File size: 12,406 Bytes
1ba389d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
import json
import os
from collections import OrderedDict

import safetensors
import torch
from typing import TYPE_CHECKING

from safetensors.torch import save_file

from toolkit.metadata import get_meta_for_safetensors

if TYPE_CHECKING:
    from toolkit.stable_diffusion_model import StableDiffusion
    from toolkit.config_modules import EmbeddingConfig


# this is a frankenstein mix of automatic1111 and my own code

class Embedding:
    def __init__(
            self,
            sd: 'StableDiffusion',
            embed_config: 'EmbeddingConfig',
            state_dict: OrderedDict = None,
    ):
        self.name = embed_config.trigger
        self.sd = sd
        self.trigger = embed_config.trigger
        self.embed_config = embed_config
        self.step = 0
        # setup our embedding
        # Add the placeholder token in tokenizer
        placeholder_tokens = [self.embed_config.trigger]

        # add dummy tokens for multi-vector
        additional_tokens = []
        for i in range(1, self.embed_config.tokens):
            additional_tokens.append(f"{self.embed_config.trigger}_{i}")
        placeholder_tokens += additional_tokens

        # handle dual tokenizer
        self.tokenizer_list = self.sd.tokenizer if isinstance(self.sd.tokenizer, list) else [self.sd.tokenizer]
        self.text_encoder_list = self.sd.text_encoder if isinstance(self.sd.text_encoder, list) else [
            self.sd.text_encoder]

        self.placeholder_token_ids = []
        self.embedding_tokens = []

        print(f"Adding {placeholder_tokens} tokens to tokenizer")
        print(f"Adding {self.embed_config.tokens} tokens to tokenizer")

        for text_encoder, tokenizer in zip(self.text_encoder_list, self.tokenizer_list):
            num_added_tokens = tokenizer.add_tokens(placeholder_tokens)
            if num_added_tokens != self.embed_config.tokens:
                raise ValueError(
                    f"The tokenizer already contains the token {self.embed_config.trigger}. Please pass a different"
                    f" `placeholder_token` that is not already in the tokenizer. Only added {num_added_tokens}"
                )

            # Convert the initializer_token, placeholder_token to ids
            init_token_ids = tokenizer.encode(self.embed_config.init_words, add_special_tokens=False)
            # if length of token ids is more than number of orm embedding tokens fill with *
            if len(init_token_ids) > self.embed_config.tokens:
                init_token_ids = init_token_ids[:self.embed_config.tokens]
            elif len(init_token_ids) < self.embed_config.tokens:
                pad_token_id = tokenizer.encode(["*"], add_special_tokens=False)
                init_token_ids += pad_token_id * (self.embed_config.tokens - len(init_token_ids))

            placeholder_token_ids = tokenizer.encode(placeholder_tokens, add_special_tokens=False)
            self.placeholder_token_ids.append(placeholder_token_ids)

            # Resize the token embeddings as we are adding new special tokens to the tokenizer
            text_encoder.resize_token_embeddings(len(tokenizer))

            # Initialise the newly added placeholder token with the embeddings of the initializer token
            token_embeds = text_encoder.get_input_embeddings().weight.data
            with torch.no_grad():
                for initializer_token_id, token_id in zip(init_token_ids, placeholder_token_ids):
                    token_embeds[token_id] = token_embeds[initializer_token_id].clone()

            # replace "[name] with this. on training. This is automatically generated in pipeline on inference
            self.embedding_tokens.append(" ".join(tokenizer.convert_ids_to_tokens(placeholder_token_ids)))

        # backup text encoder embeddings
        self.orig_embeds_params = [x.get_input_embeddings().weight.data.clone() for x in self.text_encoder_list]

    def restore_embeddings(self):
        with torch.no_grad():
            # Let's make sure we don't update any embedding weights besides the newly added token
            for text_encoder, tokenizer, orig_embeds, placeholder_token_ids in zip(self.text_encoder_list,
                                                                                   self.tokenizer_list,
                                                                                   self.orig_embeds_params,
                                                                                   self.placeholder_token_ids):
                index_no_updates = torch.ones((len(tokenizer),), dtype=torch.bool)
                index_no_updates[ min(placeholder_token_ids): max(placeholder_token_ids) + 1] = False
                text_encoder.get_input_embeddings().weight[
                    index_no_updates
                ] = orig_embeds[index_no_updates]
                weight = text_encoder.get_input_embeddings().weight
                pass

    def get_trainable_params(self):
        params = []
        for text_encoder in self.text_encoder_list:
            params += text_encoder.get_input_embeddings().parameters()
        return params

    def _get_vec(self, text_encoder_idx=0):
        # should we get params instead
        # create vector from token embeds
        token_embeds = self.text_encoder_list[text_encoder_idx].get_input_embeddings().weight.data
        # stack the tokens along batch axis adding that axis
        new_vector = torch.stack(
            [token_embeds[token_id] for token_id in self.placeholder_token_ids[text_encoder_idx]],
            dim=0
        )
        return new_vector

    def _set_vec(self, new_vector, text_encoder_idx=0):
        # shape is (1, 768) for SD 1.5 for 1 token
        token_embeds = self.text_encoder_list[text_encoder_idx].get_input_embeddings().weight.data
        for i in range(new_vector.shape[0]):
            # apply the weights to the placeholder tokens while preserving gradient
            token_embeds[self.placeholder_token_ids[text_encoder_idx][i]] = new_vector[i].clone()

    # make setter and getter for vec
    @property
    def vec(self):
        return self._get_vec(0)

    @vec.setter
    def vec(self, new_vector):
        self._set_vec(new_vector, 0)

    @property
    def vec2(self):
        return self._get_vec(1)

    @vec2.setter
    def vec2(self, new_vector):
        self._set_vec(new_vector, 1)

    # diffusers automatically expands the token meaning test123 becomes test123 test123_1 test123_2 etc
    # however, on training we don't use that pipeline, so we have to do it ourselves
    def inject_embedding_to_prompt(self, prompt, expand_token=False, to_replace_list=None, add_if_not_present=True):
        output_prompt = prompt
        embedding_tokens = self.embedding_tokens[0]  # shoudl be the same
        default_replacements = ["[name]", "[trigger]"]

        replace_with = embedding_tokens if expand_token else self.trigger
        if to_replace_list is None:
            to_replace_list = default_replacements
        else:
            to_replace_list += default_replacements

        # remove duplicates
        to_replace_list = list(set(to_replace_list))

        # replace them all
        for to_replace in to_replace_list:
            # replace it
            output_prompt = output_prompt.replace(to_replace, replace_with)

        # see how many times replace_with is in the prompt
        num_instances = output_prompt.count(replace_with)

        if num_instances == 0 and add_if_not_present:
            # add it to the beginning of the prompt
            output_prompt = replace_with + " " + output_prompt

        if num_instances > 1:
            print(
                f"Warning: {replace_with} token appears {num_instances} times in prompt {output_prompt}. This may cause issues.")

        return output_prompt

    def state_dict(self):
        if self.sd.is_xl:
            state_dict = OrderedDict()
            state_dict['clip_l'] = self.vec
            state_dict['clip_g'] = self.vec2
        else:
            state_dict = OrderedDict()
            state_dict['emb_params'] = self.vec

        return state_dict

    def save(self, filename):
        # todo check to see how to get the vector out of the embedding

        embedding_data = {
            "string_to_token": {"*": 265},
            "string_to_param": {"*": self.vec},
            "name": self.name,
            "step": self.step,
            # todo get these
            "sd_checkpoint": None,
            "sd_checkpoint_name": None,
            "notes": None,
        }
        # TODO we do not currently support this. Check how auto is doing it. Only safetensors supported sor sdxl
        if filename.endswith('.pt'):
            torch.save(embedding_data, filename)
        elif filename.endswith('.bin'):
            torch.save(embedding_data, filename)
        elif filename.endswith('.safetensors'):
            # save the embedding as a safetensors file
            state_dict = self.state_dict()
            # add all embedding data (except string_to_param), to metadata
            metadata = OrderedDict({k: json.dumps(v) for k, v in embedding_data.items() if k != "string_to_param"})
            metadata["string_to_param"] = {"*": "emb_params"}
            save_meta = get_meta_for_safetensors(metadata, name=self.name)
            save_file(state_dict, filename, metadata=save_meta)

    def load_embedding_from_file(self, file_path, device):
        # full path
        path = os.path.realpath(file_path)
        filename = os.path.basename(path)
        name, ext = os.path.splitext(filename)
        tensors = {}
        ext = ext.upper()
        if ext in ['.PNG', '.WEBP', '.JXL', '.AVIF']:
            _, second_ext = os.path.splitext(name)
            if second_ext.upper() == '.PREVIEW':
                return

        if ext in ['.BIN', '.PT']:
            # todo check this
            if self.sd.is_xl:
               raise Exception("XL not supported yet for bin, pt")
            data = torch.load(path, map_location="cpu")
        elif ext in ['.SAFETENSORS']:
            # rebuild the embedding from the safetensors file if it has it
            with safetensors.torch.safe_open(path, framework="pt", device="cpu") as f:
                metadata = f.metadata()
                for k in f.keys():
                    tensors[k] = f.get_tensor(k)
            # data = safetensors.torch.load_file(path, device="cpu")
            if metadata and 'string_to_param' in metadata and 'emb_params' in tensors:
                # our format
                def try_json(v):
                    try:
                        return json.loads(v)
                    except:
                        return v

                data = {k: try_json(v) for k, v in metadata.items()}
                data['string_to_param'] = {'*': tensors['emb_params']}
            else:
                # old format
                data = tensors
        else:
            return

        if self.sd.is_xl:
            self.vec = tensors['clip_l'].detach().to(device, dtype=torch.float32)
            self.vec2 = tensors['clip_g'].detach().to(device, dtype=torch.float32)
            if 'step' in data:
                self.step = int(data['step'])
        else:
            # textual inversion embeddings
            if 'string_to_param' in data:
                param_dict = data['string_to_param']
                if hasattr(param_dict, '_parameters'):
                    param_dict = getattr(param_dict,
                                         '_parameters')  # fix for torch 1.12.1 loading saved file from torch 1.11
                assert len(param_dict) == 1, 'embedding file has multiple terms in it'
                emb = next(iter(param_dict.items()))[1]
            # diffuser concepts
            elif type(data) == dict and type(next(iter(data.values()))) == torch.Tensor:
                assert len(data.keys()) == 1, 'embedding file has multiple terms in it'

                emb = next(iter(data.values()))
                if len(emb.shape) == 1:
                    emb = emb.unsqueeze(0)
            else:
                raise Exception(
                    f"Couldn't identify {filename} as neither textual inversion embedding nor diffuser concept.")

            if 'step' in data:
                self.step = int(data['step'])

            self.vec = emb.detach().to(device, dtype=torch.float32)