alatlatihlora / toolkit /saving.py
crystantine's picture
Upload 190 files
1ba389d verified
import json
import os
from collections import OrderedDict
from typing import TYPE_CHECKING, Literal, Optional, Union
import torch
from safetensors.torch import load_file, save_file
from toolkit.train_tools import get_torch_dtype
from toolkit.paths import KEYMAPS_ROOT
if TYPE_CHECKING:
from toolkit.stable_diffusion_model import StableDiffusion
def get_slices_from_string(s: str) -> tuple:
slice_strings = s.split(',')
slices = [eval(f"slice({component.strip()})") for component in slice_strings]
return tuple(slices)
def convert_state_dict_to_ldm_with_mapping(
diffusers_state_dict: 'OrderedDict',
mapping_path: str,
base_path: Union[str, None] = None,
device: str = 'cpu',
dtype: torch.dtype = torch.float32
) -> 'OrderedDict':
converted_state_dict = OrderedDict()
# load mapping
with open(mapping_path, 'r') as f:
mapping = json.load(f, object_pairs_hook=OrderedDict)
# keep track of keys not matched
ldm_matched_keys = []
diffusers_matched_keys = []
ldm_diffusers_keymap = mapping['ldm_diffusers_keymap']
ldm_diffusers_shape_map = mapping['ldm_diffusers_shape_map']
ldm_diffusers_operator_map = mapping['ldm_diffusers_operator_map']
# load base if it exists
# the base just has come keys like timing ids and stuff diffusers doesn't have or they don't match
if base_path is not None:
converted_state_dict = load_file(base_path, device)
# convert to the right dtype
for key in converted_state_dict:
converted_state_dict[key] = converted_state_dict[key].to(device, dtype=dtype)
# process operators first
for ldm_key in ldm_diffusers_operator_map:
# if the key cat is in the ldm key, we need to process it
if 'cat' in ldm_diffusers_operator_map[ldm_key]:
cat_list = []
for diffusers_key in ldm_diffusers_operator_map[ldm_key]['cat']:
cat_list.append(diffusers_state_dict[diffusers_key].detach())
converted_state_dict[ldm_key] = torch.cat(cat_list, dim=0).to(device, dtype=dtype)
diffusers_matched_keys.extend(ldm_diffusers_operator_map[ldm_key]['cat'])
ldm_matched_keys.append(ldm_key)
if 'slice' in ldm_diffusers_operator_map[ldm_key]:
tensor_to_slice = diffusers_state_dict[ldm_diffusers_operator_map[ldm_key]['slice'][0]]
slice_text = diffusers_state_dict[ldm_diffusers_operator_map[ldm_key]['slice'][1]]
converted_state_dict[ldm_key] = tensor_to_slice[get_slices_from_string(slice_text)].detach().to(device,
dtype=dtype)
diffusers_matched_keys.extend(ldm_diffusers_operator_map[ldm_key]['slice'])
ldm_matched_keys.append(ldm_key)
# process the rest of the keys
for ldm_key in ldm_diffusers_keymap:
# if the key is in the ldm key, we need to process it
if ldm_diffusers_keymap[ldm_key] in diffusers_state_dict:
tensor = diffusers_state_dict[ldm_diffusers_keymap[ldm_key]].detach().to(device, dtype=dtype)
# see if we need to reshape
if ldm_key in ldm_diffusers_shape_map:
tensor = tensor.view(ldm_diffusers_shape_map[ldm_key][0])
converted_state_dict[ldm_key] = tensor
diffusers_matched_keys.append(ldm_diffusers_keymap[ldm_key])
ldm_matched_keys.append(ldm_key)
# see if any are missing from know mapping
mapped_diffusers_keys = list(ldm_diffusers_keymap.values())
mapped_ldm_keys = list(ldm_diffusers_keymap.keys())
missing_diffusers_keys = [x for x in mapped_diffusers_keys if x not in diffusers_matched_keys]
missing_ldm_keys = [x for x in mapped_ldm_keys if x not in ldm_matched_keys]
if len(missing_diffusers_keys) > 0:
print(f"WARNING!!!! Missing {len(missing_diffusers_keys)} diffusers keys")
print(missing_diffusers_keys)
if len(missing_ldm_keys) > 0:
print(f"WARNING!!!! Missing {len(missing_ldm_keys)} ldm keys")
print(missing_ldm_keys)
return converted_state_dict
def get_ldm_state_dict_from_diffusers(
state_dict: 'OrderedDict',
sd_version: Literal['1', '2', 'sdxl', 'ssd', 'vega', 'sdxl_refiner'] = '2',
device='cpu',
dtype=get_torch_dtype('fp32'),
):
if sd_version == '1':
base_path = os.path.join(KEYMAPS_ROOT, 'stable_diffusion_sd1_ldm_base.safetensors')
mapping_path = os.path.join(KEYMAPS_ROOT, 'stable_diffusion_sd1.json')
elif sd_version == '2':
base_path = os.path.join(KEYMAPS_ROOT, 'stable_diffusion_sd2_ldm_base.safetensors')
mapping_path = os.path.join(KEYMAPS_ROOT, 'stable_diffusion_sd2.json')
elif sd_version == 'sdxl':
# load our base
base_path = os.path.join(KEYMAPS_ROOT, 'stable_diffusion_sdxl_ldm_base.safetensors')
mapping_path = os.path.join(KEYMAPS_ROOT, 'stable_diffusion_sdxl.json')
elif sd_version == 'ssd':
# load our base
base_path = os.path.join(KEYMAPS_ROOT, 'stable_diffusion_ssd_ldm_base.safetensors')
mapping_path = os.path.join(KEYMAPS_ROOT, 'stable_diffusion_ssd.json')
elif sd_version == 'vega':
# load our base
base_path = os.path.join(KEYMAPS_ROOT, 'stable_diffusion_vega_ldm_base.safetensors')
mapping_path = os.path.join(KEYMAPS_ROOT, 'stable_diffusion_vega.json')
elif sd_version == 'sdxl_refiner':
# load our base
base_path = os.path.join(KEYMAPS_ROOT, 'stable_diffusion_refiner_ldm_base.safetensors')
mapping_path = os.path.join(KEYMAPS_ROOT, 'stable_diffusion_refiner.json')
else:
raise ValueError(f"Invalid sd_version {sd_version}")
# convert the state dict
return convert_state_dict_to_ldm_with_mapping(
state_dict,
mapping_path,
base_path,
device=device,
dtype=dtype
)
def save_ldm_model_from_diffusers(
sd: 'StableDiffusion',
output_file: str,
meta: 'OrderedDict',
save_dtype=get_torch_dtype('fp16'),
sd_version: Literal['1', '2', 'sdxl', 'ssd', 'vega'] = '2'
):
converted_state_dict = get_ldm_state_dict_from_diffusers(
sd.state_dict(),
sd_version,
device='cpu',
dtype=save_dtype
)
# make sure parent folder exists
os.makedirs(os.path.dirname(output_file), exist_ok=True)
save_file(converted_state_dict, output_file, metadata=meta)
def save_lora_from_diffusers(
lora_state_dict: 'OrderedDict',
output_file: str,
meta: 'OrderedDict',
save_dtype=get_torch_dtype('fp16'),
sd_version: Literal['1', '2', 'sdxl', 'ssd', 'vega'] = '2'
):
converted_state_dict = OrderedDict()
# only handle sxdxl for now
if sd_version != 'sdxl' and sd_version != 'ssd' and sd_version != 'vega':
raise ValueError(f"Invalid sd_version {sd_version}")
for key, value in lora_state_dict.items():
# todo verify if this works with ssd
# test encoders share keys for some reason
if key.begins_with('lora_te'):
converted_state_dict[key] = value.detach().to('cpu', dtype=save_dtype)
else:
converted_key = key
# make sure parent folder exists
os.makedirs(os.path.dirname(output_file), exist_ok=True)
save_file(converted_state_dict, output_file, metadata=meta)
def save_t2i_from_diffusers(
t2i_state_dict: 'OrderedDict',
output_file: str,
meta: 'OrderedDict',
dtype=get_torch_dtype('fp16'),
):
# todo: test compatibility with non diffusers
converted_state_dict = OrderedDict()
for key, value in t2i_state_dict.items():
converted_state_dict[key] = value.detach().to('cpu', dtype=dtype)
# make sure parent folder exists
os.makedirs(os.path.dirname(output_file), exist_ok=True)
save_file(converted_state_dict, output_file, metadata=meta)
def load_t2i_model(
path_to_file,
device: Union[str] = 'cpu',
dtype: torch.dtype = torch.float32
):
raw_state_dict = load_file(path_to_file, device)
converted_state_dict = OrderedDict()
for key, value in raw_state_dict.items():
# todo see if we need to convert dict
converted_state_dict[key] = value.detach().to(device, dtype=dtype)
return converted_state_dict
def save_ip_adapter_from_diffusers(
combined_state_dict: 'OrderedDict',
output_file: str,
meta: 'OrderedDict',
dtype=get_torch_dtype('fp16'),
direct_save: bool = False
):
# todo: test compatibility with non diffusers
converted_state_dict = OrderedDict()
for module_name, state_dict in combined_state_dict.items():
if direct_save:
converted_state_dict[module_name] = state_dict.detach().to('cpu', dtype=dtype)
else:
for key, value in state_dict.items():
converted_state_dict[f"{module_name}.{key}"] = value.detach().to('cpu', dtype=dtype)
# make sure parent folder exists
os.makedirs(os.path.dirname(output_file), exist_ok=True)
save_file(converted_state_dict, output_file, metadata=meta)
def load_ip_adapter_model(
path_to_file,
device: Union[str] = 'cpu',
dtype: torch.dtype = torch.float32,
direct_load: bool = False
):
# check if it is safetensors or checkpoint
if path_to_file.endswith('.safetensors'):
raw_state_dict = load_file(path_to_file, device)
combined_state_dict = OrderedDict()
if direct_load:
return raw_state_dict
for combo_key, value in raw_state_dict.items():
key_split = combo_key.split('.')
module_name = key_split.pop(0)
if module_name not in combined_state_dict:
combined_state_dict[module_name] = OrderedDict()
combined_state_dict[module_name]['.'.join(key_split)] = value.detach().to(device, dtype=dtype)
return combined_state_dict
else:
return torch.load(path_to_file, map_location=device)
def load_custom_adapter_model(
path_to_file,
device: Union[str] = 'cpu',
dtype: torch.dtype = torch.float32
):
# check if it is safetensors or checkpoint
if path_to_file.endswith('.safetensors'):
raw_state_dict = load_file(path_to_file, device)
combined_state_dict = OrderedDict()
device = device if isinstance(device, torch.device) else torch.device(device)
dtype = dtype if isinstance(dtype, torch.dtype) else get_torch_dtype(dtype)
for combo_key, value in raw_state_dict.items():
key_split = combo_key.split('.')
module_name = key_split.pop(0)
if module_name not in combined_state_dict:
combined_state_dict[module_name] = OrderedDict()
combined_state_dict[module_name]['.'.join(key_split)] = value.detach().to(device, dtype=dtype)
return combined_state_dict
else:
return torch.load(path_to_file, map_location=device)
def get_lora_keymap_from_model_keymap(model_keymap: 'OrderedDict') -> 'OrderedDict':
lora_keymap = OrderedDict()
# see if we have dual text encoders " a key that starts with conditioner.embedders.1
has_dual_text_encoders = False
for key in model_keymap:
if key.startswith('conditioner.embedders.1'):
has_dual_text_encoders = True
break
# map through the keys and values
for key, value in model_keymap.items():
# ignore bias weights
if key.endswith('bias'):
continue
if key.endswith('.weight'):
# remove the .weight
key = key[:-7]
if value.endswith(".weight"):
# remove the .weight
value = value[:-7]
# unet for all
key = key.replace('model.diffusion_model', 'lora_unet')
if value.startswith('unet'):
value = f"lora_{value}"
# text encoder
if has_dual_text_encoders:
key = key.replace('conditioner.embedders.0', 'lora_te1')
key = key.replace('conditioner.embedders.1', 'lora_te2')
if value.startswith('te0') or value.startswith('te1'):
value = f"lora_{value}"
value.replace('lora_te1', 'lora_te2')
value.replace('lora_te0', 'lora_te1')
key = key.replace('cond_stage_model.transformer', 'lora_te')
if value.startswith('te_'):
value = f"lora_{value}"
# replace periods with underscores
key = key.replace('.', '_')
value = value.replace('.', '_')
# add all the weights
lora_keymap[f"{key}.lora_down.weight"] = f"{value}.lora_down.weight"
lora_keymap[f"{key}.lora_down.bias"] = f"{value}.lora_down.bias"
lora_keymap[f"{key}.lora_up.weight"] = f"{value}.lora_up.weight"
lora_keymap[f"{key}.lora_up.bias"] = f"{value}.lora_up.bias"
lora_keymap[f"{key}.alpha"] = f"{value}.alpha"
return lora_keymap