File size: 23,315 Bytes
1ba389d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
import copy
import random
from collections import OrderedDict
import os
from contextlib import nullcontext
from typing import Optional, Union, List
from torch.utils.data import ConcatDataset, DataLoader

from toolkit.config_modules import ReferenceDatasetConfig
from toolkit.data_loader import PairedImageDataset
from toolkit.prompt_utils import concat_prompt_embeds, split_prompt_embeds, build_latent_image_batch_for_prompt_pair
from toolkit.stable_diffusion_model import StableDiffusion, PromptEmbeds
from toolkit.train_tools import get_torch_dtype, apply_snr_weight
import gc
from toolkit import train_tools
import torch
from jobs.process import BaseSDTrainProcess
import random

import random
from collections import OrderedDict
from tqdm import tqdm

from toolkit.config_modules import SliderConfig
from toolkit.train_tools import get_torch_dtype, apply_snr_weight
import gc
from toolkit import train_tools
from toolkit.prompt_utils import \
    EncodedPromptPair, ACTION_TYPES_SLIDER, \
    EncodedAnchor, concat_prompt_pairs, \
    concat_anchors, PromptEmbedsCache, encode_prompts_to_cache, build_prompt_pair_batch_from_cache, split_anchors, \
    split_prompt_pairs

import torch


def flush():
    torch.cuda.empty_cache()
    gc.collect()


class UltimateSliderConfig(SliderConfig):
    def __init__(self, **kwargs):
        super().__init__(**kwargs)
        self.additional_losses: List[str] = kwargs.get('additional_losses', [])
        self.weight_jitter: float = kwargs.get('weight_jitter', 0.0)
        self.img_loss_weight: float = kwargs.get('img_loss_weight', 1.0)
        self.cfg_loss_weight: float = kwargs.get('cfg_loss_weight', 1.0)
        self.datasets: List[ReferenceDatasetConfig] = [ReferenceDatasetConfig(**d) for d in kwargs.get('datasets', [])]


class UltimateSliderTrainerProcess(BaseSDTrainProcess):
    sd: StableDiffusion
    data_loader: DataLoader = None

    def __init__(self, process_id: int, job, config: OrderedDict, **kwargs):
        super().__init__(process_id, job, config, **kwargs)
        self.prompt_txt_list = None
        self.step_num = 0
        self.start_step = 0
        self.device = self.get_conf('device', self.job.device)
        self.device_torch = torch.device(self.device)
        self.slider_config = UltimateSliderConfig(**self.get_conf('slider', {}))

        self.prompt_cache = PromptEmbedsCache()
        self.prompt_pairs: list[EncodedPromptPair] = []
        self.anchor_pairs: list[EncodedAnchor] = []
        # keep track of prompt chunk size
        self.prompt_chunk_size = 1

        # store a list of all the prompts from the dataset so we can cache it
        self.dataset_prompts = []
        self.train_with_dataset = self.slider_config.datasets is not None and len(self.slider_config.datasets) > 0

    def load_datasets(self):
        if self.data_loader is None and \
                self.slider_config.datasets is not None and len(self.slider_config.datasets) > 0:
            print(f"Loading datasets")
            datasets = []
            for dataset in self.slider_config.datasets:
                print(f" - Dataset: {dataset.pair_folder}")
                config = {
                    'path': dataset.pair_folder,
                    'size': dataset.size,
                    'default_prompt': dataset.target_class,
                    'network_weight': dataset.network_weight,
                    'pos_weight': dataset.pos_weight,
                    'neg_weight': dataset.neg_weight,
                    'pos_folder': dataset.pos_folder,
                    'neg_folder': dataset.neg_folder,
                }
                image_dataset = PairedImageDataset(config)
                datasets.append(image_dataset)

                # capture all the prompts from it so we can cache the embeds
                self.dataset_prompts += image_dataset.get_all_prompts()

            concatenated_dataset = ConcatDataset(datasets)
            self.data_loader = DataLoader(
                concatenated_dataset,
                batch_size=self.train_config.batch_size,
                shuffle=True,
                num_workers=2
            )

    def before_model_load(self):
        pass

    def hook_before_train_loop(self):
        # load any datasets if they were passed
        self.load_datasets()

        # read line by line from file
        if self.slider_config.prompt_file:
            self.print(f"Loading prompt file from {self.slider_config.prompt_file}")
            with open(self.slider_config.prompt_file, 'r', encoding='utf-8') as f:
                self.prompt_txt_list = f.readlines()
                # clean empty lines
                self.prompt_txt_list = [line.strip() for line in self.prompt_txt_list if len(line.strip()) > 0]

            self.print(f"Found {len(self.prompt_txt_list)} prompts.")

            if not self.slider_config.prompt_tensors:
                print(f"Prompt tensors not found. Building prompt tensors for {self.train_config.steps} steps.")
                # shuffle
                random.shuffle(self.prompt_txt_list)
                # trim to max steps
                self.prompt_txt_list = self.prompt_txt_list[:self.train_config.steps]
                # trim list to our max steps

        cache = PromptEmbedsCache()

        # get encoded latents for our prompts
        with torch.no_grad():
            # list of neutrals. Can come from file or be empty
            neutral_list = self.prompt_txt_list if self.prompt_txt_list is not None else [""]

            # build the prompts to cache
            prompts_to_cache = []
            for neutral in neutral_list:
                for target in self.slider_config.targets:
                    prompt_list = [
                        f"{target.target_class}",  # target_class
                        f"{target.target_class} {neutral}",  # target_class with neutral
                        f"{target.positive}",  # positive_target
                        f"{target.positive} {neutral}",  # positive_target with neutral
                        f"{target.negative}",  # negative_target
                        f"{target.negative} {neutral}",  # negative_target with neutral
                        f"{neutral}",  # neutral
                        f"{target.positive} {target.negative}",  # both targets
                        f"{target.negative} {target.positive}",  # both targets reverse
                    ]
                    prompts_to_cache += prompt_list

            # remove duplicates
            prompts_to_cache = list(dict.fromkeys(prompts_to_cache))

            # trim to max steps if max steps is lower than prompt count
            prompts_to_cache = prompts_to_cache[:self.train_config.steps]

            if len(self.dataset_prompts) > 0:
                # add the prompts from the dataset
                prompts_to_cache += self.dataset_prompts

            # encode them
            cache = encode_prompts_to_cache(
                prompt_list=prompts_to_cache,
                sd=self.sd,
                cache=cache,
                prompt_tensor_file=self.slider_config.prompt_tensors
            )

            prompt_pairs = []
            prompt_batches = []
            for neutral in tqdm(neutral_list, desc="Building Prompt Pairs", leave=False):
                for target in self.slider_config.targets:
                    prompt_pair_batch = build_prompt_pair_batch_from_cache(
                        cache=cache,
                        target=target,
                        neutral=neutral,

                    )
                    if self.slider_config.batch_full_slide:
                        # concat the prompt pairs
                        # this allows us to run the entire 4 part process in one shot (for slider)
                        self.prompt_chunk_size = 4
                        concat_prompt_pair_batch = concat_prompt_pairs(prompt_pair_batch).to('cpu')
                        prompt_pairs += [concat_prompt_pair_batch]
                    else:
                        self.prompt_chunk_size = 1
                        # do them one at a time (probably not necessary after new optimizations)
                        prompt_pairs += [x.to('cpu') for x in prompt_pair_batch]

        # move to cpu to save vram
        # We don't need text encoder anymore, but keep it on cpu for sampling
        # if text encoder is list
        if isinstance(self.sd.text_encoder, list):
            for encoder in self.sd.text_encoder:
                encoder.to("cpu")
        else:
            self.sd.text_encoder.to("cpu")
        self.prompt_cache = cache
        self.prompt_pairs = prompt_pairs
        # end hook_before_train_loop

        # move vae to device so we can encode on the fly
        # todo cache latents
        self.sd.vae.to(self.device_torch)
        self.sd.vae.eval()
        self.sd.vae.requires_grad_(False)

        if self.train_config.gradient_checkpointing:
            # may get disabled elsewhere
            self.sd.unet.enable_gradient_checkpointing()

        flush()
        # end hook_before_train_loop

    def hook_train_loop(self, batch):
        dtype = get_torch_dtype(self.train_config.dtype)

        with torch.no_grad():
            ### LOOP SETUP ###
            noise_scheduler = self.sd.noise_scheduler
            optimizer = self.optimizer
            lr_scheduler = self.lr_scheduler

            ### TARGET_PROMPTS ###
            # get a random pair
            prompt_pair: EncodedPromptPair = self.prompt_pairs[
                torch.randint(0, len(self.prompt_pairs), (1,)).item()
            ]
            # move to device and dtype
            prompt_pair.to(self.device_torch, dtype=dtype)

            ### PREP REFERENCE IMAGES ###

            imgs, prompts, network_weights = batch
            network_pos_weight, network_neg_weight = network_weights

            if isinstance(network_pos_weight, torch.Tensor):
                network_pos_weight = network_pos_weight.item()
            if isinstance(network_neg_weight, torch.Tensor):
                network_neg_weight = network_neg_weight.item()

            # get an array of random floats between -weight_jitter and weight_jitter
            weight_jitter = self.slider_config.weight_jitter
            if weight_jitter > 0.0:
                jitter_list = random.uniform(-weight_jitter, weight_jitter)
                network_pos_weight += jitter_list
                network_neg_weight += (jitter_list * -1.0)

            # if items in network_weight list are tensors, convert them to floats
            imgs: torch.Tensor = imgs.to(self.device_torch, dtype=dtype)
            # split batched images in half so left is negative and right is positive
            negative_images, positive_images = torch.chunk(imgs, 2, dim=3)

            height = positive_images.shape[2]
            width = positive_images.shape[3]
            batch_size = positive_images.shape[0]

            positive_latents = self.sd.encode_images(positive_images)
            negative_latents = self.sd.encode_images(negative_images)

            self.sd.noise_scheduler.set_timesteps(
                self.train_config.max_denoising_steps, device=self.device_torch
            )

            timesteps = torch.randint(0, self.train_config.max_denoising_steps, (1,), device=self.device_torch)
            current_timestep_index = timesteps.item()
            current_timestep = noise_scheduler.timesteps[current_timestep_index]
            timesteps = timesteps.long()

            # get noise
            noise_positive = self.sd.get_latent_noise(
                pixel_height=height,
                pixel_width=width,
                batch_size=batch_size,
                noise_offset=self.train_config.noise_offset,
            ).to(self.device_torch, dtype=dtype)

            noise_negative = noise_positive.clone()

            # Add noise to the latents according to the noise magnitude at each timestep
            # (this is the forward diffusion process)
            noisy_positive_latents = noise_scheduler.add_noise(positive_latents, noise_positive, timesteps)
            noisy_negative_latents = noise_scheduler.add_noise(negative_latents, noise_negative, timesteps)

            ### CFG SLIDER TRAINING PREP ###

            # get CFG txt latents
            noisy_cfg_latents = build_latent_image_batch_for_prompt_pair(
                pos_latent=noisy_positive_latents,
                neg_latent=noisy_negative_latents,
                prompt_pair=prompt_pair,
                prompt_chunk_size=self.prompt_chunk_size,
            )
            noisy_cfg_latents.requires_grad = False

            assert not self.network.is_active

            # 4.20 GB RAM for 512x512
            positive_latents = self.sd.predict_noise(
                latents=noisy_cfg_latents,
                text_embeddings=train_tools.concat_prompt_embeddings(
                    prompt_pair.positive_target,  # negative prompt
                    prompt_pair.negative_target,  # positive prompt
                    self.train_config.batch_size,
                ),
                timestep=current_timestep,
                guidance_scale=1.0
            )
            positive_latents.requires_grad = False

            neutral_latents = self.sd.predict_noise(
                latents=noisy_cfg_latents,
                text_embeddings=train_tools.concat_prompt_embeddings(
                    prompt_pair.positive_target,  # negative prompt
                    prompt_pair.empty_prompt,  # positive prompt (normally neutral
                    self.train_config.batch_size,
                ),
                timestep=current_timestep,
                guidance_scale=1.0
            )
            neutral_latents.requires_grad = False

            unconditional_latents = self.sd.predict_noise(
                latents=noisy_cfg_latents,
                text_embeddings=train_tools.concat_prompt_embeddings(
                    prompt_pair.positive_target,  # negative prompt
                    prompt_pair.positive_target,  # positive prompt
                    self.train_config.batch_size,
                ),
                timestep=current_timestep,
                guidance_scale=1.0
            )
            unconditional_latents.requires_grad = False

            positive_latents_chunks = torch.chunk(positive_latents, self.prompt_chunk_size, dim=0)
            neutral_latents_chunks = torch.chunk(neutral_latents, self.prompt_chunk_size, dim=0)
            unconditional_latents_chunks = torch.chunk(unconditional_latents, self.prompt_chunk_size, dim=0)
            prompt_pair_chunks = split_prompt_pairs(prompt_pair, self.prompt_chunk_size)
            noisy_cfg_latents_chunks = torch.chunk(noisy_cfg_latents, self.prompt_chunk_size, dim=0)
            assert len(prompt_pair_chunks) == len(noisy_cfg_latents_chunks)

            noisy_latents = torch.cat([noisy_positive_latents, noisy_negative_latents], dim=0)
            noise = torch.cat([noise_positive, noise_negative], dim=0)
            timesteps = torch.cat([timesteps, timesteps], dim=0)
            network_multiplier = [network_pos_weight * 1.0, network_neg_weight * -1.0]

        flush()

        loss_float = None
        loss_mirror_float = None

        self.optimizer.zero_grad()
        noisy_latents.requires_grad = False

        # TODO allow both processed to train text encoder, for now, we just to unet and cache all text encodes
        # if training text encoder enable grads, else do context of no grad
        # with torch.set_grad_enabled(self.train_config.train_text_encoder):
        #     # text encoding
        #     embedding_list = []
        #     # embed the prompts
        #     for prompt in prompts:
        #         embedding = self.sd.encode_prompt(prompt).to(self.device_torch, dtype=dtype)
        #         embedding_list.append(embedding)
        #     conditional_embeds = concat_prompt_embeds(embedding_list)
        #     conditional_embeds = concat_prompt_embeds([conditional_embeds, conditional_embeds])

        if self.train_with_dataset:
            embedding_list = []
            with torch.set_grad_enabled(self.train_config.train_text_encoder):
                for prompt in prompts:
                    # get embedding form cache
                    embedding = self.prompt_cache[prompt]
                    embedding = embedding.to(self.device_torch, dtype=dtype)
                    embedding_list.append(embedding)
                conditional_embeds = concat_prompt_embeds(embedding_list)
                # double up so we can do both sides of the slider
                conditional_embeds = concat_prompt_embeds([conditional_embeds, conditional_embeds])
        else:
            # throw error. Not supported yet
            raise Exception("Datasets and targets required for ultimate slider")

        if self.model_config.is_xl:
            # todo also allow for setting this for low ram in general, but sdxl spikes a ton on back prop
            network_multiplier_list = network_multiplier
            noisy_latent_list = torch.chunk(noisy_latents, 2, dim=0)
            noise_list = torch.chunk(noise, 2, dim=0)
            timesteps_list = torch.chunk(timesteps, 2, dim=0)
            conditional_embeds_list = split_prompt_embeds(conditional_embeds)
        else:
            network_multiplier_list = [network_multiplier]
            noisy_latent_list = [noisy_latents]
            noise_list = [noise]
            timesteps_list = [timesteps]
            conditional_embeds_list = [conditional_embeds]

        ## DO REFERENCE IMAGE TRAINING ##

        reference_image_losses = []
        # allow to chunk it out to save vram
        for network_multiplier, noisy_latents, noise, timesteps, conditional_embeds in zip(
                network_multiplier_list, noisy_latent_list, noise_list, timesteps_list, conditional_embeds_list
        ):
            with self.network:
                assert self.network.is_active

                self.network.multiplier = network_multiplier

                noise_pred = self.sd.predict_noise(
                    latents=noisy_latents.to(self.device_torch, dtype=dtype),
                    conditional_embeddings=conditional_embeds.to(self.device_torch, dtype=dtype),
                    timestep=timesteps,
                )
                noise = noise.to(self.device_torch, dtype=dtype)

                if self.sd.prediction_type == 'v_prediction':
                    # v-parameterization training
                    target = noise_scheduler.get_velocity(noisy_latents, noise, timesteps)
                else:
                    target = noise

                loss = torch.nn.functional.mse_loss(noise_pred.float(), target.float(), reduction="none")
                loss = loss.mean([1, 2, 3])

                # todo add snr gamma here
                if self.train_config.min_snr_gamma is not None and self.train_config.min_snr_gamma > 0.000001:
                    # add min_snr_gamma
                    loss = apply_snr_weight(loss, timesteps, noise_scheduler, self.train_config.min_snr_gamma)

                loss = loss.mean()
                loss = loss * self.slider_config.img_loss_weight
                loss_slide_float = loss.item()

                loss_float = loss.item()
                reference_image_losses.append(loss_float)

                # back propagate loss to free ram
                loss.backward()
                flush()

        ## DO CFG SLIDER TRAINING ##

        cfg_loss_list = []

        with self.network:
            assert self.network.is_active
            for prompt_pair_chunk, \
                    noisy_cfg_latent_chunk, \
                    positive_latents_chunk, \
                    neutral_latents_chunk, \
                    unconditional_latents_chunk \
                    in zip(
                prompt_pair_chunks,
                noisy_cfg_latents_chunks,
                positive_latents_chunks,
                neutral_latents_chunks,
                unconditional_latents_chunks,
            ):
                self.network.multiplier = prompt_pair_chunk.multiplier_list

                target_latents = self.sd.predict_noise(
                    latents=noisy_cfg_latent_chunk,
                    text_embeddings=train_tools.concat_prompt_embeddings(
                        prompt_pair_chunk.positive_target,  # negative prompt
                        prompt_pair_chunk.target_class,  # positive prompt
                        self.train_config.batch_size,
                    ),
                    timestep=current_timestep,
                    guidance_scale=1.0
                )

                guidance_scale = 1.0

                offset = guidance_scale * (positive_latents_chunk - unconditional_latents_chunk)

                # make offset multiplier based on actions
                offset_multiplier_list = []
                for action in prompt_pair_chunk.action_list:
                    if action == ACTION_TYPES_SLIDER.ERASE_NEGATIVE:
                        offset_multiplier_list += [-1.0]
                    elif action == ACTION_TYPES_SLIDER.ENHANCE_NEGATIVE:
                        offset_multiplier_list += [1.0]

                offset_multiplier = torch.tensor(offset_multiplier_list).to(offset.device, dtype=offset.dtype)
                # make offset multiplier match rank of offset
                offset_multiplier = offset_multiplier.view(offset.shape[0], 1, 1, 1)
                offset *= offset_multiplier

                offset_neutral = neutral_latents_chunk
                # offsets are already adjusted on a per-batch basis
                offset_neutral += offset

                # 16.15 GB RAM for 512x512 -> 4.20GB RAM for 512x512 with new grad_checkpointing
                loss = torch.nn.functional.mse_loss(target_latents.float(), offset_neutral.float(), reduction="none")
                loss = loss.mean([1, 2, 3])

                if self.train_config.min_snr_gamma is not None and self.train_config.min_snr_gamma > 0.000001:
                    # match batch size
                    timesteps_index_list = [current_timestep_index for _ in range(target_latents.shape[0])]
                    # add min_snr_gamma
                    loss = apply_snr_weight(loss, timesteps_index_list, noise_scheduler,
                                            self.train_config.min_snr_gamma)

                loss = loss.mean() * prompt_pair_chunk.weight * self.slider_config.cfg_loss_weight

                loss.backward()
                cfg_loss_list.append(loss.item())
                del target_latents
                del offset_neutral
                del loss
                flush()

        # apply gradients
        optimizer.step()
        lr_scheduler.step()

        # reset network
        self.network.multiplier = 1.0

        reference_image_loss = sum(reference_image_losses) / len(reference_image_losses) if len(
            reference_image_losses) > 0 else 0.0
        cfg_loss = sum(cfg_loss_list) / len(cfg_loss_list) if len(cfg_loss_list) > 0 else 0.0

        loss_dict = OrderedDict({
            'loss/img': reference_image_loss,
            'loss/cfg': cfg_loss,
        })

        return loss_dict
        # end hook_train_loop