# currently only works with flux as support is not quite there yet import argparse import os.path from collections import OrderedDict parser = argparse.ArgumentParser() parser.add_argument( 'input_path', type=str, help='Path to original sdxl model' ) parser.add_argument( 'output_path', type=str, help='output path' ) args = parser.parse_args() args.input_path = os.path.abspath(args.input_path) args.output_path = os.path.abspath(args.output_path) from safetensors.torch import load_file, save_file meta = OrderedDict() meta['format'] = 'pt' state_dict = load_file(args.input_path) # peft doesnt have an alpha so we need to scale the weights alpha_keys = [ 'lora_transformer_single_transformer_blocks_0_attn_to_q.alpha' # flux ] # keys where the rank is in the first dimension rank_idx0_keys = [ 'lora_transformer_single_transformer_blocks_0_attn_to_q.lora_down.weight' # 'transformer.single_transformer_blocks.0.attn.to_q.lora_A.weight' ] alpha = None rank = None for key in rank_idx0_keys: if key in state_dict: rank = int(state_dict[key].shape[0]) break if rank is None: raise ValueError(f'Could not find rank in state dict') for key in alpha_keys: if key in state_dict: alpha = int(state_dict[key]) break if alpha is None: # set to rank if not found alpha = rank up_multiplier = alpha / rank new_state_dict = {} for key, value in state_dict.items(): if key.endswith('.alpha'): continue orig_dtype = value.dtype new_val = value.float() * up_multiplier new_key = key new_key = new_key.replace('lora_transformer_', 'transformer.') for i in range(100): new_key = new_key.replace(f'transformer_blocks_{i}_', f'transformer_blocks.{i}.') new_key = new_key.replace('lora_down', 'lora_A') new_key = new_key.replace('lora_up', 'lora_B') new_key = new_key.replace('_lora', '.lora') new_key = new_key.replace('attn_', 'attn.') new_key = new_key.replace('ff_', 'ff.') new_key = new_key.replace('context_net_', 'context.net.') new_key = new_key.replace('0_proj', '0.proj') new_key = new_key.replace('norm_linear', 'norm.linear') new_key = new_key.replace('norm_out_linear', 'norm_out.linear') new_key = new_key.replace('to_out_', 'to_out.') new_state_dict[new_key] = new_val.to(orig_dtype) save_file(new_state_dict, args.output_path, meta) print(f'Saved to {args.output_path}')