File size: 17,979 Bytes
1ba389d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
from typing import TYPE_CHECKING, Mapping, Any

import torch
import weakref

from toolkit.config_modules import AdapterConfig
from toolkit.models.clip_fusion import ZipperBlock
from toolkit.models.zipper_resampler import ZipperModule
from toolkit.prompt_utils import PromptEmbeds
from toolkit.train_tools import get_torch_dtype

if TYPE_CHECKING:
    from toolkit.stable_diffusion_model import StableDiffusion

from transformers import (
    CLIPImageProcessor,
    CLIPVisionModelWithProjection,
    CLIPVisionModel
)

from toolkit.resampler import Resampler

import torch.nn as nn


class Embedder(nn.Module):
    def __init__(
            self,
            num_input_tokens: int = 1,
            input_dim: int = 1024,
            num_output_tokens: int = 8,
            output_dim: int = 768,
            mid_dim: int = 1024
    ):
        super(Embedder, self).__init__()
        self.num_output_tokens = num_output_tokens
        self.num_input_tokens = num_input_tokens
        self.input_dim = input_dim
        self.output_dim = output_dim

        self.layer_norm = nn.LayerNorm(input_dim)
        self.fc1 = nn.Linear(input_dim, mid_dim)
        self.gelu = nn.GELU()
        # self.fc2 = nn.Linear(mid_dim, mid_dim)
        self.fc2 = nn.Linear(mid_dim, mid_dim)

        self.fc2.weight.data.zero_()

        self.layer_norm2 = nn.LayerNorm(mid_dim)
        self.fc3 = nn.Linear(mid_dim, mid_dim)
        self.gelu2 = nn.GELU()
        self.fc4 = nn.Linear(mid_dim, output_dim * num_output_tokens)

        # set the weights to 0
        self.fc3.weight.data.zero_()
        self.fc4.weight.data.zero_()


        # self.static_tokens = nn.Parameter(torch.zeros(num_output_tokens, output_dim))
        # self.scaler = nn.Parameter(torch.zeros(num_output_tokens, output_dim))

    def forward(self, x):
        if len(x.shape) == 2:
            x = x.unsqueeze(1)
        x = self.layer_norm(x)
        x = self.fc1(x)
        x = self.gelu(x)
        x = self.fc2(x)
        x = self.layer_norm2(x)
        x = self.fc3(x)
        x = self.gelu2(x)
        x = self.fc4(x)

        x = x.view(-1, self.num_output_tokens, self.output_dim)

        return x


class ClipVisionAdapter(torch.nn.Module):
    def __init__(self, sd: 'StableDiffusion', adapter_config: AdapterConfig):
        super().__init__()
        self.config = adapter_config
        self.trigger = adapter_config.trigger
        self.trigger_class_name = adapter_config.trigger_class_name
        self.sd_ref: weakref.ref = weakref.ref(sd)
        # embedding stuff
        self.text_encoder_list = sd.text_encoder if isinstance(sd.text_encoder, list) else [sd.text_encoder]
        self.tokenizer_list = sd.tokenizer if isinstance(sd.tokenizer, list) else [sd.tokenizer]
        placeholder_tokens = [self.trigger]

        # add dummy tokens for multi-vector
        additional_tokens = []
        for i in range(1, self.config.num_tokens):
            additional_tokens.append(f"{self.trigger}_{i}")
        placeholder_tokens += additional_tokens

        # handle dual tokenizer
        self.tokenizer_list = self.sd_ref().tokenizer if isinstance(self.sd_ref().tokenizer, list) else [
            self.sd_ref().tokenizer]
        self.text_encoder_list = self.sd_ref().text_encoder if isinstance(self.sd_ref().text_encoder, list) else [
            self.sd_ref().text_encoder]

        self.placeholder_token_ids = []
        self.embedding_tokens = []

        print(f"Adding {placeholder_tokens} tokens to tokenizer")
        print(f"Adding {self.config.num_tokens} tokens to tokenizer")


        for text_encoder, tokenizer in zip(self.text_encoder_list, self.tokenizer_list):
            num_added_tokens = tokenizer.add_tokens(placeholder_tokens)
            if num_added_tokens != self.config.num_tokens:
                raise ValueError(
                    f"The tokenizer already contains the token {self.trigger}. Please pass a different"
                    f" `placeholder_token` that is not already in the tokenizer. Only added {num_added_tokens}"
                )

            # Convert the initializer_token, placeholder_token to ids
            init_token_ids = tokenizer.encode(self.config.trigger_class_name, add_special_tokens=False)
            # if length of token ids is more than number of orm embedding tokens fill with *
            if len(init_token_ids) > self.config.num_tokens:
                init_token_ids = init_token_ids[:self.config.num_tokens]
            elif len(init_token_ids) < self.config.num_tokens:
                pad_token_id = tokenizer.encode(["*"], add_special_tokens=False)
                init_token_ids += pad_token_id * (self.config.num_tokens - len(init_token_ids))

            placeholder_token_ids = tokenizer.encode(placeholder_tokens, add_special_tokens=False)
            self.placeholder_token_ids.append(placeholder_token_ids)

            # Resize the token embeddings as we are adding new special tokens to the tokenizer
            text_encoder.resize_token_embeddings(len(tokenizer))

            # Initialise the newly added placeholder token with the embeddings of the initializer token
            token_embeds = text_encoder.get_input_embeddings().weight.data
            with torch.no_grad():
                for initializer_token_id, token_id in zip(init_token_ids, placeholder_token_ids):
                    token_embeds[token_id] = token_embeds[initializer_token_id].clone()

            # replace "[name] with this. on training. This is automatically generated in pipeline on inference
            self.embedding_tokens.append(" ".join(tokenizer.convert_ids_to_tokens(placeholder_token_ids)))

        # backup text encoder embeddings
        self.orig_embeds_params = [x.get_input_embeddings().weight.data.clone() for x in self.text_encoder_list]

        try:
            self.clip_image_processor = CLIPImageProcessor.from_pretrained(self.config.image_encoder_path)
        except EnvironmentError:
            self.clip_image_processor = CLIPImageProcessor()
        self.device = self.sd_ref().unet.device
        self.image_encoder = CLIPVisionModelWithProjection.from_pretrained(
            self.config.image_encoder_path,
            ignore_mismatched_sizes=True
        ).to(self.device, dtype=get_torch_dtype(self.sd_ref().dtype))
        if self.config.train_image_encoder:
            self.image_encoder.train()
        else:
            self.image_encoder.eval()

        # max_seq_len = CLIP tokens + CLS token
        image_encoder_state_dict = self.image_encoder.state_dict()
        in_tokens = 257
        if "vision_model.embeddings.position_embedding.weight" in image_encoder_state_dict:
            # clip
            in_tokens = int(image_encoder_state_dict["vision_model.embeddings.position_embedding.weight"].shape[0])

        if hasattr(self.image_encoder.config, 'hidden_sizes'):
            embedding_dim = self.image_encoder.config.hidden_sizes[-1]
        else:
            embedding_dim = self.image_encoder.config.target_hidden_size

        if self.config.clip_layer == 'image_embeds':
            in_tokens = 1
            embedding_dim = self.image_encoder.config.projection_dim

        self.embedder = Embedder(
            num_output_tokens=self.config.num_tokens,
            num_input_tokens=in_tokens,
            input_dim=embedding_dim,
            output_dim=self.sd_ref().unet.config['cross_attention_dim'],
            mid_dim=embedding_dim * self.config.num_tokens,
        ).to(self.device, dtype=get_torch_dtype(self.sd_ref().dtype))

        self.embedder.train()

    def state_dict(self, *args, destination=None, prefix='', keep_vars=False):
        state_dict = {
            'embedder': self.embedder.state_dict(*args, destination=destination, prefix=prefix, keep_vars=keep_vars)
        }
        if self.config.train_image_encoder:
            state_dict['image_encoder'] = self.image_encoder.state_dict(
                *args, destination=destination, prefix=prefix,
                keep_vars=keep_vars)

        return state_dict

    def load_state_dict(self, state_dict: Mapping[str, Any], strict: bool = True):
        self.embedder.load_state_dict(state_dict["embedder"], strict=strict)
        if self.config.train_image_encoder and 'image_encoder' in state_dict:
            self.image_encoder.load_state_dict(state_dict["image_encoder"], strict=strict)

    def parameters(self, *args, **kwargs):
        yield from self.embedder.parameters(*args, **kwargs)

    def named_parameters(self, *args, **kwargs):
        yield from self.embedder.named_parameters(*args, **kwargs)

    def get_clip_image_embeds_from_tensors(
            self, tensors_0_1: torch.Tensor, drop=False,
            is_training=False,
            has_been_preprocessed=False
    ) -> torch.Tensor:
        with torch.no_grad():
            if not has_been_preprocessed:
                # tensors should be 0-1
                if tensors_0_1.ndim == 3:
                    tensors_0_1 = tensors_0_1.unsqueeze(0)
                # training tensors are 0 - 1
                tensors_0_1 = tensors_0_1.to(self.device, dtype=torch.float16)

                # if images are out of this range throw error
                if tensors_0_1.min() < -0.3 or tensors_0_1.max() > 1.3:
                    raise ValueError("image tensor values must be between 0 and 1. Got min: {}, max: {}".format(
                        tensors_0_1.min(), tensors_0_1.max()
                    ))
                # unconditional
                if drop:
                    if self.clip_noise_zero:
                        tensors_0_1 = torch.rand_like(tensors_0_1).detach()
                        noise_scale = torch.rand([tensors_0_1.shape[0], 1, 1, 1], device=self.device,
                                                 dtype=get_torch_dtype(self.sd_ref().dtype))
                        tensors_0_1 = tensors_0_1 * noise_scale
                    else:
                        tensors_0_1 = torch.zeros_like(tensors_0_1).detach()
                    # tensors_0_1 = tensors_0_1 * 0
                clip_image = self.clip_image_processor(
                    images=tensors_0_1,
                    return_tensors="pt",
                    do_resize=True,
                    do_rescale=False,
                ).pixel_values
            else:
                if drop:
                    # scale the noise down
                    if self.clip_noise_zero:
                        tensors_0_1 = torch.rand_like(tensors_0_1).detach()
                        noise_scale = torch.rand([tensors_0_1.shape[0], 1, 1, 1], device=self.device,
                                                 dtype=get_torch_dtype(self.sd_ref().dtype))
                        tensors_0_1 = tensors_0_1 * noise_scale
                    else:
                        tensors_0_1 = torch.zeros_like(tensors_0_1).detach()
                    # tensors_0_1 = tensors_0_1 * 0
                    mean = torch.tensor(self.clip_image_processor.image_mean).to(
                        self.device, dtype=get_torch_dtype(self.sd_ref().dtype)
                    ).detach()
                    std = torch.tensor(self.clip_image_processor.image_std).to(
                        self.device, dtype=get_torch_dtype(self.sd_ref().dtype)
                    ).detach()
                    tensors_0_1 = torch.clip((255. * tensors_0_1), 0, 255).round() / 255.0
                    clip_image = (tensors_0_1 - mean.view([1, 3, 1, 1])) / std.view([1, 3, 1, 1])

                else:
                    clip_image = tensors_0_1
            clip_image = clip_image.to(self.device, dtype=get_torch_dtype(self.sd_ref().dtype)).detach()
        with torch.set_grad_enabled(is_training):
            if is_training:
                self.image_encoder.train()
            else:
                self.image_encoder.eval()
            clip_output = self.image_encoder(clip_image, output_hidden_states=True)

            if self.config.clip_layer == 'penultimate_hidden_states':
                # they skip last layer for ip+
                # https://github.com/tencent-ailab/IP-Adapter/blob/f4b6742db35ea6d81c7b829a55b0a312c7f5a677/tutorial_train_plus.py#L403C26-L403C26
                clip_image_embeds = clip_output.hidden_states[-2]
            elif self.config.clip_layer == 'last_hidden_state':
                clip_image_embeds = clip_output.hidden_states[-1]
            else:
                clip_image_embeds = clip_output.image_embeds
        return clip_image_embeds

    import torch

    def set_vec(self, new_vector, text_encoder_idx=0):
        # Get the embedding layer
        embedding_layer = self.text_encoder_list[text_encoder_idx].get_input_embeddings()

        # Indices to replace in the embeddings
        indices_to_replace = self.placeholder_token_ids[text_encoder_idx]

        # Replace the specified embeddings with new_vector
        for idx in indices_to_replace:
            vector_idx = idx - indices_to_replace[0]
            embedding_layer.weight[idx] = new_vector[vector_idx]

    # adds it to the tokenizer
    def forward(self, clip_image_embeds: torch.Tensor) -> PromptEmbeds:
        clip_image_embeds = clip_image_embeds.to(self.device, dtype=get_torch_dtype(self.sd_ref().dtype))
        if clip_image_embeds.ndim == 2:
            #  expand the token dimension
            clip_image_embeds = clip_image_embeds.unsqueeze(1)
        image_prompt_embeds = self.embedder(clip_image_embeds)
        # todo add support for multiple batch sizes
        if image_prompt_embeds.shape[0] != 1:
            raise ValueError("Batch size must be 1 for embedder for now")

        # output on sd1.5 is bs, num_tokens, 768
        if len(self.text_encoder_list) == 1:
            # add it to the text encoder
            self.set_vec(image_prompt_embeds[0], text_encoder_idx=0)
        elif len(self.text_encoder_list) == 2:
            if self.text_encoder_list[0].config.target_hidden_size + self.text_encoder_list[1].config.target_hidden_size != \
                    image_prompt_embeds.shape[2]:
                raise ValueError("Something went wrong. The embeddings do not match the text encoder sizes")
            # sdxl variants
            # image_prompt_embeds = 2048
            # te1 = 768
            # te2 = 1280
            te1_embeds = image_prompt_embeds[:, :, :self.text_encoder_list[0].config.target_hidden_size]
            te2_embeds = image_prompt_embeds[:, :, self.text_encoder_list[0].config.target_hidden_size:]
            self.set_vec(te1_embeds[0], text_encoder_idx=0)
            self.set_vec(te2_embeds[0], text_encoder_idx=1)
        else:

            raise ValueError("Unsupported number of text encoders")
        # just a place to put a breakpoint
        pass

    def restore_embeddings(self):
        # Let's make sure we don't update any embedding weights besides the newly added token
        for text_encoder, tokenizer, orig_embeds, placeholder_token_ids in zip(
                self.text_encoder_list,
                self.tokenizer_list,
                self.orig_embeds_params,
                self.placeholder_token_ids
        ):
            index_no_updates = torch.ones((len(tokenizer),), dtype=torch.bool)
            index_no_updates[
            min(placeholder_token_ids): max(placeholder_token_ids) + 1] = False
            with torch.no_grad():
                text_encoder.get_input_embeddings().weight[
                    index_no_updates
                ] = orig_embeds[index_no_updates]
                # detach it all
                text_encoder.get_input_embeddings().weight.detach_()

    def enable_gradient_checkpointing(self):
        self.image_encoder.gradient_checkpointing = True

    def inject_trigger_into_prompt(self, prompt, expand_token=False, to_replace_list=None, add_if_not_present=True):
        output_prompt = prompt
        embedding_tokens = self.embedding_tokens[0]  # shoudl be the same
        default_replacements = ["[name]", "[trigger]"]

        replace_with = embedding_tokens if expand_token else self.trigger
        if to_replace_list is None:
            to_replace_list = default_replacements
        else:
            to_replace_list += default_replacements

        # remove duplicates
        to_replace_list = list(set(to_replace_list))

        # replace them all
        for to_replace in to_replace_list:
            # replace it
            output_prompt = output_prompt.replace(to_replace, replace_with)

        # see how many times replace_with is in the prompt
        num_instances = output_prompt.count(replace_with)

        if num_instances == 0 and add_if_not_present:
            # add it to the beginning of the prompt
            output_prompt = replace_with + " " + output_prompt

        if num_instances > 1:
            print(
                f"Warning: {replace_with} token appears {num_instances} times in prompt {output_prompt}. This may cause issues.")

        return output_prompt

    # reverses injection with class name. useful for normalizations
    def inject_trigger_class_name_into_prompt(self, prompt):
        output_prompt = prompt
        embedding_tokens = self.embedding_tokens[0]  # shoudl be the same

        default_replacements = ["[name]", "[trigger]", embedding_tokens, self.trigger]

        replace_with = self.config.trigger_class_name
        to_replace_list = default_replacements

        # remove duplicates
        to_replace_list = list(set(to_replace_list))

        # replace them all
        for to_replace in to_replace_list:
            # replace it
            output_prompt = output_prompt.replace(to_replace, replace_with)

        # see how many times replace_with is in the prompt
        num_instances = output_prompt.count(replace_with)

        if num_instances > 1:
            print(
                f"Warning: {replace_with} token appears {num_instances} times in prompt {output_prompt}. This may cause issues.")

        return output_prompt