convergedmachine commited on
Commit
4d28c58
·
verified ·
1 Parent(s): 94ea0b8

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +9 -15
README.md CHANGED
@@ -23,11 +23,15 @@ datasets:
23
  Transfer learning in machine learning models, particularly deep learning architectures, requires diverse datasets to ensure robustness and generalizability across tasks and domains. This repository provides comprehensive details on the datasets used for evaluation, categorized into **2D** and **3D datasets**. These datasets span variations in image dimensions, pixel ranges, label types, and unique labels, facilitating a thorough assessment of fine-tuning capabilities.
24
 
25
  **Citation:**
26
-
27
- **Title:** Cross-D Conv: Cross-Dimensional Transferable Knowledge Base via Fourier Shifting Operation
28
- **Authors:** Mehmet Can Yavuz, Yang Yang
29
- **Year:** 2024
30
- **arXiv:** [arXiv:2411.02441](https://arxiv.org/abs/2411.02441)
 
 
 
 
31
 
32
  ## 2D Datasets
33
 
@@ -102,16 +106,6 @@ These datasets collectively provide:
102
 
103
  These datasets are curated to facilitate robust and generalizable machine learning models for real-world medical applications.
104
 
105
- ```
106
- @online{2411.02441,
107
- Author = {Mehmet Can Yavuz and Yang Yang},
108
- Title = {Cross-D Conv: Cross-Dimensional Transferable Knowledge Base via Fourier Shifting Operation},
109
- Year = {2024},
110
- Eprint = {2411.02441},
111
- Eprinttype = {arXiv},
112
- }
113
- ```
114
-
115
  ---
116
 
117
  1. Acevedo et al. (2020)
 
23
  Transfer learning in machine learning models, particularly deep learning architectures, requires diverse datasets to ensure robustness and generalizability across tasks and domains. This repository provides comprehensive details on the datasets used for evaluation, categorized into **2D** and **3D datasets**. These datasets span variations in image dimensions, pixel ranges, label types, and unique labels, facilitating a thorough assessment of fine-tuning capabilities.
24
 
25
  **Citation:**
26
+ ```
27
+ @online{2411.02441,
28
+ Author = {Mehmet Can Yavuz and Yang Yang},
29
+ Title = {Cross-D Conv: Cross-Dimensional Transferable Knowledge Base via Fourier Shifting Operation},
30
+ Year = {2024},
31
+ Eprint = {2411.02441},
32
+ Eprinttype = {arXiv},
33
+ }
34
+ ```
35
 
36
  ## 2D Datasets
37
 
 
106
 
107
  These datasets are curated to facilitate robust and generalizable machine learning models for real-world medical applications.
108
 
 
 
 
 
 
 
 
 
 
 
109
  ---
110
 
111
  1. Acevedo et al. (2020)