|
|
|
|
|
import argparse |
|
import os.path |
|
from collections import OrderedDict |
|
|
|
parser = argparse.ArgumentParser() |
|
parser.add_argument( |
|
'input_path', |
|
type=str, |
|
help='Path to original sdxl model' |
|
) |
|
parser.add_argument( |
|
'output_path', |
|
type=str, |
|
help='output path' |
|
) |
|
args = parser.parse_args() |
|
args.input_path = os.path.abspath(args.input_path) |
|
args.output_path = os.path.abspath(args.output_path) |
|
|
|
from safetensors.torch import load_file, save_file |
|
|
|
meta = OrderedDict() |
|
meta['format'] = 'pt' |
|
|
|
state_dict = load_file(args.input_path) |
|
|
|
|
|
alpha_keys = [ |
|
'lora_transformer_single_transformer_blocks_0_attn_to_q.alpha' |
|
] |
|
|
|
|
|
rank_idx0_keys = [ |
|
'lora_transformer_single_transformer_blocks_0_attn_to_q.lora_down.weight' |
|
|
|
] |
|
|
|
alpha = None |
|
rank = None |
|
|
|
for key in rank_idx0_keys: |
|
if key in state_dict: |
|
rank = int(state_dict[key].shape[0]) |
|
break |
|
|
|
if rank is None: |
|
raise ValueError(f'Could not find rank in state dict') |
|
|
|
for key in alpha_keys: |
|
if key in state_dict: |
|
alpha = int(state_dict[key]) |
|
break |
|
|
|
if alpha is None: |
|
|
|
alpha = rank |
|
|
|
|
|
up_multiplier = alpha / rank |
|
|
|
new_state_dict = {} |
|
|
|
for key, value in state_dict.items(): |
|
if key.endswith('.alpha'): |
|
continue |
|
|
|
orig_dtype = value.dtype |
|
|
|
new_val = value.float() * up_multiplier |
|
|
|
new_key = key |
|
new_key = new_key.replace('lora_transformer_', 'transformer.') |
|
for i in range(100): |
|
new_key = new_key.replace(f'transformer_blocks_{i}_', f'transformer_blocks.{i}.') |
|
new_key = new_key.replace('lora_down', 'lora_A') |
|
new_key = new_key.replace('lora_up', 'lora_B') |
|
new_key = new_key.replace('_lora', '.lora') |
|
new_key = new_key.replace('attn_', 'attn.') |
|
new_key = new_key.replace('ff_', 'ff.') |
|
new_key = new_key.replace('context_net_', 'context.net.') |
|
new_key = new_key.replace('0_proj', '0.proj') |
|
new_key = new_key.replace('norm_linear', 'norm.linear') |
|
new_key = new_key.replace('norm_out_linear', 'norm_out.linear') |
|
new_key = new_key.replace('to_out_', 'to_out.') |
|
|
|
new_state_dict[new_key] = new_val.to(orig_dtype) |
|
|
|
save_file(new_state_dict, args.output_path, meta) |
|
print(f'Saved to {args.output_path}') |
|
|