alatlatihlora / scripts /convert_cog.py
crystantine's picture
Upload 190 files
1ba389d verified
import json
from collections import OrderedDict
import os
import torch
from safetensors import safe_open
from safetensors.torch import save_file
device = torch.device('cpu')
# [diffusers] -> kohya
embedding_mapping = {
'text_encoders_0': 'clip_l',
'text_encoders_1': 'clip_g'
}
PROJECT_ROOT = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
KEYMAP_ROOT = os.path.join(PROJECT_ROOT, 'toolkit', 'keymaps')
sdxl_keymap_path = os.path.join(KEYMAP_ROOT, 'stable_diffusion_locon_sdxl.json')
# load keymap
with open(sdxl_keymap_path, 'r') as f:
ldm_diffusers_keymap = json.load(f)['ldm_diffusers_keymap']
# invert the item / key pairs
diffusers_ldm_keymap = {v: k for k, v in ldm_diffusers_keymap.items()}
def get_ldm_key(diffuser_key):
diffuser_key = f"lora_unet_{diffuser_key.replace('.', '_')}"
diffuser_key = diffuser_key.replace('_lora_down_weight', '.lora_down.weight')
diffuser_key = diffuser_key.replace('_lora_up_weight', '.lora_up.weight')
diffuser_key = diffuser_key.replace('_alpha', '.alpha')
diffuser_key = diffuser_key.replace('_processor_to_', '_to_')
diffuser_key = diffuser_key.replace('_to_out.', '_to_out_0.')
if diffuser_key in diffusers_ldm_keymap:
return diffusers_ldm_keymap[diffuser_key]
else:
raise KeyError(f"Key {diffuser_key} not found in keymap")
def convert_cog(lora_path, embedding_path):
embedding_state_dict = OrderedDict()
lora_state_dict = OrderedDict()
# # normal dict
# normal_dict = OrderedDict()
# example_path = "/mnt/Models/stable-diffusion/models/LoRA/sdxl/LogoRedmond_LogoRedAF.safetensors"
# with safe_open(example_path, framework="pt", device='cpu') as f:
# keys = list(f.keys())
# for key in keys:
# normal_dict[key] = f.get_tensor(key)
with safe_open(embedding_path, framework="pt", device='cpu') as f:
keys = list(f.keys())
for key in keys:
new_key = embedding_mapping[key]
embedding_state_dict[new_key] = f.get_tensor(key)
with safe_open(lora_path, framework="pt", device='cpu') as f:
keys = list(f.keys())
lora_rank = None
# get the lora dim first. Check first 3 linear layers just to be safe
for key in keys:
new_key = get_ldm_key(key)
tensor = f.get_tensor(key)
num_checked = 0
if len(tensor.shape) == 2:
this_dim = min(tensor.shape)
if lora_rank is None:
lora_rank = this_dim
elif lora_rank != this_dim:
raise ValueError(f"lora rank is not consistent, got {tensor.shape}")
else:
num_checked += 1
if num_checked >= 3:
break
for key in keys:
new_key = get_ldm_key(key)
tensor = f.get_tensor(key)
if new_key.endswith('.lora_down.weight'):
alpha_key = new_key.replace('.lora_down.weight', '.alpha')
# diffusers does not have alpha, they usa an alpha multiplier of 1 which is a tensor weight of the dims
# assume first smallest dim is the lora rank if shape is 2
lora_state_dict[alpha_key] = torch.ones(1).to(tensor.device, tensor.dtype) * lora_rank
lora_state_dict[new_key] = tensor
return lora_state_dict, embedding_state_dict
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument(
'lora_path',
type=str,
help='Path to lora file'
)
parser.add_argument(
'embedding_path',
type=str,
help='Path to embedding file'
)
parser.add_argument(
'--lora_output',
type=str,
default="lora_output",
)
parser.add_argument(
'--embedding_output',
type=str,
default="embedding_output",
)
args = parser.parse_args()
lora_state_dict, embedding_state_dict = convert_cog(args.lora_path, args.embedding_path)
# save them
save_file(lora_state_dict, args.lora_output)
save_file(embedding_state_dict, args.embedding_output)
print(f"Saved lora to {args.lora_output}")
print(f"Saved embedding to {args.embedding_output}")