File size: 7,627 Bytes
94ea0b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b259dec
d1704ce
b259dec
d1704ce
0708fb2
4d28c58
 
 
 
 
 
 
 
 
0708fb2
b259dec
d1704ce
b259dec
d1704ce
b259dec
d1704ce
b259dec
 
 
 
 
 
 
 
 
 
 
d1704ce
b259dec
d1704ce
b259dec
 
 
 
 
 
afc33fe
b259dec
d1704ce
b259dec
d1704ce
b259dec
d1704ce
afc33fe
d1704ce
b259dec
d1704ce
b259dec
 
 
 
 
 
 
 
 
 
d1704ce
b259dec
d1704ce
afc33fe
b259dec
 
 
 
afc33fe
 
b259dec
d1704ce
b259dec
d1704ce
b259dec
d1704ce
b259dec
d1704ce
b259dec
 
 
 
 
d1704ce
b259dec
d1704ce
5721856
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b259dec
 
d213971
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
---
datasets:
  - name: Cross-Dimensional Evaluation Datasets
    description: >
      A comprehensive collection of 2D and 3D medical imaging datasets
      curated to facilitate the evaluation of transfer learning models across
      different dimensions and modalities. These datasets encompass various
      imaging techniques, classification tasks, image dimensions, pixel ranges,
      label types, and the number of unique labels, providing a robust platform
      for assessing fine-tuning capabilities.
    tasks:
      - image-classification
    modalities:
      - 2D images
      - 3D volumes
    licenses:
      - name: CC BY 4.0
        url: https://creativecommons.org/licenses/by/4.0
---

# Cross-Dimensional Evaluation Datasets

Transfer learning in machine learning models, particularly deep learning architectures, requires diverse datasets to ensure robustness and generalizability across tasks and domains. This repository provides comprehensive details on the datasets used for evaluation, categorized into **2D** and **3D datasets**. These datasets span variations in image dimensions, pixel ranges, label types, and unique labels, facilitating a thorough assessment of fine-tuning capabilities.

**Citation:**
```
@online{2411.02441,
Author = {Mehmet Can Yavuz and Yang Yang},
Title = {Cross-D Conv: Cross-Dimensional Transferable Knowledge Base via Fourier Shifting Operation},
Year = {2024},
Eprint = {2411.02441},
Eprinttype = {arXiv},
}
```

## 2D Datasets

The 2D datasets span a range of medical imaging modalities and classification tasks. They vary in complexity, from binary classification to multi-class problems, and are standardized to ensure consistent preprocessing. All images have dimensions of `(224, 224)` and pixel values normalized to the range `[0, 255]`.

### Overview of 2D Datasets

| **Dataset**        | **Modality**    | **Samples** | **Image Dimensions** | **Pixel Range** | **Unique Labels** | **Label Type** |
|---------------------|-----------------|-------------|-----------------------|------------------|--------------------|----------------|
| Blood \[1\]        | Microscope      | 17,092      | (224, 224, 3)        | 0 -- 255        | 8                  | Multi-class    |
| Brain \[2\]         | MRI             | 1,600       | (224, 224, 3)        | 0 -- 255        | 23                 | Multi-class    |
| Brain Tumor \[3\]   | MRI             | 3,064       | (224, 224, 3)        | 0 -- 255        | 3                  | Multi-class    |
| Breast Cancer \[4\] | US              | 1,875       | (224, 224, 3)        | 0 -- 255        | 2                  | Binary         |
| Breast \[5\]        | US              | 780         | (224, 224, 1)        | 0 -- 255        | 2                  | Binary         |
| Derma \[6\]         | Dermatology     | 10,015      | (224, 224, 3)        | 0 -- 255        | 7                  | Multi-class    |
| OrganC \[7\]        | CT              | 23,582      | (224, 224, 1)        | 0 -- 255        | 11                 | Multi-class    |
| OrganS \[8\]        | CT              | 25,211      | (224, 224, 1)        | 0 -- 255        | 11                 | Multi-class    |
| Pneumonia \[9\]     | XR              | 5,856       | (224, 224, 1)        | 0 -- 255        | 2                  | Binary         |

### Insights into 2D Datasets

- **Blood**: 17,092 microscope images across 8 classes. Excellent for testing models on complex multi-class classification.
- **Brain**: 1,600 MRI images with 23 labels, providing a challenging multi-class scenario.
- **Brain Tumor**: 3,064 MRI images in 3 classes, focused on tumor detection and classification.
- **Breast Cancer**: 1,875 ultrasound images (binary labels), suitable for cancer detection benchmarks.
- **Breast**: 780 ultrasound images with binary labels, ideal for evaluating performance in small datasets.
- **Derma**: 10,015 dermatology images across 7 classes, critical for skin lesion classification.
- **OrganC & OrganS**: 23,582 and 25,211 CT images respectively, focused on organ classification task.
- **Pneumonia**: 5,856 X-ray images for binary classification of lung infections.

---

## 3D Datasets

3D datasets provide volumetric data essential for spatial analysis in medical imaging. These datasets test models' capabilities in handling 3D spatial information.

### Overview of 3D Datasets

| **Dataset**              | **Modality**    | **Samples** | **Image Dimensions**    | **Pixel Range**     | **Unique Labels** | **Label Type** |
|--------------------------|-----------------|-------------|--------------------------|----------------------|--------------------|----------------|
| BraTS21 \[10\]          | MRI             | 585         | (3, 96, 96, 96)         | 0 -- 22,016         | 2                  | Binary         |
| BUSV \[11\]             | US              | 186         | (1, 96, 96, 96)         | 0 -- 255            | 2                  | Binary         |
| Fracture \[12\]         | CT              | 1,370       | (1, 64, 64, 64)         | 0 -- 255            | 3                  | Multi-class    |
| Lung Adenocarcinoma \[13\] | CT           | 1,050       | (1, 128, 128, 128)      | -1,450 -- 3,879     | 3                  | Multi-class    |
| Mosmed \[14\]           | CT              | 200         | (1, 128, 128, 64)       | 0 -- 1              | 2                  | Binary         |
| Synapse \[15\]          | Microscope      | 1,759       | (1, 64, 64, 64)         | 0 -- 255            | 2                  | Binary         |
| Vessel \[16\]           | MRA             | 1,908       | (1, 64, 64, 64)         | 0 -- 255            | 2                  | Binary         |
| IXI (Gender) \[17\]     | MRI             | 561         | (2, 160, 192, 224)      | 0 -- 255            | 2                  | Binary         |

### Insights into 3D Datasets

- **BraTS21**: 585 MRI scans for binary brain tumor classification, testing volumetric analysis.
- **BUSV**: 186 ultrasound volumes with binary labels, focusing on breast ultrasound imaging.
- **Fracture**: 1,370 CT volumes in 3 classes, assessing bone fracture detection.
- **Lung Adenocarcinoma**: 1,050 CT volumes for classifying lung adenocarcinoma subtypes.
- **Mosmed**: 200 CT volumes for detecting COVID-19-related lung infections.
- **Synapse**: 1,759 microscope volumes for neural imaging classification.
- **Vessel**: 1,908 MRA volumes for vessel classification.
- **IXI (Gender)**: 561 MRI volumes labeled by gender, testing demographic classification from brain imaging.

---

## Dataset Diversity and Evaluation Suitability

These datasets collectively provide:

- **Diverse Modalities**: Covering microscopy, CT, MRI, ultrasound, X-ray, and more.
- **Wide Complexity Range**: From binary classification to multi-class problems.
- **Standardized Preprocessing**: Uniform image dimensions and pixel scaling.
- **Scenarios with Varying Data Size**: From small datasets (e.g., BUSV) to large-scale datasets (e.g., OrganS).
- **Volumetric Data for 3D Analysis**: Testing models' spatial reasoning capabilities.

These datasets are curated to facilitate robust and generalizable machine learning models for real-world medical applications.

---

1. Acevedo et al. (2020)
2. Yavuz et al. (2025)
3. Cheng et al. (2015)
4. Gomez et al. (2024)
5. Al et al. (2020)
6. Tschandl et al. (2018)
7. Xu et al. (2019)
8. Bilic et al. (2023)
9. Kermany et al. (2018)
10. Labella et al. (2023)
11. Lin et al. (2022)
12. Jin et al. (2020)
13. Feng et al. (2020)
14. Morozov et al. (2020)
15. Yang et al. (2020)
16. MedMNIST (v2)
17. IXI Dataset

---
license: mit
---