crystantine's picture
Upload 190 files
1ba389d verified
import copy
import random
from collections import OrderedDict
import os
from contextlib import nullcontext
from typing import Optional, Union, List
from torch.utils.data import ConcatDataset, DataLoader
from toolkit.config_modules import ReferenceDatasetConfig
from toolkit.data_loader import PairedImageDataset
from toolkit.prompt_utils import concat_prompt_embeds, split_prompt_embeds, build_latent_image_batch_for_prompt_pair
from toolkit.stable_diffusion_model import StableDiffusion, PromptEmbeds
from toolkit.train_tools import get_torch_dtype, apply_snr_weight
import gc
from toolkit import train_tools
import torch
from jobs.process import BaseSDTrainProcess
import random
import random
from collections import OrderedDict
from tqdm import tqdm
from toolkit.config_modules import SliderConfig
from toolkit.train_tools import get_torch_dtype, apply_snr_weight
import gc
from toolkit import train_tools
from toolkit.prompt_utils import \
EncodedPromptPair, ACTION_TYPES_SLIDER, \
EncodedAnchor, concat_prompt_pairs, \
concat_anchors, PromptEmbedsCache, encode_prompts_to_cache, build_prompt_pair_batch_from_cache, split_anchors, \
split_prompt_pairs
import torch
def flush():
torch.cuda.empty_cache()
gc.collect()
class UltimateSliderConfig(SliderConfig):
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.additional_losses: List[str] = kwargs.get('additional_losses', [])
self.weight_jitter: float = kwargs.get('weight_jitter', 0.0)
self.img_loss_weight: float = kwargs.get('img_loss_weight', 1.0)
self.cfg_loss_weight: float = kwargs.get('cfg_loss_weight', 1.0)
self.datasets: List[ReferenceDatasetConfig] = [ReferenceDatasetConfig(**d) for d in kwargs.get('datasets', [])]
class UltimateSliderTrainerProcess(BaseSDTrainProcess):
sd: StableDiffusion
data_loader: DataLoader = None
def __init__(self, process_id: int, job, config: OrderedDict, **kwargs):
super().__init__(process_id, job, config, **kwargs)
self.prompt_txt_list = None
self.step_num = 0
self.start_step = 0
self.device = self.get_conf('device', self.job.device)
self.device_torch = torch.device(self.device)
self.slider_config = UltimateSliderConfig(**self.get_conf('slider', {}))
self.prompt_cache = PromptEmbedsCache()
self.prompt_pairs: list[EncodedPromptPair] = []
self.anchor_pairs: list[EncodedAnchor] = []
# keep track of prompt chunk size
self.prompt_chunk_size = 1
# store a list of all the prompts from the dataset so we can cache it
self.dataset_prompts = []
self.train_with_dataset = self.slider_config.datasets is not None and len(self.slider_config.datasets) > 0
def load_datasets(self):
if self.data_loader is None and \
self.slider_config.datasets is not None and len(self.slider_config.datasets) > 0:
print(f"Loading datasets")
datasets = []
for dataset in self.slider_config.datasets:
print(f" - Dataset: {dataset.pair_folder}")
config = {
'path': dataset.pair_folder,
'size': dataset.size,
'default_prompt': dataset.target_class,
'network_weight': dataset.network_weight,
'pos_weight': dataset.pos_weight,
'neg_weight': dataset.neg_weight,
'pos_folder': dataset.pos_folder,
'neg_folder': dataset.neg_folder,
}
image_dataset = PairedImageDataset(config)
datasets.append(image_dataset)
# capture all the prompts from it so we can cache the embeds
self.dataset_prompts += image_dataset.get_all_prompts()
concatenated_dataset = ConcatDataset(datasets)
self.data_loader = DataLoader(
concatenated_dataset,
batch_size=self.train_config.batch_size,
shuffle=True,
num_workers=2
)
def before_model_load(self):
pass
def hook_before_train_loop(self):
# load any datasets if they were passed
self.load_datasets()
# read line by line from file
if self.slider_config.prompt_file:
self.print(f"Loading prompt file from {self.slider_config.prompt_file}")
with open(self.slider_config.prompt_file, 'r', encoding='utf-8') as f:
self.prompt_txt_list = f.readlines()
# clean empty lines
self.prompt_txt_list = [line.strip() for line in self.prompt_txt_list if len(line.strip()) > 0]
self.print(f"Found {len(self.prompt_txt_list)} prompts.")
if not self.slider_config.prompt_tensors:
print(f"Prompt tensors not found. Building prompt tensors for {self.train_config.steps} steps.")
# shuffle
random.shuffle(self.prompt_txt_list)
# trim to max steps
self.prompt_txt_list = self.prompt_txt_list[:self.train_config.steps]
# trim list to our max steps
cache = PromptEmbedsCache()
# get encoded latents for our prompts
with torch.no_grad():
# list of neutrals. Can come from file or be empty
neutral_list = self.prompt_txt_list if self.prompt_txt_list is not None else [""]
# build the prompts to cache
prompts_to_cache = []
for neutral in neutral_list:
for target in self.slider_config.targets:
prompt_list = [
f"{target.target_class}", # target_class
f"{target.target_class} {neutral}", # target_class with neutral
f"{target.positive}", # positive_target
f"{target.positive} {neutral}", # positive_target with neutral
f"{target.negative}", # negative_target
f"{target.negative} {neutral}", # negative_target with neutral
f"{neutral}", # neutral
f"{target.positive} {target.negative}", # both targets
f"{target.negative} {target.positive}", # both targets reverse
]
prompts_to_cache += prompt_list
# remove duplicates
prompts_to_cache = list(dict.fromkeys(prompts_to_cache))
# trim to max steps if max steps is lower than prompt count
prompts_to_cache = prompts_to_cache[:self.train_config.steps]
if len(self.dataset_prompts) > 0:
# add the prompts from the dataset
prompts_to_cache += self.dataset_prompts
# encode them
cache = encode_prompts_to_cache(
prompt_list=prompts_to_cache,
sd=self.sd,
cache=cache,
prompt_tensor_file=self.slider_config.prompt_tensors
)
prompt_pairs = []
prompt_batches = []
for neutral in tqdm(neutral_list, desc="Building Prompt Pairs", leave=False):
for target in self.slider_config.targets:
prompt_pair_batch = build_prompt_pair_batch_from_cache(
cache=cache,
target=target,
neutral=neutral,
)
if self.slider_config.batch_full_slide:
# concat the prompt pairs
# this allows us to run the entire 4 part process in one shot (for slider)
self.prompt_chunk_size = 4
concat_prompt_pair_batch = concat_prompt_pairs(prompt_pair_batch).to('cpu')
prompt_pairs += [concat_prompt_pair_batch]
else:
self.prompt_chunk_size = 1
# do them one at a time (probably not necessary after new optimizations)
prompt_pairs += [x.to('cpu') for x in prompt_pair_batch]
# move to cpu to save vram
# We don't need text encoder anymore, but keep it on cpu for sampling
# if text encoder is list
if isinstance(self.sd.text_encoder, list):
for encoder in self.sd.text_encoder:
encoder.to("cpu")
else:
self.sd.text_encoder.to("cpu")
self.prompt_cache = cache
self.prompt_pairs = prompt_pairs
# end hook_before_train_loop
# move vae to device so we can encode on the fly
# todo cache latents
self.sd.vae.to(self.device_torch)
self.sd.vae.eval()
self.sd.vae.requires_grad_(False)
if self.train_config.gradient_checkpointing:
# may get disabled elsewhere
self.sd.unet.enable_gradient_checkpointing()
flush()
# end hook_before_train_loop
def hook_train_loop(self, batch):
dtype = get_torch_dtype(self.train_config.dtype)
with torch.no_grad():
### LOOP SETUP ###
noise_scheduler = self.sd.noise_scheduler
optimizer = self.optimizer
lr_scheduler = self.lr_scheduler
### TARGET_PROMPTS ###
# get a random pair
prompt_pair: EncodedPromptPair = self.prompt_pairs[
torch.randint(0, len(self.prompt_pairs), (1,)).item()
]
# move to device and dtype
prompt_pair.to(self.device_torch, dtype=dtype)
### PREP REFERENCE IMAGES ###
imgs, prompts, network_weights = batch
network_pos_weight, network_neg_weight = network_weights
if isinstance(network_pos_weight, torch.Tensor):
network_pos_weight = network_pos_weight.item()
if isinstance(network_neg_weight, torch.Tensor):
network_neg_weight = network_neg_weight.item()
# get an array of random floats between -weight_jitter and weight_jitter
weight_jitter = self.slider_config.weight_jitter
if weight_jitter > 0.0:
jitter_list = random.uniform(-weight_jitter, weight_jitter)
network_pos_weight += jitter_list
network_neg_weight += (jitter_list * -1.0)
# if items in network_weight list are tensors, convert them to floats
imgs: torch.Tensor = imgs.to(self.device_torch, dtype=dtype)
# split batched images in half so left is negative and right is positive
negative_images, positive_images = torch.chunk(imgs, 2, dim=3)
height = positive_images.shape[2]
width = positive_images.shape[3]
batch_size = positive_images.shape[0]
positive_latents = self.sd.encode_images(positive_images)
negative_latents = self.sd.encode_images(negative_images)
self.sd.noise_scheduler.set_timesteps(
self.train_config.max_denoising_steps, device=self.device_torch
)
timesteps = torch.randint(0, self.train_config.max_denoising_steps, (1,), device=self.device_torch)
current_timestep_index = timesteps.item()
current_timestep = noise_scheduler.timesteps[current_timestep_index]
timesteps = timesteps.long()
# get noise
noise_positive = self.sd.get_latent_noise(
pixel_height=height,
pixel_width=width,
batch_size=batch_size,
noise_offset=self.train_config.noise_offset,
).to(self.device_torch, dtype=dtype)
noise_negative = noise_positive.clone()
# Add noise to the latents according to the noise magnitude at each timestep
# (this is the forward diffusion process)
noisy_positive_latents = noise_scheduler.add_noise(positive_latents, noise_positive, timesteps)
noisy_negative_latents = noise_scheduler.add_noise(negative_latents, noise_negative, timesteps)
### CFG SLIDER TRAINING PREP ###
# get CFG txt latents
noisy_cfg_latents = build_latent_image_batch_for_prompt_pair(
pos_latent=noisy_positive_latents,
neg_latent=noisy_negative_latents,
prompt_pair=prompt_pair,
prompt_chunk_size=self.prompt_chunk_size,
)
noisy_cfg_latents.requires_grad = False
assert not self.network.is_active
# 4.20 GB RAM for 512x512
positive_latents = self.sd.predict_noise(
latents=noisy_cfg_latents,
text_embeddings=train_tools.concat_prompt_embeddings(
prompt_pair.positive_target, # negative prompt
prompt_pair.negative_target, # positive prompt
self.train_config.batch_size,
),
timestep=current_timestep,
guidance_scale=1.0
)
positive_latents.requires_grad = False
neutral_latents = self.sd.predict_noise(
latents=noisy_cfg_latents,
text_embeddings=train_tools.concat_prompt_embeddings(
prompt_pair.positive_target, # negative prompt
prompt_pair.empty_prompt, # positive prompt (normally neutral
self.train_config.batch_size,
),
timestep=current_timestep,
guidance_scale=1.0
)
neutral_latents.requires_grad = False
unconditional_latents = self.sd.predict_noise(
latents=noisy_cfg_latents,
text_embeddings=train_tools.concat_prompt_embeddings(
prompt_pair.positive_target, # negative prompt
prompt_pair.positive_target, # positive prompt
self.train_config.batch_size,
),
timestep=current_timestep,
guidance_scale=1.0
)
unconditional_latents.requires_grad = False
positive_latents_chunks = torch.chunk(positive_latents, self.prompt_chunk_size, dim=0)
neutral_latents_chunks = torch.chunk(neutral_latents, self.prompt_chunk_size, dim=0)
unconditional_latents_chunks = torch.chunk(unconditional_latents, self.prompt_chunk_size, dim=0)
prompt_pair_chunks = split_prompt_pairs(prompt_pair, self.prompt_chunk_size)
noisy_cfg_latents_chunks = torch.chunk(noisy_cfg_latents, self.prompt_chunk_size, dim=0)
assert len(prompt_pair_chunks) == len(noisy_cfg_latents_chunks)
noisy_latents = torch.cat([noisy_positive_latents, noisy_negative_latents], dim=0)
noise = torch.cat([noise_positive, noise_negative], dim=0)
timesteps = torch.cat([timesteps, timesteps], dim=0)
network_multiplier = [network_pos_weight * 1.0, network_neg_weight * -1.0]
flush()
loss_float = None
loss_mirror_float = None
self.optimizer.zero_grad()
noisy_latents.requires_grad = False
# TODO allow both processed to train text encoder, for now, we just to unet and cache all text encodes
# if training text encoder enable grads, else do context of no grad
# with torch.set_grad_enabled(self.train_config.train_text_encoder):
# # text encoding
# embedding_list = []
# # embed the prompts
# for prompt in prompts:
# embedding = self.sd.encode_prompt(prompt).to(self.device_torch, dtype=dtype)
# embedding_list.append(embedding)
# conditional_embeds = concat_prompt_embeds(embedding_list)
# conditional_embeds = concat_prompt_embeds([conditional_embeds, conditional_embeds])
if self.train_with_dataset:
embedding_list = []
with torch.set_grad_enabled(self.train_config.train_text_encoder):
for prompt in prompts:
# get embedding form cache
embedding = self.prompt_cache[prompt]
embedding = embedding.to(self.device_torch, dtype=dtype)
embedding_list.append(embedding)
conditional_embeds = concat_prompt_embeds(embedding_list)
# double up so we can do both sides of the slider
conditional_embeds = concat_prompt_embeds([conditional_embeds, conditional_embeds])
else:
# throw error. Not supported yet
raise Exception("Datasets and targets required for ultimate slider")
if self.model_config.is_xl:
# todo also allow for setting this for low ram in general, but sdxl spikes a ton on back prop
network_multiplier_list = network_multiplier
noisy_latent_list = torch.chunk(noisy_latents, 2, dim=0)
noise_list = torch.chunk(noise, 2, dim=0)
timesteps_list = torch.chunk(timesteps, 2, dim=0)
conditional_embeds_list = split_prompt_embeds(conditional_embeds)
else:
network_multiplier_list = [network_multiplier]
noisy_latent_list = [noisy_latents]
noise_list = [noise]
timesteps_list = [timesteps]
conditional_embeds_list = [conditional_embeds]
## DO REFERENCE IMAGE TRAINING ##
reference_image_losses = []
# allow to chunk it out to save vram
for network_multiplier, noisy_latents, noise, timesteps, conditional_embeds in zip(
network_multiplier_list, noisy_latent_list, noise_list, timesteps_list, conditional_embeds_list
):
with self.network:
assert self.network.is_active
self.network.multiplier = network_multiplier
noise_pred = self.sd.predict_noise(
latents=noisy_latents.to(self.device_torch, dtype=dtype),
conditional_embeddings=conditional_embeds.to(self.device_torch, dtype=dtype),
timestep=timesteps,
)
noise = noise.to(self.device_torch, dtype=dtype)
if self.sd.prediction_type == 'v_prediction':
# v-parameterization training
target = noise_scheduler.get_velocity(noisy_latents, noise, timesteps)
else:
target = noise
loss = torch.nn.functional.mse_loss(noise_pred.float(), target.float(), reduction="none")
loss = loss.mean([1, 2, 3])
# todo add snr gamma here
if self.train_config.min_snr_gamma is not None and self.train_config.min_snr_gamma > 0.000001:
# add min_snr_gamma
loss = apply_snr_weight(loss, timesteps, noise_scheduler, self.train_config.min_snr_gamma)
loss = loss.mean()
loss = loss * self.slider_config.img_loss_weight
loss_slide_float = loss.item()
loss_float = loss.item()
reference_image_losses.append(loss_float)
# back propagate loss to free ram
loss.backward()
flush()
## DO CFG SLIDER TRAINING ##
cfg_loss_list = []
with self.network:
assert self.network.is_active
for prompt_pair_chunk, \
noisy_cfg_latent_chunk, \
positive_latents_chunk, \
neutral_latents_chunk, \
unconditional_latents_chunk \
in zip(
prompt_pair_chunks,
noisy_cfg_latents_chunks,
positive_latents_chunks,
neutral_latents_chunks,
unconditional_latents_chunks,
):
self.network.multiplier = prompt_pair_chunk.multiplier_list
target_latents = self.sd.predict_noise(
latents=noisy_cfg_latent_chunk,
text_embeddings=train_tools.concat_prompt_embeddings(
prompt_pair_chunk.positive_target, # negative prompt
prompt_pair_chunk.target_class, # positive prompt
self.train_config.batch_size,
),
timestep=current_timestep,
guidance_scale=1.0
)
guidance_scale = 1.0
offset = guidance_scale * (positive_latents_chunk - unconditional_latents_chunk)
# make offset multiplier based on actions
offset_multiplier_list = []
for action in prompt_pair_chunk.action_list:
if action == ACTION_TYPES_SLIDER.ERASE_NEGATIVE:
offset_multiplier_list += [-1.0]
elif action == ACTION_TYPES_SLIDER.ENHANCE_NEGATIVE:
offset_multiplier_list += [1.0]
offset_multiplier = torch.tensor(offset_multiplier_list).to(offset.device, dtype=offset.dtype)
# make offset multiplier match rank of offset
offset_multiplier = offset_multiplier.view(offset.shape[0], 1, 1, 1)
offset *= offset_multiplier
offset_neutral = neutral_latents_chunk
# offsets are already adjusted on a per-batch basis
offset_neutral += offset
# 16.15 GB RAM for 512x512 -> 4.20GB RAM for 512x512 with new grad_checkpointing
loss = torch.nn.functional.mse_loss(target_latents.float(), offset_neutral.float(), reduction="none")
loss = loss.mean([1, 2, 3])
if self.train_config.min_snr_gamma is not None and self.train_config.min_snr_gamma > 0.000001:
# match batch size
timesteps_index_list = [current_timestep_index for _ in range(target_latents.shape[0])]
# add min_snr_gamma
loss = apply_snr_weight(loss, timesteps_index_list, noise_scheduler,
self.train_config.min_snr_gamma)
loss = loss.mean() * prompt_pair_chunk.weight * self.slider_config.cfg_loss_weight
loss.backward()
cfg_loss_list.append(loss.item())
del target_latents
del offset_neutral
del loss
flush()
# apply gradients
optimizer.step()
lr_scheduler.step()
# reset network
self.network.multiplier = 1.0
reference_image_loss = sum(reference_image_losses) / len(reference_image_losses) if len(
reference_image_losses) > 0 else 0.0
cfg_loss = sum(cfg_loss_list) / len(cfg_loss_list) if len(cfg_loss_list) > 0 else 0.0
loss_dict = OrderedDict({
'loss/img': reference_image_loss,
'loss/cfg': cfg_loss,
})
return loss_dict
# end hook_train_loop