|
import json |
|
import os |
|
from collections import OrderedDict |
|
|
|
import safetensors |
|
import torch |
|
from typing import TYPE_CHECKING |
|
|
|
from safetensors.torch import save_file |
|
|
|
from toolkit.metadata import get_meta_for_safetensors |
|
|
|
if TYPE_CHECKING: |
|
from toolkit.stable_diffusion_model import StableDiffusion |
|
from toolkit.config_modules import EmbeddingConfig |
|
|
|
|
|
|
|
|
|
class Embedding: |
|
def __init__( |
|
self, |
|
sd: 'StableDiffusion', |
|
embed_config: 'EmbeddingConfig', |
|
state_dict: OrderedDict = None, |
|
): |
|
self.name = embed_config.trigger |
|
self.sd = sd |
|
self.trigger = embed_config.trigger |
|
self.embed_config = embed_config |
|
self.step = 0 |
|
|
|
|
|
placeholder_tokens = [self.embed_config.trigger] |
|
|
|
|
|
additional_tokens = [] |
|
for i in range(1, self.embed_config.tokens): |
|
additional_tokens.append(f"{self.embed_config.trigger}_{i}") |
|
placeholder_tokens += additional_tokens |
|
|
|
|
|
self.tokenizer_list = self.sd.tokenizer if isinstance(self.sd.tokenizer, list) else [self.sd.tokenizer] |
|
self.text_encoder_list = self.sd.text_encoder if isinstance(self.sd.text_encoder, list) else [ |
|
self.sd.text_encoder] |
|
|
|
self.placeholder_token_ids = [] |
|
self.embedding_tokens = [] |
|
|
|
print(f"Adding {placeholder_tokens} tokens to tokenizer") |
|
print(f"Adding {self.embed_config.tokens} tokens to tokenizer") |
|
|
|
for text_encoder, tokenizer in zip(self.text_encoder_list, self.tokenizer_list): |
|
num_added_tokens = tokenizer.add_tokens(placeholder_tokens) |
|
if num_added_tokens != self.embed_config.tokens: |
|
raise ValueError( |
|
f"The tokenizer already contains the token {self.embed_config.trigger}. Please pass a different" |
|
f" `placeholder_token` that is not already in the tokenizer. Only added {num_added_tokens}" |
|
) |
|
|
|
|
|
init_token_ids = tokenizer.encode(self.embed_config.init_words, add_special_tokens=False) |
|
|
|
if len(init_token_ids) > self.embed_config.tokens: |
|
init_token_ids = init_token_ids[:self.embed_config.tokens] |
|
elif len(init_token_ids) < self.embed_config.tokens: |
|
pad_token_id = tokenizer.encode(["*"], add_special_tokens=False) |
|
init_token_ids += pad_token_id * (self.embed_config.tokens - len(init_token_ids)) |
|
|
|
placeholder_token_ids = tokenizer.encode(placeholder_tokens, add_special_tokens=False) |
|
self.placeholder_token_ids.append(placeholder_token_ids) |
|
|
|
|
|
text_encoder.resize_token_embeddings(len(tokenizer)) |
|
|
|
|
|
token_embeds = text_encoder.get_input_embeddings().weight.data |
|
with torch.no_grad(): |
|
for initializer_token_id, token_id in zip(init_token_ids, placeholder_token_ids): |
|
token_embeds[token_id] = token_embeds[initializer_token_id].clone() |
|
|
|
|
|
self.embedding_tokens.append(" ".join(tokenizer.convert_ids_to_tokens(placeholder_token_ids))) |
|
|
|
|
|
self.orig_embeds_params = [x.get_input_embeddings().weight.data.clone() for x in self.text_encoder_list] |
|
|
|
def restore_embeddings(self): |
|
with torch.no_grad(): |
|
|
|
for text_encoder, tokenizer, orig_embeds, placeholder_token_ids in zip(self.text_encoder_list, |
|
self.tokenizer_list, |
|
self.orig_embeds_params, |
|
self.placeholder_token_ids): |
|
index_no_updates = torch.ones((len(tokenizer),), dtype=torch.bool) |
|
index_no_updates[ min(placeholder_token_ids): max(placeholder_token_ids) + 1] = False |
|
text_encoder.get_input_embeddings().weight[ |
|
index_no_updates |
|
] = orig_embeds[index_no_updates] |
|
weight = text_encoder.get_input_embeddings().weight |
|
pass |
|
|
|
def get_trainable_params(self): |
|
params = [] |
|
for text_encoder in self.text_encoder_list: |
|
params += text_encoder.get_input_embeddings().parameters() |
|
return params |
|
|
|
def _get_vec(self, text_encoder_idx=0): |
|
|
|
|
|
token_embeds = self.text_encoder_list[text_encoder_idx].get_input_embeddings().weight.data |
|
|
|
new_vector = torch.stack( |
|
[token_embeds[token_id] for token_id in self.placeholder_token_ids[text_encoder_idx]], |
|
dim=0 |
|
) |
|
return new_vector |
|
|
|
def _set_vec(self, new_vector, text_encoder_idx=0): |
|
|
|
token_embeds = self.text_encoder_list[text_encoder_idx].get_input_embeddings().weight.data |
|
for i in range(new_vector.shape[0]): |
|
|
|
token_embeds[self.placeholder_token_ids[text_encoder_idx][i]] = new_vector[i].clone() |
|
|
|
|
|
@property |
|
def vec(self): |
|
return self._get_vec(0) |
|
|
|
@vec.setter |
|
def vec(self, new_vector): |
|
self._set_vec(new_vector, 0) |
|
|
|
@property |
|
def vec2(self): |
|
return self._get_vec(1) |
|
|
|
@vec2.setter |
|
def vec2(self, new_vector): |
|
self._set_vec(new_vector, 1) |
|
|
|
|
|
|
|
def inject_embedding_to_prompt(self, prompt, expand_token=False, to_replace_list=None, add_if_not_present=True): |
|
output_prompt = prompt |
|
embedding_tokens = self.embedding_tokens[0] |
|
default_replacements = ["[name]", "[trigger]"] |
|
|
|
replace_with = embedding_tokens if expand_token else self.trigger |
|
if to_replace_list is None: |
|
to_replace_list = default_replacements |
|
else: |
|
to_replace_list += default_replacements |
|
|
|
|
|
to_replace_list = list(set(to_replace_list)) |
|
|
|
|
|
for to_replace in to_replace_list: |
|
|
|
output_prompt = output_prompt.replace(to_replace, replace_with) |
|
|
|
|
|
num_instances = output_prompt.count(replace_with) |
|
|
|
if num_instances == 0 and add_if_not_present: |
|
|
|
output_prompt = replace_with + " " + output_prompt |
|
|
|
if num_instances > 1: |
|
print( |
|
f"Warning: {replace_with} token appears {num_instances} times in prompt {output_prompt}. This may cause issues.") |
|
|
|
return output_prompt |
|
|
|
def state_dict(self): |
|
if self.sd.is_xl: |
|
state_dict = OrderedDict() |
|
state_dict['clip_l'] = self.vec |
|
state_dict['clip_g'] = self.vec2 |
|
else: |
|
state_dict = OrderedDict() |
|
state_dict['emb_params'] = self.vec |
|
|
|
return state_dict |
|
|
|
def save(self, filename): |
|
|
|
|
|
embedding_data = { |
|
"string_to_token": {"*": 265}, |
|
"string_to_param": {"*": self.vec}, |
|
"name": self.name, |
|
"step": self.step, |
|
|
|
"sd_checkpoint": None, |
|
"sd_checkpoint_name": None, |
|
"notes": None, |
|
} |
|
|
|
if filename.endswith('.pt'): |
|
torch.save(embedding_data, filename) |
|
elif filename.endswith('.bin'): |
|
torch.save(embedding_data, filename) |
|
elif filename.endswith('.safetensors'): |
|
|
|
state_dict = self.state_dict() |
|
|
|
metadata = OrderedDict({k: json.dumps(v) for k, v in embedding_data.items() if k != "string_to_param"}) |
|
metadata["string_to_param"] = {"*": "emb_params"} |
|
save_meta = get_meta_for_safetensors(metadata, name=self.name) |
|
save_file(state_dict, filename, metadata=save_meta) |
|
|
|
def load_embedding_from_file(self, file_path, device): |
|
|
|
path = os.path.realpath(file_path) |
|
filename = os.path.basename(path) |
|
name, ext = os.path.splitext(filename) |
|
tensors = {} |
|
ext = ext.upper() |
|
if ext in ['.PNG', '.WEBP', '.JXL', '.AVIF']: |
|
_, second_ext = os.path.splitext(name) |
|
if second_ext.upper() == '.PREVIEW': |
|
return |
|
|
|
if ext in ['.BIN', '.PT']: |
|
|
|
if self.sd.is_xl: |
|
raise Exception("XL not supported yet for bin, pt") |
|
data = torch.load(path, map_location="cpu") |
|
elif ext in ['.SAFETENSORS']: |
|
|
|
with safetensors.torch.safe_open(path, framework="pt", device="cpu") as f: |
|
metadata = f.metadata() |
|
for k in f.keys(): |
|
tensors[k] = f.get_tensor(k) |
|
|
|
if metadata and 'string_to_param' in metadata and 'emb_params' in tensors: |
|
|
|
def try_json(v): |
|
try: |
|
return json.loads(v) |
|
except: |
|
return v |
|
|
|
data = {k: try_json(v) for k, v in metadata.items()} |
|
data['string_to_param'] = {'*': tensors['emb_params']} |
|
else: |
|
|
|
data = tensors |
|
else: |
|
return |
|
|
|
if self.sd.is_xl: |
|
self.vec = tensors['clip_l'].detach().to(device, dtype=torch.float32) |
|
self.vec2 = tensors['clip_g'].detach().to(device, dtype=torch.float32) |
|
if 'step' in data: |
|
self.step = int(data['step']) |
|
else: |
|
|
|
if 'string_to_param' in data: |
|
param_dict = data['string_to_param'] |
|
if hasattr(param_dict, '_parameters'): |
|
param_dict = getattr(param_dict, |
|
'_parameters') |
|
assert len(param_dict) == 1, 'embedding file has multiple terms in it' |
|
emb = next(iter(param_dict.items()))[1] |
|
|
|
elif type(data) == dict and type(next(iter(data.values()))) == torch.Tensor: |
|
assert len(data.keys()) == 1, 'embedding file has multiple terms in it' |
|
|
|
emb = next(iter(data.values())) |
|
if len(emb.shape) == 1: |
|
emb = emb.unsqueeze(0) |
|
else: |
|
raise Exception( |
|
f"Couldn't identify {filename} as neither textual inversion embedding nor diffuser concept.") |
|
|
|
if 'step' in data: |
|
self.step = int(data['step']) |
|
|
|
self.vec = emb.detach().to(device, dtype=torch.float32) |
|
|