File size: 23,315 Bytes
1ba389d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 |
import copy
import random
from collections import OrderedDict
import os
from contextlib import nullcontext
from typing import Optional, Union, List
from torch.utils.data import ConcatDataset, DataLoader
from toolkit.config_modules import ReferenceDatasetConfig
from toolkit.data_loader import PairedImageDataset
from toolkit.prompt_utils import concat_prompt_embeds, split_prompt_embeds, build_latent_image_batch_for_prompt_pair
from toolkit.stable_diffusion_model import StableDiffusion, PromptEmbeds
from toolkit.train_tools import get_torch_dtype, apply_snr_weight
import gc
from toolkit import train_tools
import torch
from jobs.process import BaseSDTrainProcess
import random
import random
from collections import OrderedDict
from tqdm import tqdm
from toolkit.config_modules import SliderConfig
from toolkit.train_tools import get_torch_dtype, apply_snr_weight
import gc
from toolkit import train_tools
from toolkit.prompt_utils import \
EncodedPromptPair, ACTION_TYPES_SLIDER, \
EncodedAnchor, concat_prompt_pairs, \
concat_anchors, PromptEmbedsCache, encode_prompts_to_cache, build_prompt_pair_batch_from_cache, split_anchors, \
split_prompt_pairs
import torch
def flush():
torch.cuda.empty_cache()
gc.collect()
class UltimateSliderConfig(SliderConfig):
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.additional_losses: List[str] = kwargs.get('additional_losses', [])
self.weight_jitter: float = kwargs.get('weight_jitter', 0.0)
self.img_loss_weight: float = kwargs.get('img_loss_weight', 1.0)
self.cfg_loss_weight: float = kwargs.get('cfg_loss_weight', 1.0)
self.datasets: List[ReferenceDatasetConfig] = [ReferenceDatasetConfig(**d) for d in kwargs.get('datasets', [])]
class UltimateSliderTrainerProcess(BaseSDTrainProcess):
sd: StableDiffusion
data_loader: DataLoader = None
def __init__(self, process_id: int, job, config: OrderedDict, **kwargs):
super().__init__(process_id, job, config, **kwargs)
self.prompt_txt_list = None
self.step_num = 0
self.start_step = 0
self.device = self.get_conf('device', self.job.device)
self.device_torch = torch.device(self.device)
self.slider_config = UltimateSliderConfig(**self.get_conf('slider', {}))
self.prompt_cache = PromptEmbedsCache()
self.prompt_pairs: list[EncodedPromptPair] = []
self.anchor_pairs: list[EncodedAnchor] = []
# keep track of prompt chunk size
self.prompt_chunk_size = 1
# store a list of all the prompts from the dataset so we can cache it
self.dataset_prompts = []
self.train_with_dataset = self.slider_config.datasets is not None and len(self.slider_config.datasets) > 0
def load_datasets(self):
if self.data_loader is None and \
self.slider_config.datasets is not None and len(self.slider_config.datasets) > 0:
print(f"Loading datasets")
datasets = []
for dataset in self.slider_config.datasets:
print(f" - Dataset: {dataset.pair_folder}")
config = {
'path': dataset.pair_folder,
'size': dataset.size,
'default_prompt': dataset.target_class,
'network_weight': dataset.network_weight,
'pos_weight': dataset.pos_weight,
'neg_weight': dataset.neg_weight,
'pos_folder': dataset.pos_folder,
'neg_folder': dataset.neg_folder,
}
image_dataset = PairedImageDataset(config)
datasets.append(image_dataset)
# capture all the prompts from it so we can cache the embeds
self.dataset_prompts += image_dataset.get_all_prompts()
concatenated_dataset = ConcatDataset(datasets)
self.data_loader = DataLoader(
concatenated_dataset,
batch_size=self.train_config.batch_size,
shuffle=True,
num_workers=2
)
def before_model_load(self):
pass
def hook_before_train_loop(self):
# load any datasets if they were passed
self.load_datasets()
# read line by line from file
if self.slider_config.prompt_file:
self.print(f"Loading prompt file from {self.slider_config.prompt_file}")
with open(self.slider_config.prompt_file, 'r', encoding='utf-8') as f:
self.prompt_txt_list = f.readlines()
# clean empty lines
self.prompt_txt_list = [line.strip() for line in self.prompt_txt_list if len(line.strip()) > 0]
self.print(f"Found {len(self.prompt_txt_list)} prompts.")
if not self.slider_config.prompt_tensors:
print(f"Prompt tensors not found. Building prompt tensors for {self.train_config.steps} steps.")
# shuffle
random.shuffle(self.prompt_txt_list)
# trim to max steps
self.prompt_txt_list = self.prompt_txt_list[:self.train_config.steps]
# trim list to our max steps
cache = PromptEmbedsCache()
# get encoded latents for our prompts
with torch.no_grad():
# list of neutrals. Can come from file or be empty
neutral_list = self.prompt_txt_list if self.prompt_txt_list is not None else [""]
# build the prompts to cache
prompts_to_cache = []
for neutral in neutral_list:
for target in self.slider_config.targets:
prompt_list = [
f"{target.target_class}", # target_class
f"{target.target_class} {neutral}", # target_class with neutral
f"{target.positive}", # positive_target
f"{target.positive} {neutral}", # positive_target with neutral
f"{target.negative}", # negative_target
f"{target.negative} {neutral}", # negative_target with neutral
f"{neutral}", # neutral
f"{target.positive} {target.negative}", # both targets
f"{target.negative} {target.positive}", # both targets reverse
]
prompts_to_cache += prompt_list
# remove duplicates
prompts_to_cache = list(dict.fromkeys(prompts_to_cache))
# trim to max steps if max steps is lower than prompt count
prompts_to_cache = prompts_to_cache[:self.train_config.steps]
if len(self.dataset_prompts) > 0:
# add the prompts from the dataset
prompts_to_cache += self.dataset_prompts
# encode them
cache = encode_prompts_to_cache(
prompt_list=prompts_to_cache,
sd=self.sd,
cache=cache,
prompt_tensor_file=self.slider_config.prompt_tensors
)
prompt_pairs = []
prompt_batches = []
for neutral in tqdm(neutral_list, desc="Building Prompt Pairs", leave=False):
for target in self.slider_config.targets:
prompt_pair_batch = build_prompt_pair_batch_from_cache(
cache=cache,
target=target,
neutral=neutral,
)
if self.slider_config.batch_full_slide:
# concat the prompt pairs
# this allows us to run the entire 4 part process in one shot (for slider)
self.prompt_chunk_size = 4
concat_prompt_pair_batch = concat_prompt_pairs(prompt_pair_batch).to('cpu')
prompt_pairs += [concat_prompt_pair_batch]
else:
self.prompt_chunk_size = 1
# do them one at a time (probably not necessary after new optimizations)
prompt_pairs += [x.to('cpu') for x in prompt_pair_batch]
# move to cpu to save vram
# We don't need text encoder anymore, but keep it on cpu for sampling
# if text encoder is list
if isinstance(self.sd.text_encoder, list):
for encoder in self.sd.text_encoder:
encoder.to("cpu")
else:
self.sd.text_encoder.to("cpu")
self.prompt_cache = cache
self.prompt_pairs = prompt_pairs
# end hook_before_train_loop
# move vae to device so we can encode on the fly
# todo cache latents
self.sd.vae.to(self.device_torch)
self.sd.vae.eval()
self.sd.vae.requires_grad_(False)
if self.train_config.gradient_checkpointing:
# may get disabled elsewhere
self.sd.unet.enable_gradient_checkpointing()
flush()
# end hook_before_train_loop
def hook_train_loop(self, batch):
dtype = get_torch_dtype(self.train_config.dtype)
with torch.no_grad():
### LOOP SETUP ###
noise_scheduler = self.sd.noise_scheduler
optimizer = self.optimizer
lr_scheduler = self.lr_scheduler
### TARGET_PROMPTS ###
# get a random pair
prompt_pair: EncodedPromptPair = self.prompt_pairs[
torch.randint(0, len(self.prompt_pairs), (1,)).item()
]
# move to device and dtype
prompt_pair.to(self.device_torch, dtype=dtype)
### PREP REFERENCE IMAGES ###
imgs, prompts, network_weights = batch
network_pos_weight, network_neg_weight = network_weights
if isinstance(network_pos_weight, torch.Tensor):
network_pos_weight = network_pos_weight.item()
if isinstance(network_neg_weight, torch.Tensor):
network_neg_weight = network_neg_weight.item()
# get an array of random floats between -weight_jitter and weight_jitter
weight_jitter = self.slider_config.weight_jitter
if weight_jitter > 0.0:
jitter_list = random.uniform(-weight_jitter, weight_jitter)
network_pos_weight += jitter_list
network_neg_weight += (jitter_list * -1.0)
# if items in network_weight list are tensors, convert them to floats
imgs: torch.Tensor = imgs.to(self.device_torch, dtype=dtype)
# split batched images in half so left is negative and right is positive
negative_images, positive_images = torch.chunk(imgs, 2, dim=3)
height = positive_images.shape[2]
width = positive_images.shape[3]
batch_size = positive_images.shape[0]
positive_latents = self.sd.encode_images(positive_images)
negative_latents = self.sd.encode_images(negative_images)
self.sd.noise_scheduler.set_timesteps(
self.train_config.max_denoising_steps, device=self.device_torch
)
timesteps = torch.randint(0, self.train_config.max_denoising_steps, (1,), device=self.device_torch)
current_timestep_index = timesteps.item()
current_timestep = noise_scheduler.timesteps[current_timestep_index]
timesteps = timesteps.long()
# get noise
noise_positive = self.sd.get_latent_noise(
pixel_height=height,
pixel_width=width,
batch_size=batch_size,
noise_offset=self.train_config.noise_offset,
).to(self.device_torch, dtype=dtype)
noise_negative = noise_positive.clone()
# Add noise to the latents according to the noise magnitude at each timestep
# (this is the forward diffusion process)
noisy_positive_latents = noise_scheduler.add_noise(positive_latents, noise_positive, timesteps)
noisy_negative_latents = noise_scheduler.add_noise(negative_latents, noise_negative, timesteps)
### CFG SLIDER TRAINING PREP ###
# get CFG txt latents
noisy_cfg_latents = build_latent_image_batch_for_prompt_pair(
pos_latent=noisy_positive_latents,
neg_latent=noisy_negative_latents,
prompt_pair=prompt_pair,
prompt_chunk_size=self.prompt_chunk_size,
)
noisy_cfg_latents.requires_grad = False
assert not self.network.is_active
# 4.20 GB RAM for 512x512
positive_latents = self.sd.predict_noise(
latents=noisy_cfg_latents,
text_embeddings=train_tools.concat_prompt_embeddings(
prompt_pair.positive_target, # negative prompt
prompt_pair.negative_target, # positive prompt
self.train_config.batch_size,
),
timestep=current_timestep,
guidance_scale=1.0
)
positive_latents.requires_grad = False
neutral_latents = self.sd.predict_noise(
latents=noisy_cfg_latents,
text_embeddings=train_tools.concat_prompt_embeddings(
prompt_pair.positive_target, # negative prompt
prompt_pair.empty_prompt, # positive prompt (normally neutral
self.train_config.batch_size,
),
timestep=current_timestep,
guidance_scale=1.0
)
neutral_latents.requires_grad = False
unconditional_latents = self.sd.predict_noise(
latents=noisy_cfg_latents,
text_embeddings=train_tools.concat_prompt_embeddings(
prompt_pair.positive_target, # negative prompt
prompt_pair.positive_target, # positive prompt
self.train_config.batch_size,
),
timestep=current_timestep,
guidance_scale=1.0
)
unconditional_latents.requires_grad = False
positive_latents_chunks = torch.chunk(positive_latents, self.prompt_chunk_size, dim=0)
neutral_latents_chunks = torch.chunk(neutral_latents, self.prompt_chunk_size, dim=0)
unconditional_latents_chunks = torch.chunk(unconditional_latents, self.prompt_chunk_size, dim=0)
prompt_pair_chunks = split_prompt_pairs(prompt_pair, self.prompt_chunk_size)
noisy_cfg_latents_chunks = torch.chunk(noisy_cfg_latents, self.prompt_chunk_size, dim=0)
assert len(prompt_pair_chunks) == len(noisy_cfg_latents_chunks)
noisy_latents = torch.cat([noisy_positive_latents, noisy_negative_latents], dim=0)
noise = torch.cat([noise_positive, noise_negative], dim=0)
timesteps = torch.cat([timesteps, timesteps], dim=0)
network_multiplier = [network_pos_weight * 1.0, network_neg_weight * -1.0]
flush()
loss_float = None
loss_mirror_float = None
self.optimizer.zero_grad()
noisy_latents.requires_grad = False
# TODO allow both processed to train text encoder, for now, we just to unet and cache all text encodes
# if training text encoder enable grads, else do context of no grad
# with torch.set_grad_enabled(self.train_config.train_text_encoder):
# # text encoding
# embedding_list = []
# # embed the prompts
# for prompt in prompts:
# embedding = self.sd.encode_prompt(prompt).to(self.device_torch, dtype=dtype)
# embedding_list.append(embedding)
# conditional_embeds = concat_prompt_embeds(embedding_list)
# conditional_embeds = concat_prompt_embeds([conditional_embeds, conditional_embeds])
if self.train_with_dataset:
embedding_list = []
with torch.set_grad_enabled(self.train_config.train_text_encoder):
for prompt in prompts:
# get embedding form cache
embedding = self.prompt_cache[prompt]
embedding = embedding.to(self.device_torch, dtype=dtype)
embedding_list.append(embedding)
conditional_embeds = concat_prompt_embeds(embedding_list)
# double up so we can do both sides of the slider
conditional_embeds = concat_prompt_embeds([conditional_embeds, conditional_embeds])
else:
# throw error. Not supported yet
raise Exception("Datasets and targets required for ultimate slider")
if self.model_config.is_xl:
# todo also allow for setting this for low ram in general, but sdxl spikes a ton on back prop
network_multiplier_list = network_multiplier
noisy_latent_list = torch.chunk(noisy_latents, 2, dim=0)
noise_list = torch.chunk(noise, 2, dim=0)
timesteps_list = torch.chunk(timesteps, 2, dim=0)
conditional_embeds_list = split_prompt_embeds(conditional_embeds)
else:
network_multiplier_list = [network_multiplier]
noisy_latent_list = [noisy_latents]
noise_list = [noise]
timesteps_list = [timesteps]
conditional_embeds_list = [conditional_embeds]
## DO REFERENCE IMAGE TRAINING ##
reference_image_losses = []
# allow to chunk it out to save vram
for network_multiplier, noisy_latents, noise, timesteps, conditional_embeds in zip(
network_multiplier_list, noisy_latent_list, noise_list, timesteps_list, conditional_embeds_list
):
with self.network:
assert self.network.is_active
self.network.multiplier = network_multiplier
noise_pred = self.sd.predict_noise(
latents=noisy_latents.to(self.device_torch, dtype=dtype),
conditional_embeddings=conditional_embeds.to(self.device_torch, dtype=dtype),
timestep=timesteps,
)
noise = noise.to(self.device_torch, dtype=dtype)
if self.sd.prediction_type == 'v_prediction':
# v-parameterization training
target = noise_scheduler.get_velocity(noisy_latents, noise, timesteps)
else:
target = noise
loss = torch.nn.functional.mse_loss(noise_pred.float(), target.float(), reduction="none")
loss = loss.mean([1, 2, 3])
# todo add snr gamma here
if self.train_config.min_snr_gamma is not None and self.train_config.min_snr_gamma > 0.000001:
# add min_snr_gamma
loss = apply_snr_weight(loss, timesteps, noise_scheduler, self.train_config.min_snr_gamma)
loss = loss.mean()
loss = loss * self.slider_config.img_loss_weight
loss_slide_float = loss.item()
loss_float = loss.item()
reference_image_losses.append(loss_float)
# back propagate loss to free ram
loss.backward()
flush()
## DO CFG SLIDER TRAINING ##
cfg_loss_list = []
with self.network:
assert self.network.is_active
for prompt_pair_chunk, \
noisy_cfg_latent_chunk, \
positive_latents_chunk, \
neutral_latents_chunk, \
unconditional_latents_chunk \
in zip(
prompt_pair_chunks,
noisy_cfg_latents_chunks,
positive_latents_chunks,
neutral_latents_chunks,
unconditional_latents_chunks,
):
self.network.multiplier = prompt_pair_chunk.multiplier_list
target_latents = self.sd.predict_noise(
latents=noisy_cfg_latent_chunk,
text_embeddings=train_tools.concat_prompt_embeddings(
prompt_pair_chunk.positive_target, # negative prompt
prompt_pair_chunk.target_class, # positive prompt
self.train_config.batch_size,
),
timestep=current_timestep,
guidance_scale=1.0
)
guidance_scale = 1.0
offset = guidance_scale * (positive_latents_chunk - unconditional_latents_chunk)
# make offset multiplier based on actions
offset_multiplier_list = []
for action in prompt_pair_chunk.action_list:
if action == ACTION_TYPES_SLIDER.ERASE_NEGATIVE:
offset_multiplier_list += [-1.0]
elif action == ACTION_TYPES_SLIDER.ENHANCE_NEGATIVE:
offset_multiplier_list += [1.0]
offset_multiplier = torch.tensor(offset_multiplier_list).to(offset.device, dtype=offset.dtype)
# make offset multiplier match rank of offset
offset_multiplier = offset_multiplier.view(offset.shape[0], 1, 1, 1)
offset *= offset_multiplier
offset_neutral = neutral_latents_chunk
# offsets are already adjusted on a per-batch basis
offset_neutral += offset
# 16.15 GB RAM for 512x512 -> 4.20GB RAM for 512x512 with new grad_checkpointing
loss = torch.nn.functional.mse_loss(target_latents.float(), offset_neutral.float(), reduction="none")
loss = loss.mean([1, 2, 3])
if self.train_config.min_snr_gamma is not None and self.train_config.min_snr_gamma > 0.000001:
# match batch size
timesteps_index_list = [current_timestep_index for _ in range(target_latents.shape[0])]
# add min_snr_gamma
loss = apply_snr_weight(loss, timesteps_index_list, noise_scheduler,
self.train_config.min_snr_gamma)
loss = loss.mean() * prompt_pair_chunk.weight * self.slider_config.cfg_loss_weight
loss.backward()
cfg_loss_list.append(loss.item())
del target_latents
del offset_neutral
del loss
flush()
# apply gradients
optimizer.step()
lr_scheduler.step()
# reset network
self.network.multiplier = 1.0
reference_image_loss = sum(reference_image_losses) / len(reference_image_losses) if len(
reference_image_losses) > 0 else 0.0
cfg_loss = sum(cfg_loss_list) / len(cfg_loss_list) if len(cfg_loss_list) > 0 else 0.0
loss_dict = OrderedDict({
'loss/img': reference_image_loss,
'loss/cfg': cfg_loss,
})
return loss_dict
# end hook_train_loop
|