File size: 3,836 Bytes
1ba389d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
import torch
from transformers import Adafactor, AdamW
def get_optimizer(
params,
optimizer_type='adam',
learning_rate=1e-6,
optimizer_params=None
):
if optimizer_params is None:
optimizer_params = {}
lower_type = optimizer_type.lower()
if lower_type.startswith("dadaptation"):
# dadaptation optimizer does not use standard learning rate. 1 is the default value
import dadaptation
print("Using DAdaptAdam optimizer")
use_lr = learning_rate
if use_lr < 0.1:
# dadaptation uses different lr that is values of 0.1 to 1.0. default to 1.0
use_lr = 1.0
if lower_type.endswith('lion'):
optimizer = dadaptation.DAdaptLion(params, eps=1e-6, lr=use_lr, **optimizer_params)
elif lower_type.endswith('adam'):
optimizer = dadaptation.DAdaptLion(params, eps=1e-6, lr=use_lr, **optimizer_params)
elif lower_type == 'dadaptation':
# backwards compatibility
optimizer = dadaptation.DAdaptAdam(params, eps=1e-6, lr=use_lr, **optimizer_params)
# warn user that dadaptation is deprecated
print("WARNING: Dadaptation optimizer type has been changed to DadaptationAdam. Please update your config.")
elif lower_type.startswith("prodigy"):
from prodigyopt import Prodigy
print("Using Prodigy optimizer")
use_lr = learning_rate
if use_lr < 0.1:
# dadaptation uses different lr that is values of 0.1 to 1.0. default to 1.0
use_lr = 1.0
print(f"Using lr {use_lr}")
# let net be the neural network you want to train
# you can choose weight decay value based on your problem, 0 by default
optimizer = Prodigy(params, lr=use_lr, eps=1e-6, **optimizer_params)
elif lower_type.endswith("8bit"):
import bitsandbytes
if lower_type == "adam8bit":
return bitsandbytes.optim.Adam8bit(params, lr=learning_rate, eps=1e-6, **optimizer_params)
elif lower_type == "adamw8bit":
return bitsandbytes.optim.AdamW8bit(params, lr=learning_rate, eps=1e-6, **optimizer_params)
elif lower_type == "lion8bit":
return bitsandbytes.optim.Lion8bit(params, lr=learning_rate, **optimizer_params)
else:
raise ValueError(f'Unknown optimizer type {optimizer_type}')
elif lower_type == 'adam':
optimizer = torch.optim.Adam(params, lr=float(learning_rate), eps=1e-6, **optimizer_params)
elif lower_type == 'adamw':
optimizer = torch.optim.AdamW(params, lr=float(learning_rate), eps=1e-6, **optimizer_params)
elif lower_type == 'lion':
try:
from lion_pytorch import Lion
return Lion(params, lr=learning_rate, **optimizer_params)
except ImportError:
raise ImportError("Please install lion_pytorch to use Lion optimizer -> pip install lion-pytorch")
elif lower_type == 'adagrad':
optimizer = torch.optim.Adagrad(params, lr=float(learning_rate), eps=1e-6, **optimizer_params)
elif lower_type == 'adafactor':
# hack in stochastic rounding
if 'relative_step' not in optimizer_params:
optimizer_params['relative_step'] = False
if 'scale_parameter' not in optimizer_params:
optimizer_params['scale_parameter'] = False
if 'warmup_init' not in optimizer_params:
optimizer_params['warmup_init'] = False
optimizer = Adafactor(params, lr=float(learning_rate), eps=1e-6, **optimizer_params)
from toolkit.util.adafactor_stochastic_rounding import step_adafactor
optimizer.step = step_adafactor.__get__(optimizer, Adafactor)
else:
raise ValueError(f'Unknown optimizer type {optimizer_type}')
return optimizer
|