File size: 17,979 Bytes
1ba389d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 |
from typing import TYPE_CHECKING, Mapping, Any
import torch
import weakref
from toolkit.config_modules import AdapterConfig
from toolkit.models.clip_fusion import ZipperBlock
from toolkit.models.zipper_resampler import ZipperModule
from toolkit.prompt_utils import PromptEmbeds
from toolkit.train_tools import get_torch_dtype
if TYPE_CHECKING:
from toolkit.stable_diffusion_model import StableDiffusion
from transformers import (
CLIPImageProcessor,
CLIPVisionModelWithProjection,
CLIPVisionModel
)
from toolkit.resampler import Resampler
import torch.nn as nn
class Embedder(nn.Module):
def __init__(
self,
num_input_tokens: int = 1,
input_dim: int = 1024,
num_output_tokens: int = 8,
output_dim: int = 768,
mid_dim: int = 1024
):
super(Embedder, self).__init__()
self.num_output_tokens = num_output_tokens
self.num_input_tokens = num_input_tokens
self.input_dim = input_dim
self.output_dim = output_dim
self.layer_norm = nn.LayerNorm(input_dim)
self.fc1 = nn.Linear(input_dim, mid_dim)
self.gelu = nn.GELU()
# self.fc2 = nn.Linear(mid_dim, mid_dim)
self.fc2 = nn.Linear(mid_dim, mid_dim)
self.fc2.weight.data.zero_()
self.layer_norm2 = nn.LayerNorm(mid_dim)
self.fc3 = nn.Linear(mid_dim, mid_dim)
self.gelu2 = nn.GELU()
self.fc4 = nn.Linear(mid_dim, output_dim * num_output_tokens)
# set the weights to 0
self.fc3.weight.data.zero_()
self.fc4.weight.data.zero_()
# self.static_tokens = nn.Parameter(torch.zeros(num_output_tokens, output_dim))
# self.scaler = nn.Parameter(torch.zeros(num_output_tokens, output_dim))
def forward(self, x):
if len(x.shape) == 2:
x = x.unsqueeze(1)
x = self.layer_norm(x)
x = self.fc1(x)
x = self.gelu(x)
x = self.fc2(x)
x = self.layer_norm2(x)
x = self.fc3(x)
x = self.gelu2(x)
x = self.fc4(x)
x = x.view(-1, self.num_output_tokens, self.output_dim)
return x
class ClipVisionAdapter(torch.nn.Module):
def __init__(self, sd: 'StableDiffusion', adapter_config: AdapterConfig):
super().__init__()
self.config = adapter_config
self.trigger = adapter_config.trigger
self.trigger_class_name = adapter_config.trigger_class_name
self.sd_ref: weakref.ref = weakref.ref(sd)
# embedding stuff
self.text_encoder_list = sd.text_encoder if isinstance(sd.text_encoder, list) else [sd.text_encoder]
self.tokenizer_list = sd.tokenizer if isinstance(sd.tokenizer, list) else [sd.tokenizer]
placeholder_tokens = [self.trigger]
# add dummy tokens for multi-vector
additional_tokens = []
for i in range(1, self.config.num_tokens):
additional_tokens.append(f"{self.trigger}_{i}")
placeholder_tokens += additional_tokens
# handle dual tokenizer
self.tokenizer_list = self.sd_ref().tokenizer if isinstance(self.sd_ref().tokenizer, list) else [
self.sd_ref().tokenizer]
self.text_encoder_list = self.sd_ref().text_encoder if isinstance(self.sd_ref().text_encoder, list) else [
self.sd_ref().text_encoder]
self.placeholder_token_ids = []
self.embedding_tokens = []
print(f"Adding {placeholder_tokens} tokens to tokenizer")
print(f"Adding {self.config.num_tokens} tokens to tokenizer")
for text_encoder, tokenizer in zip(self.text_encoder_list, self.tokenizer_list):
num_added_tokens = tokenizer.add_tokens(placeholder_tokens)
if num_added_tokens != self.config.num_tokens:
raise ValueError(
f"The tokenizer already contains the token {self.trigger}. Please pass a different"
f" `placeholder_token` that is not already in the tokenizer. Only added {num_added_tokens}"
)
# Convert the initializer_token, placeholder_token to ids
init_token_ids = tokenizer.encode(self.config.trigger_class_name, add_special_tokens=False)
# if length of token ids is more than number of orm embedding tokens fill with *
if len(init_token_ids) > self.config.num_tokens:
init_token_ids = init_token_ids[:self.config.num_tokens]
elif len(init_token_ids) < self.config.num_tokens:
pad_token_id = tokenizer.encode(["*"], add_special_tokens=False)
init_token_ids += pad_token_id * (self.config.num_tokens - len(init_token_ids))
placeholder_token_ids = tokenizer.encode(placeholder_tokens, add_special_tokens=False)
self.placeholder_token_ids.append(placeholder_token_ids)
# Resize the token embeddings as we are adding new special tokens to the tokenizer
text_encoder.resize_token_embeddings(len(tokenizer))
# Initialise the newly added placeholder token with the embeddings of the initializer token
token_embeds = text_encoder.get_input_embeddings().weight.data
with torch.no_grad():
for initializer_token_id, token_id in zip(init_token_ids, placeholder_token_ids):
token_embeds[token_id] = token_embeds[initializer_token_id].clone()
# replace "[name] with this. on training. This is automatically generated in pipeline on inference
self.embedding_tokens.append(" ".join(tokenizer.convert_ids_to_tokens(placeholder_token_ids)))
# backup text encoder embeddings
self.orig_embeds_params = [x.get_input_embeddings().weight.data.clone() for x in self.text_encoder_list]
try:
self.clip_image_processor = CLIPImageProcessor.from_pretrained(self.config.image_encoder_path)
except EnvironmentError:
self.clip_image_processor = CLIPImageProcessor()
self.device = self.sd_ref().unet.device
self.image_encoder = CLIPVisionModelWithProjection.from_pretrained(
self.config.image_encoder_path,
ignore_mismatched_sizes=True
).to(self.device, dtype=get_torch_dtype(self.sd_ref().dtype))
if self.config.train_image_encoder:
self.image_encoder.train()
else:
self.image_encoder.eval()
# max_seq_len = CLIP tokens + CLS token
image_encoder_state_dict = self.image_encoder.state_dict()
in_tokens = 257
if "vision_model.embeddings.position_embedding.weight" in image_encoder_state_dict:
# clip
in_tokens = int(image_encoder_state_dict["vision_model.embeddings.position_embedding.weight"].shape[0])
if hasattr(self.image_encoder.config, 'hidden_sizes'):
embedding_dim = self.image_encoder.config.hidden_sizes[-1]
else:
embedding_dim = self.image_encoder.config.target_hidden_size
if self.config.clip_layer == 'image_embeds':
in_tokens = 1
embedding_dim = self.image_encoder.config.projection_dim
self.embedder = Embedder(
num_output_tokens=self.config.num_tokens,
num_input_tokens=in_tokens,
input_dim=embedding_dim,
output_dim=self.sd_ref().unet.config['cross_attention_dim'],
mid_dim=embedding_dim * self.config.num_tokens,
).to(self.device, dtype=get_torch_dtype(self.sd_ref().dtype))
self.embedder.train()
def state_dict(self, *args, destination=None, prefix='', keep_vars=False):
state_dict = {
'embedder': self.embedder.state_dict(*args, destination=destination, prefix=prefix, keep_vars=keep_vars)
}
if self.config.train_image_encoder:
state_dict['image_encoder'] = self.image_encoder.state_dict(
*args, destination=destination, prefix=prefix,
keep_vars=keep_vars)
return state_dict
def load_state_dict(self, state_dict: Mapping[str, Any], strict: bool = True):
self.embedder.load_state_dict(state_dict["embedder"], strict=strict)
if self.config.train_image_encoder and 'image_encoder' in state_dict:
self.image_encoder.load_state_dict(state_dict["image_encoder"], strict=strict)
def parameters(self, *args, **kwargs):
yield from self.embedder.parameters(*args, **kwargs)
def named_parameters(self, *args, **kwargs):
yield from self.embedder.named_parameters(*args, **kwargs)
def get_clip_image_embeds_from_tensors(
self, tensors_0_1: torch.Tensor, drop=False,
is_training=False,
has_been_preprocessed=False
) -> torch.Tensor:
with torch.no_grad():
if not has_been_preprocessed:
# tensors should be 0-1
if tensors_0_1.ndim == 3:
tensors_0_1 = tensors_0_1.unsqueeze(0)
# training tensors are 0 - 1
tensors_0_1 = tensors_0_1.to(self.device, dtype=torch.float16)
# if images are out of this range throw error
if tensors_0_1.min() < -0.3 or tensors_0_1.max() > 1.3:
raise ValueError("image tensor values must be between 0 and 1. Got min: {}, max: {}".format(
tensors_0_1.min(), tensors_0_1.max()
))
# unconditional
if drop:
if self.clip_noise_zero:
tensors_0_1 = torch.rand_like(tensors_0_1).detach()
noise_scale = torch.rand([tensors_0_1.shape[0], 1, 1, 1], device=self.device,
dtype=get_torch_dtype(self.sd_ref().dtype))
tensors_0_1 = tensors_0_1 * noise_scale
else:
tensors_0_1 = torch.zeros_like(tensors_0_1).detach()
# tensors_0_1 = tensors_0_1 * 0
clip_image = self.clip_image_processor(
images=tensors_0_1,
return_tensors="pt",
do_resize=True,
do_rescale=False,
).pixel_values
else:
if drop:
# scale the noise down
if self.clip_noise_zero:
tensors_0_1 = torch.rand_like(tensors_0_1).detach()
noise_scale = torch.rand([tensors_0_1.shape[0], 1, 1, 1], device=self.device,
dtype=get_torch_dtype(self.sd_ref().dtype))
tensors_0_1 = tensors_0_1 * noise_scale
else:
tensors_0_1 = torch.zeros_like(tensors_0_1).detach()
# tensors_0_1 = tensors_0_1 * 0
mean = torch.tensor(self.clip_image_processor.image_mean).to(
self.device, dtype=get_torch_dtype(self.sd_ref().dtype)
).detach()
std = torch.tensor(self.clip_image_processor.image_std).to(
self.device, dtype=get_torch_dtype(self.sd_ref().dtype)
).detach()
tensors_0_1 = torch.clip((255. * tensors_0_1), 0, 255).round() / 255.0
clip_image = (tensors_0_1 - mean.view([1, 3, 1, 1])) / std.view([1, 3, 1, 1])
else:
clip_image = tensors_0_1
clip_image = clip_image.to(self.device, dtype=get_torch_dtype(self.sd_ref().dtype)).detach()
with torch.set_grad_enabled(is_training):
if is_training:
self.image_encoder.train()
else:
self.image_encoder.eval()
clip_output = self.image_encoder(clip_image, output_hidden_states=True)
if self.config.clip_layer == 'penultimate_hidden_states':
# they skip last layer for ip+
# https://github.com/tencent-ailab/IP-Adapter/blob/f4b6742db35ea6d81c7b829a55b0a312c7f5a677/tutorial_train_plus.py#L403C26-L403C26
clip_image_embeds = clip_output.hidden_states[-2]
elif self.config.clip_layer == 'last_hidden_state':
clip_image_embeds = clip_output.hidden_states[-1]
else:
clip_image_embeds = clip_output.image_embeds
return clip_image_embeds
import torch
def set_vec(self, new_vector, text_encoder_idx=0):
# Get the embedding layer
embedding_layer = self.text_encoder_list[text_encoder_idx].get_input_embeddings()
# Indices to replace in the embeddings
indices_to_replace = self.placeholder_token_ids[text_encoder_idx]
# Replace the specified embeddings with new_vector
for idx in indices_to_replace:
vector_idx = idx - indices_to_replace[0]
embedding_layer.weight[idx] = new_vector[vector_idx]
# adds it to the tokenizer
def forward(self, clip_image_embeds: torch.Tensor) -> PromptEmbeds:
clip_image_embeds = clip_image_embeds.to(self.device, dtype=get_torch_dtype(self.sd_ref().dtype))
if clip_image_embeds.ndim == 2:
# expand the token dimension
clip_image_embeds = clip_image_embeds.unsqueeze(1)
image_prompt_embeds = self.embedder(clip_image_embeds)
# todo add support for multiple batch sizes
if image_prompt_embeds.shape[0] != 1:
raise ValueError("Batch size must be 1 for embedder for now")
# output on sd1.5 is bs, num_tokens, 768
if len(self.text_encoder_list) == 1:
# add it to the text encoder
self.set_vec(image_prompt_embeds[0], text_encoder_idx=0)
elif len(self.text_encoder_list) == 2:
if self.text_encoder_list[0].config.target_hidden_size + self.text_encoder_list[1].config.target_hidden_size != \
image_prompt_embeds.shape[2]:
raise ValueError("Something went wrong. The embeddings do not match the text encoder sizes")
# sdxl variants
# image_prompt_embeds = 2048
# te1 = 768
# te2 = 1280
te1_embeds = image_prompt_embeds[:, :, :self.text_encoder_list[0].config.target_hidden_size]
te2_embeds = image_prompt_embeds[:, :, self.text_encoder_list[0].config.target_hidden_size:]
self.set_vec(te1_embeds[0], text_encoder_idx=0)
self.set_vec(te2_embeds[0], text_encoder_idx=1)
else:
raise ValueError("Unsupported number of text encoders")
# just a place to put a breakpoint
pass
def restore_embeddings(self):
# Let's make sure we don't update any embedding weights besides the newly added token
for text_encoder, tokenizer, orig_embeds, placeholder_token_ids in zip(
self.text_encoder_list,
self.tokenizer_list,
self.orig_embeds_params,
self.placeholder_token_ids
):
index_no_updates = torch.ones((len(tokenizer),), dtype=torch.bool)
index_no_updates[
min(placeholder_token_ids): max(placeholder_token_ids) + 1] = False
with torch.no_grad():
text_encoder.get_input_embeddings().weight[
index_no_updates
] = orig_embeds[index_no_updates]
# detach it all
text_encoder.get_input_embeddings().weight.detach_()
def enable_gradient_checkpointing(self):
self.image_encoder.gradient_checkpointing = True
def inject_trigger_into_prompt(self, prompt, expand_token=False, to_replace_list=None, add_if_not_present=True):
output_prompt = prompt
embedding_tokens = self.embedding_tokens[0] # shoudl be the same
default_replacements = ["[name]", "[trigger]"]
replace_with = embedding_tokens if expand_token else self.trigger
if to_replace_list is None:
to_replace_list = default_replacements
else:
to_replace_list += default_replacements
# remove duplicates
to_replace_list = list(set(to_replace_list))
# replace them all
for to_replace in to_replace_list:
# replace it
output_prompt = output_prompt.replace(to_replace, replace_with)
# see how many times replace_with is in the prompt
num_instances = output_prompt.count(replace_with)
if num_instances == 0 and add_if_not_present:
# add it to the beginning of the prompt
output_prompt = replace_with + " " + output_prompt
if num_instances > 1:
print(
f"Warning: {replace_with} token appears {num_instances} times in prompt {output_prompt}. This may cause issues.")
return output_prompt
# reverses injection with class name. useful for normalizations
def inject_trigger_class_name_into_prompt(self, prompt):
output_prompt = prompt
embedding_tokens = self.embedding_tokens[0] # shoudl be the same
default_replacements = ["[name]", "[trigger]", embedding_tokens, self.trigger]
replace_with = self.config.trigger_class_name
to_replace_list = default_replacements
# remove duplicates
to_replace_list = list(set(to_replace_list))
# replace them all
for to_replace in to_replace_list:
# replace it
output_prompt = output_prompt.replace(to_replace, replace_with)
# see how many times replace_with is in the prompt
num_instances = output_prompt.count(replace_with)
if num_instances > 1:
print(
f"Warning: {replace_with} token appears {num_instances} times in prompt {output_prompt}. This may cause issues.")
return output_prompt
|