crystantine's picture
Upload 190 files
1ba389d verified
from typing import Union, Tuple, Literal, Optional
import torch
import torch.nn as nn
from diffusers import UNet2DConditionModel
from torch import Tensor
from tqdm import tqdm
from toolkit.config_modules import LoRMConfig
conv = nn.Conv2d
lin = nn.Linear
_size_2_t = Union[int, Tuple[int, int]]
ExtractMode = Union[
'fixed',
'threshold',
'ratio',
'quantile',
'percentage'
]
LINEAR_MODULES = [
'Linear',
'LoRACompatibleLinear'
]
CONV_MODULES = [
# 'Conv2d',
# 'LoRACompatibleConv'
]
UNET_TARGET_REPLACE_MODULE = [
"Transformer2DModel",
# "ResnetBlock2D",
"Downsample2D",
"Upsample2D",
]
LORM_TARGET_REPLACE_MODULE = UNET_TARGET_REPLACE_MODULE
UNET_TARGET_REPLACE_NAME = [
"conv_in",
"conv_out",
"time_embedding.linear_1",
"time_embedding.linear_2",
]
UNET_MODULES_TO_AVOID = [
]
# Low Rank Convolution
class LoRMCon2d(nn.Module):
def __init__(
self,
in_channels: int,
lorm_channels: int,
out_channels: int,
kernel_size: _size_2_t,
stride: _size_2_t = 1,
padding: Union[str, _size_2_t] = 'same',
dilation: _size_2_t = 1,
groups: int = 1,
bias: bool = True,
padding_mode: str = 'zeros',
device=None,
dtype=None
) -> None:
super().__init__()
self.in_channels = in_channels
self.lorm_channels = lorm_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.stride = stride
self.padding = padding
self.dilation = dilation
self.groups = groups
self.padding_mode = padding_mode
self.down = nn.Conv2d(
in_channels=in_channels,
out_channels=lorm_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups,
bias=False,
padding_mode=padding_mode,
device=device,
dtype=dtype
)
# Kernel size on the up is always 1x1.
# I don't think you could calculate a dual 3x3, or I can't at least
self.up = nn.Conv2d(
in_channels=lorm_channels,
out_channels=out_channels,
kernel_size=(1, 1),
stride=1,
padding='same',
dilation=1,
groups=1,
bias=bias,
padding_mode='zeros',
device=device,
dtype=dtype
)
def forward(self, input: Tensor, *args, **kwargs) -> Tensor:
x = input
x = self.down(x)
x = self.up(x)
return x
class LoRMLinear(nn.Module):
def __init__(
self,
in_features: int,
lorm_features: int,
out_features: int,
bias: bool = True,
device=None,
dtype=None
) -> None:
super().__init__()
self.in_features = in_features
self.lorm_features = lorm_features
self.out_features = out_features
self.down = nn.Linear(
in_features=in_features,
out_features=lorm_features,
bias=False,
device=device,
dtype=dtype
)
self.up = nn.Linear(
in_features=lorm_features,
out_features=out_features,
bias=bias,
# bias=True,
device=device,
dtype=dtype
)
def forward(self, input: Tensor, *args, **kwargs) -> Tensor:
x = input
x = self.down(x)
x = self.up(x)
return x
def extract_conv(
weight: Union[torch.Tensor, nn.Parameter],
mode='fixed',
mode_param=0,
device='cpu'
) -> Tuple[Tensor, Tensor, int, Tensor]:
weight = weight.to(device)
out_ch, in_ch, kernel_size, _ = weight.shape
U, S, Vh = torch.linalg.svd(weight.reshape(out_ch, -1))
if mode == 'percentage':
assert 0 <= mode_param <= 1 # Ensure it's a valid percentage.
original_params = out_ch * in_ch * kernel_size * kernel_size
desired_params = mode_param * original_params
# Solve for lora_rank from the equation
lora_rank = int(desired_params / (in_ch * kernel_size * kernel_size + out_ch))
elif mode == 'fixed':
lora_rank = mode_param
elif mode == 'threshold':
assert mode_param >= 0
lora_rank = torch.sum(S > mode_param).item()
elif mode == 'ratio':
assert 1 >= mode_param >= 0
min_s = torch.max(S) * mode_param
lora_rank = torch.sum(S > min_s).item()
elif mode == 'quantile' or mode == 'percentile':
assert 1 >= mode_param >= 0
s_cum = torch.cumsum(S, dim=0)
min_cum_sum = mode_param * torch.sum(S)
lora_rank = torch.sum(s_cum < min_cum_sum).item()
else:
raise NotImplementedError('Extract mode should be "fixed", "threshold", "ratio" or "quantile"')
lora_rank = max(1, lora_rank)
lora_rank = min(out_ch, in_ch, lora_rank)
if lora_rank >= out_ch / 2:
lora_rank = int(out_ch / 2)
print(f"rank is higher than it should be")
# print(f"Skipping layer as determined rank is too high")
# return None, None, None, None
# return weight, 'full'
U = U[:, :lora_rank]
S = S[:lora_rank]
U = U @ torch.diag(S)
Vh = Vh[:lora_rank, :]
diff = (weight - (U @ Vh).reshape(out_ch, in_ch, kernel_size, kernel_size)).detach()
extract_weight_A = Vh.reshape(lora_rank, in_ch, kernel_size, kernel_size).detach()
extract_weight_B = U.reshape(out_ch, lora_rank, 1, 1).detach()
del U, S, Vh, weight
return extract_weight_A, extract_weight_B, lora_rank, diff
def extract_linear(
weight: Union[torch.Tensor, nn.Parameter],
mode='fixed',
mode_param=0,
device='cpu',
) -> Tuple[Tensor, Tensor, int, Tensor]:
weight = weight.to(device)
out_ch, in_ch = weight.shape
U, S, Vh = torch.linalg.svd(weight)
if mode == 'percentage':
assert 0 <= mode_param <= 1 # Ensure it's a valid percentage.
desired_params = mode_param * out_ch * in_ch
# Solve for lora_rank from the equation
lora_rank = int(desired_params / (in_ch + out_ch))
elif mode == 'fixed':
lora_rank = mode_param
elif mode == 'threshold':
assert mode_param >= 0
lora_rank = torch.sum(S > mode_param).item()
elif mode == 'ratio':
assert 1 >= mode_param >= 0
min_s = torch.max(S) * mode_param
lora_rank = torch.sum(S > min_s).item()
elif mode == 'quantile':
assert 1 >= mode_param >= 0
s_cum = torch.cumsum(S, dim=0)
min_cum_sum = mode_param * torch.sum(S)
lora_rank = torch.sum(s_cum < min_cum_sum).item()
else:
raise NotImplementedError('Extract mode should be "fixed", "threshold", "ratio" or "quantile"')
lora_rank = max(1, lora_rank)
lora_rank = min(out_ch, in_ch, lora_rank)
if lora_rank >= out_ch / 2:
# print(f"rank is higher than it should be")
lora_rank = int(out_ch / 2)
# return weight, 'full'
# print(f"Skipping layer as determined rank is too high")
# return None, None, None, None
U = U[:, :lora_rank]
S = S[:lora_rank]
U = U @ torch.diag(S)
Vh = Vh[:lora_rank, :]
diff = (weight - U @ Vh).detach()
extract_weight_A = Vh.reshape(lora_rank, in_ch).detach()
extract_weight_B = U.reshape(out_ch, lora_rank).detach()
del U, S, Vh, weight
return extract_weight_A, extract_weight_B, lora_rank, diff
def replace_module_by_path(network, name, module):
"""Replace a module in a network by its name."""
name_parts = name.split('.')
current_module = network
for part in name_parts[:-1]:
current_module = getattr(current_module, part)
try:
setattr(current_module, name_parts[-1], module)
except Exception as e:
print(e)
def count_parameters(module):
return sum(p.numel() for p in module.parameters())
def compute_optimal_bias(original_module, linear_down, linear_up, X):
Y_original = original_module(X)
Y_approx = linear_up(linear_down(X))
E = Y_original - Y_approx
optimal_bias = E.mean(dim=0)
return optimal_bias
def format_with_commas(n):
return f"{n:,}"
def print_lorm_extract_details(
start_num_params: int,
end_num_params: int,
num_replaced: int,
):
start_formatted = format_with_commas(start_num_params)
end_formatted = format_with_commas(end_num_params)
num_replaced_formatted = format_with_commas(num_replaced)
width = max(len(start_formatted), len(end_formatted), len(num_replaced_formatted))
print(f"Convert UNet result:")
print(f" - converted: {num_replaced:>{width},} modules")
print(f" - start: {start_num_params:>{width},} params")
print(f" - end: {end_num_params:>{width},} params")
lorm_ignore_if_contains = [
'proj_out', 'proj_in',
]
lorm_parameter_threshold = 1000000
@torch.no_grad()
def convert_diffusers_unet_to_lorm(
unet: UNet2DConditionModel,
config: LoRMConfig,
):
print('Converting UNet to LoRM UNet')
start_num_params = count_parameters(unet)
named_modules = list(unet.named_modules())
num_replaced = 0
pbar = tqdm(total=len(named_modules), desc="UNet -> LoRM UNet")
layer_names_replaced = []
converted_modules = []
ignore_if_contains = [
'proj_out', 'proj_in',
]
for name, module in named_modules:
module_name = module.__class__.__name__
if module_name in UNET_TARGET_REPLACE_MODULE:
for child_name, child_module in module.named_modules():
new_module: Union[LoRMCon2d, LoRMLinear, None] = None
# if child name includes attn, skip it
combined_name = combined_name = f"{name}.{child_name}"
# if child_module.__class__.__name__ in LINEAR_MODULES and child_module.bias is None:
# pass
lorm_config = config.get_config_for_module(combined_name)
extract_mode = lorm_config.extract_mode
extract_mode_param = lorm_config.extract_mode_param
parameter_threshold = lorm_config.parameter_threshold
if any([word in child_name for word in ignore_if_contains]):
pass
elif child_module.__class__.__name__ in LINEAR_MODULES:
if count_parameters(child_module) > parameter_threshold:
dtype = child_module.weight.dtype
# extract and convert
down_weight, up_weight, lora_dim, diff = extract_linear(
weight=child_module.weight.clone().detach().float(),
mode=extract_mode,
mode_param=extract_mode_param,
device=child_module.weight.device,
)
if down_weight is None:
continue
down_weight = down_weight.to(dtype=dtype)
up_weight = up_weight.to(dtype=dtype)
bias_weight = None
if child_module.bias is not None:
bias_weight = child_module.bias.data.clone().detach().to(dtype=dtype)
# linear layer weights = (out_features, in_features)
new_module = LoRMLinear(
in_features=down_weight.shape[1],
lorm_features=lora_dim,
out_features=up_weight.shape[0],
bias=bias_weight is not None,
device=down_weight.device,
dtype=down_weight.dtype
)
# replace the weights
new_module.down.weight.data = down_weight
new_module.up.weight.data = up_weight
if bias_weight is not None:
new_module.up.bias.data = bias_weight
# else:
# new_module.up.bias.data = torch.zeros_like(new_module.up.bias.data)
# bias_correction = compute_optimal_bias(
# child_module,
# new_module.down,
# new_module.up,
# torch.randn((1000, down_weight.shape[1])).to(device=down_weight.device, dtype=dtype)
# )
# new_module.up.bias.data += bias_correction
elif child_module.__class__.__name__ in CONV_MODULES:
if count_parameters(child_module) > parameter_threshold:
dtype = child_module.weight.dtype
down_weight, up_weight, lora_dim, diff = extract_conv(
weight=child_module.weight.clone().detach().float(),
mode=extract_mode,
mode_param=extract_mode_param,
device=child_module.weight.device,
)
if down_weight is None:
continue
down_weight = down_weight.to(dtype=dtype)
up_weight = up_weight.to(dtype=dtype)
bias_weight = None
if child_module.bias is not None:
bias_weight = child_module.bias.data.clone().detach().to(dtype=dtype)
new_module = LoRMCon2d(
in_channels=down_weight.shape[1],
lorm_channels=lora_dim,
out_channels=up_weight.shape[0],
kernel_size=child_module.kernel_size,
dilation=child_module.dilation,
padding=child_module.padding,
padding_mode=child_module.padding_mode,
stride=child_module.stride,
bias=bias_weight is not None,
device=down_weight.device,
dtype=down_weight.dtype
)
# replace the weights
new_module.down.weight.data = down_weight
new_module.up.weight.data = up_weight
if bias_weight is not None:
new_module.up.bias.data = bias_weight
if new_module:
combined_name = f"{name}.{child_name}"
replace_module_by_path(unet, combined_name, new_module)
converted_modules.append(new_module)
num_replaced += 1
layer_names_replaced.append(
f"{combined_name} - {format_with_commas(count_parameters(child_module))}")
pbar.update(1)
pbar.close()
end_num_params = count_parameters(unet)
def sorting_key(s):
# Extract the number part, remove commas, and convert to integer
return int(s.split("-")[1].strip().replace(",", ""))
sorted_layer_names_replaced = sorted(layer_names_replaced, key=sorting_key, reverse=True)
for layer_name in sorted_layer_names_replaced:
print(layer_name)
print_lorm_extract_details(
start_num_params=start_num_params,
end_num_params=end_num_params,
num_replaced=num_replaced,
)
return converted_modules