|
from typing import TYPE_CHECKING, Mapping, Any |
|
|
|
import torch |
|
import weakref |
|
|
|
from toolkit.config_modules import AdapterConfig |
|
from toolkit.models.clip_fusion import ZipperBlock |
|
from toolkit.models.zipper_resampler import ZipperModule |
|
from toolkit.prompt_utils import PromptEmbeds |
|
from toolkit.train_tools import get_torch_dtype |
|
|
|
if TYPE_CHECKING: |
|
from toolkit.stable_diffusion_model import StableDiffusion |
|
|
|
from transformers import ( |
|
CLIPImageProcessor, |
|
CLIPVisionModelWithProjection, |
|
CLIPVisionModel |
|
) |
|
|
|
from toolkit.resampler import Resampler |
|
|
|
import torch.nn as nn |
|
|
|
|
|
class Embedder(nn.Module): |
|
def __init__( |
|
self, |
|
num_input_tokens: int = 1, |
|
input_dim: int = 1024, |
|
num_output_tokens: int = 8, |
|
output_dim: int = 768, |
|
mid_dim: int = 1024 |
|
): |
|
super(Embedder, self).__init__() |
|
self.num_output_tokens = num_output_tokens |
|
self.num_input_tokens = num_input_tokens |
|
self.input_dim = input_dim |
|
self.output_dim = output_dim |
|
|
|
self.layer_norm = nn.LayerNorm(input_dim) |
|
self.fc1 = nn.Linear(input_dim, mid_dim) |
|
self.gelu = nn.GELU() |
|
|
|
self.fc2 = nn.Linear(mid_dim, mid_dim) |
|
|
|
self.fc2.weight.data.zero_() |
|
|
|
self.layer_norm2 = nn.LayerNorm(mid_dim) |
|
self.fc3 = nn.Linear(mid_dim, mid_dim) |
|
self.gelu2 = nn.GELU() |
|
self.fc4 = nn.Linear(mid_dim, output_dim * num_output_tokens) |
|
|
|
|
|
self.fc3.weight.data.zero_() |
|
self.fc4.weight.data.zero_() |
|
|
|
|
|
|
|
|
|
|
|
def forward(self, x): |
|
if len(x.shape) == 2: |
|
x = x.unsqueeze(1) |
|
x = self.layer_norm(x) |
|
x = self.fc1(x) |
|
x = self.gelu(x) |
|
x = self.fc2(x) |
|
x = self.layer_norm2(x) |
|
x = self.fc3(x) |
|
x = self.gelu2(x) |
|
x = self.fc4(x) |
|
|
|
x = x.view(-1, self.num_output_tokens, self.output_dim) |
|
|
|
return x |
|
|
|
|
|
class ClipVisionAdapter(torch.nn.Module): |
|
def __init__(self, sd: 'StableDiffusion', adapter_config: AdapterConfig): |
|
super().__init__() |
|
self.config = adapter_config |
|
self.trigger = adapter_config.trigger |
|
self.trigger_class_name = adapter_config.trigger_class_name |
|
self.sd_ref: weakref.ref = weakref.ref(sd) |
|
|
|
self.text_encoder_list = sd.text_encoder if isinstance(sd.text_encoder, list) else [sd.text_encoder] |
|
self.tokenizer_list = sd.tokenizer if isinstance(sd.tokenizer, list) else [sd.tokenizer] |
|
placeholder_tokens = [self.trigger] |
|
|
|
|
|
additional_tokens = [] |
|
for i in range(1, self.config.num_tokens): |
|
additional_tokens.append(f"{self.trigger}_{i}") |
|
placeholder_tokens += additional_tokens |
|
|
|
|
|
self.tokenizer_list = self.sd_ref().tokenizer if isinstance(self.sd_ref().tokenizer, list) else [ |
|
self.sd_ref().tokenizer] |
|
self.text_encoder_list = self.sd_ref().text_encoder if isinstance(self.sd_ref().text_encoder, list) else [ |
|
self.sd_ref().text_encoder] |
|
|
|
self.placeholder_token_ids = [] |
|
self.embedding_tokens = [] |
|
|
|
print(f"Adding {placeholder_tokens} tokens to tokenizer") |
|
print(f"Adding {self.config.num_tokens} tokens to tokenizer") |
|
|
|
|
|
for text_encoder, tokenizer in zip(self.text_encoder_list, self.tokenizer_list): |
|
num_added_tokens = tokenizer.add_tokens(placeholder_tokens) |
|
if num_added_tokens != self.config.num_tokens: |
|
raise ValueError( |
|
f"The tokenizer already contains the token {self.trigger}. Please pass a different" |
|
f" `placeholder_token` that is not already in the tokenizer. Only added {num_added_tokens}" |
|
) |
|
|
|
|
|
init_token_ids = tokenizer.encode(self.config.trigger_class_name, add_special_tokens=False) |
|
|
|
if len(init_token_ids) > self.config.num_tokens: |
|
init_token_ids = init_token_ids[:self.config.num_tokens] |
|
elif len(init_token_ids) < self.config.num_tokens: |
|
pad_token_id = tokenizer.encode(["*"], add_special_tokens=False) |
|
init_token_ids += pad_token_id * (self.config.num_tokens - len(init_token_ids)) |
|
|
|
placeholder_token_ids = tokenizer.encode(placeholder_tokens, add_special_tokens=False) |
|
self.placeholder_token_ids.append(placeholder_token_ids) |
|
|
|
|
|
text_encoder.resize_token_embeddings(len(tokenizer)) |
|
|
|
|
|
token_embeds = text_encoder.get_input_embeddings().weight.data |
|
with torch.no_grad(): |
|
for initializer_token_id, token_id in zip(init_token_ids, placeholder_token_ids): |
|
token_embeds[token_id] = token_embeds[initializer_token_id].clone() |
|
|
|
|
|
self.embedding_tokens.append(" ".join(tokenizer.convert_ids_to_tokens(placeholder_token_ids))) |
|
|
|
|
|
self.orig_embeds_params = [x.get_input_embeddings().weight.data.clone() for x in self.text_encoder_list] |
|
|
|
try: |
|
self.clip_image_processor = CLIPImageProcessor.from_pretrained(self.config.image_encoder_path) |
|
except EnvironmentError: |
|
self.clip_image_processor = CLIPImageProcessor() |
|
self.device = self.sd_ref().unet.device |
|
self.image_encoder = CLIPVisionModelWithProjection.from_pretrained( |
|
self.config.image_encoder_path, |
|
ignore_mismatched_sizes=True |
|
).to(self.device, dtype=get_torch_dtype(self.sd_ref().dtype)) |
|
if self.config.train_image_encoder: |
|
self.image_encoder.train() |
|
else: |
|
self.image_encoder.eval() |
|
|
|
|
|
image_encoder_state_dict = self.image_encoder.state_dict() |
|
in_tokens = 257 |
|
if "vision_model.embeddings.position_embedding.weight" in image_encoder_state_dict: |
|
|
|
in_tokens = int(image_encoder_state_dict["vision_model.embeddings.position_embedding.weight"].shape[0]) |
|
|
|
if hasattr(self.image_encoder.config, 'hidden_sizes'): |
|
embedding_dim = self.image_encoder.config.hidden_sizes[-1] |
|
else: |
|
embedding_dim = self.image_encoder.config.target_hidden_size |
|
|
|
if self.config.clip_layer == 'image_embeds': |
|
in_tokens = 1 |
|
embedding_dim = self.image_encoder.config.projection_dim |
|
|
|
self.embedder = Embedder( |
|
num_output_tokens=self.config.num_tokens, |
|
num_input_tokens=in_tokens, |
|
input_dim=embedding_dim, |
|
output_dim=self.sd_ref().unet.config['cross_attention_dim'], |
|
mid_dim=embedding_dim * self.config.num_tokens, |
|
).to(self.device, dtype=get_torch_dtype(self.sd_ref().dtype)) |
|
|
|
self.embedder.train() |
|
|
|
def state_dict(self, *args, destination=None, prefix='', keep_vars=False): |
|
state_dict = { |
|
'embedder': self.embedder.state_dict(*args, destination=destination, prefix=prefix, keep_vars=keep_vars) |
|
} |
|
if self.config.train_image_encoder: |
|
state_dict['image_encoder'] = self.image_encoder.state_dict( |
|
*args, destination=destination, prefix=prefix, |
|
keep_vars=keep_vars) |
|
|
|
return state_dict |
|
|
|
def load_state_dict(self, state_dict: Mapping[str, Any], strict: bool = True): |
|
self.embedder.load_state_dict(state_dict["embedder"], strict=strict) |
|
if self.config.train_image_encoder and 'image_encoder' in state_dict: |
|
self.image_encoder.load_state_dict(state_dict["image_encoder"], strict=strict) |
|
|
|
def parameters(self, *args, **kwargs): |
|
yield from self.embedder.parameters(*args, **kwargs) |
|
|
|
def named_parameters(self, *args, **kwargs): |
|
yield from self.embedder.named_parameters(*args, **kwargs) |
|
|
|
def get_clip_image_embeds_from_tensors( |
|
self, tensors_0_1: torch.Tensor, drop=False, |
|
is_training=False, |
|
has_been_preprocessed=False |
|
) -> torch.Tensor: |
|
with torch.no_grad(): |
|
if not has_been_preprocessed: |
|
|
|
if tensors_0_1.ndim == 3: |
|
tensors_0_1 = tensors_0_1.unsqueeze(0) |
|
|
|
tensors_0_1 = tensors_0_1.to(self.device, dtype=torch.float16) |
|
|
|
|
|
if tensors_0_1.min() < -0.3 or tensors_0_1.max() > 1.3: |
|
raise ValueError("image tensor values must be between 0 and 1. Got min: {}, max: {}".format( |
|
tensors_0_1.min(), tensors_0_1.max() |
|
)) |
|
|
|
if drop: |
|
if self.clip_noise_zero: |
|
tensors_0_1 = torch.rand_like(tensors_0_1).detach() |
|
noise_scale = torch.rand([tensors_0_1.shape[0], 1, 1, 1], device=self.device, |
|
dtype=get_torch_dtype(self.sd_ref().dtype)) |
|
tensors_0_1 = tensors_0_1 * noise_scale |
|
else: |
|
tensors_0_1 = torch.zeros_like(tensors_0_1).detach() |
|
|
|
clip_image = self.clip_image_processor( |
|
images=tensors_0_1, |
|
return_tensors="pt", |
|
do_resize=True, |
|
do_rescale=False, |
|
).pixel_values |
|
else: |
|
if drop: |
|
|
|
if self.clip_noise_zero: |
|
tensors_0_1 = torch.rand_like(tensors_0_1).detach() |
|
noise_scale = torch.rand([tensors_0_1.shape[0], 1, 1, 1], device=self.device, |
|
dtype=get_torch_dtype(self.sd_ref().dtype)) |
|
tensors_0_1 = tensors_0_1 * noise_scale |
|
else: |
|
tensors_0_1 = torch.zeros_like(tensors_0_1).detach() |
|
|
|
mean = torch.tensor(self.clip_image_processor.image_mean).to( |
|
self.device, dtype=get_torch_dtype(self.sd_ref().dtype) |
|
).detach() |
|
std = torch.tensor(self.clip_image_processor.image_std).to( |
|
self.device, dtype=get_torch_dtype(self.sd_ref().dtype) |
|
).detach() |
|
tensors_0_1 = torch.clip((255. * tensors_0_1), 0, 255).round() / 255.0 |
|
clip_image = (tensors_0_1 - mean.view([1, 3, 1, 1])) / std.view([1, 3, 1, 1]) |
|
|
|
else: |
|
clip_image = tensors_0_1 |
|
clip_image = clip_image.to(self.device, dtype=get_torch_dtype(self.sd_ref().dtype)).detach() |
|
with torch.set_grad_enabled(is_training): |
|
if is_training: |
|
self.image_encoder.train() |
|
else: |
|
self.image_encoder.eval() |
|
clip_output = self.image_encoder(clip_image, output_hidden_states=True) |
|
|
|
if self.config.clip_layer == 'penultimate_hidden_states': |
|
|
|
|
|
clip_image_embeds = clip_output.hidden_states[-2] |
|
elif self.config.clip_layer == 'last_hidden_state': |
|
clip_image_embeds = clip_output.hidden_states[-1] |
|
else: |
|
clip_image_embeds = clip_output.image_embeds |
|
return clip_image_embeds |
|
|
|
import torch |
|
|
|
def set_vec(self, new_vector, text_encoder_idx=0): |
|
|
|
embedding_layer = self.text_encoder_list[text_encoder_idx].get_input_embeddings() |
|
|
|
|
|
indices_to_replace = self.placeholder_token_ids[text_encoder_idx] |
|
|
|
|
|
for idx in indices_to_replace: |
|
vector_idx = idx - indices_to_replace[0] |
|
embedding_layer.weight[idx] = new_vector[vector_idx] |
|
|
|
|
|
def forward(self, clip_image_embeds: torch.Tensor) -> PromptEmbeds: |
|
clip_image_embeds = clip_image_embeds.to(self.device, dtype=get_torch_dtype(self.sd_ref().dtype)) |
|
if clip_image_embeds.ndim == 2: |
|
|
|
clip_image_embeds = clip_image_embeds.unsqueeze(1) |
|
image_prompt_embeds = self.embedder(clip_image_embeds) |
|
|
|
if image_prompt_embeds.shape[0] != 1: |
|
raise ValueError("Batch size must be 1 for embedder for now") |
|
|
|
|
|
if len(self.text_encoder_list) == 1: |
|
|
|
self.set_vec(image_prompt_embeds[0], text_encoder_idx=0) |
|
elif len(self.text_encoder_list) == 2: |
|
if self.text_encoder_list[0].config.target_hidden_size + self.text_encoder_list[1].config.target_hidden_size != \ |
|
image_prompt_embeds.shape[2]: |
|
raise ValueError("Something went wrong. The embeddings do not match the text encoder sizes") |
|
|
|
|
|
|
|
|
|
te1_embeds = image_prompt_embeds[:, :, :self.text_encoder_list[0].config.target_hidden_size] |
|
te2_embeds = image_prompt_embeds[:, :, self.text_encoder_list[0].config.target_hidden_size:] |
|
self.set_vec(te1_embeds[0], text_encoder_idx=0) |
|
self.set_vec(te2_embeds[0], text_encoder_idx=1) |
|
else: |
|
|
|
raise ValueError("Unsupported number of text encoders") |
|
|
|
pass |
|
|
|
def restore_embeddings(self): |
|
|
|
for text_encoder, tokenizer, orig_embeds, placeholder_token_ids in zip( |
|
self.text_encoder_list, |
|
self.tokenizer_list, |
|
self.orig_embeds_params, |
|
self.placeholder_token_ids |
|
): |
|
index_no_updates = torch.ones((len(tokenizer),), dtype=torch.bool) |
|
index_no_updates[ |
|
min(placeholder_token_ids): max(placeholder_token_ids) + 1] = False |
|
with torch.no_grad(): |
|
text_encoder.get_input_embeddings().weight[ |
|
index_no_updates |
|
] = orig_embeds[index_no_updates] |
|
|
|
text_encoder.get_input_embeddings().weight.detach_() |
|
|
|
def enable_gradient_checkpointing(self): |
|
self.image_encoder.gradient_checkpointing = True |
|
|
|
def inject_trigger_into_prompt(self, prompt, expand_token=False, to_replace_list=None, add_if_not_present=True): |
|
output_prompt = prompt |
|
embedding_tokens = self.embedding_tokens[0] |
|
default_replacements = ["[name]", "[trigger]"] |
|
|
|
replace_with = embedding_tokens if expand_token else self.trigger |
|
if to_replace_list is None: |
|
to_replace_list = default_replacements |
|
else: |
|
to_replace_list += default_replacements |
|
|
|
|
|
to_replace_list = list(set(to_replace_list)) |
|
|
|
|
|
for to_replace in to_replace_list: |
|
|
|
output_prompt = output_prompt.replace(to_replace, replace_with) |
|
|
|
|
|
num_instances = output_prompt.count(replace_with) |
|
|
|
if num_instances == 0 and add_if_not_present: |
|
|
|
output_prompt = replace_with + " " + output_prompt |
|
|
|
if num_instances > 1: |
|
print( |
|
f"Warning: {replace_with} token appears {num_instances} times in prompt {output_prompt}. This may cause issues.") |
|
|
|
return output_prompt |
|
|
|
|
|
def inject_trigger_class_name_into_prompt(self, prompt): |
|
output_prompt = prompt |
|
embedding_tokens = self.embedding_tokens[0] |
|
|
|
default_replacements = ["[name]", "[trigger]", embedding_tokens, self.trigger] |
|
|
|
replace_with = self.config.trigger_class_name |
|
to_replace_list = default_replacements |
|
|
|
|
|
to_replace_list = list(set(to_replace_list)) |
|
|
|
|
|
for to_replace in to_replace_list: |
|
|
|
output_prompt = output_prompt.replace(to_replace, replace_with) |
|
|
|
|
|
num_instances = output_prompt.count(replace_with) |
|
|
|
if num_instances > 1: |
|
print( |
|
f"Warning: {replace_with} token appears {num_instances} times in prompt {output_prompt}. This may cause issues.") |
|
|
|
return output_prompt |
|
|