alatlatihlora / testing /generate_lora_mapping.py
crystantine's picture
Upload 190 files
1ba389d verified
from collections import OrderedDict
import torch
from safetensors.torch import load_file
import argparse
import os
import json
PROJECT_ROOT = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
keymap_path = os.path.join(PROJECT_ROOT, 'toolkit', 'keymaps', 'stable_diffusion_sdxl.json')
# load keymap
with open(keymap_path, 'r') as f:
keymap = json.load(f)
lora_keymap = OrderedDict()
# convert keymap to lora key naming
for ldm_key, diffusers_key in keymap['ldm_diffusers_keymap'].items():
if ldm_key.endswith('.bias') or diffusers_key.endswith('.bias'):
# skip it
continue
# sdxl has same te for locon with kohya and ours
if ldm_key.startswith('conditioner'):
#skip it
continue
# ignore vae
if ldm_key.startswith('first_stage_model'):
continue
ldm_key = ldm_key.replace('model.diffusion_model.', 'lora_unet_')
ldm_key = ldm_key.replace('.weight', '')
ldm_key = ldm_key.replace('.', '_')
diffusers_key = diffusers_key.replace('unet_', 'lora_unet_')
diffusers_key = diffusers_key.replace('.weight', '')
diffusers_key = diffusers_key.replace('.', '_')
lora_keymap[f"{ldm_key}.alpha"] = f"{diffusers_key}.alpha"
lora_keymap[f"{ldm_key}.lora_down.weight"] = f"{diffusers_key}.lora_down.weight"
lora_keymap[f"{ldm_key}.lora_up.weight"] = f"{diffusers_key}.lora_up.weight"
parser = argparse.ArgumentParser()
parser.add_argument("input", help="input file")
parser.add_argument("input2", help="input2 file")
args = parser.parse_args()
# name = args.name
# if args.sdxl:
# name += '_sdxl'
# elif args.sd2:
# name += '_sd2'
# else:
# name += '_sd1'
name = 'stable_diffusion_locon_sdxl'
locon_save = load_file(args.input)
our_save = load_file(args.input2)
our_extra_keys = list(set(our_save.keys()) - set(locon_save.keys()))
locon_extra_keys = list(set(locon_save.keys()) - set(our_save.keys()))
print(f"we have {len(our_extra_keys)} extra keys")
print(f"locon has {len(locon_extra_keys)} extra keys")
save_dtype = torch.float16
print(f"our extra keys: {our_extra_keys}")
print(f"locon extra keys: {locon_extra_keys}")
def export_state_dict(our_save):
converted_state_dict = OrderedDict()
for key, value in our_save.items():
# test encoders share keys for some reason
if key.startswith('lora_te'):
converted_state_dict[key] = value.detach().to('cpu', dtype=save_dtype)
else:
converted_key = key
for ldm_key, diffusers_key in lora_keymap.items():
if converted_key == diffusers_key:
converted_key = ldm_key
converted_state_dict[converted_key] = value.detach().to('cpu', dtype=save_dtype)
return converted_state_dict
def import_state_dict(loaded_state_dict):
converted_state_dict = OrderedDict()
for key, value in loaded_state_dict.items():
if key.startswith('lora_te'):
converted_state_dict[key] = value.detach().to('cpu', dtype=save_dtype)
else:
converted_key = key
for ldm_key, diffusers_key in lora_keymap.items():
if converted_key == ldm_key:
converted_key = diffusers_key
converted_state_dict[converted_key] = value.detach().to('cpu', dtype=save_dtype)
return converted_state_dict
# check it again
converted_state_dict = export_state_dict(our_save)
converted_extra_keys = list(set(converted_state_dict.keys()) - set(locon_save.keys()))
locon_extra_keys = list(set(locon_save.keys()) - set(converted_state_dict.keys()))
print(f"we have {len(converted_extra_keys)} extra keys")
print(f"locon has {len(locon_extra_keys)} extra keys")
print(f"our extra keys: {converted_extra_keys}")
# convert back
cycle_state_dict = import_state_dict(converted_state_dict)
cycle_extra_keys = list(set(cycle_state_dict.keys()) - set(our_save.keys()))
our_extra_keys = list(set(our_save.keys()) - set(cycle_state_dict.keys()))
print(f"we have {len(our_extra_keys)} extra keys")
print(f"cycle has {len(cycle_extra_keys)} extra keys")
# save keymap
to_save = OrderedDict()
to_save['ldm_diffusers_keymap'] = lora_keymap
with open(os.path.join(PROJECT_ROOT, 'toolkit', 'keymaps', f'{name}.json'), 'w') as f:
json.dump(to_save, f, indent=4)