File size: 13,121 Bytes
1ba389d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 |
import json
import os
from collections import OrderedDict
from typing import TYPE_CHECKING, Literal, Optional, Union
import torch
from safetensors.torch import load_file, save_file
from toolkit.train_tools import get_torch_dtype
from toolkit.paths import KEYMAPS_ROOT
if TYPE_CHECKING:
from toolkit.stable_diffusion_model import StableDiffusion
def get_slices_from_string(s: str) -> tuple:
slice_strings = s.split(',')
slices = [eval(f"slice({component.strip()})") for component in slice_strings]
return tuple(slices)
def convert_state_dict_to_ldm_with_mapping(
diffusers_state_dict: 'OrderedDict',
mapping_path: str,
base_path: Union[str, None] = None,
device: str = 'cpu',
dtype: torch.dtype = torch.float32
) -> 'OrderedDict':
converted_state_dict = OrderedDict()
# load mapping
with open(mapping_path, 'r') as f:
mapping = json.load(f, object_pairs_hook=OrderedDict)
# keep track of keys not matched
ldm_matched_keys = []
diffusers_matched_keys = []
ldm_diffusers_keymap = mapping['ldm_diffusers_keymap']
ldm_diffusers_shape_map = mapping['ldm_diffusers_shape_map']
ldm_diffusers_operator_map = mapping['ldm_diffusers_operator_map']
# load base if it exists
# the base just has come keys like timing ids and stuff diffusers doesn't have or they don't match
if base_path is not None:
converted_state_dict = load_file(base_path, device)
# convert to the right dtype
for key in converted_state_dict:
converted_state_dict[key] = converted_state_dict[key].to(device, dtype=dtype)
# process operators first
for ldm_key in ldm_diffusers_operator_map:
# if the key cat is in the ldm key, we need to process it
if 'cat' in ldm_diffusers_operator_map[ldm_key]:
cat_list = []
for diffusers_key in ldm_diffusers_operator_map[ldm_key]['cat']:
cat_list.append(diffusers_state_dict[diffusers_key].detach())
converted_state_dict[ldm_key] = torch.cat(cat_list, dim=0).to(device, dtype=dtype)
diffusers_matched_keys.extend(ldm_diffusers_operator_map[ldm_key]['cat'])
ldm_matched_keys.append(ldm_key)
if 'slice' in ldm_diffusers_operator_map[ldm_key]:
tensor_to_slice = diffusers_state_dict[ldm_diffusers_operator_map[ldm_key]['slice'][0]]
slice_text = diffusers_state_dict[ldm_diffusers_operator_map[ldm_key]['slice'][1]]
converted_state_dict[ldm_key] = tensor_to_slice[get_slices_from_string(slice_text)].detach().to(device,
dtype=dtype)
diffusers_matched_keys.extend(ldm_diffusers_operator_map[ldm_key]['slice'])
ldm_matched_keys.append(ldm_key)
# process the rest of the keys
for ldm_key in ldm_diffusers_keymap:
# if the key is in the ldm key, we need to process it
if ldm_diffusers_keymap[ldm_key] in diffusers_state_dict:
tensor = diffusers_state_dict[ldm_diffusers_keymap[ldm_key]].detach().to(device, dtype=dtype)
# see if we need to reshape
if ldm_key in ldm_diffusers_shape_map:
tensor = tensor.view(ldm_diffusers_shape_map[ldm_key][0])
converted_state_dict[ldm_key] = tensor
diffusers_matched_keys.append(ldm_diffusers_keymap[ldm_key])
ldm_matched_keys.append(ldm_key)
# see if any are missing from know mapping
mapped_diffusers_keys = list(ldm_diffusers_keymap.values())
mapped_ldm_keys = list(ldm_diffusers_keymap.keys())
missing_diffusers_keys = [x for x in mapped_diffusers_keys if x not in diffusers_matched_keys]
missing_ldm_keys = [x for x in mapped_ldm_keys if x not in ldm_matched_keys]
if len(missing_diffusers_keys) > 0:
print(f"WARNING!!!! Missing {len(missing_diffusers_keys)} diffusers keys")
print(missing_diffusers_keys)
if len(missing_ldm_keys) > 0:
print(f"WARNING!!!! Missing {len(missing_ldm_keys)} ldm keys")
print(missing_ldm_keys)
return converted_state_dict
def get_ldm_state_dict_from_diffusers(
state_dict: 'OrderedDict',
sd_version: Literal['1', '2', 'sdxl', 'ssd', 'vega', 'sdxl_refiner'] = '2',
device='cpu',
dtype=get_torch_dtype('fp32'),
):
if sd_version == '1':
base_path = os.path.join(KEYMAPS_ROOT, 'stable_diffusion_sd1_ldm_base.safetensors')
mapping_path = os.path.join(KEYMAPS_ROOT, 'stable_diffusion_sd1.json')
elif sd_version == '2':
base_path = os.path.join(KEYMAPS_ROOT, 'stable_diffusion_sd2_ldm_base.safetensors')
mapping_path = os.path.join(KEYMAPS_ROOT, 'stable_diffusion_sd2.json')
elif sd_version == 'sdxl':
# load our base
base_path = os.path.join(KEYMAPS_ROOT, 'stable_diffusion_sdxl_ldm_base.safetensors')
mapping_path = os.path.join(KEYMAPS_ROOT, 'stable_diffusion_sdxl.json')
elif sd_version == 'ssd':
# load our base
base_path = os.path.join(KEYMAPS_ROOT, 'stable_diffusion_ssd_ldm_base.safetensors')
mapping_path = os.path.join(KEYMAPS_ROOT, 'stable_diffusion_ssd.json')
elif sd_version == 'vega':
# load our base
base_path = os.path.join(KEYMAPS_ROOT, 'stable_diffusion_vega_ldm_base.safetensors')
mapping_path = os.path.join(KEYMAPS_ROOT, 'stable_diffusion_vega.json')
elif sd_version == 'sdxl_refiner':
# load our base
base_path = os.path.join(KEYMAPS_ROOT, 'stable_diffusion_refiner_ldm_base.safetensors')
mapping_path = os.path.join(KEYMAPS_ROOT, 'stable_diffusion_refiner.json')
else:
raise ValueError(f"Invalid sd_version {sd_version}")
# convert the state dict
return convert_state_dict_to_ldm_with_mapping(
state_dict,
mapping_path,
base_path,
device=device,
dtype=dtype
)
def save_ldm_model_from_diffusers(
sd: 'StableDiffusion',
output_file: str,
meta: 'OrderedDict',
save_dtype=get_torch_dtype('fp16'),
sd_version: Literal['1', '2', 'sdxl', 'ssd', 'vega'] = '2'
):
converted_state_dict = get_ldm_state_dict_from_diffusers(
sd.state_dict(),
sd_version,
device='cpu',
dtype=save_dtype
)
# make sure parent folder exists
os.makedirs(os.path.dirname(output_file), exist_ok=True)
save_file(converted_state_dict, output_file, metadata=meta)
def save_lora_from_diffusers(
lora_state_dict: 'OrderedDict',
output_file: str,
meta: 'OrderedDict',
save_dtype=get_torch_dtype('fp16'),
sd_version: Literal['1', '2', 'sdxl', 'ssd', 'vega'] = '2'
):
converted_state_dict = OrderedDict()
# only handle sxdxl for now
if sd_version != 'sdxl' and sd_version != 'ssd' and sd_version != 'vega':
raise ValueError(f"Invalid sd_version {sd_version}")
for key, value in lora_state_dict.items():
# todo verify if this works with ssd
# test encoders share keys for some reason
if key.begins_with('lora_te'):
converted_state_dict[key] = value.detach().to('cpu', dtype=save_dtype)
else:
converted_key = key
# make sure parent folder exists
os.makedirs(os.path.dirname(output_file), exist_ok=True)
save_file(converted_state_dict, output_file, metadata=meta)
def save_t2i_from_diffusers(
t2i_state_dict: 'OrderedDict',
output_file: str,
meta: 'OrderedDict',
dtype=get_torch_dtype('fp16'),
):
# todo: test compatibility with non diffusers
converted_state_dict = OrderedDict()
for key, value in t2i_state_dict.items():
converted_state_dict[key] = value.detach().to('cpu', dtype=dtype)
# make sure parent folder exists
os.makedirs(os.path.dirname(output_file), exist_ok=True)
save_file(converted_state_dict, output_file, metadata=meta)
def load_t2i_model(
path_to_file,
device: Union[str] = 'cpu',
dtype: torch.dtype = torch.float32
):
raw_state_dict = load_file(path_to_file, device)
converted_state_dict = OrderedDict()
for key, value in raw_state_dict.items():
# todo see if we need to convert dict
converted_state_dict[key] = value.detach().to(device, dtype=dtype)
return converted_state_dict
def save_ip_adapter_from_diffusers(
combined_state_dict: 'OrderedDict',
output_file: str,
meta: 'OrderedDict',
dtype=get_torch_dtype('fp16'),
direct_save: bool = False
):
# todo: test compatibility with non diffusers
converted_state_dict = OrderedDict()
for module_name, state_dict in combined_state_dict.items():
if direct_save:
converted_state_dict[module_name] = state_dict.detach().to('cpu', dtype=dtype)
else:
for key, value in state_dict.items():
converted_state_dict[f"{module_name}.{key}"] = value.detach().to('cpu', dtype=dtype)
# make sure parent folder exists
os.makedirs(os.path.dirname(output_file), exist_ok=True)
save_file(converted_state_dict, output_file, metadata=meta)
def load_ip_adapter_model(
path_to_file,
device: Union[str] = 'cpu',
dtype: torch.dtype = torch.float32,
direct_load: bool = False
):
# check if it is safetensors or checkpoint
if path_to_file.endswith('.safetensors'):
raw_state_dict = load_file(path_to_file, device)
combined_state_dict = OrderedDict()
if direct_load:
return raw_state_dict
for combo_key, value in raw_state_dict.items():
key_split = combo_key.split('.')
module_name = key_split.pop(0)
if module_name not in combined_state_dict:
combined_state_dict[module_name] = OrderedDict()
combined_state_dict[module_name]['.'.join(key_split)] = value.detach().to(device, dtype=dtype)
return combined_state_dict
else:
return torch.load(path_to_file, map_location=device)
def load_custom_adapter_model(
path_to_file,
device: Union[str] = 'cpu',
dtype: torch.dtype = torch.float32
):
# check if it is safetensors or checkpoint
if path_to_file.endswith('.safetensors'):
raw_state_dict = load_file(path_to_file, device)
combined_state_dict = OrderedDict()
device = device if isinstance(device, torch.device) else torch.device(device)
dtype = dtype if isinstance(dtype, torch.dtype) else get_torch_dtype(dtype)
for combo_key, value in raw_state_dict.items():
key_split = combo_key.split('.')
module_name = key_split.pop(0)
if module_name not in combined_state_dict:
combined_state_dict[module_name] = OrderedDict()
combined_state_dict[module_name]['.'.join(key_split)] = value.detach().to(device, dtype=dtype)
return combined_state_dict
else:
return torch.load(path_to_file, map_location=device)
def get_lora_keymap_from_model_keymap(model_keymap: 'OrderedDict') -> 'OrderedDict':
lora_keymap = OrderedDict()
# see if we have dual text encoders " a key that starts with conditioner.embedders.1
has_dual_text_encoders = False
for key in model_keymap:
if key.startswith('conditioner.embedders.1'):
has_dual_text_encoders = True
break
# map through the keys and values
for key, value in model_keymap.items():
# ignore bias weights
if key.endswith('bias'):
continue
if key.endswith('.weight'):
# remove the .weight
key = key[:-7]
if value.endswith(".weight"):
# remove the .weight
value = value[:-7]
# unet for all
key = key.replace('model.diffusion_model', 'lora_unet')
if value.startswith('unet'):
value = f"lora_{value}"
# text encoder
if has_dual_text_encoders:
key = key.replace('conditioner.embedders.0', 'lora_te1')
key = key.replace('conditioner.embedders.1', 'lora_te2')
if value.startswith('te0') or value.startswith('te1'):
value = f"lora_{value}"
value.replace('lora_te1', 'lora_te2')
value.replace('lora_te0', 'lora_te1')
key = key.replace('cond_stage_model.transformer', 'lora_te')
if value.startswith('te_'):
value = f"lora_{value}"
# replace periods with underscores
key = key.replace('.', '_')
value = value.replace('.', '_')
# add all the weights
lora_keymap[f"{key}.lora_down.weight"] = f"{value}.lora_down.weight"
lora_keymap[f"{key}.lora_down.bias"] = f"{value}.lora_down.bias"
lora_keymap[f"{key}.lora_up.weight"] = f"{value}.lora_up.weight"
lora_keymap[f"{key}.lora_up.bias"] = f"{value}.lora_up.bias"
lora_keymap[f"{key}.alpha"] = f"{value}.alpha"
return lora_keymap
|