File size: 19,108 Bytes
1ba389d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
import argparse
import gc
import os
import re
import os
# add project root to sys path
import sys

from diffusers import DiffusionPipeline, StableDiffusionXLPipeline

sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))

import torch
from diffusers.loaders import LoraLoaderMixin
from safetensors.torch import load_file, save_file
from collections import OrderedDict
import json
from tqdm import tqdm

from toolkit.config_modules import ModelConfig
from toolkit.stable_diffusion_model import StableDiffusion

KEYMAPS_FOLDER = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), 'toolkit', 'keymaps')

device = torch.device('cpu')
dtype = torch.float32


def flush():
    torch.cuda.empty_cache()
    gc.collect()


def get_reduced_shape(shape_tuple):
    # iterate though shape anr remove 1s
    new_shape = []
    for dim in shape_tuple:
        if dim != 1:
            new_shape.append(dim)
    return tuple(new_shape)


parser = argparse.ArgumentParser()

# require at lease one config file
parser.add_argument(
    'file_1',
    nargs='+',
    type=str,
    help='Path to first safe tensor file'
)

parser.add_argument('--name', type=str, default='stable_diffusion', help='name for mapping to make')
parser.add_argument('--sdxl', action='store_true', help='is sdxl model')
parser.add_argument('--refiner', action='store_true', help='is refiner model')
parser.add_argument('--ssd', action='store_true', help='is ssd model')
parser.add_argument('--vega', action='store_true', help='is vega model')
parser.add_argument('--sd2', action='store_true', help='is sd 2 model')

args = parser.parse_args()

file_path = args.file_1[0]

find_matches = False

print(f'Loading diffusers model')

ignore_ldm_begins_with = []

diffusers_file_path = file_path if len(args.file_1) == 1 else args.file_1[1]
if args.ssd:
    diffusers_file_path = "segmind/SSD-1B"
if args.vega:
    diffusers_file_path = "segmind/Segmind-Vega"

# if args.refiner:
#     diffusers_file_path = "stabilityai/stable-diffusion-xl-refiner-1.0"

if not args.refiner:

    diffusers_model_config = ModelConfig(
        name_or_path=diffusers_file_path,
        is_xl=args.sdxl,
        is_v2=args.sd2,
        is_ssd=args.ssd,
        is_vega=args.vega,
        dtype=dtype,
    )
    diffusers_sd = StableDiffusion(
        model_config=diffusers_model_config,
        device=device,
        dtype=dtype,
    )
    diffusers_sd.load_model()
    # delete things we dont need
    del diffusers_sd.tokenizer
    flush()

    print(f'Loading ldm model')
    diffusers_state_dict = diffusers_sd.state_dict()
else:
    # refiner wont work directly with stable diffusion
    # so we need to load the model and then load the state dict
    diffusers_pipeline = StableDiffusionXLPipeline.from_single_file(
        diffusers_file_path,
        torch_dtype=torch.float16,
        use_safetensors=True,
        variant="fp16",
    ).to(device)
    # diffusers_pipeline = StableDiffusionXLPipeline.from_single_file(
    #     file_path,
    #     torch_dtype=torch.float16,
    #     use_safetensors=True,
    #     variant="fp16",
    # ).to(device)

    SD_PREFIX_VAE = "vae"
    SD_PREFIX_UNET = "unet"
    SD_PREFIX_REFINER_UNET = "refiner_unet"
    SD_PREFIX_TEXT_ENCODER = "te"

    SD_PREFIX_TEXT_ENCODER1 = "te0"
    SD_PREFIX_TEXT_ENCODER2 = "te1"

    diffusers_state_dict = OrderedDict()
    for k, v in diffusers_pipeline.vae.state_dict().items():
        new_key = k if k.startswith(f"{SD_PREFIX_VAE}") else f"{SD_PREFIX_VAE}_{k}"
        diffusers_state_dict[new_key] = v
    for k, v in diffusers_pipeline.text_encoder_2.state_dict().items():
        new_key = k if k.startswith(f"{SD_PREFIX_TEXT_ENCODER2}_") else f"{SD_PREFIX_TEXT_ENCODER2}_{k}"
        diffusers_state_dict[new_key] = v
    for k, v in diffusers_pipeline.unet.state_dict().items():
        new_key = k if k.startswith(f"{SD_PREFIX_UNET}_") else f"{SD_PREFIX_UNET}_{k}"
        diffusers_state_dict[new_key] = v

    # add ignore ones as we are only going to focus on unet and copy the rest
    # ignore_ldm_begins_with = ["conditioner.", "first_stage_model."]

diffusers_dict_keys = list(diffusers_state_dict.keys())

ldm_state_dict = load_file(file_path)
ldm_dict_keys = list(ldm_state_dict.keys())

ldm_diffusers_keymap = OrderedDict()
ldm_diffusers_shape_map = OrderedDict()
ldm_operator_map = OrderedDict()
diffusers_operator_map = OrderedDict()

total_keys = len(ldm_dict_keys)

matched_ldm_keys = []
matched_diffusers_keys = []

error_margin = 1e-8

tmp_merge_key = "TMP___MERGE"

te_suffix = ''
proj_pattern_weight = None
proj_pattern_bias = None
text_proj_layer = None
if args.sdxl or args.ssd or args.vega:
    te_suffix = '1'
    ldm_res_block_prefix = "conditioner.embedders.1.model.transformer.resblocks"
    proj_pattern_weight = r"conditioner\.embedders\.1\.model\.transformer\.resblocks\.(\d+)\.attn\.in_proj_weight"
    proj_pattern_bias = r"conditioner\.embedders\.1\.model\.transformer\.resblocks\.(\d+)\.attn\.in_proj_bias"
    text_proj_layer = "conditioner.embedders.1.model.text_projection"
if args.refiner:
    te_suffix = '1'
    ldm_res_block_prefix = "conditioner.embedders.0.model.transformer.resblocks"
    proj_pattern_weight = r"conditioner\.embedders\.0\.model\.transformer\.resblocks\.(\d+)\.attn\.in_proj_weight"
    proj_pattern_bias = r"conditioner\.embedders\.0\.model\.transformer\.resblocks\.(\d+)\.attn\.in_proj_bias"
    text_proj_layer = "conditioner.embedders.0.model.text_projection"
if args.sd2:
    te_suffix = ''
    ldm_res_block_prefix = "cond_stage_model.model.transformer.resblocks"
    proj_pattern_weight = r"cond_stage_model\.model\.transformer\.resblocks\.(\d+)\.attn\.in_proj_weight"
    proj_pattern_bias = r"cond_stage_model\.model\.transformer\.resblocks\.(\d+)\.attn\.in_proj_bias"
    text_proj_layer = "cond_stage_model.model.text_projection"

if args.sdxl or args.sd2 or args.ssd or args.refiner or args.vega:
    if "conditioner.embedders.1.model.text_projection" in ldm_dict_keys:
        # d_model = int(checkpoint[prefix + "text_projection"].shape[0]))
        d_model = int(ldm_state_dict["conditioner.embedders.1.model.text_projection"].shape[0])
    elif "conditioner.embedders.1.model.text_projection.weight" in ldm_dict_keys:
        # d_model = int(checkpoint[prefix + "text_projection"].shape[0]))
        d_model = int(ldm_state_dict["conditioner.embedders.1.model.text_projection.weight"].shape[0])
    elif "conditioner.embedders.0.model.text_projection" in ldm_dict_keys:
        # d_model = int(checkpoint[prefix + "text_projection"].shape[0]))
        d_model = int(ldm_state_dict["conditioner.embedders.0.model.text_projection"].shape[0])
    else:
        d_model = 1024

    # do pre known merging
    for ldm_key in ldm_dict_keys:
        try:
            match = re.match(proj_pattern_weight, ldm_key)
            if match:
                if ldm_key == "conditioner.embedders.1.model.transformer.resblocks.0.attn.in_proj_weight":
                    print("here")
                number = int(match.group(1))
                new_val = torch.cat([
                    diffusers_state_dict[f"te{te_suffix}_text_model.encoder.layers.{number}.self_attn.q_proj.weight"],
                    diffusers_state_dict[f"te{te_suffix}_text_model.encoder.layers.{number}.self_attn.k_proj.weight"],
                    diffusers_state_dict[f"te{te_suffix}_text_model.encoder.layers.{number}.self_attn.v_proj.weight"],
                ], dim=0)
                # add to matched so we dont check them
                matched_diffusers_keys.append(
                    f"te{te_suffix}_text_model.encoder.layers.{number}.self_attn.q_proj.weight")
                matched_diffusers_keys.append(
                    f"te{te_suffix}_text_model.encoder.layers.{number}.self_attn.k_proj.weight")
                matched_diffusers_keys.append(
                    f"te{te_suffix}_text_model.encoder.layers.{number}.self_attn.v_proj.weight")
                # make diffusers convertable_dict
                diffusers_state_dict[
                    f"te{te_suffix}_text_model.encoder.layers.{number}.self_attn.{tmp_merge_key}.weight"] = new_val

                # add operator
                ldm_operator_map[ldm_key] = {
                    "cat": [
                        f"te{te_suffix}_text_model.encoder.layers.{number}.self_attn.q_proj.weight",
                        f"te{te_suffix}_text_model.encoder.layers.{number}.self_attn.k_proj.weight",
                        f"te{te_suffix}_text_model.encoder.layers.{number}.self_attn.v_proj.weight",
                    ],
                }

                matched_ldm_keys.append(ldm_key)

                # text_model_dict[new_key + ".q_proj.weight"] = checkpoint[key][:d_model, :]
                # text_model_dict[new_key + ".k_proj.weight"] = checkpoint[key][d_model: d_model * 2, :]
                # text_model_dict[new_key + ".v_proj.weight"] = checkpoint[key][d_model * 2:, :]

                # add diffusers operators
                diffusers_operator_map[f"te{te_suffix}_text_model.encoder.layers.{number}.self_attn.q_proj.weight"] = {
                    "slice": [
                        f"{ldm_res_block_prefix}.{number}.attn.in_proj_weight",
                        f"0:{d_model}, :"
                    ]
                }
                diffusers_operator_map[f"te{te_suffix}_text_model.encoder.layers.{number}.self_attn.k_proj.weight"] = {
                    "slice": [
                        f"{ldm_res_block_prefix}.{number}.attn.in_proj_weight",
                        f"{d_model}:{d_model * 2}, :"
                    ]
                }
                diffusers_operator_map[f"te{te_suffix}_text_model.encoder.layers.{number}.self_attn.v_proj.weight"] = {
                    "slice": [
                        f"{ldm_res_block_prefix}.{number}.attn.in_proj_weight",
                        f"{d_model * 2}:, :"
                    ]
                }

            match = re.match(proj_pattern_bias, ldm_key)
            if match:
                number = int(match.group(1))
                new_val = torch.cat([
                    diffusers_state_dict[f"te{te_suffix}_text_model.encoder.layers.{number}.self_attn.q_proj.bias"],
                    diffusers_state_dict[f"te{te_suffix}_text_model.encoder.layers.{number}.self_attn.k_proj.bias"],
                    diffusers_state_dict[f"te{te_suffix}_text_model.encoder.layers.{number}.self_attn.v_proj.bias"],
                ], dim=0)
                # add to matched so we dont check them
                matched_diffusers_keys.append(f"te{te_suffix}_text_model.encoder.layers.{number}.self_attn.q_proj.bias")
                matched_diffusers_keys.append(f"te{te_suffix}_text_model.encoder.layers.{number}.self_attn.k_proj.bias")
                matched_diffusers_keys.append(f"te{te_suffix}_text_model.encoder.layers.{number}.self_attn.v_proj.bias")
                # make diffusers convertable_dict
                diffusers_state_dict[
                    f"te{te_suffix}_text_model.encoder.layers.{number}.self_attn.{tmp_merge_key}.bias"] = new_val

                # add operator
                ldm_operator_map[ldm_key] = {
                    "cat": [
                        f"te{te_suffix}_text_model.encoder.layers.{number}.self_attn.q_proj.bias",
                        f"te{te_suffix}_text_model.encoder.layers.{number}.self_attn.k_proj.bias",
                        f"te{te_suffix}_text_model.encoder.layers.{number}.self_attn.v_proj.bias",
                    ],
                }

                matched_ldm_keys.append(ldm_key)

                # add diffusers operators
                diffusers_operator_map[f"te{te_suffix}_text_model.encoder.layers.{number}.self_attn.q_proj.bias"] = {
                    "slice": [
                        f"{ldm_res_block_prefix}.{number}.attn.in_proj_bias",
                        f"0:{d_model}, :"
                    ]
                }
                diffusers_operator_map[f"te{te_suffix}_text_model.encoder.layers.{number}.self_attn.k_proj.bias"] = {
                    "slice": [
                        f"{ldm_res_block_prefix}.{number}.attn.in_proj_bias",
                        f"{d_model}:{d_model * 2}, :"
                    ]
                }
                diffusers_operator_map[f"te{te_suffix}_text_model.encoder.layers.{number}.self_attn.v_proj.bias"] = {
                    "slice": [
                        f"{ldm_res_block_prefix}.{number}.attn.in_proj_bias",
                        f"{d_model * 2}:, :"
                    ]
                }
        except Exception as e:
            print(f"Error on key {ldm_key}")
            print(e)

    # update keys
    diffusers_dict_keys = list(diffusers_state_dict.keys())

pbar = tqdm(ldm_dict_keys, desc='Matching ldm-diffusers keys', total=total_keys)
# run through all weights and check mse between them to find matches
for ldm_key in ldm_dict_keys:
    ldm_shape_tuple = ldm_state_dict[ldm_key].shape
    ldm_reduced_shape_tuple = get_reduced_shape(ldm_shape_tuple)
    for diffusers_key in diffusers_dict_keys:
        if ldm_key == "conditioner.embedders.1.model.transformer.resblocks.0.attn.in_proj_weight" and diffusers_key == "te1_text_model.encoder.layers.0.self_attn.q_proj.weight":
            print("here")

        diffusers_shape_tuple = diffusers_state_dict[diffusers_key].shape
        diffusers_reduced_shape_tuple = get_reduced_shape(diffusers_shape_tuple)

        # That was easy. Same key
        # if ldm_key == diffusers_key:
        #     ldm_diffusers_keymap[ldm_key] = diffusers_key
        #     matched_ldm_keys.append(ldm_key)
        #     matched_diffusers_keys.append(diffusers_key)
        #     break

        # if we already have this key mapped, skip it
        if diffusers_key in matched_diffusers_keys:
            continue

        # if reduced shapes do not match skip it
        if ldm_reduced_shape_tuple != diffusers_reduced_shape_tuple:
            continue

        ldm_weight = ldm_state_dict[ldm_key]
        did_reduce_ldm = False
        diffusers_weight = diffusers_state_dict[diffusers_key]
        did_reduce_diffusers = False

        # reduce the shapes to match if they are not the same
        if ldm_shape_tuple != ldm_reduced_shape_tuple:
            ldm_weight = ldm_weight.view(ldm_reduced_shape_tuple)
            did_reduce_ldm = True

        if diffusers_shape_tuple != diffusers_reduced_shape_tuple:
            diffusers_weight = diffusers_weight.view(diffusers_reduced_shape_tuple)
            did_reduce_diffusers = True

        # check to see if they match within a margin of error
        mse = torch.nn.functional.mse_loss(ldm_weight.float(), diffusers_weight.float())
        if mse < error_margin:
            ldm_diffusers_keymap[ldm_key] = diffusers_key
            matched_ldm_keys.append(ldm_key)
            matched_diffusers_keys.append(diffusers_key)

            if did_reduce_ldm or did_reduce_diffusers:
                ldm_diffusers_shape_map[ldm_key] = (ldm_shape_tuple, diffusers_shape_tuple)
                if did_reduce_ldm:
                    del ldm_weight
                if did_reduce_diffusers:
                    del diffusers_weight
                flush()

            break

    pbar.update(1)

pbar.close()

name = args.name
if args.sdxl:
    name += '_sdxl'
elif args.ssd:
    name += '_ssd'
elif args.vega:
    name += '_vega'
elif args.refiner:
    name += '_refiner'
elif args.sd2:
    name += '_sd2'
else:
    name += '_sd1'

# if len(matched_ldm_keys) != len(matched_diffusers_keys):
unmatched_ldm_keys = [x for x in ldm_dict_keys if x not in matched_ldm_keys]
unmatched_diffusers_keys = [x for x in diffusers_dict_keys if x not in matched_diffusers_keys]
# has unmatched keys

has_unmatched_keys = len(unmatched_ldm_keys) > 0 or len(unmatched_diffusers_keys) > 0


def get_slices_from_string(s: str) -> tuple:
    slice_strings = s.split(',')
    slices = [eval(f"slice({component.strip()})") for component in slice_strings]
    return tuple(slices)


if has_unmatched_keys:

    print(
        f"Found {len(unmatched_ldm_keys)} unmatched ldm keys and {len(unmatched_diffusers_keys)} unmatched diffusers keys")

    unmatched_obj = OrderedDict()
    unmatched_obj['ldm'] = OrderedDict()
    unmatched_obj['diffusers'] = OrderedDict()

    print(f"Gathering info on unmatched keys")

    for key in tqdm(unmatched_ldm_keys, desc='Unmatched LDM keys'):
        # get min, max, mean, std
        weight = ldm_state_dict[key]
        weight_min = weight.min().item()
        weight_max = weight.max().item()
        unmatched_obj['ldm'][key] = {
            'shape': weight.shape,
            "min": weight_min,
            "max": weight_max,
        }
        del weight
        flush()

    for key in tqdm(unmatched_diffusers_keys, desc='Unmatched Diffusers keys'):
        # get min, max, mean, std
        weight = diffusers_state_dict[key]
        weight_min = weight.min().item()
        weight_max = weight.max().item()
        unmatched_obj['diffusers'][key] = {
            "shape": weight.shape,
            "min": weight_min,
            "max": weight_max,
        }
        del weight
        flush()

    unmatched_path = os.path.join(KEYMAPS_FOLDER, f'{name}_unmatched.json')
    with open(unmatched_path, 'w') as f:
        f.write(json.dumps(unmatched_obj, indent=4))

    print(f'Saved unmatched keys to {unmatched_path}')

# save ldm remainders
remaining_ldm_values = OrderedDict()
for key in unmatched_ldm_keys:
    remaining_ldm_values[key] = ldm_state_dict[key].detach().to('cpu', torch.float16)

save_file(remaining_ldm_values, os.path.join(KEYMAPS_FOLDER, f'{name}_ldm_base.safetensors'))
print(f'Saved remaining ldm values to {os.path.join(KEYMAPS_FOLDER, f"{name}_ldm_base.safetensors")}')

# do cleanup of some left overs and bugs
to_remove = []
for ldm_key, diffusers_key in ldm_diffusers_keymap.items():
    # get rid of tmp merge keys used to slicing
    if tmp_merge_key in diffusers_key or tmp_merge_key in ldm_key:
        to_remove.append(ldm_key)

for key in to_remove:
    del ldm_diffusers_keymap[key]

to_remove = []
# remove identical shape mappings. Not sure why they exist but they do
for ldm_key, shape_list in ldm_diffusers_shape_map.items():
    # remove identical shape mappings. Not sure why they exist but they do
    # convert to json string to make it easier to compare
    ldm_shape = json.dumps(shape_list[0])
    diffusers_shape = json.dumps(shape_list[1])
    if ldm_shape == diffusers_shape:
        to_remove.append(ldm_key)

for key in to_remove:
    del ldm_diffusers_shape_map[key]

dest_path = os.path.join(KEYMAPS_FOLDER, f'{name}.json')
save_obj = OrderedDict()
save_obj["ldm_diffusers_keymap"] = ldm_diffusers_keymap
save_obj["ldm_diffusers_shape_map"] = ldm_diffusers_shape_map
save_obj["ldm_diffusers_operator_map"] = ldm_operator_map
save_obj["diffusers_ldm_operator_map"] = diffusers_operator_map
with open(dest_path, 'w') as f:
    f.write(json.dumps(save_obj, indent=4))

print(f'Saved keymap to {dest_path}')