|
import json |
|
from collections import OrderedDict |
|
import os |
|
import torch |
|
from safetensors import safe_open |
|
from safetensors.torch import save_file |
|
|
|
device = torch.device('cpu') |
|
|
|
|
|
embedding_mapping = { |
|
'text_encoders_0': 'clip_l', |
|
'text_encoders_1': 'clip_g' |
|
} |
|
|
|
PROJECT_ROOT = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) |
|
KEYMAP_ROOT = os.path.join(PROJECT_ROOT, 'toolkit', 'keymaps') |
|
sdxl_keymap_path = os.path.join(KEYMAP_ROOT, 'stable_diffusion_locon_sdxl.json') |
|
|
|
|
|
with open(sdxl_keymap_path, 'r') as f: |
|
ldm_diffusers_keymap = json.load(f)['ldm_diffusers_keymap'] |
|
|
|
|
|
diffusers_ldm_keymap = {v: k for k, v in ldm_diffusers_keymap.items()} |
|
|
|
|
|
def get_ldm_key(diffuser_key): |
|
diffuser_key = f"lora_unet_{diffuser_key.replace('.', '_')}" |
|
diffuser_key = diffuser_key.replace('_lora_down_weight', '.lora_down.weight') |
|
diffuser_key = diffuser_key.replace('_lora_up_weight', '.lora_up.weight') |
|
diffuser_key = diffuser_key.replace('_alpha', '.alpha') |
|
diffuser_key = diffuser_key.replace('_processor_to_', '_to_') |
|
diffuser_key = diffuser_key.replace('_to_out.', '_to_out_0.') |
|
if diffuser_key in diffusers_ldm_keymap: |
|
return diffusers_ldm_keymap[diffuser_key] |
|
else: |
|
raise KeyError(f"Key {diffuser_key} not found in keymap") |
|
|
|
|
|
def convert_cog(lora_path, embedding_path): |
|
embedding_state_dict = OrderedDict() |
|
lora_state_dict = OrderedDict() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
with safe_open(embedding_path, framework="pt", device='cpu') as f: |
|
keys = list(f.keys()) |
|
for key in keys: |
|
new_key = embedding_mapping[key] |
|
embedding_state_dict[new_key] = f.get_tensor(key) |
|
|
|
with safe_open(lora_path, framework="pt", device='cpu') as f: |
|
keys = list(f.keys()) |
|
lora_rank = None |
|
|
|
|
|
for key in keys: |
|
new_key = get_ldm_key(key) |
|
tensor = f.get_tensor(key) |
|
num_checked = 0 |
|
if len(tensor.shape) == 2: |
|
this_dim = min(tensor.shape) |
|
if lora_rank is None: |
|
lora_rank = this_dim |
|
elif lora_rank != this_dim: |
|
raise ValueError(f"lora rank is not consistent, got {tensor.shape}") |
|
else: |
|
num_checked += 1 |
|
if num_checked >= 3: |
|
break |
|
|
|
for key in keys: |
|
new_key = get_ldm_key(key) |
|
tensor = f.get_tensor(key) |
|
if new_key.endswith('.lora_down.weight'): |
|
alpha_key = new_key.replace('.lora_down.weight', '.alpha') |
|
|
|
|
|
lora_state_dict[alpha_key] = torch.ones(1).to(tensor.device, tensor.dtype) * lora_rank |
|
|
|
lora_state_dict[new_key] = tensor |
|
|
|
return lora_state_dict, embedding_state_dict |
|
|
|
|
|
if __name__ == "__main__": |
|
import argparse |
|
|
|
parser = argparse.ArgumentParser() |
|
parser.add_argument( |
|
'lora_path', |
|
type=str, |
|
help='Path to lora file' |
|
) |
|
parser.add_argument( |
|
'embedding_path', |
|
type=str, |
|
help='Path to embedding file' |
|
) |
|
|
|
parser.add_argument( |
|
'--lora_output', |
|
type=str, |
|
default="lora_output", |
|
) |
|
|
|
parser.add_argument( |
|
'--embedding_output', |
|
type=str, |
|
default="embedding_output", |
|
) |
|
|
|
args = parser.parse_args() |
|
|
|
lora_state_dict, embedding_state_dict = convert_cog(args.lora_path, args.embedding_path) |
|
|
|
|
|
save_file(lora_state_dict, args.lora_output) |
|
save_file(embedding_state_dict, args.embedding_output) |
|
print(f"Saved lora to {args.lora_output}") |
|
print(f"Saved embedding to {args.embedding_output}") |
|
|