|
import math |
|
import os |
|
from typing import Optional, Union, List, Type |
|
|
|
import torch |
|
from lycoris.kohya import LycorisNetwork, LoConModule |
|
from lycoris.modules.glora import GLoRAModule |
|
from torch import nn |
|
from transformers import CLIPTextModel |
|
from torch.nn import functional as F |
|
from toolkit.network_mixins import ToolkitNetworkMixin, ToolkitModuleMixin, ExtractableModuleMixin |
|
|
|
|
|
LINEAR_MODULES = [ |
|
'Linear', |
|
'LoRACompatibleLinear' |
|
] |
|
CONV_MODULES = [ |
|
'Conv2d', |
|
'LoRACompatibleConv' |
|
] |
|
|
|
class LoConSpecialModule(ToolkitModuleMixin, LoConModule, ExtractableModuleMixin): |
|
def __init__( |
|
self, |
|
lora_name, org_module: nn.Module, |
|
multiplier=1.0, |
|
lora_dim=4, alpha=1, |
|
dropout=0., rank_dropout=0., module_dropout=0., |
|
use_cp=False, |
|
network: 'LycorisSpecialNetwork' = None, |
|
use_bias=False, |
|
**kwargs, |
|
): |
|
""" if alpha == 0 or None, alpha is rank (no scaling). """ |
|
|
|
ToolkitModuleMixin.__init__(self, network=network) |
|
torch.nn.Module.__init__(self) |
|
self.lora_name = lora_name |
|
self.lora_dim = lora_dim |
|
self.cp = False |
|
|
|
|
|
if org_module.bias is None: |
|
use_bias = False |
|
|
|
self.scalar = nn.Parameter(torch.tensor(0.0)) |
|
orig_module_name = org_module.__class__.__name__ |
|
if orig_module_name in CONV_MODULES: |
|
self.isconv = True |
|
|
|
in_dim = org_module.in_channels |
|
k_size = org_module.kernel_size |
|
stride = org_module.stride |
|
padding = org_module.padding |
|
out_dim = org_module.out_channels |
|
self.down_op = F.conv2d |
|
self.up_op = F.conv2d |
|
if use_cp and k_size != (1, 1): |
|
self.lora_down = nn.Conv2d(in_dim, lora_dim, (1, 1), bias=False) |
|
self.lora_mid = nn.Conv2d(lora_dim, lora_dim, k_size, stride, padding, bias=False) |
|
self.cp = True |
|
else: |
|
self.lora_down = nn.Conv2d(in_dim, lora_dim, k_size, stride, padding, bias=False) |
|
self.lora_up = nn.Conv2d(lora_dim, out_dim, (1, 1), bias=use_bias) |
|
elif orig_module_name in LINEAR_MODULES: |
|
self.isconv = False |
|
self.down_op = F.linear |
|
self.up_op = F.linear |
|
if orig_module_name == 'GroupNorm': |
|
|
|
in_dim = org_module.num_channels |
|
out_dim = org_module.num_channels |
|
else: |
|
in_dim = org_module.in_features |
|
out_dim = org_module.out_features |
|
self.lora_down = nn.Linear(in_dim, lora_dim, bias=False) |
|
self.lora_up = nn.Linear(lora_dim, out_dim, bias=use_bias) |
|
else: |
|
raise NotImplementedError |
|
self.shape = org_module.weight.shape |
|
|
|
if dropout: |
|
self.dropout = nn.Dropout(dropout) |
|
else: |
|
self.dropout = nn.Identity() |
|
self.rank_dropout = rank_dropout |
|
self.module_dropout = module_dropout |
|
|
|
if type(alpha) == torch.Tensor: |
|
alpha = alpha.detach().float().numpy() |
|
alpha = lora_dim if alpha is None or alpha == 0 else alpha |
|
self.scale = alpha / self.lora_dim |
|
self.register_buffer('alpha', torch.tensor(alpha)) |
|
|
|
|
|
torch.nn.init.kaiming_uniform_(self.lora_down.weight, a=math.sqrt(5)) |
|
torch.nn.init.kaiming_uniform_(self.lora_up.weight) |
|
if self.cp: |
|
torch.nn.init.kaiming_uniform_(self.lora_mid.weight, a=math.sqrt(5)) |
|
|
|
self.multiplier = multiplier |
|
self.org_module = [org_module] |
|
self.register_load_state_dict_post_hook(self.load_weight_hook) |
|
|
|
def load_weight_hook(self, *args, **kwargs): |
|
self.scalar = nn.Parameter(torch.ones_like(self.scalar)) |
|
|
|
|
|
class LycorisSpecialNetwork(ToolkitNetworkMixin, LycorisNetwork): |
|
UNET_TARGET_REPLACE_MODULE = [ |
|
"Transformer2DModel", |
|
"ResnetBlock2D", |
|
"Downsample2D", |
|
"Upsample2D", |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
] |
|
UNET_TARGET_REPLACE_NAME = [ |
|
"conv_in", |
|
"conv_out", |
|
"time_embedding.linear_1", |
|
"time_embedding.linear_2", |
|
] |
|
def __init__( |
|
self, |
|
text_encoder: Union[List[CLIPTextModel], CLIPTextModel], |
|
unet, |
|
multiplier: float = 1.0, |
|
lora_dim: int = 4, |
|
alpha: float = 1, |
|
dropout: Optional[float] = None, |
|
rank_dropout: Optional[float] = None, |
|
module_dropout: Optional[float] = None, |
|
conv_lora_dim: Optional[int] = None, |
|
conv_alpha: Optional[float] = None, |
|
use_cp: Optional[bool] = False, |
|
network_module: Type[object] = LoConSpecialModule, |
|
train_unet: bool = True, |
|
train_text_encoder: bool = True, |
|
use_text_encoder_1: bool = True, |
|
use_text_encoder_2: bool = True, |
|
use_bias: bool = False, |
|
is_lorm: bool = False, |
|
**kwargs, |
|
) -> None: |
|
|
|
ToolkitNetworkMixin.__init__( |
|
self, |
|
train_text_encoder=train_text_encoder, |
|
train_unet=train_unet, |
|
is_lorm=is_lorm, |
|
**kwargs |
|
) |
|
|
|
torch.nn.Module.__init__(self) |
|
|
|
|
|
if dropout is None: |
|
dropout = 0 |
|
if rank_dropout is None: |
|
rank_dropout = 0 |
|
if module_dropout is None: |
|
module_dropout = 0 |
|
self.train_unet = train_unet |
|
self.train_text_encoder = train_text_encoder |
|
|
|
self.torch_multiplier = None |
|
|
|
self.multiplier = multiplier |
|
self.lora_dim = lora_dim |
|
|
|
if not self.ENABLE_CONV or conv_lora_dim is None: |
|
conv_lora_dim = 0 |
|
conv_alpha = 0 |
|
|
|
self.conv_lora_dim = int(conv_lora_dim) |
|
if self.conv_lora_dim and self.conv_lora_dim != self.lora_dim: |
|
print('Apply different lora dim for conv layer') |
|
print(f'Conv Dim: {conv_lora_dim}, Linear Dim: {lora_dim}') |
|
elif self.conv_lora_dim == 0: |
|
print('Disable conv layer') |
|
|
|
self.alpha = alpha |
|
self.conv_alpha = float(conv_alpha) |
|
if self.conv_lora_dim and self.alpha != self.conv_alpha: |
|
print('Apply different alpha value for conv layer') |
|
print(f'Conv alpha: {conv_alpha}, Linear alpha: {alpha}') |
|
|
|
if 1 >= dropout >= 0: |
|
print(f'Use Dropout value: {dropout}') |
|
self.dropout = dropout |
|
self.rank_dropout = rank_dropout |
|
self.module_dropout = module_dropout |
|
|
|
|
|
def create_modules( |
|
prefix, |
|
root_module: torch.nn.Module, |
|
target_replace_modules, |
|
target_replace_names=[] |
|
) -> List[network_module]: |
|
print('Create LyCORIS Module') |
|
loras = [] |
|
|
|
named_modules = root_module.named_modules() |
|
|
|
|
|
for name, module in named_modules: |
|
module_name = module.__class__.__name__ |
|
if module_name in target_replace_modules: |
|
if module_name in self.MODULE_ALGO_MAP: |
|
algo = self.MODULE_ALGO_MAP[module_name] |
|
else: |
|
algo = network_module |
|
for child_name, child_module in module.named_modules(): |
|
lora_name = prefix + '.' + name + '.' + child_name |
|
lora_name = lora_name.replace('.', '_') |
|
if lora_name.startswith('lora_unet_input_blocks_1_0_emb_layers_1'): |
|
print(f"{lora_name}") |
|
|
|
if child_module.__class__.__name__ in LINEAR_MODULES and lora_dim > 0: |
|
lora = algo( |
|
lora_name, child_module, self.multiplier, |
|
self.lora_dim, self.alpha, |
|
self.dropout, self.rank_dropout, self.module_dropout, |
|
use_cp, |
|
network=self, |
|
parent=module, |
|
use_bias=use_bias, |
|
**kwargs |
|
) |
|
elif child_module.__class__.__name__ in CONV_MODULES: |
|
k_size, *_ = child_module.kernel_size |
|
if k_size == 1 and lora_dim > 0: |
|
lora = algo( |
|
lora_name, child_module, self.multiplier, |
|
self.lora_dim, self.alpha, |
|
self.dropout, self.rank_dropout, self.module_dropout, |
|
use_cp, |
|
network=self, |
|
parent=module, |
|
use_bias=use_bias, |
|
**kwargs |
|
) |
|
elif conv_lora_dim > 0: |
|
lora = algo( |
|
lora_name, child_module, self.multiplier, |
|
self.conv_lora_dim, self.conv_alpha, |
|
self.dropout, self.rank_dropout, self.module_dropout, |
|
use_cp, |
|
network=self, |
|
parent=module, |
|
use_bias=use_bias, |
|
**kwargs |
|
) |
|
else: |
|
continue |
|
else: |
|
continue |
|
loras.append(lora) |
|
elif name in target_replace_names: |
|
if name in self.NAME_ALGO_MAP: |
|
algo = self.NAME_ALGO_MAP[name] |
|
else: |
|
algo = network_module |
|
lora_name = prefix + '.' + name |
|
lora_name = lora_name.replace('.', '_') |
|
if module.__class__.__name__ == 'Linear' and lora_dim > 0: |
|
lora = algo( |
|
lora_name, module, self.multiplier, |
|
self.lora_dim, self.alpha, |
|
self.dropout, self.rank_dropout, self.module_dropout, |
|
use_cp, |
|
parent=module, |
|
network=self, |
|
use_bias=use_bias, |
|
**kwargs |
|
) |
|
elif module.__class__.__name__ == 'Conv2d': |
|
k_size, *_ = module.kernel_size |
|
if k_size == 1 and lora_dim > 0: |
|
lora = algo( |
|
lora_name, module, self.multiplier, |
|
self.lora_dim, self.alpha, |
|
self.dropout, self.rank_dropout, self.module_dropout, |
|
use_cp, |
|
network=self, |
|
parent=module, |
|
use_bias=use_bias, |
|
**kwargs |
|
) |
|
elif conv_lora_dim > 0: |
|
lora = algo( |
|
lora_name, module, self.multiplier, |
|
self.conv_lora_dim, self.conv_alpha, |
|
self.dropout, self.rank_dropout, self.module_dropout, |
|
use_cp, |
|
network=self, |
|
parent=module, |
|
use_bias=use_bias, |
|
**kwargs |
|
) |
|
else: |
|
continue |
|
else: |
|
continue |
|
loras.append(lora) |
|
return loras |
|
|
|
if network_module == GLoRAModule: |
|
print('GLoRA enabled, only train transformer') |
|
|
|
LycorisSpecialNetwork.UNET_TARGET_REPLACE_MODULE = [ |
|
"Transformer2DModel", |
|
"Attention", |
|
] |
|
LycorisSpecialNetwork.UNET_TARGET_REPLACE_NAME = [] |
|
|
|
if isinstance(text_encoder, list): |
|
text_encoders = text_encoder |
|
use_index = True |
|
else: |
|
text_encoders = [text_encoder] |
|
use_index = False |
|
|
|
self.text_encoder_loras = [] |
|
if self.train_text_encoder: |
|
for i, te in enumerate(text_encoders): |
|
if not use_text_encoder_1 and i == 0: |
|
continue |
|
if not use_text_encoder_2 and i == 1: |
|
continue |
|
self.text_encoder_loras.extend(create_modules( |
|
LycorisSpecialNetwork.LORA_PREFIX_TEXT_ENCODER + (f'{i + 1}' if use_index else ''), |
|
te, |
|
LycorisSpecialNetwork.TEXT_ENCODER_TARGET_REPLACE_MODULE |
|
)) |
|
print(f"create LyCORIS for Text Encoder: {len(self.text_encoder_loras)} modules.") |
|
if self.train_unet: |
|
self.unet_loras = create_modules(LycorisSpecialNetwork.LORA_PREFIX_UNET, unet, |
|
LycorisSpecialNetwork.UNET_TARGET_REPLACE_MODULE) |
|
else: |
|
self.unet_loras = [] |
|
print(f"create LyCORIS for U-Net: {len(self.unet_loras)} modules.") |
|
|
|
self.weights_sd = None |
|
|
|
|
|
names = set() |
|
for lora in self.text_encoder_loras + self.unet_loras: |
|
assert lora.lora_name not in names, f"duplicated lora name: {lora.lora_name}" |
|
names.add(lora.lora_name) |
|
|