File size: 4,297 Bytes
1ba389d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import json
from collections import OrderedDict
import os
import torch
from safetensors import safe_open
from safetensors.torch import save_file

device = torch.device('cpu')

# [diffusers] -> kohya
embedding_mapping = {
    'text_encoders_0': 'clip_l',
    'text_encoders_1': 'clip_g'
}

PROJECT_ROOT = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
KEYMAP_ROOT = os.path.join(PROJECT_ROOT, 'toolkit', 'keymaps')
sdxl_keymap_path = os.path.join(KEYMAP_ROOT, 'stable_diffusion_locon_sdxl.json')

# load keymap
with open(sdxl_keymap_path, 'r') as f:
    ldm_diffusers_keymap = json.load(f)['ldm_diffusers_keymap']

# invert the item / key pairs
diffusers_ldm_keymap = {v: k for k, v in ldm_diffusers_keymap.items()}


def get_ldm_key(diffuser_key):
    diffuser_key = f"lora_unet_{diffuser_key.replace('.', '_')}"
    diffuser_key = diffuser_key.replace('_lora_down_weight', '.lora_down.weight')
    diffuser_key = diffuser_key.replace('_lora_up_weight', '.lora_up.weight')
    diffuser_key = diffuser_key.replace('_alpha', '.alpha')
    diffuser_key = diffuser_key.replace('_processor_to_', '_to_')
    diffuser_key = diffuser_key.replace('_to_out.', '_to_out_0.')
    if diffuser_key in diffusers_ldm_keymap:
        return diffusers_ldm_keymap[diffuser_key]
    else:
        raise KeyError(f"Key {diffuser_key} not found in keymap")


def convert_cog(lora_path, embedding_path):
    embedding_state_dict = OrderedDict()
    lora_state_dict = OrderedDict()

    # # normal dict
    # normal_dict = OrderedDict()
    # example_path = "/mnt/Models/stable-diffusion/models/LoRA/sdxl/LogoRedmond_LogoRedAF.safetensors"
    # with safe_open(example_path, framework="pt", device='cpu') as f:
    #     keys = list(f.keys())
    #     for key in keys:
    #         normal_dict[key] = f.get_tensor(key)

    with safe_open(embedding_path, framework="pt", device='cpu') as f:
        keys = list(f.keys())
        for key in keys:
            new_key = embedding_mapping[key]
            embedding_state_dict[new_key] = f.get_tensor(key)

    with safe_open(lora_path, framework="pt", device='cpu') as f:
        keys = list(f.keys())
        lora_rank = None

        # get the lora dim first. Check first 3 linear layers just to be safe
        for key in keys:
            new_key = get_ldm_key(key)
            tensor = f.get_tensor(key)
            num_checked = 0
            if len(tensor.shape) == 2:
                this_dim = min(tensor.shape)
                if lora_rank is None:
                    lora_rank = this_dim
                elif lora_rank != this_dim:
                    raise ValueError(f"lora rank is not consistent, got {tensor.shape}")
                else:
                    num_checked += 1
            if num_checked >= 3:
                break

        for key in keys:
            new_key = get_ldm_key(key)
            tensor = f.get_tensor(key)
            if new_key.endswith('.lora_down.weight'):
                alpha_key = new_key.replace('.lora_down.weight', '.alpha')
                # diffusers does not have alpha, they usa an alpha multiplier of 1 which is a tensor weight of the dims
                # assume first smallest dim is the lora rank if shape is 2
                lora_state_dict[alpha_key] = torch.ones(1).to(tensor.device, tensor.dtype) * lora_rank

            lora_state_dict[new_key] = tensor

    return lora_state_dict, embedding_state_dict


if __name__ == "__main__":
    import argparse

    parser = argparse.ArgumentParser()
    parser.add_argument(
        'lora_path',
        type=str,
        help='Path to lora file'
    )
    parser.add_argument(
        'embedding_path',
        type=str,
        help='Path to embedding file'
    )

    parser.add_argument(
        '--lora_output',
        type=str,
        default="lora_output",
    )

    parser.add_argument(
        '--embedding_output',
        type=str,
        default="embedding_output",
    )

    args = parser.parse_args()

    lora_state_dict, embedding_state_dict = convert_cog(args.lora_path, args.embedding_path)

    # save them
    save_file(lora_state_dict, args.lora_output)
    save_file(embedding_state_dict, args.embedding_output)
    print(f"Saved lora to {args.lora_output}")
    print(f"Saved embedding to {args.embedding_output}")