conglu's picture
upload code
6e5cc8b
import tensorflow as tf
import tensorflow_probability as tfp
from tensorflow.keras import mixed_precision as prec
from dreamerv2 import common
from dreamerv2 import expl
tfd = tfp.distributions
class Agent(common.Module):
def __init__(self, config, obs_space, act_space, step):
self.config = config
self.obs_space = obs_space
self.act_space = act_space['action']
self.step = step
self.tfstep = tf.Variable(int(self.step), tf.int64)
self.wm = WorldModel(config, obs_space, self.tfstep)
self._task_behavior = ActorCritic(config, self.act_space, self.tfstep)
if config.expl_behavior == 'greedy':
self._expl_behavior = self._task_behavior
else:
self._expl_behavior = getattr(expl, config.expl_behavior)(
self.config, self.act_space, self.wm, self.tfstep,
lambda seq: self.wm.heads['reward'](seq['feat']).mode())
if self.config.offline_tune_lmbd:
self.log_lmbd = tf.Variable(0, dtype=tf.float32)
self.lmbd_optimizer = tf.keras.optimizers.Adam(learning_rate=3e-4)
else:
self.lmbd = self.config.offline_lmbd
@tf.function
def policy(self, obs, state=None, mode='train'):
obs = tf.nest.map_structure(tf.tensor, obs)
tf.py_function(lambda: self.tfstep.assign(
int(self.step), read_value=False), [], [])
if state is None:
latent = self.wm.rssm.initial(len(obs['reward']))
action = tf.zeros((len(obs['reward']),) + self.act_space.shape)
state = latent, action
latent, action = state
embed = self.wm.encoder(self.wm.preprocess(obs))
sample = (mode == 'train') or not self.config.eval_state_mean
latent, _ = self.wm.rssm.obs_step(
latent, action, embed, obs['is_first'], sample)
feat = self.wm.rssm.get_feat(latent)
if mode == 'eval':
actor = self._task_behavior.actor(feat)
action = actor.mode()
noise = self.config.eval_noise
elif mode == 'explore':
actor = self._expl_behavior.actor(feat)
action = actor.sample()
noise = self.config.expl_noise
elif mode == 'train':
actor = self._task_behavior.actor(feat)
action = actor.sample()
noise = self.config.expl_noise
action = common.action_noise(action, noise, self.act_space)
outputs = {'action': action}
state = (latent, action)
return outputs, state
@tf.function
def train(self, data, state=None):
metrics = {}
state, outputs, mets = self.wm.train(data, state)
metrics.update(mets)
start = outputs['post']
reward = lambda seq: self.wm.heads['reward'](seq['feat']).mode()
metrics.update(self._task_behavior.train(
self.wm, start, data['is_terminal'], reward))
if self.config.expl_behavior != 'greedy':
mets = self._expl_behavior.train(start, outputs, data)[-1]
metrics.update({'expl_' + key: value for key, value in mets.items()})
return state, metrics
# The folllowing methods split the above for offline training
@tf.function
def model_train(self, data):
_, _, metrics = self.wm.train(data)
return metrics
@tf.function
def agent_train(self, data):
data = self.wm.preprocess(data)
embed = self.wm.encoder(data)
start, _ = self.wm.rssm.observe(embed, data['action'], data['is_first'])
reward = lambda seq: self.penalized_reward(seq)
metrics = self._task_behavior.train(self.wm, start, data['is_terminal'], reward)
if self.config.offline_tune_lmbd:
metrics['lambda'] = tf.exp(self.log_lmbd)
else:
metrics['lambda'] = self.lmbd
return metrics
@tf.function
def compute_penalty(self, seq):
if self.config.offline_penalty_type == 'log_prob_ens':
dist = self.wm.rssm.get_dist(seq, ensemble=True)
penalty = tf.math.reduce_std(dist.log_prob(seq['stoch']), axis=0)
elif self.config.offline_penalty_type == 'meandis':
dist = self.wm.rssm.get_dist(seq, ensemble=True)
m = dist.mean()
mean_pred = tf.math.reduce_mean(m, axis=0)
penalty = tf.math.reduce_mean(tf.norm(m - mean_pred, axis=[-1, -2]), axis=0)
elif self.config.offline_penalty_type == 'mixstd_mean':
dist = self.wm.rssm.get_dist(seq, ensemble=True)
gm = tfd.MixtureSameFamily(
mixture_distribution=tfd.Categorical(probs=[1 / self.config.rssm.ensemble] * self.config.rssm.ensemble),
components_distribution=tfd.BatchReshape(
distribution=dist,
batch_shape=dist.batch_shape[1:] + dist.batch_shape[0],
validate_args=True
))
penalty = tf.math.reduce_mean(gm.stddev(), axis=[-1, -2])
else:
penalty = 0
return penalty
@tf.function
def penalized_reward(self, seq):
rew = self.wm.heads['reward'](seq['feat']).mode()
penalty = self.compute_penalty(seq)
if self.config.offline_tune_lmbd:
with tf.GradientTape() as tape:
lmbd = tf.exp(self.log_lmbd)
lambda_loss = tf.math.reduce_mean(
self.log_lmbd * (tf.stop_gradient(lmbd * penalty) - self.config.offline_lmbd_cons))
variables = [self.log_lmbd]
grads = tape.gradient(lambda_loss, variables)
self.lmbd_optimizer.apply_gradients(zip(grads, variables))
else:
lmbd = self.lmbd
return rew - lmbd * penalty
@tf.function
def report(self, data):
report = {}
data = self.wm.preprocess(data)
for key in self.wm.heads['decoder'].cnn_keys:
name = key.replace('/', '_')
report[f'openl_{name}'] = self.wm.video_pred(data, key)
return report
class WorldModel(common.Module):
def __init__(self, config, obs_space, tfstep):
shapes = {k: tuple(v.shape) for k, v in obs_space.items()}
self.config = config
self.tfstep = tfstep
self.rssm = common.EnsembleRSSM(**config.rssm)
self.encoder = common.Encoder(shapes, **config.encoder)
self.heads = {
'decoder': common.Decoder(shapes, **config.decoder),
'reward': common.MLP([], **config.reward_head),
}
if config.pred_discount:
self.heads['discount'] = common.MLP([], **config.discount_head)
for name in config.grad_heads:
assert name in self.heads, name
self.model_opt = common.Optimizer('model', **config.model_opt)
def train(self, data, state=None):
with tf.GradientTape() as model_tape:
model_loss, state, outputs, metrics = self.loss(data, state)
modules = [self.encoder, self.rssm, *self.heads.values()]
metrics.update(self.model_opt(model_tape, model_loss, modules))
return state, outputs, metrics
def loss(self, data, state=None):
data = self.preprocess(data)
embed = self.encoder(data)
post, prior = self.rssm.observe(
embed, data['action'], data['is_first'], state)
kl_loss, kl_value = self.rssm.kl_loss(post, prior, **self.config.kl)
assert len(kl_loss.shape) == 0
likes = {}
losses = {'kl': kl_loss}
feat = self.rssm.get_feat(post)
for name, head in self.heads.items():
grad_head = (name in self.config.grad_heads)
inp = feat if grad_head else tf.stop_gradient(feat)
out = head(inp)
dists = out if isinstance(out, dict) else {name: out}
for key, dist in dists.items():
like = tf.cast(dist.log_prob(data[key]), tf.float32)
likes[key] = like
losses[key] = -like.mean()
model_loss = sum(
self.config.loss_scales.get(k, 1.0) * v for k, v in losses.items())
outs = dict(
embed=embed, feat=feat, post=post,
prior=prior, likes=likes, kl=kl_value)
metrics = {f'{name}_loss': value for name, value in losses.items()}
metrics['model_kl'] = kl_value.mean()
metrics['prior_ent'] = self.rssm.get_dist(prior).entropy().mean()
metrics['post_ent'] = self.rssm.get_dist(post).entropy().mean()
last_state = {k: v[:, -1] for k, v in post.items()}
return model_loss, last_state, outs, metrics
def imagine(self, policy, start, is_terminal, horizon):
flatten = lambda x: x.reshape([-1] + list(x.shape[2:]))
start = {k: flatten(v) for k, v in start.items()}
start['feat'] = self.rssm.get_feat(start)
start['action'] = tf.zeros_like(policy(start['feat']).mode())
seq = {k: [v] for k, v in start.items()}
for _ in range(horizon):
action = policy(tf.stop_gradient(seq['feat'][-1])).sample()
state = self.rssm.img_step({k: v[-1] for k, v in seq.items()}, action)
feat = self.rssm.get_feat(state)
for key, value in {**state, 'action': action, 'feat': feat}.items():
seq[key].append(value)
seq = {k: tf.stack(v, 0) for k, v in seq.items()}
if 'discount' in self.heads:
disc = self.heads['discount'](seq['feat']).mean()
if is_terminal is not None:
# Override discount prediction for the first step with the true
# discount factor from the replay buffer.
true_first = 1.0 - flatten(is_terminal).astype(disc.dtype)
true_first *= self.config.discount
disc = tf.concat([true_first[None], disc[1:]], 0)
else:
disc = self.config.discount * tf.ones(seq['feat'].shape[:-1])
seq['discount'] = disc
# Shift discount factors because they imply whether the following state
# will be valid, not whether the current state is valid.
seq['weight'] = tf.math.cumprod(
tf.concat([tf.ones_like(disc[:1]), disc[:-1]], 0), 0)
return seq
@tf.function
def preprocess(self, obs):
dtype = prec.global_policy().compute_dtype
obs = obs.copy()
for key, value in obs.items():
if key.startswith('log_'):
continue
if value.dtype == tf.int32:
value = value.astype(dtype)
if value.dtype == tf.uint8:
value = value.astype(dtype) / 255.0 - 0.5
obs[key] = value
obs['reward'] = {
'identity': tf.identity,
'sign': tf.sign,
'tanh': tf.tanh,
}[self.config.clip_rewards](obs['reward'])
if 'discount' not in obs:
obs['discount'] = 1.0 - obs['is_terminal'].astype(dtype)
obs['discount'] *= self.config.discount
return obs
@tf.function
def video_pred(self, data, key):
decoder = self.heads['decoder']
truth = data[key][:6] + 0.5
embed = self.encoder(data)
states, _ = self.rssm.observe(
embed[:6, :5], data['action'][:6, :5], data['is_first'][:6, :5])
recon = decoder(self.rssm.get_feat(states))[key].mode()[:6]
init = {k: v[:, -1] for k, v in states.items()}
prior = self.rssm.imagine(data['action'][:6, 5:], init)
openl = decoder(self.rssm.get_feat(prior))[key].mode()
model = tf.concat([recon[:, :5] + 0.5, openl + 0.5], 1)
error = (model - truth + 1) / 2
video = tf.concat([truth, model, error], 2)
B, T, H, W, C = video.shape
return video.transpose((1, 2, 0, 3, 4)).reshape((T, H, B * W, C))
class ActorCritic(common.Module):
def __init__(self, config, act_space, tfstep):
self.config = config
self.act_space = act_space
self.tfstep = tfstep
discrete = hasattr(act_space, 'n')
if self.config.actor.dist == 'auto':
self.config = self.config.update({
'actor.dist': 'onehot' if discrete else 'trunc_normal'})
if self.config.actor_grad == 'auto':
self.config = self.config.update({
'actor_grad': 'reinforce' if discrete else 'dynamics'})
self.actor = common.MLP(act_space.shape[0], **self.config.actor)
self.critic = common.MLP([], **self.config.critic)
if self.config.slow_target:
self._target_critic = common.MLP([], **self.config.critic)
self._updates = tf.Variable(0, tf.int64)
else:
self._target_critic = self.critic
self.actor_opt = common.Optimizer('actor', **self.config.actor_opt)
self.critic_opt = common.Optimizer('critic', **self.config.critic_opt)
self.rewnorm = common.StreamNorm(**self.config.reward_norm)
def train(self, world_model, start, is_terminal, reward_fn):
metrics = {}
hor = self.config.imag_horizon
# The weights are is_terminal flags for the imagination start states.
# Technically, they should multiply the losses from the second trajectory
# step onwards, which is the first imagined step. However, we are not
# training the action that led into the first step anyway, so we can use
# them to scale the whole sequence.
with tf.GradientTape() as actor_tape:
seq = world_model.imagine(self.actor, start, is_terminal, hor)
reward = reward_fn(seq)
seq['reward'], mets1 = self.rewnorm(reward)
mets1 = {f'reward_{k}': v for k, v in mets1.items()}
target, mets2 = self.target(seq)
actor_loss, mets3 = self.actor_loss(seq, target)
with tf.GradientTape() as critic_tape:
critic_loss, mets4 = self.critic_loss(seq, target)
metrics.update(self.actor_opt(actor_tape, actor_loss, self.actor))
metrics.update(self.critic_opt(critic_tape, critic_loss, self.critic))
metrics.update(**mets1, **mets2, **mets3, **mets4)
self.update_slow_target() # Variables exist after first forward pass.
return metrics
def actor_loss(self, seq, target):
# Actions: 0 [a1] [a2] a3
# ^ | ^ | ^ |
# / v / v / v
# States: [z0]->[z1]-> z2 -> z3
# Targets: t0 [t1] [t2]
# Baselines: [v0] [v1] v2 v3
# Entropies: [e1] [e2]
# Weights: [ 1] [w1] w2 w3
# Loss: l1 l2
metrics = {}
# Two states are lost at the end of the trajectory, one for the boostrap
# value prediction and one because the corresponding action does not lead
# anywhere anymore. One target is lost at the start of the trajectory
# because the initial state comes from the replay buffer.
policy = self.actor(tf.stop_gradient(seq['feat'][:-2]))
if self.config.actor_grad == 'dynamics':
objective = target[1:]
elif self.config.actor_grad == 'reinforce':
baseline = self._target_critic(seq['feat'][:-2]).mode()
advantage = tf.stop_gradient(target[1:] - baseline)
objective = policy.log_prob(seq['action'][1:-1]) * advantage
elif self.config.actor_grad == 'both':
baseline = self._target_critic(seq['feat'][:-2]).mode()
advantage = tf.stop_gradient(target[1:] - baseline)
objective = policy.log_prob(seq['action'][1:-1]) * advantage
mix = common.schedule(self.config.actor_grad_mix, self.tfstep)
objective = mix * target[1:] + (1 - mix) * objective
metrics['actor_grad_mix'] = mix
else:
raise NotImplementedError(self.config.actor_grad)
ent = policy.entropy()
ent_scale = common.schedule(self.config.actor_ent, self.tfstep)
objective += ent_scale * ent
weight = tf.stop_gradient(seq['weight'])
actor_loss = -(weight[:-2] * objective).mean()
metrics['actor_ent'] = ent.mean()
metrics['actor_ent_scale'] = ent_scale
return actor_loss, metrics
def critic_loss(self, seq, target):
# States: [z0] [z1] [z2] z3
# Rewards: [r0] [r1] [r2] r3
# Values: [v0] [v1] [v2] v3
# Weights: [ 1] [w1] [w2] w3
# Targets: [t0] [t1] [t2]
# Loss: l0 l1 l2
dist = self.critic(seq['feat'][:-1])
target = tf.stop_gradient(target)
weight = tf.stop_gradient(seq['weight'])
critic_loss = -(dist.log_prob(target) * weight[:-1]).mean()
metrics = {'critic': dist.mode().mean()}
return critic_loss, metrics
def target(self, seq):
# States: [z0] [z1] [z2] [z3]
# Rewards: [r0] [r1] [r2] r3
# Values: [v0] [v1] [v2] [v3]
# Discount: [d0] [d1] [d2] d3
# Targets: t0 t1 t2
reward = tf.cast(seq['reward'], tf.float32)
disc = tf.cast(seq['discount'], tf.float32)
value = self._target_critic(seq['feat']).mode()
# Skipping last time step because it is used for bootstrapping.
target = common.lambda_return(
reward[:-1], value[:-1], disc[:-1],
bootstrap=value[-1],
lambda_=self.config.discount_lambda,
axis=0)
metrics = {'critic_slow': value.mean(), 'critic_target': target.mean()}
return target, metrics
def update_slow_target(self):
if self.config.slow_target:
if self._updates % self.config.slow_target_update == 0:
mix = 1.0 if self._updates == 0 else float(
self.config.slow_target_fraction)
for s, d in zip(self.critic.variables, self._target_critic.variables):
d.assign(mix * s + (1 - mix) * d)
self._updates.assign_add(1)