alatlatihlora / testing /generate_weight_mappings.py
crystantine's picture
Upload 190 files
1ba389d verified
import argparse
import gc
import os
import re
import os
# add project root to sys path
import sys
from diffusers import DiffusionPipeline, StableDiffusionXLPipeline
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
import torch
from diffusers.loaders import LoraLoaderMixin
from safetensors.torch import load_file, save_file
from collections import OrderedDict
import json
from tqdm import tqdm
from toolkit.config_modules import ModelConfig
from toolkit.stable_diffusion_model import StableDiffusion
KEYMAPS_FOLDER = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), 'toolkit', 'keymaps')
device = torch.device('cpu')
dtype = torch.float32
def flush():
torch.cuda.empty_cache()
gc.collect()
def get_reduced_shape(shape_tuple):
# iterate though shape anr remove 1s
new_shape = []
for dim in shape_tuple:
if dim != 1:
new_shape.append(dim)
return tuple(new_shape)
parser = argparse.ArgumentParser()
# require at lease one config file
parser.add_argument(
'file_1',
nargs='+',
type=str,
help='Path to first safe tensor file'
)
parser.add_argument('--name', type=str, default='stable_diffusion', help='name for mapping to make')
parser.add_argument('--sdxl', action='store_true', help='is sdxl model')
parser.add_argument('--refiner', action='store_true', help='is refiner model')
parser.add_argument('--ssd', action='store_true', help='is ssd model')
parser.add_argument('--vega', action='store_true', help='is vega model')
parser.add_argument('--sd2', action='store_true', help='is sd 2 model')
args = parser.parse_args()
file_path = args.file_1[0]
find_matches = False
print(f'Loading diffusers model')
ignore_ldm_begins_with = []
diffusers_file_path = file_path if len(args.file_1) == 1 else args.file_1[1]
if args.ssd:
diffusers_file_path = "segmind/SSD-1B"
if args.vega:
diffusers_file_path = "segmind/Segmind-Vega"
# if args.refiner:
# diffusers_file_path = "stabilityai/stable-diffusion-xl-refiner-1.0"
if not args.refiner:
diffusers_model_config = ModelConfig(
name_or_path=diffusers_file_path,
is_xl=args.sdxl,
is_v2=args.sd2,
is_ssd=args.ssd,
is_vega=args.vega,
dtype=dtype,
)
diffusers_sd = StableDiffusion(
model_config=diffusers_model_config,
device=device,
dtype=dtype,
)
diffusers_sd.load_model()
# delete things we dont need
del diffusers_sd.tokenizer
flush()
print(f'Loading ldm model')
diffusers_state_dict = diffusers_sd.state_dict()
else:
# refiner wont work directly with stable diffusion
# so we need to load the model and then load the state dict
diffusers_pipeline = StableDiffusionXLPipeline.from_single_file(
diffusers_file_path,
torch_dtype=torch.float16,
use_safetensors=True,
variant="fp16",
).to(device)
# diffusers_pipeline = StableDiffusionXLPipeline.from_single_file(
# file_path,
# torch_dtype=torch.float16,
# use_safetensors=True,
# variant="fp16",
# ).to(device)
SD_PREFIX_VAE = "vae"
SD_PREFIX_UNET = "unet"
SD_PREFIX_REFINER_UNET = "refiner_unet"
SD_PREFIX_TEXT_ENCODER = "te"
SD_PREFIX_TEXT_ENCODER1 = "te0"
SD_PREFIX_TEXT_ENCODER2 = "te1"
diffusers_state_dict = OrderedDict()
for k, v in diffusers_pipeline.vae.state_dict().items():
new_key = k if k.startswith(f"{SD_PREFIX_VAE}") else f"{SD_PREFIX_VAE}_{k}"
diffusers_state_dict[new_key] = v
for k, v in diffusers_pipeline.text_encoder_2.state_dict().items():
new_key = k if k.startswith(f"{SD_PREFIX_TEXT_ENCODER2}_") else f"{SD_PREFIX_TEXT_ENCODER2}_{k}"
diffusers_state_dict[new_key] = v
for k, v in diffusers_pipeline.unet.state_dict().items():
new_key = k if k.startswith(f"{SD_PREFIX_UNET}_") else f"{SD_PREFIX_UNET}_{k}"
diffusers_state_dict[new_key] = v
# add ignore ones as we are only going to focus on unet and copy the rest
# ignore_ldm_begins_with = ["conditioner.", "first_stage_model."]
diffusers_dict_keys = list(diffusers_state_dict.keys())
ldm_state_dict = load_file(file_path)
ldm_dict_keys = list(ldm_state_dict.keys())
ldm_diffusers_keymap = OrderedDict()
ldm_diffusers_shape_map = OrderedDict()
ldm_operator_map = OrderedDict()
diffusers_operator_map = OrderedDict()
total_keys = len(ldm_dict_keys)
matched_ldm_keys = []
matched_diffusers_keys = []
error_margin = 1e-8
tmp_merge_key = "TMP___MERGE"
te_suffix = ''
proj_pattern_weight = None
proj_pattern_bias = None
text_proj_layer = None
if args.sdxl or args.ssd or args.vega:
te_suffix = '1'
ldm_res_block_prefix = "conditioner.embedders.1.model.transformer.resblocks"
proj_pattern_weight = r"conditioner\.embedders\.1\.model\.transformer\.resblocks\.(\d+)\.attn\.in_proj_weight"
proj_pattern_bias = r"conditioner\.embedders\.1\.model\.transformer\.resblocks\.(\d+)\.attn\.in_proj_bias"
text_proj_layer = "conditioner.embedders.1.model.text_projection"
if args.refiner:
te_suffix = '1'
ldm_res_block_prefix = "conditioner.embedders.0.model.transformer.resblocks"
proj_pattern_weight = r"conditioner\.embedders\.0\.model\.transformer\.resblocks\.(\d+)\.attn\.in_proj_weight"
proj_pattern_bias = r"conditioner\.embedders\.0\.model\.transformer\.resblocks\.(\d+)\.attn\.in_proj_bias"
text_proj_layer = "conditioner.embedders.0.model.text_projection"
if args.sd2:
te_suffix = ''
ldm_res_block_prefix = "cond_stage_model.model.transformer.resblocks"
proj_pattern_weight = r"cond_stage_model\.model\.transformer\.resblocks\.(\d+)\.attn\.in_proj_weight"
proj_pattern_bias = r"cond_stage_model\.model\.transformer\.resblocks\.(\d+)\.attn\.in_proj_bias"
text_proj_layer = "cond_stage_model.model.text_projection"
if args.sdxl or args.sd2 or args.ssd or args.refiner or args.vega:
if "conditioner.embedders.1.model.text_projection" in ldm_dict_keys:
# d_model = int(checkpoint[prefix + "text_projection"].shape[0]))
d_model = int(ldm_state_dict["conditioner.embedders.1.model.text_projection"].shape[0])
elif "conditioner.embedders.1.model.text_projection.weight" in ldm_dict_keys:
# d_model = int(checkpoint[prefix + "text_projection"].shape[0]))
d_model = int(ldm_state_dict["conditioner.embedders.1.model.text_projection.weight"].shape[0])
elif "conditioner.embedders.0.model.text_projection" in ldm_dict_keys:
# d_model = int(checkpoint[prefix + "text_projection"].shape[0]))
d_model = int(ldm_state_dict["conditioner.embedders.0.model.text_projection"].shape[0])
else:
d_model = 1024
# do pre known merging
for ldm_key in ldm_dict_keys:
try:
match = re.match(proj_pattern_weight, ldm_key)
if match:
if ldm_key == "conditioner.embedders.1.model.transformer.resblocks.0.attn.in_proj_weight":
print("here")
number = int(match.group(1))
new_val = torch.cat([
diffusers_state_dict[f"te{te_suffix}_text_model.encoder.layers.{number}.self_attn.q_proj.weight"],
diffusers_state_dict[f"te{te_suffix}_text_model.encoder.layers.{number}.self_attn.k_proj.weight"],
diffusers_state_dict[f"te{te_suffix}_text_model.encoder.layers.{number}.self_attn.v_proj.weight"],
], dim=0)
# add to matched so we dont check them
matched_diffusers_keys.append(
f"te{te_suffix}_text_model.encoder.layers.{number}.self_attn.q_proj.weight")
matched_diffusers_keys.append(
f"te{te_suffix}_text_model.encoder.layers.{number}.self_attn.k_proj.weight")
matched_diffusers_keys.append(
f"te{te_suffix}_text_model.encoder.layers.{number}.self_attn.v_proj.weight")
# make diffusers convertable_dict
diffusers_state_dict[
f"te{te_suffix}_text_model.encoder.layers.{number}.self_attn.{tmp_merge_key}.weight"] = new_val
# add operator
ldm_operator_map[ldm_key] = {
"cat": [
f"te{te_suffix}_text_model.encoder.layers.{number}.self_attn.q_proj.weight",
f"te{te_suffix}_text_model.encoder.layers.{number}.self_attn.k_proj.weight",
f"te{te_suffix}_text_model.encoder.layers.{number}.self_attn.v_proj.weight",
],
}
matched_ldm_keys.append(ldm_key)
# text_model_dict[new_key + ".q_proj.weight"] = checkpoint[key][:d_model, :]
# text_model_dict[new_key + ".k_proj.weight"] = checkpoint[key][d_model: d_model * 2, :]
# text_model_dict[new_key + ".v_proj.weight"] = checkpoint[key][d_model * 2:, :]
# add diffusers operators
diffusers_operator_map[f"te{te_suffix}_text_model.encoder.layers.{number}.self_attn.q_proj.weight"] = {
"slice": [
f"{ldm_res_block_prefix}.{number}.attn.in_proj_weight",
f"0:{d_model}, :"
]
}
diffusers_operator_map[f"te{te_suffix}_text_model.encoder.layers.{number}.self_attn.k_proj.weight"] = {
"slice": [
f"{ldm_res_block_prefix}.{number}.attn.in_proj_weight",
f"{d_model}:{d_model * 2}, :"
]
}
diffusers_operator_map[f"te{te_suffix}_text_model.encoder.layers.{number}.self_attn.v_proj.weight"] = {
"slice": [
f"{ldm_res_block_prefix}.{number}.attn.in_proj_weight",
f"{d_model * 2}:, :"
]
}
match = re.match(proj_pattern_bias, ldm_key)
if match:
number = int(match.group(1))
new_val = torch.cat([
diffusers_state_dict[f"te{te_suffix}_text_model.encoder.layers.{number}.self_attn.q_proj.bias"],
diffusers_state_dict[f"te{te_suffix}_text_model.encoder.layers.{number}.self_attn.k_proj.bias"],
diffusers_state_dict[f"te{te_suffix}_text_model.encoder.layers.{number}.self_attn.v_proj.bias"],
], dim=0)
# add to matched so we dont check them
matched_diffusers_keys.append(f"te{te_suffix}_text_model.encoder.layers.{number}.self_attn.q_proj.bias")
matched_diffusers_keys.append(f"te{te_suffix}_text_model.encoder.layers.{number}.self_attn.k_proj.bias")
matched_diffusers_keys.append(f"te{te_suffix}_text_model.encoder.layers.{number}.self_attn.v_proj.bias")
# make diffusers convertable_dict
diffusers_state_dict[
f"te{te_suffix}_text_model.encoder.layers.{number}.self_attn.{tmp_merge_key}.bias"] = new_val
# add operator
ldm_operator_map[ldm_key] = {
"cat": [
f"te{te_suffix}_text_model.encoder.layers.{number}.self_attn.q_proj.bias",
f"te{te_suffix}_text_model.encoder.layers.{number}.self_attn.k_proj.bias",
f"te{te_suffix}_text_model.encoder.layers.{number}.self_attn.v_proj.bias",
],
}
matched_ldm_keys.append(ldm_key)
# add diffusers operators
diffusers_operator_map[f"te{te_suffix}_text_model.encoder.layers.{number}.self_attn.q_proj.bias"] = {
"slice": [
f"{ldm_res_block_prefix}.{number}.attn.in_proj_bias",
f"0:{d_model}, :"
]
}
diffusers_operator_map[f"te{te_suffix}_text_model.encoder.layers.{number}.self_attn.k_proj.bias"] = {
"slice": [
f"{ldm_res_block_prefix}.{number}.attn.in_proj_bias",
f"{d_model}:{d_model * 2}, :"
]
}
diffusers_operator_map[f"te{te_suffix}_text_model.encoder.layers.{number}.self_attn.v_proj.bias"] = {
"slice": [
f"{ldm_res_block_prefix}.{number}.attn.in_proj_bias",
f"{d_model * 2}:, :"
]
}
except Exception as e:
print(f"Error on key {ldm_key}")
print(e)
# update keys
diffusers_dict_keys = list(diffusers_state_dict.keys())
pbar = tqdm(ldm_dict_keys, desc='Matching ldm-diffusers keys', total=total_keys)
# run through all weights and check mse between them to find matches
for ldm_key in ldm_dict_keys:
ldm_shape_tuple = ldm_state_dict[ldm_key].shape
ldm_reduced_shape_tuple = get_reduced_shape(ldm_shape_tuple)
for diffusers_key in diffusers_dict_keys:
if ldm_key == "conditioner.embedders.1.model.transformer.resblocks.0.attn.in_proj_weight" and diffusers_key == "te1_text_model.encoder.layers.0.self_attn.q_proj.weight":
print("here")
diffusers_shape_tuple = diffusers_state_dict[diffusers_key].shape
diffusers_reduced_shape_tuple = get_reduced_shape(diffusers_shape_tuple)
# That was easy. Same key
# if ldm_key == diffusers_key:
# ldm_diffusers_keymap[ldm_key] = diffusers_key
# matched_ldm_keys.append(ldm_key)
# matched_diffusers_keys.append(diffusers_key)
# break
# if we already have this key mapped, skip it
if diffusers_key in matched_diffusers_keys:
continue
# if reduced shapes do not match skip it
if ldm_reduced_shape_tuple != diffusers_reduced_shape_tuple:
continue
ldm_weight = ldm_state_dict[ldm_key]
did_reduce_ldm = False
diffusers_weight = diffusers_state_dict[diffusers_key]
did_reduce_diffusers = False
# reduce the shapes to match if they are not the same
if ldm_shape_tuple != ldm_reduced_shape_tuple:
ldm_weight = ldm_weight.view(ldm_reduced_shape_tuple)
did_reduce_ldm = True
if diffusers_shape_tuple != diffusers_reduced_shape_tuple:
diffusers_weight = diffusers_weight.view(diffusers_reduced_shape_tuple)
did_reduce_diffusers = True
# check to see if they match within a margin of error
mse = torch.nn.functional.mse_loss(ldm_weight.float(), diffusers_weight.float())
if mse < error_margin:
ldm_diffusers_keymap[ldm_key] = diffusers_key
matched_ldm_keys.append(ldm_key)
matched_diffusers_keys.append(diffusers_key)
if did_reduce_ldm or did_reduce_diffusers:
ldm_diffusers_shape_map[ldm_key] = (ldm_shape_tuple, diffusers_shape_tuple)
if did_reduce_ldm:
del ldm_weight
if did_reduce_diffusers:
del diffusers_weight
flush()
break
pbar.update(1)
pbar.close()
name = args.name
if args.sdxl:
name += '_sdxl'
elif args.ssd:
name += '_ssd'
elif args.vega:
name += '_vega'
elif args.refiner:
name += '_refiner'
elif args.sd2:
name += '_sd2'
else:
name += '_sd1'
# if len(matched_ldm_keys) != len(matched_diffusers_keys):
unmatched_ldm_keys = [x for x in ldm_dict_keys if x not in matched_ldm_keys]
unmatched_diffusers_keys = [x for x in diffusers_dict_keys if x not in matched_diffusers_keys]
# has unmatched keys
has_unmatched_keys = len(unmatched_ldm_keys) > 0 or len(unmatched_diffusers_keys) > 0
def get_slices_from_string(s: str) -> tuple:
slice_strings = s.split(',')
slices = [eval(f"slice({component.strip()})") for component in slice_strings]
return tuple(slices)
if has_unmatched_keys:
print(
f"Found {len(unmatched_ldm_keys)} unmatched ldm keys and {len(unmatched_diffusers_keys)} unmatched diffusers keys")
unmatched_obj = OrderedDict()
unmatched_obj['ldm'] = OrderedDict()
unmatched_obj['diffusers'] = OrderedDict()
print(f"Gathering info on unmatched keys")
for key in tqdm(unmatched_ldm_keys, desc='Unmatched LDM keys'):
# get min, max, mean, std
weight = ldm_state_dict[key]
weight_min = weight.min().item()
weight_max = weight.max().item()
unmatched_obj['ldm'][key] = {
'shape': weight.shape,
"min": weight_min,
"max": weight_max,
}
del weight
flush()
for key in tqdm(unmatched_diffusers_keys, desc='Unmatched Diffusers keys'):
# get min, max, mean, std
weight = diffusers_state_dict[key]
weight_min = weight.min().item()
weight_max = weight.max().item()
unmatched_obj['diffusers'][key] = {
"shape": weight.shape,
"min": weight_min,
"max": weight_max,
}
del weight
flush()
unmatched_path = os.path.join(KEYMAPS_FOLDER, f'{name}_unmatched.json')
with open(unmatched_path, 'w') as f:
f.write(json.dumps(unmatched_obj, indent=4))
print(f'Saved unmatched keys to {unmatched_path}')
# save ldm remainders
remaining_ldm_values = OrderedDict()
for key in unmatched_ldm_keys:
remaining_ldm_values[key] = ldm_state_dict[key].detach().to('cpu', torch.float16)
save_file(remaining_ldm_values, os.path.join(KEYMAPS_FOLDER, f'{name}_ldm_base.safetensors'))
print(f'Saved remaining ldm values to {os.path.join(KEYMAPS_FOLDER, f"{name}_ldm_base.safetensors")}')
# do cleanup of some left overs and bugs
to_remove = []
for ldm_key, diffusers_key in ldm_diffusers_keymap.items():
# get rid of tmp merge keys used to slicing
if tmp_merge_key in diffusers_key or tmp_merge_key in ldm_key:
to_remove.append(ldm_key)
for key in to_remove:
del ldm_diffusers_keymap[key]
to_remove = []
# remove identical shape mappings. Not sure why they exist but they do
for ldm_key, shape_list in ldm_diffusers_shape_map.items():
# remove identical shape mappings. Not sure why they exist but they do
# convert to json string to make it easier to compare
ldm_shape = json.dumps(shape_list[0])
diffusers_shape = json.dumps(shape_list[1])
if ldm_shape == diffusers_shape:
to_remove.append(ldm_key)
for key in to_remove:
del ldm_diffusers_shape_map[key]
dest_path = os.path.join(KEYMAPS_FOLDER, f'{name}.json')
save_obj = OrderedDict()
save_obj["ldm_diffusers_keymap"] = ldm_diffusers_keymap
save_obj["ldm_diffusers_shape_map"] = ldm_diffusers_shape_map
save_obj["ldm_diffusers_operator_map"] = ldm_operator_map
save_obj["diffusers_ldm_operator_map"] = diffusers_operator_map
with open(dest_path, 'w') as f:
f.write(json.dumps(save_obj, indent=4))
print(f'Saved keymap to {dest_path}')