|
import argparse |
|
import gc |
|
import os |
|
import re |
|
import os |
|
|
|
import sys |
|
|
|
from diffusers import DiffusionPipeline, StableDiffusionXLPipeline |
|
|
|
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) |
|
|
|
import torch |
|
from diffusers.loaders import LoraLoaderMixin |
|
from safetensors.torch import load_file, save_file |
|
from collections import OrderedDict |
|
import json |
|
from tqdm import tqdm |
|
|
|
from toolkit.config_modules import ModelConfig |
|
from toolkit.stable_diffusion_model import StableDiffusion |
|
|
|
KEYMAPS_FOLDER = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), 'toolkit', 'keymaps') |
|
|
|
device = torch.device('cpu') |
|
dtype = torch.float32 |
|
|
|
|
|
def flush(): |
|
torch.cuda.empty_cache() |
|
gc.collect() |
|
|
|
|
|
def get_reduced_shape(shape_tuple): |
|
|
|
new_shape = [] |
|
for dim in shape_tuple: |
|
if dim != 1: |
|
new_shape.append(dim) |
|
return tuple(new_shape) |
|
|
|
|
|
parser = argparse.ArgumentParser() |
|
|
|
|
|
parser.add_argument( |
|
'file_1', |
|
nargs='+', |
|
type=str, |
|
help='Path to first safe tensor file' |
|
) |
|
|
|
parser.add_argument('--name', type=str, default='stable_diffusion', help='name for mapping to make') |
|
parser.add_argument('--sdxl', action='store_true', help='is sdxl model') |
|
parser.add_argument('--refiner', action='store_true', help='is refiner model') |
|
parser.add_argument('--ssd', action='store_true', help='is ssd model') |
|
parser.add_argument('--vega', action='store_true', help='is vega model') |
|
parser.add_argument('--sd2', action='store_true', help='is sd 2 model') |
|
|
|
args = parser.parse_args() |
|
|
|
file_path = args.file_1[0] |
|
|
|
find_matches = False |
|
|
|
print(f'Loading diffusers model') |
|
|
|
ignore_ldm_begins_with = [] |
|
|
|
diffusers_file_path = file_path if len(args.file_1) == 1 else args.file_1[1] |
|
if args.ssd: |
|
diffusers_file_path = "segmind/SSD-1B" |
|
if args.vega: |
|
diffusers_file_path = "segmind/Segmind-Vega" |
|
|
|
|
|
|
|
|
|
if not args.refiner: |
|
|
|
diffusers_model_config = ModelConfig( |
|
name_or_path=diffusers_file_path, |
|
is_xl=args.sdxl, |
|
is_v2=args.sd2, |
|
is_ssd=args.ssd, |
|
is_vega=args.vega, |
|
dtype=dtype, |
|
) |
|
diffusers_sd = StableDiffusion( |
|
model_config=diffusers_model_config, |
|
device=device, |
|
dtype=dtype, |
|
) |
|
diffusers_sd.load_model() |
|
|
|
del diffusers_sd.tokenizer |
|
flush() |
|
|
|
print(f'Loading ldm model') |
|
diffusers_state_dict = diffusers_sd.state_dict() |
|
else: |
|
|
|
|
|
diffusers_pipeline = StableDiffusionXLPipeline.from_single_file( |
|
diffusers_file_path, |
|
torch_dtype=torch.float16, |
|
use_safetensors=True, |
|
variant="fp16", |
|
).to(device) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
SD_PREFIX_VAE = "vae" |
|
SD_PREFIX_UNET = "unet" |
|
SD_PREFIX_REFINER_UNET = "refiner_unet" |
|
SD_PREFIX_TEXT_ENCODER = "te" |
|
|
|
SD_PREFIX_TEXT_ENCODER1 = "te0" |
|
SD_PREFIX_TEXT_ENCODER2 = "te1" |
|
|
|
diffusers_state_dict = OrderedDict() |
|
for k, v in diffusers_pipeline.vae.state_dict().items(): |
|
new_key = k if k.startswith(f"{SD_PREFIX_VAE}") else f"{SD_PREFIX_VAE}_{k}" |
|
diffusers_state_dict[new_key] = v |
|
for k, v in diffusers_pipeline.text_encoder_2.state_dict().items(): |
|
new_key = k if k.startswith(f"{SD_PREFIX_TEXT_ENCODER2}_") else f"{SD_PREFIX_TEXT_ENCODER2}_{k}" |
|
diffusers_state_dict[new_key] = v |
|
for k, v in diffusers_pipeline.unet.state_dict().items(): |
|
new_key = k if k.startswith(f"{SD_PREFIX_UNET}_") else f"{SD_PREFIX_UNET}_{k}" |
|
diffusers_state_dict[new_key] = v |
|
|
|
|
|
|
|
|
|
diffusers_dict_keys = list(diffusers_state_dict.keys()) |
|
|
|
ldm_state_dict = load_file(file_path) |
|
ldm_dict_keys = list(ldm_state_dict.keys()) |
|
|
|
ldm_diffusers_keymap = OrderedDict() |
|
ldm_diffusers_shape_map = OrderedDict() |
|
ldm_operator_map = OrderedDict() |
|
diffusers_operator_map = OrderedDict() |
|
|
|
total_keys = len(ldm_dict_keys) |
|
|
|
matched_ldm_keys = [] |
|
matched_diffusers_keys = [] |
|
|
|
error_margin = 1e-8 |
|
|
|
tmp_merge_key = "TMP___MERGE" |
|
|
|
te_suffix = '' |
|
proj_pattern_weight = None |
|
proj_pattern_bias = None |
|
text_proj_layer = None |
|
if args.sdxl or args.ssd or args.vega: |
|
te_suffix = '1' |
|
ldm_res_block_prefix = "conditioner.embedders.1.model.transformer.resblocks" |
|
proj_pattern_weight = r"conditioner\.embedders\.1\.model\.transformer\.resblocks\.(\d+)\.attn\.in_proj_weight" |
|
proj_pattern_bias = r"conditioner\.embedders\.1\.model\.transformer\.resblocks\.(\d+)\.attn\.in_proj_bias" |
|
text_proj_layer = "conditioner.embedders.1.model.text_projection" |
|
if args.refiner: |
|
te_suffix = '1' |
|
ldm_res_block_prefix = "conditioner.embedders.0.model.transformer.resblocks" |
|
proj_pattern_weight = r"conditioner\.embedders\.0\.model\.transformer\.resblocks\.(\d+)\.attn\.in_proj_weight" |
|
proj_pattern_bias = r"conditioner\.embedders\.0\.model\.transformer\.resblocks\.(\d+)\.attn\.in_proj_bias" |
|
text_proj_layer = "conditioner.embedders.0.model.text_projection" |
|
if args.sd2: |
|
te_suffix = '' |
|
ldm_res_block_prefix = "cond_stage_model.model.transformer.resblocks" |
|
proj_pattern_weight = r"cond_stage_model\.model\.transformer\.resblocks\.(\d+)\.attn\.in_proj_weight" |
|
proj_pattern_bias = r"cond_stage_model\.model\.transformer\.resblocks\.(\d+)\.attn\.in_proj_bias" |
|
text_proj_layer = "cond_stage_model.model.text_projection" |
|
|
|
if args.sdxl or args.sd2 or args.ssd or args.refiner or args.vega: |
|
if "conditioner.embedders.1.model.text_projection" in ldm_dict_keys: |
|
|
|
d_model = int(ldm_state_dict["conditioner.embedders.1.model.text_projection"].shape[0]) |
|
elif "conditioner.embedders.1.model.text_projection.weight" in ldm_dict_keys: |
|
|
|
d_model = int(ldm_state_dict["conditioner.embedders.1.model.text_projection.weight"].shape[0]) |
|
elif "conditioner.embedders.0.model.text_projection" in ldm_dict_keys: |
|
|
|
d_model = int(ldm_state_dict["conditioner.embedders.0.model.text_projection"].shape[0]) |
|
else: |
|
d_model = 1024 |
|
|
|
|
|
for ldm_key in ldm_dict_keys: |
|
try: |
|
match = re.match(proj_pattern_weight, ldm_key) |
|
if match: |
|
if ldm_key == "conditioner.embedders.1.model.transformer.resblocks.0.attn.in_proj_weight": |
|
print("here") |
|
number = int(match.group(1)) |
|
new_val = torch.cat([ |
|
diffusers_state_dict[f"te{te_suffix}_text_model.encoder.layers.{number}.self_attn.q_proj.weight"], |
|
diffusers_state_dict[f"te{te_suffix}_text_model.encoder.layers.{number}.self_attn.k_proj.weight"], |
|
diffusers_state_dict[f"te{te_suffix}_text_model.encoder.layers.{number}.self_attn.v_proj.weight"], |
|
], dim=0) |
|
|
|
matched_diffusers_keys.append( |
|
f"te{te_suffix}_text_model.encoder.layers.{number}.self_attn.q_proj.weight") |
|
matched_diffusers_keys.append( |
|
f"te{te_suffix}_text_model.encoder.layers.{number}.self_attn.k_proj.weight") |
|
matched_diffusers_keys.append( |
|
f"te{te_suffix}_text_model.encoder.layers.{number}.self_attn.v_proj.weight") |
|
|
|
diffusers_state_dict[ |
|
f"te{te_suffix}_text_model.encoder.layers.{number}.self_attn.{tmp_merge_key}.weight"] = new_val |
|
|
|
|
|
ldm_operator_map[ldm_key] = { |
|
"cat": [ |
|
f"te{te_suffix}_text_model.encoder.layers.{number}.self_attn.q_proj.weight", |
|
f"te{te_suffix}_text_model.encoder.layers.{number}.self_attn.k_proj.weight", |
|
f"te{te_suffix}_text_model.encoder.layers.{number}.self_attn.v_proj.weight", |
|
], |
|
} |
|
|
|
matched_ldm_keys.append(ldm_key) |
|
|
|
|
|
|
|
|
|
|
|
|
|
diffusers_operator_map[f"te{te_suffix}_text_model.encoder.layers.{number}.self_attn.q_proj.weight"] = { |
|
"slice": [ |
|
f"{ldm_res_block_prefix}.{number}.attn.in_proj_weight", |
|
f"0:{d_model}, :" |
|
] |
|
} |
|
diffusers_operator_map[f"te{te_suffix}_text_model.encoder.layers.{number}.self_attn.k_proj.weight"] = { |
|
"slice": [ |
|
f"{ldm_res_block_prefix}.{number}.attn.in_proj_weight", |
|
f"{d_model}:{d_model * 2}, :" |
|
] |
|
} |
|
diffusers_operator_map[f"te{te_suffix}_text_model.encoder.layers.{number}.self_attn.v_proj.weight"] = { |
|
"slice": [ |
|
f"{ldm_res_block_prefix}.{number}.attn.in_proj_weight", |
|
f"{d_model * 2}:, :" |
|
] |
|
} |
|
|
|
match = re.match(proj_pattern_bias, ldm_key) |
|
if match: |
|
number = int(match.group(1)) |
|
new_val = torch.cat([ |
|
diffusers_state_dict[f"te{te_suffix}_text_model.encoder.layers.{number}.self_attn.q_proj.bias"], |
|
diffusers_state_dict[f"te{te_suffix}_text_model.encoder.layers.{number}.self_attn.k_proj.bias"], |
|
diffusers_state_dict[f"te{te_suffix}_text_model.encoder.layers.{number}.self_attn.v_proj.bias"], |
|
], dim=0) |
|
|
|
matched_diffusers_keys.append(f"te{te_suffix}_text_model.encoder.layers.{number}.self_attn.q_proj.bias") |
|
matched_diffusers_keys.append(f"te{te_suffix}_text_model.encoder.layers.{number}.self_attn.k_proj.bias") |
|
matched_diffusers_keys.append(f"te{te_suffix}_text_model.encoder.layers.{number}.self_attn.v_proj.bias") |
|
|
|
diffusers_state_dict[ |
|
f"te{te_suffix}_text_model.encoder.layers.{number}.self_attn.{tmp_merge_key}.bias"] = new_val |
|
|
|
|
|
ldm_operator_map[ldm_key] = { |
|
"cat": [ |
|
f"te{te_suffix}_text_model.encoder.layers.{number}.self_attn.q_proj.bias", |
|
f"te{te_suffix}_text_model.encoder.layers.{number}.self_attn.k_proj.bias", |
|
f"te{te_suffix}_text_model.encoder.layers.{number}.self_attn.v_proj.bias", |
|
], |
|
} |
|
|
|
matched_ldm_keys.append(ldm_key) |
|
|
|
|
|
diffusers_operator_map[f"te{te_suffix}_text_model.encoder.layers.{number}.self_attn.q_proj.bias"] = { |
|
"slice": [ |
|
f"{ldm_res_block_prefix}.{number}.attn.in_proj_bias", |
|
f"0:{d_model}, :" |
|
] |
|
} |
|
diffusers_operator_map[f"te{te_suffix}_text_model.encoder.layers.{number}.self_attn.k_proj.bias"] = { |
|
"slice": [ |
|
f"{ldm_res_block_prefix}.{number}.attn.in_proj_bias", |
|
f"{d_model}:{d_model * 2}, :" |
|
] |
|
} |
|
diffusers_operator_map[f"te{te_suffix}_text_model.encoder.layers.{number}.self_attn.v_proj.bias"] = { |
|
"slice": [ |
|
f"{ldm_res_block_prefix}.{number}.attn.in_proj_bias", |
|
f"{d_model * 2}:, :" |
|
] |
|
} |
|
except Exception as e: |
|
print(f"Error on key {ldm_key}") |
|
print(e) |
|
|
|
|
|
diffusers_dict_keys = list(diffusers_state_dict.keys()) |
|
|
|
pbar = tqdm(ldm_dict_keys, desc='Matching ldm-diffusers keys', total=total_keys) |
|
|
|
for ldm_key in ldm_dict_keys: |
|
ldm_shape_tuple = ldm_state_dict[ldm_key].shape |
|
ldm_reduced_shape_tuple = get_reduced_shape(ldm_shape_tuple) |
|
for diffusers_key in diffusers_dict_keys: |
|
if ldm_key == "conditioner.embedders.1.model.transformer.resblocks.0.attn.in_proj_weight" and diffusers_key == "te1_text_model.encoder.layers.0.self_attn.q_proj.weight": |
|
print("here") |
|
|
|
diffusers_shape_tuple = diffusers_state_dict[diffusers_key].shape |
|
diffusers_reduced_shape_tuple = get_reduced_shape(diffusers_shape_tuple) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if diffusers_key in matched_diffusers_keys: |
|
continue |
|
|
|
|
|
if ldm_reduced_shape_tuple != diffusers_reduced_shape_tuple: |
|
continue |
|
|
|
ldm_weight = ldm_state_dict[ldm_key] |
|
did_reduce_ldm = False |
|
diffusers_weight = diffusers_state_dict[diffusers_key] |
|
did_reduce_diffusers = False |
|
|
|
|
|
if ldm_shape_tuple != ldm_reduced_shape_tuple: |
|
ldm_weight = ldm_weight.view(ldm_reduced_shape_tuple) |
|
did_reduce_ldm = True |
|
|
|
if diffusers_shape_tuple != diffusers_reduced_shape_tuple: |
|
diffusers_weight = diffusers_weight.view(diffusers_reduced_shape_tuple) |
|
did_reduce_diffusers = True |
|
|
|
|
|
mse = torch.nn.functional.mse_loss(ldm_weight.float(), diffusers_weight.float()) |
|
if mse < error_margin: |
|
ldm_diffusers_keymap[ldm_key] = diffusers_key |
|
matched_ldm_keys.append(ldm_key) |
|
matched_diffusers_keys.append(diffusers_key) |
|
|
|
if did_reduce_ldm or did_reduce_diffusers: |
|
ldm_diffusers_shape_map[ldm_key] = (ldm_shape_tuple, diffusers_shape_tuple) |
|
if did_reduce_ldm: |
|
del ldm_weight |
|
if did_reduce_diffusers: |
|
del diffusers_weight |
|
flush() |
|
|
|
break |
|
|
|
pbar.update(1) |
|
|
|
pbar.close() |
|
|
|
name = args.name |
|
if args.sdxl: |
|
name += '_sdxl' |
|
elif args.ssd: |
|
name += '_ssd' |
|
elif args.vega: |
|
name += '_vega' |
|
elif args.refiner: |
|
name += '_refiner' |
|
elif args.sd2: |
|
name += '_sd2' |
|
else: |
|
name += '_sd1' |
|
|
|
|
|
unmatched_ldm_keys = [x for x in ldm_dict_keys if x not in matched_ldm_keys] |
|
unmatched_diffusers_keys = [x for x in diffusers_dict_keys if x not in matched_diffusers_keys] |
|
|
|
|
|
has_unmatched_keys = len(unmatched_ldm_keys) > 0 or len(unmatched_diffusers_keys) > 0 |
|
|
|
|
|
def get_slices_from_string(s: str) -> tuple: |
|
slice_strings = s.split(',') |
|
slices = [eval(f"slice({component.strip()})") for component in slice_strings] |
|
return tuple(slices) |
|
|
|
|
|
if has_unmatched_keys: |
|
|
|
print( |
|
f"Found {len(unmatched_ldm_keys)} unmatched ldm keys and {len(unmatched_diffusers_keys)} unmatched diffusers keys") |
|
|
|
unmatched_obj = OrderedDict() |
|
unmatched_obj['ldm'] = OrderedDict() |
|
unmatched_obj['diffusers'] = OrderedDict() |
|
|
|
print(f"Gathering info on unmatched keys") |
|
|
|
for key in tqdm(unmatched_ldm_keys, desc='Unmatched LDM keys'): |
|
|
|
weight = ldm_state_dict[key] |
|
weight_min = weight.min().item() |
|
weight_max = weight.max().item() |
|
unmatched_obj['ldm'][key] = { |
|
'shape': weight.shape, |
|
"min": weight_min, |
|
"max": weight_max, |
|
} |
|
del weight |
|
flush() |
|
|
|
for key in tqdm(unmatched_diffusers_keys, desc='Unmatched Diffusers keys'): |
|
|
|
weight = diffusers_state_dict[key] |
|
weight_min = weight.min().item() |
|
weight_max = weight.max().item() |
|
unmatched_obj['diffusers'][key] = { |
|
"shape": weight.shape, |
|
"min": weight_min, |
|
"max": weight_max, |
|
} |
|
del weight |
|
flush() |
|
|
|
unmatched_path = os.path.join(KEYMAPS_FOLDER, f'{name}_unmatched.json') |
|
with open(unmatched_path, 'w') as f: |
|
f.write(json.dumps(unmatched_obj, indent=4)) |
|
|
|
print(f'Saved unmatched keys to {unmatched_path}') |
|
|
|
|
|
remaining_ldm_values = OrderedDict() |
|
for key in unmatched_ldm_keys: |
|
remaining_ldm_values[key] = ldm_state_dict[key].detach().to('cpu', torch.float16) |
|
|
|
save_file(remaining_ldm_values, os.path.join(KEYMAPS_FOLDER, f'{name}_ldm_base.safetensors')) |
|
print(f'Saved remaining ldm values to {os.path.join(KEYMAPS_FOLDER, f"{name}_ldm_base.safetensors")}') |
|
|
|
|
|
to_remove = [] |
|
for ldm_key, diffusers_key in ldm_diffusers_keymap.items(): |
|
|
|
if tmp_merge_key in diffusers_key or tmp_merge_key in ldm_key: |
|
to_remove.append(ldm_key) |
|
|
|
for key in to_remove: |
|
del ldm_diffusers_keymap[key] |
|
|
|
to_remove = [] |
|
|
|
for ldm_key, shape_list in ldm_diffusers_shape_map.items(): |
|
|
|
|
|
ldm_shape = json.dumps(shape_list[0]) |
|
diffusers_shape = json.dumps(shape_list[1]) |
|
if ldm_shape == diffusers_shape: |
|
to_remove.append(ldm_key) |
|
|
|
for key in to_remove: |
|
del ldm_diffusers_shape_map[key] |
|
|
|
dest_path = os.path.join(KEYMAPS_FOLDER, f'{name}.json') |
|
save_obj = OrderedDict() |
|
save_obj["ldm_diffusers_keymap"] = ldm_diffusers_keymap |
|
save_obj["ldm_diffusers_shape_map"] = ldm_diffusers_shape_map |
|
save_obj["ldm_diffusers_operator_map"] = ldm_operator_map |
|
save_obj["diffusers_ldm_operator_map"] = diffusers_operator_map |
|
with open(dest_path, 'w') as f: |
|
f.write(json.dumps(save_obj, indent=4)) |
|
|
|
print(f'Saved keymap to {dest_path}') |
|
|