Overview
Project page | Paper | Code
This repo contains datasets involved in the DepthCues in .zip
format. There is one zip file for the subset corresponding to each of the six depth cues: elevation, light-shadow, occlusion, perspective, size, and texture-grad. While five zip files contain all the images and annotations needed for benchmarking, one contain only DepthCues annotations, and for that the images need to be downloaded from the original official sources.
We provide the code for evaluating models on DepthCues here.
Download DepthCues
First download the six zip files in this repository that correspond to the six subsets for six depth cues, then unzip them.
For Perspective please download the images from the project page of the original paper. Then move the two folders ava/
and flickr/
to perspective_v1/images/
mv path/to/source/dataset/ava path/to/source/dataset/flickr path/to/perspective_v1/images/
After downloading and unzipping everything, the dataset directories should look like:
<your data dir>/
βββ elevation_v1/
βββ images/
βββ train_data.pkl
βββ val_data.pkl
βββ test_data.pkl
βββ lightshadow_v1/
βββ images/
βββ train_annotations.pkl
βββ val_annotations.pkl
βββ test_annotations.pkl
βββ occlusion_v4/
βββ images_BSDS/
βββ images_COCO/
βββ train_data.pkl
βββ val_data.pkl
βββ test_data.pkl
βββ perspective_v1/
βββ images/
βββ train_val_test_split.json
βββ size_v2/
βββ images_indoor/
βββ images_outdoor/
βββ train_data_indoor.pkl
βββ train_data_outdoor.pkl
βββ val_data_indoor.pkl
βββ val_data_outdoor.pkl
βββ test_data_indoor.pkl
βββ test_data_outdoor.pkl
βββ texturegrad_v1/
βββ images/
βββ train_data.pkl
βββ val_data.pkl
βββ test_data.pkl
Copyright and Disclaimer
This dataset is derived from multiple source datasets, each governed by its own copyright and licensing terms. All rights and credit remain with the original copyright holders. This derivative dataset is intended for non-commercial research and educational purposes unless otherwise explicitly permitted by the original licenses. Any redistribution or derivative use of any part of this dataset must comply with the respective license terms of the original sources. This dataset is provided βas isβ without warranty of any kind. The creators of this dataset expressly disclaim any liability for damages arising from its use. By using this dataset, you agree to comply with the terms and conditions set forth by each original data source. In no event shall the creators of this dataset be liable for any misuse, infringement, or violation of the underlying copyrights.
Please review the specific terms for each component below.
Dataset | Publication | Copyright |
---|---|---|
Elevation | Workman, S., Zhai, M., & Jacobs, N. Horizon lines in the wild. BMVC 2016. | link |
Light-shadow | Wang, T., Hu, X., Wang, Q., Heng, P. A., & Fu, C. W. Instance shadow detection. CVPR 2020. | link |
Occlusion | Zhu, Y., Tian, Y., Metaxas, D., & DollΓ‘r, P. Semantic amodal segmentation. CVPR 2017. Lin, T. Y., et al. Microsoft COCO: Common objects in context. ECCV 2014. Arbelaez, P., et al. Contour detection and hierarchical image segmentation. T-PAMI 2010. |
COCO-A link, COCO link, BSDS link |
Perspective | Zhou, Z., Farhat, F., & Wang, J. Z. Detecting dominant vanishing points in natural scenes with application to composition-sensitive image retrieval. IEEE T-MM 2017. | AVA link, Flickr link |
Size | Geiger, A., Lenz, P., & Urtasun, R. Are we ready for autonomous driving? The KITTI vision benchmark suite. CVPR 2012. Song, S., Lichtenberg, S. P., & Xiao, J. SUN RGB-D: A RGB-D scene understanding benchmark suite. CVPR 2015. |
KITTI link, SUN-RGBD link |
Texture-grad | Cimpoi, M., Maji, S., Kokkinos, I., Mohamed, S., & Vedaldi, A. Describing textures in the wild. CVPR 2014. | link |
- Downloads last month
- 36