PunctSide=Fin\|PunctType=Excl`, `Mood=Cnd\|Number=Sing\|POS=VERB\|Person=3\|VerbForm=Fin`, `Case=Acc\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=3\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Tot`, `Gender=Masc\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=1\|VerbForm=Fin`, `Gender=Masc\|NumType=Card\|Number=Plur\|POS=PRON\|PronType=Ind`, `Gender=Masc\|NumType=Card\|Number=Sing\|POS=PRON\|PronType=Ind`, `Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Dem`, `Case=Dat\|Number=Plur\|POS=VERB\|Person=3\|PronType=Prs\|VerbForm=Inf`, `Degree=Abs\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=1\|PrepCase=Pre\|PronType=Prs`, `Case=Dat\|Mood=Imp\|Number=Plur\|POS=VERB\|Person=3\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Fin`, `Definite=Ind\|Gender=Fem\|NumType=Card\|Number=Sing\|POS=DET\|PronType=Art`, `Gender=Fem\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=VERB\|Person=1,3\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Inf`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=1\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes`, `Mood=Sub\|Number=Plur\|POS=AUX\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Gender=Fem\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `POS=SCONJ\|PronType=Int,Rel`, `Case=Acc,Dat\|Gender=Masc\|Number=Sing\|POS=VERB\|Person=3\|PrepCase=Npr\|PronType=Prs\|VerbForm=Inf`, `Case=Acc\|POS=PRON\|Person=3\|PrepCase=Pre\|PronType=Prs\|Reflex=Yes`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Case=Dat\|Number=Sing\|POS=VERB\|Person=1\|PrepCase=Npr\|PronType=Prs\|VerbForm=Inf`, `NumType=Card\|Number=Sing\|POS=DET\|PronType=Ind`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=2\|PrepCase=Npr\|PronType=Prs`, `Case=Dat\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs`, `POS=VERB\|Person=3\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Ger`, `Case=Acc,Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Number=Sing\|POS=DET\|PronType=Dem`, `Case=Acc,Dat\|Gender=Masc\|Number=Sing\|POS=VERB\|Person=3\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Inf`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=3\|Tense=Imp\|VerbForm=Fin`, `POS=SYM`, `Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Neg`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Person=3\|PrepCase=Npr\|PronType=Prs\|VerbForm=Ger`, `Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Dat\|POS=VERB\|Person=3\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Ger`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Mood=Imp\|Number=Plur\|POS=VERB\|Person=3\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Fin`, `Case=Acc\|Gender=Masc\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=2,3\|PrepCase=Npr\|PronType=Prs\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Fut\|VerbForm=Fin`, `Case=Acc\|Number=Sing\|POS=VERB\|Person=1\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Inf`, `Gender=Masc\|Number=Sing\|Number[psor]=Sing\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Ind`, `Case=Acc,Nom\|Number=Sing\|POS=PRON\|Person=2\|Polite=Form\|PronType=Prs`, `Case=Dat\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=3\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Fin`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|Person=3\|PrepCase=Npr\|PronType=Prs\|VerbForm=Ger`, `Gender=Masc\|NumType=Card\|Number=Sing\|POS=PRON\|PronType=Int,Rel`, `Gender=Fem\|NumType=Card\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Dat\|Number=Plur\|POS=VERB\|Person=1\|PrepCase=Npr\|PronType=Prs\|VerbForm=Ger`, `Case=Acc,Dat\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=2\|PrepCase=Npr\|PronType=Prs`, `Mood=Cnd\|Number=Sing\|POS=VERB\|Person=2\|VerbForm=Fin`, `Case=Acc\|Number=Sing\|POS=VERB\|Person=1\|PrepCase=Npr\|PronType=Prs\|VerbForm=Inf`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin`, `Mood=Cnd\|Number=Plur\|POS=AUX\|Person=1\|VerbForm=Fin`, `NumType=Card\|Number=Plur\|POS=PRON\|PronType=Ind`, `Gender=Masc\|NumType=Card\|Number=Sing\|POS=DET\|PronType=Dem`, `Degree=Abs\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Ind`, `Gender=Fem\|Number=Plur\|POS=PRON\|Poss=Yes\|PronType=Int,Rel`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Past\|VerbForm=Fin`, `Case=Acc,Nom\|Number=Plur\|POS=PRON\|Person=2\|Polite=Form\|PronType=Prs`, `Mood=Imp\|Number=Sing\|POS=AUX\|Person=2\|VerbForm=Fin`, `Case=Dat\|Number=Sing\|POS=VERB\|Person=2\|PrepCase=Npr\|PronType=Prs\|VerbForm=Inf`, `Gender=Fem\|Number=Sing\|Number[psor]=Sing\|POS=PRON\|Person=2\|Poss=Yes\|PronType=Ind`, `NumType=Card\|Number=Sing\|POS=NUM`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Tense=Imp\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Case=Com\|Number=Sing\|POS=PRON\|Person=2\|PrepCase=Pre\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Imp\|VerbForm=Fin`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=2\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes`, `Number=Sing\|POS=PRON\|Person=2\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=2\|PrepCase=Pre\|PronType=Prs`, `Mood=Cnd\|Number=Sing\|POS=AUX\|Person=2\|VerbForm=Fin`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Number=Sing\|POS=NOUN\|VerbForm=Fin`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=2\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes`, `Case=Dat\|Mood=Imp\|Number=Plur,Sing\|POS=VERB\|Person=1,2\|PrepCase=Npr\|PronType=Prs\|VerbForm=Fin`, `Case=Acc\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Fut\|VerbForm=Fin`, `Gender=Fem\|NumType=Card\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Tense=Fut\|VerbForm=Fin`, `Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Tot`, `Gender=Masc\|NumType=Card\|Number=Plur\|POS=DET\|PronType=Int,Rel`, `Case=Dat\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|VerbForm=Ger`, `Number=Sing\|POS=VERB\|VerbForm=Fin`, `POS=VERB\|VerbForm=Fin`, `Degree=Abs\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Degree=Abs\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|POS=AUX\|Person=3\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Ger`, `Gender=Masc\|Number=Sing\|Number[psor]=Plur\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Mood=Sub\|Number=Plur\|POS=AUX\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Gender=Fem\|NumType=Card\|Number=Plur\|POS=DET\|PronType=Dem`, `Definite=Ind\|Gender=Masc\|NumType=Card\|Number=Sing\|POS=DET\|PronType=Art`, `Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Number=Plur\|POS=PRON\|PronType=Dem`, `Case=Acc,Dat\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=2\|PrepCase=Npr\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=VERB\|Person=3\|PrepCase=Npr\|PronType=Prs\|VerbForm=Ger`, `Gender=Masc\|Number=Sing\|POS=AUX\|VerbForm=Fin`, `POS=AUX\|Person=3\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Inf`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Past\|VerbForm=Fin`, `Gender=Masc\|NumType=Card\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Gender=Masc\|Number=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=1,3\|PrepCase=Npr\|PronType=Prs\|VerbForm=Fin`, `Gender=Masc\|NumType=Card\|Number=Plur\|POS=PRON\|PronType=Int,Rel`, `Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|POS=AUX\|Person=3\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Inf`, `Case=Acc,Dat\|Gender=Masc\|Number=Sing\|POS=VERB\|Person=1,3\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Inf`, `Number=Plur\|POS=VERB\|Person=1\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Inf`, `Case=Acc,Dat\|Gender=Fem\|Number=Plur\|POS=VERB\|Person=3\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Inf`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Ind`, `Mood=Ind\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Dat\|Number=Sing\|POS=VERB\|Person=1\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Inf`, `Definite=Def\|Foreign=Yes\|POS=DET\|PronType=Art`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=2\|PrepCase=Npr\|PronType=Prs`, `Gender=Masc\|NumType=Card\|Number=Plur\|POS=PRON\|PronType=Dem`, `Gender=Fem\|Number=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Number=Sing\|POS=VERB\|Person=2\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Inf`, `Mood=Sub\|Number=Plur\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Fut\|VerbForm=Fin`, `Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Definite=Def\|Gender=Fem\|Number=Sing\|POS=ADP\|PronType=Art`, `Case=Acc\|Number=Sing\|POS=VERB\|Person=2\|PrepCase=Npr\|PronType=Prs\|PunctType=Quot\|VerbForm=Inf`, `Case=Dat\|Number=Plur\|POS=VERB\|Person=1\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Inf`, `Case=Com\|POS=PRON\|Person=3\|PrepCase=Pre\|PronType=Prs\|Reflex=Yes`, `NumForm=Digit\|NumType=Frac\|POS=SYM`, `Number=Sing\|POS=VERB\|Person=1\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Inf`, `Case=Dat\|Number=Sing\|POS=AUX\|Person=3\|PronType=Prs\|VerbForm=Inf`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=AUX\|Person=3\|PrepCase=Npr\|PronType=Prs\|VerbForm=Inf`, `Case=Dat\|POS=AUX\|Person=3\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Inf`, `Gender=Fem\|NumType=Card\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Acc,Dat\|Gender=Masc\|Number=Plur,Sing\|POS=VERB\|Person=1,3\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Inf`, `Gender=Masc\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes`, `Case=Acc,Dat\|Gender=Masc\|Number=Sing\|POS=VERB\|Person=3\|PrepCase=Npr\|PronType=Prs\|VerbForm=Ger`, `Gender=Fem\|Number=Sing\|Number[psor]=Sing\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Ind`, `Case=Dat\|Number=Plur\|POS=VERB\|Person=2\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Inf`, `Case=Acc\|Number=Plur\|POS=VERB\|Person=2\|PrepCase=Npr\|PronType=Prs\|VerbForm=Inf`, `Number=Sing\|POS=PRON\|PronType=Tot`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Case=Dat\|Number=Plur\|POS=VERB\|Person=3\|PronType=Prs\|VerbForm=Ger`, `NumType=Card\|Number=Plur\|POS=DET\|PronType=Ind`, `POS=PRON\|PronType=Dem`, `Number=Sing\|POS=PRON\|Person=1\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes`, `POS=AUX\|VerbForm=Fin`, `Gender=Fem\|NumType=Card\|Number=Plur\|POS=PRON\|PronType=Int,Rel`, `Gender=Fem\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Gender=Fem\|Number=Plur\|Number[psor]=Plur\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=AUX\|Person=3\|PrepCase=Npr\|PronType=Prs\|VerbForm=Inf`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=AUX\|Person=3\|PrepCase=Npr\|PronType=Prs\|VerbForm=Inf`, `Case=Acc,Dat\|Gender=Fem\|Number=Sing\|POS=VERB\|Person=3\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Inf`, `AdvType=Tim\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Gender=Fem\|Number=Sing\|Number[psor]=Plur\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|Typo=Yes\|VerbForm=Fin`, `Gender=Fem\|NumType=Card\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Acc\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs`, `Gender=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Ind`, `Gender=Masc\|Number=Sing\|Number[psor]=Sing\|POS=PRON\|Person=2\|Poss=Yes\|PronType=Ind`, `Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Definite=Def\|Gender=Masc\|Number=Plur\|POS=ADP\|PronType=Art`, `Gender=Masc\|Number=Plur\|POS=DET\|PronType=Art`, `Gender=Masc\|Number=Sing\|POS=NOUN\|VerbForm=Part`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=AUX\|Person=3\|PrepCase=Npr\|PronType=Prs\|VerbForm=Ger`, `Case=Acc,Dat\|Number=Plur\|POS=VERB\|Person=3\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Inf`, `Gender=Masc\|Number=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Ind`, `Case=Acc\|Number=Sing\|POS=VERB\|Person=1\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Ger`, `Case=Acc,Dat\|Number=Sing\|POS=PRON\|Person=2\|PrepCase=Npr\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Mood=Imp\|Number=Plur\|POS=VERB\|Person=1,3\|PrepCase=Npr\|PronType=Prs\|VerbForm=Fin`, `Number=Plur\|POS=PRON\|Person=1\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes`, `Gender=Fem\|Number=Sing\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Com\|Number=Sing\|POS=PRON\|Person=1\|PrepCase=Pre\|PronType=Prs`, `POS=X`, `Case=Acc,Dat\|Number=Plur\|POS=PRON\|Person=1\|PrepCase=Npr\|PronType=Prs`, `Case=Com\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Case=Acc,Dat\|Number=Sing\|POS=VERB\|Person=3\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Inf`, `Case=Acc,Dat\|Number=Sing\|POS=PRON\|Person=1\|PrepCase=Npr\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Mood=Imp\|Number=Plur,Sing\|POS=VERB\|Person=1,3\|PrepCase=Npr\|PronType=Prs\|VerbForm=Fin`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=2\|PrepCase=Npr\|PronType=Prs`, `Number=Sing\|POS=AUX\|Person=1\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Inf`, `Case=Acc\|Gender=Masc\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=3\|PrepCase=Npr\|PronType=Prs\|VerbForm=Fin`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|VerbForm=Fin`, `Gender=Masc\|Number=Plur\|POS=PRON\|Person=2\|Poss=Yes\|PronType=Ind`, `Case=Dat\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=1,3\|PrepCase=Npr\|PronType=Prs\|VerbForm=Fin`, `Gender=Fem\|Number=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Gender=Fem\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Number=Sing\|POS=VERB\|Person=2\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Inf`, `Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `POS=NOUN\|PunctType=Comm`, `Degree=Cmp\|POS=ADJ`, `Gender=Masc\|POS=ADJ`, `Degree=Abs\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=PRON\|PronType=Ind`, `POS=PRON\|PronType=Neg`, `Case=Acc,Dat\|Gender=Fem\|Number=Sing\|POS=VERB\|Person=3\|PrepCase=Npr\|PronType=Prs\|VerbForm=Inf`, `Case=Acc\|Number=Plur\|POS=VERB\|Person=1\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Ger`, `Case=Dat\|Number=Sing\|POS=VERB\|Person=3\|PrepCase=Npr\|PronType=Prs\|VerbForm=Ger`, `Gender=Fem\|Number=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Ind`, `Number=Sing\|POS=DET\|PronType=Int,Rel`, `Definite=Def\|Foreign=Yes\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Foreign=Yes\|POS=NOUN`, `Foreign=Yes\|POS=ADP`, `Foreign=Yes\|POS=CCONJ`, `Foreign=Yes\|POS=PROPN` |
| **`parser`** | `ROOT`, `acl`, `advcl`, `advmod`, `amod`, `appos`, `aux`, `case`, `cc`, `ccomp`, `compound`, `conj`, `cop`, `csubj`, `dep`, `det`, `expl:impers`, `expl:pass`, `expl:pv`, `fixed`, `flat`, `iobj`, `mark`, `nmod`, `nsubj`, `nummod`, `obj`, `obl`, `parataxis`, `punct`, `xcomp` |
| **`ner`** | `LOC`, `MISC`, `ORG`, `PER` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `TOKEN_ACC` | 100.00 |
| `TOKEN_P` | 99.89 |
| `TOKEN_R` | 99.95 |
| `TOKEN_F` | 99.92 |
| `POS_ACC` | 98.51 |
| `MORPH_ACC` | 98.19 |
| `MORPH_MICRO_P` | 99.56 |
| `MORPH_MICRO_R` | 98.98 |
| `MORPH_MICRO_F` | 99.27 |
| `SENTS_P` | 96.90 |
| `SENTS_R` | 98.50 |
| `SENTS_F` | 97.70 |
| `DEP_UAS` | 91.40 |
| `DEP_LAS` | 88.19 |
| `TAG_ACC` | 96.14 |
| `LEMMA_ACC` | 96.58 |
| `ENTS_P` | 89.67 |
| `ENTS_R` | 89.78 |
| `ENTS_F` | 89.72 | | 5f9542c3e3a9fc63cd00b1b3d4eca7e9 |
susnato/xlm-roberta-base-finetuned-panx-it | susnato | xlm-roberta | 9 | 12 | transformers | 0 | token-classification | true | false | false | mit | null | ['xtreme'] | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['generated_from_trainer'] | true | true | true | 1,317 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-panx-it
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3544
- F1: 0.8235
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.7074 | 1.0 | 210 | 0.4237 | 0.7311 |
| 0.3172 | 2.0 | 420 | 0.3662 | 0.7820 |
| 0.1855 | 3.0 | 630 | 0.3544 | 0.8235 |
### Framework versions
- Transformers 4.23.1
- Pytorch 1.12.1+cu113
- Datasets 2.6.1
- Tokenizers 0.13.1
| 6ccf9c659b4c1194aa6361ac89e2f69d |
anas-awadalla/albert-xxl-v2-finetuned-squad | anas-awadalla | albert | 16 | 3 | transformers | 1 | question-answering | true | false | false | apache-2.0 | null | ['squad'] | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['generated_from_trainer'] | true | true | true | 960 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# albert-xxl-v2-finetuned-squad
This model is a fine-tuned version of [albert-xxlarge-v2](https://huggingface.co/albert-xxlarge-v2) on the squad dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2.0
### Training results
### Framework versions
- Transformers 4.17.0
- Pytorch 1.11.0+cu113
- Datasets 2.0.0
- Tokenizers 0.11.6
| eac60fc8c8007539bbef8a54e45c3d87 |
GItaf/roberta-base-roberta-base-finetuned-mbti-0911 | GItaf | roberta | 13 | 2 | transformers | 0 | text-generation | true | false | false | mit | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['generated_from_trainer'] | true | true | true | 1,079 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-base-roberta-base-finetuned-mbti-0911
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- eval_loss: 4.1338
- eval_runtime: 25.7058
- eval_samples_per_second: 67.495
- eval_steps_per_second: 8.442
- step: 0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Framework versions
- Transformers 4.21.2
- Pytorch 1.12.1
- Datasets 2.4.0
- Tokenizers 0.12.1
| 00675fe601a9bd00daa8e01bd176f50b |
Helsinki-NLP/opus-mt-lua-fr | Helsinki-NLP | marian | 10 | 20 | transformers | 0 | translation | true | true | false | apache-2.0 | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['translation'] | false | true | true | 776 | false |
### opus-mt-lua-fr
* source languages: lua
* target languages: fr
* OPUS readme: [lua-fr](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/lua-fr/README.md)
* dataset: opus
* model: transformer-align
* pre-processing: normalization + SentencePiece
* download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/lua-fr/opus-2020-01-09.zip)
* test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/lua-fr/opus-2020-01-09.test.txt)
* test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/lua-fr/opus-2020-01-09.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| JW300.lua.fr | 25.7 | 0.429 |
| cbfdd14a9d4fcbd38c473db0db3d9918 |
nestoralvaro/mt5-base-finetuned-xsum-data_prep_2021_12_26___t1_7.csv___topic_text_google_mt5_base | nestoralvaro | mt5 | 12 | 1 | transformers | 0 | text2text-generation | true | false | false | apache-2.0 | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['generated_from_trainer'] | true | true | true | 1,477 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mt5-base-finetuned-xsum-data_prep_2021_12_26___t1_7.csv___topic_text_google_mt5_base
This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: nan
- Rouge1: 2.8146
- Rouge2: 0.6707
- Rougel: 2.8187
- Rougelsum: 2.8098
- Gen Len: 6.4901
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| 0.0 | 1.0 | 3869 | nan | 2.8146 | 0.6707 | 2.8187 | 2.8098 | 6.4901 |
### Framework versions
- Transformers 4.19.3
- Pytorch 1.11.0+cu113
- Datasets 2.2.2
- Tokenizers 0.12.1
| d9dc50c20ce5b69307b0a49ae972e53b |
FolkFoxWalker/my_awesome_billsum_model | FolkFoxWalker | t5 | 11 | 1 | transformers | 0 | text2text-generation | true | false | false | apache-2.0 | null | ['billsum'] | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['generated_from_trainer'] | true | true | true | 1,703 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# my_awesome_billsum_model
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the billsum dataset.
It achieves the following results on the evaluation set:
- Loss: 2.5057
- Rouge1: 0.1437
- Rouge2: 0.0544
- Rougel: 0.12
- Rougelsum: 0.12
- Gen Len: 19.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| No log | 1.0 | 62 | 2.7978 | 0.1276 | 0.039 | 0.1077 | 0.1076 | 19.0 |
| No log | 2.0 | 124 | 2.5889 | 0.1371 | 0.0489 | 0.1153 | 0.1151 | 19.0 |
| No log | 3.0 | 186 | 2.5234 | 0.1429 | 0.054 | 0.1196 | 0.1194 | 19.0 |
| No log | 4.0 | 248 | 2.5057 | 0.1437 | 0.0544 | 0.12 | 0.12 | 19.0 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2
| 073bde416531cf0f13ed48f2794cdfd6 |
mabaji/thepoet | mabaji | gpt2 | 8 | 15 | transformers | 0 | text-generation | true | false | false | apache-2.0 | ['ar'] | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['text-generation'] | false | true | true | 724 | false |
Thepoet is an Arabic poem generator, pre-trained language model based on OpenAi GPT2 architechture.
Special thanks to aubmindlab for their pretrained Arabic model - Aragpt2 - large (https://huggingface.co/aubmindlab/aragpt2-large)
AraGPT2-large adafactor 1024 1280 20 36 2.98GB/792M
Trained on two huge (APCD) datasets:
512MB Arabic Poem Comprehensive Dataset from Kaggle (https://www.kaggle.com/datasets/mohamedkhaledelsafty/best-arabic-poem-comprehensive-dataset)
150MB Arabic Poem Dataset from Kaggle(https://www.kaggle.com/datasets/ahmedabelal/arabic-poetry)
## Eval results
Final perplexity reached was 119.5661
### BibTeX entry and citation info
```bibtex
@inproceedings{Mohamad El Abaji,
year={2022}
}
``` | 6cb93547fc78a4925d75ca36ced9d480 |
Geotrend/distilbert-base-tr-cased | Geotrend | distilbert | 6 | 5 | transformers | 0 | fill-mask | true | false | false | apache-2.0 | ['tr'] | ['wikipedia'] | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | [] | false | true | true | 1,215 | false |
# distilbert-base-tr-cased
We are sharing smaller versions of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) that handle a custom number of languages.
Our versions give exactly the same representations produced by the original model which preserves the original accuracy.
For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf).
## How to use
```python
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("Geotrend/distilbert-base-tr-cased")
model = AutoModel.from_pretrained("Geotrend/distilbert-base-tr-cased")
```
To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers).
### How to cite
```bibtex
@inproceedings{smallermdistilbert,
title={Load What You Need: Smaller Versions of Mutlilingual BERT},
author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire},
booktitle={SustaiNLP / EMNLP},
year={2020}
}
```
## Contact
Please contact [email protected] for any question, feedback or request. | 9d5de1a7d32d081c9bb24dbd9f835c39 |
alexamiredjibi/Multimodal-Trajectory-Classifier-30 | alexamiredjibi | distilbert | 8 | 0 | transformers | 0 | null | true | false | false | apache-2.0 | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['generated_from_trainer'] | true | true | true | 997 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Multimodal-Trajectory-Classifier-30
This model is a fine-tuned version of [alexamiredjibi/Multimodal-Trajectory-Classifier](https://huggingface.co/alexamiredjibi/Multimodal-Trajectory-Classifier) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
### Training results
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.7.1
- Tokenizers 0.13.2
| d8a3d887f1390f26860a1bd6f9a8bc38 |
tommy19970714/wav2vec2-base-960h | tommy19970714 | wav2vec2 | 7 | 6 | transformers | 0 | automatic-speech-recognition | true | false | false | apache-2.0 | ['en'] | ['librispeech_asr'] | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['audio', 'automatic-speech-recognition'] | false | true | true | 3,629 | false |
# Wav2Vec2-Base-960h
This repository is a reimplementation of [official Facebook’s wav2vec](https://huggingface.co/facebook/wav2vec2-base-960h).
There is no description of converting the wav2vec [pretrain model](https://github.com/pytorch/fairseq/tree/master/examples/wav2vec#wav2vec-20) to a pytorch.bin file.
We are rebuilding pytorch.bin from the pretrain model.
Here is the conversion method.
```bash
pip install transformers[sentencepiece]
pip install fairseq -U
git clone https://github.com/huggingface/transformers.git
cp transformers/src/transformers/models/wav2vec2/convert_wav2vec2_original_pytorch_checkpoint_to_pytorch.py .
wget https://dl.fbaipublicfiles.com/fairseq/wav2vec/wav2vec_small_960h.pt -O ./wav2vec_small_960h.pt
mkdir dict
wget https://dl.fbaipublicfiles.com/fairseq/wav2vec/dict.ltr.txt
mkdir outputs
python convert_wav2vec2_original_pytorch_checkpoint_to_pytorch.py --pytorch_dump_folder_path ./outputs --checkpoint_path ./wav2vec_small_960h.pt --dict_path ./dict
```
# Usage
To transcribe audio files the model can be used as a standalone acoustic model as follows:
```python
from transformers import Wav2Vec2Tokenizer, Wav2Vec2ForCTC
from datasets import load_dataset
import soundfile as sf
import torch
# load model and tokenizer
tokenizer = Wav2Vec2Tokenizer.from_pretrained("facebook/wav2vec2-base-960h")
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")
# define function to read in sound file
def map_to_array(batch):
speech, _ = sf.read(batch["file"])
batch["speech"] = speech
return batch
# load dummy dataset and read soundfiles
ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation")
ds = ds.map(map_to_array)
# tokenize
input_values = tokenizer(ds["speech"][:2], return_tensors="pt", padding="longest").input_values # Batch size 1
# retrieve logits
logits = model(input_values).logits
# take argmax and decode
predicted_ids = torch.argmax(logits, dim=-1)
transcription = tokenizer.batch_decode(predicted_ids)
```
## Evaluation
This code snippet shows how to evaluate **facebook/wav2vec2-base-960h** on LibriSpeech's "clean" and "other" test data.
```python
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Tokenizer
import soundfile as sf
import torch
from jiwer import wer
librispeech_eval = load_dataset("librispeech_asr", "clean", split="test")
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h").to("cuda")
tokenizer = Wav2Vec2Tokenizer.from_pretrained("facebook/wav2vec2-base-960h")
def map_to_array(batch):
speech, _ = sf.read(batch["file"])
batch["speech"] = speech
return batch
librispeech_eval = librispeech_eval.map(map_to_array)
def map_to_pred(batch):
input_values = tokenizer(batch["speech"], return_tensors="pt", padding="longest").input_values
with torch.no_grad():
logits = model(input_values.to("cuda")).logits
predicted_ids = torch.argmax(logits, dim=-1)
transcription = tokenizer.batch_decode(predicted_ids)
batch["transcription"] = transcription
return batch
result = librispeech_eval.map(map_to_pred, batched=True, batch_size=1, remove_columns=["speech"])
print("WER:", wer(result["text"], result["transcription"]))
```
*Result (WER)*:
| "clean" | "other" |
|---|---|
| 3.4 | 8.6 |
# Reference
[Facebook's Wav2Vec2](https://ai.facebook.com/blog/wav2vec-20-learning-the-structure-of-speech-from-raw-audio/)
[Facebook's huggingface Wav2Vec2](https://huggingface.co/facebook/wav2vec2-base-960h)
[Paper](https://arxiv.org/abs/2006.11477)
| c72a1eb8a21cde8ca1214642546bd9fd |
wolinski/constituency-brackets-20 | wolinski | bert | 9 | 42 | transformers | 0 | token-classification | false | true | false | cc-by-4.0 | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['generated_from_keras_callback'] | true | true | true | 2,619 | false |
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# constituency-brackets-20
This model is a fine-tuned version of [allegro/herbert-base-cased](https://huggingface.co/allegro/herbert-base-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.2020
- Train Acc: 0.9356
- Validation Loss: 0.2929
- Validation Acc: 0.9120
- Epoch: 19
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'learning_rate': 5e-06, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Train Acc | Validation Loss | Validation Acc | Epoch |
|:----------:|:---------:|:---------------:|:--------------:|:-----:|
| 2.4703 | 0.3783 | 1.4719 | 0.5858 | 0 |
| 1.2149 | 0.6600 | 0.8922 | 0.7269 | 1 |
| 0.8721 | 0.7343 | 0.6914 | 0.7779 | 2 |
| 0.7186 | 0.7715 | 0.6028 | 0.8037 | 3 |
| 0.6239 | 0.7987 | 0.5427 | 0.8240 | 4 |
| 0.5432 | 0.8342 | 0.4469 | 0.8677 | 5 |
| 0.4521 | 0.8665 | 0.4092 | 0.8760 | 6 |
| 0.4100 | 0.8761 | 0.3867 | 0.8819 | 7 |
| 0.3792 | 0.8855 | 0.3761 | 0.8849 | 8 |
| 0.3526 | 0.8926 | 0.3469 | 0.8938 | 9 |
| 0.3304 | 0.8981 | 0.3433 | 0.8944 | 10 |
| 0.3091 | 0.9049 | 0.3329 | 0.8977 | 11 |
| 0.2935 | 0.9081 | 0.3178 | 0.9028 | 12 |
| 0.2769 | 0.9138 | 0.3140 | 0.9032 | 13 |
| 0.2614 | 0.9173 | 0.2994 | 0.9114 | 14 |
| 0.2472 | 0.9213 | 0.2954 | 0.9128 | 15 |
| 0.2344 | 0.9260 | 0.2899 | 0.9142 | 16 |
| 0.2229 | 0.9292 | 0.2971 | 0.9092 | 17 |
| 0.2136 | 0.9322 | 0.2872 | 0.9143 | 18 |
| 0.2020 | 0.9356 | 0.2929 | 0.9120 | 19 |
### Framework versions
- Transformers 4.26.0
- TensorFlow 2.9.2
- Datasets 2.8.0
- Tokenizers 0.13.2
| f0b922b945695cbf0248efa9c366e8bc |
bofenghuang/whisper-medium-cv11-german | bofenghuang | whisper | 17 | 38 | transformers | 0 | automatic-speech-recognition | true | false | false | apache-2.0 | ['de'] | ['mozilla-foundation/common_voice_11_0'] | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['automatic-speech-recognition', 'whisper-event'] | true | true | true | 4,483 | false |
<style>
img {
display: inline;
}
</style>



# Fine-tuned whisper-medium model for ASR in German
This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium), trained on the mozilla-foundation/common_voice_11_0 de dataset. When using the model make sure that your speech input is also sampled at 16Khz. **This model also predicts casing and punctuation.**
## Performance
*Below are the WERs of the pre-trained models on the [Common Voice 9.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_9_0). These results are reported in the original [paper](https://cdn.openai.com/papers/whisper.pdf).*
| Model | Common Voice 9.0 |
| --- | :---: |
| [openai/whisper-small](https://huggingface.co/openai/whisper-small) | 13.0 |
| [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) | 8.5 |
| [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) | 6.4 |
*Below are the WERs of the fine-tuned models on the [Common Voice 11.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_11_0).*
| Model | Common Voice 11.0 |
| --- | :---: |
| [bofenghuang/whisper-small-cv11-german](https://huggingface.co/bofenghuang/whisper-small-cv11-german) | 11.35 |
| [bofenghuang/whisper-medium-cv11-german](https://huggingface.co/bofenghuang/whisper-medium-cv11-german) | 7.05 |
| [bofenghuang/whisper-large-v2-cv11-german](https://huggingface.co/bofenghuang/whisper-large-v2-cv11-german) | **5.76** |
## Usage
Inference with 🤗 Pipeline
```python
import torch
from datasets import load_dataset
from transformers import pipeline
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Load pipeline
pipe = pipeline("automatic-speech-recognition", model="bofenghuang/whisper-medium-cv11-german", device=device)
# NB: set forced_decoder_ids for generation utils
pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(language="de", task="transcribe")
# Load data
ds_mcv_test = load_dataset("mozilla-foundation/common_voice_11_0", "de", split="test", streaming=True)
test_segment = next(iter(ds_mcv_test))
waveform = test_segment["audio"]
# NB: decoding option
# limit the maximum number of generated tokens to 225
pipe.model.config.max_length = 225 + 1
# sampling
# pipe.model.config.do_sample = True
# beam search
# pipe.model.config.num_beams = 5
# return
# pipe.model.config.return_dict_in_generate = True
# pipe.model.config.output_scores = True
# pipe.model.config.num_return_sequences = 5
# Run
generated_sentences = pipe(waveform)["text"]
```
Inference with 🤗 low-level APIs
```python
import torch
import torchaudio
from datasets import load_dataset
from transformers import AutoProcessor, AutoModelForSpeechSeq2Seq
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Load model
model = AutoModelForSpeechSeq2Seq.from_pretrained("bofenghuang/whisper-medium-cv11-german").to(device)
processor = AutoProcessor.from_pretrained("bofenghuang/whisper-medium-cv11-german", language="german", task="transcribe")
# NB: set forced_decoder_ids for generation utils
model.config.forced_decoder_ids = processor.get_decoder_prompt_ids(language="de", task="transcribe")
# 16_000
model_sample_rate = processor.feature_extractor.sampling_rate
# Load data
ds_mcv_test = load_dataset("mozilla-foundation/common_voice_11_0", "de", split="test", streaming=True)
test_segment = next(iter(ds_mcv_test))
waveform = torch.from_numpy(test_segment["audio"]["array"])
sample_rate = test_segment["audio"]["sampling_rate"]
# Resample
if sample_rate != model_sample_rate:
resampler = torchaudio.transforms.Resample(sample_rate, model_sample_rate)
waveform = resampler(waveform)
# Get feat
inputs = processor(waveform, sampling_rate=model_sample_rate, return_tensors="pt")
input_features = inputs.input_features
input_features = input_features.to(device)
# Generate
generated_ids = model.generate(inputs=input_features, max_new_tokens=225) # greedy
# generated_ids = model.generate(inputs=input_features, max_new_tokens=225, num_beams=5) # beam search
# Detokenize
generated_sentences = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
# Normalise predicted sentences if necessary
``` | f8b6b0a47375a05365402c0d45255aab |
muhtasham/small-mlm-glue-mrpc-custom-tokenizer | muhtasham | bert | 12 | 13 | transformers | 1 | fill-mask | true | false | false | apache-2.0 | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['generated_from_trainer'] | true | true | true | 1,411 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# small-mlm-glue-mrpc-custom-tokenizer
This model is a fine-tuned version of [google/bert_uncased_L-4_H-512_A-8](https://huggingface.co/google/bert_uncased_L-4_H-512_A-8) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 6.4085
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 6.9986 | 1.09 | 500 | 6.7224 |
| 6.2058 | 2.18 | 1000 | 6.3947 |
| 5.981 | 3.27 | 1500 | 6.4669 |
| 5.8487 | 4.36 | 2000 | 6.6145 |
| 5.7411 | 5.45 | 2500 | 6.4085 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu116
- Datasets 2.8.1.dev0
- Tokenizers 0.13.2
| a8f0cba2af6906435d57adc4c955318b |
chaitu619/chai_librispeech_asr_train_transducer_v2_raw_en_bpe5000_sp | chaitu619 | null | 31 | 0 | espnet | 0 | automatic-speech-recognition | false | false | false | cc-by-4.0 | ['en'] | ['librispeech_asr', 'librispeech 960h'] | null | 0 | 0 | 0 | 0 | 1 | 1 | 0 | ['espnet', 'audio', 'automatic-speech-recognition'] | false | true | true | 57,248 | false |
## ESPnet2 model
This model was trained by Chaitanya Narisetty using recipe in [espnet](https://github.com/espnet/espnet/).
<!-- Generated by scripts/utils/show_asr_result.sh -->
# RESULTS
## Environments
- date: `Tue Apr 26 15:33:18 EDT 2022`
- python version: `3.9.5 (default, Jun 4 2021, 12:28:51) [GCC 7.5.0]`
- espnet version: `espnet 202204`
- pytorch version: `pytorch 1.8.1+cu111`
- Git hash: `8a76ff24eb513d96561fb47d0320dd39c1c3645a`
- Commit date: `Tue Apr 19 07:32:58 2022 +0000`
## asr_train_conformer-rnn_transducer_raw_en_bpe5000_sp
### WER
|dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err|
|---|---|---|---|---|---|---|---|---|
|decode_asr_model_valid.loss.ave_10best/dev_clean|2703|54402|97.7|2.1|0.2|0.3|2.6|31.5|
|decode_asr_model_valid.loss.ave_10best/dev_other|2864|50948|93.8|5.6|0.6|0.6|6.8|50.8|
|decode_asr_model_valid.loss.ave_10best/test_clean|2620|52576|97.5|2.3|0.2|0.3|2.8|32.7|
|decode_asr_model_valid.loss.ave_10best/test_other|2939|52343|94.1|5.3|0.6|0.7|6.6|51.8|
|decode_lm_weight0.4_lm_lm_train_lm_transformer2_en_bpe5000_17epoch_asr_model_valid.loss.ave_10best/dev_clean|2703|54402|98.0|1.8|0.2|0.2|2.2|28.2|
|decode_lm_weight0.4_lm_lm_train_lm_transformer2_en_bpe5000_17epoch_asr_model_valid.loss.ave_10best/dev_other|2864|50948|94.8|4.5|0.7|0.5|5.7|45.1|
|decode_lm_weight0.4_lm_lm_train_lm_transformer2_en_bpe5000_17epoch_asr_model_valid.loss.ave_10best/test_clean|2620|52576|97.9|1.9|0.2|0.3|2.4|29.3|
|decode_lm_weight0.4_lm_lm_train_lm_transformer2_en_bpe5000_17epoch_asr_model_valid.loss.ave_10best/test_other|2939|52343|94.9|4.3|0.7|0.5|5.6|47.0|
### CER
|dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err|
|---|---|---|---|---|---|---|---|---|
|decode_asr_model_valid.loss.ave_10best/dev_clean|2703|288456|99.4|0.4|0.3|0.2|0.9|31.5|
|decode_asr_model_valid.loss.ave_10best/dev_other|2864|265951|97.7|1.4|0.9|0.8|3.0|50.8|
|decode_asr_model_valid.loss.ave_10best/test_clean|2620|281530|99.4|0.4|0.3|0.3|0.9|32.7|
|decode_asr_model_valid.loss.ave_10best/test_other|2939|272758|97.9|1.2|0.9|0.8|2.8|51.8|
|decode_lm_weight0.4_lm_lm_train_lm_transformer2_en_bpe5000_17epoch_asr_model_valid.loss.ave_10best/dev_clean|2703|288456|99.4|0.3|0.3|0.2|0.8|28.2|
|decode_lm_weight0.4_lm_lm_train_lm_transformer2_en_bpe5000_17epoch_asr_model_valid.loss.ave_10best/dev_other|2864|265951|97.9|1.1|1.0|0.6|2.7|45.1|
|decode_lm_weight0.4_lm_lm_train_lm_transformer2_en_bpe5000_17epoch_asr_model_valid.loss.ave_10best/test_clean|2620|281530|99.4|0.3|0.3|0.2|0.9|29.3|
|decode_lm_weight0.4_lm_lm_train_lm_transformer2_en_bpe5000_17epoch_asr_model_valid.loss.ave_10best/test_other|2939|272758|98.1|0.9|1.0|0.6|2.5|47.0|
### TER
|dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err|
|---|---|---|---|---|---|---|---|---|
|decode_asr_model_valid.loss.ave_10best/dev_clean|2703|68010|97.2|2.1|0.7|0.4|3.3|31.5|
|decode_asr_model_valid.loss.ave_10best/dev_other|2864|63110|92.7|5.6|1.7|1.2|8.6|50.8|
|decode_asr_model_valid.loss.ave_10best/test_clean|2620|65818|97.0|2.2|0.9|0.4|3.4|32.7|
|decode_asr_model_valid.loss.ave_10best/test_other|2939|65101|93.0|5.1|1.9|1.0|8.0|51.8|
|decode_lm_weight0.4_lm_lm_train_lm_transformer2_en_bpe5000_17epoch_asr_model_valid.loss.ave_10best/dev_clean|2703|68010|97.5|1.8|0.8|0.4|2.9|28.2|
|decode_lm_weight0.4_lm_lm_train_lm_transformer2_en_bpe5000_17epoch_asr_model_valid.loss.ave_10best/dev_other|2864|63110|93.5|4.5|1.9|0.9|7.4|45.1|
|decode_lm_weight0.4_lm_lm_train_lm_transformer2_en_bpe5000_17epoch_asr_model_valid.loss.ave_10best/test_clean|2620|65818|97.3|1.9|0.8|0.4|3.0|29.3|
|decode_lm_weight0.4_lm_lm_train_lm_transformer2_en_bpe5000_17epoch_asr_model_valid.loss.ave_10best/test_other|2939|65101|93.9|4.1|1.9|0.8|6.9|47.0|
## ASR config
<details><summary>expand</summary>
```
config: conf/tuning/transducer/train_conformer-rnn_transducer.yaml
print_config: false
log_level: INFO
dry_run: false
iterator_type: sequence
output_dir: exp/asr_train_conformer-rnn_transducer_raw_en_bpe5000_sp
ngpu: 1
seed: 0
num_workers: 1
num_att_plot: 0
dist_backend: nccl
dist_init_method: env://
dist_world_size: 4
dist_rank: 0
local_rank: 0
dist_master_addr: localhost
dist_master_port: 46179
dist_launcher: null
multiprocessing_distributed: true
unused_parameters: false
sharded_ddp: false
cudnn_enabled: true
cudnn_benchmark: false
cudnn_deterministic: true
collect_stats: false
write_collected_feats: false
max_epoch: 25
patience: null
val_scheduler_criterion:
- valid
- loss
early_stopping_criterion:
- valid
- loss
- min
best_model_criterion:
- - valid
- loss
- min
keep_nbest_models: 10
nbest_averaging_interval: 0
grad_clip: 5.0
grad_clip_type: 2.0
grad_noise: false
accum_grad: 4
no_forward_run: false
resume: true
train_dtype: float32
use_amp: false
log_interval: null
use_matplotlib: true
use_tensorboard: true
use_wandb: false
wandb_project: null
wandb_id: null
wandb_entity: null
wandb_name: null
wandb_model_log_interval: -1
detect_anomaly: false
pretrain_path: null
init_param: []
ignore_init_mismatch: false
freeze_param: []
num_iters_per_epoch: null
batch_size: 20
valid_batch_size: null
batch_bins: 10000000
valid_batch_bins: null
train_shape_file:
- exp/asr_stats_raw_en_bpe5000_sp/train/speech_shape
- exp/asr_stats_raw_en_bpe5000_sp/train/text_shape.bpe
valid_shape_file:
- exp/asr_stats_raw_en_bpe5000_sp/valid/speech_shape
- exp/asr_stats_raw_en_bpe5000_sp/valid/text_shape.bpe
batch_type: numel
valid_batch_type: null
fold_length:
- 80000
- 150
sort_in_batch: descending
sort_batch: descending
multiple_iterator: false
chunk_length: 500
chunk_shift_ratio: 0.5
num_cache_chunks: 1024
train_data_path_and_name_and_type:
- - dump/raw/train_960_sp/wav.scp
- speech
- kaldi_ark
- - dump/raw/train_960_sp/text
- text
- text
valid_data_path_and_name_and_type:
- - dump/raw/dev/wav.scp
- speech
- kaldi_ark
- - dump/raw/dev/text
- text
- text
allow_variable_data_keys: false
max_cache_size: 0.0
max_cache_fd: 32
valid_max_cache_size: null
optim: adam
optim_conf:
lr: 0.0015
weight_decay: 1.0e-06
scheduler: warmuplr
scheduler_conf:
warmup_steps: 25000
token_list:
- <blank>
- <unk>
- ▁THE
- S
- ▁AND
- ▁OF
- ▁TO
- ▁A
- ▁IN
- ▁I
- ▁HE
- ▁THAT
- ▁WAS
- ED
- ▁IT
- ''''
- ▁HIS
- ING
- ▁YOU
- ▁WITH
- ▁FOR
- ▁HAD
- T
- ▁AS
- ▁HER
- ▁IS
- ▁BE
- ▁BUT
- ▁NOT
- ▁SHE
- D
- ▁AT
- ▁ON
- LY
- ▁HIM
- ▁THEY
- ▁ALL
- ▁HAVE
- ▁BY
- ▁SO
- ▁THIS
- ▁MY
- ▁WHICH
- ▁ME
- ▁SAID
- ▁FROM
- ▁ONE
- Y
- E
- ▁WERE
- ▁WE
- ▁NO
- N
- ▁THERE
- ▁OR
- ER
- ▁AN
- ▁WHEN
- ▁ARE
- ▁THEIR
- ▁WOULD
- ▁IF
- ▁WHAT
- ▁THEM
- ▁WHO
- ▁OUT
- M
- ▁DO
- ▁WILL
- ▁UP
- ▁BEEN
- P
- R
- ▁MAN
- ▁THEN
- ▁COULD
- ▁MORE
- C
- ▁INTO
- ▁NOW
- ▁VERY
- ▁YOUR
- ▁SOME
- ▁LITTLE
- ES
- ▁TIME
- RE
- ▁CAN
- ▁LIKE
- LL
- ▁ABOUT
- ▁HAS
- ▁THAN
- ▁DID
- ▁UPON
- ▁OVER
- IN
- ▁ANY
- ▁WELL
- ▁ONLY
- B
- ▁SEE
- ▁GOOD
- ▁OTHER
- ▁TWO
- L
- ▁KNOW
- ▁GO
- ▁DOWN
- ▁BEFORE
- A
- AL
- ▁OUR
- ▁OLD
- ▁SHOULD
- ▁MADE
- ▁AFTER
- ▁GREAT
- ▁DAY
- ▁MUST
- ▁COME
- ▁HOW
- ▁SUCH
- ▁CAME
- LE
- ▁WHERE
- ▁US
- ▁NEVER
- ▁THESE
- ▁MUCH
- ▁DE
- ▁MISTER
- ▁WAY
- G
- ▁S
- ▁MAY
- ATION
- ▁LONG
- OR
- ▁AM
- ▁FIRST
- ▁BACK
- ▁OWN
- ▁RE
- ▁AGAIN
- ▁SAY
- ▁MEN
- ▁WENT
- ▁HIMSELF
- ▁HERE
- NESS
- ▁THINK
- V
- IC
- ▁EVEN
- ▁THOUGHT
- ▁HAND
- ▁JUST
- ▁O
- ▁UN
- VE
- ION
- ▁ITS
- 'ON'
- ▁MAKE
- ▁MIGHT
- ▁TOO
- K
- ▁AWAY
- ▁LIFE
- TH
- ▁WITHOUT
- ST
- ▁THROUGH
- ▁MOST
- ▁TAKE
- ▁DON
- ▁EVERY
- F
- O
- ▁SHALL
- ▁THOSE
- ▁EYES
- AR
- ▁STILL
- ▁LAST
- ▁HOUSE
- ▁HEAD
- ABLE
- ▁NOTHING
- ▁NIGHT
- ITY
- ▁LET
- ▁MANY
- ▁OFF
- ▁BEING
- ▁FOUND
- ▁WHILE
- EN
- ▁SAW
- ▁GET
- ▁PEOPLE
- ▁FACE
- ▁YOUNG
- CH
- ▁UNDER
- ▁ONCE
- ▁TELL
- AN
- ▁THREE
- ▁PLACE
- ▁ROOM
- ▁YET
- ▁SAME
- IL
- US
- U
- ▁FATHER
- ▁RIGHT
- EL
- ▁THOUGH
- ▁ANOTHER
- LI
- RI
- ▁HEART
- IT
- ▁PUT
- ▁TOOK
- ▁GIVE
- ▁EVER
- ▁E
- ▁PART
- ▁WORK
- ERS
- ▁LOOK
- ▁NEW
- ▁KING
- ▁MISSUS
- ▁SIR
- ▁LOVE
- ▁MIND
- ▁LOOKED
- W
- RY
- ▁ASKED
- ▁LEFT
- ET
- ▁LIGHT
- CK
- ▁DOOR
- ▁MOMENT
- RO
- ▁WORLD
- ▁THINGS
- ▁HOME
- UL
- ▁THING
- LA
- ▁WHY
- ▁MOTHER
- ▁ALWAYS
- ▁FAR
- FUL
- ▁WATER
- CE
- IVE
- UR
- ▁HEARD
- ▁SOMETHING
- ▁SEEMED
- I
- LO
- ▁BECAUSE
- OL
- ▁END
- ▁TOLD
- ▁CON
- ▁YES
- ▁GOING
- ▁GOT
- RA
- IR
- ▁WOMAN
- ▁GOD
- EST
- TED
- ▁FIND
- ▁KNEW
- ▁SOON
- ▁EACH
- ▁SIDE
- H
- TON
- MENT
- ▁OH
- NE
- Z
- LING
- ▁AGAINST
- TER
- ▁NAME
- ▁MISS
- ▁QUITE
- ▁WANT
- ▁YEARS
- ▁FEW
- ▁BETTER
- ENT
- ▁HALF
- ▁DONE
- ▁ALSO
- ▁BEGAN
- ▁HAVING
- ▁ENOUGH
- IS
- ▁LADY
- ▁WHOLE
- LESS
- ▁BOTH
- ▁SEEN
- ▁SET
- ▁WHITE
- ▁COURSE
- IES
- ▁VOICE
- ▁CALLED
- ▁D
- ▁EX
- ATE
- ▁TURNED
- ▁GAVE
- ▁C
- ▁POOR
- MAN
- UT
- NA
- ▁DEAR
- ISH
- ▁GIRL
- ▁MORNING
- ▁BETWEEN
- LED
- ▁NOR
- IA
- ▁AMONG
- MA
- ▁
- ▁SMALL
- ▁REST
- ▁WHOM
- ▁FELT
- ▁HANDS
- ▁MYSELF
- ▁HIGH
- ▁M
- ▁HOWEVER
- ▁HERSELF
- ▁P
- CO
- ▁STOOD
- ID
- ▁KIND
- ▁HUNDRED
- AS
- ▁ROUND
- ▁ALMOST
- TY
- ▁SINCE
- ▁G
- AM
- ▁LA
- SE
- ▁BOY
- ▁MA
- ▁PERHAPS
- ▁WORDS
- ATED
- ▁HO
- X
- ▁MO
- ▁SAT
- ▁REPLIED
- ▁FOUR
- ▁ANYTHING
- ▁TILL
- ▁UNTIL
- ▁BLACK
- TION
- ▁CRIED
- RU
- TE
- ▁FACT
- ▁HELP
- ▁NEXT
- ▁LOOKING
- ▁DOES
- ▁FRIEND
- ▁LAY
- ANCE
- ▁POWER
- ▁BROUGHT
- VER
- ▁FIRE
- ▁KEEP
- PO
- FF
- ▁COUNTRY
- ▁SEA
- ▁WORD
- ▁CAR
- ▁DAYS
- ▁TOGETHER
- ▁IMP
- ▁REASON
- KE
- ▁INDEED
- TING
- ▁MATTER
- ▁FULL
- ▁TEN
- TIC
- ▁LAND
- ▁RATHER
- ▁AIR
- ▁HOPE
- ▁DA
- ▁OPEN
- ▁FEET
- ▁EN
- ▁FIVE
- ▁POINT
- ▁CO
- OM
- ▁LARGE
- ▁B
- ▁CL
- ME
- ▁GONE
- ▁CHILD
- INE
- GG
- ▁BEST
- ▁DIS
- UM
- ▁HARD
- ▁LORD
- OUS
- ▁WIFE
- ▁SURE
- ▁FORM
- DE
- ▁DEATH
- ANT
- ▁NATURE
- ▁BA
- ▁CARE
- ▁BELIEVE
- PP
- ▁NEAR
- ▁RO
- ▁RED
- ▁WAR
- IE
- ▁SPEAK
- ▁FEAR
- ▁CASE
- ▁TAKEN
- ▁ALONG
- ▁CANNOT
- ▁HEAR
- ▁THEMSELVES
- CI
- ▁PRESENT
- AD
- ▁MASTER
- ▁SON
- ▁THUS
- ▁LI
- ▁LESS
- ▁SUN
- ▁TRUE
- IM
- IOUS
- ▁THOUSAND
- ▁MONEY
- ▁W
- ▁BEHIND
- ▁CHILDREN
- ▁DOCTOR
- AC
- ▁TWENTY
- ▁WISH
- ▁SOUND
- ▁WHOSE
- ▁LEAVE
- ▁ANSWERED
- ▁THOU
- ▁DUR
- ▁HA
- ▁CERTAIN
- ▁PO
- ▁PASSED
- GE
- TO
- ▁ARM
- ▁LO
- ▁STATE
- ▁ALONE
- TA
- ▁SHOW
- ▁NEED
- ▁LIVE
- ND
- ▁DEAD
- ENCE
- ▁STRONG
- ▁PRE
- ▁TI
- ▁GROUND
- SH
- TI
- ▁SHORT
- IAN
- UN
- ▁PRO
- ▁HORSE
- MI
- ▁PRINCE
- ARD
- ▁FELL
- ▁ORDER
- ▁CALL
- AT
- ▁GIVEN
- ▁DARK
- ▁THEREFORE
- ▁CLOSE
- ▁BODY
- ▁OTHERS
- ▁SENT
- ▁SECOND
- ▁OFTEN
- ▁CA
- ▁MANNER
- MO
- NI
- ▁BRING
- ▁QUESTION
- ▁HOUR
- ▁BO
- AGE
- ▁ST
- ▁TURN
- ▁TABLE
- ▁GENERAL
- ▁EARTH
- ▁BED
- ▁REALLY
- ▁SIX
- 'NO'
- IST
- ▁BECOME
- ▁USE
- ▁READ
- ▁SE
- ▁VI
- ▁COMING
- ▁EVERYTHING
- ▁EM
- ▁ABOVE
- ▁EVENING
- ▁BEAUTIFUL
- ▁FEEL
- ▁RAN
- ▁LEAST
- ▁LAW
- ▁ALREADY
- ▁MEAN
- ▁ROSE
- WARD
- ▁ITSELF
- ▁SOUL
- ▁SUDDENLY
- ▁AROUND
- RED
- ▁ANSWER
- ICAL
- ▁RA
- ▁WIND
- ▁FINE
- ▁WON
- ▁WHETHER
- ▁KNOWN
- BER
- NG
- ▁TA
- ▁CAPTAIN
- ▁EYE
- ▁PERSON
- ▁WOMEN
- ▁SORT
- ▁ASK
- ▁BROTHER
- ▁USED
- ▁HELD
- ▁BIG
- ▁RETURNED
- ▁STRANGE
- ▁BU
- ▁PER
- ▁FREE
- ▁EITHER
- ▁WITHIN
- ▁DOUBT
- ▁YEAR
- ▁CLEAR
- ▁SIGHT
- ▁GRA
- ▁LOST
- ▁KEPT
- ▁F
- PE
- ▁BAR
- ▁TOWN
- ▁SLEEP
- ARY
- ▁HAIR
- ▁FRIENDS
- ▁DREAM
- ▁FELLOW
- PER
- ▁DEEP
- QUE
- ▁BECAME
- ▁REAL
- ▁PAST
- ▁MAKING
- RING
- ▁COMP
- ▁ACT
- ▁BAD
- HO
- STER
- ▁YE
- ▁MEANS
- ▁RUN
- MEN
- ▁DAUGHTER
- ▁SENSE
- ▁CITY
- ▁SOMETIMES
- ▁TOWARDS
- ▁ROAD
- ▁SP
- ▁LU
- ▁READY
- ▁FOOT
- ▁COLD
- ▁SA
- ▁LETTER
- ▁ELSE
- ▁MAR
- ▁STA
- BE
- ▁TRUTH
- ▁LE
- BO
- ▁BUSINESS
- CHE
- ▁JOHN
- ▁SUBJECT
- ▁COURT
- ▁IDEA
- ILY
- ▁RIVER
- ATING
- ▁FAMILY
- HE
- ▁DIDN
- ▁GLAD
- ▁SEVERAL
- IAL
- ▁UNDERSTAND
- ▁SC
- ▁POSSIBLE
- ▁DIFFERENT
- ▁RETURN
- ▁ARMS
- ▁LOW
- ▁HOLD
- ▁TALK
- ▁RU
- ▁WINDOW
- ▁INTEREST
- ▁SISTER
- SON
- ▁SH
- ▁BLOOD
- ▁SAYS
- ▁CAP
- ▁DI
- ▁HUMAN
- ▁CAUSE
- NCE
- ▁THANK
- ▁LATE
- GO
- ▁CUT
- ▁ACROSS
- ▁STORY
- NT
- ▁COUNT
- ▁ABLE
- DY
- LEY
- ▁NUMBER
- ▁STAND
- ▁CHURCH
- ▁THY
- ▁SUPPOSE
- LES
- BLE
- OP
- ▁EFFECT
- BY
- ▁K
- ▁NA
- ▁SPOKE
- ▁MET
- ▁GREEN
- ▁HUSBAND
- ▁RESPECT
- ▁PA
- ▁FOLLOWED
- ▁REMEMBER
- ▁LONGER
- ▁AGE
- ▁TAKING
- ▁LINE
- ▁SEEM
- ▁HAPPY
- LAND
- EM
- ▁STAY
- ▁PLAY
- ▁COMMON
- ▁GA
- ▁BOOK
- ▁TIMES
- ▁OBJECT
- ▁SEVEN
- QUI
- DO
- UND
- ▁FL
- ▁PRETTY
- ▁FAIR
- WAY
- ▁WOOD
- ▁REACHED
- ▁APPEARED
- ▁SWEET
- ▁FALL
- BA
- ▁PASS
- ▁SIGN
- ▁TREE
- IONS
- ▁GARDEN
- ▁ILL
- ▁ART
- ▁REMAIN
- ▁OPENED
- ▁BRIGHT
- ▁STREET
- ▁TROUBLE
- ▁PAIN
- ▁CONTINUED
- ▁SCHOOL
- OUR
- ▁CARRIED
- ▁SAYING
- HA
- ▁CHANGE
- ▁FOLLOW
- ▁GOLD
- ▁SW
- ▁FEELING
- ▁COMMAND
- ▁BEAR
- ▁CERTAINLY
- ▁BLUE
- ▁NE
- CA
- ▁WILD
- ▁ACCOUNT
- ▁OUGHT
- UD
- ▁T
- ▁BREATH
- ▁WANTED
- ▁RI
- ▁HEAVEN
- ▁PURPOSE
- ▁CHARACTER
- ▁RICH
- ▁PE
- ▁DRESS
- OS
- FA
- ▁TH
- ▁ENGLISH
- ▁CHANCE
- ▁SHIP
- ▁VIEW
- ▁TOWARD
- AK
- ▁JOY
- ▁JA
- ▁HAR
- ▁NEITHER
- ▁FORCE
- ▁UNCLE
- DER
- ▁PLAN
- ▁PRINCESS
- DI
- ▁CHIEF
- ▁HAT
- ▁LIVED
- ▁AB
- ▁VISIT
- ▁MOR
- TEN
- ▁WALL
- UC
- ▁MINE
- ▁PLEASURE
- ▁SMILE
- ▁FRONT
- ▁HU
- ▁DEAL
- OW
- ▁FURTHER
- GED
- ▁TRIED
- DA
- VA
- ▁NONE
- ▁ENTERED
- ▁QUEEN
- ▁PAY
- ▁EL
- ▁EXCEPT
- ▁SHA
- ▁FORWARD
- ▁EIGHT
- ▁ADDED
- ▁PUBLIC
- ▁EIGHTEEN
- ▁STAR
- ▁HAPPENED
- ▁LED
- ▁WALKED
- ▁ALTHOUGH
- ▁LATER
- ▁SPIRIT
- ▁WALK
- ▁BIT
- ▁MEET
- LIN
- ▁FI
- LT
- ▁MOUTH
- ▁WAIT
- ▁HOURS
- ▁LIVING
- ▁YOURSELF
- ▁FAST
- ▁CHA
- ▁HALL
- ▁BEYOND
- ▁BOAT
- ▁SECRET
- ENS
- ▁CHAIR
- RN
- ▁RECEIVED
- ▁CAT
- RESS
- ▁DESIRE
- ▁GENTLEMAN
- UGH
- ▁LAID
- EVER
- ▁OCCASION
- ▁WONDER
- ▁GU
- ▁PARTY
- DEN
- ▁FISH
- ▁SEND
- ▁NEARLY
- ▁TRY
- CON
- ▁SEEMS
- RS
- ▁BELL
- ▁BRA
- ▁SILENCE
- IG
- ▁GUARD
- ▁DIE
- ▁DOING
- ▁TU
- ▁COR
- ▁EARLY
- ▁BANK
- ▁FIGURE
- IF
- ▁ENGLAND
- ▁MARY
- ▁AFRAID
- LER
- ▁FO
- ▁WATCH
- ▁FA
- ▁VA
- ▁GRE
- ▁AUNT
- PED
- ▁SERVICE
- ▁JE
- ▁PEN
- ▁MINUTES
- ▁PAN
- ▁TREES
- NED
- ▁GLASS
- ▁TONE
- ▁PLEASE
- ▁FORTH
- ▁CROSS
- ▁EXCLAIMED
- ▁DREW
- ▁EAT
- ▁AH
- ▁GRAVE
- ▁CUR
- PA
- URE
- CENT
- ▁MILES
- ▁SOFT
- ▁AGO
- ▁POSITION
- ▁WARM
- ▁LENGTH
- ▁NECESSARY
- ▁THINKING
- ▁PICTURE
- ▁PI
- SHIP
- IBLE
- ▁HEAVY
- ▁ATTENTION
- ▁DOG
- ABLY
- ▁STANDING
- ▁NATURAL
- ▁APPEAR
- OV
- ▁CAUGHT
- VO
- ISM
- ▁SPRING
- ▁EXPERIENCE
- ▁PAT
- OT
- ▁STOPPED
- ▁REGARD
- ▁HARDLY
- ▁SELF
- ▁STRENGTH
- ▁GREW
- ▁KNIGHT
- ▁OPINION
- ▁WIDE
- ▁INSTEAD
- ▁SOUTH
- ▁TRANS
- ▁CORNER
- ▁LEARN
- ▁ISLAND
- ▁MI
- ▁THIRD
- ▁STE
- ▁STRAIGHT
- ▁TEA
- ▁BOUND
- ▁SEEING
- ▁JU
- ▁DINNER
- ▁BEAUTY
- ▁PEACE
- AH
- ▁REP
- ▁SILENT
- ▁CRE
- ALLY
- RIC
- ▁STEP
- ▁VER
- ▁JO
- GER
- ▁SITTING
- ▁THIRTY
- ▁SAVE
- ENED
- ▁GLANCE
- ▁REACH
- ▁ACTION
- ▁SAL
- ▁SAD
- ▁STONE
- ITIES
- ▁FRENCH
- ▁STRUCK
- ▁PAPER
- ▁WHATEVER
- ▁SUB
- ▁DISTANCE
- ▁WRONG
- ▁KNOWLEDGE
- ▁SAFE
- ▁SNOW
- ▁MUSIC
- ▁FIFTY
- RON
- ▁ATTEMPT
- ▁GOVERNMENT
- TU
- ▁CROWD
- ▁BESIDES
- ▁LOVED
- ▁BOX
- ▁DIRECTION
- ▁TRAIN
- ▁NORTH
- ▁THICK
- ▁GETTING
- AV
- ▁FLOOR
- ▁COMPANY
- ▁BLOW
- ▁PLAIN
- TRO
- ▁BESIDE
- ▁ROCK
- ▁IMMEDIATELY
- FI
- ▁SHADOW
- ▁SIT
- ORS
- ILE
- ▁DRINK
- ▁SPOT
- ▁DANGER
- ▁AL
- ▁SAINT
- ▁SLOWLY
- ▁PALACE
- IER
- ▁RESULT
- ▁PETER
- ▁FOREST
- ▁BELONG
- ▁SU
- ▁PAR
- RIS
- ▁TEARS
- ▁APPEARANCE
- ▁GATE
- BU
- ITION
- ▁QUICKLY
- ▁QUIET
- ▁LONDON
- ▁START
- ▁BROWN
- TRA
- KIN
- ▁CONSIDER
- ▁BATTLE
- ▁ANNE
- ▁PIECE
- ▁DIED
- ▁SUCCESS
- ▁LIPS
- ▁FILLED
- ▁FORGET
- ▁POST
- IFIED
- ▁MARGARET
- ▁FOOD
- HAM
- ▁PLEASANT
- ▁FE
- ▁EXPRESSION
- ▁POCKET
- ▁FRESH
- ▁WEAR
- TRI
- ▁BROKEN
- ▁LAUGHED
- GING
- ▁FOLLOWING
- WN
- IP
- ▁TOUCH
- ▁YOUTH
- ATIVE
- ▁LEG
- ▁WEEK
- ▁REMAINED
- ▁EASY
- NER
- RK
- ▁ENTER
- ▁FIGHT
- ▁PLACED
- ▁TRAVEL
- ▁SIMPLE
- ▁GIRLS
- ▁WAITING
- ▁STOP
- ▁WAVE
- AU
- ▁WISE
- ▁CAMP
- TURE
- UB
- ▁VE
- ▁OFFICE
- ▁GRAND
- ▁FIT
- ▁JUDGE
- UP
- MENTS
- ▁QUICK
- HI
- ▁FLO
- RIES
- VAL
- ▁COMFORT
- ▁PARTICULAR
- ▁STARTED
- ▁SUIT
- ▁NI
- ▁PALE
- ▁IMPOSSIBLE
- ▁HOT
- ▁CONVERSATION
- ▁SCENE
- ▁BOYS
- ▁WIN
- ▁BRE
- ▁SOCIETY
- ▁OUTSIDE
- ▁WRITE
- ▁EFFORT
- ▁TALKING
- ▁FORTUNE
- ▁NINE
- ▁WA
- ▁SINGLE
- ▁RULE
- ▁PORT
- ▁WINTER
- ▁CAST
- ▁CRA
- ▁HAPPEN
- ▁CRO
- ▁SHUT
- NING
- ▁GUN
- ▁NOBLE
- ▁BEGIN
- ▁PATH
- ▁SKY
- ▁WONDERFUL
- ▁SUDDEN
- ▁ARMY
- ▁CHE
- ▁WORTH
- ▁MOUNTAIN
- ▁MIN
- AG
- ▁FLU
- ▁GRACE
- ▁CHAPTER
- ▁BELOW
- ▁RING
- ▁TURNING
- ▁IRON
- ▁TOP
- ▁AFTERNOON
- ORY
- ▁EVIL
- ▁TRUST
- ▁BOW
- ▁TRI
- ▁SAIL
- ▁CONTENT
- ▁HORSES
- ITE
- ▁SILVER
- AP
- ▁LAD
- ▁RUNNING
- ▁HILL
- ▁BEGINNING
- ▁MAD
- ▁HABIT
- GRA
- ▁CLOTHES
- ▁MORROW
- ▁CRY
- ▁FASHION
- ▁PRESENCE
- ▁Z
- FE
- ▁ARRIVED
- ▁QUARTER
- ▁PERFECT
- ▁WO
- ▁TRA
- ▁USUAL
- ▁NECK
- ▁MARRIED
- ▁SEAT
- ▁WI
- ▁GAR
- ▁SAND
- ▁SHORE
- ▁GIVING
- NY
- ▁PROBABLY
- ▁MINUTE
- ▁EXPECT
- ▁DU
- ▁SHOT
- ▁INSTANT
- ▁DEGREE
- ▁COLOR
- ▁WEST
- RT
- ▁MARCH
- ▁BIRD
- ▁SHOWED
- ▁GREATER
- ▁SERIOUS
- ▁CARRY
- ▁COVERED
- ▁FORMER
- ▁LOUD
- ▁MOVED
- ▁MASS
- ▁SEEK
- ▁CHO
- GEN
- ▁ROMAN
- IB
- ▁MOON
- ▁BOARD
- ▁STREAM
- ▁EASILY
- ▁WISHED
- ▁SEARCH
- ▁COULDN
- ▁MONTHS
- ▁SICK
- LIE
- ▁DUTY
- ▁TWELVE
- ▁FAINT
- ▁STRANGER
- ▁SURPRISE
- ▁KILL
- ▁LEAVING
- ▁JOURNEY
- ▁SCARCELY
- ▁RAISED
- ▁SPEAKING
- ▁TERRIBLE
- ▁TOM
- ▁FIELD
- ▁GAME
- ▁QUA
- ▁PROMISE
- ▁LIE
- ▁CONDITION
- ▁TRO
- ▁PERSONAL
- ▁TALL
- ▁STICK
- ▁THREW
- ▁MARRY
- ▁VAN
- ▁BURN
- ▁ACCORDING
- ▁RISE
- ▁ATTACK
- ▁SWORD
- ▁GUESS
- ▁THOUGHTS
- ▁THIN
- ▁THROW
- ▁CALM
- SIDE
- ▁VILLAGE
- ▁DEN
- ▁ANXIOUS
- ▁MER
- GI
- ▁EXPECTED
- ▁BALL
- ▁ESPECIALLY
- ▁CHARGE
- ▁MEASURE
- ISE
- ▁NICE
- ▁TRYING
- ▁ALLOW
- ▁SHARP
- ▁BREAD
- ▁HONOUR
- ▁HONOR
- ▁ENTIRELY
- ▁BILL
- ▁BRI
- ▁WRITTEN
- ▁AR
- ▁BROKE
- ▁KILLED
- ▁MARK
- ▁VEN
- ▁LADIES
- ▁LEARNED
- ▁FLOWERS
- PLE
- ▁FORTY
- ▁OFFER
- ▁HAPPINESS
- ▁PRAY
- ▁CLASS
- ▁FER
- ▁PRINCIPLE
- GU
- ▁BOOKS
- ▁SHAPE
- ▁SUMMER
- ▁JACK
- ▁DRAW
- ▁GOLDEN
- ▁DECIDED
- ▁LEAD
- ▁UNLESS
- ▁HARM
- ▁LISTEN
- HER
- ▁SHOOK
- ▁INFLUENCE
- ▁PERFECTLY
- ▁MARRIAGE
- ▁BROAD
- ▁ESCAPE
- ▁STATES
- ▁MIDDLE
- ▁PLANT
- ▁MIL
- ▁MOVEMENT
- ▁NOISE
- ▁ENEMY
- ▁HISTORY
- ▁BREAK
- ROUS
- ▁UNDERSTOOD
- ▁LATTER
- FER
- ▁COMES
- ▁MERELY
- ▁SIMPLY
- WI
- ▁IMAGINE
- ▁LOWER
- ▁CONDUCT
- ▁BORN
- WA
- ▁YARD
- ▁KA
- ▁CLOSED
- ▁NOTE
- GA
- ▁STRA
- RAN
- ▁EXIST
- EV
- ▁SPEECH
- ▁BITTER
- JO
- ▁MAKES
- ▁GRASS
- ▁REPLY
- ▁CHANGED
- ▁MON
- ▁LYING
- ▁DANCE
- ▁FINALLY
- ▁AMERICAN
- ▁ENJOY
- ▁CONTAIN
- ▁MEANT
- USE
- ▁OBSERVED
- THER
- ▁LAUGH
- ▁AFTERWARDS
- ▁BEAT
- ▁RACE
- ▁EQUAL
- ▁RAIN
- PS
- ▁STEPS
- ▁BENEATH
- ▁TAIL
- ▁TASTE
- IO
- EY
- ▁CHAR
- ▁GE
- GN
- TIN
- ▁GROW
- ▁TE
- IANS
- ▁MOVE
- ▁REPEATED
- ▁DRIVE
- TUR
- ▁SI
- CLOCK
- ▁BRAVE
- ▁MADAME
- ▁LOT
- ▁CASTLE
- ▁HI
- AND
- ▁FUTURE
- ▁RELATION
- ▁SORRY
- ▁HEALTH
- ▁DICK
- ▁R
- ▁BUILDING
- ▁EDGE
- ▁BLESS
- ▁SPITE
- WE
- ▁MIS
- ▁PRISONER
- ▁ALLOWED
- ▁PH
- ▁CATCH
- MER
- ETH
- ▁COAT
- ▁COMPLETE
- ▁WOULDN
- ▁CREATURE
- ▁YELLOW
- ▁IMPORTANT
- ▁ADD
- ▁PASSING
- ▁DARKNESS
- ▁CARRIAGE
- ▁MILL
- ▁FIFTEEN
- NCY
- ▁HUNG
- ▁OB
- ▁PLEASED
- ▁SPREAD
- ▁CURIOUS
- ▁WORSE
- ▁CIRCUMSTANCES
- ▁GI
- LAR
- ▁CAL
- ▁HY
- ▁MERE
- ▁JANE
- ▁EAST
- BI
- ▁CUP
- ▁BLIND
- ▁PASSION
- ▁DISCOVERED
- ▁NOTICE
- ▁REPORT
- ▁SPACE
- ▁PRESENTLY
- ▁SORROW
- ▁PACK
- ▁DIN
- CY
- ▁DRY
- ▁ANCIENT
- ▁DRESSED
- ▁COVER
- ▁VO
- ▁EXISTENCE
- ▁EXACTLY
- ▁BEAST
- ▁PROPER
- ▁DROPPED
- ▁CLEAN
- ▁COLOUR
- ▁HOST
- ▁CHAMBER
- ▁FAITH
- LET
- ▁DETERMINED
- ▁PRIEST
- ▁STORM
- ▁SKIN
- ▁DARE
- ▁PERSONS
- ▁PICK
- ▁NARROW
- ▁SUPPORT
- ▁PRIVATE
- ▁SMILED
- ▁COUSIN
- ▁DRAWING
- ▁ATTEND
- ▁COOK
- ▁PREVENT
- ▁VARIOUS
- ▁BLA
- ▁FIXED
- ▁WEAK
- THE
- ▁HOLE
- ▁BOTTOM
- ▁NOBODY
- ADE
- ▁LEGS
- ITCH
- ▁INDIVIDUAL
- ▁EARS
- LIKE
- ▁ADVANTAGE
- ▁FRANCE
- ▁BON
- ▁WINE
- ▁LIVES
- OD
- ▁WALLS
- ▁TIRED
- ▁SHOP
- ▁ANIMAL
- ▁CRU
- ▁WROTE
- ▁ROYAL
- ▁CONSIDERED
- ▁MORAL
- ▁COMPANION
- ▁LOSE
- ▁ISN
- ▁BAG
- ▁LAKE
- ▁INTER
- ▁COM
- ▁LETTERS
- ▁LUCK
- ▁EAR
- ▁GERMAN
- ▁PET
- ▁SAKE
- ▁DROP
- ▁PAID
- ▁BREAKFAST
- ▁LABOR
- ▁DESERT
- ▁DECLARED
- ▁HUM
- ▁STUDY
- ▁INSTANCE
- ONE
- ▁SOMEWHAT
- ▁CLOTH
- ▁SPECIAL
- ▁COLONEL
- ▁SONG
- ▁MAIN
- ▁VALUE
- ▁PROUD
- ▁EXPRESS
- ▁NATION
- ▁HANDSOME
- ▁CONFESS
- ▁PU
- ▁PASSAGE
- ▁PERIOD
- ▁CUSTOM
- ▁HURT
- ▁SHOULDER
- ▁CHRIST
- ZA
- ▁RECEIVE
- ▁DIFFICULT
- ▁DEPEND
- ▁MEETING
- ▁CHI
- ▁GEN
- LIGHT
- ▁BELIEVED
- ▁SOCIAL
- ▁DIFFICULTY
- ▁GREATEST
- ▁DRAWN
- ▁GRANT
- ▁BIRDS
- ▁ANGRY
- ▁HEAT
- UFF
- ▁DUE
- ▁PLACES
- ▁SIN
- ▁COURAGE
- ▁EVIDENTLY
- ▁GENTLE
- ▁CRUEL
- ▁GEORGE
- ▁GRI
- ▁SERVANT
- ▁U
- ▁PURE
- OOK
- ▁KNOWS
- ▁KNOWING
- LF
- ▁WRITING
- ▁REMEMBERED
- ▁CU
- ▁HOLDING
- ▁TENDER
- ▁QUI
- ▁BURST
- ▁SURELY
- IGN
- ▁VALLEY
- ▁FU
- ▁BUTTER
- ▁SPOKEN
- ▁STORE
- ▁DISC
- ▁CHRISTIAN
- ▁PARIS
- ▁HENRY
- ▁FINISHED
- ▁PROVE
- ▁FOOL
- ▁SOLDIERS
- ▁LANGUAGE
- ▁INSIDE
- ▁BAN
- ▁FALLEN
- ROW
- ▁MAL
- ▁BABY
- ▁SITUATION
- ▁WATCHED
- ANS
- ▁RUIN
- ▁GENTLEMEN
- ▁FRO
- ▁FANCY
- ▁ACCEPT
- ▁SEASON
- ▁OURSELVES
- ▁SAN
- ▁SPEED
- IZED
- ▁COOL
- ▁SERVE
- ▁VESSEL
- ▁WILLIAM
- ▁OBLIGED
- ▁GROUP
- FORM
- ▁GOES
- UOUS
- ▁LEAVES
- ▁PECULIAR
- ▁NEWS
- ▁VAIN
- ▁EVERYBODY
- ▁PIN
- UG
- ▁FORGOTTEN
- ▁FRA
- GAN
- ▁CAREFULLY
- ▁FLASH
- UCH
- ▁FUR
- ▁MURDER
- ▁DELIGHT
- ▁WAITED
- ▁RENDER
- ▁PROPERTY
- ▁NOTICED
- ▁ROLL
- ▁KNOCK
- ▁EARNEST
- KI
- ▁HONEST
- ▁PROMISED
- ▁BAL
- AW
- ▁WALKING
- ANG
- ▁SQUARE
- ▁QUIETLY
- ▁CLOUD
- WOOD
- ▁FORMED
- ▁HIGHER
- ▁BUILT
- ▁FATE
- ▁TEACH
- MY
- ▁FALSE
- ▁YORK
- ▁DUST
- ▁CLIMB
- ▁FOND
- ▁GROWN
- ▁DESCEND
- ▁RAG
- ▁FRUIT
- ▁GENERALLY
- ▁OFFERED
- ▁ER
- ▁NURSE
- POSE
- ▁SPENT
- ▁JOIN
- ▁STATION
- ▁MEANING
- ▁SMOKE
- HOOD
- ▁ROUGH
- JU
- ▁LIKELY
- ▁SURFACE
- ▁KE
- ▁MONTH
- ▁POSSESSION
- ▁TONGUE
- ▁DUKE
- ▁NOSE
- ▁LAUGHING
- ▁WEATHER
- ▁WHISPERED
- ▁SYSTEM
- ▁LAWS
- DDLE
- ▁TOUCHED
- ▁TRADE
- LD
- ▁SURPRISED
- RIN
- ▁ARCH
- ▁WEALTH
- FOR
- ▁TEMPER
- ▁FRANK
- ▁GAL
- ▁BARE
- ▁OPPORTUNITY
- ▁CLAIM
- ▁ANIMALS
- ▁REV
- ▁COST
- ▁WASH
- ZE
- ▁CORN
- ▁OPPOSITE
- ▁POLICE
- ▁IDEAS
- LON
- ▁KEY
- ▁READING
- ▁COLLECT
- CHED
- ▁H
- ▁CROWN
- ▁TAR
- ▁SWIFT
- ▁SHOULDERS
- ▁ICE
- ▁GRAY
- ▁SHARE
- ▁PREPARED
- ▁GRO
- ▁UND
- ▁TER
- ▁EMPTY
- CING
- ▁SMILING
- ▁AVOID
- ▁DIFFERENCE
- ▁EXPLAIN
- ▁POUR
- ▁ATTRACT
- ▁OPENING
- ▁WHEEL
- ▁MATERIAL
- ▁BREAST
- ▁SUFFERING
- ▁DISTINCT
- ▁BOOT
- ▁ROW
- ▁FINGERS
- HAN
- ▁ALTOGETHER
- ▁FAT
- ▁PAPA
- ▁BRAIN
- ▁ASLEEP
- ▁GREY
- ▁SUM
- ▁GAS
- ▁WINDOWS
- ▁ALIVE
- ▁PROCEED
- ▁FLOWER
- ▁LEAP
- ▁PUR
- ▁PIECES
- ▁ALTER
- ▁MEMORY
- IENT
- ▁FILL
- ▁CLO
- ▁THROWN
- ▁KINGDOM
- ▁RODE
- IUS
- ▁MAID
- ▁DIM
- ▁BAND
- ▁VIRTUE
- ▁DISH
- ▁GUEST
- ▁LOSS
- ▁CAUSED
- ▁MOTION
- ▁POT
- ▁MILLION
- ▁FAULT
- ▁LOVELY
- ▁HERO
- PPING
- ▁UNITED
- ▁SPI
- SOME
- BRA
- ▁MOUNTAINS
- ▁NU
- ▁SATISFIED
- ▁DOLLARS
- ▁LOVER
- ▁CONCEAL
- ▁VAST
- ▁PULL
- ▁HATH
- ▁RUSH
- ▁J
- ▁DESPAIR
- EX
- ▁HEIGHT
- ▁CE
- ▁BENT
- ▁PITY
- ▁RISING
- ATH
- ▁PRIDE
- ▁HURRY
- KA
- ▁SETTLED
- ▁JUSTICE
- ▁LIFTED
- PEN
- ▁SOLDIER
- ▁FINDING
- ▁REMARK
- ▁REGULAR
- ▁STRUGGLE
- ▁MACHINE
- ▁SING
- ▁HURRIED
- ▁SUFFICIENT
- ▁REPRESENT
- ▁DOUBLE
- ▁ALARM
- ▁SUPPER
- ▁DREADFUL
- ▁FORE
- ATOR
- ▁STOCK
- ▁TIN
- ▁EXAMPLE
- ▁ROOF
- ▁FLOW
- ▁SUPPOSED
- ▁PRESERV
- ▁L
- ▁LISTENED
- OC
- ▁STO
- ▁SECURE
- ▁FRIGHTENED
- ▁DISTURB
- ▁EMOTION
- ▁SERVANTS
- ▁YO
- ▁BUY
- ▁FORCED
- ▁KITCHEN
- ▁TERROR
- ▁STAIRS
- ▁SIXTY
- KER
- ▁ORDINARY
- ▁DIRECTLY
- ▁HEADS
- ▁METHOD
- ▁FORGIVE
- ▁AWFUL
- ▁REFLECT
- ▁GREATLY
- ▁TALKED
- ▁RIDE
- STONE
- ▁FAVOUR
- ▁WELCOME
- ▁SEIZED
- OU
- ▁CONTROL
- ▁ORDERED
- ▁ANGEL
- ▁USUALLY
- ▁POET
- ▁BOLD
- LINE
- ▁ADVENTURE
- ▁WATCHING
- ▁FOLK
- ▁MISTRESS
- IZE
- ▁GROWING
- ▁CAVE
- ▁EVIDENCE
- ▁FINGER
- ▁SEVENTEEN
- ▁MOVING
- EOUS
- ▁DOESN
- ▁COW
- ▁TYPE
- ▁BOIL
- ▁TALE
- ▁DELIVER
- ▁FARM
- ▁MONSIEUR
- ▁GATHERED
- ▁FEELINGS
- ▁RATE
- ▁REMARKED
- ▁PUTTING
- ▁MAT
- ▁CONTRARY
- ▁CRIME
- ▁PLA
- ▁COL
- ▁NEARER
- TES
- ▁CIVIL
- ▁SHAME
- ▁LOOSE
- ▁DISCOVER
- ▁FLAT
- ▁TWICE
- ▁FAIL
- VIS
- ▁UNC
- EA
- ▁EUROPE
- ▁PATIENT
- ▁UNTO
- ▁SUFFER
- ▁PAIR
- ▁TREASURE
- OSE
- ▁EAGER
- ▁FLY
- ▁N
- ▁VAL
- ▁DAN
- ▁SALT
- ▁BORE
- BBE
- ▁ARTHUR
- ▁AFFAIRS
- ▁SLOW
- ▁CONSIST
- ▁DEVIL
- LAN
- ▁AFFECTION
- ▁ENGAGED
- ▁KISS
- ▁YA
- ▁OFFICER
- IFICATION
- ▁LAMP
- ▁PARTS
- HEN
- ▁MILK
- ▁PROCESS
- ▁GIFT
- ▁PULLED
- ▁HID
- ▁RAY
- ▁EXCELLENT
- ▁IMPRESSION
- ▁AUTHORITY
- ▁PROVED
- ▁TELLING
- TTE
- ▁TOWER
- ▁CONSEQUENCE
- ▁FAVOR
- ▁FLEW
- ▁CHARLES
- ISTS
- ▁ADDRESS
- ▁FAMILIAR
- ▁LIMIT
- ▁CONFIDENCE
- ▁RARE
- ▁WEEKS
- ▁WOODS
- ▁INTENTION
- ▁DIRECT
- ▁PERFORM
- ▁SOLEMN
- ▁DISTANT
- ▁IMAGE
- ▁PRESIDENT
- ▁FIRM
- ▁INDIAN
- ▁RANK
- ▁LIKED
- ▁AGREE
- ▁HOUSES
- ▁WIL
- ▁MATTERS
- ▁PRISON
- ▁MODE
- ▁MAJOR
- ▁WORKING
- ▁SLIP
- ▁WEIGHT
- ▁AWARE
- ▁BUSY
- ▁LOOKS
- ▁WOUND
- ▁THOR
- ▁BATH
- ▁EXERCISE
- ▁SIMILAR
- ▁WORE
- ▁AMOUNT
- ▁QUESTIONS
- ▁VIOLENT
- ▁EXCUSE
- ▁ASIDE
- ▁TUR
- ▁DULL
- OF
- ▁EMPEROR
- ▁NEVERTHELESS
- ▁SHOUT
- ▁EXPLAINED
- ▁SIZE
- ▁ACCOMPLISH
- FORD
- CAN
- ▁MISTAKE
- ▁INSTANTLY
- ▁SMOOTH
- ▁STRIKE
- ▁BOB
- ISED
- ▁HORROR
- ▁SCIENCE
- ▁PROTEST
- ▁MANAGE
- ▁OBEY
- ▁NECESSITY
- ▁SPLENDID
- ▁PRESS
- ▁INTERESTING
- ▁RELIGION
- ▁UNKNOWN
- ▁FIERCE
- ▁DISAPPEARED
- ▁HOLY
- ▁HATE
- ▁PLAYED
- ▁LIN
- ▁NATURALLY
- ▁DROVE
- ▁LOUIS
- TIES
- ▁BRAND
- INESS
- RIE
- ▁SHOOT
- ▁CONSENT
- ▁SEATED
- ▁LINES
- GUE
- ▁AGREED
- ▁CIRCLE
- ▁STIR
- ▁STREETS
- ▁TASK
- ▁RID
- ▁PRODUCED
- ▁ACCIDENT
- ▁WITNESS
- ▁LIBERTY
- ▁DETAIL
- ▁MINISTER
- ▁POWERFUL
- ▁SAVAGE
- ▁SIXTEEN
- ▁PRETEND
- ▁COAST
- ▁SQU
- ▁UTTER
- ▁NAMED
- ▁CLEVER
- ▁ADMIT
- ▁COUPLE
- ▁WICKED
- ▁MESSAGE
- ▁TEMPLE
- ▁STONES
- ▁YESTERDAY
- ▁HILLS
- DAY
- ▁SLIGHT
- ▁DIAMOND
- ▁POSSIBLY
- ▁AFFAIR
- ▁ORIGINAL
- ▁HEARING
- ▁WORTHY
- ▁SELL
- NEY
- ICK
- ▁COTTAGE
- ▁SACRIFICE
- ▁PROGRESS
- ▁SHOCK
- ▁DESIGN
- ▁SOUGHT
- ▁PIT
- ▁SUNDAY
- ▁OTHERWISE
- ▁CABIN
- ▁PRAYER
- ▁DWELL
- ▁GAIN
- ▁BRIDGE
- ▁PARTICULARLY
- ▁YIELD
- ▁TREAT
- RIGHT
- ▁OAK
- ▁ROPE
- WIN
- ▁ORDERS
- ▁SUSPECT
- ▁EDWARD
- AB
- ▁ELEVEN
- ▁TEETH
- ▁OCCURRED
- DDING
- ▁AMERICA
- ▁FALLING
- ▁LION
- ▁DEPART
- ▁KEEPING
- ▁DEMAND
- ▁PAUSED
- ▁CEASED
- INA
- ▁FUN
- ▁CHEER
- ▁PARDON
- ▁NATIVE
- LUS
- LOW
- ▁DOGS
- ▁REQUIRED
- ILITY
- ▁ELECT
- ▁ENTERTAIN
- ITUDE
- ▁HUGE
- ▁CARRYING
- ▁BLU
- ▁INSIST
- ▁SATISFACTION
- ▁HUNT
- ▁COUNTENANCE
- ▁UPPER
- ▁MAIDEN
- ▁FAILED
- ▁JAMES
- ▁FOREIGN
- ▁GATHER
- ▁TEST
- BOARD
- ▁TERMS
- ▁SILK
- ▁BEG
- ▁BROTHERS
- ▁PAGE
- ▁KNEES
- ▁SHOWN
- ▁PROFESSOR
- ▁MIGHTY
- ▁DEFI
- ▁CHARM
- ▁REQUIRE
- ▁LOG
- MORE
- ▁PROOF
- ▁POSSESSED
- ▁SOFTLY
- ▁UNFORTUNATE
- ▁PRICE
- ▁SEVERE
- ▁SINGING
- ▁STAGE
- ▁FREEDOM
- ▁SHOUTED
- ▁FARTHER
- ▁MAJESTY
- ▁PREVIOUS
- ▁GUIDE
- ▁MATCH
- ▁CHEST
- ▁INTENDED
- ▁BI
- ▁EXCITEMENT
- ▁OFFICERS
- ▁SUR
- ▁SHAKE
- ▁SENTIMENT
- ▁GENTLY
- ▁SUCCEEDED
- ▁MENTION
- ▁LOCK
- ▁ACQUAINTANCE
- ▁IMAGINATION
- ▁PHYSICAL
- ▁LEADING
- ▁SLAVE
- ▁CART
- ▁POINTED
- ▁STEAM
- ▁SHADE
- ▁PIPE
- ▁BASE
- ▁INVENT
- ▁ALAS
- ▁WORKED
- ▁REGRET
- ▁BUR
- ▁FAITHFUL
- ▁MENTIONED
- ▁RECORD
- ▁COMPLAIN
- ▁SUPERIOR
- ▁BAY
- ▁PAL
- EMENT
- UE
- ▁SEVENTY
- ▁HOTEL
- ▁SHEEP
- ▁MEAL
- ▁ADVICE
- ▁HIDDEN
- ▁DEMANDED
- ▁CONSCIOUS
- ▁BROW
- ▁POSSESS
- ▁FOURTH
- ▁EVENTS
- ▁FRI
- ▁PRAISE
- ▁ADVANCED
- ▁RESOLVED
- ▁STUFF
- ▁CHEERFUL
- ▁BIRTH
- ▁GRIEF
- ▁AFFORD
- ▁FAIRY
- ▁WAKE
- ▁SIDES
- ▁SUBSTANCE
- ▁ARTICLE
- ▁LEVEL
- ▁MIST
- ▁JOINED
- ▁PRACTICAL
- ▁CLEARLY
- ▁TRACE
- ▁AWAKE
- ▁OBSERVE
- ▁BASKET
- ▁LACK
- VILLE
- ▁SPIRITS
- ▁EXCITED
- ▁ABANDON
- ▁SHINING
- ▁FULLY
- ▁CALLING
- ▁CONSIDERABLE
- ▁SPRANG
- ▁MILE
- ▁DOZEN
- ▁PEA
- ▁DANGEROUS
- ▁WIT
- ▁JEW
- ▁POUNDS
- ▁FOX
- ▁INFORMATION
- ▁LIES
- ▁DECK
- NNY
- ▁PAUL
- ▁STARS
- ▁ANGER
- ▁SETTLE
- ▁WILLING
- ▁ADAM
- ▁FACES
- ▁SMITH
- ▁IMPORTANCE
- ▁STRAIN
- WAR
- ▁SAM
- ▁FEATHER
- ▁SERVED
- ▁AUTHOR
- ▁PERCEIVED
- ▁FLAME
- ▁DIVINE
- ▁TRAIL
- ▁ANYBODY
- ▁SIGH
- ▁DELICATE
- KY
- ▁FOLD
- ▁HAVEN
- ▁DESIRED
- ▁CURIOSITY
- ▁PRACTICE
- ▁CONSIDERATION
- ▁ABSOLUTELY
- ▁CITIZEN
- ▁BOTTLE
- ▁INTERESTED
- ▁MEAT
- ▁OCCUPIED
- ▁CHOOSE
- ▁THROAT
- ETTE
- ▁CANDLE
- ▁DAWN
- ▁PROTECT
- ▁SENTENCE
- IED
- ▁ROCKS
- ▁PORTION
- ▁APPARENTLY
- ▁PRESENTED
- ▁TIGHT
- ▁ACTUALLY
- ▁DYING
- ▁HAM
- ▁DAILY
- ▁SUFFERED
- ▁POLITICAL
- ▁BODIES
- ▁MODERN
- ▁COMPLETELY
- ▁SOONER
- TAN
- ▁PROP
- ▁ADVANCE
- ▁REFUSED
- ▁FARMER
- ▁POLITE
- ▁THUNDER
- ▁BRIEF
- ▁ELSIE
- ▁SAILOR
- ▁SUGGESTED
- ▁PLATE
- ▁AID
- ▁FLESH
- ▁WEEP
- ▁BUCK
- ▁ANTI
- ▁OCEAN
- ▁SPEND
- WELL
- ▁ODD
- ▁GOVERNOR
- ▁ENTRANCE
- ▁SUSPICION
- ▁STEPPED
- ▁RAPIDLY
- ▁CHECK
- ▁HIDE
- ▁FLIGHT
- ▁CLUB
- ▁ENTIRE
- ▁INDIANS
- ASH
- ▁CAPITAL
- ▁MAMMA
- HAR
- ▁CORRECT
- ▁CRACK
- ▁SENSATION
- ▁WORST
- ▁PACE
- ▁MIDST
- ▁AUGUST
- ▁PROPORTION
- ▁INNOCENT
- LINESS
- ▁REGARDED
- ▁DRIVEN
- ORD
- ▁HASTE
- ▁EDUCATION
- ▁EMPLOY
- ▁TRULY
- ▁INSTRUMENT
- ▁MAG
- ▁FRAME
- ▁FOOLISH
- ▁TAUGHT
- ▁HANG
- ▁ARGUMENT
- ▁NINETEEN
- ▁ELDER
- ▁NAY
- ▁NEEDED
- ▁NEIGHBOR
- ▁INSTRUCT
- ▁PAPERS
- ▁REWARD
- ▁EQUALLY
- ▁FIELDS
- ▁DIG
- HIN
- ▁CONDITIONS
- JA
- ▁SPAR
- ▁REQUEST
- ▁WORN
- ▁REMARKABLE
- ▁LOAD
- ▁WORSHIP
- ▁PARK
- ▁KI
- ▁INTERRUPTED
- ▁SKILL
- ▁TERM
- LAC
- ▁CRITIC
- ▁DISTRESS
- ▁BELIEF
- ▁STERN
- IGHT
- ▁TRACK
- ▁HUNTING
- ▁JEWEL
- ▁GRADUALLY
- ▁GLOW
- ▁RUSHED
- ▁MENTAL
- ▁VISITOR
- ▁PICKED
- ▁BEHOLD
- ▁EXPRESSED
- ▁RUB
- ▁SKI
- ARTAGNAN
- ▁MOREOVER
- ▁OPERATION
- ▁CAREFUL
- ▁KEEN
- ▁ASSERT
- ▁WANDER
- ▁ENEMIES
- ▁MYSTERIOUS
- ▁DEPTH
- ▁PREFER
- ▁CROSSED
- ▁CHARMING
- ▁DREAD
- ▁FLOUR
- ▁ROBIN
- ▁TRE
- ▁RELIEF
- ▁INQUIRED
- ▁APPLE
- ▁HENCE
- ▁WINGS
- ▁CHOICE
- ▁JUD
- OO
- ▁SPECIES
- ▁DELIGHTED
- IUM
- ▁RAPID
- ▁APPEAL
- ▁FAMOUS
- ▁USEFUL
- ▁HELEN
- ▁NEWSPAPER
- ▁PLENTY
- ▁BEARING
- ▁NERVOUS
- ▁PARA
- ▁URGE
- ▁ROAR
- ▁WOUNDED
- ▁CHAIN
- ▁PRODUCE
- ▁REFLECTION
- ▁MERCHANT
- ▁QUARREL
- ▁GLORY
- ▁BEGUN
- ▁BARON
- CUS
- ▁QUEER
- ▁MIX
- ▁GAZE
- ▁WHISPER
- ▁BURIED
- ▁DIV
- ▁CARD
- ▁FREQUENTLY
- ▁TIP
- ▁KNEE
- ▁REGION
- ▁ROOT
- ▁LEST
- ▁JEALOUS
- CTOR
- ▁SAVED
- ▁ASKING
- ▁TRIP
- QUA
- ▁UNION
- HY
- ▁COMPANIONS
- ▁SHIPS
- ▁HALE
- ▁APPROACHED
- ▁HARRY
- ▁DRUNK
- ▁ARRIVAL
- ▁SLEPT
- ▁FURNISH
- HEAD
- ▁PIG
- ▁ABSENCE
- ▁PHIL
- ▁HEAP
- ▁SHOES
- ▁CONSCIOUSNESS
- ▁KINDLY
- ▁EVIDENT
- ▁SCAR
- ▁DETERMIN
- ▁GRASP
- ▁STEAL
- ▁OWE
- ▁KNIFE
- ▁PRECIOUS
- ▁ELEMENT
- ▁PROCEEDED
- ▁FEVER
- ▁LEADER
- ▁RISK
- ▁EASE
- ▁GRIM
- ▁MOUNT
- ▁MEANWHILE
- ▁CENTURY
- OON
- ▁JUDGMENT
- ▁AROSE
- ▁VISION
- ▁SPARE
- ▁EXTREME
- ▁CONSTANT
- ▁OBSERVATION
- ▁THRUST
- ▁DELAY
- ▁CENT
- ▁INCLUD
- ▁LIFT
- ▁ADMIRE
- ▁ISSUE
- ▁FRIENDSHIP
- ▁LESSON
- ▁PRINCIPAL
- ▁MOURN
- ▁ACCEPTED
- ▁BURNING
- ▁CAPABLE
- ▁EXTRAORDINARY
- ▁SANG
- ▁REMOVED
- ▁HOPED
- ▁HORN
- ▁ALICE
- ▁MUD
- ▁APARTMENT
- ▁FIGHTING
- ▁BLAME
- ▁TREMBLING
- ▁SOMEBODY
- ▁ANYONE
- ▁BRIDE
- ▁READER
- ▁ROB
- ▁EVERYWHERE
- ▁LABOUR
- ▁RECALL
- ▁BULL
- ▁HIT
- ▁COUNCIL
- ▁POPULAR
- ▁CHAP
- ▁TRIAL
- ▁DUN
- ▁WISHES
- ▁BRILLIANT
- ▁ASSURED
- ▁FORGOT
- ▁CONTINUE
- ▁ACKNOWLEDG
- ▁RETREAT
- ▁INCREASED
- ▁CONTEMPT
- ▁GRANDFATHER
- ▁SYMPATHY
- ▁GHOST
- ▁STRETCHED
- ▁CREATURES
- ▁CAB
- ▁HIND
- ▁PLAYING
- ▁MISERABLE
- ▁MEMBERS
- ▁KINDNESS
- ▁HIGHEST
- ▁PRIM
- ▁KISSED
- ▁DESERVE
- ▁HUT
- ▁BEGGED
- ▁EIGHTY
- ▁CLOSELY
- ▁WONDERED
- ▁MILITARY
- ▁REMIND
- ▁ACCORDINGLY
- ▁LARGER
- ▁MAINTAIN
- ▁ENGINE
- ▁MOTIVE
- ▁DESTROY
- ▁STRIP
- ▁HANS
- ▁AHEAD
- ▁INFINITE
- ▁PROMPT
- ▁INFORMED
- TTLE
- ▁PEER
- ▁PRESSED
- ▁TRAP
- ▁SOMEWHERE
- ▁BOUGHT
- ▁VISIBLE
- ▁ASHAMED
- ▁TEAR
- ▁NEIGHBOUR
- ▁CONSTITUTION
- ▁INTELLIGENCE
- ▁PROFESSION
- ▁HUNGRY
- RIDGE
- ▁SMELL
- ▁STORIES
- ▁LISTENING
- ▁APPROACH
- ▁STRING
- ▁EXPLANATION
- ▁IMMENSE
- ▁RELIGIOUS
- ▁THROUGHOUT
- ▁HOLLOW
- ▁AWAIT
- ▁FLYING
- ▁SCREAM
- ▁ACTIVE
- ▁RUM
- ▁PRODUCT
- ▁UNHAPPY
- ▁VAGUE
- ARIES
- ▁ELIZABETH
- ▁STUPID
- ▁DIGNITY
- ▁ISABEL
- GAR
- ▁BRO
- ▁PITCH
- ▁COMRADE
- ▁STIFF
- ▁RECKON
- ▁SOLD
- ▁SPARK
- ▁STRO
- ▁CRYING
- ▁MAGIC
- ▁REPEAT
- PORT
- ▁MARKED
- ▁COMFORTABLE
- ▁PROJECT
- ▁BECOMING
- ▁PARENTS
- ▁SHELTER
- ▁STOLE
- ▁HINT
- ▁NEST
- ▁TRICK
- ▁THOROUGHLY
- ▁HOSPITAL
- ▁WEAPON
- ▁ROME
- ▁STYLE
- ▁ADMITTED
- ▁SAFETY
- FIELD
- ▁UNDERSTANDING
- ▁TREMBLE
- ▁PRINT
- ▁SLAVES
- ▁WEARY
- ▁ARTIST
- ▁CREDIT
- BURG
- ▁CONCLUSION
- ▁SELDOM
- ▁UNUSUAL
- ▁CLOUDS
- ▁UNABLE
- ▁GAY
- ▁HANGING
- ▁SCR
- ▁BOWED
- ▁DAVID
- ▁VOL
- ▁PUSHED
- ▁ESCAPED
- MOND
- ▁WARN
- ▁BETRAY
- ▁EGGS
- ▁PLAINLY
- ▁EXHIBIT
- ▁DISPLAY
- ▁MEMBER
- ▁GRIN
- ▁PROSPECT
- ▁BRUSH
- ▁BID
- ▁SUCCESSFUL
- ▁EXTENT
- ▁PERSUADE
- ▁MID
- ▁MOOD
- ▁ARRANGED
- ▁UNIVERSAL
- ▁JIM
- ▁SIGNAL
- ▁WHILST
- ▁PHILIP
- ▁WOLF
- RATE
- ▁EAGERLY
- ▁BILLY
- ▁RETURNING
- ▁CONSCIENCE
- ▁FORTUNATE
- ▁FEMALE
- ▁GLEAM
- ▁HASTILY
- ▁PROVIDED
- ▁OBTAIN
- ▁INSTINCT
- ▁CONCERNED
- ▁CONCERNING
- ▁SOMEHOW
- ▁PINK
- ▁RAGE
- ▁ACCUSTOMED
- ▁UNCONSCIOUS
- ▁ADVISE
- ▁BRANCHES
- ▁TINY
- ▁REFUSE
- ▁BISHOP
- ▁SUPPLY
- ▁PEASANT
- ▁LAWYER
- ▁WASTE
- ▁CONNECTION
- ▁DEVELOP
- ▁CORRESPOND
- ▁PLUM
- ▁NODDED
- ▁SLIPPED
- ▁EU
- ▁CONSTANTLY
- CUM
- MMED
- ▁FAIRLY
- HOUSE
- ▁KIT
- ▁RANG
- ▁FEATURES
- ▁PAUSE
- ▁PAINFUL
- ▁JOE
- ▁WHENCE
- ▁LAUGHTER
- ▁COACH
- ▁CHRISTMAS
- ▁EATING
- ▁WHOLLY
- ▁APART
- ▁SUPER
- ▁REVOLUTION
- ▁LONELY
- ▁CHEEKS
- ▁THRONE
- ▁CREW
- ▁ATTAIN
- ▁ESTABLISHED
- TIME
- ▁DASH
- ▁FRIENDLY
- ▁OPERA
- ▁EARL
- ▁EXHAUST
- ▁CLIFF
- ▁REVEAL
- ▁ADOPT
- ▁CENTRE
- ▁MERRY
- ▁SYLVIA
- ▁IDEAL
- ▁MISFORTUNE
- ▁FEAST
- ▁ARAB
- ▁NUT
- ▁FETCH
- ▁FOUGHT
- ▁PILE
- ▁SETTING
- ▁SOURCE
- ▁PERSIST
- ▁MERCY
- ▁BARK
- ▁LUC
- ▁DEEPLY
- ▁COMPARE
- ▁ATTITUDE
- ▁ENDURE
- ▁DELIGHTFUL
- ▁BEARD
- ▁PATIENCE
- ▁LOCAL
- ▁UTTERED
- ▁VICTORY
- ▁TREATED
- ▁SEPARATE
- ▁WAG
- ▁DRAGG
- ▁TITLE
- ▁TROOPS
- ▁TRIUMPH
- ▁REAR
- ▁GAINED
- ▁SINK
- ▁DEFEND
- ▁TIED
- ▁FLED
- ▁DARED
- ▁INCREASE
- ▁POND
- ▁CONQUER
- ▁FOREHEAD
- ▁FAN
- ▁ANXIETY
- ▁ENCOUNTER
- ▁SEX
- ▁HALT
- ▁SANK
- ▁CHEEK
- ▁HUMBLE
- ▁WRITER
- ▁EMPLOYED
- ▁DISTINGUISHED
- ▁RAISE
- ▁WHIP
- ▁GIANT
- ▁RANGE
- ▁OBTAINED
- ▁FLAG
- ▁MAC
- ▁JUMPED
- ▁DISCOVERY
- ▁NATIONAL
- ▁COMMISSION
- ▁POSITIVE
- ▁LOVING
- ▁EXACT
- ▁MURMURED
- ▁GAZED
- ▁REFER
- ▁COLLEGE
- ▁ENCOURAGE
- ▁NOVEL
- ▁CLOCK
- ▁MORTAL
- ▁ROLLED
- ▁RAT
- IZING
- ▁GUILTY
- ▁VICTOR
- WORTH
- ▁PRA
- ▁APPROACHING
- ▁RELATIVE
- ▁ESTATE
- ▁UGLY
- ▁METAL
- ▁ROBERT
- ▁TENT
- ▁ADMIRATION
- ▁FOURTEEN
- ▁BARBAR
- ▁WITCH
- ELLA
- ▁CAKE
- ▁SHONE
- ▁MANAGED
- ▁VOLUME
- ▁GREEK
- ▁DANCING
- ▁WRETCHED
- ▁CONDEMN
- ▁MAGNIFICENT
- ▁CONSULT
- J
- ▁ORGAN
- ▁FLEET
- ▁ARRANGEMENT
- ▁INCIDENT
- ▁MISERY
- ▁ARROW
- ▁STROKE
- ▁ASSIST
- ▁BUILD
- ▁SUCCEED
- ▁DESPERATE
- ▁WIDOW
- UDE
- ▁MARKET
- ▁WISDOM
- ▁PRECISE
- ▁CURRENT
- ▁SPOIL
- ▁BADE
- ▁WOODEN
- ▁RESIST
- ▁OBVIOUS
- ▁SENSIBLE
- FALL
- ▁ADDRESSED
- ▁GIL
- ▁COUNSEL
- ▁PURCHASE
- ▁SELECT
- ▁USELESS
- ▁STARED
- ▁ARREST
- ▁POISON
- ▁FIN
- ▁SWALLOW
- ▁BLOCK
- ▁SLID
- ▁NINETY
- ▁SPORT
- ▁PROVIDE
- ▁ANNA
- ▁LAMB
- ▁INTERVAL
- ▁JUMP
- ▁DESCRIBED
- ▁STRIKING
- ▁PROVISION
- ▁PROPOSED
- ▁MELANCHOLY
- ▁WARRIOR
- ▁SUGGEST
- ▁DEPARTURE
- ▁BURDEN
- ▁LIMB
- ▁TROUBLED
- ▁MEADOW
- ▁SACRED
- ▁SOLID
- ▁TRU
- ▁LUCY
- ▁RECOVER
- ▁ENERGY
- ▁POWDER
- ▁RESUMED
- ▁INTENSE
- ▁BRITISH
- ▁STRAW
- ▁AGREEABLE
- ▁EVERYONE
- ▁CONCERN
- ▁VOYAGE
- ▁SOUTHERN
- ▁BOSOM
- ▁UTTERLY
- ▁FEED
- ▁ESSENTIAL
- ▁CONFINE
- ▁HOUSEHOLD
- ▁EXTREMELY
- ▁WONDERING
- ▁LIST
- ▁PINE
- PHA
- ▁EXPERIMENT
- ▁JOSEPH
- ▁MYSTERY
- ▁RESTORE
- ▁BLUSH
- FOLD
- ▁CHOSEN
- ▁INTELLECT
- ▁CURTAIN
- OLOGY
- ▁MOUNTED
- ▁LAP
- ▁EPI
- ▁PUNISH
- ▁WEDDING
- ▁RECOGNIZED
- ▁DRIFT
- ▁PREPARATION
- ▁RESOLUTION
- ▁OPPRESS
- ▁FIX
- ▁VICTIM
- OGRAPH
- ▁SUMMON
- ▁JULIA
- ▁FLOOD
- ▁WAL
- ULATION
- ▁SLIGHTLY
- ▁LODGE
- ▁WIRE
- ▁CONFUSION
- ▁UNEXPECTED
- ▁CONCEIVE
- ▁PRIZE
- ▁JESUS
- ▁ADDITION
- ▁RUDE
- ▁FATAL
- ▁CARELESS
- ▁PATCH
- ▁KO
- ▁CATHERINE
- ▁PARLIAMENT
- ▁PROFOUND
- ▁ALOUD
- ▁RELIEVE
- ▁PUSH
- ABILITY
- ▁ACCOMPANIED
- ▁SOVEREIGN
- ▁SINGULAR
- ▁ECHO
- ▁COMPOSED
- ▁SHAKING
- ATORY
- ▁ASSISTANCE
- ▁TEACHER
- ▁HORRIBLE
- ▁STRICT
- ▁VERSE
- ▁PUNISHMENT
- ▁GOWN
- ▁MISTAKEN
- ▁VARI
- ▁SWEPT
- ▁GESTURE
- ▁BUSH
- ▁STEEL
- ▁AFFECTED
- ▁DIRECTED
- ▁SURROUNDED
- ▁ABSURD
- ▁SUGAR
- ▁SCRAP
- ▁IMMEDIATE
- ▁SADDLE
- ▁TY
- ▁ARISE
- ▁SIGHED
- ▁EXCHANGE
- ▁IMPATIENT
- ▁SNAP
- ▁EMBRACE
- ▁DISEASE
- ▁PROFIT
- ▁RIDING
- ▁RECOVERED
- ▁GOVERN
- ▁STRETCH
- ▁CONVINCED
- ▁LEANING
- ▁DOMESTIC
- ▁COMPLEX
- ▁MANIFEST
- ▁INDULGE
- ▁GENIUS
- ▁AGENT
- ▁VEIL
- ▁DESCRIPTION
- ▁INCLINED
- ▁DECEIVE
- ▁DARLING
- ▁REIGN
- HU
- ▁ENORMOUS
- ▁RESTRAIN
- ▁DUTIES
- BURY
- TTERED
- ▁POLE
- ▁ENABLE
- ▁EXCEPTION
- ▁INTIMATE
- ▁COUNTESS
- ▁TRIBE
- ▁HANDKERCHIEF
- ▁MIDNIGHT
- ▁PROBLEM
- ▁TRAMP
- ▁OIL
- CAST
- ▁CRUSH
- ▁DISCUSS
- ▁RAM
- ▁TROT
- ▁UNRE
- ▁WHIRL
- ▁LOCKED
- ▁HORIZON
- ▁OFFICIAL
- ▁SCHEME
- ▁DROWN
- ▁PIERRE
- ▁PERMITTED
- ▁CONNECTED
- ▁ASSURE
- ▁COCK
- ▁UTMOST
- ▁DEVOTED
- ▁RELI
- ▁SUFFICIENTLY
- ▁INTELLECTUAL
- ▁CARPET
- ▁OBJECTION
- ▁AFTERWARD
- ▁REALITY
- ▁NEGRO
- ▁RETAIN
- ▁ASCEND
- ▁CEASE
- ▁KATE
- ▁MARVEL
- KO
- ▁BOND
- MOST
- ▁COAL
- GATE
- ▁IGNORANT
- ▁BREAKING
- ▁TWIN
- ▁ASTONISHMENT
- ▁COFFEE
- ▁JAR
- ▁CITIES
- ▁ORIGIN
- ▁EXECUT
- ▁FINAL
- ▁INHABITANTS
- ▁STABLE
- ▁CHIN
- ▁PARTIES
- ▁PLUNGE
- ▁GENEROUS
- ▁DESCRIBE
- ▁ANNOUNCED
- ▁MERIT
- ▁REVERE
- ▁ERE
- ACIOUS
- ZI
- ▁DISAPPOINT
- ▁SUGGESTION
- ▁DOUBTLESS
- ▁TRUNK
- ▁STAMP
- ▁JOB
- ▁APPOINTED
- ▁DIVIDED
- ▁ACQUAINTED
- CHI
- ▁ABSOLUTE
- ▁FEARFUL
- ▁PRIVILEGE
- ▁CRAFT
- ▁STEEP
- ▁HUNTER
- ▁FORBID
- ▁MODEST
- ▁ENDEAVOUR
- ▁SWEEP
- ▁BEHELD
- ▁ABSORB
- ▁CONSTRUCT
- ▁EMPIRE
- ▁EXPEDITION
- ▁ERECT
- ▁OFFEND
- ▁INTEND
- ▁PERMIT
- ▁DESTROYED
- ▁CONTRACT
- ▁THIRST
- ▁WAGON
- ▁EVA
- ▁GLOOM
- ▁ATMOSPHERE
- ▁RESERVE
- ▁VOTE
- ▁GER
- ▁NONSENSE
- ▁PREVAIL
- ▁QUALITY
- ▁CLASP
- ▁CONCLUDED
- ▁RAP
- ▁KATY
- ▁ETERNAL
- ▁MUTTERED
- ▁NEGLECT
- ▁SQUIRE
- ▁CREEP
- LOCK
- ▁ELECTRIC
- ▁HAY
- ▁EXPENSE
- ▁SCORN
- ▁RETIRED
- ▁STOUT
- ▁MURMUR
- ▁SHARPLY
- ▁DISTRICT
- ▁LEAF
- ▁FAILURE
- WICK
- ▁JEAN
- ▁NUMEROUS
- ▁INFANT
- ▁REALIZED
- ▁TRAVELLER
- ▁HUNGER
- ▁JUNE
- ▁MUN
- ▁RECOMMEND
- ▁CREP
- ZZLE
- ▁RICHARD
- WORK
- ▁MONTE
- ▁PREACH
- ▁PALM
- AVI
- ▁ANYWHERE
- ▁DISPOSITION
- ▁MIRROR
- ▁VENTURE
- ▁POUND
- ▁CIGAR
- ▁INVITED
- ▁BENCH
- ▁PROTECTION
- ▁BENEFIT
- ▁THOMAS
- ▁CLERK
- ▁REPROACH
- ▁UNIFORM
- ▁GENERATION
- ▁SEAL
- ▁COMPASS
- ▁WARNING
- ▁EXTENDED
- ▁DIFFICULTIES
- ▁MAYBE
- ▁GROAN
- ▁AFFECT
- ▁COMB
- ▁EARN
- ▁WESTERN
- ▁IDLE
- ▁SCORE
- ▁TAP
- ▁ASTONISHED
- ▁INTRODUCED
- ▁LEISURE
- ▁LIEUTENANT
- ▁VIOLENCE
- ▁FIRMLY
- ▁MONSTER
- ▁UR
- ▁PROPERLY
- ▁TWIST
- ▁PIRATE
- ▁ROBBER
- ▁BATTER
- ▁WEPT
- ▁LEANED
- ▁FOG
- ▁ORNAMENT
- ▁ANDREW
- ▁BUSHES
- ▁REPUBLIC
- ▁CONFIDENT
- ▁LEAN
- ▁DART
- ▁STOOP
- ▁CURL
- ▁COUNTER
- ▁NORTHERN
- ▁PEARL
- ▁NEAREST
- ▁FRANCIS
- ▁WANDERING
- ▁FREQUENT
- ▁STARTLED
- ▁STATEMENT
- ▁OCCUR
- ▁BLOOM
- ▁NERVE
- ▁INSPECT
- ▁INDUCE
- ▁FLATTER
- ▁DATE
- ▁AMBITION
- ▁SLOPE
- ▁MALE
- ▁MADAM
- ▁MONK
- ▁RENT
- ▁CONFIRM
- ▁INVESTIGAT
- ▁RABBIT
- ▁REGIMENT
- ▁SUBMIT
- ▁SPELL
- ▁FURIOUS
- ▁RAIL
- ▁BESTOW
- ▁RALPH
- ▁SCATTERED
- ▁COMPELLED
- ▁THREAD
- ▁CHILL
- ▁DENY
- ▁PRONOUNC
- ▁MANKIND
- ▁CATTLE
- ▁EXECUTION
- ▁REBEL
- ▁SUPREME
- ▁VALUABLE
- ▁LIKEWISE
- ▁CONVEY
- ▁TIDE
- ▁GLOOMY
- ▁COIN
- ▁ACTUAL
- ▁TAX
- ▁PROVINCE
- ▁GRATEFUL
- ▁SPIRITUAL
- ▁VANISHED
- ▁DIANA
- ▁HAUNT
- ▁DRAGON
- ▁CRAWL
- ▁CHINA
- ▁GRATITUDE
- ▁NEAT
- ▁FINISH
- ▁INTENT
- ▁FRIGHT
- ▁EMBARRASS
- ▁THIRTEEN
- ▁RUTH
- ▁SLIGHTEST
- ▁DEVELOPMENT
- ▁INTERVIEW
- ▁SPECTACLE
- ▁BROOK
- VIE
- ▁WEAKNESS
- ▁AUDIENCE
- ▁CONSEQUENTLY
- ▁ABROAD
- ▁ASPECT
- ▁PAINTED
- ▁RELEASE
- ▁INSULT
- ▁SOOTH
- ▁DISAPPOINTMENT
- ▁EMERG
- ▁BRIG
- ▁ESTEEM
- ▁INVITATION
- ▁PASSENGER
- ▁PUBLISH
- ▁PIANO
- ▁IRISH
- ▁DESK
- ▁BEATEN
- ▁FIFTH
- ▁IMPULSE
- ▁SWEAR
- ▁EATEN
- ▁PURPLE
- ▁COMMITTED
- ▁COUNTRIES
- ▁PERCEIVE
- ISON
- ▁CELEBRAT
- ▁GRANDMOTHER
- ▁SHUDDER
- ▁SUNSHINE
- ▁SPANISH
- ▁HITHERTO
- ▁MARILLA
- ▁SNAKE
- ▁MOCK
- ▁INTERFERE
- ▁WALTER
- ▁AMID
- ▁MARBLE
- ▁MISSION
- TERIOR
- ▁DRIVING
- ▁FURNITURE
- ▁STEADY
- ▁CIRCUMSTANCE
- ▁INTERPRET
- ▁ENCHANT
- ▁ERROR
- ▁CONVICTION
- ▁HELPLESS
- ▁MEDICINE
- ▁QUALITIES
- ▁ITALIAN
- ▁HASTENED
- ▁OCCASIONALLY
- ▁PURSUED
- ▁HESITATED
- ▁INDEPENDENT
- ▁OLIVER
- ▁LINGER
- UX
- ▁EXAMINED
- ▁REPENT
- ▁PHYSICIAN
- ▁CHASE
- ▁BELOVED
- ▁ATTACHED
- ▁FLORENCE
- ▁HONEY
- ▁MOUSE
- ▁CRIES
- ▁BAKE
- ▁POEM
- ▁DESTRUCTION
- ▁FULFIL
- ▁MESSENGER
- ▁TRISTRAM
- ▁FANCIED
- ▁EXCESS
- ▁CURSE
- ▁CHU
- ▁QUANTITY
- ▁THORNTON
- ▁CREATED
- ▁CONTINUALLY
- ▁LIGHTNING
- ▁BORNE
- ▁TOTAL
- ▁DISPOSED
- ▁RIFLE
- ▁POLLY
- ▁GOAT
- ▁BACKWARD
- ▁VIRGINIA
- ▁KICK
- ▁PERIL
- ▁QUO
- ▁GLORIOUS
- ▁MULTITUDE
- ▁LEATHER
- ▁ABSENT
- ▁DEMON
- ▁DEBT
- ▁TORTURE
- ▁ACCORD
- ▁MATE
- ▁CATHOLIC
- ▁PILL
- ▁LIBRARY
- ▁PURSUIT
- ▁SHIRT
- ▁DEAREST
- ▁COLLAR
- ▁BEACH
- ▁ROBE
- ▁DECLARE
- ▁BRANCH
- ▁TEMPT
- ▁STEADILY
- ▁DISGUST
- ▁SILLY
- ▁ARRIVE
- ▁DRANK
- ▁LEVI
- ▁COMMUNICAT
- ▁RACHEL
- ▁WASHINGTON
- ▁RESIGN
- ▁MEANTIME
- ▁LACE
- ▁ENGAGEMENT
- ▁QUIVER
- ▁SEPARATED
- ▁DISCUSSION
- ▁VENTURED
- ▁SURROUNDING
- ▁POLISH
- ▁NAIL
- ▁SWELL
- ▁JOKE
- ▁LINCOLN
- ▁STUDENT
- ▁GLITTER
- ▁RUSSIAN
- ▁READILY
- ▁CHRIS
- ▁POVERTY
- ▁DISGRACE
- ▁CHEESE
- ▁HEAVILY
- ▁SCALE
- ▁STAFF
- ▁ENTREAT
- ▁FAREWELL
- ▁LUNCH
- ▁PEEP
- ▁MULE
- ▁SOMEONE
- ▁DISAPPEAR
- ▁DECISION
- ▁PISTOL
- ▁PUN
- ▁SPUR
- ▁ASSUMED
- ▁EXTEND
- ▁ENTHUSIASM
- ▁DEFINITE
- ▁UNDERTAKE
- ▁COMMITTEE
- ▁SIMON
- ▁FENCE
- ▁APPLIED
- ▁RELATED
- ▁VICE
- ▁UNPLEASANT
- ▁PROBABLE
- ▁PROCURE
- ▁FROWN
- ▁CLOAK
- ▁HUMANITY
- ▁FAMILIES
- ▁PHILOSOPHER
- ▁DWARF
- ▁OVERCOME
- ▁DEFEAT
- ▁FASTENED
- ▁MARSH
- ▁CLASSES
- ▁TOMB
- ▁GRACIOUS
- ▁REMOTE
- ▁CELL
- ▁SHRIEK
- ▁RESCUE
- ▁POOL
- ▁ORGANIZ
- ▁CHOSE
- ▁CUTTING
- ▁COWARD
- ▁BORDER
- ▁DIRTY
- ▁MONKEY
- ▁HOOK
- ▁CHUCK
- ▁EMILY
- ▁JEST
- ▁PLAC
- ▁WEIGH
- ▁ASSOCIATE
- ▁GLIMPSE
- ▁STUCK
- ▁BOLT
- ▁MURDERER
- ▁PONY
- ▁DISTINGUISH
- ▁INSTITUTION
- ▁CUNNING
- ▁COMPLIMENT
- ▁APPETITE
- ▁REPUTATION
- ▁FEEBLE
- ▁KIN
- ▁SERIES
- ▁GRACEFUL
- ▁PLATFORM
- ▁BREEZE
- ▁PHRASE
- ▁CLAY
- MONT
- ▁RATTL
- ▁OPPOSITION
- ▁LANE
- ▁BOAST
- ▁GROWTH
- ▁INCLINATION
- ▁BEHAVE
- ▁SUSAN
- ▁DISTINCTION
- ▁DISLIKE
- ▁NICHOLAS
- ▁SATISFY
- ▁DRAMA
- ▁ELBOW
- ▁GAZING
- ▁CONSUM
- ▁SPIN
- ▁OATH
- ▁CHANNEL
- ▁CHARACTERISTIC
- ▁SPEAR
- ▁SLAIN
- ▁SAUCE
- ▁FROG
- ▁CONCEPTION
- ▁TIMID
- ▁ZEAL
- ▁APPARENT
- SHIRE
- ▁CENTER
- ▁VARIETY
- ▁DUSK
- ▁APT
- ▁COLUMN
- ▁REVENGE
- ▁RIVAL
- ▁IMITAT
- ▁PASSIONATE
- ▁SELFISH
- ▁NORMAN
- ▁REPAIR
- ▁THRILL
- ▁TREATMENT
- ▁ROSA
- ▁MARTIN
- ▁INDIFFERENT
- ▁THITHER
- ▁GALLANT
- ▁PEPPER
- ▁RECOLLECT
- ▁VINE
- ▁SCARCE
- ▁SHIELD
- ▁MINGLED
- CLOSE
- ▁HARSH
- ▁BRICK
- ▁HUMOR
- ▁MISCHIEF
- ▁TREMENDOUS
- ▁FUNCTION
- ▁SMART
- ▁SULTAN
- ▁DISMISS
- ▁THREATENED
- ▁CHEAP
- ▁FLOCK
- ▁ENDEAVOR
- ▁WHISK
- ▁ITALY
- ▁WAIST
- ▁FLUTTER
- ▁SMOKING
- ▁MONARCH
- ▁AFRICA
- ▁ACCUSE
- ▁HERBERT
- ▁REFRESH
- ▁REJOICE
- ▁PILLOW
- ▁EXPECTATION
- ▁POETRY
- ▁HOPELESS
- ▁PERISH
- ▁PHILOSOPHY
- ▁WHISTLE
- ▁BERNARD
- ▁LAMENT
- ▁IMPROVE
- ▁SUP
- ▁PERPLEX
- ▁FOUNTAIN
- ▁LEAGUE
- ▁DESPISE
- ▁IGNORANCE
- ▁REFERENCE
- ▁DUCK
- ▁GROVE
- ▁PURSE
- ▁PARTNER
- ▁PROPHET
- ▁SHIVER
- ▁NEIGHBOURHOOD
- ▁REPRESENTATIVE
- SAIL
- ▁WIP
- ▁ACQUIRED
- ▁CHIMNEY
- ▁DOCTRINE
- ▁MAXIM
- ▁ANGLE
- ▁MAJORITY
- ▁AUTUMN
- ▁CONFUSED
- ▁CRISTO
- ▁ACHIEVE
- ▁DISGUISE
- ▁REDUCED
- ▁EARLIER
- ▁THEATRE
- ▁DECIDE
- MINATED
- OLOGICAL
- ▁OCCUPATION
- ▁VIGOROUS
- ▁CONTINENT
- ▁DECLINE
- ▁COMMUNITY
- ▁MOTIONLESS
- ▁HATRED
- ▁COMMUNICATION
- ▁BOWL
- ▁COMMENT
- ▁APPROVE
- ▁CEREMONY
- ▁CRIMINAL
- ▁SCIENTIFIC
- ▁DUCHESS
- ▁VIVID
- ▁SHIFT
- ▁AVAIL
- ▁DAMP
- ▁JOHNSON
- ▁SLENDER
- ▁CONTRAST
- ▁AMUSEMENT
- ▁PLOT
- ▁LYN
- ▁ASSOCIATION
- ▁SNATCH
- ▁UNCERTAIN
- ▁PRESSURE
- ▁PERCH
- ▁APPLY
- ▁PLANET
- ▁NOTWITHSTANDING
- ▁SWUNG
- ▁STIRRED
- ▁ATTENDANT
- ▁ENJOYMENT
- ▁WORRY
- ▁ALBERT
- ▁NAKED
- ▁TALENT
- ▁MARIAN
- ▁REFORM
- ▁DELIBERATE
- ▁INTELLIGENT
- ▁SENSITIVE
- ▁YONDER
- ▁PUPIL
- ▁FRIGHTFUL
- ▁DOUBTFUL
- ▁STANDARD
- ▁MAGISTRATE
- ▁SHEPHERD
- ▁STOMACH
- ▁DEPOSIT
- ▁RENEW
- ▁HEDGE
- ▁FRANCS
- ▁POSSIBILITY
- ▁RESEMBLE
- ▁FATIGUE
- ▁PORTRAIT
- ▁FAVORITE
- ▁CREAM
- ▁BURG
- ▁SECRETARY
- ▁DIVERS
- ▁ACTIVITY
- ▁SPECULAT
- ▁HUMOUR
- ▁FITTED
- ▁EXTERNAL
- ▁CETERA
- ▁WRAPPED
- ▁WHIT
- ▁FRED
- ▁EXAMINATION
- ▁LODGING
- ▁OWING
- ▁JAW
- ▁CROW
- ▁BALANCE
- ▁PUFF
- ▁TENDERNESS
- ▁PORTHOS
- ▁ANCHOR
- ▁INTERRUPT
- ▁NECESSARILY
- ▁PERPETUAL
- ▁AGONY
- ▁POPE
- ▁SCHOLAR
- ▁SCOTLAND
- ▁SUPPRESS
- ▁WRATH
- ▁WRECK
- ▁EXCEED
- ▁PERFECTION
- ▁INDIA
- ▁TRADITION
- ▁SECTION
- ▁EASTERN
- ▁DOORWAY
- ▁WIVES
- ▁CONVENTION
- ▁ANNOUNC
- ▁EGYPT
- ▁CONTRADICT
- ▁SCRATCH
- ▁CENTRAL
- ▁GLOVE
- ▁WAX
- ▁PREPARE
- ▁ACCOMPANY
- ▁INCREASING
- ▁LIBERAL
- ▁RAISING
- ▁ORANGE
- ▁SHOE
- ▁ATTRIBUTE
- ▁LITERATURE
- ▁PUZZLED
- ▁WITHDRAW
- ▁WHITHER
- ▁HAWK
- ▁MOONLIGHT
- ▁EXAMINE
- ▁HAPPILY
- ▁PRECEDE
- ▁DETECTIVE
- ▁INCHES
- ▁SOLITARY
- ▁DUTCH
- ▁NAPOLEON
- ▁UNEASY
- ▁CARDINAL
- ▁BLEW
- ▁FOWL
- ▁DECORAT
- ▁CHILDHOOD
- ▁TORMENT
- ▁LOSING
- ▁PERMISSION
- ▁BLANK
- ▁UPSTAIRS
- ▁CAPACITY
- ▁TRIFLE
- ▁FOLLY
- ▁RECOGNIZE
- ▁REMOVE
- ▁VENGEANCE
- ▁ENTERPRISE
- ▁BEDROOM
- ▁ANYHOW
- ▁INQUIRY
- ▁ASHES
- ▁DRAG
- ▁HUSH
- ▁AWKWARD
- ▁SATURDAY
- ▁GENUINE
- ▁SURVIV
- ▁SKIRT
- ▁AFFECTIONATE
- ▁TANG
- ▁MUTUAL
- ▁DISPUTE
- ▁EAGLE
- ▁INCOME
- ▁BIND
- ▁FAME
- ▁IMPROVEMENT
- ROVING
- ▁DIFFER
- ▁AWOKE
- ▁SLEEVE
- ▁SOLITUDE
- ▁FAVOURITE
- JI
- ▁DETECT
- ▁COMPREHEND
- ▁PREPARING
- ▁SERPENT
- ▁SUMMIT
- ▁KNOT
- ▁KNIT
- ▁COPY
- ▁STOPPING
- ▁FADED
- ▁HIDEOUS
- ▁JULIE
- STEAD
- ▁SHINE
- ▁CONFLICT
- ▁PROPOSITION
- ▁REFUGE
- ▁GALLERY
- ▁BUNDLE
- ▁AXE
- ▁SLAVERY
- ▁MASK
- ▁ALYOSHA
- ▁LADDER
- ▁DEPARTMENT
- ▁DISCHARGE
- ▁DEPRESS
- ▁GALLOP
- ▁SCARLET
- ▁KITTY
- ▁RECEIVING
- ▁SURRENDER
- ▁SUSTAIN
- ▁TWILIGHT
- ▁CONGRESS
- ▁IRELAND
- ▁FUNNY
- ▁LEND
- ▁CONSTITUTE
- ▁FUNERAL
- ▁CRYSTAL
- ▁SPAIN
- ▁EXCEEDINGLY
- ▁DAMN
- ▁COMMUN
- ▁CIVILIZATION
- ▁PREJUDICE
- ▁PORCH
- ▁ASSISTANT
- ▁INDUSTRY
- ▁TUMBLE
- ▁DEFENCE
- ▁HITHER
- ▁SMOT
- ▁COLONI
- ▁AMAZEMENT
- ▁MARGUERITE
- ▁MIRACLE
- ▁INHERIT
- ▁BEGGAR
- ▁ENVELOPE
- ▁INDIGNATION
- ▁NATASHA
- ▁PROPOSAL
- ▁FRAGMENT
- ▁ROUSED
- ▁ROAST
- ENCIES
- ▁COMMENCED
- ▁RESOURCE
- ▁POPULATION
- ▁QUOTH
- ▁PURSUE
- ▁EDUCAT
- ▁AFFLICT
- ▁CONTACT
- ▁CRIMSON
- ▁DIVISION
- ▁DISORDER
- ▁COPPER
- ▁SOLICIT
- ▁MODERATE
- ▁DRUM
- ▁SWIM
- ▁SALUTE
- ▁ASSUME
- ▁MUSCLE
- ▁OVERWHELM
- ▁SHAKESPEARE
- ▁STRUGGLING
- ▁TRANQUIL
- ▁CHICKEN
- ▁TREAD
- ▁CLAW
- ▁BIBLE
- ▁RIDGE
- ▁THREAT
- ▁VELVET
- ▁EXPOSED
- ▁IDIOT
- ▁BARREL
- ▁PENNY
- ▁TEMPTATION
- ▁DANGLARS
- ▁CENTURIES
- ▁DISTRIBUT
- ▁REJECT
- ▁RETORTED
- ▁CONCENTRAT
- ▁CORDIAL
- ▁MOTOR
- ▁CANNON
- KEEP
- ▁WRETCH
- ▁ASSURANCE
- ▁THIEF
- ▁SURVEY
- ▁VITAL
- ▁RAILWAY
- ▁JACKSON
- ▁CRASH
- ▁GROWL
- ▁COMBAT
- ▁RECOLLECTION
- ▁SECURITY
- ▁JACOB
- ▁CLUTCH
- ▁BLANKET
- ▁NANCY
- ▁CELLAR
- ▁CONVENIENT
- ▁INDIGNANT
- ▁COARSE
- ▁WORM
- ▁SCREEN
- ▁TRANSPORT
- ▁BULLET
- ▁APPRECIATE
- ▁DEVOTION
- ▁INVISIBLE
- ▁DRIED
- ▁MIXTURE
- ▁CANDID
- ▁PERFORMANCE
- ▁RIPE
- ▁EXQUISITE
- ▁BARGAIN
- ▁TOBACCO
- ▁LOYAL
- ▁MOULD
- ▁ATTENTIVE
- ▁DOROTHY
- ▁BRUTE
- ▁ESTABLISHMENT
- ▁ABILITY
- ▁INHABIT
- ▁OBSCURE
- ▁BORROW
- ▁ESSENCE
- ▁DISMAY
- ▁FLEE
- ▁BLADE
- ▁PLUCK
- ▁COFFIN
- ▁SUNSET
- ▁STEPHEN
- ▁ECONOMIC
- ▁HOLIDAY
- ▁MECHANICAL
- ▁COTTON
- ▁AWAKENED
- ▁SEIZE
- ▁RIDICULOUS
- ▁SANCHO
- ▁HESITATION
- ▁CORPSE
- ▁SAVING
- HOLD
- FOOT
- ▁ELDEST
- ▁DESPITE
- ▁EDITH
- ▁CHERISH
- ▁RESISTANCE
- ▁WILSON
- ▁ARGUE
- ▁INQUIRE
- ▁APPREHENSION
- ▁AVENUE
- ▁DRAKE
- ▁PROPOSE
- HURST
- ▁INFERIOR
- ▁STAIRCASE
- ▁WHEREFORE
- ▁CARLYLE
- ▁COUCH
- ▁ROUTE
- ▁POLITICS
- ▁TOMORROW
- ▁THRONG
- ▁NAUGHT
- ▁SUNLIGHT
- ▁INDIFFERENCE
- ▁OBEDIENCE
- ▁RECEPTION
- ▁VEGETABLE
- ▁IMPERFECT
- ▁RESIDENCE
- ▁TURKEY
- ▁VIOLET
- ▁SARAH
- ▁ALTAR
- ▁GRIEVE
- ▁JERK
- ▁ENSU
- ▁MAGICIAN
- ▁BLOSSOM
- ▁LANTERN
- ▁RESOLUTE
- ▁THOUGHTFULLY
- ▁FORTNIGHT
- ▁TRUMPET
- ▁VALJEAN
- ▁UNWILLING
- ▁LECTURE
- ▁WHEREUPON
- ▁HOLLAND
- ▁CHANGING
- ▁CREEK
- ▁SLICE
- ▁NORMAL
- ▁ANNIE
- ▁ACCENT
- ▁FREDERICK
- ▁DISAGREEABLE
- ▁RUBBED
- ▁DUMB
- ▁ESTABLISH
- ▁IMPORT
- ▁AFFIRM
- ▁MATTHEW
- ▁BRISK
- ▁CONVERT
- ▁BENDING
- ▁IVAN
- ▁MADEMOISELLE
- ▁MICHAEL
- ▁EASIER
- ▁JONES
- ▁FACING
- ▁EXCELLENCY
- ▁LITERARY
- ▁GOSSIP
- ▁DEVOUR
- ▁STAGGER
- ▁PENCIL
- ▁AVERAGE
- ▁HAMMER
- ▁TRIUMPHANT
- ▁PREFERRED
- ▁APPLICATION
- ▁OCCUPY
- ▁AUTHORITIES
- BURN
- ▁ASCERTAIN
- ▁CORRIDOR
- ▁DELICIOUS
- ▁PRACTISE
- ▁UNIVERSE
- ▁SHILLING
- ▁CONTEST
- ▁ASHORE
- ▁COMMIT
- ▁ADMINISTRATION
- ▁STUDIED
- ▁RIGID
- ▁ADORN
- ▁ELSEWHERE
- ▁INNOCENCE
- ▁JOURNAL
- ▁LANDSCAPE
- ▁TELEGRAPH
- ▁ANGRILY
- ▁CAMPAIGN
- ▁UNJUST
- ▁CHALLENGE
- ▁TORRENT
- ▁RELATE
- ▁ASSEMBLED
- ▁IMPRESSED
- ▁CANOE
- ▁CONCLUD
- ▁QUIXOTE
- ▁SATISFACTORY
- ▁NIECE
- ▁DEAF
- ▁RAFT
- ▁JIMMY
- ▁GLID
- ▁REGULAT
- ▁CHATTER
- ▁GLACIER
- ▁ENVY
- ▁STATUE
- ▁BOSTON
- ▁RICHMOND
- ▁DENIED
- ▁FANNY
- ▁SOLOMON
- ▁VULGAR
- ▁STALK
- ▁REPLACE
- ▁SPOON
- ▁BASIN
- ▁FEATURE
- ▁CONVICT
- ▁ARCHITECT
- ▁ADMIRAL
- ▁RIBBON
- ▁PERMANENT
- ▁APRIL
- ▁JOLLY
- ▁NEIGHBORHOOD
- ▁IMPART
- BOROUGH
- CAMP
- ▁HORRID
- ▁IMMORTAL
- ▁PRUDENCE
- ▁SPANIARD
- ▁SUPPOSING
- ▁TELEPHONE
- ▁TEMPERATURE
- ▁PENETRATE
- ▁OYSTER
- ▁APPOINTMENT
- ▁EGYPTIAN
- ▁DWELT
- ▁NEPHEW
- ▁RAILROAD
- ▁SEPTEMBER
- ▁DEVICE
- ▁WHEAT
- ▁GILBERT
- ▁ELEGANT
- ▁ADVERTISE
- ▁RATIONAL
- ▁TURTLE
- ▁BROOD
- ▁ASSEMBLY
- ▁CULTIVATE
- ▁EDITOR
- ▁SPECIMEN
- ▁UNDOUBTEDLY
- ▁WHALE
- ▁DROPPING
- ▁BALLOON
- ▁MEDICAL
- COMB
- ▁COMPOSITION
- ▁FOOTSTEPS
- ▁LAUNCELOT
- ▁DISCOURSE
- ▁ERRAND
- ▁CONVERSE
- ▁ADVANCING
- ▁DOWNSTAIRS
- ▁TUMULT
- ▁CORRUPT
- ▁SUFFICE
- ▁ANGUISH
- ▁SHAGGY
- ▁RETIRE
- ▁TIMBER
- ▁BLAZE
- ▁ABSTRACT
- ▁EMBROIDER
- ▁PHOTOGRAPH
- ▁PROSPERITY
- ▁TERRIBLY
- ▁TERRITORY
- ▁THRESHOLD
- ▁PAVEMENT
- ▁INJURED
- ▁LIMP
- ▁AGITATION
- ▁RASCAL
- ▁PRESUME
- ▁OBSERVING
- ▁OBSTACLE
- ▁SIMPLICITY
- ▁SLUMBER
- ▁SUPPLIED
- ▁COMBINATION
- ▁DRAIN
- ▁WILDERNESS
- ▁BELIEVING
- ▁VILLAIN
- ▁RECKLESS
- ▁INJURY
- ▁CLAPP
- ▁FRIDAY
- ▁HERCULES
- ▁KENNEDY
- ▁SYMPTOM
- ▁SLEDGE
- ▁CEILING
- ▁LEMON
- ▁PLAGUE
- ▁MONDAY
- ▁CANVAS
- ▁IMPATIENCE
- ▁UNCOMFORTABLE
- ▁ACCESS
- ▁FROZEN
- ▁SENATOR
- ▁FRANZ
- ▁SWIMMING
- ▁BARRIER
- ▁ADJUST
- ▁COMPARISON
- ▁PROCLAIM
- ▁WRINKL
- ▁OVERLOOK
- ▁MITYA
- ▁GUILT
- ▁PERCEPTION
- ▁PRECAUTION
- ▁SPECTATOR
- ▁SURPRISING
- ▁DISTRACT
- ▁DISDAIN
- ▁BONNET
- ▁MAGNET
- ▁PROFESS
- ▁CONFOUND
- ▁NARRATIVE
- ▁STRUCTURE
- ▁SKETCH
- ▁ULTIMATE
- ▁GLOBE
- ▁INSECT
- FICIENCY
- ▁ORCHARD
- ▁AMIABLE
- ▁DESCENT
- ▁INDEPENDENCE
- ▁MANUFACTURE
- ▁SPRINKLE
- ▁NIGHTINGALE
- ▁CUSHION
- ▁EMINENT
- ▁SCOTT
- ▁ARRAY
- ▁COSETTE
- ▁WAVING
- ▁EXTRACT
- ▁IRREGULAR
- ▁PERSECUT
- ▁DERIVED
- ▁WITHDREW
- ▁CAUTION
- ▁SUSPICIOUS
- ▁MEMORIES
- ▁NOWHERE
- ▁SUBTLE
- ▁THOROUGH
- Q
- ▁APPROPRIATE
- ▁SLAUGHTER
- ▁YOURSELVES
- ▁THUMB
- ▁TWAS
- ▁ABODE
- ▁BIDDING
- ▁CONSPICUOUS
- ▁REBECCA
- ▁SERGEANT
- ▁APRON
- ▁ANTICIPATE
- ▁DISCIPLINE
- ▁GLANCING
- ▁PILGRIM
- ▁SULLEN
- ▁CONTRIBUTE
- ▁PRAIRIE
- ▁CARVED
- ▁COMMERCE
- ▁EXCLAMATION
- ▁MUSCULAR
- ▁NOVEMBER
- ▁PHENOMENA
- ▁SYMBOL
- ▁UMBRELLA
- ▁DIMINISH
- ▁PARLOUR
- ▁THREATENING
- ▁STUMP
- ▁EXTENSIVE
- ▁PLEASING
- ▁REMEMBRANCE
- ▁COMBINED
- ▁SHERIFF
- ▁SHAFT
- ▁LAURA
- ▁INTERCOURSE
- ▁STRICKEN
- ▁SUPPLIES
- ▁LANDLORD
- ▁SHRINK
- ▁PRICK
- ▁CAESAR
- ▁DRUG
- ▁BEWILDERED
- ▁NAUTILUS
- ▁BRUTAL
- ▁COMMERCIAL
- ▁MAGGIE
- ▁SPHERE
- ▁VIRGIN
- ▁BRETHREN
- ▁DESTINY
- ▁POLICY
- ▁TERRIFIED
- ▁HOUSEKEEPER
- ▁CRAZY
- ▁ARDENT
- ▁DISCERN
- ▁WRAP
- ▁MARQUIS
- ▁RUSSIA
- MOUTH
- ▁BRITAIN
- ▁HARBOUR
- ▁CONCERT
- ▁DONKEY
- ▁DAMAGE
- ▁SLIM
- ABOUT
- ▁LUXURY
- ▁MONSTROUS
- ▁TENDENCY
- ▁PARADISE
- ▁CULTURE
- ▁JULIUS
- ▁RAOUL
- ▁REMEDY
- ▁DECAY
- ▁SCOLD
- ▁SPLIT
- ▁ASSAULT
- ▁DECEMBER
- ▁MOSCOW
- ▁EXPLORE
- ▁TROUSERS
- ▁WRIST
- PIECE
- ▁MUSKET
- ▁VALENTINE
- ▁TYRANT
- ▁ABRAHAM
- ▁MEDIUM
- ▁ARTIFICIAL
- ▁FACULTY
- ▁OBLIGATION
- ▁RESEMBLANCE
- ▁INQUIRIES
- ▁DETAIN
- ▁SWARM
- ▁PLEDGE
- ▁ADMIRABLE
- ▁DEFECT
- ▁SUPERINTEND
- ▁PATRIOT
- ▁CLUNG
- ▁DISMAL
- ▁RECIT
- ▁IGNOR
- ▁AMELIA
- ▁JUSTIFY
- ▁ELEPHANT
- ▁ESTIMATE
- ▁KNELT
- ▁SERVING
- ▁WHIM
- ▁SHRILL
- ▁STUDIO
- ▁TEXT
- ▁ALEXANDER
- ▁WROUGHT
- ▁ABUNDANT
- ▁SITUATED
- ▁REGAIN
- ▁FIERY
- ▁SNEER
- ▁SWEAT
- ▁GLARE
- ▁NIGH
- ▁ESCORT
- ▁INEVITABLE
- ▁PSMITH
- ▁RELUCTANT
- ▁PRECEDING
- ▁RESORT
- ▁OUTRAGE
- ▁AMBASSADOR
- ▁CONSOLATION
- ▁RECOGNITION
- ▁REMORSE
- ▁BEHALF
- ▁FORMIDABLE
- ▁GRAVITY
- ▁DIVIDE
- ▁CONFRONT
- ▁GIGANTIC
- ▁OCTOBER
- ▁FLANK
- ▁SLEW
- ▁CLARA
- ▁FILM
- ▁BULK
- ▁POMP
- ▁ELEANOR
- ▁EMPHASIS
- ▁JAPANESE
- ▁CAVALRY
- ▁EXCLUSIVE
- ▁PERFUME
- ▁BRONZE
- ▁FEDERAL
- ▁LIQUID
- ▁RUBBING
- ▁OVEN
- DOLPH
- ▁CONVULS
- ▁DEPRIVED
- ▁RESPONSIBILITY
- ▁SIGNIFICANT
- ▁WAISTCOAT
- ▁CLUSTER
- ▁MARTHA
- ▁REVERSE
- ▁ATTORNEY
- ▁DROOP
- ▁SKILFUL
- ▁HABITUAL
- ▁PUMP
- ▁INTERVEN
- ▁OWL
- ▁CONJECTURE
- ▁FANTASTIC
- ▁RESPONSIBLE
- ▁DESTINED
- ▁DOCUMENT
- ▁THEREUPON
- ▁GODDESS
- ▁PACIFIC
- ▁WARRANT
- ▁COSTUME
- ▁BRIDLE
- ▁CALIFORNIA
- ▁DEMOCRATIC
- ▁EUSTACE
- ▁SQUIRREL
- ▁UNCOMMON
- ▁MARVELLOUS
- ▁PLOUGH
- ▁TRAGEDY
- ▁VAULT
- ▁HESITATE
- ▁REFRAIN
- ▁ADMIRING
- ▁CORPORAL
- ▁ENTITLED
- ▁SHREWD
- ▁SQUEEZ
- ▁ACCURATE
- ▁TEMPEST
- ▁MONUMENT
- ▁SIEGE
- ▁CHINESE
- ▁RAVEN
- ▁LOUNG
- ▁ASSASSIN
- ▁INFLICT
- ▁AGITATED
- ▁DESIRABLE
- ▁EARLIEST
- ▁LAUNCH
- ▁PILOT
- ▁PULSE
- ▁MUTE
- LEIGH
- ▁LIQUOR
- ▁SCARECROW
- ▁SKULL
- ▁DESOLATE
- ▁SUBLIME
- ▁SERENE
- ▁RECESS
- ▁WAKING
- ▁CHARLOTTE
- ▁CIRCULAR
- ▁INJUSTICE
- ▁PINOCCHIO
- ▁PRISCILLA
- ▁THYSELF
- ▁OCCURRENCE
- ▁CASUAL
- ▁FRANTIC
- ▁LEGEND
- ▁FERTIL
- ▁BACKGROUND
- ▁DELICACY
- ▁ESTRALLA
- ▁MANUSCRIPT
- ▁RESPONSE
- ▁UNIVERSITY
- ▁WOLVES
- ▁SCANDAL
- ▁STUMBLE
- ▁HOARSE
- ▁BODILY
- ▁CONVENT
- ▁EXAMINING
- ▁INCAPABLE
- ▁PERCEIVING
- ▁PHILADELPHIA
- ▁SUBSEQUENT
- ▁THIEVES
- ▁ACCUMULAT
- ▁DAMSEL
- ▁SCOTCH
- ▁UNDERNEATH
- ▁NOBILITY
- ▁SMASH
- ▁REVOLT
- ▁ENGAGE
- ▁CATHEDRAL
- ▁CHAMPION
- ▁DESPATCH
- ▁ETERNITY
- ▁JANUARY
- ▁PLEADED
- ▁PROBABILITY
- ▁JIMMIE
- ▁PARALLEL
- ▁FISHERMAN
- ▁JERRY
- ▁SWORE
- ▁DRAUGHT
- ▁OPPONENT
- ▁PRIMITIVE
- ▁SIGNIFICANCE
- ▁SUBSTANTIAL
- ▁AMAZED
- ▁DUNBAR
- ▁COMMEND
- ▁CONTEMPLATE
- ▁TESTIMONY
- ▁IMPERIAL
- ▁ADAPT
- ▁JUICE
- ▁CALAMIT
- CULAR
- ▁CHATEAU
- ▁PHOENIX
- ▁PRUDENT
- ▁SOLUTION
- ▁VILLEFORT
- ▁REACTION
- ▁RELAX
- ▁YU
- ▁PROHIBIT
- ▁DISTRUST
- ▁PLUNDER
- ▁WELFARE
- ▁NAVIGAT
- ▁PARLOR
- ▁LAZY
- ▁DETACH
- OMETER
- ▁PRIV
- ▁DISCOURAGE
- ▁OBSTINATE
- ▁REJOICING
- ▁SERMON
- ▁VEHICLE
- ▁FANCIES
- ▁ENLIGHTEN
- ▁ACUTE
- ▁ILLUSION
- ▁ANTHEA
- ▁MARTIAN
- ▁EXCITE
- ▁GENEROSITY
- OLOGIST
- ▁AMAZING
- ▁UNWORTHY
- ▁INTERNAL
- ▁INCENSE
- ▁VIBRAT
- ▁ADHERE
- ROACH
- ▁FEBRUARY
- ▁MEXICAN
- ▁POTATOES
- ▁INCESSANT
- ▁INTERPOSED
- ▁PARCEL
- ▁VEXED
- ▁PROMOTE
- MIDST
- ▁ARISTOCRAT
- ▁CYRIL
- ▁EMBARK
- ▁ABUNDANCE
- ▁LITERALLY
- ▁SURGEON
- ▁TERRACE
- ▁ATLANTIC
- ▁MARTYR
- ▁SPECK
- ▁SENATE
- ▁LOAF
- ▁ADMINISTER
- ▁APPREHEND
- ▁SUBDUED
- ▁TEMPORARY
- ▁DOMINION
- ▁ELABORATE
- ▁DIGNIFIED
- ▁ELIZA
- ▁SPLASH
- ▁CONSEIL
- ▁DEXTER
- ▁UNSEEN
- ▁TRAGIC
- VOCATION
- ▁GRATIFY
- ▁BACHELOR
- ▁DEFENSE
- ▁EXCURSION
- ▁FACULTIES
- ▁PROPRIETOR
- ▁SYMPATHETIC
- ▁UNNECESSARY
- ▁RADIANT
- ▁VACANT
- ▁OUNCE
- ▁SCREW
- ▁PHENOMENON
- ▁PROMINENT
- ▁WORRIED
- ▁STUDIES
- ▁CLIMATE
- ▁KEITH
- ▁ARAMIS
- ▁BLISS
- ▁CONTINUAL
- ▁SURPASS
- ▁HEBREW
- ▁IDENTITY
- ▁PROVOKE
- ▁TEMPERAMENT
- ▁CHARIOT
- ▁HARBOR
- ▁NINTH
- ▁PRIOR
- ▁DESIROUS
- ▁JERUSALEM
- ▁UNDERTAKING
- ▁EDISON
- ▁MIRTH
- ▁SCOUT
- ▁APPARATUS
- ▁ILLUSTRATION
- ▁INTELLIGIBLE
- ▁INVARIABLY
- ▁PIERCED
- ▁REVIEW
- ▁FLICKER
- ▁HAZARD
- ▁REVELATION
- ▁DIXON
- ▁EXCITING
- ▁GOSPEL
- ▁CONSTANCE
- ▁OVERTAKE
- ▁GUINEA
- ▁ALADDIN
- ▁CHICAGO
- ▁TULLIVER
- ▁HAMILTON
- ▁GARRISON
- ▁DISCIPLE
- ▁INTENSITY
- ▁TRAITOR
- ▁CHANCELLOR
- ▁PROVERB
- ▁DAGGER
- ▁FORESEE
- ▁CONFIDE
- ▁GLIMMER
- ▁CHAUVELIN
- ▁ILLUSTRATE
- ▁VOLUNTEER
- ▁JUNGLE
- ▁STREAK
- ▁SUNRISE
- ▁DISSOLV
- ▁QUEST
- ▁AWHILE
- ▁FELICITY
- ▁LEGISLATURE
- ▁LEONORA
- ▁MAGAZINE
- ▁PITIFUL
- ▁COLONY
- ▁SHAWL
- ▁ARRIVING
- ▁FUNDAMENTAL
- ▁CARPENTER
- ▁OVERFLOW
- ▁EXPAND
- ▁HARVEST
- ▁FEMININE
- ▁INNUMERABLE
- ▁SCRAMBLE
- ▁TWENTIETH
- ▁TRIFLING
- ▁GHASTL
- ▁CONQUEST
- ▁DANIEL
- ▁FACILIT
- ▁FORSAKE
- ▁BEHAVIOUR
- ▁GORGEOUS
- ▁PRODUCING
- ▁HAPPIER
- ▁PROMISING
- ▁RAINBOW
- ▁INSTINCTIVELY
- ▁DECREE
- ▁EYEBROWS
- ▁IRRESISTIBLE
- ▁PHARAOH
- ▁SCROOGE
- ▁UNNATURAL
- ▁CRUMBS
- ▁REFINED
- ▁DREARY
- ▁TRENCH
- ▁CONVINCE
- ▁FRINGE
- ▁EXTREMITY
- ▁INTIMACY
- ▁SCOUNDREL
- ▁SUFFRAGE
- ▁UNEASINESS
- ▁BARRICADE
- ▁CIRCULAT
- ▁SAMUEL
- ▁BRUCE
- ▁DARCY
- <sos/eos>
input_size: null
init: null
model_conf:
transducer_weight: 1.0
auxiliary_ctc_weight: 0.3
report_cer: true
report_wer: true
encoder_conf:
main_conf:
pos_wise_layer_type: linear
pos_wise_act_type: swish
pos_enc_layer_type: rel_pos
conv_mod_act_type: swish
input_conf:
block_type: conv2d
dropout_rate_pos_enc: 0.1
dim_output: 512
dim_conv: 512
body_conf:
- block_type: conformer
dim_linear: 2048
dim_hidden: 512
heads: 8
dropout_rate: 0.1
dropout_rate_pos_enc: 0.1
dropout_rate_pos_wise: 0.1
dropout_rate_att: 0.1
normalize_before: true
macaron_style: true
conv_mod_kernel: 31
num_blocks: 12
joint_network_conf:
dim_joint_space: 640
use_preprocessor: true
token_type: bpe
bpemodel: data/en_token_list/bpe_unigram5000/bpe.model
non_linguistic_symbols: null
cleaner: null
g2p: null
speech_volume_normalize: null
rir_scp: null
rir_apply_prob: 1.0
noise_scp: null
noise_apply_prob: 1.0
noise_db_range: '13_15'
frontend: default
frontend_conf:
n_fft: 512
hop_length: 160
fs: 16k
specaug: specaug
specaug_conf:
apply_time_warp: true
time_warp_window: 5
time_warp_mode: bicubic
apply_freq_mask: true
freq_mask_width_range:
- 0
- 30
num_freq_mask: 2
apply_time_mask: true
time_mask_width_range:
- 0
- 40
num_time_mask: 2
normalize: global_mvn
normalize_conf:
stats_file: exp/asr_stats_raw_en_bpe5000_sp/train/feats_stats.npz
decoder: rnn
decoder_conf:
rnn_type: lstm
num_layers: 1
dim_embedding: 512
dim_hidden: 512
dropout: 0.1
dropout_embed: 0.2
required:
- output_dir
- token_list
version: '202204'
distributed: true
```
</details>
### Citing ESPnet
```BibTex
@inproceedings{watanabe2018espnet,
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
title={{ESPnet}: End-to-End Speech Processing Toolkit},
year={2018},
booktitle={Proceedings of Interspeech},
pages={2207--2211},
doi={10.21437/Interspeech.2018-1456},
url={http://dx.doi.org/10.21437/Interspeech.2018-1456}
}
```
or arXiv:
```bibtex
@misc{watanabe2018espnet,
title={ESPnet: End-to-End Speech Processing Toolkit},
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
year={2018},
eprint={1804.00015},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
| 234c0d2c43a155e73218dc1afe5f9aae |
edvinkxs/finetuning-sentiment-model-3000-samples | edvinkxs | distilbert | 24 | 12 | transformers | 0 | text-classification | true | false | false | apache-2.0 | null | ['imdb'] | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['generated_from_trainer'] | true | true | true | 1,055 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuning-sentiment-model-3000-samples
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3498
- Accuracy: 0.8867
- F1: 0.8903
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
### Framework versions
- Transformers 4.23.1
- Pytorch 1.12.1+cu113
- Datasets 2.5.2
- Tokenizers 0.13.1
| 73a959fae90930d23c3f21df18e1a1ba |
mwrob/distilbert-base-uncased-sexist | mwrob | distilbert | 10 | 1 | transformers | 0 | text-classification | true | false | false | apache-2.0 | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['generated_from_trainer'] | true | true | true | 938 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-sexist
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
### Framework versions
- Transformers 4.24.0
- Pytorch 1.12.1
- Datasets 2.6.1
- Tokenizers 0.11.0
| 3a8091b123e3d6e7d15715794d06ff6c |
ekojs/satdata-sentiment-tuned | ekojs | roberta | 11 | 3 | transformers | 0 | text-classification | true | false | false | mit | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['generated_from_trainer'] | true | true | true | 1,493 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# satdata-sentiment-tuned
This model is a fine-tuned version of [w11wo/indonesian-roberta-base-sentiment-classifier](https://huggingface.co/w11wo/indonesian-roberta-base-sentiment-classifier) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2700
- F1: 0.9310
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 8
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| No log | 1.0 | 38 | 0.2717 | 0.9273 |
| No log | 2.0 | 76 | 0.2709 | 0.9273 |
| No log | 3.0 | 114 | 0.2704 | 0.9310 |
| No log | 4.0 | 152 | 0.2701 | 0.9310 |
| No log | 5.0 | 190 | 0.2700 | 0.9310 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu117
- Datasets 2.7.1
- Tokenizers 0.13.2
| 26e95ca2b8adb98270ed885f89aecee7 |
google/ul2 | google | t5 | 14 | 1,663 | transformers | 86 | text2text-generation | true | false | false | apache-2.0 | ['en'] | ['c4'] | null | 2 | 1 | 1 | 0 | 6 | 3 | 3 | [] | false | true | true | 11,874 | false |
# Introduction
UL2 is a unified framework for pretraining models that are universally effective across datasets and setups. UL2 uses Mixture-of-Denoisers (MoD), apre-training objective that combines diverse pre-training paradigms together. UL2 introduces a notion of mode switching, wherein downstream fine-tuning is associated with specific pre-training schemes.

**Abstract**
Existing pre-trained models are generally geared towards a particular class of problems. To date, there seems to be still no consensus on what the right architecture and pre-training setup should be. This paper presents a unified framework for pre-training models that are universally effective across datasets and setups. We begin by disentangling architectural archetypes with pre-training objectives -- two concepts that are commonly conflated. Next, we present a generalized and unified perspective for self-supervision in NLP and show how different pre-training objectives can be cast as one another and how interpolating between different objectives can be effective. We then propose Mixture-of-Denoisers (MoD), a pre-training objective that combines diverse pre-training paradigms together. We furthermore introduce a notion of mode switching, wherein downstream fine-tuning is associated with specific pre-training schemes. We conduct extensive ablative experiments to compare multiple pre-training objectives and find that our method pushes the Pareto-frontier by outperforming T5 and/or GPT-like models across multiple diverse setups. Finally, by scaling our model up to 20B parameters, we achieve SOTA performance on 50 well-established supervised NLP tasks ranging from language generation (with automated and human evaluation), language understanding, text classification, question answering, commonsense reasoning, long text reasoning, structured knowledge grounding and information retrieval. Our model also achieve strong results at in-context learning, outperforming 175B GPT-3 on zero-shot SuperGLUE and tripling the performance of T5-XXL on one-shot summarization.
For more information, please take a look at the original paper.
Paper: [Unifying Language Learning Paradigms](https://arxiv.org/abs/2205.05131v1)
Authors: *Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Neil Houlsby, Donald Metzler*
# Training
The checkpoint was iteratively pre-trained on C4 and fine-tuned on a variety of datasets
## PreTraining
The model is pretrained on the C4 corpus. For pretraining, the model is trained on a total of 1 trillion tokens on C4 (2 million steps)
with a batch size of 1024. The sequence length is set to 512/512 for inputs and targets.
Dropout is set to 0 during pretraining. Pre-training took slightly more than one month for about 1 trillion
tokens. The model has 32 encoder layers and 32 decoder layers, `dmodel` of 4096 and `df` of 16384.
The dimension of each head is 256 for a total of 16 heads. Our model uses a model parallelism of 8.
The same same sentencepiece tokenizer as T5 of vocab size 32000 is used (click [here](https://huggingface.co/docs/transformers/v4.20.0/en/model_doc/t5#transformers.T5Tokenizer) for more information about the T5 tokenizer).
UL-20B can be interpreted as a model that is quite similar to T5 but trained with a different objective and slightly different scaling knobs.
UL-20B was trained using the [Jax](https://github.com/google/jax) and [T5X](https://github.com/google-research/t5x) infrastructure.
The training objective during pretraining is a mixture of different denoising strategies that are explained in the following:
## Mixture of Denoisers
To quote the paper:
> We conjecture that a strong universal model has to be exposed to solving diverse set of problems
> during pre-training. Given that pre-training is done using self-supervision, we argue that such diversity
> should be injected to the objective of the model, otherwise the model might suffer from lack a certain
> ability, like long-coherent text generation.
> Motivated by this, as well as current class of objective functions, we define three main paradigms that
> are used during pre-training:
- **R-Denoiser**: The regular denoising is the standard span corruption introduced in [T5](https://huggingface.co/docs/transformers/v4.20.0/en/model_doc/t5)
that uses a range of 2 to 5 tokens as the span length, which masks about 15% of
input tokens. These spans are short and potentially useful to acquire knowledge instead of
learning to generate fluent text.
- **S-Denoiser**: A specific case of denoising where we observe a strict sequential order when
framing the inputs-to-targets task, i.e., prefix language modeling. To do so, we simply
partition the input sequence into two sub-sequences of tokens as context and target such that
the targets do not rely on future information. This is unlike standard span corruption where
there could be a target token with earlier position than a context token. Note that similar to
the Prefix-LM setup, the context (prefix) retains a bidirectional receptive field. We note that
S-Denoising with very short memory or no memory is in similar spirit to standard causal
language modeling.
- **X-Denoiser**: An extreme version of denoising where the model must recover a large part
of the input, given a small to moderate part of it. This simulates a situation where a model
needs to generate long target from a memory with relatively limited information. To do
so, we opt to include examples with aggressive denoising where approximately 50% of the
input sequence is masked. This is by increasing the span length and/or corruption rate. We
consider a pre-training task to be extreme if it has a long span (e.g., ≥ 12 tokens) or have
a large corruption rate (e.g., ≥ 30%). X-denoising is motivated by being an interpolation
between regular span corruption and language model like objectives.
See the following diagram for a more visual explanation:

**Important**: For more details, please see sections 3.1.2 of the [paper](https://arxiv.org/pdf/2205.05131v1.pdf).
## Fine-tuning
The model was continously fine-tuned after N pretraining steps where N is typically from 50k to 100k.
In other words, after each Nk steps of pretraining, the model is finetuned on each downstream task. See section 5.2.2 of [paper](https://arxiv.org/pdf/2205.05131v1.pdf) to get an overview of all datasets that were used for fine-tuning).
As the model is continuously finetuned, finetuning is stopped on a task once it has reached state-of-the-art to save compute.
In total, the model was trained for 2.65 million steps.
**Important**: For more details, please see sections 5.2.1 and 5.2.2 of the [paper](https://arxiv.org/pdf/2205.05131v1.pdf).
## Contribution
This model was contributed by [Daniel Hesslow](https://huggingface.co/Seledorn).
## Examples
The following shows how one can predict masked passages using the different denoising strategies.
Given the size of the model the following examples need to be run on at least a 40GB A100 GPU.
### S-Denoising
For *S-Denoising*, please make sure to prompt the text with the prefix `[S2S]` as shown below.
```python
from transformers import T5ForConditionalGeneration, AutoTokenizer
import torch
model = T5ForConditionalGeneration.from_pretrained("google/ul2", low_cpu_mem_usage=True, torch_dtype=torch.bfloat16).to("cuda")
tokenizer = AutoTokenizer.from_pretrained("google/ul2")
input_string = "[S2S] Mr. Dursley was the director of a firm called Grunnings, which made drills. He was a big, solid man with a bald head. Mrs. Dursley was thin and blonde and more than the usual amount of neck, which came in very useful as she spent so much of her time craning over garden fences, spying on the neighbours. The Dursleys had a small son called Dudley and in their opinion there was no finer boy anywhere <extra_id_0>"
inputs = tokenizer(input_string, return_tensors="pt").input_ids.to("cuda")
outputs = model.generate(inputs, max_length=200)
print(tokenizer.decode(outputs[0]))
# -> <pad>. Dudley was a very good boy, but he was also very stupid.</s>
```
### R-Denoising
For *R-Denoising*, please make sure to prompt the text with the prefix `[NLU]` as shown below.
```python
from transformers import T5ForConditionalGeneration, AutoTokenizer
import torch
model = T5ForConditionalGeneration.from_pretrained("google/ul2", low_cpu_mem_usage=True, torch_dtype=torch.bfloat16).to("cuda")
tokenizer = AutoTokenizer.from_pretrained("google/ul2")
input_string = "[NLU] Mr. Dursley was the director of a firm called <extra_id_0>, which made <extra_id_1>. He was a big, solid man with a bald head. Mrs. Dursley was thin and <extra_id_2> of neck, which came in very useful as she spent so much of her time <extra_id_3>. The Dursleys had a small son called Dudley and <extra_id_4>"
inputs = tokenizer(input_string, return_tensors="pt", add_special_tokens=False).input_ids.to("cuda")
outputs = model.generate(inputs, max_length=200)
print(tokenizer.decode(outputs[0]))
# -> "<pad><extra_id_0> Burrows<extra_id_1> brooms for witches and wizards<extra_id_2> had a lot<extra_id_3> scolding Dudley<extra_id_4> a daughter called Petunia. Dudley was a nasty, spoiled little boy who was always getting into trouble. He was very fond of his pet rat, Scabbers.<extra_id_5> Burrows<extra_id_3> screaming at him<extra_id_4> a daughter called Petunia</s>
"
```
### X-Denoising
For *X-Denoising*, please make sure to prompt the text with the prefix `[NLG]` as shown below.
```python
from transformers import T5ForConditionalGeneration, AutoTokenizer
import torch
model = T5ForConditionalGeneration.from_pretrained("google/ul2", low_cpu_mem_usage=True, torch_dtype=torch.bfloat16).to("cuda")
tokenizer = AutoTokenizer.from_pretrained("google/ul2")
input_string = "[NLG] Mr. Dursley was the director of a firm called Grunnings, which made drills. He was a big, solid man wiht a bald head. Mrs. Dursley was thin and blonde and more than the usual amount of neck, which came in very useful as she
spent so much of her time craning over garden fences, spying on the neighbours. The Dursleys had a small son called Dudley and in their opinion there was no finer boy anywhere. <extra_id_0>"
model.cuda()
inputs = tokenizer(input_string, return_tensors="pt", add_special_tokens=False).input_ids.to("cuda")
outputs = model.generate(inputs, max_length=200)
print(tokenizer.decode(outputs[0]))
# -> "<pad><extra_id_0> Burrows<extra_id_1> a lot of money from the manufacture of a product called '' Burrows'''s ''<extra_id_2> had a lot<extra_id_3> looking down people's throats<extra_id_4> a daughter called Petunia. Dudley was a very stupid boy who was always getting into trouble. He was a big, fat, ugly boy who was always getting into trouble. He was a big, fat, ugly boy who was always getting into trouble. He was a big, fat, ugly boy who was always getting into trouble. He was a big, fat, ugly boy who was always getting into trouble. He was a big, fat, ugly boy who was always getting into trouble. He was a big, fat, ugly boy who was always getting into trouble. He was a big, fat, ugly boy who was always getting into trouble. He was a big, fat,"
``` | ddb9e8758a0dd67ddf11f341dcd6be1c |
sd-dreambooth-library/true-guweiz-style | sd-dreambooth-library | null | 24 | 3 | diffusers | 3 | text-to-image | false | false | false | creativeml-openrail-m | null | null | null | 3 | 3 | 0 | 0 | 0 | 0 | 0 | ['text-to-image'] | false | true | true | 1,886 | false | ### True-GUWEIZ-Style on Stable Diffusion via Dreambooth trained on the [fast-DreamBooth.ipynb by TheLastBen](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook
#### Model by Allenbv
This your the Stable Diffusion model fine-tuned the True-GUWEIZ-Style concept taught to Stable Diffusion with Dreambooth.
It can be used by modifying the `instance_prompt(s)`: **truegwz**
You can also train your own concepts and upload them to the library by using [the fast-DremaBooth.ipynb by TheLastBen](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb).
You can run your new concept via A1111 Colab :[Fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb)
Or you can run your new concept via `diffusers`: [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb), [Spaces with the Public Concepts loaded](https://huggingface.co/spaces/sd-dreambooth-library/stable-diffusion-dreambooth-concepts)
Sample pictures of this concept:
a truegwz paint of {}
.png)
.png)
.png)
.png)
.png)
| 3feee417779f2eb2cb8f5ea3178c088a |
sd-concepts-library/thegeneral | sd-concepts-library | null | 9 | 0 | null | 0 | null | false | false | false | mit | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | [] | false | true | true | 1,025 | false | ### thegeneral on Stable Diffusion
This is the `<bobknight>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb).
Here is the new concept you will be able to use as an `object`:




| ce1a854d5de901707662ab9f0d67475b |
Helsinki-NLP/opus-mt-SCANDINAVIA-SCANDINAVIA | Helsinki-NLP | marian | 10 | 7 | transformers | 1 | translation | true | true | false | apache-2.0 | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['translation'] | false | true | true | 1,108 | false |
### opus-mt-SCANDINAVIA-SCANDINAVIA
* source languages: da,fo,is,no,nb,nn,sv
* target languages: da,fo,is,no,nb,nn,sv
* OPUS readme: [da+fo+is+no+nb+nn+sv-da+fo+is+no+nb+nn+sv](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/da+fo+is+no+nb+nn+sv-da+fo+is+no+nb+nn+sv/README.md)
* dataset: opus
* model: transformer-align
* pre-processing: normalization + SentencePiece
* a sentence initial language token is required in the form of `>>id<<` (id = valid target language ID)
* download original weights: [opus-2019-12-18.zip](https://object.pouta.csc.fi/OPUS-MT-models/da+fo+is+no+nb+nn+sv-da+fo+is+no+nb+nn+sv/opus-2019-12-18.zip)
* test set translations: [opus-2019-12-18.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/da+fo+is+no+nb+nn+sv-da+fo+is+no+nb+nn+sv/opus-2019-12-18.test.txt)
* test set scores: [opus-2019-12-18.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/da+fo+is+no+nb+nn+sv-da+fo+is+no+nb+nn+sv/opus-2019-12-18.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| Tatoeba.da.sv | 69.2 | 0.811 |
| deac144913fe1791436d28a56d7514e6 |
Helsinki-NLP/opus-mt-de-no | Helsinki-NLP | marian | 11 | 128 | transformers | 0 | translation | true | true | false | apache-2.0 | ['de', False] | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['translation'] | false | true | true | 2,112 | false |
### deu-nor
* source group: German
* target group: Norwegian
* OPUS readme: [deu-nor](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/deu-nor/README.md)
* model: transformer-align
* source language(s): deu
* target language(s): nno nob
* model: transformer-align
* pre-processing: normalization + SentencePiece (spm4k,spm4k)
* a sentence initial language token is required in the form of `>>id<<` (id = valid target language ID)
* download original weights: [opus-2020-06-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/deu-nor/opus-2020-06-17.zip)
* test set translations: [opus-2020-06-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/deu-nor/opus-2020-06-17.test.txt)
* test set scores: [opus-2020-06-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/deu-nor/opus-2020-06-17.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| Tatoeba-test.deu.nor | 33.2 | 0.554 |
### System Info:
- hf_name: deu-nor
- source_languages: deu
- target_languages: nor
- opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/deu-nor/README.md
- original_repo: Tatoeba-Challenge
- tags: ['translation']
- languages: ['de', 'no']
- src_constituents: {'deu'}
- tgt_constituents: {'nob', 'nno'}
- src_multilingual: False
- tgt_multilingual: False
- prepro: normalization + SentencePiece (spm4k,spm4k)
- url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/deu-nor/opus-2020-06-17.zip
- url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/deu-nor/opus-2020-06-17.test.txt
- src_alpha3: deu
- tgt_alpha3: nor
- short_pair: de-no
- chrF2_score: 0.5539999999999999
- bleu: 33.2
- brevity_penalty: 0.956
- ref_len: 32928.0
- src_name: German
- tgt_name: Norwegian
- train_date: 2020-06-17
- src_alpha2: de
- tgt_alpha2: no
- prefer_old: False
- long_pair: deu-nor
- helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535
- transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b
- port_machine: brutasse
- port_time: 2020-08-21-14:41 | f28ce616dcdb7da47cfc462789ba1a77 |
google/t5-efficient-base-nh8 | google | t5 | 12 | 48 | transformers | 0 | text2text-generation | true | true | true | apache-2.0 | ['en'] | ['c4'] | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['deep-narrow'] | false | true | true | 6,248 | false |
# T5-Efficient-BASE-NH8 (Deep-Narrow version)
T5-Efficient-BASE-NH8 is a variation of [Google's original T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) following the [T5 model architecture](https://huggingface.co/docs/transformers/model_doc/t5).
It is a *pretrained-only* checkpoint and was released with the
paper **[Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers](https://arxiv.org/abs/2109.10686)**
by *Yi Tay, Mostafa Dehghani, Jinfeng Rao, William Fedus, Samira Abnar, Hyung Won Chung, Sharan Narang, Dani Yogatama, Ashish Vaswani, Donald Metzler*.
In a nutshell, the paper indicates that a **Deep-Narrow** model architecture is favorable for **downstream** performance compared to other model architectures
of similar parameter count.
To quote the paper:
> We generally recommend a DeepNarrow strategy where the model’s depth is preferentially increased
> before considering any other forms of uniform scaling across other dimensions. This is largely due to
> how much depth influences the Pareto-frontier as shown in earlier sections of the paper. Specifically, a
> tall small (deep and narrow) model is generally more efficient compared to the base model. Likewise,
> a tall base model might also generally more efficient compared to a large model. We generally find
> that, regardless of size, even if absolute performance might increase as we continue to stack layers,
> the relative gain of Pareto-efficiency diminishes as we increase the layers, converging at 32 to 36
> layers. Finally, we note that our notion of efficiency here relates to any one compute dimension, i.e.,
> params, FLOPs or throughput (speed). We report all three key efficiency metrics (number of params,
> FLOPS and speed) and leave this decision to the practitioner to decide which compute dimension to
> consider.
To be more precise, *model depth* is defined as the number of transformer blocks that are stacked sequentially.
A sequence of word embeddings is therefore processed sequentially by each transformer block.
## Details model architecture
This model checkpoint - **t5-efficient-base-nh8** - is of model type **Base** with the following variations:
- **nh** is **8**
It has **194.62** million parameters and thus requires *ca.* **778.48 MB** of memory in full precision (*fp32*)
or **389.24 MB** of memory in half precision (*fp16* or *bf16*).
A summary of the *original* T5 model architectures can be seen here:
| Model | nl (el/dl) | ff | dm | kv | nh | #Params|
| ----| ---- | ---- | ---- | ---- | ---- | ----|
| Tiny | 4/4 | 1024 | 256 | 32 | 4 | 16M|
| Mini | 4/4 | 1536 | 384 | 32 | 8 | 31M|
| Small | 6/6 | 2048 | 512 | 32 | 8 | 60M|
| Base | 12/12 | 3072 | 768 | 64 | 12 | 220M|
| Large | 24/24 | 4096 | 1024 | 64 | 16 | 738M|
| Xl | 24/24 | 16384 | 1024 | 128 | 32 | 3B|
| XXl | 24/24 | 65536 | 1024 | 128 | 128 | 11B|
whereas the following abbreviations are used:
| Abbreviation | Definition |
| ----| ---- |
| nl | Number of transformer blocks (depth) |
| dm | Dimension of embedding vector (output vector of transformers block) |
| kv | Dimension of key/value projection matrix |
| nh | Number of attention heads |
| ff | Dimension of intermediate vector within transformer block (size of feed-forward projection matrix) |
| el | Number of transformer blocks in the encoder (encoder depth) |
| dl | Number of transformer blocks in the decoder (decoder depth) |
| sh | Signifies that attention heads are shared |
| skv | Signifies that key-values projection matrices are tied |
If a model checkpoint has no specific, *el* or *dl* than both the number of encoder- and decoder layers correspond to *nl*.
## Pre-Training
The checkpoint was pretrained on the [Colossal, Cleaned version of Common Crawl (C4)](https://huggingface.co/datasets/c4) for 524288 steps using
the span-based masked language modeling (MLM) objective.
## Fine-Tuning
**Note**: This model is a **pretrained** checkpoint and has to be fine-tuned for practical usage.
The checkpoint was pretrained in English and is therefore only useful for English NLP tasks.
You can follow on of the following examples on how to fine-tune the model:
*PyTorch*:
- [Summarization](https://github.com/huggingface/transformers/tree/master/examples/pytorch/summarization)
- [Question Answering](https://github.com/huggingface/transformers/blob/master/examples/pytorch/question-answering/run_seq2seq_qa.py)
- [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/pytorch/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model.
*Tensorflow*:
- [Summarization](https://github.com/huggingface/transformers/tree/master/examples/tensorflow/summarization)
- [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/tensorflow/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model.
*JAX/Flax*:
- [Summarization](https://github.com/huggingface/transformers/tree/master/examples/flax/summarization)
- [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/flax/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model.
## Downstream Performance
TODO: Add table if available
## Computational Complexity
TODO: Add table if available
## More information
We strongly recommend the reader to go carefully through the original paper **[Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers](https://arxiv.org/abs/2109.10686)** to get a more nuanced understanding of this model checkpoint.
As explained in the following [issue](https://github.com/google-research/google-research/issues/986#issuecomment-1035051145), checkpoints including the *sh* or *skv*
model architecture variations have *not* been ported to Transformers as they are probably of limited practical usage and are lacking a more detailed description. Those checkpoints are kept [here](https://huggingface.co/NewT5SharedHeadsSharedKeyValues) as they might be ported potentially in the future. | 5f255325c0ee48ea39cbb382c2ba9377 |
sd-concepts-library/yoshi | sd-concepts-library | null | 10 | 0 | null | 1 | null | false | false | false | mit | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | [] | false | true | true | 1,078 | false | ### Yoshi on Stable Diffusion
This is the `<yoshi>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb).
Here is the new concept you will be able to use as an `object`:





| f89e4f0ef03ead0a2a55093dcaf09252 |
gabrielsgaspar/bert-base-uncased-emotions-augmented | gabrielsgaspar | bert | 12 | 1 | transformers | 0 | text-classification | true | false | false | apache-2.0 | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ['generated_from_trainer'] | true | true | true | 1,752 | false |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-uncased-emotions-augmented
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9815
- Accuracy: 0.7539
- F1: 0.7506
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.8475 | 1.0 | 819 | 0.6336 | 0.7655 | 0.7651 |
| 0.5594 | 2.0 | 1638 | 0.6109 | 0.7695 | 0.7680 |
| 0.4596 | 3.0 | 2457 | 0.6528 | 0.7601 | 0.7556 |
| 0.3663 | 4.0 | 3276 | 0.6992 | 0.7631 | 0.7612 |
| 0.2809 | 5.0 | 4095 | 0.7773 | 0.7571 | 0.7542 |
| 0.2142 | 6.0 | 4914 | 0.8879 | 0.7541 | 0.7504 |
| 0.1671 | 7.0 | 5733 | 0.9476 | 0.7552 | 0.7517 |
| 0.1416 | 8.0 | 6552 | 0.9815 | 0.7539 | 0.7506 |
### Framework versions
- Transformers 4.22.1
- Pytorch 1.12.1+cu113
- Datasets 2.5.1
- Tokenizers 0.12.1
| 73a14b9a56d011bdc16c4d09c3ab7e58 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.