File size: 15,181 Bytes
1ba389d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 |
import math
import os
from typing import Optional, Union, List, Type
import torch
from lycoris.kohya import LycorisNetwork, LoConModule
from lycoris.modules.glora import GLoRAModule
from torch import nn
from transformers import CLIPTextModel
from torch.nn import functional as F
from toolkit.network_mixins import ToolkitNetworkMixin, ToolkitModuleMixin, ExtractableModuleMixin
# diffusers specific stuff
LINEAR_MODULES = [
'Linear',
'LoRACompatibleLinear'
]
CONV_MODULES = [
'Conv2d',
'LoRACompatibleConv'
]
class LoConSpecialModule(ToolkitModuleMixin, LoConModule, ExtractableModuleMixin):
def __init__(
self,
lora_name, org_module: nn.Module,
multiplier=1.0,
lora_dim=4, alpha=1,
dropout=0., rank_dropout=0., module_dropout=0.,
use_cp=False,
network: 'LycorisSpecialNetwork' = None,
use_bias=False,
**kwargs,
):
""" if alpha == 0 or None, alpha is rank (no scaling). """
# call super of super
ToolkitModuleMixin.__init__(self, network=network)
torch.nn.Module.__init__(self)
self.lora_name = lora_name
self.lora_dim = lora_dim
self.cp = False
# check if parent has bias. if not force use_bias to False
if org_module.bias is None:
use_bias = False
self.scalar = nn.Parameter(torch.tensor(0.0))
orig_module_name = org_module.__class__.__name__
if orig_module_name in CONV_MODULES:
self.isconv = True
# For general LoCon
in_dim = org_module.in_channels
k_size = org_module.kernel_size
stride = org_module.stride
padding = org_module.padding
out_dim = org_module.out_channels
self.down_op = F.conv2d
self.up_op = F.conv2d
if use_cp and k_size != (1, 1):
self.lora_down = nn.Conv2d(in_dim, lora_dim, (1, 1), bias=False)
self.lora_mid = nn.Conv2d(lora_dim, lora_dim, k_size, stride, padding, bias=False)
self.cp = True
else:
self.lora_down = nn.Conv2d(in_dim, lora_dim, k_size, stride, padding, bias=False)
self.lora_up = nn.Conv2d(lora_dim, out_dim, (1, 1), bias=use_bias)
elif orig_module_name in LINEAR_MODULES:
self.isconv = False
self.down_op = F.linear
self.up_op = F.linear
if orig_module_name == 'GroupNorm':
# RuntimeError: mat1 and mat2 shapes cannot be multiplied (56320x120 and 320x32)
in_dim = org_module.num_channels
out_dim = org_module.num_channels
else:
in_dim = org_module.in_features
out_dim = org_module.out_features
self.lora_down = nn.Linear(in_dim, lora_dim, bias=False)
self.lora_up = nn.Linear(lora_dim, out_dim, bias=use_bias)
else:
raise NotImplementedError
self.shape = org_module.weight.shape
if dropout:
self.dropout = nn.Dropout(dropout)
else:
self.dropout = nn.Identity()
self.rank_dropout = rank_dropout
self.module_dropout = module_dropout
if type(alpha) == torch.Tensor:
alpha = alpha.detach().float().numpy() # without casting, bf16 causes error
alpha = lora_dim if alpha is None or alpha == 0 else alpha
self.scale = alpha / self.lora_dim
self.register_buffer('alpha', torch.tensor(alpha)) # 定数として扱える
# same as microsoft's
torch.nn.init.kaiming_uniform_(self.lora_down.weight, a=math.sqrt(5))
torch.nn.init.kaiming_uniform_(self.lora_up.weight)
if self.cp:
torch.nn.init.kaiming_uniform_(self.lora_mid.weight, a=math.sqrt(5))
self.multiplier = multiplier
self.org_module = [org_module]
self.register_load_state_dict_post_hook(self.load_weight_hook)
def load_weight_hook(self, *args, **kwargs):
self.scalar = nn.Parameter(torch.ones_like(self.scalar))
class LycorisSpecialNetwork(ToolkitNetworkMixin, LycorisNetwork):
UNET_TARGET_REPLACE_MODULE = [
"Transformer2DModel",
"ResnetBlock2D",
"Downsample2D",
"Upsample2D",
# 'UNet2DConditionModel',
# 'Conv2d',
# 'Timesteps',
# 'TimestepEmbedding',
# 'Linear',
# 'SiLU',
# 'ModuleList',
# 'DownBlock2D',
# 'ResnetBlock2D', # need
# 'GroupNorm',
# 'LoRACompatibleConv',
# 'LoRACompatibleLinear',
# 'Dropout',
# 'CrossAttnDownBlock2D', # needed
# 'Transformer2DModel', # maybe not, has duplicates
# 'BasicTransformerBlock', # duplicates
# 'LayerNorm',
# 'Attention',
# 'FeedForward',
# 'GEGLU',
# 'UpBlock2D',
# 'UNetMidBlock2DCrossAttn'
]
UNET_TARGET_REPLACE_NAME = [
"conv_in",
"conv_out",
"time_embedding.linear_1",
"time_embedding.linear_2",
]
def __init__(
self,
text_encoder: Union[List[CLIPTextModel], CLIPTextModel],
unet,
multiplier: float = 1.0,
lora_dim: int = 4,
alpha: float = 1,
dropout: Optional[float] = None,
rank_dropout: Optional[float] = None,
module_dropout: Optional[float] = None,
conv_lora_dim: Optional[int] = None,
conv_alpha: Optional[float] = None,
use_cp: Optional[bool] = False,
network_module: Type[object] = LoConSpecialModule,
train_unet: bool = True,
train_text_encoder: bool = True,
use_text_encoder_1: bool = True,
use_text_encoder_2: bool = True,
use_bias: bool = False,
is_lorm: bool = False,
**kwargs,
) -> None:
# call ToolkitNetworkMixin super
ToolkitNetworkMixin.__init__(
self,
train_text_encoder=train_text_encoder,
train_unet=train_unet,
is_lorm=is_lorm,
**kwargs
)
# call the parent of the parent LycorisNetwork
torch.nn.Module.__init__(self)
# LyCORIS unique stuff
if dropout is None:
dropout = 0
if rank_dropout is None:
rank_dropout = 0
if module_dropout is None:
module_dropout = 0
self.train_unet = train_unet
self.train_text_encoder = train_text_encoder
self.torch_multiplier = None
# triggers a tensor update
self.multiplier = multiplier
self.lora_dim = lora_dim
if not self.ENABLE_CONV or conv_lora_dim is None:
conv_lora_dim = 0
conv_alpha = 0
self.conv_lora_dim = int(conv_lora_dim)
if self.conv_lora_dim and self.conv_lora_dim != self.lora_dim:
print('Apply different lora dim for conv layer')
print(f'Conv Dim: {conv_lora_dim}, Linear Dim: {lora_dim}')
elif self.conv_lora_dim == 0:
print('Disable conv layer')
self.alpha = alpha
self.conv_alpha = float(conv_alpha)
if self.conv_lora_dim and self.alpha != self.conv_alpha:
print('Apply different alpha value for conv layer')
print(f'Conv alpha: {conv_alpha}, Linear alpha: {alpha}')
if 1 >= dropout >= 0:
print(f'Use Dropout value: {dropout}')
self.dropout = dropout
self.rank_dropout = rank_dropout
self.module_dropout = module_dropout
# create module instances
def create_modules(
prefix,
root_module: torch.nn.Module,
target_replace_modules,
target_replace_names=[]
) -> List[network_module]:
print('Create LyCORIS Module')
loras = []
# remove this
named_modules = root_module.named_modules()
# add a few to tthe generator
for name, module in named_modules:
module_name = module.__class__.__name__
if module_name in target_replace_modules:
if module_name in self.MODULE_ALGO_MAP:
algo = self.MODULE_ALGO_MAP[module_name]
else:
algo = network_module
for child_name, child_module in module.named_modules():
lora_name = prefix + '.' + name + '.' + child_name
lora_name = lora_name.replace('.', '_')
if lora_name.startswith('lora_unet_input_blocks_1_0_emb_layers_1'):
print(f"{lora_name}")
if child_module.__class__.__name__ in LINEAR_MODULES and lora_dim > 0:
lora = algo(
lora_name, child_module, self.multiplier,
self.lora_dim, self.alpha,
self.dropout, self.rank_dropout, self.module_dropout,
use_cp,
network=self,
parent=module,
use_bias=use_bias,
**kwargs
)
elif child_module.__class__.__name__ in CONV_MODULES:
k_size, *_ = child_module.kernel_size
if k_size == 1 and lora_dim > 0:
lora = algo(
lora_name, child_module, self.multiplier,
self.lora_dim, self.alpha,
self.dropout, self.rank_dropout, self.module_dropout,
use_cp,
network=self,
parent=module,
use_bias=use_bias,
**kwargs
)
elif conv_lora_dim > 0:
lora = algo(
lora_name, child_module, self.multiplier,
self.conv_lora_dim, self.conv_alpha,
self.dropout, self.rank_dropout, self.module_dropout,
use_cp,
network=self,
parent=module,
use_bias=use_bias,
**kwargs
)
else:
continue
else:
continue
loras.append(lora)
elif name in target_replace_names:
if name in self.NAME_ALGO_MAP:
algo = self.NAME_ALGO_MAP[name]
else:
algo = network_module
lora_name = prefix + '.' + name
lora_name = lora_name.replace('.', '_')
if module.__class__.__name__ == 'Linear' and lora_dim > 0:
lora = algo(
lora_name, module, self.multiplier,
self.lora_dim, self.alpha,
self.dropout, self.rank_dropout, self.module_dropout,
use_cp,
parent=module,
network=self,
use_bias=use_bias,
**kwargs
)
elif module.__class__.__name__ == 'Conv2d':
k_size, *_ = module.kernel_size
if k_size == 1 and lora_dim > 0:
lora = algo(
lora_name, module, self.multiplier,
self.lora_dim, self.alpha,
self.dropout, self.rank_dropout, self.module_dropout,
use_cp,
network=self,
parent=module,
use_bias=use_bias,
**kwargs
)
elif conv_lora_dim > 0:
lora = algo(
lora_name, module, self.multiplier,
self.conv_lora_dim, self.conv_alpha,
self.dropout, self.rank_dropout, self.module_dropout,
use_cp,
network=self,
parent=module,
use_bias=use_bias,
**kwargs
)
else:
continue
else:
continue
loras.append(lora)
return loras
if network_module == GLoRAModule:
print('GLoRA enabled, only train transformer')
# only train transformer (for GLoRA)
LycorisSpecialNetwork.UNET_TARGET_REPLACE_MODULE = [
"Transformer2DModel",
"Attention",
]
LycorisSpecialNetwork.UNET_TARGET_REPLACE_NAME = []
if isinstance(text_encoder, list):
text_encoders = text_encoder
use_index = True
else:
text_encoders = [text_encoder]
use_index = False
self.text_encoder_loras = []
if self.train_text_encoder:
for i, te in enumerate(text_encoders):
if not use_text_encoder_1 and i == 0:
continue
if not use_text_encoder_2 and i == 1:
continue
self.text_encoder_loras.extend(create_modules(
LycorisSpecialNetwork.LORA_PREFIX_TEXT_ENCODER + (f'{i + 1}' if use_index else ''),
te,
LycorisSpecialNetwork.TEXT_ENCODER_TARGET_REPLACE_MODULE
))
print(f"create LyCORIS for Text Encoder: {len(self.text_encoder_loras)} modules.")
if self.train_unet:
self.unet_loras = create_modules(LycorisSpecialNetwork.LORA_PREFIX_UNET, unet,
LycorisSpecialNetwork.UNET_TARGET_REPLACE_MODULE)
else:
self.unet_loras = []
print(f"create LyCORIS for U-Net: {len(self.unet_loras)} modules.")
self.weights_sd = None
# assertion
names = set()
for lora in self.text_encoder_loras + self.unet_loras:
assert lora.lora_name not in names, f"duplicated lora name: {lora.lora_name}"
names.add(lora.lora_name)
|