yangwang825 commited on
Commit
eec73ba
·
verified ·
1 Parent(s): c7656a3

Update wmms.py

Browse files
Files changed (1) hide show
  1. wmms.py +13 -13
wmms.py CHANGED
@@ -17,7 +17,7 @@ SAMPLE_RATE = 16_000
17
 
18
  _COMPRESSED_FILENAME = 'watkins.zip'
19
 
20
- CLASSES = ['Atlantic_Spotted_Dolphin', 'Bearded_Seal', 'Beluga,_White_Whale', 'Bottlenose_Dolphin', 'Bowhead_Whale', 'Clymene_Dolphin', 'Common_Dolphin', 'False_Killer_Whale', 'Fin,_Finback_Whale', 'Frasers_Dolphin', 'Grampus,_Rissos_Dolphin', 'Harp_Seal', 'Humpback_Whale', 'Killer_Whale', 'Leopard_Seal', 'Long-Finned_Pilot_Whale', 'Melon_Headed_Whale', 'Minke_Whale', 'Narwhal', 'Northern_Right_Whale', 'Pantropical_Spotted_Dolphin', 'Ross_Seal', 'Rough-Toothed_Dolphin', 'Short-Finned_Pacific_Pilot_Whale', 'Southern_Right_Whale', 'Sperm_Whale', 'Spinner_Dolphin', 'Striped_Dolphin', 'Walrus', 'Weddell_Seal', 'White-beaked_Dolphin', 'White-sided_Dolphin']
21
 
22
 
23
  class WmmsConfig(datasets.BuilderConfig):
@@ -59,33 +59,33 @@ class WMMS(datasets.GeneratorBasedBuilder):
59
  """Returns SplitGenerators."""
60
  archive_path = dl_manager.extract(_COMPRESSED_FILENAME)
61
  extensions = ['.wav']
62
- _, filepaths = fast_scandir(archive_path, extensions, recursive=True)
63
- labels = [default_find_classes(f) for f in filepaths]
64
 
65
- # train_walker, test_walker = train_test_split(
66
- # _walker, test_size=0.2, random_state=914, stratify=[default_find_classes(f) for f in _walker]
67
- # )
 
68
 
69
  # Step 1: Organize samples by class
70
  class_to_files = defaultdict(list)
71
  for filepath, label in zip(filepaths, labels):
72
  class_to_files[label].append(filepath)
73
 
74
- # Step 2: Select exactly 2 samples per class for the test set
 
75
  test_files, test_labels = [], []
76
  train_files, train_labels = [], []
77
 
78
  for label, files in class_to_files.items():
79
- if len(files) < 2:
80
- raise ValueError(f"Not enough samples for class {label}") # Ensure each class has at least 2 samples
81
 
82
  random.Random(914).shuffle(files) # Shuffle to ensure randomness
83
 
84
- test_files.extend(files[:2]) # Pick first 2 for test
85
- test_labels.extend([label] * 2)
86
 
87
- train_files.extend(files[2:]) # Remaining go to train
88
- train_labels.extend([label] * (len(files) - 2))
89
 
90
  return [
91
  datasets.SplitGenerator(
 
17
 
18
  _COMPRESSED_FILENAME = 'watkins.zip'
19
 
20
+ CLASSES = ['Atlantic_Spotted_Dolphin', 'Bearded_Seal', 'Beluga,_White_Whale', 'Bottlenose_Dolphin', 'Bowhead_Whale', 'Clymene_Dolphin', 'Common_Dolphin', 'False_Killer_Whale', 'Fin,_Finback_Whale', 'Frasers_Dolphin', 'Grampus,_Rissos_Dolphin', 'Harp_Seal', 'Humpback_Whale', 'Killer_Whale', 'Leopard_Seal', 'Long-Finned_Pilot_Whale', 'Melon_Headed_Whale', 'Minke_Whale', 'Narwhal', 'Northern_Right_Whale', 'Pantropical_Spotted_Dolphin', 'Ross_Seal', 'Rough-Toothed_Dolphin', 'Short-Finned_Pacific_Pilot_Whale', 'Southern_Right_Whale', 'Sperm_Whale', 'Spinner_Dolphin', 'Striped_Dolphin', 'Walrus', 'White-beaked_Dolphin', 'White-sided_Dolphin']
21
 
22
 
23
  class WmmsConfig(datasets.BuilderConfig):
 
59
  """Returns SplitGenerators."""
60
  archive_path = dl_manager.extract(_COMPRESSED_FILENAME)
61
  extensions = ['.wav']
 
 
62
 
63
+ _remove_class = 'Weddell_Seal' # only 2 samples in the dataset
64
+ _, _walker = fast_scandir(archive_path, extensions, recursive=True)
65
+ filepaths = [f for f in _walker if default_find_classes(f) != _remove_class]
66
+ labels = [default_find_classes(f) for f in filepaths]
67
 
68
  # Step 1: Organize samples by class
69
  class_to_files = defaultdict(list)
70
  for filepath, label in zip(filepaths, labels):
71
  class_to_files[label].append(filepath)
72
 
73
+ # Step 2: Select exactly n samples per class for the test set
74
+ n_shot = 5
75
  test_files, test_labels = [], []
76
  train_files, train_labels = [], []
77
 
78
  for label, files in class_to_files.items():
79
+ if len(files) < n_shot:
80
+ raise ValueError(f"Not enough samples for class {label}") # Ensure each class has at least n_shot samples
81
 
82
  random.Random(914).shuffle(files) # Shuffle to ensure randomness
83
 
84
+ test_files.extend(files[:n_shot]) # Pick first n_shot for test
85
+ test_labels.extend([label] * n_shot)
86
 
87
+ train_files.extend(files[n_shot:]) # Remaining go to train
88
+ train_labels.extend([label] * (len(files) - n_shot))
89
 
90
  return [
91
  datasets.SplitGenerator(