File size: 65,422 Bytes
1ba389d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 |
import random
import torch
import sys
from PIL import Image
from diffusers import Transformer2DModel
from torch import nn
from torch.nn import Parameter
from torch.nn.modules.module import T
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
from toolkit.models.clip_pre_processor import CLIPImagePreProcessor
from toolkit.models.zipper_resampler import ZipperResampler
from toolkit.paths import REPOS_ROOT
from toolkit.saving import load_ip_adapter_model
from toolkit.train_tools import get_torch_dtype
from toolkit.util.inverse_cfg import inverse_classifier_guidance
sys.path.append(REPOS_ROOT)
from typing import TYPE_CHECKING, Union, Iterator, Mapping, Any, Tuple, List, Optional
from collections import OrderedDict
from ipadapter.ip_adapter.attention_processor import AttnProcessor, IPAttnProcessor, IPAttnProcessor2_0, \
AttnProcessor2_0
from ipadapter.ip_adapter.ip_adapter import ImageProjModel
from ipadapter.ip_adapter.resampler import PerceiverAttention, FeedForward, Resampler
from toolkit.config_modules import AdapterConfig
from toolkit.prompt_utils import PromptEmbeds
import weakref
from diffusers import FluxTransformer2DModel
if TYPE_CHECKING:
from toolkit.stable_diffusion_model import StableDiffusion
from transformers import (
CLIPImageProcessor,
CLIPVisionModelWithProjection,
CLIPVisionModel,
AutoImageProcessor,
ConvNextModel,
ConvNextV2ForImageClassification,
ConvNextForImageClassification,
ConvNextImageProcessor
)
from toolkit.models.size_agnostic_feature_encoder import SAFEImageProcessor, SAFEVisionModel
from transformers import ViTHybridImageProcessor, ViTHybridForImageClassification
from transformers import ViTFeatureExtractor, ViTForImageClassification
# gradient checkpointing
from torch.utils.checkpoint import checkpoint
import torch.nn.functional as F
class MLPProjModelClipFace(torch.nn.Module):
def __init__(self, cross_attention_dim=768, id_embeddings_dim=512, num_tokens=4):
super().__init__()
self.cross_attention_dim = cross_attention_dim
self.num_tokens = num_tokens
self.norm = torch.nn.LayerNorm(id_embeddings_dim)
self.proj = torch.nn.Sequential(
torch.nn.Linear(id_embeddings_dim, id_embeddings_dim * 2),
torch.nn.GELU(),
torch.nn.Linear(id_embeddings_dim * 2, cross_attention_dim * num_tokens),
)
# Initialize the last linear layer weights near zero
torch.nn.init.uniform_(self.proj[2].weight, a=-0.01, b=0.01)
torch.nn.init.zeros_(self.proj[2].bias)
# # Custom initialization for LayerNorm to output near zero
# torch.nn.init.constant_(self.norm.weight, 0.1) # Small weights near zero
# torch.nn.init.zeros_(self.norm.bias) # Bias to zero
def forward(self, x):
x = self.norm(x)
x = self.proj(x)
x = x.reshape(-1, self.num_tokens, self.cross_attention_dim)
return x
class CustomIPAttentionProcessor(IPAttnProcessor2_0):
def __init__(self, hidden_size, cross_attention_dim, scale=1.0, num_tokens=4, adapter=None, train_scaler=False, full_token_scaler=False):
super().__init__(hidden_size, cross_attention_dim, scale=scale, num_tokens=num_tokens)
self.adapter_ref: weakref.ref = weakref.ref(adapter)
self.train_scaler = train_scaler
if train_scaler:
if full_token_scaler:
self.ip_scaler = torch.nn.Parameter(torch.ones([num_tokens], dtype=torch.float32) * 0.999)
else:
self.ip_scaler = torch.nn.Parameter(torch.ones([1], dtype=torch.float32) * 0.999)
# self.ip_scaler = torch.nn.Parameter(torch.ones([1], dtype=torch.float32) * 0.9999)
self.ip_scaler.requires_grad_(True)
def __call__(
self,
attn,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
temb=None,
):
is_active = self.adapter_ref().is_active
residual = hidden_states
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
if is_active:
# since we are removing tokens, we need to adjust the sequence length
sequence_length = sequence_length - self.num_tokens
if attention_mask is not None:
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
# scaled_dot_product_attention expects attention_mask shape to be
# (batch, heads, source_length, target_length)
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
# will be none if disabled
if not is_active:
ip_hidden_states = None
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
else:
# get encoder_hidden_states, ip_hidden_states
end_pos = encoder_hidden_states.shape[1] - self.num_tokens
encoder_hidden_states, ip_hidden_states = (
encoder_hidden_states[:, :end_pos, :],
encoder_hidden_states[:, end_pos:, :],
)
if attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
# the output of sdp = (batch, num_heads, seq_len, head_dim)
# TODO: add support for attn.scale when we move to Torch 2.1
try:
hidden_states = F.scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)
except Exception as e:
print(e)
raise e
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
hidden_states = hidden_states.to(query.dtype)
# will be none if disabled
if ip_hidden_states is not None:
# apply scaler
if self.train_scaler:
weight = self.ip_scaler
# reshape to (1, self.num_tokens, 1)
weight = weight.view(1, -1, 1)
ip_hidden_states = ip_hidden_states * weight
# for ip-adapter
ip_key = self.to_k_ip(ip_hidden_states)
ip_value = self.to_v_ip(ip_hidden_states)
ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
# the output of sdp = (batch, num_heads, seq_len, head_dim)
# TODO: add support for attn.scale when we move to Torch 2.1
ip_hidden_states = F.scaled_dot_product_attention(
query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False
)
ip_hidden_states = ip_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
ip_hidden_states = ip_hidden_states.to(query.dtype)
scale = self.scale
hidden_states = hidden_states + scale * ip_hidden_states
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states
# this ensures that the ip_scaler is not changed when we load the model
# def _apply(self, fn):
# if hasattr(self, "ip_scaler"):
# # Overriding the _apply method to prevent the special_parameter from changing dtype
# self.ip_scaler = fn(self.ip_scaler)
# # Temporarily set the special_parameter to None to exclude it from default _apply processing
# ip_scaler = self.ip_scaler
# self.ip_scaler = None
# super(CustomIPAttentionProcessor, self)._apply(fn)
# # Restore the special_parameter after the default _apply processing
# self.ip_scaler = ip_scaler
# return self
# else:
# return super(CustomIPAttentionProcessor, self)._apply(fn)
class CustomIPFluxAttnProcessor2_0(torch.nn.Module):
"""Attention processor used typically in processing the SD3-like self-attention projections."""
def __init__(self, hidden_size, cross_attention_dim, scale=1.0, num_tokens=4, adapter=None, train_scaler=False,
full_token_scaler=False):
super().__init__()
self.hidden_size = hidden_size
self.cross_attention_dim = cross_attention_dim
self.scale = scale
self.num_tokens = num_tokens
self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
self.adapter_ref: weakref.ref = weakref.ref(adapter)
self.train_scaler = train_scaler
self.num_tokens = num_tokens
if train_scaler:
if full_token_scaler:
self.ip_scaler = torch.nn.Parameter(torch.ones([num_tokens], dtype=torch.float32) * 0.999)
else:
self.ip_scaler = torch.nn.Parameter(torch.ones([1], dtype=torch.float32) * 0.999)
# self.ip_scaler = torch.nn.Parameter(torch.ones([1], dtype=torch.float32) * 0.9999)
self.ip_scaler.requires_grad_(True)
def __call__(
self,
attn,
hidden_states: torch.FloatTensor,
encoder_hidden_states: torch.FloatTensor = None,
attention_mask: Optional[torch.FloatTensor] = None,
image_rotary_emb: Optional[torch.Tensor] = None,
) -> torch.FloatTensor:
is_active = self.adapter_ref().is_active
batch_size, _, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
# `sample` projections.
query = attn.to_q(hidden_states)
key = attn.to_k(hidden_states)
value = attn.to_v(hidden_states)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
if attn.norm_q is not None:
query = attn.norm_q(query)
if attn.norm_k is not None:
key = attn.norm_k(key)
# the attention in FluxSingleTransformerBlock does not use `encoder_hidden_states`
if encoder_hidden_states is not None:
# `context` projections.
encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states)
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(
batch_size, -1, attn.heads, head_dim
).transpose(1, 2)
encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(
batch_size, -1, attn.heads, head_dim
).transpose(1, 2)
encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(
batch_size, -1, attn.heads, head_dim
).transpose(1, 2)
if attn.norm_added_q is not None:
encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj)
if attn.norm_added_k is not None:
encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj)
# attention
query = torch.cat([encoder_hidden_states_query_proj, query], dim=2)
key = torch.cat([encoder_hidden_states_key_proj, key], dim=2)
value = torch.cat([encoder_hidden_states_value_proj, value], dim=2)
if image_rotary_emb is not None:
from diffusers.models.embeddings import apply_rotary_emb
query = apply_rotary_emb(query, image_rotary_emb)
key = apply_rotary_emb(key, image_rotary_emb)
hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
hidden_states = hidden_states.to(query.dtype)
# begin ip adapter
if not is_active:
ip_hidden_states = None
else:
# get ip hidden states. Should be stored
ip_hidden_states = self.adapter_ref().last_conditional
# add unconditional to front if it exists
if ip_hidden_states.shape[0] * 2 == batch_size:
if self.adapter_ref().last_unconditional is None:
raise ValueError("Unconditional is None but should not be")
ip_hidden_states = torch.cat([self.adapter_ref().last_unconditional, ip_hidden_states], dim=0)
if ip_hidden_states is not None:
# apply scaler
if self.train_scaler:
weight = self.ip_scaler
# reshape to (1, self.num_tokens, 1)
weight = weight.view(1, -1, 1)
ip_hidden_states = ip_hidden_states * weight
# for ip-adapter
ip_key = self.to_k_ip(ip_hidden_states)
ip_value = self.to_v_ip(ip_hidden_states)
ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
ip_hidden_states = F.scaled_dot_product_attention(
query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False
)
ip_hidden_states = ip_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
ip_hidden_states = ip_hidden_states.to(query.dtype)
scale = self.scale
hidden_states = hidden_states + scale * ip_hidden_states
# end ip adapter
if encoder_hidden_states is not None:
encoder_hidden_states, hidden_states = (
hidden_states[:, : encoder_hidden_states.shape[1]],
hidden_states[:, encoder_hidden_states.shape[1] :],
)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
return hidden_states, encoder_hidden_states
else:
return hidden_states
# loosely based on # ref https://github.com/tencent-ailab/IP-Adapter/blob/main/tutorial_train.py
class IPAdapter(torch.nn.Module):
"""IP-Adapter"""
def __init__(self, sd: 'StableDiffusion', adapter_config: 'AdapterConfig'):
super().__init__()
self.config = adapter_config
self.sd_ref: weakref.ref = weakref.ref(sd)
self.device = self.sd_ref().unet.device
self.preprocessor: Optional[CLIPImagePreProcessor] = None
self.input_size = 224
self.clip_noise_zero = True
self.unconditional: torch.Tensor = None
self.last_conditional: torch.Tensor = None
self.last_unconditional: torch.Tensor = None
self.additional_loss = None
if self.config.image_encoder_arch.startswith("clip"):
try:
self.clip_image_processor = CLIPImageProcessor.from_pretrained(adapter_config.image_encoder_path)
except EnvironmentError:
self.clip_image_processor = CLIPImageProcessor()
self.image_encoder = CLIPVisionModelWithProjection.from_pretrained(
adapter_config.image_encoder_path,
ignore_mismatched_sizes=True).to(self.device, dtype=get_torch_dtype(self.sd_ref().dtype))
elif self.config.image_encoder_arch == 'siglip':
from transformers import SiglipImageProcessor, SiglipVisionModel
try:
self.clip_image_processor = SiglipImageProcessor.from_pretrained(adapter_config.image_encoder_path)
except EnvironmentError:
self.clip_image_processor = SiglipImageProcessor()
self.image_encoder = SiglipVisionModel.from_pretrained(
adapter_config.image_encoder_path,
ignore_mismatched_sizes=True).to(self.device, dtype=get_torch_dtype(self.sd_ref().dtype))
elif self.config.image_encoder_arch == 'vit':
try:
self.clip_image_processor = ViTFeatureExtractor.from_pretrained(adapter_config.image_encoder_path)
except EnvironmentError:
self.clip_image_processor = ViTFeatureExtractor()
self.image_encoder = ViTForImageClassification.from_pretrained(adapter_config.image_encoder_path).to(
self.device, dtype=get_torch_dtype(self.sd_ref().dtype))
elif self.config.image_encoder_arch == 'safe':
try:
self.clip_image_processor = SAFEImageProcessor.from_pretrained(adapter_config.image_encoder_path)
except EnvironmentError:
self.clip_image_processor = SAFEImageProcessor()
self.image_encoder = SAFEVisionModel(
in_channels=3,
num_tokens=self.config.safe_tokens,
num_vectors=sd.unet.config['cross_attention_dim'],
reducer_channels=self.config.safe_reducer_channels,
channels=self.config.safe_channels,
downscale_factor=8
).to(self.device, dtype=get_torch_dtype(self.sd_ref().dtype))
elif self.config.image_encoder_arch == 'convnext':
try:
self.clip_image_processor = ConvNextImageProcessor.from_pretrained(adapter_config.image_encoder_path)
except EnvironmentError:
print(f"could not load image processor from {adapter_config.image_encoder_path}")
self.clip_image_processor = ConvNextImageProcessor(
size=320,
image_mean=[0.48145466, 0.4578275, 0.40821073],
image_std=[0.26862954, 0.26130258, 0.27577711],
)
self.image_encoder = ConvNextForImageClassification.from_pretrained(
adapter_config.image_encoder_path,
use_safetensors=True,
).to(self.device, dtype=get_torch_dtype(self.sd_ref().dtype))
elif self.config.image_encoder_arch == 'convnextv2':
try:
self.clip_image_processor = AutoImageProcessor.from_pretrained(adapter_config.image_encoder_path)
except EnvironmentError:
print(f"could not load image processor from {adapter_config.image_encoder_path}")
self.clip_image_processor = ConvNextImageProcessor(
size=512,
image_mean=[0.485, 0.456, 0.406],
image_std=[0.229, 0.224, 0.225],
)
self.image_encoder = ConvNextV2ForImageClassification.from_pretrained(
adapter_config.image_encoder_path,
use_safetensors=True,
).to(self.device, dtype=get_torch_dtype(self.sd_ref().dtype))
elif self.config.image_encoder_arch == 'vit-hybrid':
try:
self.clip_image_processor = ViTHybridImageProcessor.from_pretrained(adapter_config.image_encoder_path)
except EnvironmentError:
print(f"could not load image processor from {adapter_config.image_encoder_path}")
self.clip_image_processor = ViTHybridImageProcessor(
size=320,
image_mean=[0.48145466, 0.4578275, 0.40821073],
image_std=[0.26862954, 0.26130258, 0.27577711],
)
self.image_encoder = ViTHybridForImageClassification.from_pretrained(
adapter_config.image_encoder_path,
use_safetensors=True,
).to(self.device, dtype=get_torch_dtype(self.sd_ref().dtype))
else:
raise ValueError(f"unknown image encoder arch: {adapter_config.image_encoder_arch}")
if not self.config.train_image_encoder:
# compile it
print('Compiling image encoder')
#torch.compile(self.image_encoder, fullgraph=True)
self.input_size = self.image_encoder.config.image_size
if self.config.quad_image: # 4x4 image
# self.clip_image_processor.config
# We do a 3x downscale of the image, so we need to adjust the input size
preprocessor_input_size = self.image_encoder.config.image_size * 2
# update the preprocessor so images come in at the right size
if 'height' in self.clip_image_processor.size:
self.clip_image_processor.size['height'] = preprocessor_input_size
self.clip_image_processor.size['width'] = preprocessor_input_size
elif hasattr(self.clip_image_processor, 'crop_size'):
self.clip_image_processor.size['shortest_edge'] = preprocessor_input_size
self.clip_image_processor.crop_size['height'] = preprocessor_input_size
self.clip_image_processor.crop_size['width'] = preprocessor_input_size
if self.config.image_encoder_arch == 'clip+':
# self.clip_image_processor.config
# We do a 3x downscale of the image, so we need to adjust the input size
preprocessor_input_size = self.image_encoder.config.image_size * 4
# update the preprocessor so images come in at the right size
self.clip_image_processor.size['shortest_edge'] = preprocessor_input_size
self.clip_image_processor.crop_size['height'] = preprocessor_input_size
self.clip_image_processor.crop_size['width'] = preprocessor_input_size
self.preprocessor = CLIPImagePreProcessor(
input_size=preprocessor_input_size,
clip_input_size=self.image_encoder.config.image_size,
)
if not self.config.image_encoder_arch == 'safe':
if 'height' in self.clip_image_processor.size:
self.input_size = self.clip_image_processor.size['height']
elif hasattr(self.clip_image_processor, 'crop_size'):
self.input_size = self.clip_image_processor.crop_size['height']
elif 'shortest_edge' in self.clip_image_processor.size.keys():
self.input_size = self.clip_image_processor.size['shortest_edge']
else:
raise ValueError(f"unknown image processor size: {self.clip_image_processor.size}")
self.current_scale = 1.0
self.is_active = True
is_pixart = sd.is_pixart
is_flux = sd.is_flux
if adapter_config.type == 'ip':
# ip-adapter
image_proj_model = ImageProjModel(
cross_attention_dim=sd.unet.config['cross_attention_dim'],
clip_embeddings_dim=self.image_encoder.config.projection_dim,
clip_extra_context_tokens=self.config.num_tokens, # usually 4
)
elif adapter_config.type == 'ip_clip_face':
cross_attn_dim = 4096 if is_pixart else sd.unet.config['cross_attention_dim']
image_proj_model = MLPProjModelClipFace(
cross_attention_dim=cross_attn_dim,
id_embeddings_dim=self.image_encoder.config.projection_dim,
num_tokens=self.config.num_tokens, # usually 4
)
elif adapter_config.type == 'ip+':
heads = 12 if not sd.is_xl else 20
if is_flux:
dim = 1280
else:
dim = sd.unet.config['cross_attention_dim'] if not sd.is_xl else 1280
embedding_dim = self.image_encoder.config.hidden_size if not self.config.image_encoder_arch.startswith(
'convnext') else \
self.image_encoder.config.hidden_sizes[-1]
image_encoder_state_dict = self.image_encoder.state_dict()
# max_seq_len = CLIP tokens + CLS token
max_seq_len = 257
if "vision_model.embeddings.position_embedding.weight" in image_encoder_state_dict:
# clip
max_seq_len = int(
image_encoder_state_dict["vision_model.embeddings.position_embedding.weight"].shape[0])
if is_pixart:
heads = 20
dim = 1280
output_dim = 4096
elif is_flux:
heads = 20
dim = 1280
output_dim = 3072
else:
output_dim = sd.unet.config['cross_attention_dim']
if self.config.image_encoder_arch.startswith('convnext'):
in_tokens = 16 * 16
embedding_dim = self.image_encoder.config.hidden_sizes[-1]
# ip-adapter-plus
image_proj_model = Resampler(
dim=dim,
depth=4,
dim_head=64,
heads=heads,
num_queries=self.config.num_tokens if self.config.num_tokens > 0 else max_seq_len,
embedding_dim=embedding_dim,
max_seq_len=max_seq_len,
output_dim=output_dim,
ff_mult=4
)
elif adapter_config.type == 'ipz':
dim = sd.unet.config['cross_attention_dim']
if hasattr(self.image_encoder.config, 'hidden_sizes'):
embedding_dim = self.image_encoder.config.hidden_sizes[-1]
else:
embedding_dim = self.image_encoder.config.target_hidden_size
image_encoder_state_dict = self.image_encoder.state_dict()
# max_seq_len = CLIP tokens + CLS token
in_tokens = 257
if "vision_model.embeddings.position_embedding.weight" in image_encoder_state_dict:
# clip
in_tokens = int(image_encoder_state_dict["vision_model.embeddings.position_embedding.weight"].shape[0])
if self.config.image_encoder_arch.startswith('convnext'):
in_tokens = 16 * 16
embedding_dim = self.image_encoder.config.hidden_sizes[-1]
is_conv_next = self.config.image_encoder_arch.startswith('convnext')
out_tokens = self.config.num_tokens if self.config.num_tokens > 0 else in_tokens
# ip-adapter-plus
image_proj_model = ZipperResampler(
in_size=embedding_dim,
in_tokens=in_tokens,
out_size=dim,
out_tokens=out_tokens,
hidden_size=embedding_dim,
hidden_tokens=in_tokens,
# num_blocks=1 if not is_conv_next else 2,
num_blocks=1 if not is_conv_next else 2,
is_conv_input=is_conv_next
)
elif adapter_config.type == 'ilora':
# we apply the clip encodings to the LoRA
image_proj_model = None
else:
raise ValueError(f"unknown adapter type: {adapter_config.type}")
# init adapter modules
attn_procs = {}
unet_sd = sd.unet.state_dict()
attn_processor_keys = []
if is_pixart:
transformer: Transformer2DModel = sd.unet
for i, module in transformer.transformer_blocks.named_children():
attn_processor_keys.append(f"transformer_blocks.{i}.attn1")
# cross attention
attn_processor_keys.append(f"transformer_blocks.{i}.attn2")
elif is_flux:
transformer: FluxTransformer2DModel = sd.unet
for i, module in transformer.transformer_blocks.named_children():
attn_processor_keys.append(f"transformer_blocks.{i}.attn")
# single transformer blocks do not have cross attn, but we will do them anyway
for i, module in transformer.single_transformer_blocks.named_children():
attn_processor_keys.append(f"single_transformer_blocks.{i}.attn")
else:
attn_processor_keys = list(sd.unet.attn_processors.keys())
attn_processor_names = []
blocks = []
transformer_blocks = []
for name in attn_processor_keys:
name_split = name.split(".")
block_name = f"{name_split[0]}.{name_split[1]}"
transformer_idx = name_split.index("transformer_blocks") if "transformer_blocks" in name_split else -1
if transformer_idx >= 0:
transformer_name = ".".join(name_split[:2])
transformer_name += "." + ".".join(name_split[transformer_idx:transformer_idx + 2])
if transformer_name not in transformer_blocks:
transformer_blocks.append(transformer_name)
if block_name not in blocks:
blocks.append(block_name)
if is_flux:
cross_attention_dim = None
else:
cross_attention_dim = None if name.endswith("attn1.processor") or name.endswith("attn.1") or name.endswith("attn1") else \
sd.unet.config['cross_attention_dim']
if name.startswith("mid_block"):
hidden_size = sd.unet.config['block_out_channels'][-1]
elif name.startswith("up_blocks"):
block_id = int(name[len("up_blocks.")])
hidden_size = list(reversed(sd.unet.config['block_out_channels']))[block_id]
elif name.startswith("down_blocks"):
block_id = int(name[len("down_blocks.")])
hidden_size = sd.unet.config['block_out_channels'][block_id]
elif name.startswith("transformer") or name.startswith("single_transformer"):
if is_flux:
hidden_size = 3072
else:
hidden_size = sd.unet.config['cross_attention_dim']
else:
# they didnt have this, but would lead to undefined below
raise ValueError(f"unknown attn processor name: {name}")
if cross_attention_dim is None and not is_flux:
attn_procs[name] = AttnProcessor2_0()
else:
layer_name = name.split(".processor")[0]
# if quantized, we need to scale the weights
if f"{layer_name}.to_k.weight._data" in unet_sd and is_flux:
# is quantized
k_weight = torch.randn(hidden_size, hidden_size) * 0.01
v_weight = torch.randn(hidden_size, hidden_size) * 0.01
k_weight = k_weight.to(self.sd_ref().torch_dtype)
v_weight = v_weight.to(self.sd_ref().torch_dtype)
else:
k_weight = unet_sd[layer_name + ".to_k.weight"]
v_weight = unet_sd[layer_name + ".to_v.weight"]
weights = {
"to_k_ip.weight": k_weight,
"to_v_ip.weight": v_weight
}
if is_flux:
attn_procs[name] = CustomIPFluxAttnProcessor2_0(
hidden_size=hidden_size,
cross_attention_dim=cross_attention_dim,
scale=1.0,
num_tokens=self.config.num_tokens,
adapter=self,
train_scaler=self.config.train_scaler or self.config.merge_scaler,
full_token_scaler=False
)
else:
attn_procs[name] = CustomIPAttentionProcessor(
hidden_size=hidden_size,
cross_attention_dim=cross_attention_dim,
scale=1.0,
num_tokens=self.config.num_tokens,
adapter=self,
train_scaler=self.config.train_scaler or self.config.merge_scaler,
# full_token_scaler=self.config.train_scaler # full token cannot be merged in, only use if training an actual scaler
full_token_scaler=False
)
if self.sd_ref().is_pixart or self.sd_ref().is_flux:
# pixart is much more sensitive
weights = {
"to_k_ip.weight": weights["to_k_ip.weight"] * 0.01,
"to_v_ip.weight": weights["to_v_ip.weight"] * 0.01,
}
attn_procs[name].load_state_dict(weights, strict=False)
attn_processor_names.append(name)
print(f"Attn Processors")
print(attn_processor_names)
if self.sd_ref().is_pixart:
# we have to set them ourselves
transformer: Transformer2DModel = sd.unet
for i, module in transformer.transformer_blocks.named_children():
module.attn1.processor = attn_procs[f"transformer_blocks.{i}.attn1"]
module.attn2.processor = attn_procs[f"transformer_blocks.{i}.attn2"]
self.adapter_modules = torch.nn.ModuleList(
[
transformer.transformer_blocks[i].attn2.processor for i in
range(len(transformer.transformer_blocks))
])
elif self.sd_ref().is_flux:
# we have to set them ourselves
transformer: FluxTransformer2DModel = sd.unet
for i, module in transformer.transformer_blocks.named_children():
module.attn.processor = attn_procs[f"transformer_blocks.{i}.attn"]
# do single blocks too even though they dont have cross attn
for i, module in transformer.single_transformer_blocks.named_children():
module.attn.processor = attn_procs[f"single_transformer_blocks.{i}.attn"]
self.adapter_modules = torch.nn.ModuleList(
[
transformer.transformer_blocks[i].attn.processor for i in
range(len(transformer.transformer_blocks))
] + [
transformer.single_transformer_blocks[i].attn.processor for i in
range(len(transformer.single_transformer_blocks))
]
)
else:
sd.unet.set_attn_processor(attn_procs)
self.adapter_modules = torch.nn.ModuleList(sd.unet.attn_processors.values())
sd.adapter = self
self.unet_ref: weakref.ref = weakref.ref(sd.unet)
self.image_proj_model = image_proj_model
# load the weights if we have some
if self.config.name_or_path:
loaded_state_dict = load_ip_adapter_model(
self.config.name_or_path,
device='cpu',
dtype=sd.torch_dtype
)
self.load_state_dict(loaded_state_dict)
self.set_scale(1.0)
if self.config.train_image_encoder:
self.image_encoder.train()
self.image_encoder.requires_grad_(True)
# premake a unconditional
zerod = torch.zeros(1, 3, self.input_size, self.input_size, device=self.device, dtype=torch.float16)
self.unconditional = self.clip_image_processor(
images=zerod,
return_tensors="pt",
do_resize=True,
do_rescale=False,
).pixel_values
def to(self, *args, **kwargs):
super().to(*args, **kwargs)
self.image_encoder.to(*args, **kwargs)
self.image_proj_model.to(*args, **kwargs)
self.adapter_modules.to(*args, **kwargs)
if self.preprocessor is not None:
self.preprocessor.to(*args, **kwargs)
return self
# def load_ip_adapter(self, state_dict: Union[OrderedDict, dict]):
# self.image_proj_model.load_state_dict(state_dict["image_proj"])
# ip_layers = torch.nn.ModuleList(self.pipe.unet.attn_processors.values())
# ip_layers.load_state_dict(state_dict["ip_adapter"])
# if self.config.train_image_encoder and 'image_encoder' in state_dict:
# self.image_encoder.load_state_dict(state_dict["image_encoder"])
# if self.preprocessor is not None and 'preprocessor' in state_dict:
# self.preprocessor.load_state_dict(state_dict["preprocessor"])
# def load_state_dict(self, state_dict: Union[OrderedDict, dict]):
# self.load_ip_adapter(state_dict)
def state_dict(self) -> OrderedDict:
state_dict = OrderedDict()
if self.config.train_only_image_encoder:
return self.image_encoder.state_dict()
if self.config.train_scaler:
state_dict["ip_scale"] = self.adapter_modules.state_dict()
# remove items that are not scalers
for key in list(state_dict["ip_scale"].keys()):
if not key.endswith("ip_scaler"):
del state_dict["ip_scale"][key]
return state_dict
state_dict["image_proj"] = self.image_proj_model.state_dict()
state_dict["ip_adapter"] = self.adapter_modules.state_dict()
# handle merge scaler training
if self.config.merge_scaler:
for key in list(state_dict["ip_adapter"].keys()):
if key.endswith("ip_scaler"):
# merge in the scaler so we dont have to save it and it will be compatible with other ip adapters
scale = state_dict["ip_adapter"][key].clone()
key_start = key.split(".")[-2]
# reshape to (1, 1)
scale = scale.view(1, 1)
del state_dict["ip_adapter"][key]
# find the to_k_ip and to_v_ip keys
for key2 in list(state_dict["ip_adapter"].keys()):
if key2.endswith(f"{key_start}.to_k_ip.weight"):
state_dict["ip_adapter"][key2] = state_dict["ip_adapter"][key2].clone() * scale
if key2.endswith(f"{key_start}.to_v_ip.weight"):
state_dict["ip_adapter"][key2] = state_dict["ip_adapter"][key2].clone() * scale
if self.config.train_image_encoder:
state_dict["image_encoder"] = self.image_encoder.state_dict()
if self.preprocessor is not None:
state_dict["preprocessor"] = self.preprocessor.state_dict()
return state_dict
def get_scale(self):
return self.current_scale
def set_scale(self, scale):
self.current_scale = scale
if not self.sd_ref().is_pixart and not self.sd_ref().is_flux:
for attn_processor in self.sd_ref().unet.attn_processors.values():
if isinstance(attn_processor, CustomIPAttentionProcessor):
attn_processor.scale = scale
# @torch.no_grad()
# def get_clip_image_embeds_from_pil(self, pil_image: Union[Image.Image, List[Image.Image]],
# drop=False) -> torch.Tensor:
# # todo: add support for sdxl
# if isinstance(pil_image, Image.Image):
# pil_image = [pil_image]
# clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values
# clip_image = clip_image.to(self.device, dtype=get_torch_dtype(self.sd_ref().dtype))
# if drop:
# clip_image = clip_image * 0
# clip_image_embeds = self.image_encoder(clip_image, output_hidden_states=True).hidden_states[-2]
# return clip_image_embeds
def to(self, *args, **kwargs):
super().to(*args, **kwargs)
self.image_encoder.to(*args, **kwargs)
self.image_proj_model.to(*args, **kwargs)
self.adapter_modules.to(*args, **kwargs)
if self.preprocessor is not None:
self.preprocessor.to(*args, **kwargs)
return self
def parse_clip_image_embeds_from_cache(
self,
image_embeds_list: List[dict], # has ['last_hidden_state', 'image_embeds', 'penultimate_hidden_states']
quad_count=4,
):
with torch.no_grad():
device = self.sd_ref().unet.device
clip_image_embeds = torch.cat([x[self.config.clip_layer] for x in image_embeds_list], dim=0)
if self.config.quad_image:
# get the outputs of the quat
chunks = clip_image_embeds.chunk(quad_count, dim=0)
chunk_sum = torch.zeros_like(chunks[0])
for chunk in chunks:
chunk_sum = chunk_sum + chunk
# get the mean of them
clip_image_embeds = chunk_sum / quad_count
clip_image_embeds = clip_image_embeds.to(device, dtype=get_torch_dtype(self.sd_ref().dtype)).detach()
return clip_image_embeds
def get_empty_clip_image(self, batch_size: int) -> torch.Tensor:
with torch.no_grad():
tensors_0_1 = torch.rand([batch_size, 3, self.input_size, self.input_size], device=self.device)
noise_scale = torch.rand([tensors_0_1.shape[0], 1, 1, 1], device=self.device,
dtype=get_torch_dtype(self.sd_ref().dtype))
tensors_0_1 = tensors_0_1 * noise_scale
# tensors_0_1 = tensors_0_1 * 0
mean = torch.tensor(self.clip_image_processor.image_mean).to(
self.device, dtype=get_torch_dtype(self.sd_ref().dtype)
).detach()
std = torch.tensor(self.clip_image_processor.image_std).to(
self.device, dtype=get_torch_dtype(self.sd_ref().dtype)
).detach()
tensors_0_1 = torch.clip((255. * tensors_0_1), 0, 255).round() / 255.0
clip_image = (tensors_0_1 - mean.view([1, 3, 1, 1])) / std.view([1, 3, 1, 1])
return clip_image.detach()
def get_clip_image_embeds_from_tensors(
self,
tensors_0_1: torch.Tensor,
drop=False,
is_training=False,
has_been_preprocessed=False,
quad_count=4,
cfg_embed_strength=None, # perform CFG on embeds with unconditional as negative
) -> torch.Tensor:
if self.sd_ref().unet.device != self.device:
self.to(self.sd_ref().unet.device)
if self.sd_ref().unet.device != self.image_encoder.device:
self.to(self.sd_ref().unet.device)
if not self.config.train:
is_training = False
uncond_clip = None
with torch.no_grad():
# on training the clip image is created in the dataloader
if not has_been_preprocessed:
# tensors should be 0-1
if tensors_0_1.ndim == 3:
tensors_0_1 = tensors_0_1.unsqueeze(0)
# training tensors are 0 - 1
tensors_0_1 = tensors_0_1.to(self.device, dtype=torch.float16)
# if images are out of this range throw error
if tensors_0_1.min() < -0.3 or tensors_0_1.max() > 1.3:
raise ValueError("image tensor values must be between 0 and 1. Got min: {}, max: {}".format(
tensors_0_1.min(), tensors_0_1.max()
))
# unconditional
if drop:
if self.clip_noise_zero:
tensors_0_1 = torch.rand_like(tensors_0_1).detach()
noise_scale = torch.rand([tensors_0_1.shape[0], 1, 1, 1], device=self.device,
dtype=get_torch_dtype(self.sd_ref().dtype))
tensors_0_1 = tensors_0_1 * noise_scale
else:
tensors_0_1 = torch.zeros_like(tensors_0_1).detach()
# tensors_0_1 = tensors_0_1 * 0
clip_image = self.clip_image_processor(
images=tensors_0_1,
return_tensors="pt",
do_resize=True,
do_rescale=False,
).pixel_values
else:
if drop:
# scale the noise down
if self.clip_noise_zero:
tensors_0_1 = torch.rand_like(tensors_0_1).detach()
noise_scale = torch.rand([tensors_0_1.shape[0], 1, 1, 1], device=self.device,
dtype=get_torch_dtype(self.sd_ref().dtype))
tensors_0_1 = tensors_0_1 * noise_scale
else:
tensors_0_1 = torch.zeros_like(tensors_0_1).detach()
# tensors_0_1 = tensors_0_1 * 0
mean = torch.tensor(self.clip_image_processor.image_mean).to(
self.device, dtype=get_torch_dtype(self.sd_ref().dtype)
).detach()
std = torch.tensor(self.clip_image_processor.image_std).to(
self.device, dtype=get_torch_dtype(self.sd_ref().dtype)
).detach()
tensors_0_1 = torch.clip((255. * tensors_0_1), 0, 255).round() / 255.0
clip_image = (tensors_0_1 - mean.view([1, 3, 1, 1])) / std.view([1, 3, 1, 1])
else:
clip_image = tensors_0_1
clip_image = clip_image.to(self.device, dtype=get_torch_dtype(self.sd_ref().dtype)).detach()
if self.config.quad_image:
# split the 4x4 grid and stack on batch
ci1, ci2 = clip_image.chunk(2, dim=2)
ci1, ci3 = ci1.chunk(2, dim=3)
ci2, ci4 = ci2.chunk(2, dim=3)
to_cat = []
for i, ci in enumerate([ci1, ci2, ci3, ci4]):
if i < quad_count:
to_cat.append(ci)
else:
break
clip_image = torch.cat(to_cat, dim=0).detach()
# if drop:
# clip_image = clip_image * 0
with torch.set_grad_enabled(is_training):
if is_training and self.config.train_image_encoder:
self.image_encoder.train()
clip_image = clip_image.requires_grad_(True)
if self.preprocessor is not None:
clip_image = self.preprocessor(clip_image)
clip_output = self.image_encoder(
clip_image,
output_hidden_states=True
)
else:
self.image_encoder.eval()
if self.preprocessor is not None:
clip_image = self.preprocessor(clip_image)
clip_output = self.image_encoder(
clip_image, output_hidden_states=True
)
if self.config.clip_layer == 'penultimate_hidden_states':
# they skip last layer for ip+
# https://github.com/tencent-ailab/IP-Adapter/blob/f4b6742db35ea6d81c7b829a55b0a312c7f5a677/tutorial_train_plus.py#L403C26-L403C26
clip_image_embeds = clip_output.hidden_states[-2]
elif self.config.clip_layer == 'last_hidden_state':
clip_image_embeds = clip_output.hidden_states[-1]
else:
clip_image_embeds = clip_output.image_embeds
if self.config.adapter_type == "clip_face":
l2_norm = torch.norm(clip_image_embeds, p=2)
clip_image_embeds = clip_image_embeds / l2_norm
if self.config.image_encoder_arch.startswith('convnext'):
# flatten the width height layers to make the token space
clip_image_embeds = clip_image_embeds.view(clip_image_embeds.size(0), clip_image_embeds.size(1), -1)
# rearrange to (batch, tokens, size)
clip_image_embeds = clip_image_embeds.permute(0, 2, 1)
# apply unconditional if doing cfg on embeds
with torch.no_grad():
if cfg_embed_strength is not None:
uncond_clip = self.get_empty_clip_image(tensors_0_1.shape[0]).to(self.device, dtype=get_torch_dtype(self.sd_ref().dtype))
if self.config.quad_image:
# split the 4x4 grid and stack on batch
ci1, ci2 = uncond_clip.chunk(2, dim=2)
ci1, ci3 = ci1.chunk(2, dim=3)
ci2, ci4 = ci2.chunk(2, dim=3)
to_cat = []
for i, ci in enumerate([ci1, ci2, ci3, ci4]):
if i < quad_count:
to_cat.append(ci)
else:
break
uncond_clip = torch.cat(to_cat, dim=0).detach()
uncond_clip_output = self.image_encoder(
uncond_clip, output_hidden_states=True
)
if self.config.clip_layer == 'penultimate_hidden_states':
uncond_clip_output_embeds = uncond_clip_output.hidden_states[-2]
elif self.config.clip_layer == 'last_hidden_state':
uncond_clip_output_embeds = uncond_clip_output.hidden_states[-1]
else:
uncond_clip_output_embeds = uncond_clip_output.image_embeds
if self.config.adapter_type == "clip_face":
l2_norm = torch.norm(uncond_clip_output_embeds, p=2)
uncond_clip_output_embeds = uncond_clip_output_embeds / l2_norm
uncond_clip_output_embeds = uncond_clip_output_embeds.detach()
# apply inverse cfg
clip_image_embeds = inverse_classifier_guidance(
clip_image_embeds,
uncond_clip_output_embeds,
cfg_embed_strength
)
if self.config.quad_image:
# get the outputs of the quat
chunks = clip_image_embeds.chunk(quad_count, dim=0)
if self.config.train_image_encoder and is_training:
# perform a loss across all chunks this will teach the vision encoder to
# identify similarities in our pairs of images and ignore things that do not make them similar
num_losses = 0
total_loss = None
for chunk in chunks:
for chunk2 in chunks:
if chunk is not chunk2:
loss = F.mse_loss(chunk, chunk2)
if total_loss is None:
total_loss = loss
else:
total_loss = total_loss + loss
num_losses += 1
if total_loss is not None:
total_loss = total_loss / num_losses
total_loss = total_loss * 1e-2
if self.additional_loss is not None:
total_loss = total_loss + self.additional_loss
self.additional_loss = total_loss
chunk_sum = torch.zeros_like(chunks[0])
for chunk in chunks:
chunk_sum = chunk_sum + chunk
# get the mean of them
clip_image_embeds = chunk_sum / quad_count
if not is_training or not self.config.train_image_encoder:
clip_image_embeds = clip_image_embeds.detach()
return clip_image_embeds
# use drop for prompt dropout, or negatives
def forward(self, embeddings: PromptEmbeds, clip_image_embeds: torch.Tensor, is_unconditional=False) -> PromptEmbeds:
clip_image_embeds = clip_image_embeds.to(self.device, dtype=get_torch_dtype(self.sd_ref().dtype))
image_prompt_embeds = self.image_proj_model(clip_image_embeds)
if self.sd_ref().is_flux:
# do not attach to text embeds for flux, we will save and grab them as it messes
# with the RoPE to have them in the same tensor
if is_unconditional:
self.last_unconditional = image_prompt_embeds
else:
self.last_conditional = image_prompt_embeds
else:
embeddings.text_embeds = torch.cat([embeddings.text_embeds, image_prompt_embeds], dim=1)
return embeddings
def train(self: T, mode: bool = True) -> T:
if self.config.train_image_encoder:
self.image_encoder.train(mode)
if not self.config.train_only_image_encoder:
for attn_processor in self.adapter_modules:
attn_processor.train(mode)
if self.image_proj_model is not None:
self.image_proj_model.train(mode)
return super().train(mode)
def get_parameter_groups(self, adapter_lr):
param_groups = []
# when training just scaler, we do not train anything else
if not self.config.train_scaler:
param_groups.append({
"params": self.get_non_scaler_parameters(),
"lr": adapter_lr,
})
if self.config.train_scaler or self.config.merge_scaler:
scaler_lr = adapter_lr if self.config.scaler_lr is None else self.config.scaler_lr
param_groups.append({
"params": self.get_scaler_parameters(),
"lr": scaler_lr,
})
return param_groups
def get_scaler_parameters(self):
# only get the scalera from the adapter modules
for attn_processor in self.adapter_modules:
# only get the scaler
# check if it has ip_scaler attribute
if hasattr(attn_processor, "ip_scaler"):
scaler_param = attn_processor.ip_scaler
yield scaler_param
def get_non_scaler_parameters(self, recurse: bool = True) -> Iterator[Parameter]:
if self.config.train_only_image_encoder:
if self.config.train_only_image_encoder_positional_embedding:
yield from self.image_encoder.vision_model.embeddings.position_embedding.parameters(recurse)
else:
yield from self.image_encoder.parameters(recurse)
return
if self.config.train_scaler:
# no params
return
for attn_processor in self.adapter_modules:
if self.config.train_scaler or self.config.merge_scaler:
# todo remove scaler
if hasattr(attn_processor, "to_k_ip"):
# yield the linear layer
yield from attn_processor.to_k_ip.parameters(recurse)
if hasattr(attn_processor, "to_v_ip"):
# yield the linear layer
yield from attn_processor.to_v_ip.parameters(recurse)
else:
yield from attn_processor.parameters(recurse)
yield from self.image_proj_model.parameters(recurse)
if self.config.train_image_encoder:
yield from self.image_encoder.parameters(recurse)
if self.preprocessor is not None:
yield from self.preprocessor.parameters(recurse)
def parameters(self, recurse: bool = True) -> Iterator[Parameter]:
yield from self.get_non_scaler_parameters(recurse)
if self.config.train_scaler or self.config.merge_scaler:
yield from self.get_scaler_parameters()
def merge_in_weights(self, state_dict: Mapping[str, Any]):
# merge in img_proj weights
current_img_proj_state_dict = self.image_proj_model.state_dict()
for key, value in state_dict["image_proj"].items():
if key in current_img_proj_state_dict:
current_shape = current_img_proj_state_dict[key].shape
new_shape = value.shape
if current_shape != new_shape:
try:
# merge in what we can and leave the other values as they are
if len(current_shape) == 1:
current_img_proj_state_dict[key][:new_shape[0]] = value
elif len(current_shape) == 2:
current_img_proj_state_dict[key][:new_shape[0], :new_shape[1]] = value
elif len(current_shape) == 3:
current_img_proj_state_dict[key][:new_shape[0], :new_shape[1], :new_shape[2]] = value
elif len(current_shape) == 4:
current_img_proj_state_dict[key][:new_shape[0], :new_shape[1], :new_shape[2],
:new_shape[3]] = value
else:
raise ValueError(f"unknown shape: {current_shape}")
except RuntimeError as e:
print(e)
print(
f"could not merge in {key}: {list(current_shape)} <<< {list(new_shape)}. Trying other way")
if len(current_shape) == 1:
current_img_proj_state_dict[key][:current_shape[0]] = value[:current_shape[0]]
elif len(current_shape) == 2:
current_img_proj_state_dict[key][:current_shape[0], :current_shape[1]] = value[
:current_shape[0],
:current_shape[1]]
elif len(current_shape) == 3:
current_img_proj_state_dict[key][:current_shape[0], :current_shape[1],
:current_shape[2]] = value[:current_shape[0], :current_shape[1], :current_shape[2]]
elif len(current_shape) == 4:
current_img_proj_state_dict[key][:current_shape[0], :current_shape[1], :current_shape[2],
:current_shape[3]] = value[:current_shape[0], :current_shape[1], :current_shape[2],
:current_shape[3]]
else:
raise ValueError(f"unknown shape: {current_shape}")
print(f"Force merged in {key}: {list(current_shape)} <<< {list(new_shape)}")
else:
current_img_proj_state_dict[key] = value
self.image_proj_model.load_state_dict(current_img_proj_state_dict)
# merge in ip adapter weights
current_ip_adapter_state_dict = self.adapter_modules.state_dict()
for key, value in state_dict["ip_adapter"].items():
if key in current_ip_adapter_state_dict:
current_shape = current_ip_adapter_state_dict[key].shape
new_shape = value.shape
if current_shape != new_shape:
try:
# merge in what we can and leave the other values as they are
if len(current_shape) == 1:
current_ip_adapter_state_dict[key][:new_shape[0]] = value
elif len(current_shape) == 2:
current_ip_adapter_state_dict[key][:new_shape[0], :new_shape[1]] = value
elif len(current_shape) == 3:
current_ip_adapter_state_dict[key][:new_shape[0], :new_shape[1], :new_shape[2]] = value
elif len(current_shape) == 4:
current_ip_adapter_state_dict[key][:new_shape[0], :new_shape[1], :new_shape[2],
:new_shape[3]] = value
else:
raise ValueError(f"unknown shape: {current_shape}")
print(f"Force merged in {key}: {list(current_shape)} <<< {list(new_shape)}")
except RuntimeError as e:
print(e)
print(
f"could not merge in {key}: {list(current_shape)} <<< {list(new_shape)}. Trying other way")
if (len(current_shape) == 1):
current_ip_adapter_state_dict[key][:current_shape[0]] = value[:current_shape[0]]
elif (len(current_shape) == 2):
current_ip_adapter_state_dict[key][:current_shape[0], :current_shape[1]] = value[
:current_shape[
0],
:current_shape[
1]]
elif (len(current_shape) == 3):
current_ip_adapter_state_dict[key][:current_shape[0], :current_shape[1],
:current_shape[2]] = value[:current_shape[0], :current_shape[1], :current_shape[2]]
elif (len(current_shape) == 4):
current_ip_adapter_state_dict[key][:current_shape[0], :current_shape[1], :current_shape[2],
:current_shape[3]] = value[:current_shape[0], :current_shape[1], :current_shape[2],
:current_shape[3]]
else:
raise ValueError(f"unknown shape: {current_shape}")
print(f"Force merged in {key}: {list(current_shape)} <<< {list(new_shape)}")
else:
current_ip_adapter_state_dict[key] = value
self.adapter_modules.load_state_dict(current_ip_adapter_state_dict)
def load_state_dict(self, state_dict: Mapping[str, Any], strict: bool = True):
strict = False
if self.config.train_scaler and 'ip_scale' in state_dict:
self.adapter_modules.load_state_dict(state_dict["ip_scale"], strict=False)
if 'ip_adapter' in state_dict:
try:
self.image_proj_model.load_state_dict(state_dict["image_proj"], strict=strict)
self.adapter_modules.load_state_dict(state_dict["ip_adapter"], strict=strict)
except Exception as e:
print(e)
print("could not load ip adapter weights, trying to merge in weights")
self.merge_in_weights(state_dict)
if self.config.train_image_encoder and 'image_encoder' in state_dict:
self.image_encoder.load_state_dict(state_dict["image_encoder"], strict=strict)
if self.preprocessor is not None and 'preprocessor' in state_dict:
self.preprocessor.load_state_dict(state_dict["preprocessor"], strict=strict)
if self.config.train_only_image_encoder and 'ip_adapter' not in state_dict:
# we are loading pure clip weights.
self.image_encoder.load_state_dict(state_dict, strict=strict)
def enable_gradient_checkpointing(self):
if hasattr(self.image_encoder, "enable_gradient_checkpointing"):
self.image_encoder.enable_gradient_checkpointing()
elif hasattr(self.image_encoder, 'gradient_checkpointing'):
self.image_encoder.gradient_checkpointing = True
|