File size: 18,096 Bytes
6e5cc8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
import tensorflow as tf
import tensorflow_probability as tfp
from tensorflow.keras import mixed_precision as prec

from dreamerv2 import common
from dreamerv2 import expl

tfd = tfp.distributions


class Agent(common.Module):
    def __init__(self, config, obs_space, act_space, step):
        self.config = config
        self.obs_space = obs_space
        self.act_space = act_space['action']
        self.step = step
        self.tfstep = tf.Variable(int(self.step), tf.int64)
        self.wm = WorldModel(config, obs_space, self.tfstep)
        self._task_behavior = ActorCritic(config, self.act_space, self.tfstep)
        if config.expl_behavior == 'greedy':
            self._expl_behavior = self._task_behavior
        else:
            self._expl_behavior = getattr(expl, config.expl_behavior)(
                self.config, self.act_space, self.wm, self.tfstep,
                lambda seq: self.wm.heads['reward'](seq['feat']).mode())
        if self.config.offline_tune_lmbd:
            self.log_lmbd = tf.Variable(0, dtype=tf.float32)
            self.lmbd_optimizer = tf.keras.optimizers.Adam(learning_rate=3e-4)
        else:
            self.lmbd = self.config.offline_lmbd

    @tf.function
    def policy(self, obs, state=None, mode='train'):
        obs = tf.nest.map_structure(tf.tensor, obs)
        tf.py_function(lambda: self.tfstep.assign(
            int(self.step), read_value=False), [], [])
        if state is None:
            latent = self.wm.rssm.initial(len(obs['reward']))
            action = tf.zeros((len(obs['reward']),) + self.act_space.shape)
            state = latent, action
        latent, action = state
        embed = self.wm.encoder(self.wm.preprocess(obs))
        sample = (mode == 'train') or not self.config.eval_state_mean
        latent, _ = self.wm.rssm.obs_step(
            latent, action, embed, obs['is_first'], sample)
        feat = self.wm.rssm.get_feat(latent)
        if mode == 'eval':
            actor = self._task_behavior.actor(feat)
            action = actor.mode()
            noise = self.config.eval_noise
        elif mode == 'explore':
            actor = self._expl_behavior.actor(feat)
            action = actor.sample()
            noise = self.config.expl_noise
        elif mode == 'train':
            actor = self._task_behavior.actor(feat)
            action = actor.sample()
            noise = self.config.expl_noise
        action = common.action_noise(action, noise, self.act_space)
        outputs = {'action': action}
        state = (latent, action)
        return outputs, state

    @tf.function
    def train(self, data, state=None):
        metrics = {}
        state, outputs, mets = self.wm.train(data, state)
        metrics.update(mets)
        start = outputs['post']
        reward = lambda seq: self.wm.heads['reward'](seq['feat']).mode()
        metrics.update(self._task_behavior.train(
            self.wm, start, data['is_terminal'], reward))
        if self.config.expl_behavior != 'greedy':
            mets = self._expl_behavior.train(start, outputs, data)[-1]
            metrics.update({'expl_' + key: value for key, value in mets.items()})
        return state, metrics

    # The folllowing methods split the above for offline training
    @tf.function
    def model_train(self, data):
        _, _, metrics = self.wm.train(data)
        return metrics

    @tf.function
    def agent_train(self, data):
        data = self.wm.preprocess(data)
        embed = self.wm.encoder(data)
        start, _ = self.wm.rssm.observe(embed, data['action'], data['is_first'])

        reward = lambda seq: self.penalized_reward(seq)
        metrics = self._task_behavior.train(self.wm, start, data['is_terminal'], reward)
        if self.config.offline_tune_lmbd:
            metrics['lambda'] = tf.exp(self.log_lmbd)
        else:
            metrics['lambda'] = self.lmbd
        return metrics

    @tf.function
    def compute_penalty(self, seq):
        if self.config.offline_penalty_type == 'log_prob_ens':
            dist = self.wm.rssm.get_dist(seq, ensemble=True)
            penalty = tf.math.reduce_std(dist.log_prob(seq['stoch']), axis=0)
        elif self.config.offline_penalty_type == 'meandis':
            dist = self.wm.rssm.get_dist(seq, ensemble=True)
            m = dist.mean()
            mean_pred = tf.math.reduce_mean(m, axis=0)
            penalty = tf.math.reduce_mean(tf.norm(m - mean_pred, axis=[-1, -2]), axis=0)
        elif self.config.offline_penalty_type == 'mixstd_mean':
            dist = self.wm.rssm.get_dist(seq, ensemble=True)
            gm = tfd.MixtureSameFamily(
                mixture_distribution=tfd.Categorical(probs=[1 / self.config.rssm.ensemble] * self.config.rssm.ensemble),
                components_distribution=tfd.BatchReshape(
                    distribution=dist,
                    batch_shape=dist.batch_shape[1:] + dist.batch_shape[0],
                    validate_args=True
                ))
            penalty = tf.math.reduce_mean(gm.stddev(), axis=[-1, -2])
        else:
            penalty = 0

        return penalty

    @tf.function
    def penalized_reward(self, seq):
        rew = self.wm.heads['reward'](seq['feat']).mode()
        penalty = self.compute_penalty(seq)

        if self.config.offline_tune_lmbd:
            with tf.GradientTape() as tape:
                lmbd = tf.exp(self.log_lmbd)
                lambda_loss = tf.math.reduce_mean(
                    self.log_lmbd * (tf.stop_gradient(lmbd * penalty) - self.config.offline_lmbd_cons))
            variables = [self.log_lmbd]
            grads = tape.gradient(lambda_loss, variables)
            self.lmbd_optimizer.apply_gradients(zip(grads, variables))
        else:
            lmbd = self.lmbd

        return rew - lmbd * penalty

    @tf.function
    def report(self, data):
        report = {}
        data = self.wm.preprocess(data)
        for key in self.wm.heads['decoder'].cnn_keys:
            name = key.replace('/', '_')
            report[f'openl_{name}'] = self.wm.video_pred(data, key)
        return report


class WorldModel(common.Module):
    def __init__(self, config, obs_space, tfstep):
        shapes = {k: tuple(v.shape) for k, v in obs_space.items()}
        self.config = config
        self.tfstep = tfstep
        self.rssm = common.EnsembleRSSM(**config.rssm)
        self.encoder = common.Encoder(shapes, **config.encoder)
        self.heads = {
            'decoder': common.Decoder(shapes, **config.decoder),
            'reward': common.MLP([], **config.reward_head),
        }
        if config.pred_discount:
            self.heads['discount'] = common.MLP([], **config.discount_head)
        for name in config.grad_heads:
            assert name in self.heads, name
        self.model_opt = common.Optimizer('model', **config.model_opt)

    def train(self, data, state=None):
        with tf.GradientTape() as model_tape:
            model_loss, state, outputs, metrics = self.loss(data, state)
        modules = [self.encoder, self.rssm, *self.heads.values()]
        metrics.update(self.model_opt(model_tape, model_loss, modules))
        return state, outputs, metrics

    def loss(self, data, state=None):
        data = self.preprocess(data)
        embed = self.encoder(data)
        post, prior = self.rssm.observe(
            embed, data['action'], data['is_first'], state)
        kl_loss, kl_value = self.rssm.kl_loss(post, prior, **self.config.kl)
        assert len(kl_loss.shape) == 0
        likes = {}
        losses = {'kl': kl_loss}
        feat = self.rssm.get_feat(post)
        for name, head in self.heads.items():
            grad_head = (name in self.config.grad_heads)
            inp = feat if grad_head else tf.stop_gradient(feat)
            out = head(inp)
            dists = out if isinstance(out, dict) else {name: out}
            for key, dist in dists.items():
                like = tf.cast(dist.log_prob(data[key]), tf.float32)
                likes[key] = like
                losses[key] = -like.mean()
        model_loss = sum(
            self.config.loss_scales.get(k, 1.0) * v for k, v in losses.items())
        outs = dict(
            embed=embed, feat=feat, post=post,
            prior=prior, likes=likes, kl=kl_value)
        metrics = {f'{name}_loss': value for name, value in losses.items()}
        metrics['model_kl'] = kl_value.mean()
        metrics['prior_ent'] = self.rssm.get_dist(prior).entropy().mean()
        metrics['post_ent'] = self.rssm.get_dist(post).entropy().mean()
        last_state = {k: v[:, -1] for k, v in post.items()}
        return model_loss, last_state, outs, metrics

    def imagine(self, policy, start, is_terminal, horizon):
        flatten = lambda x: x.reshape([-1] + list(x.shape[2:]))
        start = {k: flatten(v) for k, v in start.items()}
        start['feat'] = self.rssm.get_feat(start)
        start['action'] = tf.zeros_like(policy(start['feat']).mode())
        seq = {k: [v] for k, v in start.items()}
        for _ in range(horizon):
            action = policy(tf.stop_gradient(seq['feat'][-1])).sample()
            state = self.rssm.img_step({k: v[-1] for k, v in seq.items()}, action)
            feat = self.rssm.get_feat(state)
            for key, value in {**state, 'action': action, 'feat': feat}.items():
                seq[key].append(value)
        seq = {k: tf.stack(v, 0) for k, v in seq.items()}
        if 'discount' in self.heads:
            disc = self.heads['discount'](seq['feat']).mean()
            if is_terminal is not None:
                # Override discount prediction for the first step with the true
                # discount factor from the replay buffer.
                true_first = 1.0 - flatten(is_terminal).astype(disc.dtype)
                true_first *= self.config.discount
                disc = tf.concat([true_first[None], disc[1:]], 0)
        else:
            disc = self.config.discount * tf.ones(seq['feat'].shape[:-1])
        seq['discount'] = disc
        # Shift discount factors because they imply whether the following state
        # will be valid, not whether the current state is valid.
        seq['weight'] = tf.math.cumprod(
            tf.concat([tf.ones_like(disc[:1]), disc[:-1]], 0), 0)
        return seq

    @tf.function
    def preprocess(self, obs):
        dtype = prec.global_policy().compute_dtype
        obs = obs.copy()
        for key, value in obs.items():
            if key.startswith('log_'):
                continue
            if value.dtype == tf.int32:
                value = value.astype(dtype)
            if value.dtype == tf.uint8:
                value = value.astype(dtype) / 255.0 - 0.5
            obs[key] = value
        obs['reward'] = {
            'identity': tf.identity,
            'sign': tf.sign,
            'tanh': tf.tanh,
        }[self.config.clip_rewards](obs['reward'])
        if 'discount' not in obs:
            obs['discount'] = 1.0 - obs['is_terminal'].astype(dtype)
        obs['discount'] *= self.config.discount
        return obs

    @tf.function
    def video_pred(self, data, key):
        decoder = self.heads['decoder']
        truth = data[key][:6] + 0.5
        embed = self.encoder(data)
        states, _ = self.rssm.observe(
            embed[:6, :5], data['action'][:6, :5], data['is_first'][:6, :5])
        recon = decoder(self.rssm.get_feat(states))[key].mode()[:6]
        init = {k: v[:, -1] for k, v in states.items()}
        prior = self.rssm.imagine(data['action'][:6, 5:], init)
        openl = decoder(self.rssm.get_feat(prior))[key].mode()
        model = tf.concat([recon[:, :5] + 0.5, openl + 0.5], 1)
        error = (model - truth + 1) / 2
        video = tf.concat([truth, model, error], 2)
        B, T, H, W, C = video.shape
        return video.transpose((1, 2, 0, 3, 4)).reshape((T, H, B * W, C))


class ActorCritic(common.Module):
    def __init__(self, config, act_space, tfstep):
        self.config = config
        self.act_space = act_space
        self.tfstep = tfstep
        discrete = hasattr(act_space, 'n')
        if self.config.actor.dist == 'auto':
            self.config = self.config.update({
                'actor.dist': 'onehot' if discrete else 'trunc_normal'})
        if self.config.actor_grad == 'auto':
            self.config = self.config.update({
                'actor_grad': 'reinforce' if discrete else 'dynamics'})
        self.actor = common.MLP(act_space.shape[0], **self.config.actor)
        self.critic = common.MLP([], **self.config.critic)
        if self.config.slow_target:
            self._target_critic = common.MLP([], **self.config.critic)
            self._updates = tf.Variable(0, tf.int64)
        else:
            self._target_critic = self.critic
        self.actor_opt = common.Optimizer('actor', **self.config.actor_opt)
        self.critic_opt = common.Optimizer('critic', **self.config.critic_opt)
        self.rewnorm = common.StreamNorm(**self.config.reward_norm)

    def train(self, world_model, start, is_terminal, reward_fn):
        metrics = {}
        hor = self.config.imag_horizon
        # The weights are is_terminal flags for the imagination start states.
        # Technically, they should multiply the losses from the second trajectory
        # step onwards, which is the first imagined step. However, we are not
        # training the action that led into the first step anyway, so we can use
        # them to scale the whole sequence.
        with tf.GradientTape() as actor_tape:
            seq = world_model.imagine(self.actor, start, is_terminal, hor)
            reward = reward_fn(seq)
            seq['reward'], mets1 = self.rewnorm(reward)
            mets1 = {f'reward_{k}': v for k, v in mets1.items()}
            target, mets2 = self.target(seq)
            actor_loss, mets3 = self.actor_loss(seq, target)
        with tf.GradientTape() as critic_tape:
            critic_loss, mets4 = self.critic_loss(seq, target)
        metrics.update(self.actor_opt(actor_tape, actor_loss, self.actor))
        metrics.update(self.critic_opt(critic_tape, critic_loss, self.critic))
        metrics.update(**mets1, **mets2, **mets3, **mets4)
        self.update_slow_target()  # Variables exist after first forward pass.
        return metrics

    def actor_loss(self, seq, target):
        # Actions:      0   [a1]  [a2]   a3
        #                  ^  |  ^  |  ^  |
        #                 /   v /   v /   v
        # States:     [z0]->[z1]-> z2 -> z3
        # Targets:     t0   [t1]  [t2]
        # Baselines:  [v0]  [v1]   v2    v3
        # Entropies:        [e1]  [e2]
        # Weights:    [ 1]  [w1]   w2    w3
        # Loss:              l1    l2
        metrics = {}
        # Two states are lost at the end of the trajectory, one for the boostrap
        # value prediction and one because the corresponding action does not lead
        # anywhere anymore. One target is lost at the start of the trajectory
        # because the initial state comes from the replay buffer.
        policy = self.actor(tf.stop_gradient(seq['feat'][:-2]))
        if self.config.actor_grad == 'dynamics':
            objective = target[1:]
        elif self.config.actor_grad == 'reinforce':
            baseline = self._target_critic(seq['feat'][:-2]).mode()
            advantage = tf.stop_gradient(target[1:] - baseline)
            objective = policy.log_prob(seq['action'][1:-1]) * advantage
        elif self.config.actor_grad == 'both':
            baseline = self._target_critic(seq['feat'][:-2]).mode()
            advantage = tf.stop_gradient(target[1:] - baseline)
            objective = policy.log_prob(seq['action'][1:-1]) * advantage
            mix = common.schedule(self.config.actor_grad_mix, self.tfstep)
            objective = mix * target[1:] + (1 - mix) * objective
            metrics['actor_grad_mix'] = mix
        else:
            raise NotImplementedError(self.config.actor_grad)
        ent = policy.entropy()
        ent_scale = common.schedule(self.config.actor_ent, self.tfstep)
        objective += ent_scale * ent
        weight = tf.stop_gradient(seq['weight'])
        actor_loss = -(weight[:-2] * objective).mean()
        metrics['actor_ent'] = ent.mean()
        metrics['actor_ent_scale'] = ent_scale
        return actor_loss, metrics

    def critic_loss(self, seq, target):
        # States:     [z0]  [z1]  [z2]   z3
        # Rewards:    [r0]  [r1]  [r2]   r3
        # Values:     [v0]  [v1]  [v2]   v3
        # Weights:    [ 1]  [w1]  [w2]   w3
        # Targets:    [t0]  [t1]  [t2]
        # Loss:        l0    l1    l2
        dist = self.critic(seq['feat'][:-1])
        target = tf.stop_gradient(target)
        weight = tf.stop_gradient(seq['weight'])
        critic_loss = -(dist.log_prob(target) * weight[:-1]).mean()
        metrics = {'critic': dist.mode().mean()}
        return critic_loss, metrics

    def target(self, seq):
        # States:     [z0]  [z1]  [z2]  [z3]
        # Rewards:    [r0]  [r1]  [r2]   r3
        # Values:     [v0]  [v1]  [v2]  [v3]
        # Discount:   [d0]  [d1]  [d2]   d3
        # Targets:     t0    t1    t2
        reward = tf.cast(seq['reward'], tf.float32)
        disc = tf.cast(seq['discount'], tf.float32)
        value = self._target_critic(seq['feat']).mode()
        # Skipping last time step because it is used for bootstrapping.
        target = common.lambda_return(
            reward[:-1], value[:-1], disc[:-1],
            bootstrap=value[-1],
            lambda_=self.config.discount_lambda,
            axis=0)
        metrics = {'critic_slow': value.mean(), 'critic_target': target.mean()}
        return target, metrics

    def update_slow_target(self):
        if self.config.slow_target:
            if self._updates % self.config.slow_target_update == 0:
                mix = 1.0 if self._updates == 0 else float(
                    self.config.slow_target_fraction)
                for s, d in zip(self.critic.variables, self._target_critic.variables):
                    d.assign(mix * s + (1 - mix) * d)
            self._updates.assign_add(1)