|
import torch |
|
from .llvae import LosslessLatentEncoder |
|
|
|
|
|
def total_variation(image): |
|
""" |
|
Compute normalized total variation. |
|
Inputs: |
|
- image: PyTorch Variable of shape (N, C, H, W) |
|
Returns: |
|
- TV: total variation normalized by the number of elements |
|
""" |
|
n_elements = image.shape[1] * image.shape[2] * image.shape[3] |
|
return ((torch.sum(torch.abs(image[:, :, :, :-1] - image[:, :, :, 1:])) + |
|
torch.sum(torch.abs(image[:, :, :-1, :] - image[:, :, 1:, :]))) / n_elements) |
|
|
|
|
|
class ComparativeTotalVariation(torch.nn.Module): |
|
""" |
|
Compute the comparative loss in tv between two images. to match their tv |
|
""" |
|
|
|
def forward(self, pred, target): |
|
return torch.abs(total_variation(pred) - total_variation(target)) |
|
|
|
|
|
|
|
def get_gradient_penalty(critic, real, fake, device): |
|
with torch.autocast(device_type='cuda'): |
|
real = real.float() |
|
fake = fake.float() |
|
alpha = torch.rand(real.size(0), 1, 1, 1).to(device).float() |
|
interpolates = (alpha * real + ((1 - alpha) * fake)).requires_grad_(True) |
|
if torch.isnan(interpolates).any(): |
|
print('d_interpolates is nan') |
|
d_interpolates = critic(interpolates) |
|
fake = torch.ones(real.size(0), 1, device=device) |
|
|
|
if torch.isnan(d_interpolates).any(): |
|
print('fake is nan') |
|
gradients = torch.autograd.grad( |
|
outputs=d_interpolates, |
|
inputs=interpolates, |
|
grad_outputs=fake, |
|
create_graph=True, |
|
retain_graph=True, |
|
only_inputs=True, |
|
)[0] |
|
|
|
|
|
if torch.isnan(gradients).any(): |
|
print('gradients is nan') |
|
|
|
gradients = gradients.view(gradients.size(0), -1) |
|
gradient_norm = gradients.norm(2, dim=1) |
|
gradient_penalty = ((gradient_norm - 1) ** 2).mean() |
|
return gradient_penalty.float() |
|
|
|
|
|
class PatternLoss(torch.nn.Module): |
|
def __init__(self, pattern_size=4, dtype=torch.float32): |
|
super().__init__() |
|
self.pattern_size = pattern_size |
|
self.llvae_encoder = LosslessLatentEncoder(3, pattern_size, dtype=dtype) |
|
|
|
def forward(self, pred, target): |
|
pred_latents = self.llvae_encoder(pred) |
|
target_latents = self.llvae_encoder(target) |
|
|
|
matrix_pixels = self.pattern_size * self.pattern_size |
|
|
|
color_chans = pred_latents.shape[1] // 3 |
|
|
|
r_chans, g_chans, b_chans = torch.split(pred_latents, [color_chans, color_chans, color_chans], 1) |
|
r_chans_target, g_chans_target, b_chans_target = torch.split(target_latents, [color_chans, color_chans, color_chans], 1) |
|
|
|
def separated_chan_loss(latent_chan): |
|
nonlocal matrix_pixels |
|
chan_mean = torch.mean(latent_chan, dim=[1, 2, 3]) |
|
chan_splits = torch.split(latent_chan, [1 for i in range(matrix_pixels)], 1) |
|
chan_loss = None |
|
for chan in chan_splits: |
|
this_mean = torch.mean(chan, dim=[1, 2, 3]) |
|
this_chan_loss = torch.abs(this_mean - chan_mean) |
|
if chan_loss is None: |
|
chan_loss = this_chan_loss |
|
else: |
|
chan_loss = chan_loss + this_chan_loss |
|
chan_loss = chan_loss * (1 / matrix_pixels) |
|
return chan_loss |
|
|
|
r_chan_loss = torch.abs(separated_chan_loss(r_chans) - separated_chan_loss(r_chans_target)) |
|
g_chan_loss = torch.abs(separated_chan_loss(g_chans) - separated_chan_loss(g_chans_target)) |
|
b_chan_loss = torch.abs(separated_chan_loss(b_chans) - separated_chan_loss(b_chans_target)) |
|
return (r_chan_loss + g_chan_loss + b_chan_loss) * 0.3333 |
|
|
|
|
|
|