File size: 12,406 Bytes
1ba389d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 |
import json
import os
from collections import OrderedDict
import safetensors
import torch
from typing import TYPE_CHECKING
from safetensors.torch import save_file
from toolkit.metadata import get_meta_for_safetensors
if TYPE_CHECKING:
from toolkit.stable_diffusion_model import StableDiffusion
from toolkit.config_modules import EmbeddingConfig
# this is a frankenstein mix of automatic1111 and my own code
class Embedding:
def __init__(
self,
sd: 'StableDiffusion',
embed_config: 'EmbeddingConfig',
state_dict: OrderedDict = None,
):
self.name = embed_config.trigger
self.sd = sd
self.trigger = embed_config.trigger
self.embed_config = embed_config
self.step = 0
# setup our embedding
# Add the placeholder token in tokenizer
placeholder_tokens = [self.embed_config.trigger]
# add dummy tokens for multi-vector
additional_tokens = []
for i in range(1, self.embed_config.tokens):
additional_tokens.append(f"{self.embed_config.trigger}_{i}")
placeholder_tokens += additional_tokens
# handle dual tokenizer
self.tokenizer_list = self.sd.tokenizer if isinstance(self.sd.tokenizer, list) else [self.sd.tokenizer]
self.text_encoder_list = self.sd.text_encoder if isinstance(self.sd.text_encoder, list) else [
self.sd.text_encoder]
self.placeholder_token_ids = []
self.embedding_tokens = []
print(f"Adding {placeholder_tokens} tokens to tokenizer")
print(f"Adding {self.embed_config.tokens} tokens to tokenizer")
for text_encoder, tokenizer in zip(self.text_encoder_list, self.tokenizer_list):
num_added_tokens = tokenizer.add_tokens(placeholder_tokens)
if num_added_tokens != self.embed_config.tokens:
raise ValueError(
f"The tokenizer already contains the token {self.embed_config.trigger}. Please pass a different"
f" `placeholder_token` that is not already in the tokenizer. Only added {num_added_tokens}"
)
# Convert the initializer_token, placeholder_token to ids
init_token_ids = tokenizer.encode(self.embed_config.init_words, add_special_tokens=False)
# if length of token ids is more than number of orm embedding tokens fill with *
if len(init_token_ids) > self.embed_config.tokens:
init_token_ids = init_token_ids[:self.embed_config.tokens]
elif len(init_token_ids) < self.embed_config.tokens:
pad_token_id = tokenizer.encode(["*"], add_special_tokens=False)
init_token_ids += pad_token_id * (self.embed_config.tokens - len(init_token_ids))
placeholder_token_ids = tokenizer.encode(placeholder_tokens, add_special_tokens=False)
self.placeholder_token_ids.append(placeholder_token_ids)
# Resize the token embeddings as we are adding new special tokens to the tokenizer
text_encoder.resize_token_embeddings(len(tokenizer))
# Initialise the newly added placeholder token with the embeddings of the initializer token
token_embeds = text_encoder.get_input_embeddings().weight.data
with torch.no_grad():
for initializer_token_id, token_id in zip(init_token_ids, placeholder_token_ids):
token_embeds[token_id] = token_embeds[initializer_token_id].clone()
# replace "[name] with this. on training. This is automatically generated in pipeline on inference
self.embedding_tokens.append(" ".join(tokenizer.convert_ids_to_tokens(placeholder_token_ids)))
# backup text encoder embeddings
self.orig_embeds_params = [x.get_input_embeddings().weight.data.clone() for x in self.text_encoder_list]
def restore_embeddings(self):
with torch.no_grad():
# Let's make sure we don't update any embedding weights besides the newly added token
for text_encoder, tokenizer, orig_embeds, placeholder_token_ids in zip(self.text_encoder_list,
self.tokenizer_list,
self.orig_embeds_params,
self.placeholder_token_ids):
index_no_updates = torch.ones((len(tokenizer),), dtype=torch.bool)
index_no_updates[ min(placeholder_token_ids): max(placeholder_token_ids) + 1] = False
text_encoder.get_input_embeddings().weight[
index_no_updates
] = orig_embeds[index_no_updates]
weight = text_encoder.get_input_embeddings().weight
pass
def get_trainable_params(self):
params = []
for text_encoder in self.text_encoder_list:
params += text_encoder.get_input_embeddings().parameters()
return params
def _get_vec(self, text_encoder_idx=0):
# should we get params instead
# create vector from token embeds
token_embeds = self.text_encoder_list[text_encoder_idx].get_input_embeddings().weight.data
# stack the tokens along batch axis adding that axis
new_vector = torch.stack(
[token_embeds[token_id] for token_id in self.placeholder_token_ids[text_encoder_idx]],
dim=0
)
return new_vector
def _set_vec(self, new_vector, text_encoder_idx=0):
# shape is (1, 768) for SD 1.5 for 1 token
token_embeds = self.text_encoder_list[text_encoder_idx].get_input_embeddings().weight.data
for i in range(new_vector.shape[0]):
# apply the weights to the placeholder tokens while preserving gradient
token_embeds[self.placeholder_token_ids[text_encoder_idx][i]] = new_vector[i].clone()
# make setter and getter for vec
@property
def vec(self):
return self._get_vec(0)
@vec.setter
def vec(self, new_vector):
self._set_vec(new_vector, 0)
@property
def vec2(self):
return self._get_vec(1)
@vec2.setter
def vec2(self, new_vector):
self._set_vec(new_vector, 1)
# diffusers automatically expands the token meaning test123 becomes test123 test123_1 test123_2 etc
# however, on training we don't use that pipeline, so we have to do it ourselves
def inject_embedding_to_prompt(self, prompt, expand_token=False, to_replace_list=None, add_if_not_present=True):
output_prompt = prompt
embedding_tokens = self.embedding_tokens[0] # shoudl be the same
default_replacements = ["[name]", "[trigger]"]
replace_with = embedding_tokens if expand_token else self.trigger
if to_replace_list is None:
to_replace_list = default_replacements
else:
to_replace_list += default_replacements
# remove duplicates
to_replace_list = list(set(to_replace_list))
# replace them all
for to_replace in to_replace_list:
# replace it
output_prompt = output_prompt.replace(to_replace, replace_with)
# see how many times replace_with is in the prompt
num_instances = output_prompt.count(replace_with)
if num_instances == 0 and add_if_not_present:
# add it to the beginning of the prompt
output_prompt = replace_with + " " + output_prompt
if num_instances > 1:
print(
f"Warning: {replace_with} token appears {num_instances} times in prompt {output_prompt}. This may cause issues.")
return output_prompt
def state_dict(self):
if self.sd.is_xl:
state_dict = OrderedDict()
state_dict['clip_l'] = self.vec
state_dict['clip_g'] = self.vec2
else:
state_dict = OrderedDict()
state_dict['emb_params'] = self.vec
return state_dict
def save(self, filename):
# todo check to see how to get the vector out of the embedding
embedding_data = {
"string_to_token": {"*": 265},
"string_to_param": {"*": self.vec},
"name": self.name,
"step": self.step,
# todo get these
"sd_checkpoint": None,
"sd_checkpoint_name": None,
"notes": None,
}
# TODO we do not currently support this. Check how auto is doing it. Only safetensors supported sor sdxl
if filename.endswith('.pt'):
torch.save(embedding_data, filename)
elif filename.endswith('.bin'):
torch.save(embedding_data, filename)
elif filename.endswith('.safetensors'):
# save the embedding as a safetensors file
state_dict = self.state_dict()
# add all embedding data (except string_to_param), to metadata
metadata = OrderedDict({k: json.dumps(v) for k, v in embedding_data.items() if k != "string_to_param"})
metadata["string_to_param"] = {"*": "emb_params"}
save_meta = get_meta_for_safetensors(metadata, name=self.name)
save_file(state_dict, filename, metadata=save_meta)
def load_embedding_from_file(self, file_path, device):
# full path
path = os.path.realpath(file_path)
filename = os.path.basename(path)
name, ext = os.path.splitext(filename)
tensors = {}
ext = ext.upper()
if ext in ['.PNG', '.WEBP', '.JXL', '.AVIF']:
_, second_ext = os.path.splitext(name)
if second_ext.upper() == '.PREVIEW':
return
if ext in ['.BIN', '.PT']:
# todo check this
if self.sd.is_xl:
raise Exception("XL not supported yet for bin, pt")
data = torch.load(path, map_location="cpu")
elif ext in ['.SAFETENSORS']:
# rebuild the embedding from the safetensors file if it has it
with safetensors.torch.safe_open(path, framework="pt", device="cpu") as f:
metadata = f.metadata()
for k in f.keys():
tensors[k] = f.get_tensor(k)
# data = safetensors.torch.load_file(path, device="cpu")
if metadata and 'string_to_param' in metadata and 'emb_params' in tensors:
# our format
def try_json(v):
try:
return json.loads(v)
except:
return v
data = {k: try_json(v) for k, v in metadata.items()}
data['string_to_param'] = {'*': tensors['emb_params']}
else:
# old format
data = tensors
else:
return
if self.sd.is_xl:
self.vec = tensors['clip_l'].detach().to(device, dtype=torch.float32)
self.vec2 = tensors['clip_g'].detach().to(device, dtype=torch.float32)
if 'step' in data:
self.step = int(data['step'])
else:
# textual inversion embeddings
if 'string_to_param' in data:
param_dict = data['string_to_param']
if hasattr(param_dict, '_parameters'):
param_dict = getattr(param_dict,
'_parameters') # fix for torch 1.12.1 loading saved file from torch 1.11
assert len(param_dict) == 1, 'embedding file has multiple terms in it'
emb = next(iter(param_dict.items()))[1]
# diffuser concepts
elif type(data) == dict and type(next(iter(data.values()))) == torch.Tensor:
assert len(data.keys()) == 1, 'embedding file has multiple terms in it'
emb = next(iter(data.values()))
if len(emb.shape) == 1:
emb = emb.unsqueeze(0)
else:
raise Exception(
f"Couldn't identify {filename} as neither textual inversion embedding nor diffuser concept.")
if 'step' in data:
self.step = int(data['step'])
self.vec = emb.detach().to(device, dtype=torch.float32)
|