|
|
|
|
|
"""Watkins Marine Mammal Sound Database.""" |
|
|
|
|
|
import os |
|
import random |
|
import textwrap |
|
import datasets |
|
import itertools |
|
import typing as tp |
|
from pathlib import Path |
|
from collections import defaultdict |
|
from sklearn.model_selection import train_test_split |
|
|
|
SAMPLE_RATE = 16_000 |
|
|
|
_COMPRESSED_FILENAME = 'watkins.zip' |
|
|
|
CLASSES = ['Atlantic_Spotted_Dolphin', 'Bearded_Seal', 'Beluga,_White_Whale', 'Bottlenose_Dolphin', 'Bowhead_Whale', 'Clymene_Dolphin', 'Common_Dolphin', 'False_Killer_Whale', 'Fin,_Finback_Whale', 'Frasers_Dolphin', 'Grampus,_Rissos_Dolphin', 'Harp_Seal', 'Humpback_Whale', 'Killer_Whale', 'Leopard_Seal', 'Long-Finned_Pilot_Whale', 'Melon_Headed_Whale', 'Minke_Whale', 'Narwhal', 'Northern_Right_Whale', 'Pantropical_Spotted_Dolphin', 'Ross_Seal', 'Rough-Toothed_Dolphin', 'Short-Finned_Pacific_Pilot_Whale', 'Southern_Right_Whale', 'Sperm_Whale', 'Spinner_Dolphin', 'Striped_Dolphin', 'Walrus', 'White-beaked_Dolphin', 'White-sided_Dolphin'] |
|
|
|
|
|
class WmmsConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for WMMS.""" |
|
|
|
def __init__(self, features, **kwargs): |
|
super(WmmsConfig, self).__init__(version=datasets.Version("0.0.1", ""), **kwargs) |
|
self.features = features |
|
|
|
|
|
class WMMS(datasets.GeneratorBasedBuilder): |
|
|
|
BUILDER_CONFIGS = [ |
|
WmmsConfig( |
|
features=datasets.Features( |
|
{ |
|
"file": datasets.Value("string"), |
|
"audio": datasets.Audio(sampling_rate=SAMPLE_RATE), |
|
"species": datasets.Value("string"), |
|
"label": datasets.ClassLabel(names=CLASSES), |
|
} |
|
), |
|
name="wmms", |
|
description='', |
|
), |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description="Database can be downloaded from https://archive.org/details/watkins_202104", |
|
features=self.config.features, |
|
supervised_keys=None, |
|
homepage="", |
|
citation="", |
|
task_templates=None, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
archive_path = dl_manager.extract(_COMPRESSED_FILENAME) |
|
extensions = ['.wav'] |
|
|
|
_remove_class = 'Weddell_Seal' |
|
_, _walker = fast_scandir(archive_path, extensions, recursive=True) |
|
filepaths = [f for f in _walker if default_find_classes(f) != _remove_class] |
|
labels = [default_find_classes(f) for f in filepaths] |
|
|
|
|
|
class_to_files = defaultdict(list) |
|
for filepath, label in zip(filepaths, labels): |
|
class_to_files[label].append(filepath) |
|
|
|
|
|
n_shot = 5 |
|
test_files, test_labels = [], [] |
|
train_files, train_labels = [], [] |
|
|
|
for label, files in class_to_files.items(): |
|
if len(files) < n_shot: |
|
raise ValueError(f"Not enough samples for class {label}") |
|
|
|
random.Random(914).shuffle(files) |
|
|
|
test_files.extend(files[:n_shot]) |
|
test_labels.extend([label] * n_shot) |
|
|
|
train_files.extend(files[n_shot:]) |
|
train_labels.extend([label] * (len(files) - n_shot)) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, gen_kwargs={"audio_paths": train_files, "split": "train"} |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, gen_kwargs={"audio_paths": test_files, "split": "test"} |
|
), |
|
] |
|
|
|
def _generate_examples(self, audio_paths, split=None): |
|
for guid, audio_path in enumerate(audio_paths): |
|
yield guid, { |
|
"id": str(guid), |
|
"file": audio_path, |
|
"audio": audio_path, |
|
"species": default_find_classes(audio_path), |
|
"label": default_find_classes(audio_path), |
|
} |
|
|
|
|
|
def default_find_classes(audio_path): |
|
return Path(audio_path).parent.stem |
|
|
|
|
|
def fast_scandir(path: str, exts: tp.List[str], recursive: bool = False): |
|
|
|
|
|
subfolders, files = [], [] |
|
|
|
try: |
|
for f in os.scandir(path): |
|
try: |
|
if f.is_dir(): |
|
subfolders.append(f.path) |
|
elif f.is_file(): |
|
if os.path.splitext(f.name)[1].lower() in exts: |
|
files.append(f.path) |
|
except Exception: |
|
pass |
|
except Exception: |
|
pass |
|
|
|
if recursive: |
|
for path in list(subfolders): |
|
sf, f = fast_scandir(path, exts, recursive=recursive) |
|
subfolders.extend(sf) |
|
files.extend(f) |
|
|
|
return subfolders, files |