|
import random |
|
|
|
import torch |
|
import sys |
|
|
|
from PIL import Image |
|
from diffusers import Transformer2DModel |
|
from torch import nn |
|
from torch.nn import Parameter |
|
from torch.nn.modules.module import T |
|
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection |
|
|
|
from toolkit.models.clip_pre_processor import CLIPImagePreProcessor |
|
from toolkit.models.zipper_resampler import ZipperResampler |
|
from toolkit.paths import REPOS_ROOT |
|
from toolkit.saving import load_ip_adapter_model |
|
from toolkit.train_tools import get_torch_dtype |
|
from toolkit.util.inverse_cfg import inverse_classifier_guidance |
|
|
|
sys.path.append(REPOS_ROOT) |
|
from typing import TYPE_CHECKING, Union, Iterator, Mapping, Any, Tuple, List, Optional |
|
from collections import OrderedDict |
|
from ipadapter.ip_adapter.attention_processor import AttnProcessor, IPAttnProcessor, IPAttnProcessor2_0, \ |
|
AttnProcessor2_0 |
|
from ipadapter.ip_adapter.ip_adapter import ImageProjModel |
|
from ipadapter.ip_adapter.resampler import PerceiverAttention, FeedForward, Resampler |
|
from toolkit.config_modules import AdapterConfig |
|
from toolkit.prompt_utils import PromptEmbeds |
|
import weakref |
|
from diffusers import FluxTransformer2DModel |
|
|
|
if TYPE_CHECKING: |
|
from toolkit.stable_diffusion_model import StableDiffusion |
|
|
|
from transformers import ( |
|
CLIPImageProcessor, |
|
CLIPVisionModelWithProjection, |
|
CLIPVisionModel, |
|
AutoImageProcessor, |
|
ConvNextModel, |
|
ConvNextV2ForImageClassification, |
|
ConvNextForImageClassification, |
|
ConvNextImageProcessor |
|
) |
|
from toolkit.models.size_agnostic_feature_encoder import SAFEImageProcessor, SAFEVisionModel |
|
|
|
from transformers import ViTHybridImageProcessor, ViTHybridForImageClassification |
|
|
|
from transformers import ViTFeatureExtractor, ViTForImageClassification |
|
|
|
|
|
from torch.utils.checkpoint import checkpoint |
|
|
|
import torch.nn.functional as F |
|
|
|
|
|
class MLPProjModelClipFace(torch.nn.Module): |
|
def __init__(self, cross_attention_dim=768, id_embeddings_dim=512, num_tokens=4): |
|
super().__init__() |
|
|
|
self.cross_attention_dim = cross_attention_dim |
|
self.num_tokens = num_tokens |
|
self.norm = torch.nn.LayerNorm(id_embeddings_dim) |
|
|
|
self.proj = torch.nn.Sequential( |
|
torch.nn.Linear(id_embeddings_dim, id_embeddings_dim * 2), |
|
torch.nn.GELU(), |
|
torch.nn.Linear(id_embeddings_dim * 2, cross_attention_dim * num_tokens), |
|
) |
|
|
|
torch.nn.init.uniform_(self.proj[2].weight, a=-0.01, b=0.01) |
|
torch.nn.init.zeros_(self.proj[2].bias) |
|
|
|
|
|
|
|
|
|
def forward(self, x): |
|
x = self.norm(x) |
|
x = self.proj(x) |
|
x = x.reshape(-1, self.num_tokens, self.cross_attention_dim) |
|
return x |
|
|
|
|
|
class CustomIPAttentionProcessor(IPAttnProcessor2_0): |
|
def __init__(self, hidden_size, cross_attention_dim, scale=1.0, num_tokens=4, adapter=None, train_scaler=False, full_token_scaler=False): |
|
super().__init__(hidden_size, cross_attention_dim, scale=scale, num_tokens=num_tokens) |
|
self.adapter_ref: weakref.ref = weakref.ref(adapter) |
|
self.train_scaler = train_scaler |
|
if train_scaler: |
|
if full_token_scaler: |
|
self.ip_scaler = torch.nn.Parameter(torch.ones([num_tokens], dtype=torch.float32) * 0.999) |
|
else: |
|
self.ip_scaler = torch.nn.Parameter(torch.ones([1], dtype=torch.float32) * 0.999) |
|
|
|
self.ip_scaler.requires_grad_(True) |
|
|
|
def __call__( |
|
self, |
|
attn, |
|
hidden_states, |
|
encoder_hidden_states=None, |
|
attention_mask=None, |
|
temb=None, |
|
): |
|
is_active = self.adapter_ref().is_active |
|
residual = hidden_states |
|
|
|
if attn.spatial_norm is not None: |
|
hidden_states = attn.spatial_norm(hidden_states, temb) |
|
|
|
input_ndim = hidden_states.ndim |
|
|
|
if input_ndim == 4: |
|
batch_size, channel, height, width = hidden_states.shape |
|
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) |
|
|
|
batch_size, sequence_length, _ = ( |
|
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape |
|
) |
|
|
|
if is_active: |
|
|
|
sequence_length = sequence_length - self.num_tokens |
|
|
|
if attention_mask is not None: |
|
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) |
|
|
|
|
|
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) |
|
|
|
if attn.group_norm is not None: |
|
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) |
|
|
|
query = attn.to_q(hidden_states) |
|
|
|
if encoder_hidden_states is None: |
|
encoder_hidden_states = hidden_states |
|
|
|
|
|
if not is_active: |
|
ip_hidden_states = None |
|
if encoder_hidden_states is None: |
|
encoder_hidden_states = hidden_states |
|
elif attn.norm_cross: |
|
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) |
|
else: |
|
|
|
end_pos = encoder_hidden_states.shape[1] - self.num_tokens |
|
encoder_hidden_states, ip_hidden_states = ( |
|
encoder_hidden_states[:, :end_pos, :], |
|
encoder_hidden_states[:, end_pos:, :], |
|
) |
|
if attn.norm_cross: |
|
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) |
|
|
|
key = attn.to_k(encoder_hidden_states) |
|
value = attn.to_v(encoder_hidden_states) |
|
|
|
inner_dim = key.shape[-1] |
|
head_dim = inner_dim // attn.heads |
|
|
|
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
|
|
|
|
try: |
|
hidden_states = F.scaled_dot_product_attention( |
|
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False |
|
) |
|
except Exception as e: |
|
print(e) |
|
raise e |
|
|
|
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) |
|
hidden_states = hidden_states.to(query.dtype) |
|
|
|
|
|
if ip_hidden_states is not None: |
|
|
|
if self.train_scaler: |
|
weight = self.ip_scaler |
|
|
|
weight = weight.view(1, -1, 1) |
|
ip_hidden_states = ip_hidden_states * weight |
|
|
|
|
|
ip_key = self.to_k_ip(ip_hidden_states) |
|
ip_value = self.to_v_ip(ip_hidden_states) |
|
|
|
ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
|
|
|
|
ip_hidden_states = F.scaled_dot_product_attention( |
|
query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False |
|
) |
|
|
|
ip_hidden_states = ip_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) |
|
ip_hidden_states = ip_hidden_states.to(query.dtype) |
|
|
|
scale = self.scale |
|
hidden_states = hidden_states + scale * ip_hidden_states |
|
|
|
|
|
hidden_states = attn.to_out[0](hidden_states) |
|
|
|
hidden_states = attn.to_out[1](hidden_states) |
|
|
|
if input_ndim == 4: |
|
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) |
|
|
|
if attn.residual_connection: |
|
hidden_states = hidden_states + residual |
|
|
|
hidden_states = hidden_states / attn.rescale_output_factor |
|
|
|
return hidden_states |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class CustomIPFluxAttnProcessor2_0(torch.nn.Module): |
|
"""Attention processor used typically in processing the SD3-like self-attention projections.""" |
|
|
|
def __init__(self, hidden_size, cross_attention_dim, scale=1.0, num_tokens=4, adapter=None, train_scaler=False, |
|
full_token_scaler=False): |
|
super().__init__() |
|
self.hidden_size = hidden_size |
|
self.cross_attention_dim = cross_attention_dim |
|
self.scale = scale |
|
self.num_tokens = num_tokens |
|
|
|
self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) |
|
self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) |
|
self.adapter_ref: weakref.ref = weakref.ref(adapter) |
|
self.train_scaler = train_scaler |
|
self.num_tokens = num_tokens |
|
if train_scaler: |
|
if full_token_scaler: |
|
self.ip_scaler = torch.nn.Parameter(torch.ones([num_tokens], dtype=torch.float32) * 0.999) |
|
else: |
|
self.ip_scaler = torch.nn.Parameter(torch.ones([1], dtype=torch.float32) * 0.999) |
|
|
|
self.ip_scaler.requires_grad_(True) |
|
|
|
def __call__( |
|
self, |
|
attn, |
|
hidden_states: torch.FloatTensor, |
|
encoder_hidden_states: torch.FloatTensor = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
image_rotary_emb: Optional[torch.Tensor] = None, |
|
) -> torch.FloatTensor: |
|
is_active = self.adapter_ref().is_active |
|
batch_size, _, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape |
|
|
|
|
|
query = attn.to_q(hidden_states) |
|
key = attn.to_k(hidden_states) |
|
value = attn.to_v(hidden_states) |
|
|
|
inner_dim = key.shape[-1] |
|
head_dim = inner_dim // attn.heads |
|
|
|
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
if attn.norm_q is not None: |
|
query = attn.norm_q(query) |
|
if attn.norm_k is not None: |
|
key = attn.norm_k(key) |
|
|
|
|
|
if encoder_hidden_states is not None: |
|
|
|
encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states) |
|
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states) |
|
encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states) |
|
|
|
encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view( |
|
batch_size, -1, attn.heads, head_dim |
|
).transpose(1, 2) |
|
encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view( |
|
batch_size, -1, attn.heads, head_dim |
|
).transpose(1, 2) |
|
encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view( |
|
batch_size, -1, attn.heads, head_dim |
|
).transpose(1, 2) |
|
|
|
if attn.norm_added_q is not None: |
|
encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj) |
|
if attn.norm_added_k is not None: |
|
encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj) |
|
|
|
|
|
query = torch.cat([encoder_hidden_states_query_proj, query], dim=2) |
|
key = torch.cat([encoder_hidden_states_key_proj, key], dim=2) |
|
value = torch.cat([encoder_hidden_states_value_proj, value], dim=2) |
|
|
|
if image_rotary_emb is not None: |
|
from diffusers.models.embeddings import apply_rotary_emb |
|
|
|
query = apply_rotary_emb(query, image_rotary_emb) |
|
key = apply_rotary_emb(key, image_rotary_emb) |
|
|
|
hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False) |
|
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) |
|
hidden_states = hidden_states.to(query.dtype) |
|
|
|
|
|
if not is_active: |
|
ip_hidden_states = None |
|
else: |
|
|
|
ip_hidden_states = self.adapter_ref().last_conditional |
|
|
|
if ip_hidden_states.shape[0] * 2 == batch_size: |
|
if self.adapter_ref().last_unconditional is None: |
|
raise ValueError("Unconditional is None but should not be") |
|
ip_hidden_states = torch.cat([self.adapter_ref().last_unconditional, ip_hidden_states], dim=0) |
|
|
|
if ip_hidden_states is not None: |
|
|
|
if self.train_scaler: |
|
weight = self.ip_scaler |
|
|
|
weight = weight.view(1, -1, 1) |
|
ip_hidden_states = ip_hidden_states * weight |
|
|
|
|
|
ip_key = self.to_k_ip(ip_hidden_states) |
|
ip_value = self.to_v_ip(ip_hidden_states) |
|
|
|
ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
ip_hidden_states = F.scaled_dot_product_attention( |
|
query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False |
|
) |
|
|
|
ip_hidden_states = ip_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) |
|
ip_hidden_states = ip_hidden_states.to(query.dtype) |
|
|
|
scale = self.scale |
|
hidden_states = hidden_states + scale * ip_hidden_states |
|
|
|
|
|
if encoder_hidden_states is not None: |
|
encoder_hidden_states, hidden_states = ( |
|
hidden_states[:, : encoder_hidden_states.shape[1]], |
|
hidden_states[:, encoder_hidden_states.shape[1] :], |
|
) |
|
|
|
|
|
hidden_states = attn.to_out[0](hidden_states) |
|
|
|
hidden_states = attn.to_out[1](hidden_states) |
|
encoder_hidden_states = attn.to_add_out(encoder_hidden_states) |
|
|
|
return hidden_states, encoder_hidden_states |
|
else: |
|
return hidden_states |
|
|
|
|
|
class IPAdapter(torch.nn.Module): |
|
"""IP-Adapter""" |
|
|
|
def __init__(self, sd: 'StableDiffusion', adapter_config: 'AdapterConfig'): |
|
super().__init__() |
|
self.config = adapter_config |
|
self.sd_ref: weakref.ref = weakref.ref(sd) |
|
self.device = self.sd_ref().unet.device |
|
self.preprocessor: Optional[CLIPImagePreProcessor] = None |
|
self.input_size = 224 |
|
self.clip_noise_zero = True |
|
self.unconditional: torch.Tensor = None |
|
|
|
self.last_conditional: torch.Tensor = None |
|
self.last_unconditional: torch.Tensor = None |
|
|
|
self.additional_loss = None |
|
if self.config.image_encoder_arch.startswith("clip"): |
|
try: |
|
self.clip_image_processor = CLIPImageProcessor.from_pretrained(adapter_config.image_encoder_path) |
|
except EnvironmentError: |
|
self.clip_image_processor = CLIPImageProcessor() |
|
self.image_encoder = CLIPVisionModelWithProjection.from_pretrained( |
|
adapter_config.image_encoder_path, |
|
ignore_mismatched_sizes=True).to(self.device, dtype=get_torch_dtype(self.sd_ref().dtype)) |
|
elif self.config.image_encoder_arch == 'siglip': |
|
from transformers import SiglipImageProcessor, SiglipVisionModel |
|
try: |
|
self.clip_image_processor = SiglipImageProcessor.from_pretrained(adapter_config.image_encoder_path) |
|
except EnvironmentError: |
|
self.clip_image_processor = SiglipImageProcessor() |
|
self.image_encoder = SiglipVisionModel.from_pretrained( |
|
adapter_config.image_encoder_path, |
|
ignore_mismatched_sizes=True).to(self.device, dtype=get_torch_dtype(self.sd_ref().dtype)) |
|
elif self.config.image_encoder_arch == 'vit': |
|
try: |
|
self.clip_image_processor = ViTFeatureExtractor.from_pretrained(adapter_config.image_encoder_path) |
|
except EnvironmentError: |
|
self.clip_image_processor = ViTFeatureExtractor() |
|
self.image_encoder = ViTForImageClassification.from_pretrained(adapter_config.image_encoder_path).to( |
|
self.device, dtype=get_torch_dtype(self.sd_ref().dtype)) |
|
elif self.config.image_encoder_arch == 'safe': |
|
try: |
|
self.clip_image_processor = SAFEImageProcessor.from_pretrained(adapter_config.image_encoder_path) |
|
except EnvironmentError: |
|
self.clip_image_processor = SAFEImageProcessor() |
|
self.image_encoder = SAFEVisionModel( |
|
in_channels=3, |
|
num_tokens=self.config.safe_tokens, |
|
num_vectors=sd.unet.config['cross_attention_dim'], |
|
reducer_channels=self.config.safe_reducer_channels, |
|
channels=self.config.safe_channels, |
|
downscale_factor=8 |
|
).to(self.device, dtype=get_torch_dtype(self.sd_ref().dtype)) |
|
elif self.config.image_encoder_arch == 'convnext': |
|
try: |
|
self.clip_image_processor = ConvNextImageProcessor.from_pretrained(adapter_config.image_encoder_path) |
|
except EnvironmentError: |
|
print(f"could not load image processor from {adapter_config.image_encoder_path}") |
|
self.clip_image_processor = ConvNextImageProcessor( |
|
size=320, |
|
image_mean=[0.48145466, 0.4578275, 0.40821073], |
|
image_std=[0.26862954, 0.26130258, 0.27577711], |
|
) |
|
self.image_encoder = ConvNextForImageClassification.from_pretrained( |
|
adapter_config.image_encoder_path, |
|
use_safetensors=True, |
|
).to(self.device, dtype=get_torch_dtype(self.sd_ref().dtype)) |
|
elif self.config.image_encoder_arch == 'convnextv2': |
|
try: |
|
self.clip_image_processor = AutoImageProcessor.from_pretrained(adapter_config.image_encoder_path) |
|
except EnvironmentError: |
|
print(f"could not load image processor from {adapter_config.image_encoder_path}") |
|
self.clip_image_processor = ConvNextImageProcessor( |
|
size=512, |
|
image_mean=[0.485, 0.456, 0.406], |
|
image_std=[0.229, 0.224, 0.225], |
|
) |
|
self.image_encoder = ConvNextV2ForImageClassification.from_pretrained( |
|
adapter_config.image_encoder_path, |
|
use_safetensors=True, |
|
).to(self.device, dtype=get_torch_dtype(self.sd_ref().dtype)) |
|
elif self.config.image_encoder_arch == 'vit-hybrid': |
|
try: |
|
self.clip_image_processor = ViTHybridImageProcessor.from_pretrained(adapter_config.image_encoder_path) |
|
except EnvironmentError: |
|
print(f"could not load image processor from {adapter_config.image_encoder_path}") |
|
self.clip_image_processor = ViTHybridImageProcessor( |
|
size=320, |
|
image_mean=[0.48145466, 0.4578275, 0.40821073], |
|
image_std=[0.26862954, 0.26130258, 0.27577711], |
|
) |
|
self.image_encoder = ViTHybridForImageClassification.from_pretrained( |
|
adapter_config.image_encoder_path, |
|
use_safetensors=True, |
|
).to(self.device, dtype=get_torch_dtype(self.sd_ref().dtype)) |
|
else: |
|
raise ValueError(f"unknown image encoder arch: {adapter_config.image_encoder_arch}") |
|
|
|
if not self.config.train_image_encoder: |
|
|
|
print('Compiling image encoder') |
|
|
|
|
|
self.input_size = self.image_encoder.config.image_size |
|
|
|
if self.config.quad_image: |
|
|
|
|
|
preprocessor_input_size = self.image_encoder.config.image_size * 2 |
|
|
|
|
|
if 'height' in self.clip_image_processor.size: |
|
self.clip_image_processor.size['height'] = preprocessor_input_size |
|
self.clip_image_processor.size['width'] = preprocessor_input_size |
|
elif hasattr(self.clip_image_processor, 'crop_size'): |
|
self.clip_image_processor.size['shortest_edge'] = preprocessor_input_size |
|
self.clip_image_processor.crop_size['height'] = preprocessor_input_size |
|
self.clip_image_processor.crop_size['width'] = preprocessor_input_size |
|
|
|
if self.config.image_encoder_arch == 'clip+': |
|
|
|
|
|
preprocessor_input_size = self.image_encoder.config.image_size * 4 |
|
|
|
|
|
self.clip_image_processor.size['shortest_edge'] = preprocessor_input_size |
|
self.clip_image_processor.crop_size['height'] = preprocessor_input_size |
|
self.clip_image_processor.crop_size['width'] = preprocessor_input_size |
|
|
|
self.preprocessor = CLIPImagePreProcessor( |
|
input_size=preprocessor_input_size, |
|
clip_input_size=self.image_encoder.config.image_size, |
|
) |
|
if not self.config.image_encoder_arch == 'safe': |
|
if 'height' in self.clip_image_processor.size: |
|
self.input_size = self.clip_image_processor.size['height'] |
|
elif hasattr(self.clip_image_processor, 'crop_size'): |
|
self.input_size = self.clip_image_processor.crop_size['height'] |
|
elif 'shortest_edge' in self.clip_image_processor.size.keys(): |
|
self.input_size = self.clip_image_processor.size['shortest_edge'] |
|
else: |
|
raise ValueError(f"unknown image processor size: {self.clip_image_processor.size}") |
|
self.current_scale = 1.0 |
|
self.is_active = True |
|
is_pixart = sd.is_pixart |
|
is_flux = sd.is_flux |
|
if adapter_config.type == 'ip': |
|
|
|
image_proj_model = ImageProjModel( |
|
cross_attention_dim=sd.unet.config['cross_attention_dim'], |
|
clip_embeddings_dim=self.image_encoder.config.projection_dim, |
|
clip_extra_context_tokens=self.config.num_tokens, |
|
) |
|
elif adapter_config.type == 'ip_clip_face': |
|
cross_attn_dim = 4096 if is_pixart else sd.unet.config['cross_attention_dim'] |
|
image_proj_model = MLPProjModelClipFace( |
|
cross_attention_dim=cross_attn_dim, |
|
id_embeddings_dim=self.image_encoder.config.projection_dim, |
|
num_tokens=self.config.num_tokens, |
|
) |
|
elif adapter_config.type == 'ip+': |
|
heads = 12 if not sd.is_xl else 20 |
|
if is_flux: |
|
dim = 1280 |
|
else: |
|
dim = sd.unet.config['cross_attention_dim'] if not sd.is_xl else 1280 |
|
embedding_dim = self.image_encoder.config.hidden_size if not self.config.image_encoder_arch.startswith( |
|
'convnext') else \ |
|
self.image_encoder.config.hidden_sizes[-1] |
|
|
|
image_encoder_state_dict = self.image_encoder.state_dict() |
|
|
|
max_seq_len = 257 |
|
if "vision_model.embeddings.position_embedding.weight" in image_encoder_state_dict: |
|
|
|
max_seq_len = int( |
|
image_encoder_state_dict["vision_model.embeddings.position_embedding.weight"].shape[0]) |
|
|
|
if is_pixart: |
|
heads = 20 |
|
dim = 1280 |
|
output_dim = 4096 |
|
elif is_flux: |
|
heads = 20 |
|
dim = 1280 |
|
output_dim = 3072 |
|
else: |
|
output_dim = sd.unet.config['cross_attention_dim'] |
|
|
|
if self.config.image_encoder_arch.startswith('convnext'): |
|
in_tokens = 16 * 16 |
|
embedding_dim = self.image_encoder.config.hidden_sizes[-1] |
|
|
|
|
|
image_proj_model = Resampler( |
|
dim=dim, |
|
depth=4, |
|
dim_head=64, |
|
heads=heads, |
|
num_queries=self.config.num_tokens if self.config.num_tokens > 0 else max_seq_len, |
|
embedding_dim=embedding_dim, |
|
max_seq_len=max_seq_len, |
|
output_dim=output_dim, |
|
ff_mult=4 |
|
) |
|
elif adapter_config.type == 'ipz': |
|
dim = sd.unet.config['cross_attention_dim'] |
|
if hasattr(self.image_encoder.config, 'hidden_sizes'): |
|
embedding_dim = self.image_encoder.config.hidden_sizes[-1] |
|
else: |
|
embedding_dim = self.image_encoder.config.target_hidden_size |
|
|
|
image_encoder_state_dict = self.image_encoder.state_dict() |
|
|
|
in_tokens = 257 |
|
if "vision_model.embeddings.position_embedding.weight" in image_encoder_state_dict: |
|
|
|
in_tokens = int(image_encoder_state_dict["vision_model.embeddings.position_embedding.weight"].shape[0]) |
|
|
|
if self.config.image_encoder_arch.startswith('convnext'): |
|
in_tokens = 16 * 16 |
|
embedding_dim = self.image_encoder.config.hidden_sizes[-1] |
|
|
|
is_conv_next = self.config.image_encoder_arch.startswith('convnext') |
|
|
|
out_tokens = self.config.num_tokens if self.config.num_tokens > 0 else in_tokens |
|
|
|
image_proj_model = ZipperResampler( |
|
in_size=embedding_dim, |
|
in_tokens=in_tokens, |
|
out_size=dim, |
|
out_tokens=out_tokens, |
|
hidden_size=embedding_dim, |
|
hidden_tokens=in_tokens, |
|
|
|
num_blocks=1 if not is_conv_next else 2, |
|
is_conv_input=is_conv_next |
|
) |
|
elif adapter_config.type == 'ilora': |
|
|
|
image_proj_model = None |
|
else: |
|
raise ValueError(f"unknown adapter type: {adapter_config.type}") |
|
|
|
|
|
attn_procs = {} |
|
unet_sd = sd.unet.state_dict() |
|
attn_processor_keys = [] |
|
if is_pixart: |
|
transformer: Transformer2DModel = sd.unet |
|
for i, module in transformer.transformer_blocks.named_children(): |
|
attn_processor_keys.append(f"transformer_blocks.{i}.attn1") |
|
|
|
|
|
attn_processor_keys.append(f"transformer_blocks.{i}.attn2") |
|
elif is_flux: |
|
transformer: FluxTransformer2DModel = sd.unet |
|
for i, module in transformer.transformer_blocks.named_children(): |
|
attn_processor_keys.append(f"transformer_blocks.{i}.attn") |
|
|
|
|
|
for i, module in transformer.single_transformer_blocks.named_children(): |
|
attn_processor_keys.append(f"single_transformer_blocks.{i}.attn") |
|
else: |
|
attn_processor_keys = list(sd.unet.attn_processors.keys()) |
|
|
|
attn_processor_names = [] |
|
|
|
blocks = [] |
|
transformer_blocks = [] |
|
for name in attn_processor_keys: |
|
name_split = name.split(".") |
|
block_name = f"{name_split[0]}.{name_split[1]}" |
|
transformer_idx = name_split.index("transformer_blocks") if "transformer_blocks" in name_split else -1 |
|
if transformer_idx >= 0: |
|
transformer_name = ".".join(name_split[:2]) |
|
transformer_name += "." + ".".join(name_split[transformer_idx:transformer_idx + 2]) |
|
if transformer_name not in transformer_blocks: |
|
transformer_blocks.append(transformer_name) |
|
|
|
|
|
if block_name not in blocks: |
|
blocks.append(block_name) |
|
if is_flux: |
|
cross_attention_dim = None |
|
else: |
|
cross_attention_dim = None if name.endswith("attn1.processor") or name.endswith("attn.1") or name.endswith("attn1") else \ |
|
sd.unet.config['cross_attention_dim'] |
|
if name.startswith("mid_block"): |
|
hidden_size = sd.unet.config['block_out_channels'][-1] |
|
elif name.startswith("up_blocks"): |
|
block_id = int(name[len("up_blocks.")]) |
|
hidden_size = list(reversed(sd.unet.config['block_out_channels']))[block_id] |
|
elif name.startswith("down_blocks"): |
|
block_id = int(name[len("down_blocks.")]) |
|
hidden_size = sd.unet.config['block_out_channels'][block_id] |
|
elif name.startswith("transformer") or name.startswith("single_transformer"): |
|
if is_flux: |
|
hidden_size = 3072 |
|
else: |
|
hidden_size = sd.unet.config['cross_attention_dim'] |
|
else: |
|
|
|
raise ValueError(f"unknown attn processor name: {name}") |
|
if cross_attention_dim is None and not is_flux: |
|
attn_procs[name] = AttnProcessor2_0() |
|
else: |
|
layer_name = name.split(".processor")[0] |
|
|
|
|
|
if f"{layer_name}.to_k.weight._data" in unet_sd and is_flux: |
|
|
|
|
|
k_weight = torch.randn(hidden_size, hidden_size) * 0.01 |
|
v_weight = torch.randn(hidden_size, hidden_size) * 0.01 |
|
k_weight = k_weight.to(self.sd_ref().torch_dtype) |
|
v_weight = v_weight.to(self.sd_ref().torch_dtype) |
|
else: |
|
k_weight = unet_sd[layer_name + ".to_k.weight"] |
|
v_weight = unet_sd[layer_name + ".to_v.weight"] |
|
|
|
weights = { |
|
"to_k_ip.weight": k_weight, |
|
"to_v_ip.weight": v_weight |
|
} |
|
|
|
if is_flux: |
|
attn_procs[name] = CustomIPFluxAttnProcessor2_0( |
|
hidden_size=hidden_size, |
|
cross_attention_dim=cross_attention_dim, |
|
scale=1.0, |
|
num_tokens=self.config.num_tokens, |
|
adapter=self, |
|
train_scaler=self.config.train_scaler or self.config.merge_scaler, |
|
full_token_scaler=False |
|
) |
|
else: |
|
attn_procs[name] = CustomIPAttentionProcessor( |
|
hidden_size=hidden_size, |
|
cross_attention_dim=cross_attention_dim, |
|
scale=1.0, |
|
num_tokens=self.config.num_tokens, |
|
adapter=self, |
|
train_scaler=self.config.train_scaler or self.config.merge_scaler, |
|
|
|
full_token_scaler=False |
|
) |
|
if self.sd_ref().is_pixart or self.sd_ref().is_flux: |
|
|
|
weights = { |
|
"to_k_ip.weight": weights["to_k_ip.weight"] * 0.01, |
|
"to_v_ip.weight": weights["to_v_ip.weight"] * 0.01, |
|
} |
|
|
|
attn_procs[name].load_state_dict(weights, strict=False) |
|
attn_processor_names.append(name) |
|
print(f"Attn Processors") |
|
print(attn_processor_names) |
|
if self.sd_ref().is_pixart: |
|
|
|
transformer: Transformer2DModel = sd.unet |
|
for i, module in transformer.transformer_blocks.named_children(): |
|
module.attn1.processor = attn_procs[f"transformer_blocks.{i}.attn1"] |
|
module.attn2.processor = attn_procs[f"transformer_blocks.{i}.attn2"] |
|
self.adapter_modules = torch.nn.ModuleList( |
|
[ |
|
transformer.transformer_blocks[i].attn2.processor for i in |
|
range(len(transformer.transformer_blocks)) |
|
]) |
|
elif self.sd_ref().is_flux: |
|
|
|
transformer: FluxTransformer2DModel = sd.unet |
|
for i, module in transformer.transformer_blocks.named_children(): |
|
module.attn.processor = attn_procs[f"transformer_blocks.{i}.attn"] |
|
|
|
|
|
for i, module in transformer.single_transformer_blocks.named_children(): |
|
module.attn.processor = attn_procs[f"single_transformer_blocks.{i}.attn"] |
|
|
|
self.adapter_modules = torch.nn.ModuleList( |
|
[ |
|
transformer.transformer_blocks[i].attn.processor for i in |
|
range(len(transformer.transformer_blocks)) |
|
] + [ |
|
transformer.single_transformer_blocks[i].attn.processor for i in |
|
range(len(transformer.single_transformer_blocks)) |
|
] |
|
) |
|
else: |
|
sd.unet.set_attn_processor(attn_procs) |
|
self.adapter_modules = torch.nn.ModuleList(sd.unet.attn_processors.values()) |
|
|
|
sd.adapter = self |
|
self.unet_ref: weakref.ref = weakref.ref(sd.unet) |
|
self.image_proj_model = image_proj_model |
|
|
|
if self.config.name_or_path: |
|
loaded_state_dict = load_ip_adapter_model( |
|
self.config.name_or_path, |
|
device='cpu', |
|
dtype=sd.torch_dtype |
|
) |
|
self.load_state_dict(loaded_state_dict) |
|
|
|
self.set_scale(1.0) |
|
|
|
if self.config.train_image_encoder: |
|
self.image_encoder.train() |
|
self.image_encoder.requires_grad_(True) |
|
|
|
|
|
zerod = torch.zeros(1, 3, self.input_size, self.input_size, device=self.device, dtype=torch.float16) |
|
self.unconditional = self.clip_image_processor( |
|
images=zerod, |
|
return_tensors="pt", |
|
do_resize=True, |
|
do_rescale=False, |
|
).pixel_values |
|
|
|
def to(self, *args, **kwargs): |
|
super().to(*args, **kwargs) |
|
self.image_encoder.to(*args, **kwargs) |
|
self.image_proj_model.to(*args, **kwargs) |
|
self.adapter_modules.to(*args, **kwargs) |
|
if self.preprocessor is not None: |
|
self.preprocessor.to(*args, **kwargs) |
|
return self |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def state_dict(self) -> OrderedDict: |
|
state_dict = OrderedDict() |
|
if self.config.train_only_image_encoder: |
|
return self.image_encoder.state_dict() |
|
if self.config.train_scaler: |
|
state_dict["ip_scale"] = self.adapter_modules.state_dict() |
|
|
|
for key in list(state_dict["ip_scale"].keys()): |
|
if not key.endswith("ip_scaler"): |
|
del state_dict["ip_scale"][key] |
|
return state_dict |
|
|
|
state_dict["image_proj"] = self.image_proj_model.state_dict() |
|
state_dict["ip_adapter"] = self.adapter_modules.state_dict() |
|
|
|
if self.config.merge_scaler: |
|
for key in list(state_dict["ip_adapter"].keys()): |
|
if key.endswith("ip_scaler"): |
|
|
|
scale = state_dict["ip_adapter"][key].clone() |
|
|
|
key_start = key.split(".")[-2] |
|
|
|
scale = scale.view(1, 1) |
|
del state_dict["ip_adapter"][key] |
|
|
|
for key2 in list(state_dict["ip_adapter"].keys()): |
|
if key2.endswith(f"{key_start}.to_k_ip.weight"): |
|
state_dict["ip_adapter"][key2] = state_dict["ip_adapter"][key2].clone() * scale |
|
if key2.endswith(f"{key_start}.to_v_ip.weight"): |
|
state_dict["ip_adapter"][key2] = state_dict["ip_adapter"][key2].clone() * scale |
|
|
|
if self.config.train_image_encoder: |
|
state_dict["image_encoder"] = self.image_encoder.state_dict() |
|
if self.preprocessor is not None: |
|
state_dict["preprocessor"] = self.preprocessor.state_dict() |
|
return state_dict |
|
|
|
def get_scale(self): |
|
return self.current_scale |
|
|
|
def set_scale(self, scale): |
|
self.current_scale = scale |
|
if not self.sd_ref().is_pixart and not self.sd_ref().is_flux: |
|
for attn_processor in self.sd_ref().unet.attn_processors.values(): |
|
if isinstance(attn_processor, CustomIPAttentionProcessor): |
|
attn_processor.scale = scale |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def to(self, *args, **kwargs): |
|
super().to(*args, **kwargs) |
|
self.image_encoder.to(*args, **kwargs) |
|
self.image_proj_model.to(*args, **kwargs) |
|
self.adapter_modules.to(*args, **kwargs) |
|
if self.preprocessor is not None: |
|
self.preprocessor.to(*args, **kwargs) |
|
return self |
|
|
|
def parse_clip_image_embeds_from_cache( |
|
self, |
|
image_embeds_list: List[dict], |
|
quad_count=4, |
|
): |
|
with torch.no_grad(): |
|
device = self.sd_ref().unet.device |
|
clip_image_embeds = torch.cat([x[self.config.clip_layer] for x in image_embeds_list], dim=0) |
|
|
|
if self.config.quad_image: |
|
|
|
chunks = clip_image_embeds.chunk(quad_count, dim=0) |
|
chunk_sum = torch.zeros_like(chunks[0]) |
|
for chunk in chunks: |
|
chunk_sum = chunk_sum + chunk |
|
|
|
|
|
clip_image_embeds = chunk_sum / quad_count |
|
|
|
clip_image_embeds = clip_image_embeds.to(device, dtype=get_torch_dtype(self.sd_ref().dtype)).detach() |
|
return clip_image_embeds |
|
|
|
def get_empty_clip_image(self, batch_size: int) -> torch.Tensor: |
|
with torch.no_grad(): |
|
tensors_0_1 = torch.rand([batch_size, 3, self.input_size, self.input_size], device=self.device) |
|
noise_scale = torch.rand([tensors_0_1.shape[0], 1, 1, 1], device=self.device, |
|
dtype=get_torch_dtype(self.sd_ref().dtype)) |
|
tensors_0_1 = tensors_0_1 * noise_scale |
|
|
|
mean = torch.tensor(self.clip_image_processor.image_mean).to( |
|
self.device, dtype=get_torch_dtype(self.sd_ref().dtype) |
|
).detach() |
|
std = torch.tensor(self.clip_image_processor.image_std).to( |
|
self.device, dtype=get_torch_dtype(self.sd_ref().dtype) |
|
).detach() |
|
tensors_0_1 = torch.clip((255. * tensors_0_1), 0, 255).round() / 255.0 |
|
clip_image = (tensors_0_1 - mean.view([1, 3, 1, 1])) / std.view([1, 3, 1, 1]) |
|
return clip_image.detach() |
|
|
|
def get_clip_image_embeds_from_tensors( |
|
self, |
|
tensors_0_1: torch.Tensor, |
|
drop=False, |
|
is_training=False, |
|
has_been_preprocessed=False, |
|
quad_count=4, |
|
cfg_embed_strength=None, |
|
) -> torch.Tensor: |
|
if self.sd_ref().unet.device != self.device: |
|
self.to(self.sd_ref().unet.device) |
|
if self.sd_ref().unet.device != self.image_encoder.device: |
|
self.to(self.sd_ref().unet.device) |
|
if not self.config.train: |
|
is_training = False |
|
uncond_clip = None |
|
with torch.no_grad(): |
|
|
|
if not has_been_preprocessed: |
|
|
|
if tensors_0_1.ndim == 3: |
|
tensors_0_1 = tensors_0_1.unsqueeze(0) |
|
|
|
tensors_0_1 = tensors_0_1.to(self.device, dtype=torch.float16) |
|
|
|
|
|
if tensors_0_1.min() < -0.3 or tensors_0_1.max() > 1.3: |
|
raise ValueError("image tensor values must be between 0 and 1. Got min: {}, max: {}".format( |
|
tensors_0_1.min(), tensors_0_1.max() |
|
)) |
|
|
|
if drop: |
|
if self.clip_noise_zero: |
|
tensors_0_1 = torch.rand_like(tensors_0_1).detach() |
|
noise_scale = torch.rand([tensors_0_1.shape[0], 1, 1, 1], device=self.device, |
|
dtype=get_torch_dtype(self.sd_ref().dtype)) |
|
tensors_0_1 = tensors_0_1 * noise_scale |
|
else: |
|
tensors_0_1 = torch.zeros_like(tensors_0_1).detach() |
|
|
|
clip_image = self.clip_image_processor( |
|
images=tensors_0_1, |
|
return_tensors="pt", |
|
do_resize=True, |
|
do_rescale=False, |
|
).pixel_values |
|
else: |
|
if drop: |
|
|
|
if self.clip_noise_zero: |
|
tensors_0_1 = torch.rand_like(tensors_0_1).detach() |
|
noise_scale = torch.rand([tensors_0_1.shape[0], 1, 1, 1], device=self.device, |
|
dtype=get_torch_dtype(self.sd_ref().dtype)) |
|
tensors_0_1 = tensors_0_1 * noise_scale |
|
else: |
|
tensors_0_1 = torch.zeros_like(tensors_0_1).detach() |
|
|
|
mean = torch.tensor(self.clip_image_processor.image_mean).to( |
|
self.device, dtype=get_torch_dtype(self.sd_ref().dtype) |
|
).detach() |
|
std = torch.tensor(self.clip_image_processor.image_std).to( |
|
self.device, dtype=get_torch_dtype(self.sd_ref().dtype) |
|
).detach() |
|
tensors_0_1 = torch.clip((255. * tensors_0_1), 0, 255).round() / 255.0 |
|
clip_image = (tensors_0_1 - mean.view([1, 3, 1, 1])) / std.view([1, 3, 1, 1]) |
|
|
|
else: |
|
clip_image = tensors_0_1 |
|
clip_image = clip_image.to(self.device, dtype=get_torch_dtype(self.sd_ref().dtype)).detach() |
|
|
|
if self.config.quad_image: |
|
|
|
ci1, ci2 = clip_image.chunk(2, dim=2) |
|
ci1, ci3 = ci1.chunk(2, dim=3) |
|
ci2, ci4 = ci2.chunk(2, dim=3) |
|
to_cat = [] |
|
for i, ci in enumerate([ci1, ci2, ci3, ci4]): |
|
if i < quad_count: |
|
to_cat.append(ci) |
|
else: |
|
break |
|
|
|
clip_image = torch.cat(to_cat, dim=0).detach() |
|
|
|
|
|
|
|
with torch.set_grad_enabled(is_training): |
|
if is_training and self.config.train_image_encoder: |
|
self.image_encoder.train() |
|
clip_image = clip_image.requires_grad_(True) |
|
if self.preprocessor is not None: |
|
clip_image = self.preprocessor(clip_image) |
|
clip_output = self.image_encoder( |
|
clip_image, |
|
output_hidden_states=True |
|
) |
|
else: |
|
self.image_encoder.eval() |
|
if self.preprocessor is not None: |
|
clip_image = self.preprocessor(clip_image) |
|
clip_output = self.image_encoder( |
|
clip_image, output_hidden_states=True |
|
) |
|
|
|
if self.config.clip_layer == 'penultimate_hidden_states': |
|
|
|
|
|
clip_image_embeds = clip_output.hidden_states[-2] |
|
elif self.config.clip_layer == 'last_hidden_state': |
|
clip_image_embeds = clip_output.hidden_states[-1] |
|
else: |
|
clip_image_embeds = clip_output.image_embeds |
|
|
|
if self.config.adapter_type == "clip_face": |
|
l2_norm = torch.norm(clip_image_embeds, p=2) |
|
clip_image_embeds = clip_image_embeds / l2_norm |
|
|
|
if self.config.image_encoder_arch.startswith('convnext'): |
|
|
|
clip_image_embeds = clip_image_embeds.view(clip_image_embeds.size(0), clip_image_embeds.size(1), -1) |
|
|
|
clip_image_embeds = clip_image_embeds.permute(0, 2, 1) |
|
|
|
|
|
with torch.no_grad(): |
|
if cfg_embed_strength is not None: |
|
uncond_clip = self.get_empty_clip_image(tensors_0_1.shape[0]).to(self.device, dtype=get_torch_dtype(self.sd_ref().dtype)) |
|
if self.config.quad_image: |
|
|
|
ci1, ci2 = uncond_clip.chunk(2, dim=2) |
|
ci1, ci3 = ci1.chunk(2, dim=3) |
|
ci2, ci4 = ci2.chunk(2, dim=3) |
|
to_cat = [] |
|
for i, ci in enumerate([ci1, ci2, ci3, ci4]): |
|
if i < quad_count: |
|
to_cat.append(ci) |
|
else: |
|
break |
|
|
|
uncond_clip = torch.cat(to_cat, dim=0).detach() |
|
uncond_clip_output = self.image_encoder( |
|
uncond_clip, output_hidden_states=True |
|
) |
|
|
|
if self.config.clip_layer == 'penultimate_hidden_states': |
|
uncond_clip_output_embeds = uncond_clip_output.hidden_states[-2] |
|
elif self.config.clip_layer == 'last_hidden_state': |
|
uncond_clip_output_embeds = uncond_clip_output.hidden_states[-1] |
|
else: |
|
uncond_clip_output_embeds = uncond_clip_output.image_embeds |
|
if self.config.adapter_type == "clip_face": |
|
l2_norm = torch.norm(uncond_clip_output_embeds, p=2) |
|
uncond_clip_output_embeds = uncond_clip_output_embeds / l2_norm |
|
|
|
uncond_clip_output_embeds = uncond_clip_output_embeds.detach() |
|
|
|
|
|
|
|
clip_image_embeds = inverse_classifier_guidance( |
|
clip_image_embeds, |
|
uncond_clip_output_embeds, |
|
cfg_embed_strength |
|
) |
|
|
|
|
|
if self.config.quad_image: |
|
|
|
chunks = clip_image_embeds.chunk(quad_count, dim=0) |
|
if self.config.train_image_encoder and is_training: |
|
|
|
|
|
num_losses = 0 |
|
total_loss = None |
|
for chunk in chunks: |
|
for chunk2 in chunks: |
|
if chunk is not chunk2: |
|
loss = F.mse_loss(chunk, chunk2) |
|
if total_loss is None: |
|
total_loss = loss |
|
else: |
|
total_loss = total_loss + loss |
|
num_losses += 1 |
|
if total_loss is not None: |
|
total_loss = total_loss / num_losses |
|
total_loss = total_loss * 1e-2 |
|
if self.additional_loss is not None: |
|
total_loss = total_loss + self.additional_loss |
|
self.additional_loss = total_loss |
|
|
|
chunk_sum = torch.zeros_like(chunks[0]) |
|
for chunk in chunks: |
|
chunk_sum = chunk_sum + chunk |
|
|
|
|
|
clip_image_embeds = chunk_sum / quad_count |
|
|
|
if not is_training or not self.config.train_image_encoder: |
|
clip_image_embeds = clip_image_embeds.detach() |
|
|
|
return clip_image_embeds |
|
|
|
|
|
def forward(self, embeddings: PromptEmbeds, clip_image_embeds: torch.Tensor, is_unconditional=False) -> PromptEmbeds: |
|
clip_image_embeds = clip_image_embeds.to(self.device, dtype=get_torch_dtype(self.sd_ref().dtype)) |
|
image_prompt_embeds = self.image_proj_model(clip_image_embeds) |
|
if self.sd_ref().is_flux: |
|
|
|
|
|
if is_unconditional: |
|
self.last_unconditional = image_prompt_embeds |
|
else: |
|
self.last_conditional = image_prompt_embeds |
|
else: |
|
embeddings.text_embeds = torch.cat([embeddings.text_embeds, image_prompt_embeds], dim=1) |
|
return embeddings |
|
|
|
def train(self: T, mode: bool = True) -> T: |
|
if self.config.train_image_encoder: |
|
self.image_encoder.train(mode) |
|
if not self.config.train_only_image_encoder: |
|
for attn_processor in self.adapter_modules: |
|
attn_processor.train(mode) |
|
if self.image_proj_model is not None: |
|
self.image_proj_model.train(mode) |
|
return super().train(mode) |
|
|
|
def get_parameter_groups(self, adapter_lr): |
|
param_groups = [] |
|
|
|
if not self.config.train_scaler: |
|
param_groups.append({ |
|
"params": self.get_non_scaler_parameters(), |
|
"lr": adapter_lr, |
|
}) |
|
if self.config.train_scaler or self.config.merge_scaler: |
|
scaler_lr = adapter_lr if self.config.scaler_lr is None else self.config.scaler_lr |
|
param_groups.append({ |
|
"params": self.get_scaler_parameters(), |
|
"lr": scaler_lr, |
|
}) |
|
return param_groups |
|
|
|
def get_scaler_parameters(self): |
|
|
|
for attn_processor in self.adapter_modules: |
|
|
|
|
|
if hasattr(attn_processor, "ip_scaler"): |
|
scaler_param = attn_processor.ip_scaler |
|
yield scaler_param |
|
|
|
def get_non_scaler_parameters(self, recurse: bool = True) -> Iterator[Parameter]: |
|
if self.config.train_only_image_encoder: |
|
if self.config.train_only_image_encoder_positional_embedding: |
|
yield from self.image_encoder.vision_model.embeddings.position_embedding.parameters(recurse) |
|
else: |
|
yield from self.image_encoder.parameters(recurse) |
|
return |
|
if self.config.train_scaler: |
|
|
|
return |
|
|
|
for attn_processor in self.adapter_modules: |
|
if self.config.train_scaler or self.config.merge_scaler: |
|
|
|
if hasattr(attn_processor, "to_k_ip"): |
|
|
|
yield from attn_processor.to_k_ip.parameters(recurse) |
|
if hasattr(attn_processor, "to_v_ip"): |
|
|
|
yield from attn_processor.to_v_ip.parameters(recurse) |
|
else: |
|
yield from attn_processor.parameters(recurse) |
|
yield from self.image_proj_model.parameters(recurse) |
|
if self.config.train_image_encoder: |
|
yield from self.image_encoder.parameters(recurse) |
|
if self.preprocessor is not None: |
|
yield from self.preprocessor.parameters(recurse) |
|
|
|
def parameters(self, recurse: bool = True) -> Iterator[Parameter]: |
|
yield from self.get_non_scaler_parameters(recurse) |
|
if self.config.train_scaler or self.config.merge_scaler: |
|
yield from self.get_scaler_parameters() |
|
|
|
def merge_in_weights(self, state_dict: Mapping[str, Any]): |
|
|
|
current_img_proj_state_dict = self.image_proj_model.state_dict() |
|
for key, value in state_dict["image_proj"].items(): |
|
if key in current_img_proj_state_dict: |
|
current_shape = current_img_proj_state_dict[key].shape |
|
new_shape = value.shape |
|
if current_shape != new_shape: |
|
try: |
|
|
|
if len(current_shape) == 1: |
|
current_img_proj_state_dict[key][:new_shape[0]] = value |
|
elif len(current_shape) == 2: |
|
current_img_proj_state_dict[key][:new_shape[0], :new_shape[1]] = value |
|
elif len(current_shape) == 3: |
|
current_img_proj_state_dict[key][:new_shape[0], :new_shape[1], :new_shape[2]] = value |
|
elif len(current_shape) == 4: |
|
current_img_proj_state_dict[key][:new_shape[0], :new_shape[1], :new_shape[2], |
|
:new_shape[3]] = value |
|
else: |
|
raise ValueError(f"unknown shape: {current_shape}") |
|
except RuntimeError as e: |
|
print(e) |
|
print( |
|
f"could not merge in {key}: {list(current_shape)} <<< {list(new_shape)}. Trying other way") |
|
|
|
if len(current_shape) == 1: |
|
current_img_proj_state_dict[key][:current_shape[0]] = value[:current_shape[0]] |
|
elif len(current_shape) == 2: |
|
current_img_proj_state_dict[key][:current_shape[0], :current_shape[1]] = value[ |
|
:current_shape[0], |
|
:current_shape[1]] |
|
elif len(current_shape) == 3: |
|
current_img_proj_state_dict[key][:current_shape[0], :current_shape[1], |
|
:current_shape[2]] = value[:current_shape[0], :current_shape[1], :current_shape[2]] |
|
elif len(current_shape) == 4: |
|
current_img_proj_state_dict[key][:current_shape[0], :current_shape[1], :current_shape[2], |
|
:current_shape[3]] = value[:current_shape[0], :current_shape[1], :current_shape[2], |
|
:current_shape[3]] |
|
else: |
|
raise ValueError(f"unknown shape: {current_shape}") |
|
print(f"Force merged in {key}: {list(current_shape)} <<< {list(new_shape)}") |
|
else: |
|
current_img_proj_state_dict[key] = value |
|
self.image_proj_model.load_state_dict(current_img_proj_state_dict) |
|
|
|
|
|
current_ip_adapter_state_dict = self.adapter_modules.state_dict() |
|
for key, value in state_dict["ip_adapter"].items(): |
|
if key in current_ip_adapter_state_dict: |
|
current_shape = current_ip_adapter_state_dict[key].shape |
|
new_shape = value.shape |
|
if current_shape != new_shape: |
|
try: |
|
|
|
if len(current_shape) == 1: |
|
current_ip_adapter_state_dict[key][:new_shape[0]] = value |
|
elif len(current_shape) == 2: |
|
current_ip_adapter_state_dict[key][:new_shape[0], :new_shape[1]] = value |
|
elif len(current_shape) == 3: |
|
current_ip_adapter_state_dict[key][:new_shape[0], :new_shape[1], :new_shape[2]] = value |
|
elif len(current_shape) == 4: |
|
current_ip_adapter_state_dict[key][:new_shape[0], :new_shape[1], :new_shape[2], |
|
:new_shape[3]] = value |
|
else: |
|
raise ValueError(f"unknown shape: {current_shape}") |
|
print(f"Force merged in {key}: {list(current_shape)} <<< {list(new_shape)}") |
|
except RuntimeError as e: |
|
print(e) |
|
print( |
|
f"could not merge in {key}: {list(current_shape)} <<< {list(new_shape)}. Trying other way") |
|
|
|
if (len(current_shape) == 1): |
|
current_ip_adapter_state_dict[key][:current_shape[0]] = value[:current_shape[0]] |
|
elif (len(current_shape) == 2): |
|
current_ip_adapter_state_dict[key][:current_shape[0], :current_shape[1]] = value[ |
|
:current_shape[ |
|
0], |
|
:current_shape[ |
|
1]] |
|
elif (len(current_shape) == 3): |
|
current_ip_adapter_state_dict[key][:current_shape[0], :current_shape[1], |
|
:current_shape[2]] = value[:current_shape[0], :current_shape[1], :current_shape[2]] |
|
elif (len(current_shape) == 4): |
|
current_ip_adapter_state_dict[key][:current_shape[0], :current_shape[1], :current_shape[2], |
|
:current_shape[3]] = value[:current_shape[0], :current_shape[1], :current_shape[2], |
|
:current_shape[3]] |
|
else: |
|
raise ValueError(f"unknown shape: {current_shape}") |
|
print(f"Force merged in {key}: {list(current_shape)} <<< {list(new_shape)}") |
|
|
|
else: |
|
current_ip_adapter_state_dict[key] = value |
|
self.adapter_modules.load_state_dict(current_ip_adapter_state_dict) |
|
|
|
def load_state_dict(self, state_dict: Mapping[str, Any], strict: bool = True): |
|
strict = False |
|
if self.config.train_scaler and 'ip_scale' in state_dict: |
|
self.adapter_modules.load_state_dict(state_dict["ip_scale"], strict=False) |
|
if 'ip_adapter' in state_dict: |
|
try: |
|
self.image_proj_model.load_state_dict(state_dict["image_proj"], strict=strict) |
|
self.adapter_modules.load_state_dict(state_dict["ip_adapter"], strict=strict) |
|
except Exception as e: |
|
print(e) |
|
print("could not load ip adapter weights, trying to merge in weights") |
|
self.merge_in_weights(state_dict) |
|
if self.config.train_image_encoder and 'image_encoder' in state_dict: |
|
self.image_encoder.load_state_dict(state_dict["image_encoder"], strict=strict) |
|
if self.preprocessor is not None and 'preprocessor' in state_dict: |
|
self.preprocessor.load_state_dict(state_dict["preprocessor"], strict=strict) |
|
|
|
if self.config.train_only_image_encoder and 'ip_adapter' not in state_dict: |
|
|
|
self.image_encoder.load_state_dict(state_dict, strict=strict) |
|
|
|
def enable_gradient_checkpointing(self): |
|
if hasattr(self.image_encoder, "enable_gradient_checkpointing"): |
|
self.image_encoder.enable_gradient_checkpointing() |
|
elif hasattr(self.image_encoder, 'gradient_checkpointing'): |
|
self.image_encoder.gradient_checkpointing = True |
|
|