filename
stringlengths
32
67
label
stringclasses
165 values
radiology_ai/US/ovary/usn328022.png
US-ovary
radiology_ai/MR/mriabd/normal/mri-abd-normal039931.png
mriabd-normal
radiology_ai/MR/mriabd/normal/mri-abd-normal035197.png
mriabd-normal
radiology_ai/CT/lung/Airspace_opacity/lung069053.png
lung-Airspace_opacity
radiology_ai/MR/mriabd/normal/mri-abd-normal022905.png
mriabd-normal
radiology_ai/MR/af/peroneal_pathology/ankle078805.png
af-peroneal pathology
radiology_ai/CT/lung/normal/lung-normal007780.png
lung-normal
radiology_ai/MR/af/soft_tissue_fluid/foot059921.png
af-soft tissue fluid
radiology_ai/US/liver/usn143131.png
US-liver
radiology_ai/US/uterus/usn211192.png
US-uterus
radiology_ai/US/kidney/usn021106.png
US-kidney
radiology_ai/MR/hip/marrow_inflammation/hip039483.png
hip-marrow inflammation
radiology_ai/MR/mriabd/prostate_lesion/mrabd022177.png
mriabd-prostate lesion
radiology_ai/CT/lung/Nodule/lung015181.png
lung-Nodule
radiology_ai/MR/knee/mcl_pathology/knee124204.png
knee-mcl pathology
radiology_ai/CT/lung/Airspace_opacity/lung086017.png
lung-Airspace_opacity
radiology_ai/MR/brain/normal/brain-normal014839.png
brain-normal
radiology_ai/MR/knee/chondral_abnormality/knee070448.png
knee-chondral abnormality
radiology_ai/US/kidney/usn166652.png
US-kidney
radiology_ai/MR/shoulder/soft_tissue_fluid/shoulder055656.png
shoulder-soft tissue fluid
radiology_ai/MR/knee/soft_tissue_fluid_collection/knee182798.png
knee-soft tissue fluid collection
radiology_ai/MR/spine/dural_epidural_abn/spine006547.png
spine-dural/epidural abn
radiology_ai/US/pancreas/usn360739.png
US-pancreas
radiology_ai/MR/knee/chondral_abnormality/knee047067.png
knee-chondral abnormality
radiology_ai/MR/af/chondral_abnormality/foot047655.png
af-chondral abnormality
radiology_ai/MR/spine/disc_pathology/spine036081.png
spine-disc pathology
radiology_ai/CT/lung/Nodule/lung018539.png
lung-Nodule
radiology_ai/US/spleen/usn269925.png
US-spleen
radiology_ai/US/liver/usn083501.png
US-liver
radiology_ai/MR/knee/acl_pathology/knee187363.png
knee-acl pathology
radiology_ai/MR/af/soft_tissue_fluid/foot064522.png
af-soft tissue fluid
radiology_ai/CT/lung/Airspace_opacity/lung070970.png
lung-Airspace_opacity
radiology_ai/CT/lung/Nodule/lung032409.png
lung-Nodule
radiology_ai/MR/knee/meniscal_abnormality/knee128992.png
knee-meniscal abnormality
radiology_ai/MR/shoulder/labral_pathology/shoulder018439.png
shoulder-labral pathology
radiology_ai/MR/hip/labral_pathology/hip018309.png
hip-labral pathology
radiology_ai/MR/spine/normal/spine-normal000341.png
spine-normal
radiology_ai/MR/mriabd/normal/mri-abd-normal071672.png
mriabd-normal
radiology_ai/MR/mriabd/normal/mri-abd-normal056368.png
mriabd-normal
radiology_ai/CT/lung/Airspace_opacity/lung055540.png
lung-Airspace_opacity
radiology_ai/US/liver/usn092855.png
US-liver
radiology_ai/CT/lung/normal/lung-normal012564.png
lung-normal
radiology_ai/MR/hip/soft_tissue_fluid/hip013947.png
hip-soft tissue fluid
radiology_ai/US/thyroid/usn395407.png
US-thyroid
radiology_ai/MR/knee/chondral_abnormality/knee173393.png
knee-chondral abnormality
radiology_ai/US/thyroid/usn416448.png
US-thyroid
radiology_ai/CT/abd/dilated_urinary_tract/abd022545.png
abd-dilated urinary tract
radiology_ai/MR/af/bone_inflammation/foot016867.png
af-bone inflammation
radiology_ai/US/thyroid_nodule/thyroid-nodule014634.png
thyroid-nodule
radiology_ai/MR/af/chondral_abnormality/ankle024699.png
af-chondral abnormality
radiology_ai/MR/spine/disc_pathology/spine040052.png
spine-disc pathology
radiology_ai/MR/knee/chondral_abnormality/knee030388.png
knee-chondral abnormality
radiology_ai/MR/mriabd/normal/mri-abd-normal036606.png
mriabd-normal
radiology_ai/CT/abd/normal/abd-normal019099.png
abd-normal
radiology_ai/CT/abd/bowel_inflammation/abd037745.png
abd-bowel inflammation
radiology_ai/CT/lung/Airspace_opacity/lung055661.png
lung-Airspace_opacity
radiology_ai/CT/lung/Airspace_opacity/lung049138.png
lung-Airspace_opacity
radiology_ai/MR/mriabd/normal/mri-abd-normal063937.png
mriabd-normal
radiology_ai/US/liver/usn295753.png
US-liver
radiology_ai/MR/hip/labral_pathology/hip023415.png
hip-labral pathology
radiology_ai/MR/knee/chondral_abnormality/knee071552.png
knee-chondral abnormality
radiology_ai/MR/af/soft_tissue_fluid/ankle006142.png
af-soft tissue fluid
radiology_ai/US/ovary/usn200766.png
US-ovary
radiology_ai/MR/brain/intra/brain007390.png
brain-intra-axial mass
radiology_ai/CT/lung/normal/lung-normal034758.png
lung-normal
radiology_ai/CT/abd/bowel_abnormality/abd101558.png
abd-bowel abnormality
radiology_ai/US/kidney/usn024402.png
US-kidney
radiology_ai/US/kidney/usn171653.png
US-kidney
radiology_ai/CT/lung/normal/lung-normal020780.png
lung-normal
radiology_ai/US/liver/usn143410.png
US-liver
radiology_ai/US/liver/usn302210.png
US-liver
radiology_ai/MR/spine/foraminal_pathlogy/spine058142.png
spine-foraminal pathlogy
radiology_ai/MR/knee/soft_tissue_fluid_collection/knee093191.png
knee-soft tissue fluid collection
radiology_ai/MR/mriabd/marrow_abn/mrabd011477.png
mriabd-marrow abn
radiology_ai/MR/spine/disc_pathology/spine036637.png
spine-disc pathology
radiology_ai/MR/brain/white_matter_changes/brain017827.png
brain-white matter changes
radiology_ai/US/liver/usn088219.png
US-liver
radiology_ai/MR/knee/meniscal_abnormality/knee126336.png
knee-meniscal abnormality
radiology_ai/MR/af/chondral_abnormality/ankle024323.png
af-chondral abnormality
radiology_ai/CT/lung/normal/lung-normal007360.png
lung-normal
radiology_ai/MR/brain/extra/brain005940.png
brain-extra-axial mass
radiology_ai/CT/abd/normal/abd-normal035296.png
abd-normal
radiology_ai/MR/knee/meniscal_abnormality/knee020603.png
knee-meniscal abnormality
radiology_ai/MR/af/soft_tissue_fluid/foot058179.png
af-soft tissue fluid
radiology_ai/CT/lung/interstitial_lung_disease/lung041458.png
lung-interstitial_lung_disease
radiology_ai/MR/knee/chondral_abnormality/knee052336.png
knee-chondral abnormality
radiology_ai/US/liver/usn302553.png
US-liver
radiology_ai/MR/hip/marrow_inflammation/hip012368.png
hip-marrow inflammation
radiology_ai/MR/af/peroneal_pathology/ankle079980.png
af-peroneal pathology
radiology_ai/MR/hip/labral_pathology/hip020965.png
hip-labral pathology
radiology_ai/MR/af/cfl_pathology/ankle081884.png
af-cfl pathology
radiology_ai/CT/abd/liver_lesion/abd077188.png
abd-liver lesion
radiology_ai/MR/knee/chondral_abnormality/knee166163.png
knee-chondral abnormality
radiology_ai/MR/hip/soft_tissue_fluid/hip010406.png
hip-soft tissue fluid
radiology_ai/US/thyroid_nodule/thyroid-nodule022747.png
thyroid-nodule
radiology_ai/MR/mriabd/normal/mri-abd-normal017261.png
mriabd-normal
radiology_ai/CT/abd/liver_lesion/abd090736.png
abd-liver lesion
radiology_ai/MR/hip/osseous_disruption/hip012822.png
hip-osseous disruption
radiology_ai/CT/abd/liver_lesion/abd066417.png
abd-liver lesion
radiology_ai/CT/abd/bowel_abnormality/abd102482.png
abd-bowel abnormality

Refined RadImageNet - Conversion Tools

The RadImageNet dataset is available upon request at https://www.radimagenet.com/.

This repository provides tools to process the RadImageNet dataset, converting it into a refined and stratified organization suitable for various medical imaging applications.

For detailed information, refer to our preprint paper: Policy Gradient-Driven Noise Mask.

If you use this code in your research, please cite our paper:

@inproceedings{yavuz2025policy,
  title={Policy Gradient-Driven Noise Mask},
  author={Yavuz, Mehmet Can and Yang, Yang},
  booktitle={International Conference on Pattern Recognition},
  pages={414--431},
  year={2025},
  organization={Springer}
}

Performance Comparison of ResNet Models

This table compares the performance of ResNet models pretrained on 2D RadImageNet using regular and Two2Three convolution techniques across various metrics:

Model Precision (macro) Recall (macro) F1 Score (macro) Balanced Accuracy Average Accuracy
ResNet10t 0.4720 0.3848 0.3998 0.3848 0.7981
ResNet18 0.5150 0.4383 0.4545 0.4383 0.8177
ResNet50 0.5563 0.4934 0.5097 0.4934 0.8352

We recommend adapting the code for benchmarking other models, which can be found here: https://github.com/pytorch/vision/tree/main/references/classification.

ResNet Models and Weights

The model codes are shared through https://github.com/convergedmachine/Refined-RadImagenet/.

To create a model using the timm library:

import timm
model = timm.create_model('resnet10t', num_classes=165)

Replace 'resnet10t' with 'resnet18' or 'resnet50' as needed.

Folder Structure

correction_masks/
data/
weights/
output/
source/
    correction_masks.tar.gz
    radimagenet.tar.gz
    RadiologyAI_test.csv
    RadiologyAI_train.csv
    RadiologyAI_val.csv
process.py
measure_acc_metrics.py

Files & Directories

  • correction_masks/: Contains correction masks for the images.
  • data/: Contains the extracted radiology images.
  • weights/: Directory for model weights.
  • output/: Directory for output files.
  • source/: Contains source files and datasets.
    • correction_masks.tar.gz: Compressed file containing correction masks.
    • radimagenet.tar.gz: Compressed RadImageNet dataset.
    • RadiologyAI_test.csv: CSV file for the test dataset.
    • RadiologyAI_train.csv: CSV file for the training dataset.
    • RadiologyAI_val.csv: CSV file for the validation dataset.
  • process.py: Main script to process and organize the RadImageNet files.
  • measure_acc_metrics.py: Script to measure accuracy metrics.

Download Processing Files

This repository contains files from the Hugging Face repository convergedmachine/Refined-RadImagenet. Follow the instructions below to clone the repository using Git.

Prerequisites

Ensure that Git LFS (Large File Storage) is installed:

git lfs install

Cloning the Repository

To clone the entire repository to your local machine:

git clone https://huggingface.co/convergedmachine/Refined-RadImagenet source/

This command clones all files from the repository into a directory named source.

Notes

  • Ensure you have sufficient storage space for large files.
  • For more information about this dataset, visit the Github page.

Feel free to contribute or raise issues if you encounter any problems.

Usage

  1. Extract the Dataset:

    python process.py
    

    Ensure the dataset tar file is located in the source/ directory. The script will automatically extract it to the data/ directory.

  2. Process the Images:

    The script will read the CSV files, refine the images, and organize them accordingly.

Dependencies

  • Python 3.9+
  • pandas
  • OpenCV
  • tarfile
  • tqdm
  • numpy

Install the required packages using pip:

pip install pandas opencv-python tarfile tqdm numpy

LICENSE


This project is licensed under the MIT License.

Downloads last month
68