File size: 4,297 Bytes
1ba389d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
from collections import OrderedDict

import torch
from safetensors.torch import load_file
import argparse
import os
import json

PROJECT_ROOT = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))

keymap_path = os.path.join(PROJECT_ROOT, 'toolkit', 'keymaps', 'stable_diffusion_sdxl.json')

# load keymap
with open(keymap_path, 'r') as f:
    keymap = json.load(f)

lora_keymap = OrderedDict()

# convert keymap to lora key naming
for ldm_key, diffusers_key in keymap['ldm_diffusers_keymap'].items():
    if ldm_key.endswith('.bias') or diffusers_key.endswith('.bias'):
        # skip it
        continue
    # sdxl has same te for locon with kohya and ours
    if ldm_key.startswith('conditioner'):
        #skip it
        continue
    # ignore vae
    if ldm_key.startswith('first_stage_model'):
        continue
    ldm_key = ldm_key.replace('model.diffusion_model.', 'lora_unet_')
    ldm_key = ldm_key.replace('.weight', '')
    ldm_key = ldm_key.replace('.', '_')

    diffusers_key = diffusers_key.replace('unet_', 'lora_unet_')
    diffusers_key = diffusers_key.replace('.weight', '')
    diffusers_key = diffusers_key.replace('.', '_')

    lora_keymap[f"{ldm_key}.alpha"] = f"{diffusers_key}.alpha"
    lora_keymap[f"{ldm_key}.lora_down.weight"] = f"{diffusers_key}.lora_down.weight"
    lora_keymap[f"{ldm_key}.lora_up.weight"] = f"{diffusers_key}.lora_up.weight"


parser = argparse.ArgumentParser()
parser.add_argument("input", help="input file")
parser.add_argument("input2", help="input2 file")

args = parser.parse_args()

# name = args.name
# if args.sdxl:
#     name += '_sdxl'
# elif args.sd2:
#     name += '_sd2'
# else:
#     name += '_sd1'
name = 'stable_diffusion_locon_sdxl'

locon_save = load_file(args.input)
our_save = load_file(args.input2)

our_extra_keys = list(set(our_save.keys()) - set(locon_save.keys()))
locon_extra_keys = list(set(locon_save.keys()) - set(our_save.keys()))

print(f"we have {len(our_extra_keys)} extra keys")
print(f"locon has {len(locon_extra_keys)} extra keys")

save_dtype = torch.float16
print(f"our extra keys: {our_extra_keys}")
print(f"locon extra keys: {locon_extra_keys}")


def export_state_dict(our_save):
    converted_state_dict = OrderedDict()
    for key, value in our_save.items():
        # test encoders share keys for some reason
        if key.startswith('lora_te'):
            converted_state_dict[key] = value.detach().to('cpu', dtype=save_dtype)
        else:
            converted_key = key
            for ldm_key, diffusers_key in lora_keymap.items():
                if converted_key == diffusers_key:
                    converted_key = ldm_key

            converted_state_dict[converted_key] = value.detach().to('cpu', dtype=save_dtype)
    return converted_state_dict

def import_state_dict(loaded_state_dict):
    converted_state_dict = OrderedDict()
    for key, value in loaded_state_dict.items():
        if key.startswith('lora_te'):
            converted_state_dict[key] = value.detach().to('cpu', dtype=save_dtype)
        else:
            converted_key = key
            for ldm_key, diffusers_key in lora_keymap.items():
                if converted_key == ldm_key:
                    converted_key = diffusers_key

            converted_state_dict[converted_key] = value.detach().to('cpu', dtype=save_dtype)
    return converted_state_dict


# check it again
converted_state_dict = export_state_dict(our_save)
converted_extra_keys = list(set(converted_state_dict.keys()) - set(locon_save.keys()))
locon_extra_keys = list(set(locon_save.keys()) - set(converted_state_dict.keys()))


print(f"we have {len(converted_extra_keys)} extra keys")
print(f"locon has {len(locon_extra_keys)} extra keys")

print(f"our extra keys: {converted_extra_keys}")

# convert back
cycle_state_dict = import_state_dict(converted_state_dict)
cycle_extra_keys = list(set(cycle_state_dict.keys()) - set(our_save.keys()))
our_extra_keys = list(set(our_save.keys()) - set(cycle_state_dict.keys()))

print(f"we have {len(our_extra_keys)} extra keys")
print(f"cycle has {len(cycle_extra_keys)} extra keys")

# save keymap
to_save = OrderedDict()
to_save['ldm_diffusers_keymap'] = lora_keymap

with open(os.path.join(PROJECT_ROOT, 'toolkit', 'keymaps', f'{name}.json'), 'w') as f:
    json.dump(to_save, f, indent=4)