File size: 15,876 Bytes
1ba389d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 |
from typing import Union, Tuple, Literal, Optional
import torch
import torch.nn as nn
from diffusers import UNet2DConditionModel
from torch import Tensor
from tqdm import tqdm
from toolkit.config_modules import LoRMConfig
conv = nn.Conv2d
lin = nn.Linear
_size_2_t = Union[int, Tuple[int, int]]
ExtractMode = Union[
'fixed',
'threshold',
'ratio',
'quantile',
'percentage'
]
LINEAR_MODULES = [
'Linear',
'LoRACompatibleLinear'
]
CONV_MODULES = [
# 'Conv2d',
# 'LoRACompatibleConv'
]
UNET_TARGET_REPLACE_MODULE = [
"Transformer2DModel",
# "ResnetBlock2D",
"Downsample2D",
"Upsample2D",
]
LORM_TARGET_REPLACE_MODULE = UNET_TARGET_REPLACE_MODULE
UNET_TARGET_REPLACE_NAME = [
"conv_in",
"conv_out",
"time_embedding.linear_1",
"time_embedding.linear_2",
]
UNET_MODULES_TO_AVOID = [
]
# Low Rank Convolution
class LoRMCon2d(nn.Module):
def __init__(
self,
in_channels: int,
lorm_channels: int,
out_channels: int,
kernel_size: _size_2_t,
stride: _size_2_t = 1,
padding: Union[str, _size_2_t] = 'same',
dilation: _size_2_t = 1,
groups: int = 1,
bias: bool = True,
padding_mode: str = 'zeros',
device=None,
dtype=None
) -> None:
super().__init__()
self.in_channels = in_channels
self.lorm_channels = lorm_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.stride = stride
self.padding = padding
self.dilation = dilation
self.groups = groups
self.padding_mode = padding_mode
self.down = nn.Conv2d(
in_channels=in_channels,
out_channels=lorm_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups,
bias=False,
padding_mode=padding_mode,
device=device,
dtype=dtype
)
# Kernel size on the up is always 1x1.
# I don't think you could calculate a dual 3x3, or I can't at least
self.up = nn.Conv2d(
in_channels=lorm_channels,
out_channels=out_channels,
kernel_size=(1, 1),
stride=1,
padding='same',
dilation=1,
groups=1,
bias=bias,
padding_mode='zeros',
device=device,
dtype=dtype
)
def forward(self, input: Tensor, *args, **kwargs) -> Tensor:
x = input
x = self.down(x)
x = self.up(x)
return x
class LoRMLinear(nn.Module):
def __init__(
self,
in_features: int,
lorm_features: int,
out_features: int,
bias: bool = True,
device=None,
dtype=None
) -> None:
super().__init__()
self.in_features = in_features
self.lorm_features = lorm_features
self.out_features = out_features
self.down = nn.Linear(
in_features=in_features,
out_features=lorm_features,
bias=False,
device=device,
dtype=dtype
)
self.up = nn.Linear(
in_features=lorm_features,
out_features=out_features,
bias=bias,
# bias=True,
device=device,
dtype=dtype
)
def forward(self, input: Tensor, *args, **kwargs) -> Tensor:
x = input
x = self.down(x)
x = self.up(x)
return x
def extract_conv(
weight: Union[torch.Tensor, nn.Parameter],
mode='fixed',
mode_param=0,
device='cpu'
) -> Tuple[Tensor, Tensor, int, Tensor]:
weight = weight.to(device)
out_ch, in_ch, kernel_size, _ = weight.shape
U, S, Vh = torch.linalg.svd(weight.reshape(out_ch, -1))
if mode == 'percentage':
assert 0 <= mode_param <= 1 # Ensure it's a valid percentage.
original_params = out_ch * in_ch * kernel_size * kernel_size
desired_params = mode_param * original_params
# Solve for lora_rank from the equation
lora_rank = int(desired_params / (in_ch * kernel_size * kernel_size + out_ch))
elif mode == 'fixed':
lora_rank = mode_param
elif mode == 'threshold':
assert mode_param >= 0
lora_rank = torch.sum(S > mode_param).item()
elif mode == 'ratio':
assert 1 >= mode_param >= 0
min_s = torch.max(S) * mode_param
lora_rank = torch.sum(S > min_s).item()
elif mode == 'quantile' or mode == 'percentile':
assert 1 >= mode_param >= 0
s_cum = torch.cumsum(S, dim=0)
min_cum_sum = mode_param * torch.sum(S)
lora_rank = torch.sum(s_cum < min_cum_sum).item()
else:
raise NotImplementedError('Extract mode should be "fixed", "threshold", "ratio" or "quantile"')
lora_rank = max(1, lora_rank)
lora_rank = min(out_ch, in_ch, lora_rank)
if lora_rank >= out_ch / 2:
lora_rank = int(out_ch / 2)
print(f"rank is higher than it should be")
# print(f"Skipping layer as determined rank is too high")
# return None, None, None, None
# return weight, 'full'
U = U[:, :lora_rank]
S = S[:lora_rank]
U = U @ torch.diag(S)
Vh = Vh[:lora_rank, :]
diff = (weight - (U @ Vh).reshape(out_ch, in_ch, kernel_size, kernel_size)).detach()
extract_weight_A = Vh.reshape(lora_rank, in_ch, kernel_size, kernel_size).detach()
extract_weight_B = U.reshape(out_ch, lora_rank, 1, 1).detach()
del U, S, Vh, weight
return extract_weight_A, extract_weight_B, lora_rank, diff
def extract_linear(
weight: Union[torch.Tensor, nn.Parameter],
mode='fixed',
mode_param=0,
device='cpu',
) -> Tuple[Tensor, Tensor, int, Tensor]:
weight = weight.to(device)
out_ch, in_ch = weight.shape
U, S, Vh = torch.linalg.svd(weight)
if mode == 'percentage':
assert 0 <= mode_param <= 1 # Ensure it's a valid percentage.
desired_params = mode_param * out_ch * in_ch
# Solve for lora_rank from the equation
lora_rank = int(desired_params / (in_ch + out_ch))
elif mode == 'fixed':
lora_rank = mode_param
elif mode == 'threshold':
assert mode_param >= 0
lora_rank = torch.sum(S > mode_param).item()
elif mode == 'ratio':
assert 1 >= mode_param >= 0
min_s = torch.max(S) * mode_param
lora_rank = torch.sum(S > min_s).item()
elif mode == 'quantile':
assert 1 >= mode_param >= 0
s_cum = torch.cumsum(S, dim=0)
min_cum_sum = mode_param * torch.sum(S)
lora_rank = torch.sum(s_cum < min_cum_sum).item()
else:
raise NotImplementedError('Extract mode should be "fixed", "threshold", "ratio" or "quantile"')
lora_rank = max(1, lora_rank)
lora_rank = min(out_ch, in_ch, lora_rank)
if lora_rank >= out_ch / 2:
# print(f"rank is higher than it should be")
lora_rank = int(out_ch / 2)
# return weight, 'full'
# print(f"Skipping layer as determined rank is too high")
# return None, None, None, None
U = U[:, :lora_rank]
S = S[:lora_rank]
U = U @ torch.diag(S)
Vh = Vh[:lora_rank, :]
diff = (weight - U @ Vh).detach()
extract_weight_A = Vh.reshape(lora_rank, in_ch).detach()
extract_weight_B = U.reshape(out_ch, lora_rank).detach()
del U, S, Vh, weight
return extract_weight_A, extract_weight_B, lora_rank, diff
def replace_module_by_path(network, name, module):
"""Replace a module in a network by its name."""
name_parts = name.split('.')
current_module = network
for part in name_parts[:-1]:
current_module = getattr(current_module, part)
try:
setattr(current_module, name_parts[-1], module)
except Exception as e:
print(e)
def count_parameters(module):
return sum(p.numel() for p in module.parameters())
def compute_optimal_bias(original_module, linear_down, linear_up, X):
Y_original = original_module(X)
Y_approx = linear_up(linear_down(X))
E = Y_original - Y_approx
optimal_bias = E.mean(dim=0)
return optimal_bias
def format_with_commas(n):
return f"{n:,}"
def print_lorm_extract_details(
start_num_params: int,
end_num_params: int,
num_replaced: int,
):
start_formatted = format_with_commas(start_num_params)
end_formatted = format_with_commas(end_num_params)
num_replaced_formatted = format_with_commas(num_replaced)
width = max(len(start_formatted), len(end_formatted), len(num_replaced_formatted))
print(f"Convert UNet result:")
print(f" - converted: {num_replaced:>{width},} modules")
print(f" - start: {start_num_params:>{width},} params")
print(f" - end: {end_num_params:>{width},} params")
lorm_ignore_if_contains = [
'proj_out', 'proj_in',
]
lorm_parameter_threshold = 1000000
@torch.no_grad()
def convert_diffusers_unet_to_lorm(
unet: UNet2DConditionModel,
config: LoRMConfig,
):
print('Converting UNet to LoRM UNet')
start_num_params = count_parameters(unet)
named_modules = list(unet.named_modules())
num_replaced = 0
pbar = tqdm(total=len(named_modules), desc="UNet -> LoRM UNet")
layer_names_replaced = []
converted_modules = []
ignore_if_contains = [
'proj_out', 'proj_in',
]
for name, module in named_modules:
module_name = module.__class__.__name__
if module_name in UNET_TARGET_REPLACE_MODULE:
for child_name, child_module in module.named_modules():
new_module: Union[LoRMCon2d, LoRMLinear, None] = None
# if child name includes attn, skip it
combined_name = combined_name = f"{name}.{child_name}"
# if child_module.__class__.__name__ in LINEAR_MODULES and child_module.bias is None:
# pass
lorm_config = config.get_config_for_module(combined_name)
extract_mode = lorm_config.extract_mode
extract_mode_param = lorm_config.extract_mode_param
parameter_threshold = lorm_config.parameter_threshold
if any([word in child_name for word in ignore_if_contains]):
pass
elif child_module.__class__.__name__ in LINEAR_MODULES:
if count_parameters(child_module) > parameter_threshold:
dtype = child_module.weight.dtype
# extract and convert
down_weight, up_weight, lora_dim, diff = extract_linear(
weight=child_module.weight.clone().detach().float(),
mode=extract_mode,
mode_param=extract_mode_param,
device=child_module.weight.device,
)
if down_weight is None:
continue
down_weight = down_weight.to(dtype=dtype)
up_weight = up_weight.to(dtype=dtype)
bias_weight = None
if child_module.bias is not None:
bias_weight = child_module.bias.data.clone().detach().to(dtype=dtype)
# linear layer weights = (out_features, in_features)
new_module = LoRMLinear(
in_features=down_weight.shape[1],
lorm_features=lora_dim,
out_features=up_weight.shape[0],
bias=bias_weight is not None,
device=down_weight.device,
dtype=down_weight.dtype
)
# replace the weights
new_module.down.weight.data = down_weight
new_module.up.weight.data = up_weight
if bias_weight is not None:
new_module.up.bias.data = bias_weight
# else:
# new_module.up.bias.data = torch.zeros_like(new_module.up.bias.data)
# bias_correction = compute_optimal_bias(
# child_module,
# new_module.down,
# new_module.up,
# torch.randn((1000, down_weight.shape[1])).to(device=down_weight.device, dtype=dtype)
# )
# new_module.up.bias.data += bias_correction
elif child_module.__class__.__name__ in CONV_MODULES:
if count_parameters(child_module) > parameter_threshold:
dtype = child_module.weight.dtype
down_weight, up_weight, lora_dim, diff = extract_conv(
weight=child_module.weight.clone().detach().float(),
mode=extract_mode,
mode_param=extract_mode_param,
device=child_module.weight.device,
)
if down_weight is None:
continue
down_weight = down_weight.to(dtype=dtype)
up_weight = up_weight.to(dtype=dtype)
bias_weight = None
if child_module.bias is not None:
bias_weight = child_module.bias.data.clone().detach().to(dtype=dtype)
new_module = LoRMCon2d(
in_channels=down_weight.shape[1],
lorm_channels=lora_dim,
out_channels=up_weight.shape[0],
kernel_size=child_module.kernel_size,
dilation=child_module.dilation,
padding=child_module.padding,
padding_mode=child_module.padding_mode,
stride=child_module.stride,
bias=bias_weight is not None,
device=down_weight.device,
dtype=down_weight.dtype
)
# replace the weights
new_module.down.weight.data = down_weight
new_module.up.weight.data = up_weight
if bias_weight is not None:
new_module.up.bias.data = bias_weight
if new_module:
combined_name = f"{name}.{child_name}"
replace_module_by_path(unet, combined_name, new_module)
converted_modules.append(new_module)
num_replaced += 1
layer_names_replaced.append(
f"{combined_name} - {format_with_commas(count_parameters(child_module))}")
pbar.update(1)
pbar.close()
end_num_params = count_parameters(unet)
def sorting_key(s):
# Extract the number part, remove commas, and convert to integer
return int(s.split("-")[1].strip().replace(",", ""))
sorted_layer_names_replaced = sorted(layer_names_replaced, key=sorting_key, reverse=True)
for layer_name in sorted_layer_names_replaced:
print(layer_name)
print_lorm_extract_details(
start_num_params=start_num_params,
end_num_params=end_num_params,
num_replaced=num_replaced,
)
return converted_modules
|