import torch from .llvae import LosslessLatentEncoder def total_variation(image): """ Compute normalized total variation. Inputs: - image: PyTorch Variable of shape (N, C, H, W) Returns: - TV: total variation normalized by the number of elements """ n_elements = image.shape[1] * image.shape[2] * image.shape[3] return ((torch.sum(torch.abs(image[:, :, :, :-1] - image[:, :, :, 1:])) + torch.sum(torch.abs(image[:, :, :-1, :] - image[:, :, 1:, :]))) / n_elements) class ComparativeTotalVariation(torch.nn.Module): """ Compute the comparative loss in tv between two images. to match their tv """ def forward(self, pred, target): return torch.abs(total_variation(pred) - total_variation(target)) # Gradient penalty def get_gradient_penalty(critic, real, fake, device): with torch.autocast(device_type='cuda'): real = real.float() fake = fake.float() alpha = torch.rand(real.size(0), 1, 1, 1).to(device).float() interpolates = (alpha * real + ((1 - alpha) * fake)).requires_grad_(True) if torch.isnan(interpolates).any(): print('d_interpolates is nan') d_interpolates = critic(interpolates) fake = torch.ones(real.size(0), 1, device=device) if torch.isnan(d_interpolates).any(): print('fake is nan') gradients = torch.autograd.grad( outputs=d_interpolates, inputs=interpolates, grad_outputs=fake, create_graph=True, retain_graph=True, only_inputs=True, )[0] # see if any are nan if torch.isnan(gradients).any(): print('gradients is nan') gradients = gradients.view(gradients.size(0), -1) gradient_norm = gradients.norm(2, dim=1) gradient_penalty = ((gradient_norm - 1) ** 2).mean() return gradient_penalty.float() class PatternLoss(torch.nn.Module): def __init__(self, pattern_size=4, dtype=torch.float32): super().__init__() self.pattern_size = pattern_size self.llvae_encoder = LosslessLatentEncoder(3, pattern_size, dtype=dtype) def forward(self, pred, target): pred_latents = self.llvae_encoder(pred) target_latents = self.llvae_encoder(target) matrix_pixels = self.pattern_size * self.pattern_size color_chans = pred_latents.shape[1] // 3 # pytorch r_chans, g_chans, b_chans = torch.split(pred_latents, [color_chans, color_chans, color_chans], 1) r_chans_target, g_chans_target, b_chans_target = torch.split(target_latents, [color_chans, color_chans, color_chans], 1) def separated_chan_loss(latent_chan): nonlocal matrix_pixels chan_mean = torch.mean(latent_chan, dim=[1, 2, 3]) chan_splits = torch.split(latent_chan, [1 for i in range(matrix_pixels)], 1) chan_loss = None for chan in chan_splits: this_mean = torch.mean(chan, dim=[1, 2, 3]) this_chan_loss = torch.abs(this_mean - chan_mean) if chan_loss is None: chan_loss = this_chan_loss else: chan_loss = chan_loss + this_chan_loss chan_loss = chan_loss * (1 / matrix_pixels) return chan_loss r_chan_loss = torch.abs(separated_chan_loss(r_chans) - separated_chan_loss(r_chans_target)) g_chan_loss = torch.abs(separated_chan_loss(g_chans) - separated_chan_loss(g_chans_target)) b_chan_loss = torch.abs(separated_chan_loss(b_chans) - separated_chan_loss(b_chans_target)) return (r_chan_loss + g_chan_loss + b_chan_loss) * 0.3333