alatlatihlora / toolkit /ip_adapter.py
crystantine's picture
Upload 190 files
1ba389d verified
import random
import torch
import sys
from PIL import Image
from diffusers import Transformer2DModel
from torch import nn
from torch.nn import Parameter
from torch.nn.modules.module import T
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
from toolkit.models.clip_pre_processor import CLIPImagePreProcessor
from toolkit.models.zipper_resampler import ZipperResampler
from toolkit.paths import REPOS_ROOT
from toolkit.saving import load_ip_adapter_model
from toolkit.train_tools import get_torch_dtype
from toolkit.util.inverse_cfg import inverse_classifier_guidance
sys.path.append(REPOS_ROOT)
from typing import TYPE_CHECKING, Union, Iterator, Mapping, Any, Tuple, List, Optional
from collections import OrderedDict
from ipadapter.ip_adapter.attention_processor import AttnProcessor, IPAttnProcessor, IPAttnProcessor2_0, \
AttnProcessor2_0
from ipadapter.ip_adapter.ip_adapter import ImageProjModel
from ipadapter.ip_adapter.resampler import PerceiverAttention, FeedForward, Resampler
from toolkit.config_modules import AdapterConfig
from toolkit.prompt_utils import PromptEmbeds
import weakref
from diffusers import FluxTransformer2DModel
if TYPE_CHECKING:
from toolkit.stable_diffusion_model import StableDiffusion
from transformers import (
CLIPImageProcessor,
CLIPVisionModelWithProjection,
CLIPVisionModel,
AutoImageProcessor,
ConvNextModel,
ConvNextV2ForImageClassification,
ConvNextForImageClassification,
ConvNextImageProcessor
)
from toolkit.models.size_agnostic_feature_encoder import SAFEImageProcessor, SAFEVisionModel
from transformers import ViTHybridImageProcessor, ViTHybridForImageClassification
from transformers import ViTFeatureExtractor, ViTForImageClassification
# gradient checkpointing
from torch.utils.checkpoint import checkpoint
import torch.nn.functional as F
class MLPProjModelClipFace(torch.nn.Module):
def __init__(self, cross_attention_dim=768, id_embeddings_dim=512, num_tokens=4):
super().__init__()
self.cross_attention_dim = cross_attention_dim
self.num_tokens = num_tokens
self.norm = torch.nn.LayerNorm(id_embeddings_dim)
self.proj = torch.nn.Sequential(
torch.nn.Linear(id_embeddings_dim, id_embeddings_dim * 2),
torch.nn.GELU(),
torch.nn.Linear(id_embeddings_dim * 2, cross_attention_dim * num_tokens),
)
# Initialize the last linear layer weights near zero
torch.nn.init.uniform_(self.proj[2].weight, a=-0.01, b=0.01)
torch.nn.init.zeros_(self.proj[2].bias)
# # Custom initialization for LayerNorm to output near zero
# torch.nn.init.constant_(self.norm.weight, 0.1) # Small weights near zero
# torch.nn.init.zeros_(self.norm.bias) # Bias to zero
def forward(self, x):
x = self.norm(x)
x = self.proj(x)
x = x.reshape(-1, self.num_tokens, self.cross_attention_dim)
return x
class CustomIPAttentionProcessor(IPAttnProcessor2_0):
def __init__(self, hidden_size, cross_attention_dim, scale=1.0, num_tokens=4, adapter=None, train_scaler=False, full_token_scaler=False):
super().__init__(hidden_size, cross_attention_dim, scale=scale, num_tokens=num_tokens)
self.adapter_ref: weakref.ref = weakref.ref(adapter)
self.train_scaler = train_scaler
if train_scaler:
if full_token_scaler:
self.ip_scaler = torch.nn.Parameter(torch.ones([num_tokens], dtype=torch.float32) * 0.999)
else:
self.ip_scaler = torch.nn.Parameter(torch.ones([1], dtype=torch.float32) * 0.999)
# self.ip_scaler = torch.nn.Parameter(torch.ones([1], dtype=torch.float32) * 0.9999)
self.ip_scaler.requires_grad_(True)
def __call__(
self,
attn,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
temb=None,
):
is_active = self.adapter_ref().is_active
residual = hidden_states
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
if is_active:
# since we are removing tokens, we need to adjust the sequence length
sequence_length = sequence_length - self.num_tokens
if attention_mask is not None:
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
# scaled_dot_product_attention expects attention_mask shape to be
# (batch, heads, source_length, target_length)
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
# will be none if disabled
if not is_active:
ip_hidden_states = None
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
else:
# get encoder_hidden_states, ip_hidden_states
end_pos = encoder_hidden_states.shape[1] - self.num_tokens
encoder_hidden_states, ip_hidden_states = (
encoder_hidden_states[:, :end_pos, :],
encoder_hidden_states[:, end_pos:, :],
)
if attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
# the output of sdp = (batch, num_heads, seq_len, head_dim)
# TODO: add support for attn.scale when we move to Torch 2.1
try:
hidden_states = F.scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)
except Exception as e:
print(e)
raise e
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
hidden_states = hidden_states.to(query.dtype)
# will be none if disabled
if ip_hidden_states is not None:
# apply scaler
if self.train_scaler:
weight = self.ip_scaler
# reshape to (1, self.num_tokens, 1)
weight = weight.view(1, -1, 1)
ip_hidden_states = ip_hidden_states * weight
# for ip-adapter
ip_key = self.to_k_ip(ip_hidden_states)
ip_value = self.to_v_ip(ip_hidden_states)
ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
# the output of sdp = (batch, num_heads, seq_len, head_dim)
# TODO: add support for attn.scale when we move to Torch 2.1
ip_hidden_states = F.scaled_dot_product_attention(
query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False
)
ip_hidden_states = ip_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
ip_hidden_states = ip_hidden_states.to(query.dtype)
scale = self.scale
hidden_states = hidden_states + scale * ip_hidden_states
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states
# this ensures that the ip_scaler is not changed when we load the model
# def _apply(self, fn):
# if hasattr(self, "ip_scaler"):
# # Overriding the _apply method to prevent the special_parameter from changing dtype
# self.ip_scaler = fn(self.ip_scaler)
# # Temporarily set the special_parameter to None to exclude it from default _apply processing
# ip_scaler = self.ip_scaler
# self.ip_scaler = None
# super(CustomIPAttentionProcessor, self)._apply(fn)
# # Restore the special_parameter after the default _apply processing
# self.ip_scaler = ip_scaler
# return self
# else:
# return super(CustomIPAttentionProcessor, self)._apply(fn)
class CustomIPFluxAttnProcessor2_0(torch.nn.Module):
"""Attention processor used typically in processing the SD3-like self-attention projections."""
def __init__(self, hidden_size, cross_attention_dim, scale=1.0, num_tokens=4, adapter=None, train_scaler=False,
full_token_scaler=False):
super().__init__()
self.hidden_size = hidden_size
self.cross_attention_dim = cross_attention_dim
self.scale = scale
self.num_tokens = num_tokens
self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
self.adapter_ref: weakref.ref = weakref.ref(adapter)
self.train_scaler = train_scaler
self.num_tokens = num_tokens
if train_scaler:
if full_token_scaler:
self.ip_scaler = torch.nn.Parameter(torch.ones([num_tokens], dtype=torch.float32) * 0.999)
else:
self.ip_scaler = torch.nn.Parameter(torch.ones([1], dtype=torch.float32) * 0.999)
# self.ip_scaler = torch.nn.Parameter(torch.ones([1], dtype=torch.float32) * 0.9999)
self.ip_scaler.requires_grad_(True)
def __call__(
self,
attn,
hidden_states: torch.FloatTensor,
encoder_hidden_states: torch.FloatTensor = None,
attention_mask: Optional[torch.FloatTensor] = None,
image_rotary_emb: Optional[torch.Tensor] = None,
) -> torch.FloatTensor:
is_active = self.adapter_ref().is_active
batch_size, _, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
# `sample` projections.
query = attn.to_q(hidden_states)
key = attn.to_k(hidden_states)
value = attn.to_v(hidden_states)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
if attn.norm_q is not None:
query = attn.norm_q(query)
if attn.norm_k is not None:
key = attn.norm_k(key)
# the attention in FluxSingleTransformerBlock does not use `encoder_hidden_states`
if encoder_hidden_states is not None:
# `context` projections.
encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states)
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(
batch_size, -1, attn.heads, head_dim
).transpose(1, 2)
encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(
batch_size, -1, attn.heads, head_dim
).transpose(1, 2)
encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(
batch_size, -1, attn.heads, head_dim
).transpose(1, 2)
if attn.norm_added_q is not None:
encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj)
if attn.norm_added_k is not None:
encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj)
# attention
query = torch.cat([encoder_hidden_states_query_proj, query], dim=2)
key = torch.cat([encoder_hidden_states_key_proj, key], dim=2)
value = torch.cat([encoder_hidden_states_value_proj, value], dim=2)
if image_rotary_emb is not None:
from diffusers.models.embeddings import apply_rotary_emb
query = apply_rotary_emb(query, image_rotary_emb)
key = apply_rotary_emb(key, image_rotary_emb)
hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
hidden_states = hidden_states.to(query.dtype)
# begin ip adapter
if not is_active:
ip_hidden_states = None
else:
# get ip hidden states. Should be stored
ip_hidden_states = self.adapter_ref().last_conditional
# add unconditional to front if it exists
if ip_hidden_states.shape[0] * 2 == batch_size:
if self.adapter_ref().last_unconditional is None:
raise ValueError("Unconditional is None but should not be")
ip_hidden_states = torch.cat([self.adapter_ref().last_unconditional, ip_hidden_states], dim=0)
if ip_hidden_states is not None:
# apply scaler
if self.train_scaler:
weight = self.ip_scaler
# reshape to (1, self.num_tokens, 1)
weight = weight.view(1, -1, 1)
ip_hidden_states = ip_hidden_states * weight
# for ip-adapter
ip_key = self.to_k_ip(ip_hidden_states)
ip_value = self.to_v_ip(ip_hidden_states)
ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
ip_hidden_states = F.scaled_dot_product_attention(
query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False
)
ip_hidden_states = ip_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
ip_hidden_states = ip_hidden_states.to(query.dtype)
scale = self.scale
hidden_states = hidden_states + scale * ip_hidden_states
# end ip adapter
if encoder_hidden_states is not None:
encoder_hidden_states, hidden_states = (
hidden_states[:, : encoder_hidden_states.shape[1]],
hidden_states[:, encoder_hidden_states.shape[1] :],
)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
return hidden_states, encoder_hidden_states
else:
return hidden_states
# loosely based on # ref https://github.com/tencent-ailab/IP-Adapter/blob/main/tutorial_train.py
class IPAdapter(torch.nn.Module):
"""IP-Adapter"""
def __init__(self, sd: 'StableDiffusion', adapter_config: 'AdapterConfig'):
super().__init__()
self.config = adapter_config
self.sd_ref: weakref.ref = weakref.ref(sd)
self.device = self.sd_ref().unet.device
self.preprocessor: Optional[CLIPImagePreProcessor] = None
self.input_size = 224
self.clip_noise_zero = True
self.unconditional: torch.Tensor = None
self.last_conditional: torch.Tensor = None
self.last_unconditional: torch.Tensor = None
self.additional_loss = None
if self.config.image_encoder_arch.startswith("clip"):
try:
self.clip_image_processor = CLIPImageProcessor.from_pretrained(adapter_config.image_encoder_path)
except EnvironmentError:
self.clip_image_processor = CLIPImageProcessor()
self.image_encoder = CLIPVisionModelWithProjection.from_pretrained(
adapter_config.image_encoder_path,
ignore_mismatched_sizes=True).to(self.device, dtype=get_torch_dtype(self.sd_ref().dtype))
elif self.config.image_encoder_arch == 'siglip':
from transformers import SiglipImageProcessor, SiglipVisionModel
try:
self.clip_image_processor = SiglipImageProcessor.from_pretrained(adapter_config.image_encoder_path)
except EnvironmentError:
self.clip_image_processor = SiglipImageProcessor()
self.image_encoder = SiglipVisionModel.from_pretrained(
adapter_config.image_encoder_path,
ignore_mismatched_sizes=True).to(self.device, dtype=get_torch_dtype(self.sd_ref().dtype))
elif self.config.image_encoder_arch == 'vit':
try:
self.clip_image_processor = ViTFeatureExtractor.from_pretrained(adapter_config.image_encoder_path)
except EnvironmentError:
self.clip_image_processor = ViTFeatureExtractor()
self.image_encoder = ViTForImageClassification.from_pretrained(adapter_config.image_encoder_path).to(
self.device, dtype=get_torch_dtype(self.sd_ref().dtype))
elif self.config.image_encoder_arch == 'safe':
try:
self.clip_image_processor = SAFEImageProcessor.from_pretrained(adapter_config.image_encoder_path)
except EnvironmentError:
self.clip_image_processor = SAFEImageProcessor()
self.image_encoder = SAFEVisionModel(
in_channels=3,
num_tokens=self.config.safe_tokens,
num_vectors=sd.unet.config['cross_attention_dim'],
reducer_channels=self.config.safe_reducer_channels,
channels=self.config.safe_channels,
downscale_factor=8
).to(self.device, dtype=get_torch_dtype(self.sd_ref().dtype))
elif self.config.image_encoder_arch == 'convnext':
try:
self.clip_image_processor = ConvNextImageProcessor.from_pretrained(adapter_config.image_encoder_path)
except EnvironmentError:
print(f"could not load image processor from {adapter_config.image_encoder_path}")
self.clip_image_processor = ConvNextImageProcessor(
size=320,
image_mean=[0.48145466, 0.4578275, 0.40821073],
image_std=[0.26862954, 0.26130258, 0.27577711],
)
self.image_encoder = ConvNextForImageClassification.from_pretrained(
adapter_config.image_encoder_path,
use_safetensors=True,
).to(self.device, dtype=get_torch_dtype(self.sd_ref().dtype))
elif self.config.image_encoder_arch == 'convnextv2':
try:
self.clip_image_processor = AutoImageProcessor.from_pretrained(adapter_config.image_encoder_path)
except EnvironmentError:
print(f"could not load image processor from {adapter_config.image_encoder_path}")
self.clip_image_processor = ConvNextImageProcessor(
size=512,
image_mean=[0.485, 0.456, 0.406],
image_std=[0.229, 0.224, 0.225],
)
self.image_encoder = ConvNextV2ForImageClassification.from_pretrained(
adapter_config.image_encoder_path,
use_safetensors=True,
).to(self.device, dtype=get_torch_dtype(self.sd_ref().dtype))
elif self.config.image_encoder_arch == 'vit-hybrid':
try:
self.clip_image_processor = ViTHybridImageProcessor.from_pretrained(adapter_config.image_encoder_path)
except EnvironmentError:
print(f"could not load image processor from {adapter_config.image_encoder_path}")
self.clip_image_processor = ViTHybridImageProcessor(
size=320,
image_mean=[0.48145466, 0.4578275, 0.40821073],
image_std=[0.26862954, 0.26130258, 0.27577711],
)
self.image_encoder = ViTHybridForImageClassification.from_pretrained(
adapter_config.image_encoder_path,
use_safetensors=True,
).to(self.device, dtype=get_torch_dtype(self.sd_ref().dtype))
else:
raise ValueError(f"unknown image encoder arch: {adapter_config.image_encoder_arch}")
if not self.config.train_image_encoder:
# compile it
print('Compiling image encoder')
#torch.compile(self.image_encoder, fullgraph=True)
self.input_size = self.image_encoder.config.image_size
if self.config.quad_image: # 4x4 image
# self.clip_image_processor.config
# We do a 3x downscale of the image, so we need to adjust the input size
preprocessor_input_size = self.image_encoder.config.image_size * 2
# update the preprocessor so images come in at the right size
if 'height' in self.clip_image_processor.size:
self.clip_image_processor.size['height'] = preprocessor_input_size
self.clip_image_processor.size['width'] = preprocessor_input_size
elif hasattr(self.clip_image_processor, 'crop_size'):
self.clip_image_processor.size['shortest_edge'] = preprocessor_input_size
self.clip_image_processor.crop_size['height'] = preprocessor_input_size
self.clip_image_processor.crop_size['width'] = preprocessor_input_size
if self.config.image_encoder_arch == 'clip+':
# self.clip_image_processor.config
# We do a 3x downscale of the image, so we need to adjust the input size
preprocessor_input_size = self.image_encoder.config.image_size * 4
# update the preprocessor so images come in at the right size
self.clip_image_processor.size['shortest_edge'] = preprocessor_input_size
self.clip_image_processor.crop_size['height'] = preprocessor_input_size
self.clip_image_processor.crop_size['width'] = preprocessor_input_size
self.preprocessor = CLIPImagePreProcessor(
input_size=preprocessor_input_size,
clip_input_size=self.image_encoder.config.image_size,
)
if not self.config.image_encoder_arch == 'safe':
if 'height' in self.clip_image_processor.size:
self.input_size = self.clip_image_processor.size['height']
elif hasattr(self.clip_image_processor, 'crop_size'):
self.input_size = self.clip_image_processor.crop_size['height']
elif 'shortest_edge' in self.clip_image_processor.size.keys():
self.input_size = self.clip_image_processor.size['shortest_edge']
else:
raise ValueError(f"unknown image processor size: {self.clip_image_processor.size}")
self.current_scale = 1.0
self.is_active = True
is_pixart = sd.is_pixart
is_flux = sd.is_flux
if adapter_config.type == 'ip':
# ip-adapter
image_proj_model = ImageProjModel(
cross_attention_dim=sd.unet.config['cross_attention_dim'],
clip_embeddings_dim=self.image_encoder.config.projection_dim,
clip_extra_context_tokens=self.config.num_tokens, # usually 4
)
elif adapter_config.type == 'ip_clip_face':
cross_attn_dim = 4096 if is_pixart else sd.unet.config['cross_attention_dim']
image_proj_model = MLPProjModelClipFace(
cross_attention_dim=cross_attn_dim,
id_embeddings_dim=self.image_encoder.config.projection_dim,
num_tokens=self.config.num_tokens, # usually 4
)
elif adapter_config.type == 'ip+':
heads = 12 if not sd.is_xl else 20
if is_flux:
dim = 1280
else:
dim = sd.unet.config['cross_attention_dim'] if not sd.is_xl else 1280
embedding_dim = self.image_encoder.config.hidden_size if not self.config.image_encoder_arch.startswith(
'convnext') else \
self.image_encoder.config.hidden_sizes[-1]
image_encoder_state_dict = self.image_encoder.state_dict()
# max_seq_len = CLIP tokens + CLS token
max_seq_len = 257
if "vision_model.embeddings.position_embedding.weight" in image_encoder_state_dict:
# clip
max_seq_len = int(
image_encoder_state_dict["vision_model.embeddings.position_embedding.weight"].shape[0])
if is_pixart:
heads = 20
dim = 1280
output_dim = 4096
elif is_flux:
heads = 20
dim = 1280
output_dim = 3072
else:
output_dim = sd.unet.config['cross_attention_dim']
if self.config.image_encoder_arch.startswith('convnext'):
in_tokens = 16 * 16
embedding_dim = self.image_encoder.config.hidden_sizes[-1]
# ip-adapter-plus
image_proj_model = Resampler(
dim=dim,
depth=4,
dim_head=64,
heads=heads,
num_queries=self.config.num_tokens if self.config.num_tokens > 0 else max_seq_len,
embedding_dim=embedding_dim,
max_seq_len=max_seq_len,
output_dim=output_dim,
ff_mult=4
)
elif adapter_config.type == 'ipz':
dim = sd.unet.config['cross_attention_dim']
if hasattr(self.image_encoder.config, 'hidden_sizes'):
embedding_dim = self.image_encoder.config.hidden_sizes[-1]
else:
embedding_dim = self.image_encoder.config.target_hidden_size
image_encoder_state_dict = self.image_encoder.state_dict()
# max_seq_len = CLIP tokens + CLS token
in_tokens = 257
if "vision_model.embeddings.position_embedding.weight" in image_encoder_state_dict:
# clip
in_tokens = int(image_encoder_state_dict["vision_model.embeddings.position_embedding.weight"].shape[0])
if self.config.image_encoder_arch.startswith('convnext'):
in_tokens = 16 * 16
embedding_dim = self.image_encoder.config.hidden_sizes[-1]
is_conv_next = self.config.image_encoder_arch.startswith('convnext')
out_tokens = self.config.num_tokens if self.config.num_tokens > 0 else in_tokens
# ip-adapter-plus
image_proj_model = ZipperResampler(
in_size=embedding_dim,
in_tokens=in_tokens,
out_size=dim,
out_tokens=out_tokens,
hidden_size=embedding_dim,
hidden_tokens=in_tokens,
# num_blocks=1 if not is_conv_next else 2,
num_blocks=1 if not is_conv_next else 2,
is_conv_input=is_conv_next
)
elif adapter_config.type == 'ilora':
# we apply the clip encodings to the LoRA
image_proj_model = None
else:
raise ValueError(f"unknown adapter type: {adapter_config.type}")
# init adapter modules
attn_procs = {}
unet_sd = sd.unet.state_dict()
attn_processor_keys = []
if is_pixart:
transformer: Transformer2DModel = sd.unet
for i, module in transformer.transformer_blocks.named_children():
attn_processor_keys.append(f"transformer_blocks.{i}.attn1")
# cross attention
attn_processor_keys.append(f"transformer_blocks.{i}.attn2")
elif is_flux:
transformer: FluxTransformer2DModel = sd.unet
for i, module in transformer.transformer_blocks.named_children():
attn_processor_keys.append(f"transformer_blocks.{i}.attn")
# single transformer blocks do not have cross attn, but we will do them anyway
for i, module in transformer.single_transformer_blocks.named_children():
attn_processor_keys.append(f"single_transformer_blocks.{i}.attn")
else:
attn_processor_keys = list(sd.unet.attn_processors.keys())
attn_processor_names = []
blocks = []
transformer_blocks = []
for name in attn_processor_keys:
name_split = name.split(".")
block_name = f"{name_split[0]}.{name_split[1]}"
transformer_idx = name_split.index("transformer_blocks") if "transformer_blocks" in name_split else -1
if transformer_idx >= 0:
transformer_name = ".".join(name_split[:2])
transformer_name += "." + ".".join(name_split[transformer_idx:transformer_idx + 2])
if transformer_name not in transformer_blocks:
transformer_blocks.append(transformer_name)
if block_name not in blocks:
blocks.append(block_name)
if is_flux:
cross_attention_dim = None
else:
cross_attention_dim = None if name.endswith("attn1.processor") or name.endswith("attn.1") or name.endswith("attn1") else \
sd.unet.config['cross_attention_dim']
if name.startswith("mid_block"):
hidden_size = sd.unet.config['block_out_channels'][-1]
elif name.startswith("up_blocks"):
block_id = int(name[len("up_blocks.")])
hidden_size = list(reversed(sd.unet.config['block_out_channels']))[block_id]
elif name.startswith("down_blocks"):
block_id = int(name[len("down_blocks.")])
hidden_size = sd.unet.config['block_out_channels'][block_id]
elif name.startswith("transformer") or name.startswith("single_transformer"):
if is_flux:
hidden_size = 3072
else:
hidden_size = sd.unet.config['cross_attention_dim']
else:
# they didnt have this, but would lead to undefined below
raise ValueError(f"unknown attn processor name: {name}")
if cross_attention_dim is None and not is_flux:
attn_procs[name] = AttnProcessor2_0()
else:
layer_name = name.split(".processor")[0]
# if quantized, we need to scale the weights
if f"{layer_name}.to_k.weight._data" in unet_sd and is_flux:
# is quantized
k_weight = torch.randn(hidden_size, hidden_size) * 0.01
v_weight = torch.randn(hidden_size, hidden_size) * 0.01
k_weight = k_weight.to(self.sd_ref().torch_dtype)
v_weight = v_weight.to(self.sd_ref().torch_dtype)
else:
k_weight = unet_sd[layer_name + ".to_k.weight"]
v_weight = unet_sd[layer_name + ".to_v.weight"]
weights = {
"to_k_ip.weight": k_weight,
"to_v_ip.weight": v_weight
}
if is_flux:
attn_procs[name] = CustomIPFluxAttnProcessor2_0(
hidden_size=hidden_size,
cross_attention_dim=cross_attention_dim,
scale=1.0,
num_tokens=self.config.num_tokens,
adapter=self,
train_scaler=self.config.train_scaler or self.config.merge_scaler,
full_token_scaler=False
)
else:
attn_procs[name] = CustomIPAttentionProcessor(
hidden_size=hidden_size,
cross_attention_dim=cross_attention_dim,
scale=1.0,
num_tokens=self.config.num_tokens,
adapter=self,
train_scaler=self.config.train_scaler or self.config.merge_scaler,
# full_token_scaler=self.config.train_scaler # full token cannot be merged in, only use if training an actual scaler
full_token_scaler=False
)
if self.sd_ref().is_pixart or self.sd_ref().is_flux:
# pixart is much more sensitive
weights = {
"to_k_ip.weight": weights["to_k_ip.weight"] * 0.01,
"to_v_ip.weight": weights["to_v_ip.weight"] * 0.01,
}
attn_procs[name].load_state_dict(weights, strict=False)
attn_processor_names.append(name)
print(f"Attn Processors")
print(attn_processor_names)
if self.sd_ref().is_pixart:
# we have to set them ourselves
transformer: Transformer2DModel = sd.unet
for i, module in transformer.transformer_blocks.named_children():
module.attn1.processor = attn_procs[f"transformer_blocks.{i}.attn1"]
module.attn2.processor = attn_procs[f"transformer_blocks.{i}.attn2"]
self.adapter_modules = torch.nn.ModuleList(
[
transformer.transformer_blocks[i].attn2.processor for i in
range(len(transformer.transformer_blocks))
])
elif self.sd_ref().is_flux:
# we have to set them ourselves
transformer: FluxTransformer2DModel = sd.unet
for i, module in transformer.transformer_blocks.named_children():
module.attn.processor = attn_procs[f"transformer_blocks.{i}.attn"]
# do single blocks too even though they dont have cross attn
for i, module in transformer.single_transformer_blocks.named_children():
module.attn.processor = attn_procs[f"single_transformer_blocks.{i}.attn"]
self.adapter_modules = torch.nn.ModuleList(
[
transformer.transformer_blocks[i].attn.processor for i in
range(len(transformer.transformer_blocks))
] + [
transformer.single_transformer_blocks[i].attn.processor for i in
range(len(transformer.single_transformer_blocks))
]
)
else:
sd.unet.set_attn_processor(attn_procs)
self.adapter_modules = torch.nn.ModuleList(sd.unet.attn_processors.values())
sd.adapter = self
self.unet_ref: weakref.ref = weakref.ref(sd.unet)
self.image_proj_model = image_proj_model
# load the weights if we have some
if self.config.name_or_path:
loaded_state_dict = load_ip_adapter_model(
self.config.name_or_path,
device='cpu',
dtype=sd.torch_dtype
)
self.load_state_dict(loaded_state_dict)
self.set_scale(1.0)
if self.config.train_image_encoder:
self.image_encoder.train()
self.image_encoder.requires_grad_(True)
# premake a unconditional
zerod = torch.zeros(1, 3, self.input_size, self.input_size, device=self.device, dtype=torch.float16)
self.unconditional = self.clip_image_processor(
images=zerod,
return_tensors="pt",
do_resize=True,
do_rescale=False,
).pixel_values
def to(self, *args, **kwargs):
super().to(*args, **kwargs)
self.image_encoder.to(*args, **kwargs)
self.image_proj_model.to(*args, **kwargs)
self.adapter_modules.to(*args, **kwargs)
if self.preprocessor is not None:
self.preprocessor.to(*args, **kwargs)
return self
# def load_ip_adapter(self, state_dict: Union[OrderedDict, dict]):
# self.image_proj_model.load_state_dict(state_dict["image_proj"])
# ip_layers = torch.nn.ModuleList(self.pipe.unet.attn_processors.values())
# ip_layers.load_state_dict(state_dict["ip_adapter"])
# if self.config.train_image_encoder and 'image_encoder' in state_dict:
# self.image_encoder.load_state_dict(state_dict["image_encoder"])
# if self.preprocessor is not None and 'preprocessor' in state_dict:
# self.preprocessor.load_state_dict(state_dict["preprocessor"])
# def load_state_dict(self, state_dict: Union[OrderedDict, dict]):
# self.load_ip_adapter(state_dict)
def state_dict(self) -> OrderedDict:
state_dict = OrderedDict()
if self.config.train_only_image_encoder:
return self.image_encoder.state_dict()
if self.config.train_scaler:
state_dict["ip_scale"] = self.adapter_modules.state_dict()
# remove items that are not scalers
for key in list(state_dict["ip_scale"].keys()):
if not key.endswith("ip_scaler"):
del state_dict["ip_scale"][key]
return state_dict
state_dict["image_proj"] = self.image_proj_model.state_dict()
state_dict["ip_adapter"] = self.adapter_modules.state_dict()
# handle merge scaler training
if self.config.merge_scaler:
for key in list(state_dict["ip_adapter"].keys()):
if key.endswith("ip_scaler"):
# merge in the scaler so we dont have to save it and it will be compatible with other ip adapters
scale = state_dict["ip_adapter"][key].clone()
key_start = key.split(".")[-2]
# reshape to (1, 1)
scale = scale.view(1, 1)
del state_dict["ip_adapter"][key]
# find the to_k_ip and to_v_ip keys
for key2 in list(state_dict["ip_adapter"].keys()):
if key2.endswith(f"{key_start}.to_k_ip.weight"):
state_dict["ip_adapter"][key2] = state_dict["ip_adapter"][key2].clone() * scale
if key2.endswith(f"{key_start}.to_v_ip.weight"):
state_dict["ip_adapter"][key2] = state_dict["ip_adapter"][key2].clone() * scale
if self.config.train_image_encoder:
state_dict["image_encoder"] = self.image_encoder.state_dict()
if self.preprocessor is not None:
state_dict["preprocessor"] = self.preprocessor.state_dict()
return state_dict
def get_scale(self):
return self.current_scale
def set_scale(self, scale):
self.current_scale = scale
if not self.sd_ref().is_pixart and not self.sd_ref().is_flux:
for attn_processor in self.sd_ref().unet.attn_processors.values():
if isinstance(attn_processor, CustomIPAttentionProcessor):
attn_processor.scale = scale
# @torch.no_grad()
# def get_clip_image_embeds_from_pil(self, pil_image: Union[Image.Image, List[Image.Image]],
# drop=False) -> torch.Tensor:
# # todo: add support for sdxl
# if isinstance(pil_image, Image.Image):
# pil_image = [pil_image]
# clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values
# clip_image = clip_image.to(self.device, dtype=get_torch_dtype(self.sd_ref().dtype))
# if drop:
# clip_image = clip_image * 0
# clip_image_embeds = self.image_encoder(clip_image, output_hidden_states=True).hidden_states[-2]
# return clip_image_embeds
def to(self, *args, **kwargs):
super().to(*args, **kwargs)
self.image_encoder.to(*args, **kwargs)
self.image_proj_model.to(*args, **kwargs)
self.adapter_modules.to(*args, **kwargs)
if self.preprocessor is not None:
self.preprocessor.to(*args, **kwargs)
return self
def parse_clip_image_embeds_from_cache(
self,
image_embeds_list: List[dict], # has ['last_hidden_state', 'image_embeds', 'penultimate_hidden_states']
quad_count=4,
):
with torch.no_grad():
device = self.sd_ref().unet.device
clip_image_embeds = torch.cat([x[self.config.clip_layer] for x in image_embeds_list], dim=0)
if self.config.quad_image:
# get the outputs of the quat
chunks = clip_image_embeds.chunk(quad_count, dim=0)
chunk_sum = torch.zeros_like(chunks[0])
for chunk in chunks:
chunk_sum = chunk_sum + chunk
# get the mean of them
clip_image_embeds = chunk_sum / quad_count
clip_image_embeds = clip_image_embeds.to(device, dtype=get_torch_dtype(self.sd_ref().dtype)).detach()
return clip_image_embeds
def get_empty_clip_image(self, batch_size: int) -> torch.Tensor:
with torch.no_grad():
tensors_0_1 = torch.rand([batch_size, 3, self.input_size, self.input_size], device=self.device)
noise_scale = torch.rand([tensors_0_1.shape[0], 1, 1, 1], device=self.device,
dtype=get_torch_dtype(self.sd_ref().dtype))
tensors_0_1 = tensors_0_1 * noise_scale
# tensors_0_1 = tensors_0_1 * 0
mean = torch.tensor(self.clip_image_processor.image_mean).to(
self.device, dtype=get_torch_dtype(self.sd_ref().dtype)
).detach()
std = torch.tensor(self.clip_image_processor.image_std).to(
self.device, dtype=get_torch_dtype(self.sd_ref().dtype)
).detach()
tensors_0_1 = torch.clip((255. * tensors_0_1), 0, 255).round() / 255.0
clip_image = (tensors_0_1 - mean.view([1, 3, 1, 1])) / std.view([1, 3, 1, 1])
return clip_image.detach()
def get_clip_image_embeds_from_tensors(
self,
tensors_0_1: torch.Tensor,
drop=False,
is_training=False,
has_been_preprocessed=False,
quad_count=4,
cfg_embed_strength=None, # perform CFG on embeds with unconditional as negative
) -> torch.Tensor:
if self.sd_ref().unet.device != self.device:
self.to(self.sd_ref().unet.device)
if self.sd_ref().unet.device != self.image_encoder.device:
self.to(self.sd_ref().unet.device)
if not self.config.train:
is_training = False
uncond_clip = None
with torch.no_grad():
# on training the clip image is created in the dataloader
if not has_been_preprocessed:
# tensors should be 0-1
if tensors_0_1.ndim == 3:
tensors_0_1 = tensors_0_1.unsqueeze(0)
# training tensors are 0 - 1
tensors_0_1 = tensors_0_1.to(self.device, dtype=torch.float16)
# if images are out of this range throw error
if tensors_0_1.min() < -0.3 or tensors_0_1.max() > 1.3:
raise ValueError("image tensor values must be between 0 and 1. Got min: {}, max: {}".format(
tensors_0_1.min(), tensors_0_1.max()
))
# unconditional
if drop:
if self.clip_noise_zero:
tensors_0_1 = torch.rand_like(tensors_0_1).detach()
noise_scale = torch.rand([tensors_0_1.shape[0], 1, 1, 1], device=self.device,
dtype=get_torch_dtype(self.sd_ref().dtype))
tensors_0_1 = tensors_0_1 * noise_scale
else:
tensors_0_1 = torch.zeros_like(tensors_0_1).detach()
# tensors_0_1 = tensors_0_1 * 0
clip_image = self.clip_image_processor(
images=tensors_0_1,
return_tensors="pt",
do_resize=True,
do_rescale=False,
).pixel_values
else:
if drop:
# scale the noise down
if self.clip_noise_zero:
tensors_0_1 = torch.rand_like(tensors_0_1).detach()
noise_scale = torch.rand([tensors_0_1.shape[0], 1, 1, 1], device=self.device,
dtype=get_torch_dtype(self.sd_ref().dtype))
tensors_0_1 = tensors_0_1 * noise_scale
else:
tensors_0_1 = torch.zeros_like(tensors_0_1).detach()
# tensors_0_1 = tensors_0_1 * 0
mean = torch.tensor(self.clip_image_processor.image_mean).to(
self.device, dtype=get_torch_dtype(self.sd_ref().dtype)
).detach()
std = torch.tensor(self.clip_image_processor.image_std).to(
self.device, dtype=get_torch_dtype(self.sd_ref().dtype)
).detach()
tensors_0_1 = torch.clip((255. * tensors_0_1), 0, 255).round() / 255.0
clip_image = (tensors_0_1 - mean.view([1, 3, 1, 1])) / std.view([1, 3, 1, 1])
else:
clip_image = tensors_0_1
clip_image = clip_image.to(self.device, dtype=get_torch_dtype(self.sd_ref().dtype)).detach()
if self.config.quad_image:
# split the 4x4 grid and stack on batch
ci1, ci2 = clip_image.chunk(2, dim=2)
ci1, ci3 = ci1.chunk(2, dim=3)
ci2, ci4 = ci2.chunk(2, dim=3)
to_cat = []
for i, ci in enumerate([ci1, ci2, ci3, ci4]):
if i < quad_count:
to_cat.append(ci)
else:
break
clip_image = torch.cat(to_cat, dim=0).detach()
# if drop:
# clip_image = clip_image * 0
with torch.set_grad_enabled(is_training):
if is_training and self.config.train_image_encoder:
self.image_encoder.train()
clip_image = clip_image.requires_grad_(True)
if self.preprocessor is not None:
clip_image = self.preprocessor(clip_image)
clip_output = self.image_encoder(
clip_image,
output_hidden_states=True
)
else:
self.image_encoder.eval()
if self.preprocessor is not None:
clip_image = self.preprocessor(clip_image)
clip_output = self.image_encoder(
clip_image, output_hidden_states=True
)
if self.config.clip_layer == 'penultimate_hidden_states':
# they skip last layer for ip+
# https://github.com/tencent-ailab/IP-Adapter/blob/f4b6742db35ea6d81c7b829a55b0a312c7f5a677/tutorial_train_plus.py#L403C26-L403C26
clip_image_embeds = clip_output.hidden_states[-2]
elif self.config.clip_layer == 'last_hidden_state':
clip_image_embeds = clip_output.hidden_states[-1]
else:
clip_image_embeds = clip_output.image_embeds
if self.config.adapter_type == "clip_face":
l2_norm = torch.norm(clip_image_embeds, p=2)
clip_image_embeds = clip_image_embeds / l2_norm
if self.config.image_encoder_arch.startswith('convnext'):
# flatten the width height layers to make the token space
clip_image_embeds = clip_image_embeds.view(clip_image_embeds.size(0), clip_image_embeds.size(1), -1)
# rearrange to (batch, tokens, size)
clip_image_embeds = clip_image_embeds.permute(0, 2, 1)
# apply unconditional if doing cfg on embeds
with torch.no_grad():
if cfg_embed_strength is not None:
uncond_clip = self.get_empty_clip_image(tensors_0_1.shape[0]).to(self.device, dtype=get_torch_dtype(self.sd_ref().dtype))
if self.config.quad_image:
# split the 4x4 grid and stack on batch
ci1, ci2 = uncond_clip.chunk(2, dim=2)
ci1, ci3 = ci1.chunk(2, dim=3)
ci2, ci4 = ci2.chunk(2, dim=3)
to_cat = []
for i, ci in enumerate([ci1, ci2, ci3, ci4]):
if i < quad_count:
to_cat.append(ci)
else:
break
uncond_clip = torch.cat(to_cat, dim=0).detach()
uncond_clip_output = self.image_encoder(
uncond_clip, output_hidden_states=True
)
if self.config.clip_layer == 'penultimate_hidden_states':
uncond_clip_output_embeds = uncond_clip_output.hidden_states[-2]
elif self.config.clip_layer == 'last_hidden_state':
uncond_clip_output_embeds = uncond_clip_output.hidden_states[-1]
else:
uncond_clip_output_embeds = uncond_clip_output.image_embeds
if self.config.adapter_type == "clip_face":
l2_norm = torch.norm(uncond_clip_output_embeds, p=2)
uncond_clip_output_embeds = uncond_clip_output_embeds / l2_norm
uncond_clip_output_embeds = uncond_clip_output_embeds.detach()
# apply inverse cfg
clip_image_embeds = inverse_classifier_guidance(
clip_image_embeds,
uncond_clip_output_embeds,
cfg_embed_strength
)
if self.config.quad_image:
# get the outputs of the quat
chunks = clip_image_embeds.chunk(quad_count, dim=0)
if self.config.train_image_encoder and is_training:
# perform a loss across all chunks this will teach the vision encoder to
# identify similarities in our pairs of images and ignore things that do not make them similar
num_losses = 0
total_loss = None
for chunk in chunks:
for chunk2 in chunks:
if chunk is not chunk2:
loss = F.mse_loss(chunk, chunk2)
if total_loss is None:
total_loss = loss
else:
total_loss = total_loss + loss
num_losses += 1
if total_loss is not None:
total_loss = total_loss / num_losses
total_loss = total_loss * 1e-2
if self.additional_loss is not None:
total_loss = total_loss + self.additional_loss
self.additional_loss = total_loss
chunk_sum = torch.zeros_like(chunks[0])
for chunk in chunks:
chunk_sum = chunk_sum + chunk
# get the mean of them
clip_image_embeds = chunk_sum / quad_count
if not is_training or not self.config.train_image_encoder:
clip_image_embeds = clip_image_embeds.detach()
return clip_image_embeds
# use drop for prompt dropout, or negatives
def forward(self, embeddings: PromptEmbeds, clip_image_embeds: torch.Tensor, is_unconditional=False) -> PromptEmbeds:
clip_image_embeds = clip_image_embeds.to(self.device, dtype=get_torch_dtype(self.sd_ref().dtype))
image_prompt_embeds = self.image_proj_model(clip_image_embeds)
if self.sd_ref().is_flux:
# do not attach to text embeds for flux, we will save and grab them as it messes
# with the RoPE to have them in the same tensor
if is_unconditional:
self.last_unconditional = image_prompt_embeds
else:
self.last_conditional = image_prompt_embeds
else:
embeddings.text_embeds = torch.cat([embeddings.text_embeds, image_prompt_embeds], dim=1)
return embeddings
def train(self: T, mode: bool = True) -> T:
if self.config.train_image_encoder:
self.image_encoder.train(mode)
if not self.config.train_only_image_encoder:
for attn_processor in self.adapter_modules:
attn_processor.train(mode)
if self.image_proj_model is not None:
self.image_proj_model.train(mode)
return super().train(mode)
def get_parameter_groups(self, adapter_lr):
param_groups = []
# when training just scaler, we do not train anything else
if not self.config.train_scaler:
param_groups.append({
"params": self.get_non_scaler_parameters(),
"lr": adapter_lr,
})
if self.config.train_scaler or self.config.merge_scaler:
scaler_lr = adapter_lr if self.config.scaler_lr is None else self.config.scaler_lr
param_groups.append({
"params": self.get_scaler_parameters(),
"lr": scaler_lr,
})
return param_groups
def get_scaler_parameters(self):
# only get the scalera from the adapter modules
for attn_processor in self.adapter_modules:
# only get the scaler
# check if it has ip_scaler attribute
if hasattr(attn_processor, "ip_scaler"):
scaler_param = attn_processor.ip_scaler
yield scaler_param
def get_non_scaler_parameters(self, recurse: bool = True) -> Iterator[Parameter]:
if self.config.train_only_image_encoder:
if self.config.train_only_image_encoder_positional_embedding:
yield from self.image_encoder.vision_model.embeddings.position_embedding.parameters(recurse)
else:
yield from self.image_encoder.parameters(recurse)
return
if self.config.train_scaler:
# no params
return
for attn_processor in self.adapter_modules:
if self.config.train_scaler or self.config.merge_scaler:
# todo remove scaler
if hasattr(attn_processor, "to_k_ip"):
# yield the linear layer
yield from attn_processor.to_k_ip.parameters(recurse)
if hasattr(attn_processor, "to_v_ip"):
# yield the linear layer
yield from attn_processor.to_v_ip.parameters(recurse)
else:
yield from attn_processor.parameters(recurse)
yield from self.image_proj_model.parameters(recurse)
if self.config.train_image_encoder:
yield from self.image_encoder.parameters(recurse)
if self.preprocessor is not None:
yield from self.preprocessor.parameters(recurse)
def parameters(self, recurse: bool = True) -> Iterator[Parameter]:
yield from self.get_non_scaler_parameters(recurse)
if self.config.train_scaler or self.config.merge_scaler:
yield from self.get_scaler_parameters()
def merge_in_weights(self, state_dict: Mapping[str, Any]):
# merge in img_proj weights
current_img_proj_state_dict = self.image_proj_model.state_dict()
for key, value in state_dict["image_proj"].items():
if key in current_img_proj_state_dict:
current_shape = current_img_proj_state_dict[key].shape
new_shape = value.shape
if current_shape != new_shape:
try:
# merge in what we can and leave the other values as they are
if len(current_shape) == 1:
current_img_proj_state_dict[key][:new_shape[0]] = value
elif len(current_shape) == 2:
current_img_proj_state_dict[key][:new_shape[0], :new_shape[1]] = value
elif len(current_shape) == 3:
current_img_proj_state_dict[key][:new_shape[0], :new_shape[1], :new_shape[2]] = value
elif len(current_shape) == 4:
current_img_proj_state_dict[key][:new_shape[0], :new_shape[1], :new_shape[2],
:new_shape[3]] = value
else:
raise ValueError(f"unknown shape: {current_shape}")
except RuntimeError as e:
print(e)
print(
f"could not merge in {key}: {list(current_shape)} <<< {list(new_shape)}. Trying other way")
if len(current_shape) == 1:
current_img_proj_state_dict[key][:current_shape[0]] = value[:current_shape[0]]
elif len(current_shape) == 2:
current_img_proj_state_dict[key][:current_shape[0], :current_shape[1]] = value[
:current_shape[0],
:current_shape[1]]
elif len(current_shape) == 3:
current_img_proj_state_dict[key][:current_shape[0], :current_shape[1],
:current_shape[2]] = value[:current_shape[0], :current_shape[1], :current_shape[2]]
elif len(current_shape) == 4:
current_img_proj_state_dict[key][:current_shape[0], :current_shape[1], :current_shape[2],
:current_shape[3]] = value[:current_shape[0], :current_shape[1], :current_shape[2],
:current_shape[3]]
else:
raise ValueError(f"unknown shape: {current_shape}")
print(f"Force merged in {key}: {list(current_shape)} <<< {list(new_shape)}")
else:
current_img_proj_state_dict[key] = value
self.image_proj_model.load_state_dict(current_img_proj_state_dict)
# merge in ip adapter weights
current_ip_adapter_state_dict = self.adapter_modules.state_dict()
for key, value in state_dict["ip_adapter"].items():
if key in current_ip_adapter_state_dict:
current_shape = current_ip_adapter_state_dict[key].shape
new_shape = value.shape
if current_shape != new_shape:
try:
# merge in what we can and leave the other values as they are
if len(current_shape) == 1:
current_ip_adapter_state_dict[key][:new_shape[0]] = value
elif len(current_shape) == 2:
current_ip_adapter_state_dict[key][:new_shape[0], :new_shape[1]] = value
elif len(current_shape) == 3:
current_ip_adapter_state_dict[key][:new_shape[0], :new_shape[1], :new_shape[2]] = value
elif len(current_shape) == 4:
current_ip_adapter_state_dict[key][:new_shape[0], :new_shape[1], :new_shape[2],
:new_shape[3]] = value
else:
raise ValueError(f"unknown shape: {current_shape}")
print(f"Force merged in {key}: {list(current_shape)} <<< {list(new_shape)}")
except RuntimeError as e:
print(e)
print(
f"could not merge in {key}: {list(current_shape)} <<< {list(new_shape)}. Trying other way")
if (len(current_shape) == 1):
current_ip_adapter_state_dict[key][:current_shape[0]] = value[:current_shape[0]]
elif (len(current_shape) == 2):
current_ip_adapter_state_dict[key][:current_shape[0], :current_shape[1]] = value[
:current_shape[
0],
:current_shape[
1]]
elif (len(current_shape) == 3):
current_ip_adapter_state_dict[key][:current_shape[0], :current_shape[1],
:current_shape[2]] = value[:current_shape[0], :current_shape[1], :current_shape[2]]
elif (len(current_shape) == 4):
current_ip_adapter_state_dict[key][:current_shape[0], :current_shape[1], :current_shape[2],
:current_shape[3]] = value[:current_shape[0], :current_shape[1], :current_shape[2],
:current_shape[3]]
else:
raise ValueError(f"unknown shape: {current_shape}")
print(f"Force merged in {key}: {list(current_shape)} <<< {list(new_shape)}")
else:
current_ip_adapter_state_dict[key] = value
self.adapter_modules.load_state_dict(current_ip_adapter_state_dict)
def load_state_dict(self, state_dict: Mapping[str, Any], strict: bool = True):
strict = False
if self.config.train_scaler and 'ip_scale' in state_dict:
self.adapter_modules.load_state_dict(state_dict["ip_scale"], strict=False)
if 'ip_adapter' in state_dict:
try:
self.image_proj_model.load_state_dict(state_dict["image_proj"], strict=strict)
self.adapter_modules.load_state_dict(state_dict["ip_adapter"], strict=strict)
except Exception as e:
print(e)
print("could not load ip adapter weights, trying to merge in weights")
self.merge_in_weights(state_dict)
if self.config.train_image_encoder and 'image_encoder' in state_dict:
self.image_encoder.load_state_dict(state_dict["image_encoder"], strict=strict)
if self.preprocessor is not None and 'preprocessor' in state_dict:
self.preprocessor.load_state_dict(state_dict["preprocessor"], strict=strict)
if self.config.train_only_image_encoder and 'ip_adapter' not in state_dict:
# we are loading pure clip weights.
self.image_encoder.load_state_dict(state_dict, strict=strict)
def enable_gradient_checkpointing(self):
if hasattr(self.image_encoder, "enable_gradient_checkpointing"):
self.image_encoder.enable_gradient_checkpointing()
elif hasattr(self.image_encoder, 'gradient_checkpointing'):
self.image_encoder.gradient_checkpointing = True