|
import json |
|
import os |
|
from collections import OrderedDict |
|
from typing import TYPE_CHECKING, Literal, Optional, Union |
|
|
|
import torch |
|
from safetensors.torch import load_file, save_file |
|
|
|
from toolkit.train_tools import get_torch_dtype |
|
from toolkit.paths import KEYMAPS_ROOT |
|
|
|
if TYPE_CHECKING: |
|
from toolkit.stable_diffusion_model import StableDiffusion |
|
|
|
|
|
def get_slices_from_string(s: str) -> tuple: |
|
slice_strings = s.split(',') |
|
slices = [eval(f"slice({component.strip()})") for component in slice_strings] |
|
return tuple(slices) |
|
|
|
|
|
def convert_state_dict_to_ldm_with_mapping( |
|
diffusers_state_dict: 'OrderedDict', |
|
mapping_path: str, |
|
base_path: Union[str, None] = None, |
|
device: str = 'cpu', |
|
dtype: torch.dtype = torch.float32 |
|
) -> 'OrderedDict': |
|
converted_state_dict = OrderedDict() |
|
|
|
|
|
with open(mapping_path, 'r') as f: |
|
mapping = json.load(f, object_pairs_hook=OrderedDict) |
|
|
|
|
|
ldm_matched_keys = [] |
|
diffusers_matched_keys = [] |
|
|
|
ldm_diffusers_keymap = mapping['ldm_diffusers_keymap'] |
|
ldm_diffusers_shape_map = mapping['ldm_diffusers_shape_map'] |
|
ldm_diffusers_operator_map = mapping['ldm_diffusers_operator_map'] |
|
|
|
|
|
|
|
if base_path is not None: |
|
converted_state_dict = load_file(base_path, device) |
|
|
|
for key in converted_state_dict: |
|
converted_state_dict[key] = converted_state_dict[key].to(device, dtype=dtype) |
|
|
|
|
|
for ldm_key in ldm_diffusers_operator_map: |
|
|
|
if 'cat' in ldm_diffusers_operator_map[ldm_key]: |
|
cat_list = [] |
|
for diffusers_key in ldm_diffusers_operator_map[ldm_key]['cat']: |
|
cat_list.append(diffusers_state_dict[diffusers_key].detach()) |
|
converted_state_dict[ldm_key] = torch.cat(cat_list, dim=0).to(device, dtype=dtype) |
|
diffusers_matched_keys.extend(ldm_diffusers_operator_map[ldm_key]['cat']) |
|
ldm_matched_keys.append(ldm_key) |
|
if 'slice' in ldm_diffusers_operator_map[ldm_key]: |
|
tensor_to_slice = diffusers_state_dict[ldm_diffusers_operator_map[ldm_key]['slice'][0]] |
|
slice_text = diffusers_state_dict[ldm_diffusers_operator_map[ldm_key]['slice'][1]] |
|
converted_state_dict[ldm_key] = tensor_to_slice[get_slices_from_string(slice_text)].detach().to(device, |
|
dtype=dtype) |
|
diffusers_matched_keys.extend(ldm_diffusers_operator_map[ldm_key]['slice']) |
|
ldm_matched_keys.append(ldm_key) |
|
|
|
|
|
for ldm_key in ldm_diffusers_keymap: |
|
|
|
if ldm_diffusers_keymap[ldm_key] in diffusers_state_dict: |
|
tensor = diffusers_state_dict[ldm_diffusers_keymap[ldm_key]].detach().to(device, dtype=dtype) |
|
|
|
if ldm_key in ldm_diffusers_shape_map: |
|
tensor = tensor.view(ldm_diffusers_shape_map[ldm_key][0]) |
|
converted_state_dict[ldm_key] = tensor |
|
diffusers_matched_keys.append(ldm_diffusers_keymap[ldm_key]) |
|
ldm_matched_keys.append(ldm_key) |
|
|
|
|
|
mapped_diffusers_keys = list(ldm_diffusers_keymap.values()) |
|
mapped_ldm_keys = list(ldm_diffusers_keymap.keys()) |
|
|
|
missing_diffusers_keys = [x for x in mapped_diffusers_keys if x not in diffusers_matched_keys] |
|
missing_ldm_keys = [x for x in mapped_ldm_keys if x not in ldm_matched_keys] |
|
|
|
if len(missing_diffusers_keys) > 0: |
|
print(f"WARNING!!!! Missing {len(missing_diffusers_keys)} diffusers keys") |
|
print(missing_diffusers_keys) |
|
if len(missing_ldm_keys) > 0: |
|
print(f"WARNING!!!! Missing {len(missing_ldm_keys)} ldm keys") |
|
print(missing_ldm_keys) |
|
|
|
return converted_state_dict |
|
|
|
|
|
def get_ldm_state_dict_from_diffusers( |
|
state_dict: 'OrderedDict', |
|
sd_version: Literal['1', '2', 'sdxl', 'ssd', 'vega', 'sdxl_refiner'] = '2', |
|
device='cpu', |
|
dtype=get_torch_dtype('fp32'), |
|
): |
|
if sd_version == '1': |
|
base_path = os.path.join(KEYMAPS_ROOT, 'stable_diffusion_sd1_ldm_base.safetensors') |
|
mapping_path = os.path.join(KEYMAPS_ROOT, 'stable_diffusion_sd1.json') |
|
elif sd_version == '2': |
|
base_path = os.path.join(KEYMAPS_ROOT, 'stable_diffusion_sd2_ldm_base.safetensors') |
|
mapping_path = os.path.join(KEYMAPS_ROOT, 'stable_diffusion_sd2.json') |
|
elif sd_version == 'sdxl': |
|
|
|
base_path = os.path.join(KEYMAPS_ROOT, 'stable_diffusion_sdxl_ldm_base.safetensors') |
|
mapping_path = os.path.join(KEYMAPS_ROOT, 'stable_diffusion_sdxl.json') |
|
elif sd_version == 'ssd': |
|
|
|
base_path = os.path.join(KEYMAPS_ROOT, 'stable_diffusion_ssd_ldm_base.safetensors') |
|
mapping_path = os.path.join(KEYMAPS_ROOT, 'stable_diffusion_ssd.json') |
|
elif sd_version == 'vega': |
|
|
|
base_path = os.path.join(KEYMAPS_ROOT, 'stable_diffusion_vega_ldm_base.safetensors') |
|
mapping_path = os.path.join(KEYMAPS_ROOT, 'stable_diffusion_vega.json') |
|
elif sd_version == 'sdxl_refiner': |
|
|
|
base_path = os.path.join(KEYMAPS_ROOT, 'stable_diffusion_refiner_ldm_base.safetensors') |
|
mapping_path = os.path.join(KEYMAPS_ROOT, 'stable_diffusion_refiner.json') |
|
else: |
|
raise ValueError(f"Invalid sd_version {sd_version}") |
|
|
|
|
|
return convert_state_dict_to_ldm_with_mapping( |
|
state_dict, |
|
mapping_path, |
|
base_path, |
|
device=device, |
|
dtype=dtype |
|
) |
|
|
|
|
|
def save_ldm_model_from_diffusers( |
|
sd: 'StableDiffusion', |
|
output_file: str, |
|
meta: 'OrderedDict', |
|
save_dtype=get_torch_dtype('fp16'), |
|
sd_version: Literal['1', '2', 'sdxl', 'ssd', 'vega'] = '2' |
|
): |
|
converted_state_dict = get_ldm_state_dict_from_diffusers( |
|
sd.state_dict(), |
|
sd_version, |
|
device='cpu', |
|
dtype=save_dtype |
|
) |
|
|
|
|
|
os.makedirs(os.path.dirname(output_file), exist_ok=True) |
|
save_file(converted_state_dict, output_file, metadata=meta) |
|
|
|
|
|
def save_lora_from_diffusers( |
|
lora_state_dict: 'OrderedDict', |
|
output_file: str, |
|
meta: 'OrderedDict', |
|
save_dtype=get_torch_dtype('fp16'), |
|
sd_version: Literal['1', '2', 'sdxl', 'ssd', 'vega'] = '2' |
|
): |
|
converted_state_dict = OrderedDict() |
|
|
|
if sd_version != 'sdxl' and sd_version != 'ssd' and sd_version != 'vega': |
|
raise ValueError(f"Invalid sd_version {sd_version}") |
|
for key, value in lora_state_dict.items(): |
|
|
|
|
|
if key.begins_with('lora_te'): |
|
converted_state_dict[key] = value.detach().to('cpu', dtype=save_dtype) |
|
else: |
|
converted_key = key |
|
|
|
|
|
os.makedirs(os.path.dirname(output_file), exist_ok=True) |
|
save_file(converted_state_dict, output_file, metadata=meta) |
|
|
|
|
|
def save_t2i_from_diffusers( |
|
t2i_state_dict: 'OrderedDict', |
|
output_file: str, |
|
meta: 'OrderedDict', |
|
dtype=get_torch_dtype('fp16'), |
|
): |
|
|
|
converted_state_dict = OrderedDict() |
|
for key, value in t2i_state_dict.items(): |
|
converted_state_dict[key] = value.detach().to('cpu', dtype=dtype) |
|
|
|
|
|
os.makedirs(os.path.dirname(output_file), exist_ok=True) |
|
save_file(converted_state_dict, output_file, metadata=meta) |
|
|
|
|
|
def load_t2i_model( |
|
path_to_file, |
|
device: Union[str] = 'cpu', |
|
dtype: torch.dtype = torch.float32 |
|
): |
|
raw_state_dict = load_file(path_to_file, device) |
|
converted_state_dict = OrderedDict() |
|
for key, value in raw_state_dict.items(): |
|
|
|
converted_state_dict[key] = value.detach().to(device, dtype=dtype) |
|
return converted_state_dict |
|
|
|
|
|
|
|
|
|
def save_ip_adapter_from_diffusers( |
|
combined_state_dict: 'OrderedDict', |
|
output_file: str, |
|
meta: 'OrderedDict', |
|
dtype=get_torch_dtype('fp16'), |
|
direct_save: bool = False |
|
): |
|
|
|
|
|
converted_state_dict = OrderedDict() |
|
for module_name, state_dict in combined_state_dict.items(): |
|
if direct_save: |
|
converted_state_dict[module_name] = state_dict.detach().to('cpu', dtype=dtype) |
|
else: |
|
for key, value in state_dict.items(): |
|
converted_state_dict[f"{module_name}.{key}"] = value.detach().to('cpu', dtype=dtype) |
|
|
|
|
|
os.makedirs(os.path.dirname(output_file), exist_ok=True) |
|
save_file(converted_state_dict, output_file, metadata=meta) |
|
|
|
|
|
def load_ip_adapter_model( |
|
path_to_file, |
|
device: Union[str] = 'cpu', |
|
dtype: torch.dtype = torch.float32, |
|
direct_load: bool = False |
|
): |
|
|
|
if path_to_file.endswith('.safetensors'): |
|
raw_state_dict = load_file(path_to_file, device) |
|
combined_state_dict = OrderedDict() |
|
if direct_load: |
|
return raw_state_dict |
|
for combo_key, value in raw_state_dict.items(): |
|
key_split = combo_key.split('.') |
|
module_name = key_split.pop(0) |
|
if module_name not in combined_state_dict: |
|
combined_state_dict[module_name] = OrderedDict() |
|
combined_state_dict[module_name]['.'.join(key_split)] = value.detach().to(device, dtype=dtype) |
|
return combined_state_dict |
|
else: |
|
return torch.load(path_to_file, map_location=device) |
|
|
|
def load_custom_adapter_model( |
|
path_to_file, |
|
device: Union[str] = 'cpu', |
|
dtype: torch.dtype = torch.float32 |
|
): |
|
|
|
if path_to_file.endswith('.safetensors'): |
|
raw_state_dict = load_file(path_to_file, device) |
|
combined_state_dict = OrderedDict() |
|
device = device if isinstance(device, torch.device) else torch.device(device) |
|
dtype = dtype if isinstance(dtype, torch.dtype) else get_torch_dtype(dtype) |
|
for combo_key, value in raw_state_dict.items(): |
|
key_split = combo_key.split('.') |
|
module_name = key_split.pop(0) |
|
if module_name not in combined_state_dict: |
|
combined_state_dict[module_name] = OrderedDict() |
|
combined_state_dict[module_name]['.'.join(key_split)] = value.detach().to(device, dtype=dtype) |
|
return combined_state_dict |
|
else: |
|
return torch.load(path_to_file, map_location=device) |
|
|
|
|
|
def get_lora_keymap_from_model_keymap(model_keymap: 'OrderedDict') -> 'OrderedDict': |
|
lora_keymap = OrderedDict() |
|
|
|
|
|
has_dual_text_encoders = False |
|
for key in model_keymap: |
|
if key.startswith('conditioner.embedders.1'): |
|
has_dual_text_encoders = True |
|
break |
|
|
|
for key, value in model_keymap.items(): |
|
|
|
if key.endswith('bias'): |
|
continue |
|
if key.endswith('.weight'): |
|
|
|
key = key[:-7] |
|
if value.endswith(".weight"): |
|
|
|
value = value[:-7] |
|
|
|
|
|
key = key.replace('model.diffusion_model', 'lora_unet') |
|
if value.startswith('unet'): |
|
value = f"lora_{value}" |
|
|
|
|
|
if has_dual_text_encoders: |
|
key = key.replace('conditioner.embedders.0', 'lora_te1') |
|
key = key.replace('conditioner.embedders.1', 'lora_te2') |
|
if value.startswith('te0') or value.startswith('te1'): |
|
value = f"lora_{value}" |
|
value.replace('lora_te1', 'lora_te2') |
|
value.replace('lora_te0', 'lora_te1') |
|
|
|
key = key.replace('cond_stage_model.transformer', 'lora_te') |
|
|
|
if value.startswith('te_'): |
|
value = f"lora_{value}" |
|
|
|
|
|
key = key.replace('.', '_') |
|
value = value.replace('.', '_') |
|
|
|
|
|
lora_keymap[f"{key}.lora_down.weight"] = f"{value}.lora_down.weight" |
|
lora_keymap[f"{key}.lora_down.bias"] = f"{value}.lora_down.bias" |
|
lora_keymap[f"{key}.lora_up.weight"] = f"{value}.lora_up.weight" |
|
lora_keymap[f"{key}.lora_up.bias"] = f"{value}.lora_up.bias" |
|
lora_keymap[f"{key}.alpha"] = f"{value}.alpha" |
|
|
|
return lora_keymap |
|
|