|
import torch |
|
from transformers import Adafactor, AdamW |
|
|
|
|
|
def get_optimizer( |
|
params, |
|
optimizer_type='adam', |
|
learning_rate=1e-6, |
|
optimizer_params=None |
|
): |
|
if optimizer_params is None: |
|
optimizer_params = {} |
|
lower_type = optimizer_type.lower() |
|
if lower_type.startswith("dadaptation"): |
|
|
|
import dadaptation |
|
print("Using DAdaptAdam optimizer") |
|
use_lr = learning_rate |
|
if use_lr < 0.1: |
|
|
|
use_lr = 1.0 |
|
if lower_type.endswith('lion'): |
|
optimizer = dadaptation.DAdaptLion(params, eps=1e-6, lr=use_lr, **optimizer_params) |
|
elif lower_type.endswith('adam'): |
|
optimizer = dadaptation.DAdaptLion(params, eps=1e-6, lr=use_lr, **optimizer_params) |
|
elif lower_type == 'dadaptation': |
|
|
|
optimizer = dadaptation.DAdaptAdam(params, eps=1e-6, lr=use_lr, **optimizer_params) |
|
|
|
print("WARNING: Dadaptation optimizer type has been changed to DadaptationAdam. Please update your config.") |
|
elif lower_type.startswith("prodigy"): |
|
from prodigyopt import Prodigy |
|
|
|
print("Using Prodigy optimizer") |
|
use_lr = learning_rate |
|
if use_lr < 0.1: |
|
|
|
use_lr = 1.0 |
|
|
|
print(f"Using lr {use_lr}") |
|
|
|
|
|
optimizer = Prodigy(params, lr=use_lr, eps=1e-6, **optimizer_params) |
|
elif lower_type.endswith("8bit"): |
|
import bitsandbytes |
|
|
|
if lower_type == "adam8bit": |
|
return bitsandbytes.optim.Adam8bit(params, lr=learning_rate, eps=1e-6, **optimizer_params) |
|
elif lower_type == "adamw8bit": |
|
return bitsandbytes.optim.AdamW8bit(params, lr=learning_rate, eps=1e-6, **optimizer_params) |
|
elif lower_type == "lion8bit": |
|
return bitsandbytes.optim.Lion8bit(params, lr=learning_rate, **optimizer_params) |
|
else: |
|
raise ValueError(f'Unknown optimizer type {optimizer_type}') |
|
elif lower_type == 'adam': |
|
optimizer = torch.optim.Adam(params, lr=float(learning_rate), eps=1e-6, **optimizer_params) |
|
elif lower_type == 'adamw': |
|
optimizer = torch.optim.AdamW(params, lr=float(learning_rate), eps=1e-6, **optimizer_params) |
|
elif lower_type == 'lion': |
|
try: |
|
from lion_pytorch import Lion |
|
return Lion(params, lr=learning_rate, **optimizer_params) |
|
except ImportError: |
|
raise ImportError("Please install lion_pytorch to use Lion optimizer -> pip install lion-pytorch") |
|
elif lower_type == 'adagrad': |
|
optimizer = torch.optim.Adagrad(params, lr=float(learning_rate), eps=1e-6, **optimizer_params) |
|
elif lower_type == 'adafactor': |
|
|
|
if 'relative_step' not in optimizer_params: |
|
optimizer_params['relative_step'] = False |
|
if 'scale_parameter' not in optimizer_params: |
|
optimizer_params['scale_parameter'] = False |
|
if 'warmup_init' not in optimizer_params: |
|
optimizer_params['warmup_init'] = False |
|
optimizer = Adafactor(params, lr=float(learning_rate), eps=1e-6, **optimizer_params) |
|
from toolkit.util.adafactor_stochastic_rounding import step_adafactor |
|
optimizer.step = step_adafactor.__get__(optimizer, Adafactor) |
|
else: |
|
raise ValueError(f'Unknown optimizer type {optimizer_type}') |
|
return optimizer |
|
|