repo_name
stringlengths
5
92
path
stringlengths
4
221
copies
stringclasses
19 values
size
stringlengths
4
6
content
stringlengths
766
896k
license
stringclasses
15 values
hash
int64
-9,223,277,421,539,062,000
9,223,102,107B
line_mean
float64
6.51
99.9
line_max
int64
32
997
alpha_frac
float64
0.25
0.96
autogenerated
bool
1 class
ratio
float64
1.5
13.6
config_test
bool
2 classes
has_no_keywords
bool
2 classes
few_assignments
bool
1 class
fos/fos-legacy
fos/actor/odfslicer.py
1
2054
import numpy as np class ODF_Slice(object): def __init__(self,odfs,vertices,faces,noiso,batch,group=None): J=0 self.odfs_no=J self.vertex_list=(odfs.shape[0]*odfs.shape[1])*[None] for index in np.ndindex(odfs.shape[:2]): values=odfs[index] if noiso: values=np.interp(values,[values.min(),values.max()],[0,.5]) inds=faces.ravel().tolist() shift=index+(0,) print J,odfs.shape[0]*odfs.shape[1] points=np.dot(np.diag(values),vertices) points=points+np.array(shift) verx=points.ravel().tolist() normals=np.zeros((len(vertices),3)) ones_=np.ones(len(values)) colors=np.vstack((values,ones_,ones_)).T colors=colors.ravel().tolist() p=vertices l=faces trinormals=np.cross(p[l[:,0]]-p[l[:,1]],\ p[l[:,1]]-p[l[:,2]],\ axisa=1,axisb=1) for (i,lp) in enumerate(faces): normals[lp]+=trinormals[i] div=np.sqrt(np.sum(normals**2,axis=1)) div=div.reshape(len(div),1) normals=(normals/div) norms=np.array(normals).ravel().tolist() self.vertex_list[i] = batch.add_indexed(len(vertices),\ GL_TRIANGLES,\ group,\ inds,\ ('v3d/static',verx),\ ('n3d/static',norms),\ ('c3d/static',colors)) J+=1 def update(self): pass def delete(self): for i in range(self.odfs_no): self.vertex_list.delete()
bsd-3-clause
-3,123,293,143,917,437,000
32.672131
75
0.399708
false
4.183299
false
false
false
kkoksvik/FreeCAD
src/Mod/Start/StartPage/StartPage.py
2
26929
#*************************************************************************** #* * #* Copyright (c) 2012 * #* Yorik van Havre <[email protected]> * #* * #* This program is free software; you can redistribute it and/or modify * #* it under the terms of the GNU Lesser General Public License (LGPL) * #* as published by the Free Software Foundation; either version 2 of * #* the License, or (at your option) any later version. * #* for detail see the LICENCE text file. * #* * #* This program is distributed in the hope that it will be useful, * #* but WITHOUT ANY WARRANTY; without even the implied warranty of * #* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * #* GNU Library General Public License for more details. * #* * #* You should have received a copy of the GNU Library General Public * #* License along with this program; if not, write to the Free Software * #* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 * #* USA * #* * #*************************************************************************** # This is the start page template import os,FreeCAD,FreeCADGui,tempfile,time,zipfile,urllib,re,cStringIO from PySide import QtGui from xml.etree.ElementTree import parse FreeCADGui.addLanguagePath(":/translations") FreeCADGui.updateLocale() def translate(context,text): "convenience function for the Qt translator" # return str(QtGui.QApplication.translate(context, text, None, QtGui.QApplication.UnicodeUTF8).toUtf8()) u = QtGui.QApplication.translate(context, text, None, QtGui.QApplication.UnicodeUTF8).encode("utf8") s = cStringIO.StringIO() for i in u: if ord(i) == 39: s.write("\\'") else: s.write(i) t = s.getvalue() s.close() return t # texts to be translated text01 = translate("StartPage","FreeCAD Start Center") text02 = translate("StartPage","Start a new project") text03 = translate("StartPage","Recent Files") text04 = translate("StartPage","Latest videos") text05 = translate("StartPage","Latest commits") text06 = translate("StartPage","On the web") text07 = translate("StartPage","This is the FreeCAD Homepage. Here you will be able to find a lot of information about FreeCAD, including tutorials, examples and user documentation.") text08 = translate("StartPage","FreeCAD Homepage") text09 = translate("StartPage","Example projects") text10 = translate("StartPage","Schenkel STEP file") text11 = translate("StartPage","Load a PartDesign example") text12 = translate("StartPage","Load a Drawing extraction") text13 = translate("StartPage","Load a Robot simulation example") text14 = translate("StartPage","Projects from the Web") text15 = translate("StartPage","Schenkel STEP") text16 = translate("StartPage","Complex Part") text17 = translate("StartPage","Close this window after opening or creating a file") text18 = translate("StartPage","Don't show me this window again next time") text19 = translate("StartPage","Designing parts") text20 = translate("StartPage","The <b>Part Design</b> workbench is designed to create complex pieces based on constrained 2D sketches. Use it to draw 2D shapes, constrain some of their elements and extrude them to form 3D pieces.") text21 = translate("StartPage","Example workflow") text22 = translate("StartPage","Part Design") text23 = translate("StartPage","Designing architectural elements") text24 = translate("StartPage","The <b>Architectural Design</b> workbench is specially designed for working with architectural elements such as walls or windows. Start by drawing 2D shapes, and use them as guides to build architecutral objects.") text25 = translate("StartPage","Architectural Design") text26 = translate("StartPage","Working with Meshes") text27 = translate("StartPage","The <b>Mesh Workbench</b> is used to work with Mesh objects. Meshes are simpler 3D objects than Part objects, but they are often easier to import and export to/from other applications.") text28 = translate("StartPage","FreeCAD offers you several tools to convert between Mesh and Part objects.") text29 = translate("StartPage","Work with Meshes") text30 = translate("StartPage","The complete workbench") text31 = translate("StartPage","FreeCAD Complete workbench") text32 = translate("StartPage","populated with some of the most commonly used tools.") text33 = translate("StartPage","file size:") text34 = translate("StartPage","creation time:") text35 = translate("StartPage","last modified:") text36 = translate("StartPage","location:") text37 = translate("StartPage","User manual") text38 = translate("StartPage","http://www.freecadweb.org/wiki/index.php?title=Online_Help_Toc") text39 = translate("StartPage","Tutorials") text40 = translate("StartPage","Python resources") text41 = translate("StartPage","File not found") text42 = translate("StartPage","from <a href=http://twitter.com/FreeCADNews>@FreeCADNews</a>") text43 = translate("StartPage","The FreeCAD-tutorial blog") text44 = translate("StartPage","from <a href=http://www.youtube.com/user/FreeCADNews?feature=mhee>FreeCADNews channel</a>") text45 = translate("StartPage","This is the official user manual of FreeCAD, built, maintained and translated by the FreeCAD community.") text46 = translate("StartPage","The tutorials section on the FreeCAD website") text47 = translate("StartPage","The section of the FreeCAD website dedicated to python scripting, with examples, explanations, and API commands.") text48 = translate("StartPage","A blog dedicated to teaching FreeCAD, maintained by members of the FreeCAD community") text49 = translate("StartPage","Getting started") text50 = translate("StartPage","The FreeCAD interface is divided in workbenches, which are sets of tools suited for a specific task. You can start with one of the workbenches in this list, or with the complete workbench, which presents you with some of the most used tools gathered from other workbenches. Click to read more about workbenches on the FreeCAD website.") text51 = translate("StartPage","http://www.freecadweb.org/wiki/index.php?title=Workbenches") text52 = translate("StartPage","Ship Design") text53 = translate("StartPage","Designing and calculating ships") text54 = translate("StartPage","The <b>Ship Design</b> module offers several tools to help ship designers to view, model and calculate profiles and other specific properties of ship hulls.") text55 = translate("StartPage","Load an Architectural example model") text56 = translate("StartPage","http://www.freecadweb.org/wiki/index.php?title=Tutorials") text57 = translate("StartPage","http://www.freecadweb.org/wiki/index.php?title=Power_users_hub") text58 = translate("StartPage","Your version of FreeCAD is up to date.") text59 = translate("StartPage","There is a new release of FreeCAD available.") text60 = translate("StartPage","Load an FEM example analysis") text61 = translate("StartPage","Obtain a development version") text62 = translate("StartPage","<b>Development versions</b> are made available by community members from time to time and usually contain the latest changes, but are more likely to contain bugs.") text63 = translate("StartPage","See all commits") # get FreeCAD version v = FreeCAD.Version() vmajor = v[0] vminor = v[1] vbuild = v[2].split(" ")[0] # here is the html page skeleton page = """ <html> <head> <title>FreeCAD - Start page</title> <script language="javascript"> var linkDescriptions = []; function JSONscriptRequest(fullUrl) { // REST request path this.fullUrl = fullUrl; // Get the DOM location to put the script tag this.headLoc = document.getElementsByTagName("head").item(0); // Generate a unique script tag id this.scriptId = 'JscriptId' + JSONscriptRequest.scriptCounter++; } // Static script ID counter JSONscriptRequest.scriptCounter = 1; JSONscriptRequest.prototype.buildScriptTag = function () { // Create the script tag this.scriptObj = document.createElement("script"); // Add script object attributes this.scriptObj.setAttribute("type", "text/javascript"); this.scriptObj.setAttribute("charset", "utf-8"); this.scriptObj.setAttribute("src", this.fullUrl); this.scriptObj.setAttribute("id", this.scriptId); } JSONscriptRequest.prototype.removeScriptTag = function () { // Destroy the script tag this.headLoc.removeChild(this.scriptObj); } JSONscriptRequest.prototype.addScriptTag = function () { // Create the script tag this.headLoc.appendChild(this.scriptObj); } function show(theText) { ddiv = document.getElementById("description"); if (theText == "") theText = "&nbsp;"; ddiv.innerHTML = theText; } function checkVersion(data) { vdiv = document.getElementById("versionbox"); var cmajor = """ + vmajor + """; var cminor = """ + vminor + """; var cbuild = """ + vbuild + """; var amajor = data[0]['major']; var aminor = data[0]['minor']; var abuild = data[0]['build']; if (cmajor >= amajor && cminor >= aminor && cbuild >= abuild) { vdiv.innerHTML=" """ + text58 + """: """ + vmajor + """.""" + vminor + """.""" + vbuild + """"; } else { vdiv.innerHTML="<a href=exthttp://github.com/FreeCAD/FreeCAD/releases/latest> """ + text59 + """:"+amajor+"."+aminor+"."+abuild+"</a>"; } } function load() { // load latest news ddiv = document.getElementById("news"); ddiv.innerHTML = "Connecting..."; var tobj=new JSONscriptRequest('https://api.github.com/repos/FreeCAD/FreeCAD/commits?callback=showTweets'); tobj.buildScriptTag(); // Build the script tag tobj.addScriptTag(); // Execute (add) the script tag ddiv.innerHTML = "Downloading latest news..."; // load version var script = document.createElement('script'); script.src = 'http://www.freecadweb.org/version.php?callback=checkVersion'; document.body.appendChild(script); } function stripTags(text) { // from http://www.pagecolumn.com/tool/all_about_html_tags.htm /<\s*\/?\s*span\s*.*?>/g stripped = text.replace("<table", "<div"); stripped = stripped.replace("</table", "</div"); stripped = stripped.replace("<tr", "<tr"); stripped = stripped.replace("</tr", "</tr"); stripped = stripped.replace("<td", "<td"); stripped = stripped.replace("</td", "</td"); stripped = stripped.replace("555px", "auto"); stripped = stripped.replace("border:1px", "border:0px"); stripped = stripped.replace("color:#000000;",""); return stripped; } function showTweets(data) { ddiv = document.getElementById('news'); ddiv.innerHTML = "Received"; var html = ['<ul>']; for (var i = 0; i < 15; i++) { html.push('<li><img src="web.png">&nbsp;<a href="ext', data.data[i].commit.url, '" onMouseOver="showDescr(', i+1, ')" onMouseOut="showDescr()">', data.data[i].commit.message, '</a></li>'); if ("message" in data.data[i].commit) { linkDescriptions.push(stripTags(data.data[i].commit.message)+'<br/>'+data.data[i].commit.author.name+'<br/>'+data.data[i].commit.author.date); } else { linkDescriptions.push(""); } } html.push('</ul>'); html.push('<a href="exthttp://github.com/FreeCAD/FreeCAD/commits/master">""" + text63 + """<a/>'); ddiv.innerHTML = html.join(''); } function showDescr(d) { if (d) { show(linkDescriptions[d-1]); } else { show(""); } } function scroller() { desc = document.getElementById("description"); base = document.getElementById("column").offsetTop; scro = window.scrollY; if (scro > base) { desc.className = "stick"; } else { desc.className = ""; } } document.onmousemove=scroller; </script> <style type="text/css"> body { background: #basecolor; color: #textcolor; font-family: Arial, Helvetica, Sans; font-size: 11px; } a { color: #linkcolor; font-weight: bold; text-decoration: none; padding: 2px; } a:hover { color: white; background: #linkcolor; border-radius: 5px; } p { text-align: justify; } .left { text-align: left; } h1 { font-size: 3em; letter-spacing: 2px; padding: 20px 0 0 80px; align: bottom; color: #ffffff; } h2 { font-size: 1.2em; } ul { list-style-type: none; padding: 0; } #column { margin: 0 350px 0 10px; } #column img { max-width: 14px; } .block { background: #windowcolor; border-radius: 5px; padding: 8px; margin-bottom: 10px; color: #windowtextcolor; width: auto; } .options { clear: both; } .from { font-size: 0.7em; font-weight: normal; } #versionbox { float: right; text-align: right; font-size: 0.33em; font-weight: normal; padding-right: 20px; letter-spacing: 0; color: #ffffff; } #description { background: #windowcolor; border-radius: 5px; padding: 8px; color: #windowtextcolor; float: right; width: 316px; right: 10px; height: 100%; position: relative; } #description img { max-width: 300px; clear: both; } pre { width: 300px !important; white-space: pre-wrap; } .stick { position: fixed !important; top: 0px; right: 18px !important; } </style> </head> <body onload="load()"> <h1><img src="FreeCAD.png">&nbsp;""" + text01 + """<div id=versionbox>&nbsp</div></h1> <div id="description"> &nbsp; </div> <div id="column"> <div class="block"> <h2>""" + text02 + """</h2> defaultworkbenches </div> <div class="block"> <h2>""" + text03 + """</h2> recentfiles </div> <div class="block"> <h2>""" + text05 + """</h2> <div id="news">news feed</div> </div> <div class="block"> <h2>""" + text06 + """</h2> defaultlinks </div> <div class="block"> <h2>""" + text09 + """</h2> defaultexamples </div> customblocks </div> <!-- <form class="options"> <input type="checkbox" name="closeThisDialog"> """ + text17 + """<br/> <input type="checkbox" name="dontShowAgain"> """ + text18 + """ </form> --> </body> </html> """ def getWebExamples(): return """ <ul> <li><a href="http://freecad-project.de/svn/ExampleData/FileFormates/Schenkel.stp">""" + text15 + """</a></li> <li><a href="http://freecad-project.de/svn/ExampleData/Examples/CAD/Complex.FCStd">""" + text16 + """</a></li> </ul>""" def getExamples(): return """ <ul> <li><img src="FreeCAD.png" style="width: 16px">&nbsp;<a href="LoadSchenkel.py">""" + text10 + """</a></li> <li><img src="FreeCAD.png" style="width: 16px">&nbsp;<a href="LoadPartDesignExample.py">""" + text11 + """</a></li> <li><img src="FreeCAD.png" style="width: 16px">&nbsp;<a href="LoadDrawingExample.py">""" + text12 + """</a></li> <li><img src="FreeCAD.png" style="width: 16px">&nbsp;<a href="LoadRobotExample.py">""" + text13 + """</a></li> <li><img src="FreeCAD.png" style="width: 16px">&nbsp;<a href="LoadArchExample.py">""" + text55 + """</a></li> <li><img src="FreeCAD.png" style="width: 16px">&nbsp;<a href="LoadFemExample.py">""" + text60 + """</a></li> </ul>""" def getLinks(): return """ <ul> <li><img src="web.png">&nbsp; <a onMouseover="show('<p>""" + text07 + """</p>')" onMouseout="show('')" href="exthttp://www.freecadweb.org/">""" + text08 + """</a></li> <li><img src="web.png">&nbsp; <a onMouseover="show('<p>""" + text45 + """</p>')" onMouseout="show('')" href=ext""" + text38 + """>""" + text37 + """</a></li> <li><img src="web.png">&nbsp; <a onMouseover="show('<p>""" + text46 + """</p>')" onMouseout="show('')" href=ext""" + text56 + """>""" + text39 + """</a></li> <li><img src="web.png">&nbsp; <a onMouseover="show('<p>""" + text47 + """</p>')" onMouseout="show('')" href=ext""" + text57 + """>""" + text40 + """</a></li> <li><img src="web.png">&nbsp; <a onMouseover="show('<p>""" + text48 + """</p>')" onMouseout="show('')" href="exthttp://freecad-tutorial.blogspot.com/">""" + text43 + """</a></li> <li><img src="web.png">&nbsp; <a href="exthttp://github.com/FreeCAD/FreeCAD/releases" onMouseOver="show('<p>""" + text62 + """</p>')" onMouseOut="show('')">""" + text61 + """</a></li> </ul>""" def getWorkbenches(): return """ <ul> <li><img src="blank.png">&nbsp; <a onMouseover="show('<h3>""" + text49 + """</h3> \ <p>""" + text50 + """</p>')" onMouseout="show('')" href=""" + text51 + """>""" + text49 + """</a> </li> <li><img src="PartDesign.png">&nbsp; <a onMouseover="show('<h3>""" + text19 + """</h3> \ <p>""" + text20 + """</p><p><small>""" + text21 + """ \ :</small></p><img src=PartDesignExample.png>')" onMouseout="show('')" href="PartDesign.py">""" + text22 + """</a> </li> <li><img src="ArchDesign.png">&nbsp; <a onMouseover="show('<h3>""" + text23 + """</h3> \ <p>""" + text24 + """</p><p><small>""" + text21 + """ \ :</small></p><img src=ArchExample.png>')" onMouseout="show('')" href="ArchDesign.py">""" + text25 + """</a> </li> <li><img src="Ship.png">&nbsp; <a onMouseover="show('<h3>""" + text53 + """</h3> \ <p>""" + text54 + """</p><p><small>""" + text21 + """ \ :</small></p><img src=ShipExample.png>')" onMouseout="show('')" href="Ship.py">""" + text52 + """</a> </li> <li><img src="Mesh.png">&nbsp; <a onMouseover="show('<h3>""" + text26 + """</h3> \ <p>""" + text27 + """</p><p>""" + text28 + """</p>')" onMouseout="show('')" href="Mesh.py">""" + text29 + """</a> </li> </ul>""" def getInfo(filename): "returns available file information" def getLocalTime(timestamp): "returns a local time from a timestamp" return time.strftime("%m/%d/%Y %H:%M:%S",time.localtime(timestamp)) def getSize(size): "returns a human-readable size" if size > 1024*1024: hsize = str(size/(1024*1024)) + "Mb" elif size > 1024: hsize = str(size/1024) + "Kb" else: hsize = str(size) + "b" return hsize html = '<h3>'+os.path.basename(filename)+'</h3>' if os.path.exists(filename): # get normal file info s = os.stat(filename) html += "<p>" + text33 + " " + getSize(s.st_size) + "<br/>" html += text34 + " " + getLocalTime(s.st_ctime) + "<br/>" html += text35 + " " + getLocalTime(s.st_mtime) + "<br/>" html += "<span>" + text36 + " " + filename + "</span></p>" # get additional info from fcstd files if os.path.splitext(filename)[1].upper() in [".FCSTD"]: zfile=zipfile.ZipFile(filename) files=zfile.namelist() # check for meta-file if it's really a FreeCAD document if files[0] == "Document.xml": html += "<p>FreeCAD Standard File</p>" image="thumbnails/Thumbnail.png" if image in files: image=zfile.read(image) thumbfile = tempfile.mkstemp(suffix='.png')[1] thumb = open(thumbfile,"wb") thumb.write(image) thumb.close() html += '<img src=file://' html += thumbfile + '><br/>' else: html += "<p>" + text41 + "</p>" return html def getRecentFiles(): "returns a list of 3 latest recent files" rf = FreeCAD.ParamGet("User parameter:BaseApp/Preferences/RecentFiles") ct = rf.GetInt("RecentFiles") html = '<ul>' for i in range(3): if i < ct: mr = rf.GetString("MRU%d" % (i)) if os.path.exists(mr): fn = os.path.basename(mr) html += '<li>' if mr[-5:].upper() == "FCSTD": html += '<img src="freecad-doc.png" style="width: 16px">&nbsp;' else: html += '<img src="blank.png" style="width: 16px">&nbsp;' html += '<a ' html += 'onMouseover="show(\''+getInfo(mr)+'\')" ' html += 'onMouseout="show(\'\')" ' html += 'href="LoadMRU'+str(i)+'.py">' html += fn html += '</a></li>' html += '</ul>' return html def getFeed(url,numitems=3): "returns a html list with links from the given RSS feed url" xml = parse(urllib.urlopen(url)).getroot() items = [] channel = xml.find('channel') for element in channel.findall('item'): items.append({'title': element.find('title').text, 'description': element.find('description').text, 'link': element.find('link').text}) if len(items) > numitems: items = items[:numitems] resp = '<ul>' for item in items: descr = re.compile("style=\".*?\"").sub('',item['description']) descr = re.compile("alt=\".*?\"").sub('',descr) descr = re.compile("\"").sub('',descr) d1 = re.findall("<img.*?>",descr)[0] d2 = re.findall("<span>.*?</span>",descr)[0] descr = "<h3>" + item['title'] + "</h3>" descr += d1 + "<br/>" descr += d2 resp += '<li><a onMouseover="show(\'' resp += descr resp += '\')" onMouseout="show(\'\')" href="' resp += item['link'] resp += '">' resp += item['title'] resp += '</a></li>' resp += '</ul>' print resp return resp def getCustomBlocks(): "fetches custom html files in FreeCAD user dir" output = "" return output def setColors(html): "gets theme colors from the system, and sets appropriate styles" defaults = {"#basecolor":"#191B26", "#linkcolor":"#0092E8", "#textcolor":"#FFFFFF", "#windowcolor":"#FFFFFF", "#windowtextcolor":"#000000"} try: palette = QtGui.qApp.palette() except: pass else: #defaults["#basecolor"] = palette.base().color().name() defaults["#basecolor"] = "#171A2B url(Background.jpg)" #defaults["#linkcolor"] = palette.link().color().name() # UGLY!! defaults["#textcolor"] = palette.text().color().name() defaults["#windowcolor"] = palette.window().color().name() defaults["#windowtextcolor"] = palette.windowText().color().name() for k,v in defaults.iteritems(): html = html.replace(k,str(v)) return html def handle(): "returns the complete html startpage" # add recent files recentfiles = getRecentFiles() html = page.replace("recentfiles",recentfiles) # add default workbenches html = html.replace("defaultworkbenches",getWorkbenches()) # add default web links html = html.replace("defaultlinks",getLinks()) # add default examples html = html.replace("defaultexamples",getExamples()) # add web examples #html = html.replace("webexamples",getWebExamples()) # add custom blocks html = html.replace("customblocks",getCustomBlocks()) # fetches system colors html = setColors(html) return html def exportTestFile(): f = open(os.path.expanduser("~")+os.sep+"freecad-startpage.html","wb") f.write(handle()) f.close()
lgpl-2.1
-881,293,649,298,753,800
38.252616
368
0.527461
false
3.922651
false
false
false
Nikita1710/ANUFifty50-Online-Mentoring-Platform
project/fifty_fifty/webcore/views.py
1
4115
from django.shortcuts import render, get_object_or_404 from django.core.mail import send_mail, BadHeaderError from django.contrib import messages from django.conf import settings from django.contrib.auth.decorators import login_required from content.models import Mentee, Mentor, Content_Summary from blog.models import Post from webcore.models import Profile from feedback.forms import FeedbackForm from feedback.models import Feedback_contact from django.utils import timezone #from content # Create your views here. def home(request): context = locals() template = 'index.html' return render(request,template,context) @login_required def userProfile(request): user = request.user context = {'user':user, 'summary_list':Content_Summary.objects.all()} template = 'menteelogin.html' return render(request,template,context) @login_required def userProfileNews(request): user = request.user posts = Post.objects.filter(published_date__lte=timezone.now()).order_by('published_date') template = 'blog/post_list.html' return render(request,template, {'posts': posts}) ## post_detail views the blog posts individually @login_required def post_detail(request, pk): post = get_object_or_404(Post, pk=pk) template = 'blog/post_detail.html' return render(request, template, {'post': post}) @login_required def userProfileMentor(request): user = request.user template = 'mentor.html' return render(request,template) @login_required def userProfileResources(request): user = request.user context = {'user':user, 'post_list':Post.objects.all(), 'mentee_list':Mentee.objects.all(), 'mentor_list':Mentor.objects.all(), 'Content_Summary_list':Content_Summary.objects.all()} template = 'resources.html' return render(request,template,context) @login_required def userProfileFAQ(request): user = request.user context = {'user':user} template = 'FAQ.html' return render(request,template,context) @login_required def userProfileProfile(request): user = request.user context = {'user':user} template = 'profile.html' return render(request,template,context) @login_required def userProfileContent(request): user = request.user context = {'user':user, 'mentee_list':Mentee.objects.all(), 'mentor_list':Mentor.objects.all()} template = 'content.html' return render(request,template,context) @login_required def userProfileSettings(request): user = request.user context = {'user':user} template = 'settings.html' return render(request,template,context) @login_required def feedback_process(request): User = get_object_or_404(Profile, pk=request.user.pk) contact_template = 'feedback/feedback_contact.html' # sucess_template = 'thanks.html' # if this is a POST request we need to process the form data if request.method == 'POST': # create a form instance and populate it with data from the request: form = FeedbackForm(request.POST) # check whether it's valid: if form.is_valid(): receiver_email = settings.EMAIL_HOST_USER subject = form.subject(User.role) message = form.cleaned_data['message'] # handle email eceptions try: send_mail(subject, message, request.user.email, [receiver_email]) except Exception as ex: data = messages.add_message(request, messages.ERROR,'An error occurred. {}'.format(str(ex))) else: feedback_form = form.save(commit=False) # feedback_form.receiver_email = receiver_email feedback_form.user = User feedback_form.save() data = messages.add_message(request, messages.INFO, 'Thanks for sending a feedback.') # render thank you message return render(request, contact_template, {'message': data}) # if a GET (or any other method) we'll create a blank form else: form = FeedbackForm(user=User.user) return render(request, contact_template, {'form': form})
apache-2.0
8,039,884,220,214,451,000
33.579832
185
0.687728
false
3.849392
false
false
false
NicoVarg99/daf-recipes
ckan/ckan/ckan/ckan/tests/logic/action/test_delete.py
1
20446
# encoding: utf-8 import nose.tools import ckan.tests.helpers as helpers import ckan.tests.factories as factories import ckan.logic as logic import ckan.model as model import ckan.plugins as p import ckan.lib.search as search assert_equals = nose.tools.assert_equals assert_raises = nose.tools.assert_raises class TestDelete: def setup(self): helpers.reset_db() def test_resource_delete(self): user = factories.User() sysadmin = factories.Sysadmin() resource = factories.Resource(user=user) context = {} params = {'id': resource['id']} helpers.call_action('resource_delete', context, **params) # Not even a sysadmin can see it now assert_raises(logic.NotFound, helpers.call_action, 'resource_show', {'user': sysadmin['name']}, **params) # It is still there but with state=deleted res_obj = model.Resource.get(resource['id']) assert_equals(res_obj.state, 'deleted') class TestDeleteResourceViews(object): @classmethod def setup_class(cls): if not p.plugin_loaded('image_view'): p.load('image_view') helpers.reset_db() @classmethod def teardown_class(cls): p.unload('image_view') def test_resource_view_delete(self): resource_view = factories.ResourceView() params = {'id': resource_view['id']} helpers.call_action('resource_view_delete', context={}, **params) assert_raises(logic.NotFound, helpers.call_action, 'resource_view_show', context={}, **params) # The model object is actually deleted resource_view_obj = model.ResourceView.get(resource_view['id']) assert_equals(resource_view_obj, None) def test_delete_no_id_raises_validation_error(self): params = {} assert_raises(logic.ValidationError, helpers.call_action, 'resource_view_delete', context={}, **params) def test_delete_wrong_id_raises_not_found_error(self): params = {'id': 'does_not_exist'} assert_raises(logic.NotFound, helpers.call_action, 'resource_view_delete', context={}, **params) class TestClearResourceViews(object): @classmethod def setup_class(cls): if not p.plugin_loaded('image_view'): p.load('image_view') if not p.plugin_loaded('recline_view'): p.load('recline_view') helpers.reset_db() @classmethod def teardown_class(cls): p.unload('image_view') p.unload('recline_view') def test_resource_view_clear(self): factories.ResourceView(view_type='image_view') factories.ResourceView(view_type='image_view') factories.ResourceView(view_type='recline_view') factories.ResourceView(view_type='recline_view') count = model.Session.query(model.ResourceView).count() assert_equals(count, 4) helpers.call_action('resource_view_clear', context={}) count = model.Session.query(model.ResourceView).count() assert_equals(count, 0) def test_resource_view_clear_with_types(self): factories.ResourceView(view_type='image_view') factories.ResourceView(view_type='image_view') factories.ResourceView(view_type='recline_view') factories.ResourceView(view_type='recline_view') count = model.Session.query(model.ResourceView).count() assert_equals(count, 4) helpers.call_action('resource_view_clear', context={}, view_types=['image_view']) view_types = model.Session.query(model.ResourceView.view_type).all() assert_equals(len(view_types), 2) for view_type in view_types: assert_equals(view_type[0], 'recline_view') class TestDeleteTags(object): def test_tag_delete_with_unicode_returns_unicode_error(self): # There is not a lot of call for it, but in theory there could be # unicode in the ActionError error message, so ensure that comes # through in NotFound as unicode. try: helpers.call_action('tag_delete', id=u'Delta symbol: \u0394') except logic.NotFound, e: assert u'Delta symbol: \u0394' in unicode(e) else: assert 0, 'Should have raised NotFound' class TestGroupPurge(object): def setup(self): helpers.reset_db() def test_a_non_sysadmin_cant_purge_group(self): user = factories.User() group = factories.Group(user=user) assert_raises(logic.NotAuthorized, helpers.call_action, 'group_purge', context={'user': user['name'], 'ignore_auth': False}, id=group['name']) def test_purged_group_does_not_show(self): group = factories.Group() helpers.call_action('group_purge', id=group['name']) assert_raises(logic.NotFound, helpers.call_action, 'group_show', context={}, id=group['name']) def test_purged_group_is_not_listed(self): group = factories.Group() helpers.call_action('group_purge', id=group['name']) assert_equals(helpers.call_action('group_list', context={}), []) def test_dataset_in_a_purged_group_no_longer_shows_that_group(self): group = factories.Group() dataset = factories.Dataset(groups=[{'name': group['name']}]) helpers.call_action('group_purge', id=group['name']) dataset_shown = helpers.call_action('package_show', context={}, id=dataset['id']) assert_equals(dataset_shown['groups'], []) def test_purged_group_is_not_in_search_results_for_its_ex_dataset(self): search.clear_all() group = factories.Group() dataset = factories.Dataset(groups=[{'name': group['name']}]) def get_search_result_groups(): results = helpers.call_action('package_search', q=dataset['title'])['results'] return [g['name'] for g in results[0]['groups']] assert_equals(get_search_result_groups(), [group['name']]) helpers.call_action('group_purge', id=group['name']) assert_equals(get_search_result_groups(), []) def test_purged_group_leaves_no_trace_in_the_model(self): factories.Group(name='parent') user = factories.User() group1 = factories.Group(name='group1', extras=[{'key': 'key1', 'value': 'val1'}], users=[{'name': user['name']}], groups=[{'name': 'parent'}]) factories.Dataset(name='ds', groups=[{'name': 'group1'}]) factories.Group(name='child', groups=[{'name': 'group1'}]) num_revisions_before = model.Session.query(model.Revision).count() helpers.call_action('group_purge', id=group1['name']) num_revisions_after = model.Session.query(model.Revision).count() # the Group and related objects are gone assert_equals(sorted([g.name for g in model.Session.query(model.Group).all()]), ['child', 'parent']) assert_equals(model.Session.query(model.GroupExtra).all(), []) # the only members left are the users for the parent and child assert_equals(sorted([ (m.table_name, m.group.name) for m in model.Session.query(model.Member).join(model.Group)]), [('user', 'child'), ('user', 'parent')]) # the dataset is still there though assert_equals([p.name for p in model.Session.query(model.Package)], ['ds']) # the group's object revisions were purged too assert_equals(sorted( [gr.name for gr in model.Session.query(model.GroupRevision)]), ['child', 'parent']) assert_equals(model.Session.query(model.GroupExtraRevision).all(), []) # Member is not revisioned # No Revision objects were purged, in fact 1 is created for the purge assert_equals(num_revisions_after - num_revisions_before, 1) def test_missing_id_returns_error(self): assert_raises(logic.ValidationError, helpers.call_action, 'group_purge') def test_bad_id_returns_404(self): assert_raises(logic.NotFound, helpers.call_action, 'group_purge', id='123') class TestOrganizationPurge(object): def setup(self): helpers.reset_db() def test_a_non_sysadmin_cant_purge_org(self): user = factories.User() org = factories.Organization(user=user) assert_raises(logic.NotAuthorized, helpers.call_action, 'organization_purge', context={'user': user['name'], 'ignore_auth': False}, id=org['name']) def test_purged_org_does_not_show(self): org = factories.Organization() helpers.call_action('organization_purge', id=org['name']) assert_raises(logic.NotFound, helpers.call_action, 'organization_show', context={}, id=org['name']) def test_purged_org_is_not_listed(self): org = factories.Organization() helpers.call_action('organization_purge', id=org['name']) assert_equals(helpers.call_action('organization_list', context={}), []) def test_dataset_in_a_purged_org_no_longer_shows_that_org(self): org = factories.Organization() dataset = factories.Dataset(owner_org=org['id']) helpers.call_action('organization_purge', id=org['name']) dataset_shown = helpers.call_action('package_show', context={}, id=dataset['id']) assert_equals(dataset_shown['owner_org'], None) def test_purged_org_is_not_in_search_results_for_its_ex_dataset(self): search.clear_all() org = factories.Organization() dataset = factories.Dataset(owner_org=org['id']) def get_search_result_owner_org(): results = helpers.call_action('package_search', q=dataset['title'])['results'] return results[0]['owner_org'] assert_equals(get_search_result_owner_org(), org['id']) helpers.call_action('organization_purge', id=org['name']) assert_equals(get_search_result_owner_org(), None) def test_purged_organization_leaves_no_trace_in_the_model(self): factories.Organization(name='parent') user = factories.User() org1 = factories.Organization( name='org1', extras=[{'key': 'key1', 'value': 'val1'}], users=[{'name': user['name']}], groups=[{'name': 'parent'}]) factories.Dataset(name='ds', owner_org=org1['id']) factories.Organization(name='child', groups=[{'name': 'org1'}]) num_revisions_before = model.Session.query(model.Revision).count() helpers.call_action('organization_purge', id=org1['name']) num_revisions_after = model.Session.query(model.Revision).count() # the Organization and related objects are gone assert_equals(sorted([o.name for o in model.Session.query(model.Group).all()]), ['child', 'parent']) assert_equals(model.Session.query(model.GroupExtra).all(), []) # the only members left are the users for the parent and child assert_equals(sorted([ (m.table_name, m.group.name) for m in model.Session.query(model.Member).join(model.Group)]), [('user', 'child'), ('user', 'parent')]) # the dataset is still there though assert_equals([p.name for p in model.Session.query(model.Package)], ['ds']) # the organization's object revisions were purged too assert_equals(sorted( [gr.name for gr in model.Session.query(model.GroupRevision)]), ['child', 'parent']) assert_equals(model.Session.query(model.GroupExtraRevision).all(), []) # Member is not revisioned # No Revision objects were purged, in fact 1 is created for the purge assert_equals(num_revisions_after - num_revisions_before, 1) def test_missing_id_returns_error(self): assert_raises(logic.ValidationError, helpers.call_action, 'organization_purge') def test_bad_id_returns_404(self): assert_raises(logic.NotFound, helpers.call_action, 'organization_purge', id='123') class TestDatasetPurge(object): def setup(self): helpers.reset_db() def test_a_non_sysadmin_cant_purge_dataset(self): user = factories.User() dataset = factories.Dataset(user=user) assert_raises(logic.NotAuthorized, helpers.call_action, 'dataset_purge', context={'user': user['name'], 'ignore_auth': False}, id=dataset['name']) def test_purged_dataset_does_not_show(self): dataset = factories.Dataset() helpers.call_action('dataset_purge', context={'ignore_auth': True}, id=dataset['name']) assert_raises(logic.NotFound, helpers.call_action, 'package_show', context={}, id=dataset['name']) def test_purged_dataset_is_not_listed(self): dataset = factories.Dataset() helpers.call_action('dataset_purge', id=dataset['name']) assert_equals(helpers.call_action('package_list', context={}), []) def test_group_no_longer_shows_its_purged_dataset(self): group = factories.Group() dataset = factories.Dataset(groups=[{'name': group['name']}]) helpers.call_action('dataset_purge', id=dataset['name']) dataset_shown = helpers.call_action('group_show', context={}, id=group['id'], include_datasets=True) assert_equals(dataset_shown['packages'], []) def test_purged_dataset_is_not_in_search_results(self): search.clear_all() dataset = factories.Dataset() def get_search_results(): results = helpers.call_action('package_search', q=dataset['title'])['results'] return [d['name'] for d in results] assert_equals(get_search_results(), [dataset['name']]) helpers.call_action('dataset_purge', id=dataset['name']) assert_equals(get_search_results(), []) def test_purged_dataset_leaves_no_trace_in_the_model(self): factories.Group(name='group1') org = factories.Organization() dataset = factories.Dataset( tags=[{'name': 'tag1'}], groups=[{'name': 'group1'}], owner_org=org['id'], extras=[{'key': 'testkey', 'value': 'testvalue'}]) factories.Resource(package_id=dataset['id']) num_revisions_before = model.Session.query(model.Revision).count() helpers.call_action('dataset_purge', context={'ignore_auth': True}, id=dataset['name']) num_revisions_after = model.Session.query(model.Revision).count() # the Package and related objects are gone assert_equals(model.Session.query(model.Package).all(), []) assert_equals(model.Session.query(model.Resource).all(), []) assert_equals(model.Session.query(model.PackageTag).all(), []) # there is no clean-up of the tag object itself, just the PackageTag. assert_equals([t.name for t in model.Session.query(model.Tag).all()], ['tag1']) assert_equals(model.Session.query(model.PackageExtra).all(), []) # the only member left is for the user created in factories.Group() and # factories.Organization() assert_equals(sorted( [(m.table_name, m.group.name) for m in model.Session.query(model.Member).join(model.Group)]), [('user', 'group1'), ('user', org['name'])]) # all the object revisions were purged too assert_equals(model.Session.query(model.PackageRevision).all(), []) assert_equals(model.Session.query(model.ResourceRevision).all(), []) assert_equals(model.Session.query(model.PackageTagRevision).all(), []) assert_equals(model.Session.query(model.PackageExtraRevision).all(), []) # Member is not revisioned # No Revision objects were purged or created assert_equals(num_revisions_after - num_revisions_before, 0) def test_purged_dataset_removed_from_relationships(self): child = factories.Dataset() parent = factories.Dataset() grandparent = factories.Dataset() helpers.call_action('package_relationship_create', subject=child['id'], type='child_of', object=parent['id']) helpers.call_action('package_relationship_create', subject=parent['id'], type='child_of', object=grandparent['id']) assert_equals(len( model.Session.query(model.PackageRelationship).all()), 2) helpers.call_action('dataset_purge', context={'ignore_auth': True}, id=parent['name']) assert_equals(model.Session.query(model.PackageRelationship).all(), []) def test_missing_id_returns_error(self): assert_raises(logic.ValidationError, helpers.call_action, 'dataset_purge') def test_bad_id_returns_404(self): assert_raises(logic.NotFound, helpers.call_action, 'dataset_purge', id='123') class TestUserDelete(object): def setup(self): helpers.reset_db() def test_user_delete(self): user = factories.User() context = {} params = {u'id': user[u'id']} helpers.call_action(u'user_delete', context, **params) # It is still there but with state=deleted user_obj = model.User.get(user[u'id']) assert_equals(user_obj.state, u'deleted') def test_user_delete_removes_memberships(self): user = factories.User() factories.Organization( users=[{u'name': user[u'id'], u'capacity': u'admin'}]) factories.Group( users=[{u'name': user[u'id'], u'capacity': u'admin'}]) user_memberships = model.Session.query(model.Member).filter( model.Member.table_id == user[u'id']).all() assert_equals(len(user_memberships), 2) assert_equals([m.state for m in user_memberships], [u'active', u'active']) context = {} params = {u'id': user[u'id']} helpers.call_action(u'user_delete', context, **params) user_memberships = model.Session.query(model.Member).filter( model.Member.table_id == user[u'id']).all() # Member objects are still there, but flagged as deleted assert_equals(len(user_memberships), 2) assert_equals([m.state for m in user_memberships], [u'deleted', u'deleted']) def test_user_delete_removes_memberships_when_using_name(self): user = factories.User() factories.Organization( users=[{u'name': user[u'id'], u'capacity': u'admin'}]) factories.Group( users=[{u'name': user[u'id'], u'capacity': u'admin'}]) context = {} params = {u'id': user[u'name']} helpers.call_action(u'user_delete', context, **params) user_memberships = model.Session.query(model.Member).filter( model.Member.table_id == user[u'id']).all() # Member objects are still there, but flagged as deleted assert_equals(len(user_memberships), 2) assert_equals([m.state for m in user_memberships], [u'deleted', u'deleted'])
gpl-3.0
-774,451,038,322,788,900
36.039855
79
0.581923
false
4.063196
true
false
false
arnaldog12/Manual-Pratico-Deep-Learning
utils/samples_generator.py
1
1868
import numpy as np def make_cubic(n_samples, x_min, x_max, a=1, b=0, c=0, d=0, noise=0.0, random_state=None): np.random.seed(random_state) x = np.linspace(x_min, x_max, n_samples) y = a*x**3 + b*x**2 + c*x + d + (2*noise*np.random.random(n_samples) - noise) return x.reshape(-1,1), y.reshape(-1,1) def make_exp(n_samples, x_min, x_max, noise=0.0, random_state=None): np.random.seed(random_state) x = np.linspace(x_min, x_max, n_samples) y = np.exp(x) + 2*noise*np.random.random(n_samples) - noise return x.reshape(-1,1), y.reshape(-1,1) def make_log10(n_samples, x_min, x_max, noise=0.0, random_state=None): np.random.seed(random_state) x = np.logspace(np.log10(x_min), np.log10(x_max), n_samples) y = np.log10(x) + 2*noise*np.random.random(n_samples) - noise return x.reshape(-1,1), y.reshape(-1,1) def make_spiral(n_samples, n_class=2, radius=1, laps=1.0, noise=0.0, random_state=None): np.random.seed(random_state) x = np.zeros((n_samples * n_class, 2)) y = np.zeros((n_samples * n_class)) pi_2 = 2 * np.math.pi points = np.linspace(0, 1, n_samples) r = points * radius t = points * pi_2 * laps for label, delta_t in zip(range(n_class), np.arange(0, pi_2, pi_2/n_class)): random_noise = (2 * np.random.rand(n_samples) - 1) * noise index = np.arange(label*n_samples, (label+1)*n_samples) x[index] = np.c_[r * np.sin(t + delta_t) + random_noise, r * np.cos(t + delta_t) + random_noise] y[index] = label return x, y.reshape(-1, 1) def make_square(n_samples, x_min, x_max, a=1, b=0, c=0, noise=0.0, random_state=None): np.random.seed(random_state) x = np.linspace(x_min, x_max, n_samples) y = a*x**2 + b*x + c + (2*noise*np.random.random(n_samples) - noise) return x.reshape(-1,1), y.reshape(-1,1)
mit
8,612,343,678,604,408,000
43.47619
90
0.600107
false
2.461133
false
false
false
sthyme/ZFSchizophrenia
BehaviorAnalysis/HSMovieAnalysis/setResolutionWidget.py
1
5960
#----------------------- # -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'selectUI.ui' # Created: Thu Feb 26 13:45:32 2015 by: PyQt4 UI code generator 4.11.3 # # Created by Emily Conklin # February 2015 # This program is connected to the main widget (NeuroGUI.py) and is a sub-user interface # Called from imageTools.setCameraResolution # Allows the user to specify: # 1) default resolution # 2) fit-to-screen resolution # 3) fit-to-projector resolution #----------------------- from PyQt4 import QtCore, QtGui from PyQt4.QtGui import * from PyQt4.QtCore import * import sys try: _fromUtf8 = QtCore.QString.fromUtf8 except AttributeError: def _fromUtf8(s): return s try: _encoding = QtGui.QApplication.UnicodeUTF8 def _translate(context, text, disambig): return QtGui.QApplication.translate(context, text, disambig, _encoding) except AttributeError: def _translate(context, text, disambig): return QtGui.QApplication.translate(context, text, disambig) class Ui_setResolutionWidget(QtGui.QDialog): ''' sub-window class - QDialog type ''' def __init__(self): ''' initializes the dialog, data member ''' QtGui.QDialog.__init__(self) self.setupUi(self) self.videoType=0 def setupUi(self, setResolutionWidget): ''' called in the initialization method sets up each layout, labels, buttons, etc. ''' setResolutionWidget.setObjectName(_fromUtf8("setResolutionWidget")) setResolutionWidget.resize(404, 300) self.verticalLayout_2 = QtGui.QVBoxLayout(setResolutionWidget) self.verticalLayout_2.setObjectName(_fromUtf8("verticalLayout_2")) #line 1: label for desired resolution self.horizontalLayout = QtGui.QHBoxLayout() self.horizontalLayout.setObjectName(_fromUtf8("horizontalLayout")) self.desiredResolutionLabel = QtGui.QLabel(setResolutionWidget) self.desiredResolutionLabel.setObjectName(_fromUtf8("desiredResolutionLabel")) self.horizontalLayout.addWidget(self.desiredResolutionLabel) #lines 2,3,4: resolution options self.verticalLayout_3 = QtGui.QVBoxLayout() self.verticalLayout_3.setObjectName(_fromUtf8("verticalLayout_3")) self.defaultResRB = QtGui.QRadioButton(setResolutionWidget) self.defaultResRB.setObjectName(_fromUtf8("defaultResRB")) self.verticalLayout_3.addWidget(self.defaultResRB) self.fitToScreenLE = QtGui.QRadioButton(setResolutionWidget) self.fitToScreenLE.setObjectName(_fromUtf8("fitToScreenLE")) self.verticalLayout_3.addWidget(self.fitToScreenLE) self.fitToProjectorLE = QtGui.QRadioButton(setResolutionWidget) self.fitToProjectorLE.setObjectName(_fromUtf8("fitToProjectorLE")) self.verticalLayout_3.addWidget(self.fitToProjectorLE) self.horizontalLayout.addLayout(self.verticalLayout_3) self.verticalLayout_2.addLayout(self.horizontalLayout) self.defaultResRB.setChecked(True) #defaults default resolution #sets up button group with the three options self.buttonGroup = QtGui.QButtonGroup() self.buttonGroup.addButton(self.defaultResRB,0) self.buttonGroup.addButton(self.fitToScreenLE,1) self.buttonGroup.addButton(self.fitToProjectorLE,2) #line 5: submit button self.horizontalLayout_4 = QtGui.QHBoxLayout() self.horizontalLayout_4.setObjectName(_fromUtf8("horizontalLayout_4")) spacerItem4 = QtGui.QSpacerItem(40, 20, QtGui.QSizePolicy.Expanding, QtGui.QSizePolicy.Minimum) self.horizontalLayout_4.addItem(spacerItem4) self.Submit = QtGui.QPushButton(setResolutionWidget) self.Submit.setObjectName(_fromUtf8("Submit")) self.horizontalLayout_4.addWidget(self.Submit) spacerItem5 = QtGui.QSpacerItem(40, 20, QtGui.QSizePolicy.Expanding, QtGui.QSizePolicy.Minimum) self.horizontalLayout_4.addItem(spacerItem5) self.verticalLayout_2.addLayout(self.horizontalLayout_4) self.retranslateUi(setResolutionWidget) QtCore.QMetaObject.connectSlotsByName(setResolutionWidget) def retranslateUi(self, setResolutionWidget): ''' called in the setup method sets label/button text and window titles links buttons to other methods ''' setResolutionWidget.setWindowTitle(_translate("setResolutionWidget", "Resolution Options", None)) self.desiredResolutionLabel.setText(_translate("setResolutionWidget", "Choose desired resolution:", None)) self.defaultResRB.setText(_translate("setResolutionWidget", "Default resolution", None)) self.fitToScreenLE.setText(_translate("setResolutionWidget", "Fit to screen (~720p)", None)) self.fitToProjectorLE.setText(_translate("setResolutionWidget", "Fit to projector (~480p)", None)) self.Submit.setText(_translate("setResolutionWidget", "Submit",None)) #finds out which radio button was pressed self.defaultResRB.clicked.connect(self.readSignal) self.fitToScreenLE.clicked.connect(self.readSignal) self.fitToProjectorLE.clicked.connect(self.readSignal) self.Submit.clicked.connect(self.submitClose) #connects submit button to submitClose def readSignal(self): ''' checks button group signal to determine radio button clicked ''' self.videoType = self.buttonGroup.checkedId() #checks radio button signal def submitClose(self): ''' closes window when user hits submit, passes videoType ''' self.accept() if __name__=='__main__': ''' main function to test widget as a standalone ''' app=QtGui.QApplication(sys.argv) ex=Ui_setResolutionWidget() ex.show() sys.exit(app.exec_())
mit
-8,555,149,342,993,067,000
41.571429
114
0.69245
false
4.238976
false
false
false
Detry322/map-creator
app/random.py
1
1453
from app.models import all_models from app.utils import mkdir_p from app import GENERATED_TILES_FOLDER, RANDOM_FOLDER, BACKPROPS_FOLDER from scipy import misc import glob import numpy as np import os from keras.models import load_model, Model from keras.optimizers import Adam, SGD, Adagrad from keras.layers import LocallyConnected1D, Input, Reshape from app import BACKPROPS_FOLDER, FORWARDPROPS_FOLDER, RANDOM_FOLDER from app.utils import mkdir_p from app.forwardprop import forwardprop_single_image NOISE_SIZE = 100 import time def random(model_file): model = load_model(model_file) generator = model.layers[0] generator.trainable = False for layer in generator.layers: layer.trainable = False api_key_water = [np.loadtxt(filename) for filename in glob.glob(os.path.join(BACKPROPS_FOLDER, 'api_key', 'water', '*.txt'))] no_api_key_water = [np.loadtxt(filename) for filename in glob.glob(os.path.join(BACKPROPS_FOLDER, 'no_api_key', 'water', '*.txt'))] no_api_key_trees = np.loadtxt(os.path.join(BACKPROPS_FOLDER, 'no_api_key', 'trees', '3391.png.txt')) folder = os.path.join(RANDOM_FOLDER, '{}'.format(time.time())) mkdir_p(folder) for a in api_key_water: for na in no_api_key_water: api_key_trees = a - na + no_api_key_trees image = forwardprop_single_image(generator, api_key_trees) misc.imsave(os.path.join(folder, 'land-{}.png'.format(time.time())), ((image + 1)*128).astype('uint8'))
mit
-2,502,770,354,397,162,500
32.022727
133
0.722643
false
3.091489
false
false
false
prefetchnta/questlab
bin/x64bin/python/36/Lib/calendar.py
1
23926
"""Calendar printing functions Note when comparing these calendars to the ones printed by cal(1): By default, these calendars have Monday as the first day of the week, and Sunday as the last (the European convention). Use setfirstweekday() to set the first day of the week (0=Monday, 6=Sunday).""" import sys import datetime import locale as _locale from itertools import repeat __all__ = ["IllegalMonthError", "IllegalWeekdayError", "setfirstweekday", "firstweekday", "isleap", "leapdays", "weekday", "monthrange", "monthcalendar", "prmonth", "month", "prcal", "calendar", "timegm", "month_name", "month_abbr", "day_name", "day_abbr", "Calendar", "TextCalendar", "HTMLCalendar", "LocaleTextCalendar", "LocaleHTMLCalendar", "weekheader"] # Exception raised for bad input (with string parameter for details) error = ValueError # Exceptions raised for bad input class IllegalMonthError(ValueError): def __init__(self, month): self.month = month def __str__(self): return "bad month number %r; must be 1-12" % self.month class IllegalWeekdayError(ValueError): def __init__(self, weekday): self.weekday = weekday def __str__(self): return "bad weekday number %r; must be 0 (Monday) to 6 (Sunday)" % self.weekday # Constants for months referenced later January = 1 February = 2 # Number of days per month (except for February in leap years) mdays = [0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] # This module used to have hard-coded lists of day and month names, as # English strings. The classes following emulate a read-only version of # that, but supply localized names. Note that the values are computed # fresh on each call, in case the user changes locale between calls. class _localized_month: _months = [datetime.date(2001, i+1, 1).strftime for i in range(12)] _months.insert(0, lambda x: "") def __init__(self, format): self.format = format def __getitem__(self, i): funcs = self._months[i] if isinstance(i, slice): return [f(self.format) for f in funcs] else: return funcs(self.format) def __len__(self): return 13 class _localized_day: # January 1, 2001, was a Monday. _days = [datetime.date(2001, 1, i+1).strftime for i in range(7)] def __init__(self, format): self.format = format def __getitem__(self, i): funcs = self._days[i] if isinstance(i, slice): return [f(self.format) for f in funcs] else: return funcs(self.format) def __len__(self): return 7 # Full and abbreviated names of weekdays day_name = _localized_day('%A') day_abbr = _localized_day('%a') # Full and abbreviated names of months (1-based arrays!!!) month_name = _localized_month('%B') month_abbr = _localized_month('%b') # Constants for weekdays (MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, SUNDAY) = range(7) def isleap(year): """Return True for leap years, False for non-leap years.""" return year % 4 == 0 and (year % 100 != 0 or year % 400 == 0) def leapdays(y1, y2): """Return number of leap years in range [y1, y2). Assume y1 <= y2.""" y1 -= 1 y2 -= 1 return (y2//4 - y1//4) - (y2//100 - y1//100) + (y2//400 - y1//400) def weekday(year, month, day): """Return weekday (0-6 ~ Mon-Sun) for year (1970-...), month (1-12), day (1-31).""" return datetime.date(year, month, day).weekday() def monthrange(year, month): """Return weekday (0-6 ~ Mon-Sun) and number of days (28-31) for year, month.""" if not 1 <= month <= 12: raise IllegalMonthError(month) day1 = weekday(year, month, 1) ndays = mdays[month] + (month == February and isleap(year)) return day1, ndays class Calendar(object): """ Base calendar class. This class doesn't do any formatting. It simply provides data to subclasses. """ def __init__(self, firstweekday=0): self.firstweekday = firstweekday # 0 = Monday, 6 = Sunday def getfirstweekday(self): return self._firstweekday % 7 def setfirstweekday(self, firstweekday): self._firstweekday = firstweekday firstweekday = property(getfirstweekday, setfirstweekday) def iterweekdays(self): """ Return an iterator for one week of weekday numbers starting with the configured first one. """ for i in range(self.firstweekday, self.firstweekday + 7): yield i%7 def itermonthdates(self, year, month): """ Return an iterator for one month. The iterator will yield datetime.date values and will always iterate through complete weeks, so it will yield dates outside the specified month. """ date = datetime.date(year, month, 1) # Go back to the beginning of the week days = (date.weekday() - self.firstweekday) % 7 date -= datetime.timedelta(days=days) oneday = datetime.timedelta(days=1) while True: yield date try: date += oneday except OverflowError: # Adding one day could fail after datetime.MAXYEAR break if date.month != month and date.weekday() == self.firstweekday: break def itermonthdays2(self, year, month): """ Like itermonthdates(), but will yield (day number, weekday number) tuples. For days outside the specified month the day number is 0. """ for i, d in enumerate(self.itermonthdays(year, month), self.firstweekday): yield d, i % 7 def itermonthdays(self, year, month): """ Like itermonthdates(), but will yield day numbers. For days outside the specified month the day number is 0. """ day1, ndays = monthrange(year, month) days_before = (day1 - self.firstweekday) % 7 yield from repeat(0, days_before) yield from range(1, ndays + 1) days_after = (self.firstweekday - day1 - ndays) % 7 yield from repeat(0, days_after) def monthdatescalendar(self, year, month): """ Return a matrix (list of lists) representing a month's calendar. Each row represents a week; week entries are datetime.date values. """ dates = list(self.itermonthdates(year, month)) return [ dates[i:i+7] for i in range(0, len(dates), 7) ] def monthdays2calendar(self, year, month): """ Return a matrix representing a month's calendar. Each row represents a week; week entries are (day number, weekday number) tuples. Day numbers outside this month are zero. """ days = list(self.itermonthdays2(year, month)) return [ days[i:i+7] for i in range(0, len(days), 7) ] def monthdayscalendar(self, year, month): """ Return a matrix representing a month's calendar. Each row represents a week; days outside this month are zero. """ days = list(self.itermonthdays(year, month)) return [ days[i:i+7] for i in range(0, len(days), 7) ] def yeardatescalendar(self, year, width=3): """ Return the data for the specified year ready for formatting. The return value is a list of month rows. Each month row contains up to width months. Each month contains between 4 and 6 weeks and each week contains 1-7 days. Days are datetime.date objects. """ months = [ self.monthdatescalendar(year, i) for i in range(January, January+12) ] return [months[i:i+width] for i in range(0, len(months), width) ] def yeardays2calendar(self, year, width=3): """ Return the data for the specified year ready for formatting (similar to yeardatescalendar()). Entries in the week lists are (day number, weekday number) tuples. Day numbers outside this month are zero. """ months = [ self.monthdays2calendar(year, i) for i in range(January, January+12) ] return [months[i:i+width] for i in range(0, len(months), width) ] def yeardayscalendar(self, year, width=3): """ Return the data for the specified year ready for formatting (similar to yeardatescalendar()). Entries in the week lists are day numbers. Day numbers outside this month are zero. """ months = [ self.monthdayscalendar(year, i) for i in range(January, January+12) ] return [months[i:i+width] for i in range(0, len(months), width) ] class TextCalendar(Calendar): """ Subclass of Calendar that outputs a calendar as a simple plain text similar to the UNIX program cal. """ def prweek(self, theweek, width): """ Print a single week (no newline). """ print(self.formatweek(theweek, width), end=' ') def formatday(self, day, weekday, width): """ Returns a formatted day. """ if day == 0: s = '' else: s = '%2i' % day # right-align single-digit days return s.center(width) def formatweek(self, theweek, width): """ Returns a single week in a string (no newline). """ return ' '.join(self.formatday(d, wd, width) for (d, wd) in theweek) def formatweekday(self, day, width): """ Returns a formatted week day name. """ if width >= 9: names = day_name else: names = day_abbr return names[day][:width].center(width) def formatweekheader(self, width): """ Return a header for a week. """ return ' '.join(self.formatweekday(i, width) for i in self.iterweekdays()) def formatmonthname(self, theyear, themonth, width, withyear=True): """ Return a formatted month name. """ s = month_name[themonth] if withyear: s = "%s %r" % (s, theyear) return s.center(width) def prmonth(self, theyear, themonth, w=0, l=0): """ Print a month's calendar. """ print(self.formatmonth(theyear, themonth, w, l), end='') def formatmonth(self, theyear, themonth, w=0, l=0): """ Return a month's calendar string (multi-line). """ w = max(2, w) l = max(1, l) s = self.formatmonthname(theyear, themonth, 7 * (w + 1) - 1) s = s.rstrip() s += '\n' * l s += self.formatweekheader(w).rstrip() s += '\n' * l for week in self.monthdays2calendar(theyear, themonth): s += self.formatweek(week, w).rstrip() s += '\n' * l return s def formatyear(self, theyear, w=2, l=1, c=6, m=3): """ Returns a year's calendar as a multi-line string. """ w = max(2, w) l = max(1, l) c = max(2, c) colwidth = (w + 1) * 7 - 1 v = [] a = v.append a(repr(theyear).center(colwidth*m+c*(m-1)).rstrip()) a('\n'*l) header = self.formatweekheader(w) for (i, row) in enumerate(self.yeardays2calendar(theyear, m)): # months in this row months = range(m*i+1, min(m*(i+1)+1, 13)) a('\n'*l) names = (self.formatmonthname(theyear, k, colwidth, False) for k in months) a(formatstring(names, colwidth, c).rstrip()) a('\n'*l) headers = (header for k in months) a(formatstring(headers, colwidth, c).rstrip()) a('\n'*l) # max number of weeks for this row height = max(len(cal) for cal in row) for j in range(height): weeks = [] for cal in row: if j >= len(cal): weeks.append('') else: weeks.append(self.formatweek(cal[j], w)) a(formatstring(weeks, colwidth, c).rstrip()) a('\n' * l) return ''.join(v) def pryear(self, theyear, w=0, l=0, c=6, m=3): """Print a year's calendar.""" print(self.formatyear(theyear, w, l, c, m)) class HTMLCalendar(Calendar): """ This calendar returns complete HTML pages. """ # CSS classes for the day <td>s cssclasses = ["mon", "tue", "wed", "thu", "fri", "sat", "sun"] def formatday(self, day, weekday): """ Return a day as a table cell. """ if day == 0: return '<td class="noday">&nbsp;</td>' # day outside month else: return '<td class="%s">%d</td>' % (self.cssclasses[weekday], day) def formatweek(self, theweek): """ Return a complete week as a table row. """ s = ''.join(self.formatday(d, wd) for (d, wd) in theweek) return '<tr>%s</tr>' % s def formatweekday(self, day): """ Return a weekday name as a table header. """ return '<th class="%s">%s</th>' % (self.cssclasses[day], day_abbr[day]) def formatweekheader(self): """ Return a header for a week as a table row. """ s = ''.join(self.formatweekday(i) for i in self.iterweekdays()) return '<tr>%s</tr>' % s def formatmonthname(self, theyear, themonth, withyear=True): """ Return a month name as a table row. """ if withyear: s = '%s %s' % (month_name[themonth], theyear) else: s = '%s' % month_name[themonth] return '<tr><th colspan="7" class="month">%s</th></tr>' % s def formatmonth(self, theyear, themonth, withyear=True): """ Return a formatted month as a table. """ v = [] a = v.append a('<table border="0" cellpadding="0" cellspacing="0" class="month">') a('\n') a(self.formatmonthname(theyear, themonth, withyear=withyear)) a('\n') a(self.formatweekheader()) a('\n') for week in self.monthdays2calendar(theyear, themonth): a(self.formatweek(week)) a('\n') a('</table>') a('\n') return ''.join(v) def formatyear(self, theyear, width=3): """ Return a formatted year as a table of tables. """ v = [] a = v.append width = max(width, 1) a('<table border="0" cellpadding="0" cellspacing="0" class="year">') a('\n') a('<tr><th colspan="%d" class="year">%s</th></tr>' % (width, theyear)) for i in range(January, January+12, width): # months in this row months = range(i, min(i+width, 13)) a('<tr>') for m in months: a('<td>') a(self.formatmonth(theyear, m, withyear=False)) a('</td>') a('</tr>') a('</table>') return ''.join(v) def formatyearpage(self, theyear, width=3, css='calendar.css', encoding=None): """ Return a formatted year as a complete HTML page. """ if encoding is None: encoding = sys.getdefaultencoding() v = [] a = v.append a('<?xml version="1.0" encoding="%s"?>\n' % encoding) a('<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">\n') a('<html>\n') a('<head>\n') a('<meta http-equiv="Content-Type" content="text/html; charset=%s" />\n' % encoding) if css is not None: a('<link rel="stylesheet" type="text/css" href="%s" />\n' % css) a('<title>Calendar for %d</title>\n' % theyear) a('</head>\n') a('<body>\n') a(self.formatyear(theyear, width)) a('</body>\n') a('</html>\n') return ''.join(v).encode(encoding, "xmlcharrefreplace") class different_locale: def __init__(self, locale): self.locale = locale def __enter__(self): self.oldlocale = _locale.getlocale(_locale.LC_TIME) _locale.setlocale(_locale.LC_TIME, self.locale) def __exit__(self, *args): _locale.setlocale(_locale.LC_TIME, self.oldlocale) class LocaleTextCalendar(TextCalendar): """ This class can be passed a locale name in the constructor and will return month and weekday names in the specified locale. If this locale includes an encoding all strings containing month and weekday names will be returned as unicode. """ def __init__(self, firstweekday=0, locale=None): TextCalendar.__init__(self, firstweekday) if locale is None: locale = _locale.getdefaultlocale() self.locale = locale def formatweekday(self, day, width): with different_locale(self.locale): if width >= 9: names = day_name else: names = day_abbr name = names[day] return name[:width].center(width) def formatmonthname(self, theyear, themonth, width, withyear=True): with different_locale(self.locale): s = month_name[themonth] if withyear: s = "%s %r" % (s, theyear) return s.center(width) class LocaleHTMLCalendar(HTMLCalendar): """ This class can be passed a locale name in the constructor and will return month and weekday names in the specified locale. If this locale includes an encoding all strings containing month and weekday names will be returned as unicode. """ def __init__(self, firstweekday=0, locale=None): HTMLCalendar.__init__(self, firstweekday) if locale is None: locale = _locale.getdefaultlocale() self.locale = locale def formatweekday(self, day): with different_locale(self.locale): s = day_abbr[day] return '<th class="%s">%s</th>' % (self.cssclasses[day], s) def formatmonthname(self, theyear, themonth, withyear=True): with different_locale(self.locale): s = month_name[themonth] if withyear: s = '%s %s' % (s, theyear) return '<tr><th colspan="7" class="month">%s</th></tr>' % s # Support for old module level interface c = TextCalendar() firstweekday = c.getfirstweekday def setfirstweekday(firstweekday): if not MONDAY <= firstweekday <= SUNDAY: raise IllegalWeekdayError(firstweekday) c.firstweekday = firstweekday monthcalendar = c.monthdayscalendar prweek = c.prweek week = c.formatweek weekheader = c.formatweekheader prmonth = c.prmonth month = c.formatmonth calendar = c.formatyear prcal = c.pryear # Spacing of month columns for multi-column year calendar _colwidth = 7*3 - 1 # Amount printed by prweek() _spacing = 6 # Number of spaces between columns def format(cols, colwidth=_colwidth, spacing=_spacing): """Prints multi-column formatting for year calendars""" print(formatstring(cols, colwidth, spacing)) def formatstring(cols, colwidth=_colwidth, spacing=_spacing): """Returns a string formatted from n strings, centered within n columns.""" spacing *= ' ' return spacing.join(c.center(colwidth) for c in cols) EPOCH = 1970 _EPOCH_ORD = datetime.date(EPOCH, 1, 1).toordinal() def timegm(tuple): """Unrelated but handy function to calculate Unix timestamp from GMT.""" year, month, day, hour, minute, second = tuple[:6] days = datetime.date(year, month, 1).toordinal() - _EPOCH_ORD + day - 1 hours = days*24 + hour minutes = hours*60 + minute seconds = minutes*60 + second return seconds def main(args): import argparse parser = argparse.ArgumentParser() textgroup = parser.add_argument_group('text only arguments') htmlgroup = parser.add_argument_group('html only arguments') textgroup.add_argument( "-w", "--width", type=int, default=2, help="width of date column (default 2)" ) textgroup.add_argument( "-l", "--lines", type=int, default=1, help="number of lines for each week (default 1)" ) textgroup.add_argument( "-s", "--spacing", type=int, default=6, help="spacing between months (default 6)" ) textgroup.add_argument( "-m", "--months", type=int, default=3, help="months per row (default 3)" ) htmlgroup.add_argument( "-c", "--css", default="calendar.css", help="CSS to use for page" ) parser.add_argument( "-L", "--locale", default=None, help="locale to be used from month and weekday names" ) parser.add_argument( "-e", "--encoding", default=None, help="encoding to use for output" ) parser.add_argument( "-t", "--type", default="text", choices=("text", "html"), help="output type (text or html)" ) parser.add_argument( "year", nargs='?', type=int, help="year number (1-9999)" ) parser.add_argument( "month", nargs='?', type=int, help="month number (1-12, text only)" ) options = parser.parse_args(args[1:]) if options.locale and not options.encoding: parser.error("if --locale is specified --encoding is required") sys.exit(1) locale = options.locale, options.encoding if options.type == "html": if options.locale: cal = LocaleHTMLCalendar(locale=locale) else: cal = HTMLCalendar() encoding = options.encoding if encoding is None: encoding = sys.getdefaultencoding() optdict = dict(encoding=encoding, css=options.css) write = sys.stdout.buffer.write if options.year is None: write(cal.formatyearpage(datetime.date.today().year, **optdict)) elif options.month is None: write(cal.formatyearpage(options.year, **optdict)) else: parser.error("incorrect number of arguments") sys.exit(1) else: if options.locale: cal = LocaleTextCalendar(locale=locale) else: cal = TextCalendar() optdict = dict(w=options.width, l=options.lines) if options.month is None: optdict["c"] = options.spacing optdict["m"] = options.months if options.year is None: result = cal.formatyear(datetime.date.today().year, **optdict) elif options.month is None: result = cal.formatyear(options.year, **optdict) else: result = cal.formatmonth(options.year, options.month, **optdict) write = sys.stdout.write if options.encoding: result = result.encode(options.encoding) write = sys.stdout.buffer.write write(result) if __name__ == "__main__": main(sys.argv)
lgpl-2.1
7,043,734,647,202,540,000
31.556802
124
0.557302
false
3.896743
false
false
false
linsalrob/EdwardsLab
phage_protein_blast_genera/tax_violin_plots.py
1
2239
""" """ import os import sys import argparse import matplotlib #matplotlib.use('Agg') import matplotlib.pyplot as plt if __name__ == '__main__': parser = argparse.ArgumentParser(description="") parser.add_argument('-f', help='Genome average output file (from genera_per_phage_protein.py', default='/home/redwards/Desktop/gav_all_host.out') parser.add_argument('-n', help='taxonomy name one of: kingdom / phylum / genus / species', default='genus') parser.add_argument('-v', help='verbose output', action="store_true") args = parser.parse_args() ynames = {'kingdom' : 'kingdoms', 'phylum' : 'phyla', 'genus' : 'genera', 'species' : 'species'} col = None colkey = {'kingdom' : 3, 'phylum' : 4, 'genus' : 5, 'species' : 6} if args.n not in colkey: sys.stderr.write("Sorry, taxonomy name must be one of {}\n".format("|".join(list(colkey.keys())))) sys.exit(-1) col = colkey[args.n] want = {'Gut', 'Mouth', 'Nose', 'Skin', 'Lungs'} data = {} with open(args.f, 'r') as fin: for l in fin: p=l.strip().split("\t") if p[2] not in want: p[2] = 'All phages' #continue ## comment or uncomment this to include/exclude all data if p[2] not in data: data[p[2]] = [] data[p[2]].append(float(p[col])) labels = sorted(data.keys()) scores = [] count = 1 ticks = [] for l in labels: scores.append(data[l]) ticks.append(count) count += 1 fig = plt.figure() ax = fig.add_subplot(111) # ax.boxplot(alldata) vp = ax.violinplot(scores, showmeans=True) for i, j in enumerate(vp['bodies']): if i == 0: j.set_color('gray') elif i == 1: j.set_color('sandybrown') else: j.set_color('lightpink') ax.set_xlabel("Body Site") ax.set_ylabel("Average number of {}".format(ynames[args.n])) ax.set_xticks(ticks) ax.set_xticklabels(labels, rotation='vertical') ax.get_xaxis().tick_bottom() ax.get_yaxis().tick_left() fig.set_facecolor('white') plt.tight_layout() #plt.show() fig.savefig("/home/redwards/Desktop/bodysites.png")
mit
952,300,114,054,625,500
28.853333
149
0.571237
false
3.226225
false
false
false
euccas/CodingPuzzles-Python
leet/source/searchDFS/permutations.py
1
1421
class Solution(): def permute(self, nums): if nums is None: return [[]] elif len(nums) <= 1: return [nums] result = [] for i, item in enumerate(nums): #print("i={0}, item={1}".format(i, item)) for p in permute(nums[:i] + nums[i + 1:]): #print("p={0}, item={1}, append {2}".format(p, item, p + [item])) result.append([item] + p) #print("now result is ... {0}".format(result)) return result class Solution1(object): def permute(self, nums): """ :type nums: List[int] :rtype: List[List[int]] """ if nums is None: return [] if len(nums) == 0: return [[]] self.result = [] visited = [False for i in nums] self.dfs(nums, visited, []) return self.result def dfs(self, nums, visited, permutation): if len(nums) == len(permutation): self.result.append(permutation[:]) for i in range(0, len(nums)): if visited[i] == True: continue permutation.append(nums[i]) visited[i] = True self.dfs(nums, visited, permutation) visited[i] = False permutation.pop() if __name__ == "__main__": sln = Solution1() result = sln.permute([1, 5, 9]) print(result)
mit
405,264,178,974,588,860
26.326923
81
0.474314
false
3.861413
false
false
false
ganeti-github-testing/ganeti-test-1
lib/client/gnt_instance.py
1
62250
# # # Copyright (C) 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2014 Google Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS # IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED # TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """Instance related commands""" # pylint: disable=W0401,W0614,C0103 # W0401: Wildcard import ganeti.cli # W0614: Unused import %s from wildcard import (since we need cli) # C0103: Invalid name gnt-instance import copy import itertools import simplejson import logging from ganeti.cli import * from ganeti import opcodes from ganeti import constants from ganeti import compat from ganeti import utils from ganeti import errors from ganeti import netutils from ganeti import ssh from ganeti import objects from ganeti import ht _EXPAND_CLUSTER = "cluster" _EXPAND_NODES_BOTH = "nodes" _EXPAND_NODES_PRI = "nodes-pri" _EXPAND_NODES_SEC = "nodes-sec" _EXPAND_NODES_BOTH_BY_TAGS = "nodes-by-tags" _EXPAND_NODES_PRI_BY_TAGS = "nodes-pri-by-tags" _EXPAND_NODES_SEC_BY_TAGS = "nodes-sec-by-tags" _EXPAND_INSTANCES = "instances" _EXPAND_INSTANCES_BY_TAGS = "instances-by-tags" _EXPAND_NODES_TAGS_MODES = compat.UniqueFrozenset([ _EXPAND_NODES_BOTH_BY_TAGS, _EXPAND_NODES_PRI_BY_TAGS, _EXPAND_NODES_SEC_BY_TAGS, ]) #: default list of options for L{ListInstances} _LIST_DEF_FIELDS = [ "name", "hypervisor", "os", "pnode", "status", "oper_ram", ] _MISSING = object() _ENV_OVERRIDE = compat.UniqueFrozenset(["list"]) _INST_DATA_VAL = ht.TListOf(ht.TDict) def _ExpandMultiNames(mode, names, client=None): """Expand the given names using the passed mode. For _EXPAND_CLUSTER, all instances will be returned. For _EXPAND_NODES_PRI/SEC, all instances having those nodes as primary/secondary will be returned. For _EXPAND_NODES_BOTH, all instances having those nodes as either primary or secondary will be returned. For _EXPAND_INSTANCES, the given instances will be returned. @param mode: one of L{_EXPAND_CLUSTER}, L{_EXPAND_NODES_BOTH}, L{_EXPAND_NODES_PRI}, L{_EXPAND_NODES_SEC} or L{_EXPAND_INSTANCES} @param names: a list of names; for cluster, it must be empty, and for node and instance it must be a list of valid item names (short names are valid as usual, e.g. node1 instead of node1.example.com) @rtype: list @return: the list of names after the expansion @raise errors.ProgrammerError: for unknown selection type @raise errors.OpPrereqError: for invalid input parameters """ # pylint: disable=W0142 if client is None: client = GetClient() if mode == _EXPAND_CLUSTER: if names: raise errors.OpPrereqError("Cluster filter mode takes no arguments", errors.ECODE_INVAL) idata = client.QueryInstances([], ["name"], False) inames = [row[0] for row in idata] elif (mode in _EXPAND_NODES_TAGS_MODES or mode in (_EXPAND_NODES_BOTH, _EXPAND_NODES_PRI, _EXPAND_NODES_SEC)): if mode in _EXPAND_NODES_TAGS_MODES: if not names: raise errors.OpPrereqError("No node tags passed", errors.ECODE_INVAL) ndata = client.QueryNodes([], ["name", "pinst_list", "sinst_list", "tags"], False) ndata = [row for row in ndata if set(row[3]).intersection(names)] else: if not names: raise errors.OpPrereqError("No node names passed", errors.ECODE_INVAL) ndata = client.QueryNodes(names, ["name", "pinst_list", "sinst_list"], False) ipri = [row[1] for row in ndata] pri_names = list(itertools.chain(*ipri)) isec = [row[2] for row in ndata] sec_names = list(itertools.chain(*isec)) if mode in (_EXPAND_NODES_BOTH, _EXPAND_NODES_BOTH_BY_TAGS): inames = pri_names + sec_names elif mode in (_EXPAND_NODES_PRI, _EXPAND_NODES_PRI_BY_TAGS): inames = pri_names elif mode in (_EXPAND_NODES_SEC, _EXPAND_NODES_SEC_BY_TAGS): inames = sec_names else: raise errors.ProgrammerError("Unhandled shutdown type") elif mode == _EXPAND_INSTANCES: if not names: raise errors.OpPrereqError("No instance names passed", errors.ECODE_INVAL) idata = client.QueryInstances(names, ["name"], False) inames = [row[0] for row in idata] elif mode == _EXPAND_INSTANCES_BY_TAGS: if not names: raise errors.OpPrereqError("No instance tags passed", errors.ECODE_INVAL) idata = client.QueryInstances([], ["name", "tags"], False) inames = [row[0] for row in idata if set(row[1]).intersection(names)] else: raise errors.OpPrereqError("Unknown mode '%s'" % mode, errors.ECODE_INVAL) return inames def _EnsureInstancesExist(client, names): """Check for and ensure the given instance names exist. This function will raise an OpPrereqError in case they don't exist. Otherwise it will exit cleanly. @type client: L{ganeti.luxi.Client} @param client: the client to use for the query @type names: list @param names: the list of instance names to query @raise errors.OpPrereqError: in case any instance is missing """ # TODO: change LUInstanceQuery to that it actually returns None # instead of raising an exception, or devise a better mechanism result = client.QueryInstances(names, ["name"], False) for orig_name, row in zip(names, result): if row[0] is None: raise errors.OpPrereqError("Instance '%s' does not exist" % orig_name, errors.ECODE_NOENT) def GenericManyOps(operation, fn): """Generic multi-instance operations. The will return a wrapper that processes the options and arguments given, and uses the passed function to build the opcode needed for the specific operation. Thus all the generic loop/confirmation code is abstracted into this function. """ def realfn(opts, args): if opts.multi_mode is None: opts.multi_mode = _EXPAND_INSTANCES cl = GetClient() inames = _ExpandMultiNames(opts.multi_mode, args, client=cl) if not inames: if opts.multi_mode == _EXPAND_CLUSTER: ToStdout("Cluster is empty, no instances to shutdown") return 0 raise errors.OpPrereqError("Selection filter does not match" " any instances", errors.ECODE_INVAL) multi_on = opts.multi_mode != _EXPAND_INSTANCES or len(inames) > 1 if not (opts.force_multi or not multi_on or ConfirmOperation(inames, "instances", operation)): return 1 jex = JobExecutor(verbose=multi_on, cl=cl, opts=opts) for name in inames: op = fn(name, opts) jex.QueueJob(name, op) results = jex.WaitOrShow(not opts.submit_only) rcode = compat.all(row[0] for row in results) return int(not rcode) return realfn def ListInstances(opts, args): """List instances and their properties. @param opts: the command line options selected by the user @type args: list @param args: should be an empty list @rtype: int @return: the desired exit code """ selected_fields = ParseFields(opts.output, _LIST_DEF_FIELDS) fmtoverride = dict.fromkeys(["tags", "disk.sizes", "nic.macs", "nic.ips", "nic.modes", "nic.links", "nic.bridges", "nic.networks", "snodes", "snodes.group", "snodes.group.uuid"], (lambda value: ",".join(str(item) for item in value), False)) cl = GetClient() return GenericList(constants.QR_INSTANCE, selected_fields, args, opts.units, opts.separator, not opts.no_headers, format_override=fmtoverride, verbose=opts.verbose, force_filter=opts.force_filter, cl=cl) def ListInstanceFields(opts, args): """List instance fields. @param opts: the command line options selected by the user @type args: list @param args: fields to list, or empty for all @rtype: int @return: the desired exit code """ return GenericListFields(constants.QR_INSTANCE, args, opts.separator, not opts.no_headers) def AddInstance(opts, args): """Add an instance to the cluster. This is just a wrapper over L{GenericInstanceCreate}. """ return GenericInstanceCreate(constants.INSTANCE_CREATE, opts, args) def BatchCreate(opts, args): """Create instances using a definition file. This function reads a json file with L{opcodes.OpInstanceCreate} serialisations. @param opts: the command line options selected by the user @type args: list @param args: should contain one element, the json filename @rtype: int @return: the desired exit code """ (json_filename,) = args cl = GetClient() try: instance_data = simplejson.loads(utils.ReadFile(json_filename)) except Exception, err: # pylint: disable=W0703 ToStderr("Can't parse the instance definition file: %s" % str(err)) return 1 if not _INST_DATA_VAL(instance_data): ToStderr("The instance definition file is not %s" % _INST_DATA_VAL) return 1 instances = [] possible_params = set(opcodes.OpInstanceCreate.GetAllSlots()) for (idx, inst) in enumerate(instance_data): unknown = set(inst.keys()) - possible_params if unknown: # TODO: Suggest closest match for more user friendly experience raise errors.OpPrereqError("Unknown fields in definition %s: %s" % (idx, utils.CommaJoin(unknown)), errors.ECODE_INVAL) op = opcodes.OpInstanceCreate(**inst) # pylint: disable=W0142 op.Validate(False) instances.append(op) op = opcodes.OpInstanceMultiAlloc(iallocator=opts.iallocator, instances=instances) result = SubmitOrSend(op, opts, cl=cl) # Keep track of submitted jobs jex = JobExecutor(cl=cl, opts=opts) for (status, job_id) in result[constants.JOB_IDS_KEY]: jex.AddJobId(None, status, job_id) results = jex.GetResults() bad_cnt = len([row for row in results if not row[0]]) if bad_cnt == 0: ToStdout("All instances created successfully.") rcode = constants.EXIT_SUCCESS else: ToStdout("There were %s errors during the creation.", bad_cnt) rcode = constants.EXIT_FAILURE return rcode def ReinstallInstance(opts, args): """Reinstall an instance. @param opts: the command line options selected by the user @type args: list @param args: should contain only one element, the name of the instance to be reinstalled @rtype: int @return: the desired exit code """ # first, compute the desired name list if opts.multi_mode is None: opts.multi_mode = _EXPAND_INSTANCES inames = _ExpandMultiNames(opts.multi_mode, args) if not inames: raise errors.OpPrereqError("Selection filter does not match any instances", errors.ECODE_INVAL) # second, if requested, ask for an OS if opts.select_os is True: op = opcodes.OpOsDiagnose(output_fields=["name", "variants"], names=[]) result = SubmitOpCode(op, opts=opts) if not result: ToStdout("Can't get the OS list") return 1 ToStdout("Available OS templates:") number = 0 choices = [] for (name, variants) in result: for entry in CalculateOSNames(name, variants): ToStdout("%3s: %s", number, entry) choices.append(("%s" % number, entry, entry)) number += 1 choices.append(("x", "exit", "Exit gnt-instance reinstall")) selected = AskUser("Enter OS template number (or x to abort):", choices) if selected == "exit": ToStderr("User aborted reinstall, exiting") return 1 os_name = selected os_msg = "change the OS to '%s'" % selected else: os_name = opts.os if opts.os is not None: os_msg = "change the OS to '%s'" % os_name else: os_msg = "keep the same OS" # third, get confirmation: multi-reinstall requires --force-multi, # single-reinstall either --force or --force-multi (--force-multi is # a stronger --force) multi_on = opts.multi_mode != _EXPAND_INSTANCES or len(inames) > 1 if multi_on: warn_msg = ("Note: this will remove *all* data for the" " below instances! It will %s.\n" % os_msg) if not (opts.force_multi or ConfirmOperation(inames, "instances", "reinstall", extra=warn_msg)): return 1 else: if not (opts.force or opts.force_multi): usertext = ("This will reinstall the instance '%s' (and %s) which" " removes all data. Continue?") % (inames[0], os_msg) if not AskUser(usertext): return 1 jex = JobExecutor(verbose=multi_on, opts=opts) for instance_name in inames: op = opcodes.OpInstanceReinstall(instance_name=instance_name, os_type=os_name, force_variant=opts.force_variant, osparams=opts.osparams, osparams_private=opts.osparams_private, osparams_secret=opts.osparams_secret) jex.QueueJob(instance_name, op) results = jex.WaitOrShow(not opts.submit_only) if compat.all(map(compat.fst, results)): return constants.EXIT_SUCCESS else: return constants.EXIT_FAILURE def RemoveInstance(opts, args): """Remove an instance. @param opts: the command line options selected by the user @type args: list @param args: should contain only one element, the name of the instance to be removed @rtype: int @return: the desired exit code """ instance_name = args[0] force = opts.force cl = GetClient() if not force: _EnsureInstancesExist(cl, [instance_name]) usertext = ("This will remove the volumes of the instance %s" " (including mirrors), thus removing all the data" " of the instance. Continue?") % instance_name if not AskUser(usertext): return 1 op = opcodes.OpInstanceRemove(instance_name=instance_name, ignore_failures=opts.ignore_failures, shutdown_timeout=opts.shutdown_timeout) SubmitOrSend(op, opts, cl=cl) return 0 def RenameInstance(opts, args): """Rename an instance. @param opts: the command line options selected by the user @type args: list @param args: should contain two elements, the old and the new instance names @rtype: int @return: the desired exit code """ if not opts.name_check: if not AskUser("As you disabled the check of the DNS entry, please verify" " that '%s' is a FQDN. Continue?" % args[1]): return 1 op = opcodes.OpInstanceRename(instance_name=args[0], new_name=args[1], ip_check=opts.ip_check, name_check=opts.name_check) result = SubmitOrSend(op, opts) if result: ToStdout("Instance '%s' renamed to '%s'", args[0], result) return 0 def ActivateDisks(opts, args): """Activate an instance's disks. This serves two purposes: - it allows (as long as the instance is not running) mounting the disks and modifying them from the node - it repairs inactive secondary drbds @param opts: the command line options selected by the user @type args: list @param args: should contain only one element, the instance name @rtype: int @return: the desired exit code """ instance_name = args[0] op = opcodes.OpInstanceActivateDisks(instance_name=instance_name, ignore_size=opts.ignore_size, wait_for_sync=opts.wait_for_sync) disks_info = SubmitOrSend(op, opts) for host, iname, nname in disks_info: ToStdout("%s:%s:%s", host, iname, nname) return 0 def DeactivateDisks(opts, args): """Deactivate an instance's disks. This function takes the instance name, looks for its primary node and the tries to shutdown its block devices on that node. @param opts: the command line options selected by the user @type args: list @param args: should contain only one element, the instance name @rtype: int @return: the desired exit code """ instance_name = args[0] op = opcodes.OpInstanceDeactivateDisks(instance_name=instance_name, force=opts.force) SubmitOrSend(op, opts) return 0 def RecreateDisks(opts, args): """Recreate an instance's disks. @param opts: the command line options selected by the user @type args: list @param args: should contain only one element, the instance name @rtype: int @return: the desired exit code """ instance_name = args[0] disks = [] if opts.disks: for didx, ddict in opts.disks: didx = int(didx) if not ht.TDict(ddict): msg = "Invalid disk/%d value: expected dict, got %s" % (didx, ddict) raise errors.OpPrereqError(msg, errors.ECODE_INVAL) if constants.IDISK_SIZE in ddict: try: ddict[constants.IDISK_SIZE] = \ utils.ParseUnit(ddict[constants.IDISK_SIZE]) except ValueError, err: raise errors.OpPrereqError("Invalid disk size for disk %d: %s" % (didx, err), errors.ECODE_INVAL) if constants.IDISK_SPINDLES in ddict: try: ddict[constants.IDISK_SPINDLES] = \ int(ddict[constants.IDISK_SPINDLES]) except ValueError, err: raise errors.OpPrereqError("Invalid spindles for disk %d: %s" % (didx, err), errors.ECODE_INVAL) disks.append((didx, ddict)) # TODO: Verify modifyable parameters (already done in # LUInstanceRecreateDisks, but it'd be nice to have in the client) if opts.node: if opts.iallocator: msg = "At most one of either --nodes or --iallocator can be passed" raise errors.OpPrereqError(msg, errors.ECODE_INVAL) pnode, snode = SplitNodeOption(opts.node) nodes = [pnode] if snode is not None: nodes.append(snode) else: nodes = [] op = opcodes.OpInstanceRecreateDisks(instance_name=instance_name, disks=disks, nodes=nodes, iallocator=opts.iallocator) SubmitOrSend(op, opts) return 0 def GrowDisk(opts, args): """Grow an instance's disks. @param opts: the command line options selected by the user @type args: list @param args: should contain three elements, the target instance name, the target disk id, and the target growth @rtype: int @return: the desired exit code """ instance = args[0] disk = args[1] try: disk = int(disk) except (TypeError, ValueError), err: raise errors.OpPrereqError("Invalid disk index: %s" % str(err), errors.ECODE_INVAL) try: amount = utils.ParseUnit(args[2]) except errors.UnitParseError: raise errors.OpPrereqError("Can't parse the given amount '%s'" % args[2], errors.ECODE_INVAL) op = opcodes.OpInstanceGrowDisk(instance_name=instance, disk=disk, amount=amount, wait_for_sync=opts.wait_for_sync, absolute=opts.absolute) SubmitOrSend(op, opts) return 0 def _StartupInstance(name, opts): """Startup instances. This returns the opcode to start an instance, and its decorator will wrap this into a loop starting all desired instances. @param name: the name of the instance to act on @param opts: the command line options selected by the user @return: the opcode needed for the operation """ op = opcodes.OpInstanceStartup(instance_name=name, force=opts.force, ignore_offline_nodes=opts.ignore_offline, no_remember=opts.no_remember, startup_paused=opts.startup_paused) # do not add these parameters to the opcode unless they're defined if opts.hvparams: op.hvparams = opts.hvparams if opts.beparams: op.beparams = opts.beparams return op def _RebootInstance(name, opts): """Reboot instance(s). This returns the opcode to reboot an instance, and its decorator will wrap this into a loop rebooting all desired instances. @param name: the name of the instance to act on @param opts: the command line options selected by the user @return: the opcode needed for the operation """ return opcodes.OpInstanceReboot(instance_name=name, reboot_type=opts.reboot_type, ignore_secondaries=opts.ignore_secondaries, shutdown_timeout=opts.shutdown_timeout) def _ShutdownInstance(name, opts): """Shutdown an instance. This returns the opcode to shutdown an instance, and its decorator will wrap this into a loop shutting down all desired instances. @param name: the name of the instance to act on @param opts: the command line options selected by the user @return: the opcode needed for the operation """ return opcodes.OpInstanceShutdown(instance_name=name, force=opts.force, timeout=opts.timeout, ignore_offline_nodes=opts.ignore_offline, no_remember=opts.no_remember) def ReplaceDisks(opts, args): """Replace the disks of an instance @param opts: the command line options selected by the user @type args: list @param args: should contain only one element, the instance name @rtype: int @return: the desired exit code """ new_2ndary = opts.dst_node iallocator = opts.iallocator if opts.disks is None: disks = [] else: try: disks = [int(i) for i in opts.disks.split(",")] except (TypeError, ValueError), err: raise errors.OpPrereqError("Invalid disk index passed: %s" % str(err), errors.ECODE_INVAL) cnt = [opts.on_primary, opts.on_secondary, opts.auto, new_2ndary is not None, iallocator is not None].count(True) if cnt != 1: raise errors.OpPrereqError("One and only one of the -p, -s, -a, -n and -I" " options must be passed", errors.ECODE_INVAL) elif opts.on_primary: mode = constants.REPLACE_DISK_PRI elif opts.on_secondary: mode = constants.REPLACE_DISK_SEC elif opts.auto: mode = constants.REPLACE_DISK_AUTO if disks: raise errors.OpPrereqError("Cannot specify disks when using automatic" " mode", errors.ECODE_INVAL) elif new_2ndary is not None or iallocator is not None: # replace secondary mode = constants.REPLACE_DISK_CHG op = opcodes.OpInstanceReplaceDisks(instance_name=args[0], disks=disks, remote_node=new_2ndary, mode=mode, iallocator=iallocator, early_release=opts.early_release, ignore_ipolicy=opts.ignore_ipolicy) SubmitOrSend(op, opts) return 0 def FailoverInstance(opts, args): """Failover an instance. The failover is done by shutting it down on its present node and starting it on the secondary. @param opts: the command line options selected by the user @type args: list @param args: should contain only one element, the instance name @rtype: int @return: the desired exit code """ cl = GetClient() instance_name = args[0] force = opts.force iallocator = opts.iallocator target_node = opts.dst_node if iallocator and target_node: raise errors.OpPrereqError("Specify either an iallocator (-I), or a target" " node (-n) but not both", errors.ECODE_INVAL) if not force: _EnsureInstancesExist(cl, [instance_name]) usertext = ("Failover will happen to image %s." " This requires a shutdown of the instance. Continue?" % (instance_name,)) if not AskUser(usertext): return 1 op = opcodes.OpInstanceFailover(instance_name=instance_name, ignore_consistency=opts.ignore_consistency, shutdown_timeout=opts.shutdown_timeout, iallocator=iallocator, target_node=target_node, ignore_ipolicy=opts.ignore_ipolicy) SubmitOrSend(op, opts, cl=cl) return 0 def MigrateInstance(opts, args): """Migrate an instance. The migrate is done without shutdown. @param opts: the command line options selected by the user @type args: list @param args: should contain only one element, the instance name @rtype: int @return: the desired exit code """ cl = GetClient() instance_name = args[0] force = opts.force iallocator = opts.iallocator target_node = opts.dst_node if iallocator and target_node: raise errors.OpPrereqError("Specify either an iallocator (-I), or a target" " node (-n) but not both", errors.ECODE_INVAL) if not force: _EnsureInstancesExist(cl, [instance_name]) if opts.cleanup: usertext = ("Instance %s will be recovered from a failed migration." " Note that the migration procedure (including cleanup)" % (instance_name,)) else: usertext = ("Instance %s will be migrated. Note that migration" % (instance_name,)) usertext += (" might impact the instance if anything goes wrong" " (e.g. due to bugs in the hypervisor). Continue?") if not AskUser(usertext): return 1 # this should be removed once --non-live is deprecated if not opts.live and opts.migration_mode is not None: raise errors.OpPrereqError("Only one of the --non-live and " "--migration-mode options can be passed", errors.ECODE_INVAL) if not opts.live: # --non-live passed mode = constants.HT_MIGRATION_NONLIVE else: mode = opts.migration_mode op = opcodes.OpInstanceMigrate(instance_name=instance_name, mode=mode, cleanup=opts.cleanup, iallocator=iallocator, target_node=target_node, allow_failover=opts.allow_failover, allow_runtime_changes=opts.allow_runtime_chgs, ignore_ipolicy=opts.ignore_ipolicy, ignore_hvversions=opts.ignore_hvversions) SubmitOrSend(op, cl=cl, opts=opts) return 0 def MoveInstance(opts, args): """Move an instance. @param opts: the command line options selected by the user @type args: list @param args: should contain only one element, the instance name @rtype: int @return: the desired exit code """ cl = GetClient() instance_name = args[0] force = opts.force if not force: usertext = ("Instance %s will be moved." " This requires a shutdown of the instance. Continue?" % (instance_name,)) if not AskUser(usertext): return 1 op = opcodes.OpInstanceMove(instance_name=instance_name, target_node=opts.node, compress=opts.compress, shutdown_timeout=opts.shutdown_timeout, ignore_consistency=opts.ignore_consistency, ignore_ipolicy=opts.ignore_ipolicy) SubmitOrSend(op, opts, cl=cl) return 0 def ConnectToInstanceConsole(opts, args): """Connect to the console of an instance. @param opts: the command line options selected by the user @type args: list @param args: should contain only one element, the instance name @rtype: int @return: the desired exit code """ instance_name = args[0] cl = GetClient() try: cluster_name = cl.QueryConfigValues(["cluster_name"])[0] idata = cl.QueryInstances([instance_name], ["console", "oper_state"], False) if not idata: raise errors.OpPrereqError("Instance '%s' does not exist" % instance_name, errors.ECODE_NOENT) finally: # Ensure client connection is closed while external commands are run cl.Close() del cl ((console_data, oper_state), ) = idata if not console_data: if oper_state: # Instance is running raise errors.OpExecError("Console information for instance %s is" " unavailable" % instance_name) else: raise errors.OpExecError("Instance %s is not running, can't get console" % instance_name) return _DoConsole(objects.InstanceConsole.FromDict(console_data), opts.show_command, cluster_name) def _DoConsole(console, show_command, cluster_name, feedback_fn=ToStdout, _runcmd_fn=utils.RunCmd): """Acts based on the result of L{opcodes.OpInstanceConsole}. @type console: L{objects.InstanceConsole} @param console: Console object @type show_command: bool @param show_command: Whether to just display commands @type cluster_name: string @param cluster_name: Cluster name as retrieved from master daemon """ console.Validate() if console.kind == constants.CONS_MESSAGE: feedback_fn(console.message) elif console.kind == constants.CONS_VNC: feedback_fn("Instance %s has VNC listening on %s:%s (display %s)," " URL <vnc://%s:%s/>", console.instance, console.host, console.port, console.display, console.host, console.port) elif console.kind == constants.CONS_SPICE: feedback_fn("Instance %s has SPICE listening on %s:%s", console.instance, console.host, console.port) elif console.kind == constants.CONS_SSH: # Convert to string if not already one if isinstance(console.command, basestring): cmd = console.command else: cmd = utils.ShellQuoteArgs(console.command) srun = ssh.SshRunner(cluster_name=cluster_name) ssh_cmd = srun.BuildCmd(console.host, console.user, cmd, port=console.port, batch=True, quiet=False, tty=True) if show_command: feedback_fn(utils.ShellQuoteArgs(ssh_cmd)) else: result = _runcmd_fn(ssh_cmd, interactive=True) if result.failed: logging.error("Console command \"%s\" failed with reason '%s' and" " output %r", result.cmd, result.fail_reason, result.output) raise errors.OpExecError("Connection to console of instance %s failed," " please check cluster configuration" % console.instance) else: raise errors.GenericError("Unknown console type '%s'" % console.kind) return constants.EXIT_SUCCESS def _FormatDiskDetails(dev_type, dev, roman): """Formats the logical_id of a disk. """ if dev_type == constants.DT_DRBD8: drbd_info = dev["drbd_info"] data = [ ("nodeA", "%s, minor=%s" % (drbd_info["primary_node"], compat.TryToRoman(drbd_info["primary_minor"], convert=roman))), ("nodeB", "%s, minor=%s" % (drbd_info["secondary_node"], compat.TryToRoman(drbd_info["secondary_minor"], convert=roman))), ("port", str(compat.TryToRoman(drbd_info["port"], roman))), ("auth key", str(drbd_info["secret"])), ] elif dev_type == constants.DT_PLAIN: vg_name, lv_name = dev["logical_id"] data = ["%s/%s" % (vg_name, lv_name)] else: data = [str(dev["logical_id"])] return data def _FormatBlockDevInfo(idx, top_level, dev, roman): """Show block device information. This is only used by L{ShowInstanceConfig}, but it's too big to be left for an inline definition. @type idx: int @param idx: the index of the current disk @type top_level: boolean @param top_level: if this a top-level disk? @type dev: dict @param dev: dictionary with disk information @type roman: boolean @param roman: whether to try to use roman integers @return: a list of either strings, tuples or lists (which should be formatted at a higher indent level) """ def helper(dtype, status): """Format one line for physical device status. @type dtype: str @param dtype: a constant from the L{constants.DTS_BLOCK} set @type status: tuple @param status: a tuple as returned from L{backend.FindBlockDevice} @return: the string representing the status """ if not status: return "not active" txt = "" (path, major, minor, syncp, estt, degr, ldisk_status) = status if major is None: major_string = "N/A" else: major_string = str(compat.TryToRoman(major, convert=roman)) if minor is None: minor_string = "N/A" else: minor_string = str(compat.TryToRoman(minor, convert=roman)) txt += ("%s (%s:%s)" % (path, major_string, minor_string)) if dtype in (constants.DT_DRBD8, ): if syncp is not None: sync_text = "*RECOVERING* %5.2f%%," % syncp if estt: sync_text += " ETA %ss" % compat.TryToRoman(estt, convert=roman) else: sync_text += " ETA unknown" else: sync_text = "in sync" if degr: degr_text = "*DEGRADED*" else: degr_text = "ok" if ldisk_status == constants.LDS_FAULTY: ldisk_text = " *MISSING DISK*" elif ldisk_status == constants.LDS_UNKNOWN: ldisk_text = " *UNCERTAIN STATE*" else: ldisk_text = "" txt += (" %s, status %s%s" % (sync_text, degr_text, ldisk_text)) elif dtype == constants.DT_PLAIN: if ldisk_status == constants.LDS_FAULTY: ldisk_text = " *FAILED* (failed drive?)" else: ldisk_text = "" txt += ldisk_text return txt # the header if top_level: if dev["iv_name"] is not None: txt = dev["iv_name"] else: txt = "disk %s" % compat.TryToRoman(idx, convert=roman) else: txt = "child %s" % compat.TryToRoman(idx, convert=roman) if isinstance(dev["size"], int): nice_size = utils.FormatUnit(dev["size"], "h", roman) else: nice_size = str(dev["size"]) data = [(txt, "%s, size %s" % (dev["dev_type"], nice_size))] if top_level: if dev["spindles"] is not None: data.append(("spindles", dev["spindles"])) data.append(("access mode", dev["mode"])) if dev["logical_id"] is not None: try: l_id = _FormatDiskDetails(dev["dev_type"], dev, roman) except ValueError: l_id = [str(dev["logical_id"])] if len(l_id) == 1: data.append(("logical_id", l_id[0])) else: data.extend(l_id) if dev["pstatus"]: data.append(("on primary", helper(dev["dev_type"], dev["pstatus"]))) if dev["sstatus"]: data.append(("on secondary", helper(dev["dev_type"], dev["sstatus"]))) data.append(("name", dev["name"])) data.append(("UUID", dev["uuid"])) if dev["children"]: data.append(("child devices", [ _FormatBlockDevInfo(c_idx, False, child, roman) for c_idx, child in enumerate(dev["children"]) ])) return data def _FormatInstanceNicInfo(idx, nic, roman=False): """Helper function for L{_FormatInstanceInfo()}""" (name, uuid, ip, mac, mode, link, vlan, _, netinfo) = nic network_name = None if netinfo: network_name = netinfo["name"] return [ ("nic/%s" % str(compat.TryToRoman(idx, roman)), ""), ("MAC", str(mac)), ("IP", str(ip)), ("mode", str(mode)), ("link", str(link)), ("vlan", str(compat.TryToRoman(vlan, roman))), ("network", str(network_name)), ("UUID", str(uuid)), ("name", str(name)), ] def _FormatInstanceNodesInfo(instance): """Helper function for L{_FormatInstanceInfo()}""" pgroup = ("%s (UUID %s)" % (instance["pnode_group_name"], instance["pnode_group_uuid"])) secs = utils.CommaJoin(("%s (group %s, group UUID %s)" % (name, group_name, group_uuid)) for (name, group_name, group_uuid) in zip(instance["snodes"], instance["snodes_group_names"], instance["snodes_group_uuids"])) return [ [ ("primary", instance["pnode"]), ("group", pgroup), ], [("secondaries", secs)], ] def _GetVncConsoleInfo(instance): """Helper function for L{_FormatInstanceInfo()}""" vnc_bind_address = instance["hv_actual"].get(constants.HV_VNC_BIND_ADDRESS, None) if vnc_bind_address: port = instance["network_port"] display = int(port) - constants.VNC_BASE_PORT if display > 0 and vnc_bind_address == constants.IP4_ADDRESS_ANY: vnc_console_port = "%s:%s (display %s)" % (instance["pnode"], port, display) elif display > 0 and netutils.IP4Address.IsValid(vnc_bind_address): vnc_console_port = ("%s:%s (node %s) (display %s)" % (vnc_bind_address, port, instance["pnode"], display)) else: # vnc bind address is a file vnc_console_port = "%s:%s" % (instance["pnode"], vnc_bind_address) ret = "vnc to %s" % vnc_console_port else: ret = None return ret def _FormatInstanceInfo(instance, roman_integers): """Format instance information for L{cli.PrintGenericInfo()}""" istate = "configured to be %s" % instance["config_state"] if instance["run_state"]: istate += ", actual state is %s" % instance["run_state"] info = [ ("Instance name", instance["name"]), ("UUID", instance["uuid"]), ("Serial number", str(compat.TryToRoman(instance["serial_no"], convert=roman_integers))), ("Creation time", utils.FormatTime(instance["ctime"])), ("Modification time", utils.FormatTime(instance["mtime"])), ("State", istate), ("Nodes", _FormatInstanceNodesInfo(instance)), ("Operating system", instance["os"]), ("Operating system parameters", FormatParamsDictInfo(instance["os_instance"], instance["os_actual"], roman_integers)), ] if "network_port" in instance: info.append(("Allocated network port", str(compat.TryToRoman(instance["network_port"], convert=roman_integers)))) info.append(("Hypervisor", instance["hypervisor"])) console = _GetVncConsoleInfo(instance) if console: info.append(("console connection", console)) # deprecated "memory" value, kept for one version for compatibility # TODO(ganeti 2.7) remove. be_actual = copy.deepcopy(instance["be_actual"]) be_actual["memory"] = be_actual[constants.BE_MAXMEM] info.extend([ ("Hypervisor parameters", FormatParamsDictInfo(instance["hv_instance"], instance["hv_actual"], roman_integers)), ("Back-end parameters", FormatParamsDictInfo(instance["be_instance"], be_actual, roman_integers)), ("NICs", [ _FormatInstanceNicInfo(idx, nic, roman_integers) for (idx, nic) in enumerate(instance["nics"]) ]), ("Disk template", instance["disk_template"]), ("Disks", [ _FormatBlockDevInfo(idx, True, device, roman_integers) for (idx, device) in enumerate(instance["disks"]) ]), ]) return info def ShowInstanceConfig(opts, args): """Compute instance run-time status. @param opts: the command line options selected by the user @type args: list @param args: either an empty list, and then we query all instances, or should contain a list of instance names @rtype: int @return: the desired exit code """ if not args and not opts.show_all: ToStderr("No instance selected." " Please pass in --all if you want to query all instances.\n" "Note that this can take a long time on a big cluster.") return 1 elif args and opts.show_all: ToStderr("Cannot use --all if you specify instance names.") return 1 retcode = 0 op = opcodes.OpInstanceQueryData(instances=args, static=opts.static, use_locking=not opts.static) result = SubmitOpCode(op, opts=opts) if not result: ToStdout("No instances.") return 1 PrintGenericInfo([ _FormatInstanceInfo(instance, opts.roman_integers) for instance in result.values() ]) return retcode def _ConvertNicDiskModifications(mods): """Converts NIC/disk modifications from CLI to opcode. When L{opcodes.OpInstanceSetParams} was changed to support adding/removing disks at arbitrary indices, its parameter format changed. This function converts legacy requests (e.g. "--net add" or "--disk add:size=4G") to the newer format and adds support for new-style requests (e.g. "--new 4:add"). @type mods: list of tuples @param mods: Modifications as given by command line parser @rtype: list of tuples @return: Modifications as understood by L{opcodes.OpInstanceSetParams} """ result = [] for (identifier, params) in mods: if identifier == constants.DDM_ADD: # Add item as last item (legacy interface) action = constants.DDM_ADD identifier = -1 elif identifier == constants.DDM_REMOVE: # Remove last item (legacy interface) action = constants.DDM_REMOVE identifier = -1 else: # Modifications and adding/removing at arbitrary indices add = params.pop(constants.DDM_ADD, _MISSING) remove = params.pop(constants.DDM_REMOVE, _MISSING) modify = params.pop(constants.DDM_MODIFY, _MISSING) if modify is _MISSING: if not (add is _MISSING or remove is _MISSING): raise errors.OpPrereqError("Cannot add and remove at the same time", errors.ECODE_INVAL) elif add is not _MISSING: action = constants.DDM_ADD elif remove is not _MISSING: action = constants.DDM_REMOVE else: action = constants.DDM_MODIFY elif add is _MISSING and remove is _MISSING: action = constants.DDM_MODIFY else: raise errors.OpPrereqError("Cannot modify and add/remove at the" " same time", errors.ECODE_INVAL) assert not (constants.DDMS_VALUES_WITH_MODIFY & set(params.keys())) if action == constants.DDM_REMOVE and params: raise errors.OpPrereqError("Not accepting parameters on removal", errors.ECODE_INVAL) result.append((action, identifier, params)) return result def _ParseExtStorageParams(params): """Parses the disk params for ExtStorage conversions. """ if params: if constants.IDISK_PROVIDER not in params: raise errors.OpPrereqError("Missing required parameter '%s' when" " converting to an ExtStorage disk template" % constants.IDISK_PROVIDER, errors.ECODE_INVAL) else: for param in params.keys(): if (param != constants.IDISK_PROVIDER and param in constants.IDISK_PARAMS): raise errors.OpPrereqError("Invalid parameter '%s' when converting" " to an ExtStorage template (it is not" " allowed modifying existing disk" " parameters)" % param, errors.ECODE_INVAL) return params def _ParseDiskSizes(mods): """Parses disk sizes in parameters. """ for (action, _, params) in mods: if params and constants.IDISK_SPINDLES in params: params[constants.IDISK_SPINDLES] = \ int(params[constants.IDISK_SPINDLES]) if params and constants.IDISK_SIZE in params: params[constants.IDISK_SIZE] = \ utils.ParseUnit(params[constants.IDISK_SIZE]) elif action == constants.DDM_ADD: raise errors.OpPrereqError("Missing required parameter 'size'", errors.ECODE_INVAL) return mods def SetInstanceParams(opts, args): """Modifies an instance. All parameters take effect only at the next restart of the instance. @param opts: the command line options selected by the user @type args: list @param args: should contain only one element, the instance name @rtype: int @return: the desired exit code """ if not (opts.nics or opts.disks or opts.disk_template or opts.hvparams or opts.beparams or opts.os or opts.osparams or opts.osparams_private or opts.offline_inst or opts.online_inst or opts.runtime_mem or opts.new_primary_node or opts.instance_communication is not None): ToStderr("Please give at least one of the parameters.") return 1 for param in opts.beparams: if isinstance(opts.beparams[param], basestring): if opts.beparams[param].lower() == "default": opts.beparams[param] = constants.VALUE_DEFAULT utils.ForceDictType(opts.beparams, constants.BES_PARAMETER_COMPAT, allowed_values=[constants.VALUE_DEFAULT]) for param in opts.hvparams: if isinstance(opts.hvparams[param], basestring): if opts.hvparams[param].lower() == "default": opts.hvparams[param] = constants.VALUE_DEFAULT utils.ForceDictType(opts.hvparams, constants.HVS_PARAMETER_TYPES, allowed_values=[constants.VALUE_DEFAULT]) FixHvParams(opts.hvparams) nics = _ConvertNicDiskModifications(opts.nics) for action, _, __ in nics: if action == constants.DDM_MODIFY and opts.hotplug and not opts.force: usertext = ("You are about to hot-modify a NIC. This will be done" " by removing the existing NIC and then adding a new one." " Network connection might be lost. Continue?") if not AskUser(usertext): return 1 disks = _ParseDiskSizes(_ConvertNicDiskModifications(opts.disks)) # verify the user provided parameters for disk template conversions if opts.disk_template: if (not opts.node and opts.disk_template in constants.DTS_INT_MIRROR): ToStderr("Changing the disk template to a mirrored one requires" " specifying a secondary node") return 1 elif (opts.ext_params and opts.disk_template != constants.DT_EXT): ToStderr("Specifying ExtStorage parameters requires converting" " to the '%s' disk template" % constants.DT_EXT) return 1 elif (not opts.ext_params and opts.disk_template == constants.DT_EXT): ToStderr("Provider option is missing, use either the" " '--ext-params' or '-e' option") return 1 if ((opts.file_driver or opts.file_storage_dir) and not opts.disk_template in constants.DTS_FILEBASED): ToStderr("Specifying file-based configuration arguments requires" " converting to a file-based disk template") return 1 ext_params = _ParseExtStorageParams(opts.ext_params) if opts.offline_inst: offline = True elif opts.online_inst: offline = False else: offline = None instance_comm = opts.instance_communication op = opcodes.OpInstanceSetParams(instance_name=args[0], nics=nics, disks=disks, hotplug=opts.hotplug, hotplug_if_possible=opts.hotplug_if_possible, disk_template=opts.disk_template, ext_params=ext_params, file_driver=opts.file_driver, file_storage_dir=opts.file_storage_dir, remote_node=opts.node, pnode=opts.new_primary_node, hvparams=opts.hvparams, beparams=opts.beparams, runtime_mem=opts.runtime_mem, os_name=opts.os, osparams=opts.osparams, osparams_private=opts.osparams_private, force_variant=opts.force_variant, force=opts.force, wait_for_sync=opts.wait_for_sync, offline=offline, conflicts_check=opts.conflicts_check, ignore_ipolicy=opts.ignore_ipolicy, instance_communication=instance_comm) # even if here we process the result, we allow submit only result = SubmitOrSend(op, opts) if result: ToStdout("Modified instance %s", args[0]) for param, data in result: ToStdout(" - %-5s -> %s", param, data) ToStdout("Please don't forget that most parameters take effect" " only at the next (re)start of the instance initiated by" " ganeti; restarting from within the instance will" " not be enough.") if opts.hvparams: ToStdout("Note that changing hypervisor parameters without performing a" " restart might lead to a crash while performing a live" " migration. This will be addressed in future Ganeti versions.") return 0 def ChangeGroup(opts, args): """Moves an instance to another group. """ (instance_name, ) = args cl = GetClient() op = opcodes.OpInstanceChangeGroup(instance_name=instance_name, iallocator=opts.iallocator, target_groups=opts.to, early_release=opts.early_release) result = SubmitOrSend(op, opts, cl=cl) # Keep track of submitted jobs jex = JobExecutor(cl=cl, opts=opts) for (status, job_id) in result[constants.JOB_IDS_KEY]: jex.AddJobId(None, status, job_id) results = jex.GetResults() bad_cnt = len([row for row in results if not row[0]]) if bad_cnt == 0: ToStdout("Instance '%s' changed group successfully.", instance_name) rcode = constants.EXIT_SUCCESS else: ToStdout("There were %s errors while changing group of instance '%s'.", bad_cnt, instance_name) rcode = constants.EXIT_FAILURE return rcode # multi-instance selection options m_force_multi = cli_option("--force-multiple", dest="force_multi", help="Do not ask for confirmation when more than" " one instance is affected", action="store_true", default=False) m_pri_node_opt = cli_option("--primary", dest="multi_mode", help="Filter by nodes (primary only)", const=_EXPAND_NODES_PRI, action="store_const") m_sec_node_opt = cli_option("--secondary", dest="multi_mode", help="Filter by nodes (secondary only)", const=_EXPAND_NODES_SEC, action="store_const") m_node_opt = cli_option("--node", dest="multi_mode", help="Filter by nodes (primary and secondary)", const=_EXPAND_NODES_BOTH, action="store_const") m_clust_opt = cli_option("--all", dest="multi_mode", help="Select all instances in the cluster", const=_EXPAND_CLUSTER, action="store_const") m_inst_opt = cli_option("--instance", dest="multi_mode", help="Filter by instance name [default]", const=_EXPAND_INSTANCES, action="store_const") m_node_tags_opt = cli_option("--node-tags", dest="multi_mode", help="Filter by node tag", const=_EXPAND_NODES_BOTH_BY_TAGS, action="store_const") m_pri_node_tags_opt = cli_option("--pri-node-tags", dest="multi_mode", help="Filter by primary node tag", const=_EXPAND_NODES_PRI_BY_TAGS, action="store_const") m_sec_node_tags_opt = cli_option("--sec-node-tags", dest="multi_mode", help="Filter by secondary node tag", const=_EXPAND_NODES_SEC_BY_TAGS, action="store_const") m_inst_tags_opt = cli_option("--tags", dest="multi_mode", help="Filter by instance tag", const=_EXPAND_INSTANCES_BY_TAGS, action="store_const") # this is defined separately due to readability only add_opts = [ NOSTART_OPT, OS_OPT, FORCE_VARIANT_OPT, NO_INSTALL_OPT, IGNORE_IPOLICY_OPT, INSTANCE_COMMUNICATION_OPT, HELPER_STARTUP_TIMEOUT_OPT, HELPER_SHUTDOWN_TIMEOUT_OPT, ] commands = { "add": ( AddInstance, [ArgHost(min=1, max=1)], COMMON_CREATE_OPTS + add_opts, "[...] -t disk-type -n node[:secondary-node] -o os-type <name>", "Creates and adds a new instance to the cluster"), "batch-create": ( BatchCreate, [ArgFile(min=1, max=1)], [DRY_RUN_OPT, PRIORITY_OPT, IALLOCATOR_OPT] + SUBMIT_OPTS, "<instances.json>", "Create a bunch of instances based on specs in the file."), "console": ( ConnectToInstanceConsole, ARGS_ONE_INSTANCE, [SHOWCMD_OPT, PRIORITY_OPT], "[--show-cmd] <instance>", "Opens a console on the specified instance"), "failover": ( FailoverInstance, ARGS_ONE_INSTANCE, [FORCE_OPT, IGNORE_CONSIST_OPT] + SUBMIT_OPTS + [SHUTDOWN_TIMEOUT_OPT, DRY_RUN_OPT, PRIORITY_OPT, DST_NODE_OPT, IALLOCATOR_OPT, IGNORE_IPOLICY_OPT, CLEANUP_OPT], "[-f] <instance>", "Stops the instance, changes its primary node and" " (if it was originally running) starts it on the new node" " (the secondary for mirrored instances or any node" " for shared storage)."), "migrate": ( MigrateInstance, ARGS_ONE_INSTANCE, [FORCE_OPT, NONLIVE_OPT, MIGRATION_MODE_OPT, CLEANUP_OPT, DRY_RUN_OPT, PRIORITY_OPT, DST_NODE_OPT, IALLOCATOR_OPT, ALLOW_FAILOVER_OPT, IGNORE_IPOLICY_OPT, IGNORE_HVVERSIONS_OPT, NORUNTIME_CHGS_OPT] + SUBMIT_OPTS, "[-f] <instance>", "Migrate instance to its secondary node" " (only for mirrored instances)"), "move": ( MoveInstance, ARGS_ONE_INSTANCE, [FORCE_OPT] + SUBMIT_OPTS + [SINGLE_NODE_OPT, COMPRESS_OPT, SHUTDOWN_TIMEOUT_OPT, DRY_RUN_OPT, PRIORITY_OPT, IGNORE_CONSIST_OPT, IGNORE_IPOLICY_OPT], "[-f] <instance>", "Move instance to an arbitrary node" " (only for instances of type file and lv)"), "info": ( ShowInstanceConfig, ARGS_MANY_INSTANCES, [STATIC_OPT, ALL_OPT, ROMAN_OPT, PRIORITY_OPT], "[-s] {--all | <instance>...}", "Show information on the specified instance(s)"), "list": ( ListInstances, ARGS_MANY_INSTANCES, [NOHDR_OPT, SEP_OPT, USEUNITS_OPT, FIELDS_OPT, VERBOSE_OPT, FORCE_FILTER_OPT], "[<instance>...]", "Lists the instances and their status. The available fields can be shown" " using the \"list-fields\" command (see the man page for details)." " The default field list is (in order): %s." % utils.CommaJoin(_LIST_DEF_FIELDS), ), "list-fields": ( ListInstanceFields, [ArgUnknown()], [NOHDR_OPT, SEP_OPT], "[fields...]", "Lists all available fields for instances"), "reinstall": ( ReinstallInstance, [ArgInstance()], [FORCE_OPT, OS_OPT, FORCE_VARIANT_OPT, m_force_multi, m_node_opt, m_pri_node_opt, m_sec_node_opt, m_clust_opt, m_inst_opt, m_node_tags_opt, m_pri_node_tags_opt, m_sec_node_tags_opt, m_inst_tags_opt, SELECT_OS_OPT] + SUBMIT_OPTS + [DRY_RUN_OPT, PRIORITY_OPT, OSPARAMS_OPT, OSPARAMS_PRIVATE_OPT, OSPARAMS_SECRET_OPT], "[-f] <instance>", "Reinstall a stopped instance"), "remove": ( RemoveInstance, ARGS_ONE_INSTANCE, [FORCE_OPT, SHUTDOWN_TIMEOUT_OPT, IGNORE_FAILURES_OPT] + SUBMIT_OPTS + [DRY_RUN_OPT, PRIORITY_OPT], "[-f] <instance>", "Shuts down the instance and removes it"), "rename": ( RenameInstance, [ArgInstance(min=1, max=1), ArgHost(min=1, max=1)], [NOIPCHECK_OPT, NONAMECHECK_OPT] + SUBMIT_OPTS + [DRY_RUN_OPT, PRIORITY_OPT], "<instance> <new_name>", "Rename the instance"), "replace-disks": ( ReplaceDisks, ARGS_ONE_INSTANCE, [AUTO_REPLACE_OPT, DISKIDX_OPT, IALLOCATOR_OPT, EARLY_RELEASE_OPT, NEW_SECONDARY_OPT, ON_PRIMARY_OPT, ON_SECONDARY_OPT] + SUBMIT_OPTS + [DRY_RUN_OPT, PRIORITY_OPT, IGNORE_IPOLICY_OPT], "[-s|-p|-a|-n NODE|-I NAME] <instance>", "Replaces disks for the instance"), "modify": ( SetInstanceParams, ARGS_ONE_INSTANCE, [BACKEND_OPT, DISK_OPT, FORCE_OPT, HVOPTS_OPT, NET_OPT] + SUBMIT_OPTS + [DISK_TEMPLATE_OPT, SINGLE_NODE_OPT, OS_OPT, FORCE_VARIANT_OPT, OSPARAMS_OPT, OSPARAMS_PRIVATE_OPT, DRY_RUN_OPT, PRIORITY_OPT, NWSYNC_OPT, OFFLINE_INST_OPT, ONLINE_INST_OPT, IGNORE_IPOLICY_OPT, RUNTIME_MEM_OPT, NOCONFLICTSCHECK_OPT, NEW_PRIMARY_OPT, HOTPLUG_OPT, HOTPLUG_IF_POSSIBLE_OPT, INSTANCE_COMMUNICATION_OPT, EXT_PARAMS_OPT, FILESTORE_DRIVER_OPT, FILESTORE_DIR_OPT], "<instance>", "Alters the parameters of an instance"), "shutdown": ( GenericManyOps("shutdown", _ShutdownInstance), [ArgInstance()], [FORCE_OPT, m_node_opt, m_pri_node_opt, m_sec_node_opt, m_clust_opt, m_node_tags_opt, m_pri_node_tags_opt, m_sec_node_tags_opt, m_inst_tags_opt, m_inst_opt, m_force_multi, TIMEOUT_OPT] + SUBMIT_OPTS + [DRY_RUN_OPT, PRIORITY_OPT, IGNORE_OFFLINE_OPT, NO_REMEMBER_OPT], "<instance>", "Stops an instance"), "startup": ( GenericManyOps("startup", _StartupInstance), [ArgInstance()], [FORCE_OPT, m_force_multi, m_node_opt, m_pri_node_opt, m_sec_node_opt, m_node_tags_opt, m_pri_node_tags_opt, m_sec_node_tags_opt, m_inst_tags_opt, m_clust_opt, m_inst_opt] + SUBMIT_OPTS + [HVOPTS_OPT, BACKEND_OPT, DRY_RUN_OPT, PRIORITY_OPT, IGNORE_OFFLINE_OPT, NO_REMEMBER_OPT, STARTUP_PAUSED_OPT], "<instance>", "Starts an instance"), "reboot": ( GenericManyOps("reboot", _RebootInstance), [ArgInstance()], [m_force_multi, REBOOT_TYPE_OPT, IGNORE_SECONDARIES_OPT, m_node_opt, m_pri_node_opt, m_sec_node_opt, m_clust_opt, m_inst_opt] + SUBMIT_OPTS + [m_node_tags_opt, m_pri_node_tags_opt, m_sec_node_tags_opt, m_inst_tags_opt, SHUTDOWN_TIMEOUT_OPT, DRY_RUN_OPT, PRIORITY_OPT], "<instance>", "Reboots an instance"), "activate-disks": ( ActivateDisks, ARGS_ONE_INSTANCE, SUBMIT_OPTS + [IGNORE_SIZE_OPT, PRIORITY_OPT, WFSYNC_OPT], "<instance>", "Activate an instance's disks"), "deactivate-disks": ( DeactivateDisks, ARGS_ONE_INSTANCE, [FORCE_OPT] + SUBMIT_OPTS + [DRY_RUN_OPT, PRIORITY_OPT], "[-f] <instance>", "Deactivate an instance's disks"), "recreate-disks": ( RecreateDisks, ARGS_ONE_INSTANCE, SUBMIT_OPTS + [DISK_OPT, NODE_PLACEMENT_OPT, DRY_RUN_OPT, PRIORITY_OPT, IALLOCATOR_OPT], "<instance>", "Recreate an instance's disks"), "grow-disk": ( GrowDisk, [ArgInstance(min=1, max=1), ArgUnknown(min=1, max=1), ArgUnknown(min=1, max=1)], SUBMIT_OPTS + [NWSYNC_OPT, DRY_RUN_OPT, PRIORITY_OPT, ABSOLUTE_OPT], "<instance> <disk> <size>", "Grow an instance's disk"), "change-group": ( ChangeGroup, ARGS_ONE_INSTANCE, [TO_GROUP_OPT, IALLOCATOR_OPT, EARLY_RELEASE_OPT, PRIORITY_OPT] + SUBMIT_OPTS, "[-I <iallocator>] [--to <group>]", "Change group of instance"), "list-tags": ( ListTags, ARGS_ONE_INSTANCE, [], "<instance_name>", "List the tags of the given instance"), "add-tags": ( AddTags, [ArgInstance(min=1, max=1), ArgUnknown()], [TAG_SRC_OPT, PRIORITY_OPT] + SUBMIT_OPTS, "<instance_name> tag...", "Add tags to the given instance"), "remove-tags": ( RemoveTags, [ArgInstance(min=1, max=1), ArgUnknown()], [TAG_SRC_OPT, PRIORITY_OPT] + SUBMIT_OPTS, "<instance_name> tag...", "Remove tags from given instance"), } #: dictionary with aliases for commands aliases = { "start": "startup", "stop": "shutdown", "show": "info", } def Main(): return GenericMain(commands, aliases=aliases, override={"tag_type": constants.TAG_INSTANCE}, env_override=_ENV_OVERRIDE)
bsd-2-clause
8,941,289,388,210,791,000
35.149826
80
0.618715
false
3.790647
false
false
false
bmazin/ARCONS-pipeline
fluxcal/fluxCal.py
1
29931
#!/bin/python ''' fluxCal.py Created by Seth Meeker on 11-21-2012 Modified on 02-16-2015 to perform absolute fluxCal with point sources Opens ARCONS observation of a spectrophotometric standard star and associated wavelength cal file, reads in all photons and converts to energies. Bins photons to generate a spectrum, then divides this into the known spectrum of the object to create a Sensitivity curve. This curve is then written out to h5 file. Flags are associated with each pixel - see headers/pipelineFlags for descriptions. Note some flags are set here, others are set later on when creating photon lists. ''' import sys,os import tables import numpy as np from scipy import interpolate from scipy.optimize.minpack import curve_fit import matplotlib.pyplot as plt from photometry import LightCurve from util.FileName import FileName from util.ObsFile import ObsFile from util import MKIDStd from util.readDict import readDict from util.utils import rebin from util.utils import gaussianConvolution from util.utils import makeMovie from util.utils import fitBlackbody import hotpix.hotPixels as hp from scipy.optimize.minpack import curve_fit from scipy import interpolate import matplotlib from matplotlib.backends.backend_pdf import PdfPages from headers import pipelineFlags import figureHeader class FluxCal: def __init__(self,paramFile,plots=False,verbose=False): """ Opens flux file, prepares standard spectrum, and calculates flux factors for the file. Method is provided in param file. If 'relative' is selected, an obs file with standard star defocused over the entire array is expected, with accompanying sky file to do sky subtraction. If any other method is provided, 'absolute' will be done by default, wherein a point source is assumed to be present. The obs file is then broken into spectral frames with photometry (psf or aper) performed on each frame to generate the ARCONS observed spectrum. """ self.verbose=verbose self.plots = plots self.params = readDict() self.params.read_from_file(paramFile) run = self.params['run'] sunsetDate = self.params['fluxSunsetLocalDate'] self.fluxTstamp = self.params['fluxTimestamp'] skyTstamp = self.params['skyTimestamp'] wvlSunsetDate = self.params['wvlCalSunsetLocalDate'] wvlTimestamp = self.params['wvlCalTimestamp'] flatCalFileName = self.params['flatCalFileName'] needTimeAdjust = self.params['needTimeAdjust'] self.deadtime = float(self.params['deadtime']) #from firmware pulse detection self.timeSpacingCut = self.params['timeSpacingCut'] bLoadBeammap = self.params.get('bLoadBeammap',False) self.method = self.params['method'] self.objectName = self.params['object'] self.r = float(self.params['energyResolution']) self.photometry = self.params['photometry'] self.centroidRow = self.params['centroidRow'] self.centroidCol = self.params['centroidCol'] self.aperture = self.params['apertureRad'] self.annulusInner = self.params['annulusInner'] self.annulusOuter = self.params['annulusOuter'] self.collectingArea = self.params['collectingArea'] self.startTime = self.params['startTime'] self.intTime = self.params['integrationTime'] fluxFN = FileName(run=run,date=sunsetDate,tstamp=self.fluxTstamp) self.fluxFileName = fluxFN.obs() self.fluxFile = ObsFile(self.fluxFileName) if self.plots: self.plotSavePath = os.environ['MKID_PROC_PATH']+os.sep+'fluxCalSolnFiles'+os.sep+run+os.sep+sunsetDate+os.sep+'plots'+os.sep if not os.path.exists(self.plotSavePath): os.mkdir(self.plotSavePath) if self.verbose: print "Created directory %s"%self.plotSavePath obsFNs = [fluxFN] self.obsList = [self.fluxFile] if self.startTime in ['',None]: self.startTime=0 if self.intTime in ['',None]: self.intTime=-1 if self.method=="relative": try: print "performing Relative Flux Calibration" skyFN = FileName(run=run,date=sunsetDate,tstamp=skyTstamp) self.skyFileName = skyFN.obs() self.skyFile = ObsFile(self.skyFileName) obsFNs.append(skyFN) self.obsList.append(self.skyFile) except: print "For relative flux calibration a sky file must be provided in param file" self.__del__() else: self.method='absolute' print "performing Absolute Flux Calibration" if self.photometry not in ['aperture','PSF']: self.photometry='PSF' #default to PSF fitting if no valid photometry selected timeMaskFileNames = [fn.timeMask() for fn in obsFNs] timeAdjustFileName = FileName(run=run).timeAdjustments() #make filename for output fluxCalSoln file self.fluxCalFileName = FileName(run=run,date=sunsetDate,tstamp=self.fluxTstamp).fluxSoln() print "Creating flux cal: %s"%self.fluxCalFileName if wvlSunsetDate != '': wvlCalFileName = FileName(run=run,date=wvlSunsetDate,tstamp=wvlTimestamp).calSoln() if flatCalFileName =='': flatCalFileName=FileName(obsFile=self.fluxFile).flatSoln() #load cal files for flux file and, if necessary, sky file for iObs,obs in enumerate(self.obsList): if bLoadBeammap: print 'loading beammap',os.environ['MKID_BEAMMAP_PATH'] obs.loadBeammapFile(os.environ['MKID_BEAMMAP_PATH']) if wvlSunsetDate != '': obs.loadWvlCalFile(wvlCalFileName) else: obs.loadBestWvlCalFile() obs.loadFlatCalFile(flatCalFileName) obs.setWvlCutoffs(-1,-1) if needTimeAdjust: obs.loadTimeAdjustmentFile(timeAdjustFileName) timeMaskFileName = timeMaskFileNames[iObs] print timeMaskFileName if not os.path.exists(timeMaskFileName): print 'Running hotpix for ',obs hp.findHotPixels(obsFile=obs,outputFileName=timeMaskFileName,fwhm=np.inf,useLocalStdDev=True) print "Flux cal/sky file pixel mask saved to %s"%(timeMaskFileName) obs.loadHotPixCalFile(timeMaskFileName) if self.verbose: print "Loaded hot pixel file %s"%timeMaskFileName #get flat cal binning information since flux cal will need to match it self.wvlBinEdges = self.fluxFile.flatCalFile.root.flatcal.wavelengthBins.read() self.nWvlBins = self.fluxFile.flatWeights.shape[2] self.binWidths = np.empty((self.nWvlBins),dtype=float) self.binCenters = np.empty((self.nWvlBins),dtype=float) for i in xrange(self.nWvlBins): self.binWidths[i] = self.wvlBinEdges[i+1]-self.wvlBinEdges[i] self.binCenters[i] = (self.wvlBinEdges[i]+(self.binWidths[i]/2.0)) if self.method=='relative': print "Extracting ARCONS flux and sky spectra" self.loadRelativeSpectrum() print "Flux Spectrum loaded" self.loadSkySpectrum() print "Sky Spectrum loaded" elif self.method=='absolute': print "Extracting ARCONS point source spectrum" self.loadAbsoluteSpectrum() print "Loading standard spectrum" try: self.loadStdSpectrum(self.objectName) except KeyError: print "Invalid spectrum object name" self.__del__() sys.exit() print "Generating sensitivity curve" self.calculateFactors() print "Sensitivity Curve calculated" print "Writing fluxCal to file %s"%self.fluxCalFileName self.writeFactors(self.fluxCalFileName) if self.plots: self.makePlots() print "Done" def __del__(self): try: self.fluxFile.close() self.calFile.close() except AttributeError:#fluxFile was never defined pass def getDeadTimeCorrection(self, obs): #WRONG RIGHT NOW. NEEDS TO HAVE RAW COUNTS SUMMED, NOT CUBE WHICH EXCLUDES NOISE TAIL if self.verbose: print "Making raw cube to get dead time correction" cubeDict = obs.getSpectralCube(firstSec=self.startTime, integrationTime=self.intTime, weighted=False, fluxWeighted=False) cube= np.array(cubeDict['cube'], dtype=np.double) wvlBinEdges= cubeDict['wvlBinEdges'] effIntTime= cubeDict['effIntTime'] if self.verbose: print "median effective integration time = ", np.median(effIntTime) nWvlBins=len(wvlBinEdges)-1 if self.verbose: print "cube shape ", np.shape(cube) if self.verbose: print "effIntTime shape ", np.shape(effIntTime) #add third dimension to effIntTime for broadcasting effIntTime = np.reshape(effIntTime,np.shape(effIntTime)+(1,)) #put cube into counts/s in each pixel cube /= effIntTime #CALCULATE DEADTIME CORRECTION #NEED TOTAL COUNTS PER SECOND FOR EACH PIXEL TO DO PROPERLY #ASSUMES SAME CORRECTION FACTOR APPLIED FOR EACH WAVELENGTH, MEANING NO WL DEPENDANCE ON DEAD TIME EFFECT DTCorr = np.zeros((np.shape(cube)[0],np.shape(cube)[1]),dtype=float) for f in range(0,np.shape(cube)[2]): #if self.verbose: print cube[:,:,f] #if self.verbose: print '-----------------------' DTCorr += cube[:,:,f] #if self.verbose: print DTCorr #if self.verbose: print '\n=====================\n' #Correct for firmware dead time (100us in 2012 ARCONS firmware) DTCorrNew=DTCorr/(1-DTCorr*self.deadtime) CorrFactors = DTCorrNew/DTCorr #This is what the frames need to be multiplied by to get their true values if self.verbose: print "Dead time correction factors: ", CorrFactors #add third dimension to CorrFactors for broadcasting CorrFactors = np.reshape(CorrFactors,np.shape(CorrFactors)+(1,)) return CorrFactors def loadAbsoluteSpectrum(self): ''' extract the ARCONS measured spectrum of the spectrophotometric standard by breaking data into spectral cube and performing photometry (aper or psf) on each spectral frame ''' if self.verbose:print "Making spectral cube" cubeDict = self.fluxFile.getSpectralCube(firstSec=self.startTime, integrationTime=self.intTime, weighted=True, fluxWeighted=False) cube= np.array(cubeDict['cube'], dtype=np.double) effIntTime= cubeDict['effIntTime'] if self.verbose: print "median effective integration time in flux file cube = ", np.median(effIntTime) if self.verbose: print "cube shape ", np.shape(cube) if self.verbose: print "effIntTime shape ", np.shape(effIntTime) #add third dimension to effIntTime for broadcasting effIntTime = np.reshape(effIntTime,np.shape(effIntTime)+(1,)) #put cube into counts/s in each pixel cube /= effIntTime #get dead time correction factors DTCorr = self.getDeadTimeCorrection(self.fluxFile) cube*=DTCorr #cube now in units of counts/s and corrected for dead time if self.plots and not 'figureHeader' in sys.modules: if self.verbose: print "Saving spectral frames as movie..." movieCube = np.zeros((self.nWvlBins,np.shape(cube)[0],np.shape(cube)[1]),dtype=float) for i in xrange(self.nWvlBins): movieCube[i,:,:] = cube[:,:,i] makeMovie(movieCube,frameTitles=self.binCenters,cbar=True,outName=self.plotSavePath+'FluxCal_Cube_%s.gif'%(self.objectName), normMin=0, normMax=50) if self.verbose: print "Movie saved in %s"%self.plotSavePath LCplot=False #light curve pop-ups not compatible with FLuxCal plotting 2/18/15 #if self.photometry=='PSF': LCplot = False LC = LightCurve.LightCurve(verbose=self.verbose, showPlot=LCplot) self.fluxSpectrum=np.empty((self.nWvlBins),dtype=float) self.skySpectrum=np.zeros((self.nWvlBins),dtype=float) for i in xrange(self.nWvlBins): frame = cube[:,:,i] if self.verbose: print "%s photometry on frame %i of cube, central wvl = %f Angstroms"%(self.photometry,i,self.binCenters[i]) if self.photometry == 'aperture': fDict = LC.performPhotometry(self.photometry,frame,[[self.centroidCol,self.centroidRow]],expTime=None,aper_radius = self.aperture, annulus_inner = self.annulusInner, annulus_outer = self.annulusOuter, interpolation="linear") self.fluxSpectrum[i] = fDict['flux'] self.skySpectrum[i] = fDict['skyFlux'] print "Sky estimate = ", fDict['skyFlux'] else: fDict = LC.performPhotometry(self.photometry,frame,[[self.centroidCol,self.centroidRow]],expTime=None,aper_radius = self.aperture) self.fluxSpectrum[i] = fDict['flux'] self.fluxSpectrum=self.fluxSpectrum/self.binWidths/self.collectingArea #spectrum now in counts/s/Angs/cm^2 self.skySpectrum=self.skySpectrum/self.binWidths/self.collectingArea return self.fluxSpectrum, self.skySpectrum def loadRelativeSpectrum(self): self.fluxSpectra = [[[] for i in xrange(self.nCol)] for j in xrange(self.nRow)] self.fluxEffTime = [[[] for i in xrange(self.nCol)] for j in xrange(self.nRow)] for iRow in xrange(self.nRow): for iCol in xrange(self.nCol): count = self.fluxFile.getPixelCount(iRow,iCol) fluxDict = self.fluxFile.getPixelSpectrum(iRow,iCol,weighted=True,firstSec=0,integrationTime=-1) self.fluxSpectra[iRow][iCol],self.fluxEffTime[iRow][iCol] = fluxDict['spectrum'],fluxDict['effIntTime'] self.fluxSpectra = np.array(self.fluxSpectra) self.fluxEffTime = np.array(self.fluxEffTime) DTCorr = self.getDeadTimeCorrection(self.fluxFile) #print "Bin widths = ",self.binWidths self.fluxSpectra = self.fluxSpectra/self.binWidths/self.fluxEffTime*DTCorr self.fluxSpectrum = self.calculateMedian(self.fluxSpectra) #find median of subtracted spectra across whole array return self.fluxSpectrum def loadSkySpectrum(self): self.skySpectra = [[[] for i in xrange(self.nCol)] for j in xrange(self.nRow)] self.skyEffTime = [[[] for i in xrange(self.nCol)] for j in xrange(self.nRow)] for iRow in xrange(self.nRow): for iCol in xrange(self.nCol): count = self.skyFile.getPixelCount(iRow,iCol) skyDict = self.skyFile.getPixelSpectrum(iRow,iCol,weighted=True,firstSec=0,integrationTime=-1) self.skySpectra[iRow][iCol],self.skyEffTime[iRow][iCol] = skyDict['spectrum'],skyDict['effIntTime'] self.skySpectra = np.array(self.skySpectra) self.skyEffTime = np.array(self.skyEffTime) DTCorr = self.getDeadTimeCorrection(self.skyFile) self.skySpectra = self.skySpectra/self.binWidths/self.skyEffTime*DTCorr self.skySpectrum = self.calculateMedian(self.skySpectra) #find median of subtracted spectra across whole array return self.skySpectrum def loadStdSpectrum(self, objectName="G158-100"): #import the known spectrum of the calibrator and rebin to the histogram parameters given #must be imported into array with dtype float so division later does not have error std = MKIDStd.MKIDStd() a = std.load(objectName) a = std.countsToErgs(a) #convert std spectrum to ergs/s/Angs/cm^2 for BB fitting and cleaning self.stdWvls = np.array(a[:,0]) self.stdFlux = np.array(a[:,1]) #std object spectrum in ergs/s/Angs/cm^2 if self.plots: #create figure for plotting standard spectrum modifications self.stdFig = plt.figure() self.stdAx = self.stdFig.add_subplot(111) plt.xlim(3500,12000) plt.plot(self.stdWvls,self.stdFlux*1E15,linewidth=1,color='grey',alpha=0.75) convX_rev,convY_rev = self.cleanSpectrum(self.stdWvls,self.stdFlux) convX = convX_rev[::-1] #convolved spectrum comes back sorted backwards, from long wvls to low which screws up rebinning convY = convY_rev[::-1] #rebin cleaned spectrum to flat cal's wvlBinEdges newa = rebin(convX,convY,self.wvlBinEdges) rebinnedWvl = np.array(newa[:,0]) rebinnedFlux = np.array(newa[:,1]) if self.plots: #plot final resampled spectrum plt.plot(convX,convY*1E15,color='blue') plt.step(rebinnedWvl,rebinnedFlux*1E15,color = 'black',where='mid') plt.legend(['%s Spectrum'%self.objectName,'Blackbody Fit','Gaussian Convolved Spectrum','Rebinned Spectrum'],'upper right', numpoints=1) plt.xlabel(ur"Wavelength (\r{A})") plt.ylabel(ur"Flux (10$^{-15}$ ergs s$^{-1}$ cm$^{-2}$ \r{A}$^{-1}$)") plt.ylim(0.9*min(rebinnedFlux)*1E15, 1.1*max(rebinnedFlux)*1E15) plt.savefig(self.plotSavePath+'FluxCal_StdSpectrum_%s.eps'%self.objectName,format='eps') #convert standard spectrum back into counts/s/angstrom/cm^2 newa = std.ergsToCounts(newa) self.binnedSpectrum = np.array(newa[:,1]) def cleanSpectrum(self,x,y): ##=============== BB Fit to extend spectrum beyond 11000 Angstroms ================== fraction = 1.0/3.0 nirX = np.arange(int(x[(1.0-fraction)*len(x)]),20000) T, nirY = fitBlackbody(x,y,fraction=fraction,newWvls=nirX,tempGuess=5600) if self.plots: plt.plot(nirX,nirY*1E15,linestyle='--',linewidth=2, color="black",alpha=0.5) extendedWvl = np.concatenate((x,nirX[nirX>max(x)])) extendedFlux = np.concatenate((y,nirY[nirX>max(x)])) ##======= Gaussian convolution to smooth std spectrum to MKIDs median resolution ======== newX, newY = gaussianConvolution(extendedWvl,extendedFlux,xEnMin=0.005,xEnMax=6.0,xdE=0.001,fluxUnits = "lambda",r=self.r,plots=False) return newX, newY def calculateFactors(self): """ Calculate the sensitivity spectrum: the weighting factors that correct the flat calibrated spectra to the real spectra For relative calibration: First subtract sky spectrum from ARCONS observed spectrum. Then take median of this spectrum as it should be identical across the array, assuming the flat cal has done its job. Then divide this into the known spectrum of the object. For absolute calibration: self.fluxSpectra already has sky subtraction included. Simply divide this spectrum into the known standard spectrum. """ self.subtractedSpectrum = self.fluxSpectrum - self.skySpectrum self.subtractedSpectrum = np.array(self.subtractedSpectrum,dtype=float) #cast as floats so division does not fail later if self.method=='relative': normWvl = 5500 #Angstroms. Choose an arbitrary wvl to normalize the relative correction at ind = np.where(self.wvlBinEdges >= normWvl)[0][0]-1 self.subtractedSpectrum = self.subtractedSpectrum/(self.subtractedSpectrum[ind]) #normalize self.binnedSpectrum = self.binnedSpectrum/(self.binnedSpectrum[ind]) #normalize treated Std spectrum while we are at it #Calculate FluxCal factors self.fluxFactors = self.binnedSpectrum/self.subtractedSpectrum #self.fluxFlags = np.zeros(np.shape(self.fluxFactors),dtype='int') self.fluxFlags = np.empty(np.shape(self.fluxFactors),dtype='int') self.fluxFlags.fill(pipelineFlags.fluxCal['good']) #Initialise flag array filled with 'good' flags. JvE 5/1/2013. #set factors that will cause trouble to 1 #self.fluxFlags[self.fluxFactors == np.inf] = 1 self.fluxFlags[self.fluxFactors == np.inf] = pipelineFlags.fluxCal['infWeight'] #Modified to use flag dictionary - JvE 5/1/2013 self.fluxFactors[self.fluxFactors == np.inf]=1.0 self.fluxFlags[np.isnan(self.fluxFactors)] = pipelineFlags.fluxCal['nanWeight'] #Modified to use flag dictionary - JvE 5/1/2013 self.fluxFactors[np.isnan(self.fluxFactors)]=1.0 self.fluxFlags[self.fluxFactors <= 0]=pipelineFlags.fluxCal['LEzeroWeight'] #Modified to use flag dictionary - JvE 5/1/2013 self.fluxFactors[self.fluxFactors <= 0]=1.0 def calculateMedian(self, spectra): spectra2d = np.reshape(spectra,[self.nRow*self.nCol,self.nWvlBins]) wvlMedian = np.empty(self.nWvlBins,dtype=float) for iWvl in xrange(self.nWvlBins): spectrum = spectra2d[:,iWvl] goodSpectrum = spectrum[spectrum != 0]#dead pixels need to be taken out before calculating medians wvlMedian[iWvl] = np.median(goodSpectrum) return wvlMedian def makePlots(self): """ Output all debugging plots of ARCONS sky and object spectra, known calibrator spectrum, and sensitivity curve """ scratchDir = os.getenv('MKID_PROC_PATH') fluxDir = self.plotSavePath fluxCalBase = 'FluxCal_%s'%self.objectName plotFileName = fluxCalBase+".pdf" fullFluxPlotFileName = os.path.join(fluxDir,plotFileName) #uncomment to make some plots for the paper. Proper formatting Will also require figureheader to be imported and for movie making to be turned off self.paperFig = plt.figure() self.paperAx = self.paperFig.add_subplot(111) plt.xlim(4000,11000) plt.plot(self.binCenters,self.fluxFactors,linewidth=3,color='black') plt.xlabel(ur"Wavelength (\r{A})") plt.ylabel(ur"Spectral Calibration Curve") plt.ylim(0,150) plt.savefig(self.plotSavePath+'FluxCal_Sensitivity_%s.eps'%self.objectName,format='eps') #save throughput as a .npz file that other code uses when making paper plots np.savez(self.plotSavePath+'%s_%s_throughput.npz'%(self.objectName.strip(),self.fluxTstamp),throughput=1.0/self.fluxFactors,wvls=self.binCenters) pp = PdfPages(fullFluxPlotFileName) #plt.rcParams['font.size'] = 2 wvls = self.binCenters plt.figure() ax1 = plt.subplot(111) ax1.set_title('ARCONS median flat cal\'d flux in counts') plt.plot(wvls,self.fluxSpectrum) pp.savefig() plt.figure() ax2 = plt.subplot(111) ax2.set_title('ARCONS median flat cal\'d sky in counts') plt.plot(wvls,self.skySpectrum) pp.savefig() plt.figure() ax3 = plt.subplot(111) ax3.set_title('Flux data minus sky in counts') plt.plot(wvls,self.subtractedSpectrum) pp.savefig() plt.figure() ax4 = plt.subplot(111) ax4.set_title('Std Spectrum of %s'%(self.objectName)) plt.plot(self.stdWvls,self.stdFlux) pp.savefig() plt.figure() ax5 = plt.subplot(111) ax5.set_title('Binned Std Spectrum') plt.plot(wvls,self.binnedSpectrum) pp.savefig() plt.figure() ax6 = plt.subplot(111) ax6.set_title('Median Sensitivity Spectrum') ax6.set_xlim((3500,12000)) #ax6.set_ylim((0,5)) plt.plot(wvls,self.fluxFactors) pp.savefig() plt.figure() ax7 = plt.subplot(111) ax7.set_title('1/Sensitivity (Throughput)') ax7.set_xlim((3500,12000)) ax7.set_ylim((0,.04)) plt.plot(wvls,1.0/self.fluxFactors) pp.savefig() plt.figure() ax8 = plt.subplot(111) ax8.set_title('Flux Cal\'d ARCONS Spectrum of Std') plt.plot(wvls,self.fluxFactors*self.subtractedSpectrum) pp.savefig() pp.close() print "Saved Flux Cal plots to %s"%(fullFluxPlotFileName) def writeFactors(self,fluxCalFileName): """ Write flux cal weights to h5 file """ if os.path.isabs(fluxCalFileName) == True: fullFluxCalFileName = fluxCalFileName else: scratchDir = os.getenv('MKID_PROC_PATH') fluxDir = os.path.join(scratchDir,'fluxCalSolnFiles') fullFluxCalFileName = os.path.join(fluxDir,fluxCalFileName) try: fluxCalFile = tables.openFile(fullFluxCalFileName,mode='w') except: print 'Error: Couldn\'t create flux cal file, ',fullFluxCalFileName return calgroup = fluxCalFile.createGroup(fluxCalFile.root,'fluxcal','Table of flux calibration weights by wavelength') caltable = tables.Array(calgroup,'weights',object=self.fluxFactors,title='Flux calibration Weights indexed by wavelengthBin') flagtable = tables.Array(calgroup,'flags',object=self.fluxFlags,title='Flux cal flags indexed by wavelengthBin. 0 is Good') bintable = tables.Array(calgroup,'wavelengthBins',object=self.wvlBinEdges,title='Wavelength bin edges corresponding to third dimension of weights array') fluxCalFile.flush() fluxCalFile.close() print "Finished Flux Cal, written to %s"%(fullFluxCalFileName) def cleanSpectrum_old(self,x,y,objectName): ''' function to take high resolution spectrum of standard star, extend IR coverage with an exponential tail, then rebin down to ARCONS resolution. This function has since been deprecated with the current cleanSpectrum which uses a BB fit to extend IR coverage, and does the rebinning using a gaussian convolution. This is left in for reference. ''' #locations and widths of absorption features in Angstroms #features = [3890,3970,4099,4340,4860,6564,6883,7619] #widths = [50,50,50,50,50,50,50,50] #for i in xrange(len(features)): # #check for absorption feature in std spectrum # ind = np.where((x<(features[i]+15)) & (x>(features[i]-15)))[0] # if len(ind)!=0: # ind = ind[len(ind)/2] # #if feature is found (flux is higher on both sides of the specified wavelength where the feature should be) # if y[ind]<y[ind+1] and y[ind]<y[ind-1]: # #cut out width[i] around feature[i] # inds = np.where((x >= features[i]+widths[i]) | (x <= features[i]-widths[i])) # x = x[inds] # y = y[inds] #fit a tail to the end of the spectrum to interpolate out to desired wavelength in angstroms fraction = 3.0/4.0 newx = np.arange(int(x[fraction*len(x)]),20000) slopeguess = (np.log(y[-1])-np.log(y[fraction*len(x)]))/(x[-1]-x[fraction*len(x)]) print "Guess at exponential slope is %f"%(slopeguess) guess_a, guess_b, guess_c = float(y[fraction*len(x)]), x[fraction*len(x)], slopeguess guess = [guess_a, guess_b, guess_c] fitx = x[fraction*len(x):] fity = y[fraction*len(x):] exp_decay = lambda fx, A, x0, t: A * np.exp((fx-x0) * t) params, cov = curve_fit(exp_decay, fitx, fity, p0=guess, maxfev=2000) A, x0, t= params print "A = %s\nx0 = %s\nt = %s\n"%(A, x0, t) best_fit = lambda fx: A * np.exp((fx-x0)*t) calcx = np.array(newx,dtype=float) newy = best_fit(calcx) #func = interpolate.splrep(x[fration*len(x):],y[fraction*len(x):],s=smooth) #newx = np.arange(int(x[fraction*len(x)]),self.wvlBinEdges[-1]) #newy = interpolate.splev(newx,func) wl = np.concatenate((x,newx[newx>max(x)])) flux = np.concatenate((y,newy[newx>max(x)])) #new method, rebin data to grid of wavelengths generated from a grid of evenly spaced energy bins #R=7.0 at 4500 #R=E/dE -> dE = R/E dE = 0.3936 #eV start = 1000 #Angs stop = 20000 #Angs enBins = ObsFile.makeWvlBins(dE,start,stop) rebinned = rebin(wl,flux,enBins) re_wl = rebinned[:,0] re_flux = rebinned[:,1] #plt.plot(re_wl,re_flux,color='r') re_wl = re_wl[np.isnan(re_flux)==False] re_flux = re_flux[np.isnan(re_flux)==False] start1 = self.wvlBinEdges[0] stop1 = self.wvlBinEdges[-1] #regrid downsampled data new_wl = np.arange(start1,stop1) #print re_wl #print re_flux #print new_wl #weight=1.0/(re_flux)**(2/1.00) print len(re_flux) weight = np.ones(len(re_flux)) #decrease weights near peak ind = np.where(re_flux == max(re_flux))[0] weight[ind] = 0.3 for p in [1,2,3]: if p==1: wt = 0.3 elif p==2: wt = 0.6 elif p==3: wt = 0.7 try: weight[ind+p] = wt except IndexError: pass try: if ind-p >= 0: weight[ind-p] = wt except IndexError: pass weight[-4:] = 1.0 #weight = [0.7,1,0.3,0.3,0.5,0.7,1,1,1] #print len(weight) #weight = re_flux/min(re_flux) #weight = 1.0/weight #weight = weight/max(weight) #print weight f = interpolate.splrep(re_wl,re_flux,w=weight,k=3,s=max(re_flux)**1.71) new_flux = interpolate.splev(new_wl,f,der=0) return new_wl, new_flux if __name__ == '__main__': try: paramFile = sys.argv[1] except: paramFile = '/home/srmeeker/ARCONS-pipeline/params/fluxCal.dict' fc = FluxCal(paramFile, plots=True, verbose=True)
gpl-2.0
1,007,656,973,070,526,800
43.016176
240
0.640406
false
3.514678
false
false
false
emc-openstack/storops
storops_test/lib/test_tasks.py
1
3524
# coding=utf-8 # Copyright (c) 2016 EMC Corporation. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from __future__ import unicode_literals import shutil from unittest import TestCase import tempfile from hamcrest import assert_that, equal_to, raises import persistqueue from storops.lib import tasks from storops_test.vnx.cli_mock import patch_cli, t_vnx import time class TestPQueue(TestCase): def setUp(self): self.path = tempfile.mkdtemp(suffix='storops') self.q = tasks.PQueue(self.path) def tearDown(self): self.q.stop() self.q = None time.sleep(0.1) shutil.rmtree(self.path, ignore_errors=True) def test_queue_path(self): assert_that(self.q.path, equal_to(self.path)) def test_put(self): fake_vnx = t_vnx() self.q.put(fake_vnx.delete_lun, name='l1') def test_get(self): fake_vnx = t_vnx() self.q.put(fake_vnx.delete_lun, name='l1') pickled_item = self.q.get() assert_that(pickled_item['object']._ip, equal_to(fake_vnx._ip)) assert_that(pickled_item['method'], equal_to('delete_lun')) assert_that(pickled_item['params']['name'], equal_to('l1')) self.q.task_done() self.q = None self.q = tasks.PQueue(self.path) assert_that(self.q.get, raises(persistqueue.Empty)) def test_run_empty_queue(self): self.q.set_interval(0.01) self.q.start() # Make sure restart is fine self.q.start() @patch_cli def test_run_tasks(self): self.q.set_interval(0.01) fake_vnx = t_vnx() self.q.put(fake_vnx.delete_lun, name='l1') self.q.start() def test_re_enqueue(self): fake_vnx = t_vnx() item = {'object': fake_vnx, 'method': 'delete_lun', 'params': {'name': 'l1'}} self.q.re_enqueue(item) assert_that(item['retries'], equal_to(1)) def test_re_enqueue_max_retries(self): fake_vnx = t_vnx() item = {'object': fake_vnx, 'method': 'delete_lun', 'params': 'l1'} for i in range(100): self.q.re_enqueue(item) self.q.get() self.q.re_enqueue(item) assert_that(item['retries'], equal_to(100)) @patch_cli def test_enqueue_expected_error(self): self.q.set_interval(0.1) fake_vnx = t_vnx() uid = '00:00:00:00:00:00:00:00:00:00:00:00:00:00:00:01' self.q.put(fake_vnx.delete_hba, hba_uid=uid) self.q.start() time.sleep(0.2) assert_that(self.q.get, raises(persistqueue.Empty)) @patch_cli def test_enqueue_storops_error(self): self.q.set_interval(0.1) fake_vnx = t_vnx() self.q.put(fake_vnx.create_block_user, name='b', password='b', role='operator') self.q.start() time.sleep(0.2) reenqueued_item = self.q.get() assert_that('b', equal_to(reenqueued_item['params']['name']))
apache-2.0
-1,893,215,132,781,401,000
31.036364
78
0.608116
false
3.186257
true
false
false
rossumai/keras-multi-gpu
keras_tf_multigpu/examples/kuza55/cifar10_cnn_functional_multigpu.py
1
4556
'''Train a simple deep CNN on the CIFAR10 small images dataset. GPU run command with Theano backend (with TensorFlow, the GPU is automatically used): THEANO_FLAGS=mode=FAST_RUN,device=gpu,floatx=float32 python cifar10_cnn.py It gets down to 0.65 test logloss in 25 epochs, and down to 0.55 after 50 epochs. (it's still underfitting at that point, though). ''' from __future__ import print_function import keras from keras import backend as K from keras.datasets import cifar10 from keras.preprocessing.image import ImageDataGenerator from keras.models import Model from keras.layers import Input, Dense, Dropout, Activation, Flatten from keras.layers import Conv2D, MaxPooling2D from keras.layers.merge import concatenate from keras.layers.core import Lambda import os import tensorflow as tf from keras_tf_multigpu.kuza55 import make_parallel # sess = tf.Session(config=tf.ConfigProto(log_device_placement=True)) sess = tf.Session() K.set_session(sess) ps_device = '/gpu:0' gpu_count = len([dev for dev in os.environ.get('CUDA_VISIBLE_DEVICES', '').split(',') if len(dev.strip()) > 0]) batch_size = 128 num_classes = 10 epochs = 6 data_augmentation = True # The data, shuffled and split between train and test sets: (x_train, y_train), (x_test, y_test) = cifar10.load_data() print('x_train shape:', x_train.shape) print(x_train.shape[0], 'train samples') print(x_test.shape[0], 'test samples') # Convert class vectors to binary class matrices. y_train = keras.utils.to_categorical(y_train, num_classes) y_test = keras.utils.to_categorical(y_test, num_classes) def basic_model(): input = Input(shape=x_train.shape[1:]) x = Conv2D(32, (3, 3), padding='same')(input) x = Activation('relu')(x) x = Conv2D(32, (3, 3))(x) x = Activation('relu')(x) x = MaxPooling2D(pool_size=(2, 2))(x) x = Dropout(0.25)(x) x = Conv2D(64, (3, 3), padding='same')(x) x = Activation('relu')(x) x = Conv2D(64, (3, 3))(x) x = Activation('relu')(x) x = MaxPooling2D(pool_size=(2, 2))(x) x = Dropout(0.25)(x) x = Flatten()(x) x = Dense(512)(x) x = Activation('relu')(x) x = Dropout(0.5)(x) x = Dense(num_classes)(x) output = Activation('softmax')(x) model = Model(inputs=input, outputs=output) print('Single tower model:') model.summary() return model with tf.device(ps_device): serial_model = basic_model() print('Serial model:') serial_model.summary() model = make_parallel(tower, gpu_count, ps_device) print('Multi-GPU model:') model.summary() # initiate RMSprop optimizer opt = keras.optimizers.rmsprop(lr=0.0001, decay=1e-6) # Let's train the model using RMSprop model.compile(loss='categorical_crossentropy', optimizer=opt, metrics=['accuracy']) x_train = x_train.astype('float32') x_test = x_test.astype('float32') x_train /= 255 x_test /= 255 if not data_augmentation: print('Not using data augmentation.') model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, validation_data=(x_test, y_test), shuffle=True) else: print('Using real-time data augmentation.') # This will do preprocessing and realtime data augmentation: datagen = ImageDataGenerator( featurewise_center=False, # set input mean to 0 over the dataset samplewise_center=False, # set each sample mean to 0 featurewise_std_normalization=False, # divide inputs by std of the dataset samplewise_std_normalization=False, # divide each input by its std zca_whitening=False, # apply ZCA whitening rotation_range=0, # randomly rotate images in the range (degrees, 0 to 180) width_shift_range=0.1, # randomly shift images horizontally (fraction of total width) height_shift_range=0.1, # randomly shift images vertically (fraction of total height) horizontal_flip=True, # randomly flip images vertical_flip=False) # randomly flip images # Compute quantities required for feature-wise normalization # (std, mean, and principal components if ZCA whitening is applied). datagen.fit(x_train) # Fit the model on the batches generated by datagen.flow(). model.fit_generator(datagen.flow(x_train, y_train, batch_size=batch_size), steps_per_epoch=x_train.shape[0] // batch_size, epochs=epochs, validation_data=(x_test, y_test))
mit
-8,435,183,062,125,755,000
33.778626
111
0.663082
false
3.394933
true
false
false
lumig242/Video-Share-System
video/views.py
1
4497
from django.shortcuts import render from django.http import HttpResponseRedirect, HttpResponse from django.shortcuts import render_to_response from django.template import RequestContext from video.form import * from video.models import Video,Comment from django.contrib.auth.decorators import login_required import json @login_required def upload(request): uploadFlag = True if request.method == 'POST': form = UploadFileForm(request.POST, request.FILES) if form.is_valid(): video = Video() video.owner = request.user video.title = form.cleaned_data['title'] video.file = request.FILES['file'] video.description = form.cleaned_data["description"] video.save() return HttpResponseRedirect('success/') else: form = UploadFileForm() return render_to_response('upload.html', locals(),context_instance=RequestContext(request)) def uploadSuccess(request): return render_to_response('upload_Success.html',context_instance=RequestContext(request)) def homepage_video_list(request): highscore = Video.objects.all() highscore = sorted(highscore, key=lambda x: 1. * x.rating_sum / (1 + x.rating_person))[0:5] latest = Video.objects.all()[0:5] return render_to_response('homepage.html', locals(), context_instance=RequestContext(request)) def video_play(request,video_id): video_object = Video.objects.get(id=video_id) video_path = video_object.file.url own = True if request.user == video_object.owner else False if video_object.rating_person: points = round(1.0*video_object.rating_sum/video_object.rating_person,1) else: points = "Not rated" # Comment display commentList = Comment.objects.filter(video=video_object).order_by('-time') return render_to_response('videoplay.html', locals(),context_instance=RequestContext(request)) def rate_video(request,video_id): print request.method, video_id if request.method == 'POST': print 'hello2' form = RatingForm(request.POST) if form.is_valid(): print 'hello3' video_object = Video.objects.get(id=video_id) video_object.rating_person += 1 video_object.rating_sum += form.cleaned_data['rate'] video_object.save() HasRated = True points = round(1.0*video_object.rating_sum/video_object.rating_person,1) return HttpResponse(points) def comment_video(request, video_id): print request.method, video_id if request.method == 'POST': print "hello2" form = SendCommentForm(request.POST) if form.is_valid(): print "hello3" comment = Comment() comment.author = request.user comment.video = Video.objects.filter(id=video_id)[0] comment.content = form.cleaned_data['content'] comment.save() print str(comment.author.username), str(comment.time), str(comment.content) s = '<p>'+str(comment.author.username)+ comment.time.strftime(" %b. %d, %Y, %I:%m %p ")+ str(comment.content) + '</p>' #return HttpResponse(json.dumps({"name":str(comment.author.username), "date":str(comment.time), "content": str(comment.content)})) return HttpResponse(s) def video_modify(request,video_id): modifyFlag = True video_object = Video.objects.get(id=video_id) if request.method == 'POST': uploadFlag = True form = ModifyVideoForm(request.POST) if form.is_valid(): video_object.title = form.cleaned_data['title'] video_object.description = form.cleaned_data["description"] video_object.save() return HttpResponseRedirect('/videoplay/{}'.format(video_id)) else: form = ModifyVideoForm() return render_to_response('upload.html', locals(),context_instance=RequestContext(request)) def video_delete(request,video_id): video_object = Video.objects.get(id=video_id) video_object.delete() return HttpResponseRedirect('/timeline') def video_share(request,video_id): video_object = Video.objects.get(id=video_id) video = Video() video.owner = request.user video.title = video_object.title video.file = video_object.file video.description = video_object.description video.save() return HttpResponseRedirect('/videoplay/{}'.format(video_id))
mit
-4,826,796,093,921,239,000
35.266129
142
0.653769
false
3.893506
false
false
false
scott48074/Restorative-Justice-App
app/facesheet.py
1
4506
''' Takes in a list of values from the database and creates a facesheet. ''' import os from docx import Document from docx.enum.text import WD_ALIGN_PARAGRAPH def assemble_address(street, apartment, city, state, zip_code): address = street.title() if apartment: address += f' APT: {apartment.title()}' address += f' {city.title()}, ' address += state.upper() address += ' ' + zip_code return address def parse_row(row_list): info = {'case_number': row_list[1], 'occurred_date': row_list[2], 'incident_type': row_list[3].title(), 'age': row_list[5], 'name': row_list[7].title(), 'address': assemble_address(row_list[8], row_list[9], row_list[10], row_list[11], row_list[12], ), 'DOB': row_list[13], 'phone': row_list[14], 'race': row_list[15].title(), 'sex': row_list[16].title(), 'district': row_list[18].title()} return info def district_line(document, district): p = document.add_paragraph() p.alignment = WD_ALIGN_PARAGRAPH.RIGHT p.add_run(f'District: {district}').bold = True def approval_line(document): p = document.add_paragraph() p.alignment = WD_ALIGN_PARAGRAPH.RIGHT p.add_run('Selection: ').bold = True p.add_run('Pass').bold = True p.add_run(' | ').bold = True p.add_run('Fail').bold = True p.add_run().add_break() p.add_run('Background: ').bold = True p.add_run('Pass').bold = True p.add_run(' | ').bold = True p.add_run('Fail').bold = True p.add_run().add_break() def case_number_line(document, case_number): p = document.add_paragraph() p.add_run(f'Case Number: {case_number}') def name_line(document, name): p = document.add_paragraph() p.add_run(f'Name: {name}') def bio_line(document, sex, race, dob, age): lines = ['Sex:\t', 'Race:\t', 'DOB:\t', 'Age:\t'] bio_list = [sex, race, dob, age] p = document.add_paragraph() for line, bio in zip(lines, bio_list): p.add_run(f'{line}{bio}') p.add_run().add_break() def charge_line(document): lines = ['Charge Type: State | Municipal', 'Description:', 'Court Date:', 'Citation#:'] p = document.add_paragraph() for line in lines: p.add_run(line) p.add_run().add_break() def address_line(document, address): p = document.add_paragraph() p.add_run(f'Address: {address}') def phone_line(document, phone): p = document.add_paragraph() p.add_run(f'Phone: {phone}') p.add_run().add_break() p.add_run('Email:') def background_line(document): lines = ['Court Records:', 'Out of State Records:', 'Local Records:', 'Notes:'] for line in lines: p = document.add_paragraph() p.add_run(line).bold = True def last_name_first(name): suffix = ['II', 'IV', 'JR', 'SR'] name_list = name.split() name_list.insert(0, name_list.pop()) if name_list[0][:2].upper() in suffix: name_list.insert(0, name_list.pop()) name = "_".join(name_list) return name def save_facesheet(document, directory, name, district, district_folders): name = last_name_first(name) if district_folders: path = f'{directory}/results/{district}/{name}/{name}.docx' if not os.path.isdir(f'{directory}/results/{district}/{name}'): os.makedirs(f'{directory}/results/{district}/{name}') else: path = f'{directory}/results/{name}/{name}.docx' if not os.path.isdir(f'{directory}/results/{name}'): os.makedirs(f'{directory}/results/{name}') document.save(path) def assemble_sheet(row_list, directory, district_folders): info_dict = parse_row(row_list) document = Document() district_line(document, info_dict['district']) approval_line(document) case_number_line(document, info_dict['case_number']) name_line(document, info_dict['name']) bio_line(document, info_dict['sex'], info_dict['race'], info_dict['DOB'], info_dict['age']) charge_line(document) address_line(document, info_dict['address']) phone_line(document, info_dict['phone']) background_line(document) save_facesheet(document, directory, info_dict['name'], info_dict['district'], district_folders) def main(): pass if __name__ == '__main__': main()
mit
5,163,028,321,451,028,000
28.644737
99
0.583666
false
3.272331
false
false
false
wtgme/labeldoc2vec
gensim/models/labeldoc2vec.py
1
45979
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright (C) 2013 Radim Rehurek <[email protected]> # Licensed under the GNU LGPL v2.1 - http://www.gnu.org/licenses/lgpl.html """ Deep learning via the distributed memory and distributed bag of words models from [1]_, using either hierarchical softmax or negative sampling [2]_ [3]_. **Make sure you have a C compiler before installing gensim, to use optimized (compiled) doc2vec training** (70x speedup [blog]_). Initialize a model with e.g.:: >>> model = Doc2Vec(documents, size=100, window=8, min_count=5, workers=4) Persist a model to disk with:: >>> model.save(fname) >>> model = Doc2Vec.load(fname) # you can continue training with the loaded model! The model can also be instantiated from an existing file on disk in the word2vec C format:: >>> model = Doc2Vec.load_word2vec_format('/tmp/vectors.txt', binary=False) # C text format >>> model = Doc2Vec.load_word2vec_format('/tmp/vectors.bin', binary=True) # C binary format .. [1] Quoc Le and Tomas Mikolov. Distributed Representations of Sentences and Documents. http://arxiv.org/pdf/1405.4053v2.pdf .. [2] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient Estimation of Word Representations in Vector Space. In Proceedings of Workshop at ICLR, 2013. .. [3] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. Distributed Representations of Words and Phrases and their Compositionality. In Proceedings of NIPS, 2013. .. [blog] Optimizing word2vec in gensim, http://radimrehurek.com/2013/09/word2vec-in-python-part-two-optimizing/ """ import logging import os import warnings try: from queue import Queue except ImportError: from Queue import Queue from collections import namedtuple, defaultdict from timeit import default_timer from numpy import zeros, exp, random, sum as np_sum, outer, add as np_add, concatenate, \ repeat as np_repeat, array, float32 as REAL, empty, ones, memmap as np_memmap, \ sqrt, newaxis, ndarray, dot, vstack, dtype, divide as np_divide from gensim import utils, matutils # utility fnc for pickling, common scipy operations etc from word2vec import Word2Vec, Vocab, train_cbow_pair, train_sg_pair, train_batch_sg from six.moves import xrange, zip from six import string_types, integer_types, itervalues import random logger = logging.getLogger(__name__) try: from gensim.models.labeldoc2vec_inner import train_label_document_dbow, train_label_document_dm, train_label_document_dm_concat from gensim.models.word2vec_inner import FAST_VERSION # blas-adaptation shared from word2vec logger.info('Fast version of {0} is being used'.format(__name__)) except ImportError: logger.info('Slow version of {0} is being used'.format(__name__)) # failed... fall back to plain numpy (20-80x slower training than the above) FAST_VERSION = -1 # def train_dl_pair(negative, label_index, context_index, alpha, learn_vectors=True, learn_hidden=True, # context_vectors=None, context_locks=None, label_vectors=None, label_locks=None): # print '-----------------------------------' # print '------------Lower version------------' # print '-----------------------------------' # l1 = context_vectors[context_index] # input word (NN input/projection layer) # lock_factor = context_locks[context_index] # # neu1e = zeros(l1.shape) # # # use this word (label = 1) + `negative` other random words not from this sentence (label = 0) # neg_size = min(negative+1, len(label_vectors)) # word_indices = random.sample(range(len(label_vectors)), neg_size) # final_labels = zeros(neg_size) # if label_index not in word_indices: # word_indices[0] = label_index # final_labels[0] = 1 # else: # index_pos = word_indices.index(label_index) # final_labels[index_pos] = 1 # l2b = label_vectors[word_indices] # 2d matrix, k+1 x layer1_size # fb = 1. / (1. + exp(-dot(l1, l2b.T))) # propagate hidden -> output # gb = (final_labels - fb) * alpha # vector of error gradients multiplied by the learning rate # if learn_hidden: # label_vectors[word_indices] += outer(gb, l1) # learn hidden -> output # neu1e += dot(gb, l2b) # save error # # if learn_vectors: # # l1 += neu1e * lock_factor # learn input -> hidden (mutates model.syn0[word2.index], if that is l1) # context_vectors[context_index] += neu1e * lock_factor # learn input -> hidden (mutates model.syn0[word2.index], if that is l1) # return neu1e # # # def train_label_document_dbow(model, doc_words, doctag_indexes, doclabel_indexes, alpha, work=None, # train_words=False, learn_doctags=True, learn_words=True, learn_hidden=True, # word_vectors=None, word_locks=None, doctag_vectors=None, doctag_locks=None, # doclabel_vectors=None, doclabel_locks=None): # """ # Update distributed bag of words model ("PV-DBOW") by training on a single document. # # Called internally from `Doc2Vec.train()` and `Doc2Vec.infer_vector()`. # # The document is provided as `doc_words`, a list of word tokens which are looked up # in the model's vocab dictionary, and `doctag_indexes`, which provide indexes # into the doctag_vectors array. # # If `train_words` is True, simultaneously train word-to-word (not just doc-to-word) # examples, exactly as per Word2Vec skip-gram training. (Without this option, # word vectors are neither consulted nor updated during DBOW doc vector training.) # # Any of `learn_doctags', `learn_words`, and `learn_hidden` may be set False to # prevent learning-updates to those respective model weights, as if using the # (partially-)frozen model to infer other compatible vectors. # # This is the non-optimized, Python version. If you have cython installed, gensim # will use the optimized version from doc2vec_inner instead. # # """ # if doctag_vectors is None: # doctag_vectors = model.docvecs.doctag_syn0 # if doctag_locks is None: # doctag_locks = model.docvecs.doctag_syn0_lockf # # if doclabel_vectors is None: # doclabel_vectors = model.labelvecs.doctag_syn0 # if doclabel_locks is None: # doclabel_locks = model.labelvecs.doctag_syn0_lockf # # if train_words and learn_words: # train_batch_sg(model, [doc_words], alpha, work) # for doctag_index in doctag_indexes: # for word in doc_words: # train_sg_pair(model, word, doctag_index, alpha, learn_vectors=learn_doctags, # learn_hidden=learn_hidden, context_vectors=doctag_vectors, # context_locks=doctag_locks) # for doclabel_index in doclabel_indexes: # train_dl_pair(model.negative, doclabel_index, doctag_index, alpha, learn_vectors=learn_doctags, # learn_hidden=learn_hidden, context_vectors=doctag_vectors, # context_locks=doctag_locks, label_vectors=doclabel_vectors, label_locks=doclabel_locks) # # # return len(doc_words) # # def train_label_document_dm(model, doc_words, doctag_indexes, doclabel_indexes, alpha, work=None, neu1=None, # learn_doctags=True, learn_words=True, learn_hidden=True, # word_vectors=None, word_locks=None, doctag_vectors=None, doctag_locks=None, # doclabel_vectors=None, doclabel_locks=None): # """ # Update distributed memory model ("PV-DM") by training on a single document. # # Called internally from `Doc2Vec.train()` and `Doc2Vec.infer_vector()`. This # method implements the DM model with a projection (input) layer that is # either the sum or mean of the context vectors, depending on the model's # `dm_mean` configuration field. See `train_label_document_dm_concat()` for the DM # model with a concatenated input layer. # # The document is provided as `doc_words`, a list of word tokens which are looked up # in the model's vocab dictionary, and `doctag_indexes`, which provide indexes # into the doctag_vectors array. # # Any of `learn_doctags', `learn_words`, and `learn_hidden` may be set False to # prevent learning-updates to those respective model weights, as if using the # (partially-)frozen model to infer other compatible vectors. # # This is the non-optimized, Python version. If you have a C compiler, gensim # will use the optimized version from doc2vec_inner instead. # # """ # if word_vectors is None: # word_vectors = model.syn0 # if word_locks is None: # word_locks = model.syn0_lockf # # if doctag_vectors is None: # doctag_vectors = model.docvecs.doctag_syn0 # if doctag_locks is None: # doctag_locks = model.docvecs.doctag_syn0_lockf # # if doclabel_vectors is None: # doclabel_vectors = model.labelvecs.doctag_syn0 # if doclabel_locks is None: # doclabel_locks = model.labelvecs.doctag_syn0_lockf # # word_vocabs = [model.vocab[w] for w in doc_words if w in model.vocab and # model.vocab[w].sample_int > model.random.rand() * 2**32] # # for pos, word in enumerate(word_vocabs): # reduced_window = model.random.randint(model.window) # `b` in the original doc2vec code # start = max(0, pos - model.window + reduced_window) # window_pos = enumerate(word_vocabs[start:(pos + model.window + 1 - reduced_window)], start) # word2_indexes = [word2.index for pos2, word2 in window_pos if pos2 != pos] # l1 = np_sum(word_vectors[word2_indexes], axis=0) + np_sum(doctag_vectors[doctag_indexes], axis=0) # count = len(word2_indexes) + len(doctag_indexes) # if model.cbow_mean and count > 1 : # l1 /= count # neu1e = train_cbow_pair(model, word, word2_indexes, l1, alpha, # learn_vectors=False, learn_hidden=learn_hidden) # if not model.cbow_mean and count > 1: # neu1e /= count # if learn_doctags: # for i in doctag_indexes: # doctag_vectors[i] += neu1e * doctag_locks[i] # if learn_words: # for i in word2_indexes: # word_vectors[i] += neu1e * word_locks[i] # for doctag_index in doctag_indexes: # for doclabel_index in doclabel_indexes: # train_dl_pair(model.negative, doclabel_index, doctag_index, alpha, learn_vectors=learn_doctags, # learn_hidden=learn_hidden, context_vectors=doctag_vectors, # context_locks=doctag_locks, label_vectors=doclabel_vectors, label_locks=doclabel_locks) # # return len(word_vocabs) # # def train_label_document_dm_concat(model, doc_words, doctag_indexes, doclabel_indexes, alpha, work=None, neu1=None, # learn_doctags=True, learn_words=True, learn_hidden=True, # word_vectors=None, word_locks=None, doctag_vectors=None, doctag_locks=None, # doclabel_vectors=None, doclabel_locks=None): # """ # Update distributed memory model ("PV-DM") by training on a single document, using a # concatenation of the context window word vectors (rather than a sum or average). # # Called internally from `Doc2Vec.train()` and `Doc2Vec.infer_vector()`. # # The document is provided as `doc_words`, a list of word tokens which are looked up # in the model's vocab dictionary, and `doctag_indexes`, which provide indexes # into the doctag_vectors array. # # Any of `learn_doctags', `learn_words`, and `learn_hidden` may be set False to # prevent learning-updates to those respective model weights, as if using the # (partially-)frozen model to infer other compatible vectors. # # This is the non-optimized, Python version. If you have a C compiler, gensim # will use the optimized version from doc2vec_inner instead. # # """ # if word_vectors is None: # word_vectors = model.syn0 # if word_locks is None: # word_locks = model.syn0_lockf # # if doctag_vectors is None: # doctag_vectors = model.docvecs.doctag_syn0 # if doctag_locks is None: # doctag_locks = model.docvecs.doctag_syn0_lockf # # if doclabel_vectors is None: # doclabel_vectors = model.labelvecs.doctag_syn0 # if doclabel_locks is None: # doclabel_locks = model.labelvecs.doctag_syn0_lockf # # word_vocabs = [model.vocab[w] for w in doc_words if w in model.vocab and # model.vocab[w].sample_int > model.random.rand() * 2**32] # doctag_len = len(doctag_indexes) # if doctag_len != model.dm_tag_count: # return 0 # skip doc without expected number of doctag(s) (TODO: warn/pad?) # # null_word = model.vocab['\0'] # pre_pad_count = model.window # post_pad_count = model.window # padded_document_indexes = ( # (pre_pad_count * [null_word.index]) # pre-padding # + [word.index for word in word_vocabs if word is not None] # elide out-of-Vocabulary words # + (post_pad_count * [null_word.index]) # post-padding # ) # # for pos in range(pre_pad_count, len(padded_document_indexes) - post_pad_count): # word_context_indexes = ( # padded_document_indexes[(pos - pre_pad_count): pos] # preceding words # + padded_document_indexes[(pos + 1):(pos + 1 + post_pad_count)] # following words # ) # word_context_len = len(word_context_indexes) # predict_word = model.vocab[model.index2word[padded_document_indexes[pos]]] # # numpy advanced-indexing copies; concatenate, flatten to 1d # l1 = concatenate((doctag_vectors[doctag_indexes], word_vectors[word_context_indexes])).ravel() # neu1e = train_cbow_pair(model, predict_word, None, l1, alpha, # learn_hidden=learn_hidden, learn_vectors=False) # # # filter by locks and shape for addition to source vectors # e_locks = concatenate((doctag_locks[doctag_indexes], word_locks[word_context_indexes])) # neu1e_r = (neu1e.reshape(-1, model.vector_size) # * np_repeat(e_locks, model.vector_size).reshape(-1, model.vector_size)) # # if learn_doctags: # np_add.at(doctag_vectors, doctag_indexes, neu1e_r[:doctag_len]) # if learn_words: # np_add.at(word_vectors, word_context_indexes, neu1e_r[doctag_len:]) # for doctag_index in doctag_indexes: # for doclabel_index in doclabel_indexes: # train_dl_pair(model.negative, doclabel_index, doctag_index, alpha, learn_vectors=learn_doctags, # learn_hidden=learn_hidden, context_vectors=doctag_vectors, # context_locks=doctag_locks, label_vectors=doclabel_vectors, label_locks=doclabel_locks) # # return len(padded_document_indexes) - pre_pad_count - post_pad_count class LabeledTaggedDocument(namedtuple('LabeledTaggedDocument', 'words tags labels')): """ A single document, made up of `words` (a list of unicode string tokens) and `tags` (a list of tokens). Tags may be one or more unicode string tokens, but typical practice (which will also be most memory-efficient) is for the tags list to include a unique integer id as the only tag. Replaces "sentence as a list of words" from Word2Vec. """ def __str__(self): return '%s(%s, %s)' % (self.__class__.__name__, self.words, self.tags, self.labels) class DocvecsArray(utils.SaveLoad): """ Default storage of doc vectors during/after training, in a numpy array. As the 'docvecs' property of a Doc2Vec model, allows access and comparison of document vectors. >>> docvec = d2v_model.docvecs[99] >>> docvec = d2v_model.docvecs['SENT_99'] # if string tag used in training >>> sims = d2v_model.docvecs.most_similar(99) >>> sims = d2v_model.docvecs.most_similar('SENT_99') >>> sims = d2v_model.docvecs.most_similar(docvec) If only plain int tags are presented during training, the dict (of string tag -> index) and list (of index -> string tag) stay empty, saving memory. Supplying a mapfile_path (as by initializing a Doc2Vec model with a 'docvecs_mapfile' value) will use a pair of memory-mapped files as the array backing for doctag_syn0/doctag_syn0_lockf values. The Doc2Vec model automatically uses this class, but a future alternative implementation, based on another persistence mechanism like LMDB, LevelDB, or SQLite, should also be possible. """ def __init__(self, mapfile_path=None): self.doctags = {} # string -> Doctag (only filled if necessary) self.max_rawint = -1 # highest rawint-indexed doctag self.offset2doctag = [] # int offset-past-(max_rawint+1) -> String (only filled if necessary) self.count = 0 self.mapfile_path = mapfile_path def note_doctag(self, key, document_no, document_length): """Note a document tag during initial corpus scan, for structure sizing.""" if isinstance(key, int): self.max_rawint = max(self.max_rawint, key) else: if key in self.doctags: self.doctags[key] = self.doctags[key].repeat(document_length) else: self.doctags[key] = Doctag(len(self.offset2doctag), document_length, 1) self.offset2doctag.append(key) self.count = self.max_rawint + 1 + len(self.offset2doctag) def indexed_doctags(self, doctag_tokens): """Return indexes and backing-arrays used in training examples.""" return ([self._int_index(index) for index in doctag_tokens if index in self], self.doctag_syn0, self.doctag_syn0_lockf, doctag_tokens) def trained_item(self, indexed_tuple): """Persist any changes made to the given indexes (matching tuple previously returned by indexed_doctags()); a no-op for this implementation""" pass def _int_index(self, index): """Return int index for either string or int index""" if isinstance(index, int): return index else: return self.max_rawint + 1 + self.doctags[index].offset def _key_index(self, i_index, missing=None): """Return string index for given int index, if available""" warnings.warn("use DocvecsArray.index_to_doctag", DeprecationWarning) return self.index_to_doctag(i_index) def index_to_doctag(self, i_index): """Return string key for given i_index, if available. Otherwise return raw int doctag (same int).""" candidate_offset = i_index - self.max_rawint - 1 if 0 <= candidate_offset < len(self.offset2doctag): return self.offset2doctag[candidate_offset] else: return i_index def __getitem__(self, index): """ Accept a single key (int or string tag) or list of keys as input. If a single string or int, return designated tag's vector representation, as a 1D numpy array. If a list, return designated tags' vector representations as a 2D numpy array: #tags x #vector_size. """ if isinstance(index, string_types + (int,)): return self.doctag_syn0[self._int_index(index)] return vstack([self[i] for i in index]) def __len__(self): return self.count def __contains__(self, index): if isinstance(index, int): return index < self.count else: return index in self.doctags def borrow_from(self, other_docvecs): self.count = other_docvecs.count self.doctags = other_docvecs.doctags self.offset2doctag = other_docvecs.offset2doctag def clear_sims(self): self.doctag_syn0norm = None def estimated_lookup_memory(self): """Estimated memory for tag lookup; 0 if using pure int tags.""" return 60 * len(self.offset2doctag) + 140 * len(self.doctags) def reset_weights(self, model): length = max(len(self.doctags), self.count) if self.mapfile_path: self.doctag_syn0 = np_memmap(self.mapfile_path+'.doctag_syn0', dtype=REAL, mode='w+', shape=(length, model.vector_size)) self.doctag_syn0_lockf = np_memmap(self.mapfile_path+'.doctag_syn0_lockf', dtype=REAL, mode='w+', shape=(length,)) self.doctag_syn0_lockf.fill(1.0) else: self.doctag_syn0 = empty((length, model.vector_size), dtype=REAL) self.doctag_syn0_lockf = ones((length,), dtype=REAL) # zeros suppress learning for i in xrange(length): # construct deterministic seed from index AND model seed seed = "%d %s" % (model.seed, self.index_to_doctag(i)) self.doctag_syn0[i] = model.seeded_vector(seed) def init_sims(self, replace=False): """ Precompute L2-normalized vectors. If `replace` is set, forget the original vectors and only keep the normalized ones = saves lots of memory! Note that you **cannot continue training or inference** after doing a replace. The model becomes effectively read-only = you can call `most_similar`, `similarity` etc., but not `train` or `infer_vector`. """ if getattr(self, 'doctag_syn0norm', None) is None or replace: logger.info("precomputing L2-norms of doc weight vectors") if replace: for i in xrange(self.doctag_syn0.shape[0]): self.doctag_syn0[i, :] /= sqrt((self.doctag_syn0[i, :] ** 2).sum(-1)) self.doctag_syn0norm = self.doctag_syn0 else: if self.mapfile_path: self.doctag_syn0norm = np_memmap( self.mapfile_path+'.doctag_syn0norm', dtype=REAL, mode='w+', shape=self.doctag_syn0.shape) else: self.doctag_syn0norm = empty(self.doctag_syn0.shape, dtype=REAL) np_divide(self.doctag_syn0, sqrt((self.doctag_syn0 ** 2).sum(-1))[..., newaxis], self.doctag_syn0norm) def most_similar(self, positive=[], negative=[], topn=10, clip_start=0, clip_end=None, indexer=None): """ Find the top-N most similar docvecs known from training. Positive docs contribute positively towards the similarity, negative docs negatively. This method computes cosine similarity between a simple mean of the projection weight vectors of the given docs. Docs may be specified as vectors, integer indexes of trained docvecs, or if the documents were originally presented with string tags, by the corresponding tags. The 'clip_start' and 'clip_end' allow limiting results to a particular contiguous range of the underlying doctag_syn0norm vectors. (This may be useful if the ordering there was chosen to be significant, such as more popular tag IDs in lower indexes.) """ self.init_sims() clip_end = clip_end or len(self.doctag_syn0norm) if isinstance(positive, string_types + integer_types) and not negative: # allow calls like most_similar('dog'), as a shorthand for most_similar(['dog']) positive = [positive] # add weights for each doc, if not already present; default to 1.0 for positive and -1.0 for negative docs positive = [ (doc, 1.0) if isinstance(doc, string_types + (ndarray,) + integer_types) else doc for doc in positive ] negative = [ (doc, -1.0) if isinstance(doc, string_types + (ndarray,) + integer_types) else doc for doc in negative ] # compute the weighted average of all docs all_docs, mean = set(), [] for doc, weight in positive + negative: if isinstance(doc, ndarray): mean.append(weight * doc) elif doc in self.doctags or doc < self.count: mean.append(weight * self.doctag_syn0norm[self._int_index(doc)]) all_docs.add(self._int_index(doc)) else: raise KeyError("doc '%s' not in trained set" % doc) if not mean: raise ValueError("cannot compute similarity with no input") mean = matutils.unitvec(array(mean).mean(axis=0)).astype(REAL) if indexer is not None: return indexer.most_similar(mean, topn) dists = dot(self.doctag_syn0norm[clip_start:clip_end], mean) if not topn: return dists best = matutils.argsort(dists, topn=topn + len(all_docs), reverse=True) # ignore (don't return) docs from the input result = [(self.index_to_doctag(sim), float(dists[sim])) for sim in best if sim not in all_docs] return result[:topn] def doesnt_match(self, docs): """ Which doc from the given list doesn't go with the others? (TODO: Accept vectors of out-of-training-set docs, as if from inference.) """ self.init_sims() docs = [doc for doc in docs if doc in self.doctags or 0 <= doc < self.count] # filter out unknowns logger.debug("using docs %s" % docs) if not docs: raise ValueError("cannot select a doc from an empty list") vectors = vstack(self.doctag_syn0norm[self._int_index(doc)] for doc in docs).astype(REAL) mean = matutils.unitvec(vectors.mean(axis=0)).astype(REAL) dists = dot(vectors, mean) return sorted(zip(dists, docs))[0][1] def similarity(self, d1, d2): """ Compute cosine similarity between two docvecs in the trained set, specified by int index or string tag. (TODO: Accept vectors of out-of-training-set docs, as if from inference.) """ return dot(matutils.unitvec(self[d1]), matutils.unitvec(self[d2])) def n_similarity(self, ds1, ds2): """ Compute cosine similarity between two sets of docvecs from the trained set, specified by int index or string tag. (TODO: Accept vectors of out-of-training-set docs, as if from inference.) """ v1 = [self[doc] for doc in ds1] v2 = [self[doc] for doc in ds2] return dot(matutils.unitvec(array(v1).mean(axis=0)), matutils.unitvec(array(v2).mean(axis=0))) def similarity_unseen_docs(self, model, doc_words1, doc_words2, alpha=0.1, min_alpha=0.0001, steps=5): """ Compute cosine similarity between two post-bulk out of training documents. Document should be a list of (word) tokens. """ d1 = model.infer_vector(doc_words=doc_words1, alpha=alpha, min_alpha=min_alpha, steps=steps) d2 = model.infer_vector(doc_words=doc_words2, alpha=alpha, min_alpha=min_alpha, steps=steps) return dot(matutils.unitvec(d1), matutils.unitvec(d2)) class Doctag(namedtuple('Doctag', 'offset, word_count, doc_count')): """A string document tag discovered during the initial vocabulary scan. (The document-vector equivalent of a Vocab object.) Will not be used if all presented document tags are ints. The offset is only the true index into the doctags_syn0/doctags_syn0_lockf if-and-only-if no raw-int tags were used. If any raw-int tags were used, string Doctag vectors begin at index (max_rawint + 1), so the true index is (rawint_index + 1 + offset). See also DocvecsArray.index_to_doctag(). """ __slots__ = () def repeat(self, word_count): return self._replace(word_count=self.word_count + word_count, doc_count=self.doc_count + 1) class LabelDoc2Vec(Word2Vec): """Class for training, using and evaluating neural networks described in http://arxiv.org/pdf/1405.4053v2.pdf""" def __init__(self, documents=None, size=300, alpha=0.025, window=8, min_count=5, max_vocab_size=None, sample=0, seed=1, workers=1, min_alpha=0.0001, dm=1, hs=1, negative=0, dbow_words=0, dm_mean=0, dm_concat=0, dm_tag_count=1, docvecs=None, docvecs_mapfile=None, labelvecs=None, labelvecs_mapfile=None, comment=None, trim_rule=None, **kwargs): """ Initialize the model from an iterable of `documents`. Each document is a LabeledTaggedDocument object that will be used for training. The `documents` iterable can be simply a list of LabeledTaggedDocument elements, but for larger corpora, consider an iterable that streams the documents directly from disk/network. If you don't supply `documents`, the model is left uninitialized -- use if you plan to initialize it in some other way. `dm` defines the training algorithm. By default (`dm=1`), 'distributed memory' (PV-DM) is used. Otherwise, `distributed bag of words` (PV-DBOW) is employed. `size` is the dimensionality of the feature vectors. `window` is the maximum distance between the predicted word and context words used for prediction within a document. `alpha` is the initial learning rate (will linearly drop to zero as training progresses). `seed` = for the random number generator. Note that for a fully deterministically-reproducible run, you must also limit the model to a single worker thread, to eliminate ordering jitter from OS thread scheduling. (In Python 3, reproducibility between interpreter launches also requires use of the PYTHONHASHSEED environment variable to control hash randomization.) `min_count` = ignore all words with total frequency lower than this. `max_vocab_size` = limit RAM during vocabulary building; if there are more unique words than this, then prune the infrequent ones. Every 10 million word types need about 1GB of RAM. Set to `None` for no limit (default). `sample` = threshold for configuring which higher-frequency words are randomly downsampled; default is 0 (off), useful value is 1e-5. `workers` = use this many worker threads to train the model (=faster training with multicore machines). `iter` = number of iterations (epochs) over the corpus. The default inherited from Word2Vec is 5, but values of 10 or 20 are common in published 'Paragraph Vector' experiments. `hs` = if 1 (default), hierarchical sampling will be used for model training (else set to 0). `negative` = if > 0, negative sampling will be used, the int for negative specifies how many "noise words" should be drawn (usually between 5-20). `dm_mean` = if 0 (default), use the sum of the context word vectors. If 1, use the mean. Only applies when dm is used in non-concatenative mode. `dm_concat` = if 1, use concatenation of context vectors rather than sum/average; default is 0 (off). Note concatenation results in a much-larger model, as the input is no longer the size of one (sampled or arithmatically combined) word vector, but the size of the tag(s) and all words in the context strung together. `dm_tag_count` = expected constant number of document tags per document, when using dm_concat mode; default is 1. `dbow_words` if set to 1 trains word-vectors (in skip-gram fashion) simultaneous with DBOW doc-vector training; default is 0 (faster training of doc-vectors only). `trim_rule` = vocabulary trimming rule, specifies whether certain words should remain in the vocabulary, be trimmed away, or handled using the default (discard if word count < min_count). Can be None (min_count will be used), or a callable that accepts parameters (word, count, min_count) and returns either util.RULE_DISCARD, util.RULE_KEEP or util.RULE_DEFAULT. Note: The rule, if given, is only used prune vocabulary during build_vocab() and is not stored as part of the model. """ super(LabelDoc2Vec, self).__init__( size=size, alpha=alpha, window=window, min_count=min_count, max_vocab_size=max_vocab_size, sample=sample, seed=seed, workers=workers, min_alpha=min_alpha, sg=(1+dm) % 2, hs=hs, negative=negative, cbow_mean=dm_mean, null_word=dm_concat, **kwargs) self.dbow_words = dbow_words self.dm_concat = dm_concat self.dm_tag_count = dm_tag_count if self.dm and self.dm_concat: self.layer1_size = (self.dm_tag_count + (2 * self.window)) * self.vector_size else: self.layer1_size = size self.docvecs = docvecs or DocvecsArray(docvecs_mapfile) self.labelvecs = labelvecs or DocvecsArray(labelvecs_mapfile) self.comment = comment if documents is not None: self.build_vocab(documents, trim_rule=trim_rule) self.train(documents) @property def dm(self): return not self.sg # opposite of SG @property def dbow(self): return self.sg # same as SG def clear_sims(self): super(LabelDoc2Vec, self).clear_sims() self.docvecs.clear_sims() self.labelvecs.clear_sims() def reset_weights(self): if self.dm and self.dm_concat: # expand l1 size to match concatenated tags+words length self.layer1_size = (self.dm_tag_count + (2 * self.window)) * self.vector_size logger.info("using concatenative %d-dimensional layer1" % (self.layer1_size)) super(LabelDoc2Vec, self).reset_weights() self.docvecs.reset_weights(self) self.labelvecs.reset_weights(self) def reset_from(self, other_model): """Reuse shareable structures from other_model.""" self.docvecs.borrow_from(other_model.docvecs) self.labelvecs.borrow_from(other_model.labelvecs) super(LabelDoc2Vec, self).reset_from(other_model) def scan_vocab(self, documents, progress_per=10000, trim_rule=None, update=False): logger.info("collecting all words and their counts") document_no = -1 total_words = 0 min_reduce = 1 interval_start = default_timer() - 0.00001 # guard against next sample being identical interval_count = 0 checked_string_types = 0 vocab = defaultdict(int) for document_no, document in enumerate(documents): if not checked_string_types: if isinstance(document.words, string_types): logger.warn("Each 'words' should be a list of words (usually unicode strings)." "First 'words' here is instead plain %s." % type(document.words)) checked_string_types += 1 if document_no % progress_per == 0: interval_rate = (total_words - interval_count) / (default_timer() - interval_start) logger.info("PROGRESS: at example #%i, processed %i words (%i/s), %i word types, %i tags, %i labels", document_no, total_words, interval_rate, len(vocab), len(self.docvecs), len(self.labelvecs)) interval_start = default_timer() interval_count = total_words document_length = len(document.words) for tag in document.tags: self.docvecs.note_doctag(tag, document_no, document_length) for label in document.labels: self.labelvecs.note_doctag(label, document_no, document_length) for word in document.words: vocab[word] += 1 total_words += len(document.words) if self.max_vocab_size and len(vocab) > self.max_vocab_size: utils.prune_vocab(vocab, min_reduce, trim_rule=trim_rule) min_reduce += 1 logger.info("collected %i word types and %i unique tags and %i unique labels from a corpus of %i examples and %i words", len(vocab), len(self.docvecs), len(self.labelvecs), document_no + 1, total_words) self.corpus_count = document_no + 1 self.raw_vocab = vocab def _do_train_job(self, job, alpha, inits): work, neu1 = inits tally = 0 for doc in job: indexed_doctags = self.docvecs.indexed_doctags(doc.tags) indexed_doclabels = self.labelvecs.indexed_doctags(doc.labels) doctag_indexes, doctag_vectors, doctag_locks, ignored = indexed_doctags doclabel_indexes, doclabel_vectors, doclabel_locks, ignored = indexed_doclabels if self.sg: tally += train_label_document_dbow(self, doc.words, doctag_indexes, doclabel_indexes, alpha, work, train_words=self.dbow_words, doctag_vectors=doctag_vectors, doctag_locks=doctag_locks, doclabel_vectors=doclabel_vectors, doclabel_locks=doclabel_locks) elif self.dm_concat: tally += train_label_document_dm_concat(self, doc.words, doctag_indexes, doclabel_indexes, alpha, work, neu1, doctag_vectors=doctag_vectors, doctag_locks=doctag_locks, doclabel_vectors=doclabel_vectors, doclabel_locks=doclabel_locks) else: tally += train_label_document_dm(self, doc.words, doctag_indexes, doclabel_indexes, alpha, work, neu1, doctag_vectors=doctag_vectors, doctag_locks=doctag_locks, doclabel_vectors=doclabel_vectors, doclabel_locks=doclabel_locks) self.docvecs.trained_item(indexed_doctags) self.labelvecs.trained_item(indexed_doclabels) return tally, self._raw_word_count(job) def _raw_word_count(self, job): """Return the number of words in a given job.""" return sum(len(sentence.words) for sentence in job) def infer_vector_label(self, doc_words, alpha=0.1, min_alpha=0.0001, steps=5): """ Infer a vector for given post-bulk training document. Document should be a list of (word) tokens. """ doctag_vectors = empty((1, self.vector_size), dtype=REAL) doctag_vectors[0] = self.seeded_vector(' '.join(doc_words)) doctag_locks = ones(1, dtype=REAL) doctag_indexes = [0] doclabel_vectors = empty((1, self.vector_size), dtype=REAL) doclabel_vectors[0] = self.seeded_vector(' '.join(doc_words)) doclabel_locks = ones(1, dtype=REAL) doclabel_indexes = [0] work = zeros(self.layer1_size, dtype=REAL) if not self.sg: neu1 = matutils.zeros_aligned(self.layer1_size, dtype=REAL) for i in range(steps): if self.sg: train_label_document_dbow(self, doc_words, doctag_indexes, doclabel_indexes, alpha, work, learn_words=False, learn_hidden=False, doctag_vectors=doctag_vectors, doctag_locks=doctag_locks, doclabel_vectors=doclabel_vectors, doclabel_locks=doclabel_locks) elif self.dm_concat: train_label_document_dm_concat(self, doc_words, doctag_indexes, doclabel_indexes, alpha, work, neu1, learn_words=False, learn_hidden=False, doctag_vectors=doctag_vectors, doctag_locks=doctag_locks, doclabel_vectors=doclabel_vectors, doclabel_locks=doclabel_locks) else: train_label_document_dm(self, doc_words, doctag_indexes, doclabel_indexes, alpha, work, neu1, learn_words=False, learn_hidden=False, doctag_vectors=doctag_vectors, doctag_locks=doctag_locks, doclabel_vectors=doclabel_vectors, doclabel_locks=doclabel_locks) alpha = ((alpha - min_alpha) / (steps - i)) + min_alpha return doctag_vectors[0] def estimate_memory(self, vocab_size=None, report=None): """Estimate required memory for a model using current settings.""" report = report or {} report['doctag_lookup'] = self.docvecs.estimated_lookup_memory() report['doctag_syn0'] = self.docvecs.count * self.vector_size * dtype(REAL).itemsize report['doclabel_lookup'] = self.labelvecs.estimated_lookup_memory() report['doclabel_syn0'] = self.labelvecs.count * self.vector_size * dtype(REAL).itemsize return super(LabelDoc2Vec, self).estimate_memory(vocab_size, report=report) def __str__(self): """Abbreviated name reflecting major configuration paramaters.""" segments = [] if self.comment: segments.append('"%s"' % self.comment) if self.sg: if self.dbow_words: segments.append('dbow+w') # also training words else: segments.append('dbow') # PV-DBOW (skip-gram-style) else: # PV-DM... if self.dm_concat: segments.append('dm/c') # ...with concatenative context layer else: if self.cbow_mean: segments.append('dm/m') else: segments.append('dm/s') segments.append('d%d' % self.vector_size) # dimensions if self.negative: segments.append('n%d' % self.negative) # negative samples if self.hs: segments.append('hs') if not self.sg or (self.sg and self.dbow_words): segments.append('w%d' % self.window) # window size, when relevant if self.min_count > 1: segments.append('mc%d' % self.min_count) if self.sample > 0: segments.append('s%g' % self.sample) if self.workers > 1: segments.append('t%d' % self.workers) return '%s(%s)' % (self.__class__.__name__, ','.join(segments)) class TaggedBrownCorpus(object): """Iterate over documents from the Brown corpus (part of NLTK data), yielding each document out as a LabeledTaggedDocument object.""" def __init__(self, dirname): self.dirname = dirname def __iter__(self): for fname in os.listdir(self.dirname): fname = os.path.join(self.dirname, fname) if not os.path.isfile(fname): continue for item_no, line in enumerate(utils.smart_open(fname)): line = utils.to_unicode(line) # each file line is a single document in the Brown corpus # each token is WORD/POS_TAG token_tags = [t.split('/') for t in line.split() if len(t.split('/')) == 2] # ignore words with non-alphabetic tags like ",", "!" etc (punctuation, weird stuff) words = ["%s/%s" % (token.lower(), tag[:2]) for token, tag in token_tags if tag[:2].isalpha()] if not words: # don't bother sending out empty documents continue yield LabeledTaggedDocument(words, ['%s_SENT_%s' % (fname, item_no)], []) class TaggedLineDocument(object): """Simple format: one document = one line = one LabeledTaggedDocument object. Words are expected to be already preprocessed and separated by whitespace, tags are constructed automatically from the document line number.""" def __init__(self, source): """ `source` can be either a string (filename) or a file object. Example:: documents = TaggedLineDocument('myfile.txt') Or for compressed files:: documents = TaggedLineDocument('compressed_text.txt.bz2') documents = TaggedLineDocument('compressed_text.txt.gz') """ self.source = source def __iter__(self): """Iterate through the lines in the source.""" try: # Assume it is a file-like object and try treating it as such # Things that don't have seek will trigger an exception self.source.seek(0) for item_no, line in enumerate(self.source): yield LabeledTaggedDocument(utils.to_unicode(line).split(), [item_no], []) except AttributeError: # If it didn't work like a file, use it as a string filename with utils.smart_open(self.source) as fin: for item_no, line in enumerate(fin): yield LabeledTaggedDocument(utils.to_unicode(line).split(), [item_no], [])
lgpl-2.1
-8,098,908,495,692,754,000
48.760823
167
0.614911
false
3.679792
false
false
false
grahamking/goodenergy
campaign/management/commands/ge_copy_campaign.py
1
4417
"""Copies the contents (indicators and actions) of one campaign into another """ # Copyright 2010,2011 Good Energy Research Inc. <[email protected]>, <[email protected]> # # This file is part of Good Energy. # # Good Energy is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Good Energy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with Good Energy. If not, see <http://www.gnu.org/licenses/>. # # Disable the pylint check for dynamically added attributes. This happens a lot # with Django DB model usage. # pylint: disable-msg=E1101 # pylint: disable-msg=E1103 from django.core.management.base import BaseCommand, CommandError from profile.models import Profile from campaign.models import Campaign from indicator.models import IndicatorLikert, Option from action.models import Action def copy_indicators(from_campaign, to_campaign): """Copies indicators and options from from_campaign to to_campaign""" for indicator in IndicatorLikert.objects.filter(campaign=from_campaign): new_indicator, is_created = IndicatorLikert.objects.get_or_create( campaign = to_campaign, position = indicator.position, name = indicator.name, question = indicator.question, is_synthetic = indicator.is_synthetic, description = indicator.description) for option in indicator.option_set.all(): Option.objects.get_or_create( indicator = new_indicator, value = option.value, position = option.position) if is_created: print('Created indicator %s' % new_indicator) def copy_actions(from_campaign, to_campaign, action_owner): """Copies Actions from from_campaign to to_campaign""" for action in from_campaign.action_set.all(): new_action, is_created = Action.objects.get_or_create( campaign = to_campaign, title = action.title, description = action.description, learn_more = action.learn_more, created_by = action_owner) if is_created: print('Created action %s' % new_action) class Command(BaseCommand): """Copies the contents (indicators and actions) of one campaign into another""" option_list = BaseCommand.option_list help = 'Copies the contents (indicators and actions) from one campaign into another' args = '<from_campaign_id> <to_campaign_id> <action_owner_username>' def handle( self, from_campaign_id=None, to_campaign_id=None, action_username=None, *args, **options): """Main entry point for command""" if not from_campaign_id or not to_campaign_id or not action_username: raise CommandError('Usage is ge_copy_campaign %s' % self.args) try: from_campaign = Campaign.objects.get(id=from_campaign_id) except Campaign.DoesNotExist: raise CommandError('FROM Campaign with id %s not found' % from_campaign_id) try: to_campaign = Campaign.objects.get(id=to_campaign_id) except Campaign.DoesNotExist: raise CommandError('TO Campaign with id %s not found' % to_campaign_id) try: action_user = Profile.objects.get(user__username=action_username) except Profile.DoesNotExist: raise CommandError("Profile for username %s not found" % action_username) print('Copying contents of {from_c} into {to_c}.'.\ format(from_c=from_campaign, to_c = to_campaign)) confirm = raw_input('Continue? [y|n]') if confirm != 'y': raise CommandError('Abort') copy_indicators(from_campaign, to_campaign) copy_actions(from_campaign, to_campaign, action_user)
agpl-3.0
-979,541,411,536,322,800
37.745614
97
0.644329
false
4.128037
false
false
false
dpnishant/appmon
tracer/android_tracer.py
1
12107
#!/usr/bin/python ### # Copyright (c) 2016 Nishant Das Patnaik. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ### import os, sys, frida, re, argparse, codecs, json from termcolor import colored print(""" ___ .______ .______ .___ ___. ______ .__ __. / \ | _ \ | _ \ | \/ | / __ \ | \ | | / ^ \ | |_) | | |_) | | \ / | | | | | | \| | / /_\ \ | ___/ | ___/ | |\/| | | | | | | . ` | / _____ \ | | | | | | | | | `--" | | |\ | /__/ \__\ | _| | _| |__| |__| \______/ |__| \__| github.com/dpnishant """) parser = argparse.ArgumentParser() parser.add_argument("-a", action="store", dest="app_name", default="", help='''Process Name; Accepts "com.twitter.android"''') parser.add_argument("-c", action="store", dest="class_name", default="", help='''Class Name; Example: "OpenSSL*SHA*"''') parser.add_argument("-m", action="store", dest="method_name", default="", help='''Method Name; Example: "*digest*";''') parser.add_argument("-v", action="version", version="AppMon Android Method Tracer v0.2, Copyright 2016 Nishant Das Patnaik") if len(sys.argv) < 2: parser.print_help() sys.exit(1) results = parser.parse_args() appName = results.app_name className = results.class_name classCandidates = [] method = results.method_name if len(className) >= 1 and len(className) < 3: print(colored("[ERROR] Class Name should be at least 3 characters", "red")) sys.exit(1) def on_message(message, data): if message["type"] == "send": payload = json.loads(message["payload"]) if payload["type"] == "classEnum": if "overloads" in payload and "className" in payload and "methodName" in payload and "argCount" in payload: classCandidates.append([ payload["className"], payload["overloads"], payload["methodName"], payload["argCount"] ]) print('[FOUND] "%s" in "%s"' % (colored(payload['methodName'], "yellow", attrs=["bold"]), colored(payload['className'], "magenta", attrs=["bold"]))) elif "className" in payload and not "overloads" in payload and not "methodName" in payload: print('[FOUND] "%s"' % colored(payload['className'], "magenta", attrs=["bold"])) elif payload['type'] == "methodTrace": payload['overloadIndex'] print("%(methodName)s \n\tCalled by: %(caller)s \n\tDefined at: %(className)s [%(overloadIndex)s]\n" % { "methodName": colored(payload['methodName'], "green", attrs=["bold"]), "caller": colored(payload['caller'].split("class ")[1], "blue", attrs=["bold"]), "className": colored(payload['className'], "magenta", attrs=["bold"]), "overloadIndex": colored(payload['overloadIndex'], "red", attrs=["bold"]) }) def build_search_script(className, method): if className and className != "" and not method or method == "": script = """Java.perform(function (){ function wildcard_search(string, search) { var prevIndex = -1, array = search.split('*'), result = true; for (var i = 0; i < array.length && result; i++) { var index = string.indexOf(array[i]); if (index == -1 || index < prevIndex) { return false; } } return result; } var classes = Java.enumerateLoadedClassesSync(); classes = classes.sort(); for(var i=0; i < classes.length; i++ ) { if(wildcard_search(classes[i], '%(className)s')) { var payload = { "type": "classEnum", "className": classes[i].replace(/\//gi, '.').replace(/\[/gi, '').replace(/^L/, '').replace(/;$/, '') }; send(JSON.stringify(payload)); } } }); """ % { "className": className } else: script = """Java.perform(function() { function wildcard_search(string, search) { var prevIndex = -1, array = search.split('*'), result = true; for (var i = 0; i < array.length && result; i++) { var index = string.indexOf(array[i]); if (index == -1 || index < prevIndex) { return false; } } return result; } Java.enumerateLoadedClasses({ onMatch: function(name) { name = name.replace(/\//gi, '.').replace(/\[/gi, '').replace(/^L/, '').replace(/;$/, ''); if (wildcard_search(name, '%(className)s')) { try { var handle = Java.use(name); var currentMethods = handle.class.getMethods(); for (var i = 0; i < currentMethods.length; i++) { var argsCount = currentMethods[i].toString().split('(')[1].split(')')[0].split(',').length; var items = currentMethods[i].toString().split('(')[0].split(' '); var currentMethodName = items[items.length - 1]; currentMethodName = currentMethodName.replace(name.toString(), ''); if (currentMethodName.split('.').length-1 > 1) { continue } else { currentMethodName = currentMethodName.replace('.', ''); } if (wildcard_search(currentMethodName, '%(methodName)s')) { if (currentMethodName in handle) { var overload_count = handle[currentMethodName].overloads.length; var payload = { "type": "classEnum", "className": name, "overloads": overload_count, "methodName": currentMethodName, "argCount": argsCount }; send(JSON.stringify(payload)); } else { console.log(currentMethodName + ' not found in ' + name); } } } } catch (e) { console.log(e.stack); } } }, onComplete: function() {} }); }); """ % { "className": className, "methodName": method } return script def begin_instrumentation(appName, script_source): device = frida.get_usb_device() try: session = device.attach(appName) except Exception as e: print(colored('[ERROR]: ' + str(e), "red")) sys.exit() try: script = session.create_script(script_source) script.on('message', on_message) script.load() except Exception as e: print(colored('[ERROR]: ' + str(e), "red")) sys.exit() def enumerate_overloads(overloadIndx, currentClassName, overload_count, methodName): generated_overloads = [] template =""" var class_%(overloadIndx)s = "%(currentClassName)s"; var c_%(overloadIndx)s = Java.use(class_%(overloadIndx)s); c_%(overloadIndx)s.%(methodName)s.overloads[i].implementation = function(a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15) { var methodName = c_%(overloadIndx)s.%(methodName)s.overloads[i].toString().split("function")[1].split("{")[0].trim().split("(")[0]; var argTypes = getType(a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15); var args = ""; for (var i = 0; i < argTypes.length; i++) { if (i != argTypes.length - 1) { args += argTypes[i] + " arg" + i + ", "; } else { args += argTypes[i] + " arg" + i; } } var methodName = methodName + "(" + args + ")"; var payload = { "type": "methodTrace", "methodName": methodName, "className": class_%(overloadIndx)s, "overloadIndex": ovrldindexplaceholder, "caller": this.getClass().toString() }; send(JSON.stringify(payload)); return this.%(methodName)s.overloads[i].apply(this, arguments); };""" % { "overloadIndx": overloadIndx, "currentClassName": currentClassName, "methodName": methodName } for index in range(0, overload_count): argString = "" current_template = "" current_overload = "" current_template = template current_template = current_template.replace("overloads[i]", "overloads[" + str(index) +"]") current_template = current_template.replace("ovrldindexplaceholder", str(index)) generated_overloads.append(current_template) return generated_overloads def build_trace_script(candidates, methodName): all_overloads = "" generated_trace_scripts = [] for candidate in candidates: overloadIndx = str(candidates.index(candidate)) for overload_variant in enumerate_overloads(overloadIndx, candidate[0], candidate[1], candidate[2]): if overload_variant == "": continue all_overloads += overload_variant tracer_template = """'use strict'; var checkType = function(arg) { var type = ""; if (arg.getClass) { type = arg.getClass().toString().split("class ")[1]; } else if (typeof arg === "string") { type = "String"; } else if (typeof arg === "number") { type = "Number"; } else if (typeof arg === "boolean") { type = "Boolean"; } else if (arg.length) { type = "Array"; } else if (typeof arg === "object") { type = "Object"; } else { type = typeof arg; } return type; } var getType = function(a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15) { var type = []; if (a1) { type.push(checkType(a1)); } if (a2) { type.push(checkType(a2)); } if (a3) { type.push(checkType(a3)); } if (a4) { type.push(checkType(a4)); } if (a5) { type.push(checkType(a5)); } if (a6) { type.push(checkType(a6)); } if (a7) { type.push(checkType(a7)); } if (a8) { type.push(checkType(a8)); } if (a9) { type.push(checkType(a9)); } if (a10) { type.push(checkType(a10)); } if (a11) { type.push(checkType(a11)); } if (a12) { type.push(checkType(a12)); } if (a13) { type.push(checkType(a13)); } if (a14) { type.push(checkType(a14)); } if (a15) { type.push(checkType(a15)); } return type; } Java.perform(function () { %s }); """ % (all_overloads) generated_trace_scripts.append(tracer_template) return generated_trace_scripts def generate_tracer_js(scriptName, txtScript): script_dir = "__handlers__" if not os.path.exists(script_dir): os.makedirs(script_dir) tracer_file_path = os.path.join(script_dir, scriptName + ".js") with codecs.open(tracer_file_path, 'w', 'utf-8') as f: f.write(txtScript) return tracer_file_path if not method or method == "" and not className or className == "": print(colored('Enumerating loaded classes...', "green", attrs=["bold"])) else: print('Searching method "%s" in loaded classes...' % colored(method, "green", attrs=["bold"])) begin_instrumentation(appName, build_search_script(className, method)) if len(classCandidates) > 0: tracer_script_source = "" for script in build_trace_script(classCandidates, method): tracer_script_source += script begin_instrumentation(appName, tracer_script_source) print(colored("\nTracing methods...\n", "blue", attrs=["bold"])) try: sys.stdin.readlines() except KeyboardInterrupt: sys.exit() else: print(colored('Didn\'t find anything...quitting!', "red")) sys.exit()
apache-2.0
7,836,066,327,096,006,000
36.255385
416
0.550508
false
3.500145
false
false
false
andrew-lundgren/gwpy
gwpy/cli/spectrum.py
1
5127
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright (C) Joseph Areeda (2015) # # This file is part of GWpy. # # GWpy is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # GWpy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GWpy. If not, see <http://www.gnu.org/licenses/>. # """ Spectrum plots """ from cliproduct import CliProduct class Spectrum(CliProduct): def get_action(self): """Return the string used as "action" on command line.""" return 'spectrum' def init_cli(self, parser): """Set up the argument list for this product""" self.arg_chan1(parser) self.arg_freq(parser) self.arg_ax_xlf(parser) self.arg_ax_logy(parser) self.arg_plot(parser) self.xaxis_is_freq = True return def get_ylabel(self, args): """Text for y-axis label""" if args.nology: ylabel = r'$\mathrm{log_{10} ASD}$ ' \ r'$\left( \frac{\mathrm{Counts}}' \ r'{\sqrt{\mathrm{Hz}}}\right)$' else: ylabel = r'$\mathrm{ASD}$ $\left( \frac{\mathrm{Counts}}' \ r'{\sqrt{\mathrm{Hz}}}\right)$' return ylabel def get_title(self): """Start of default super title, first channel is appended to it""" return 'Spectrum: ' def get_xlabel(self): xlabel = 'Frequency (Hz)' return xlabel def freq_is_y(self): """This plot puts frequency on the y-axis of the graph""" return False def gen_plot(self, arg_list): """Generate the plot from time series and arguments""" self.is_freq_plot = True fftlen = 1.0 if arg_list.secpfft: fftlen = float(arg_list.secpfft) self.secpfft = fftlen ovlap = 0.5 if arg_list.overlap: ovlap = float(arg_list.overlap) self.overlap = ovlap self.log(2, "Calculating spectrum secpfft: %.2f, overlap: %.2f" % (fftlen, ovlap)) spectra = [] # calculate and plot the first spectrum spectrum = self.timeseries[0].asd(fftlen, fftlen*ovlap) spectra.append(spectrum) fs = self.timeseries[0].sample_rate.value self.fmin = 1/self.secpfft self.fmax = fs/2 self.ymin = spectrum.value.min() self.ymax = spectrum.value.max() label = self.timeseries[0].channel.name if len(self.start_list) > 1: label += ", %s" % self.timeseries[0].epoch.gps spectrum.name = label self.plot = spectrum.plot() # if we have more time series calculate and add to the first plot if len(self.timeseries) > 1: for idx in range(1, len(self.timeseries)): specb = self.timeseries[idx].asd(fftlen, ovlap*fftlen) spectra.append(specb) fsb = self.timeseries[idx].sample_rate.value self.fmax = max(self.fmax, fsb/2) self.ymin = min(self.ymin, specb.value.min()) self.ymax = max(self.ymax, specb.value.max()) label = self.timeseries[idx].channel.name if len(self.start_list) > 1: label += ", %s" % self.timeseries[idx].epoch.gps specb.name = label self.plot.add_frequencyseries(specb) self.log(2, ('Frequency range: [%f, %f]' % (self.fmin, self.fmax))) # if the specified frequency limits adjust our ymin and ymax values # at this point self.ymin and self.ymax represent the full spectra if arg_list.fmin or arg_list.fmax: import numpy mymin = self.ymax # guaranteed to be >= anything we look at mymax = self.ymin # guaranteed to be <= anything we look at myfmin = self.fmin myfmax = self.fmax if arg_list.fmin: myfmin = float(arg_list.fmin) if arg_list.fmax: myfmax = float(arg_list.fmax) for idx in range(0, len(spectra)): t = numpy.where(spectra[idx].frequencies.value >= myfmin) if t[0].size: strt = t[0][0] t = numpy.where(spectra[idx].frequencies.value >= myfmax) if t[0].size: stop = t[0][0] else: stop = spectra[idx].frequencies.size - 1 mymin = min(mymin, numpy.min(spectra[idx].value[strt:stop])) mymax = max(mymax, numpy.max(spectra[idx].value[strt:stop])) self.ymin = mymin self.ymax = mymax return
gpl-3.0
1,358,993,382,451,397,000
35.105634
80
0.561537
false
3.667382
false
false
false
shpakoo/YAP
YAP_MiSeq.py
1
29538
######################################################################################## ## This file is a part of YAP package of scripts. https://github.com/shpakoo/YAP ## Distributed under the MIT license: http://www.opensource.org/licenses/mit-license.php ## Copyright (c) 2011-2013 Sebastian Szpakowski ######################################################################################## ################################################# ## A pipeline for miseq data ## OTUs (certain regions of 16S and ITS supported) ## This is for demultiplexed MiSeq data ################################################# import sys, os.path from optparse import OptionParser, OptionGroup from StepsLibrary import * from StepsLibrary_EXP import * from collections import defaultdict from Queue import Queue _author="Sebastian Szpakowski" _date="2013/04/01" _version="Version 5" ################################################# ## Classes ## class InfoValidator: def __init__(self,filename): self.filename = filename self.info = GeneralPurposeParser(filename, sep=",") self.URI = "http://confluence/display/~sszpakow/YAP" self.epilogue = "\n***\tPlease correct before continuing...\n***\t{0}\n".format(self.URI) self.header = "" self.tech = "" self.files, self.barcodes ,self.primersF, self.primersR, self.sampleIDs = self.parse() print ("***\tValidation complete, no obvious errors found.\n") def parse(self): counter=0; print ("\n***\tValidating your template\n\t{0} ...\n".format(self.filename)) files = set() barcodes = set() primersF = set() primersR = set() sampleIDs = set() for line in self.info: if counter == 0: self.header = line has = ",".join (self.header) needed454 = "path,file,barcode,forward,reverse,use,both,SampleID" neededMiSeq = "path,file1,file2,forward,reverse,SampleID" if has.lower().startswith( needed454.lower()) : self.tech = "454" elif has.lower().startswith( neededMiSeq.lower()) : self.tech = "MiSeq" else: self.error( "Your template's header is incorrect or missing:\nhas :\t{0}\nneed (454):\t{1}\n\t(illumina)\t{2}".format(has, needed454, neededMiSeq), 101) if not ("SampleID" in self.header): self.error( "Your template has\n\t'{0}' instead of \n\t'SampleID' in the column's header.".format(self.header[7]), 102) else: files.add("{0}/{1}".format(line[0], line[1].strip())) if self.tech == "454": barcodes.add(line[2]) primersF.add(line[3]) primersR.add(line[4]) sampleIDs.add(line[7]) elif self.tech == "MiSeq": if line[2].strip() != "": files.add("{0}/{1}".format(line[0], line[2].strip())) primersF.add(line[3]) primersR.add(line[4]) sampleIDs.add(line[5]) counter+=1 ##### files for f in files: if not os.path.isfile(f): self.error("file doesn't exist\n\t{0}".format(f), 103) ##### F primers if len(primersF)>1: self.error("Multiple forward primers specified:\n\t{0}\n\tnot supported in the current version of YAP".format("\n\t".join(primersF)), 104) if list(primersF)[0].strip() =="" : self.error("Forward primer should not be empty", 104) ##### R primers if len(primersF)>1: self.error("Multiple reverse primers specified:\n\t{0}\n\tnot supported in the current version of YAP".format("\n\t".join(primersR)), 105) if list(primersR)[0].strip() =="" : self.error("Reverse primer should not be empty", 105) ##### sampleIDs spaces = set() ill = ("\\","/", "~", "-", "+", "#") illegalchars = set() digitstart = set() for s in sampleIDs: if s.count(" ")>0: spaces.add(s) for k in ill: if s.count(k)>0: illegalchars.add(s) if s[0].isdigit(): digitstart.add(s) hint = "*You could create two columns: \n\tSampleID, compliant with YAP (excel function: SUBSTITUTE()) and\n\tOriginalIDs, where any character is allowed." if len(spaces)>0: M = "The following samplesID(s) have spaces in them:\n\t" for s in spaces: M = "{0}'{1}',".format(M, s) M = "{0}\n\n\t{1}".format(M, hint) self.error(M, 106) if len(illegalchars)>0: M = "The following samplesID(s) have illegal chars in them {0}:\n\t".format(", ".join(ill)) for s in illegalchars: M = "{0}'{1}',".format(M, s) M = "{0}\n\n\t{1}".format(M, hint) self.error(M, 107) if len(digitstart)>0: M = "The following samplesID(s) start with numbers:\n\t".format(", ".join(ill)) for s in digitstart: M = "{0}'{1}',".format(M, s) M = "{0}\n\n\t{1}".format(M, hint) self.error(M, 108) return (files, barcodes, primersF, primersR, sampleIDs) def error(self, message, code): print "!!!\t{0}\n{1}".format(message, self.epilogue) sys.exit(code) def getTrimpoints(self): primers = self.primersF.union(self.primersR) if "AGAGTTTGATYMTGGCTCAG" in primers and "ATTACCGCGGCTGCTGG" in primers: return "1044", "13127", "1044-13127" else: return "0", "0", "unknown" def getTech(self): return self.tech class InfoParserMiSeq: def __init__(self, filename): self.filename = filename self.info = GeneralPurposeParser(filename, sep=",", skip=1) self.store = list() self.IDs = defaultdict(str) self.primers = set() self.forward = "" self.reverse = "" for line in self.info: path = line[0] file1 = line[1] file2 = line[2] forward = line[3] reverse = line[4] if path.endswith("/"): path = path[:-1] path1 = "%s/%s" % (path, file1) path2 = "%s/%s" % (path, file2) if file2=="": self.store.append([path1]) self.IDs[path1] = line[5] else: self.store.append([path1, path2]) self.IDs[path1] = line[5] self.IDs[path2] = line[5] if reverse =="" or forward =="": print "%s: please provide both primers for file(s):'%s' " % (x, ",".join(file1, file2)) sys.exit(11) else: self.primers.add(">_primer_F\n%s\n" % (forward)) self.primers.add(">_primer_F_rc\n%s\n" % (revComp(forward))) self.primers.add(">_primer_R\n%s\n" % (reverse)) self.primers.add(">_primer_R_rc\n%s\n" % (revComp(reverse))) self.forward = forward self.reverse = reverse def getFiles(self): return (self.store) def getSampleID(self, file): return self.IDs[file] def getPrimerFilename(self): primerfilename = "primers.fasta" if len(self.primers)>4: print "The annotation file has more than 2 primers !" for p in self.primers: print "%s" % (p.strip()) sys.exit(15) primerfile = open(primerfilename , "w") for p in self.primers: primerfile.write(p) primerfile.close() return (primerfilename) ################################################# ## Functions ## def preprocess(): forprocessing = InfoParserMiSeq(options.fn_info) PREPROCESS = list() for files in forprocessing.getFiles(): INS = {} if len(files) == 2: M1 = files[0] M2 = files[1] sampleid = forprocessing.getSampleID(M1) INS = {"mate1": ["%s~%s" % (M1, sampleid)], "mate2": ["%s~%s" % (M2, sampleid)]} else: M1 = files[0] sampleid = forprocessing.getSampleID(M1) INS = {"fastq": ["%s~%s" % (M1, sampleid)]} #### import files if options.head == 0: x = FileImport(INS) else: x = FileMiniImport(INS, {"lines": options.head}) #### determine the encoding of fastQ Q = getQ(M1) if Q == "": print (Q) print "Q issues" print files sys.exit(1) ### generate quality information: ARGS = { "-h": options.minqual, "-m": "", "-v": "" } qc = SQA(ARGS, [x]) supplementary.append(qc) ### split into smaller files for parallelization ### 100,000 sequences (x4 since fastq) ARGS = { "types": "mate1,mate2,fastq", "chunk": "400000" } P0 = FileSplit(ARGS, [x]) #### trim fastQ files ARGS = { "-h": options.minqual, } P1 = SQAtrim(ARGS, [P0]) #### overlap mates if available if len(files)==2: ARGS = { "-M": "200", "-p": Q, "-r": "250" } P2 = Flash({}, ARGS, [P1]) else: P2 = P1 #### convert fastq to fasta ARGS = { "-Q": Q } P3 = fastq2fasta(dict(), ARGS, [P2]) #### use fuzznuc to find cut primer sequences ARGS = { "-f": forprocessing.forward, "-r": forprocessing.reverse, "-m": "1" } P4 = PrimerClipper ( {}, ARGS, [P3]) ### make fastA headers less problematic P5 = FastaHeadHash({}, {}, [P4]) P6 = FileMerger("fasta", [P5]) P7 = MakeGroupsFile([P6], sampleid) P8 = MakeNamesFile([P6]) PREPROCESS.extend([P6,P7,P8]) A1 = FileMerger("fasta,group,name", PREPROCESS) args = {"mingroupmembers": options.mingroupmembers, "report": "failing"} A2 = GroupRetriever(args, [A1]) args = { "force" : "fasta,name,group", "find": "groups" } A3 = MothurStep("remove.groups", options.nodesize, dict(), args, [A2]) return (A3) def finalize(input): clean = CleanFasta(dict(), [input]) ####### remove sequences that are too short, and with ambiguous bases args = { "minlength" : "%s" % ( options.minlength ), "maxambig" : "0", "force": "fasta,name,group"} clean2 = MothurStep("screen.seqs", options.nodesize, dict(), args, [clean]) args = {"mingroupmembers": 0, "report": "passing"} clean2a = GroupRetriever(args, [clean2]) OutputStep("2-NOISY", "groupstats,fasta,group,name,list,svg,pdf,tiff,taxsummary,globalsummary,localsummary", clean2a) ###################### CDHIT-454 #### unique and de-noise args = {} ### strictly unique collapsing if options.strictlevel==1: args= { "c" : "1.0", "b" : "8", "aS": "1.0", "g" : "1", "M" : "50000", "T" : "%s" % (options.nodesize) } ### aggressive de-noising: elif options.strictlevel==2: args= { "c" : "0.98", "b" : "10", "aS": "0.0", "g" : "1", "M" : "0", "T" : "%s" % (options.nodesize) } #### de-noise/unique collapse CD_1 = CDHIT_454(options.nodesize, args, [clean2]) CD_2 = CDHIT_Mothurize(dict(), CD_1) args = {"mingroupmembers": 0, "report": "passing"} CD_2a = GroupRetriever(args, [CD_2]) OutputStep("3-UNIQUE", "groupstats,tre,fasta,group,name,list,svg,pdf,tiff,taxsummary,globalsummary,localsummary", CD_2a) #### add reference sequences to the merged experiments' file CD_3 = FileMerger("fasta,name,group,qfile", [CD_2, REF_1, REF_2, REF_3]) #### align to reference database inputs = {"reference": ["%s/%s" % (options.dir_anno, _alignment)] } args = { "flip":"t", "ksize": "8" } CD_4 = MothurStep("align.seqs", options.nodesize, inputs, args, [CD_3]) #### AlignmentSummary determining alignment trimming options #### sets trimstart and trimend variables that can be used by in subsequent steps. #### threshold means to keep the center part of the alignment with at least #### the fraction of maximum coverage args = {"ref": _referenceseqname, "thresh": options.dynthresh} CD_5 = AlignmentSummary(args,[CD_4]) #### alignment plots if _trimstart != _trimend: args = {"ref": _referenceseqname, "trimstart" : _trimstart, "trimend" : _trimend } else: args = {"ref": _referenceseqname, "trimstart" : "find", "trimend" : "find" } CD_6 = AlignmentPlot(args,[CD_5]) #supplementary.append(CD_5) supplementary.append(CD_6) ########################### args = {"mingroupmembers": 0, "report": "passing"} CD_4a = GroupRetriever(args, [CD_4]) OutputStep("4-ALIGNED", "groupstats,tre,fasta,group,name,list,svg,pdf,tiff,taxsummary,globalsummary,localsummary", CD_4a) cleanCD = cleanup(CD_5) args = {"mingroupmembers": 0, "report": "passing"} cleanCDa = GroupRetriever(args, [cleanCD]) OutputStep("5-CLEAN", "groupstats,fasta,group,name,list,svg,pdf,tiff,taxsummary,globalsummary,localsummary", cleanCDa) clusterCD = CDHITCluster(cleanCD) x = plotsAndStats(clusterCD) INS = {"annotation" : [options.fn_info]} ARGS = {"dist": "0.03"} output1 = R_defaultplots(INS, ARGS, x) output2 = AnnotateClusters(dict(), dict(), output1) return (output2) def cleanup(input): ### remove the "ref" group args = { "force" : "fasta,name,group", "groups": "ref" } s15 = MothurStep("remove.groups", options.nodesize, dict(), args, [input]) ####### remove sequences that are too short (bad alignment?) args = { "minlength" : "%s" % (options.minlength), "maxambig" : "0", "force" : "fasta,name,group" , } s16 = MothurStep("screen.seqs", options.nodesize, dict(), args, [s15]) ####### find chimeric sequences toremove = list() for ch in [ "uchime" ]: ### chimeras against reference args = {"force" : "fasta,reference"} inputs = {"reference": ["%s/%s" % (options.dir_anno, _alignment)] } A = MothurStep("chimera.%s" % (ch),options.nodesize, inputs, args, [s16]) toremove.append(A) if not options.quickmode: ### chimeras against self args ={"force": "name,group,fasta"} inputs = {} A = MothurStep("chimera.%s" % (ch),options.nodesize, inputs, args, [s16]) toremove.append(A) ### merge all accnos files and remove ALL chimeras allchimeras = FileMerger("accnos", toremove) s17 = MothurStep("remove.seqs",options.nodesize, dict(), dict(), allchimeras) #### if primer trimming points are not unknown if _trimstart!=_trimend: ### primer cut args = { "s" : _trimstart, "e": _trimend, } else: args = { "s" : "find:trimstart", "e" : "find:trimend" } s18a = AlignmentTrim(dict(), args, [s17]) ####### remove sequence fragments, bad alignments (?) args = {} if options.dynamic: args = { "minlength" : "50" , "force": "fasta,name,group"} else: args = { "minlength" : "%s" % (options.minlength), "force": "fasta,name,group"} s18b = MothurStep("screen.seqs", options.nodesize, dict(), args, [s18a]) ### build a tree #s18b_tree = ClearcutTree({}, s18b) ####### remove empty columns args = {"vertical" : "T"} s19 = MothurStep("filter.seqs",options.nodesize, dict(), args, [s18b]) ####### taxonomy inputs = { "reference": ["%s/%s" % (options.dir_anno,_trainset)], "taxonomy": ["%s/%s" % (options.dir_anno, _taxonomy )] } args = { "iters" : "100", "cutoff": "60" } s20 = MothurStep("classify.seqs", options.nodesize, inputs, args, [s19]) ### remove - and . for subsequent clustering efforts s21 = CleanFasta(dict(), [s20]) return (s21) def CDHITCluster(input): cdhits = list() for arg in ["0.99", "0.97", "0.95", "0.90"]: args = {"c": arg, "d" : "0", "n": "8", "g": "1", "M": "10000", "T": "%s" % (options.nodesize) } CD_1 = CDHIT_EST(options.nodesize, args, [input]) ### make sth. analogous to mothur's labels arg = 1.0 - float(arg) if arg == 0: arg = "unique" else: arg = "%s" % (arg) args = {"mode": arg } CD_2 = CDHIT_Mothurize(args, CD_1) CD_2a = CDHIT_Perls({}, CD_2) cdhits.append(CD_2) READY = FileMerger("list,rabund,sabund", cdhits) SORTED = FileSort("list,rabund,sabund", READY) return (SORTED) def plotsAndStats(input): ### all groups! args = {"mingroupmembers": 0, "report": "passing"} s23 = GroupRetriever(args, [input]) ######## make a shared file args = {"label" : "0.01-0.03-0.05-0.1", "find": "groups"} s24 = MothurStep("make.shared", options.nodesize, dict(), args, [s23]) args = { "label" : "0.01-0.03-0.05-0.1", "basis" : "otu" } s25a= MothurStep("classify.otu", options.nodesize, dict(), args, [s24]) args = { "taxonomy": "otu.taxonomy", "taxsummary": "otu.taxsummary" } s25aa = FileType(args, [s25a]) args = { "label" : "0.01-0.03-0.05-0.1", "basis" : "sequence" } s25b = MothurStep("classify.otu", options.nodesize, dict(), args, [s24]) args = { "taxonomy": "seq.taxonomy", "taxsummary": "seq.taxsummary" } s25bb = FileType(args, [s25b]) args = {"force" : "list", "calc": "nseqs-sobs-simpson-invsimpson-chao-shannon-shannoneven-coverage"} s26 = MothurStep("summary.single",options.nodesize, dict(), args, [s25bb]) args = {"summary": "globalsummary"} s26a = FileType(args, [s26]) args = {"force" : "shared", "calc": "nseqs-sobs-simpson-invsimpson-chao-shannon-shannoneven-coverage"} s27 = MothurStep("summary.single", options.nodesize, dict(), args, [s25bb]) args = {"summary": "localsummary"} s27a = FileType(args, [s27]) args = {"force" : "shared", "calc": "thetayc-jclass-braycurtis"} s28 = MothurStep("tree.shared", options.nodesize, dict(), args, [s24]) supplementary.append(s28) args = {"force" : "list", "calc": "nseqs-sobs-simpson-invsimpson-chao-shannon-shannoneven-coverage", "freq": "0.01"} s29 = MothurStep("rarefaction.single", options.nodesize, dict(), args, [s24]) #return ([s23, s24, s25aa, s25bb, s26a, s27a, s28, s29]) if options.quickmode: return ([s23, s24, s25aa, s25bb, s26a, s27a, s28, s29]) else: args = {"force" : "shared", "calc": "nseqs-sobs-simpson-invsimpson-chao-shannon-shannoneven-coverage", "freq": "0.05"} s30 = MothurStep("rarefaction.single",options.nodesize, dict(), args, [s24]) return ([s23, s24, s25aa, s25bb, s26a, s27a, s28, s29, s30]) ################################################# ## Arguments ## parser = OptionParser() group = OptionGroup(parser, "Required", description="Will not run without these !") group.add_option("-P", "--PROJECT", dest="project", default="", help="project code", metavar="#") group.add_option("-E", "--EMAIL", dest="email", default="", help="e-mail address", metavar="@") group.add_option("-i", "--info", dest="fn_info", default="", help="mapping: file, barcode, primer, sample information. File should be in CSV format", metavar="allinfo.csv") parser.add_option_group(group) group = OptionGroup(parser, "Optional Configuration", description="parameters to alter if necessary") group.add_option("-Y", "--Yap", dest="mode", default="16S", help="""Which Pipeline: 16S ITS [%default]""", metavar="#") group.add_option("-D", "--dynamic", dest="dynamic", action = "store_true", default=False, help="""If specified, alignment will be scanned for primer locations and trimmed accordingly. Otherwise a database of known primers and trimming points will be used. [%default]""", metavar="#") group.add_option("-d", "--thresh", dest="dynthresh", default=0.75, type="float", help="""in conjunction with -D, otherwise this is ignored. This allows to specify how much of the alignment to keep using the per-base coverage. The [%default] value indicates that ends of the alignment are trimmed until a base has a coverage of [%default] * peak coverage.""", metavar="#") group.add_option("-a", "--annotations", dest="dir_anno", default="/usr/local/devel/ANNOTATION/sszpakow/ANNOTATION/", help="directory that stores auxilliary files\n[%default]", metavar="annotations") group.add_option("-S", "--SAMPLE", dest="sampletimes", default=0, type="int", help="perform sub.sampling of all reads based on the number of reads in smallest group. if 0 - all reads are used. if 1 - the sampling will be performed once, if 2 or more, then 2 or more independent samplings are going to be performed.\n[%default]", metavar="#") group.add_option("-m", "--minlen", dest="minlength", default=200, type="int", help="what is the minimum length of reads to process\n[%default]", metavar="#") group.add_option("-g", "--mingroupsize", dest="mingroupmembers", default=100, type="int", help="after demultiplexing, discard groups with fewer reads than #\n[%default]", metavar="#") group.add_option("-Q", "--minqual", dest="minqual", default=30, type="int", help="Keep stretches of reads this good or better #\n[%default]", metavar="#") group.add_option("-q", "--quick", dest="quickmode", action = "store_true", default=False, help="""If specified, only single, reference DB based chimera checking will be used. [%default]""", metavar="#") parser.add_option("-H", "--head", dest="head", default=0, type="int", help="For dry runs, import only # of lines from the input files") group.add_option("-x", "--strict", dest="strictlevel", default=2, type="int", help="""how strict to be at pre-clustering: 1 very strict, conservative denoising (precluster identical sequences) 2 less strict, aggresive denoising (precluster using 98% similarity) [%default]""", metavar="#") parser.add_option_group(group) group = OptionGroup(parser, "Technical", description="could be useful sometimes") group.add_option("-C", "--NODESIZE", dest="nodesize", default=30, help="maximum number of grid node's CPUs to use\n[%default]", metavar="#") parser.add_option_group(group) (options, args) = parser.parse_args() ################################################# ## Begin ## if options.fn_info == "" or options.email == "" or options.project =="": parser.print_help() sys.exit(1) if not options.mode in ("16S", "ITS"): parser.print_help() sys.exit(2) ### parameters specific to YAP incarnations ### 16S V1-V3 if options.mode=="16S": ### file in the annotations directory that has reference sequences _referenceseq = "ecolis.fasta" ### which fasta ID use as the reference (if file has more than one) _referenceseqname = "e_coli2_genbank" ### mothur's compendium of ALIGNED 16S sequences _alignment = "silva.bacteria.fasta" ### mothur's curated version of RDP's curated train set and corresponding taxonomy _trainset = "trainset9_032012.pds.fasta" _taxonomy = "trainset9_032012.pds.tax" ### until automatic primer detection is implemented, these are coordinates of primers ### when aligned to the silva.bacteria.fasta (for in-silico PCR and subsequent primer trimming) #_trimstart = "1044" #_trimend = "13127" ### ITS NSI1 - NLB4 (barcoded) elif options.mode=="ITS": _referenceseq = "yeastITS.fasta" _referenceseqname = "AF293_reference" _alignment = "FungalITSseed.092012.1.aln.fasta" _trainset = "FungalITSdb.092012.1.fasta" _taxonomy = "FungalITSdb.092012.1.tax" #_trimstart = "1716" #_trimend = "2795" else: parser.print_help() sys.exit(2) validator = InfoValidator(options.fn_info) _trimstart , _trimend, _region = validator.getTrimpoints() _tech = validator.getTech() BOH = init(options.project, options.email) BOH.toPrint("-----", "GLOBAL", "We are in %s mode" % (options.mode)) BOH.toPrint("-----", "GLOBAL", "We will be processing %s data" % (_tech)) if options.dynamic or _region == "unknown": BOH.toPrint("-----", "GLOBAL", "Dynamic alignment trimming enabled") BOH.toPrint("-----", "GLOBAL", "Alignment will be trimmed using %s * peak coverage threshold" % (options.dynthresh)) _trimstart = "0" _trimend = "0" else: BOH.toPrint("-----", "GLOBAL", "Alignment trimming predefined: %s - %s" % (_trimstart, _trimend)) ############################# ####################### ##### reference: inputs = {"fasta": ["%s/%s" % (options.dir_anno, _referenceseq)] } REF = FileImport(inputs) REF_1 = MakeNamesFile([REF]) REF_2 = MakeGroupsFile([REF], "ref") REF_3 = MakeQualFile ([REF], "40" ) ############################## supplementary = list() READY = preprocess() OutputStep("1-PREPROCESS", "groupstats,fasta,group,name,list,pdf,svg,tiff,taxsummary,globalsummary,localsummary", READY) if options.sampletimes==0: tmp = finalize(READY) y = R_rarefactions(dict(), dict(), tmp) z = R_OTUplots(dict(), dict(), tmp) supplementary.append(y) supplementary.append(z) OutputStep("6-ENTIRE", "groupstats,fasta,group,name,list,pdf,svg,tiff,taxsummary,globalsummary,localsummary,phylotax", [tmp]) OutputStep("8-TBC", "phylotax,group,list,fasta", [tmp]) #else: # thefinalset = list() # for k in xrange(0, options.sampletimes): # args = { # "force" : "fasta,name,group", # "persample": "T", # "iter": "%s" % (k) # } # sampled = MothurStep("sub.sample", options.nodesize, dict(), args, [READY]) # tmp = finalize(sampled) # y = R_rarefactions(dict(), dict(), tmp) # z = R_OTUplots(dict(), dict(), tmp) # supplementary.append(y) # supplementary.append(z) # OutputStep("SAMPLED_%s" % (k), "groupstats,fasta,group,name,list,pdf,svg,tiff,taxsummary,globalsummary,localsummary", [tmp]) # thefinalset.append(tmp) # OutputStep("7-SUPP_PLOTS", "tre,pdf,png,svg,tiff,r_nseqs,rarefaction,r_simpson,r_invsimpson,r_chao,r_shannon,r_shannoneven,r_coverage", supplementary) ########################################################################### ## ################################################## ### Finish ##################################################
mit
-7,766,473,033,472,721,000
36.201511
308
0.511138
false
3.61012
false
false
false
varlog00/Sigil
src/Resource_Files/python3lib/xmlprocessor.py
1
16367
#!/usr/bin/env python3 import sys import os from sigil_bs4 import BeautifulSoup from sigil_bs4.builder._lxml import LXMLTreeBuilderForXML import re from urllib.parse import unquote from urllib.parse import urlsplit from lxml import etree from io import BytesIO from opf_newparser import Opf_Parser ASCII_CHARS = set(chr(x) for x in range(128)) URL_SAFE = set('ABCDEFGHIJKLMNOPQRSTUVWXYZ' 'abcdefghijklmnopqrstuvwxyz' '0123456789' '#' '_.-/~') IRI_UNSAFE = ASCII_CHARS - URL_SAFE TEXT_FOLDER_NAME = "Text" ebook_xml_empty_tags = ["meta", "item", "itemref", "reference", "content"] def get_void_tags(mtype): voidtags = [] if mtype == "application/oebps-package+xml": voidtags = ["item", "itemref", "mediatype", "mediaType", "reference"] elif mtype == "application/x-dtbncx+xml": voidtags = ["meta", "reference", "content"] elif mtype == "application/smil+xml": voidtags = ["text", "audio"] elif mtype == "application/oebps-page-map+xml": voidtags = ["page"] else: voidtags = ebook_xml_empty_tags return voidtags # returns a quoted IRI (not a URI) def quoteurl(href): if isinstance(href,bytes): href = href.decode('utf-8') (scheme, netloc, path, query, fragment) = urlsplit(href, scheme="", allow_fragments=True) if scheme != "": scheme += "://" href = href[len(scheme):] result = [] for char in href: if char in IRI_UNSAFE: char = "%%%02x" % ord(char) result.append(char) return scheme + ''.join(result) # unquotes url/iri def unquoteurl(href): if isinstance(href,bytes): href = href.decode('utf-8') href = unquote(href) return href def _remove_xml_header(data): newdata = data return re.sub(r'<\s*\?xml\s*[^\?>]*\?*>\s*','',newdata, count=1,flags=re.I) def _well_formed(data): result = True newdata = data if isinstance(newdata, str): newdata = newdata.encode('utf-8') try: parser = etree.XMLParser(encoding='utf-8', recover=False) tree = etree.parse(BytesIO(newdata), parser) except Exception: result = False pass return result def _reformat(data): newdata = data if isinstance(newdata, str): newdata = newdata.encode('utf-8') parser = etree.XMLParser(encoding='utf-8', recover=True, ns_clean=True, remove_comments=True, remove_pis=True, strip_cdata=True, resolve_entities=False) tree = etree.parse(BytesIO(newdata), parser) newdata = etree.tostring(tree.getroot(),encoding='UTF-8', xml_declaration=False) return newdata # does not support cdata sections yet def _make_it_sane(data): # first remove all comments as they may contain unescaped xml reserved characters # that will confuse the remaining _make_it_sane regular expressions comments = re.compile(r'''<!--.*?-->''', re.DOTALL) data = comments.sub("",data) # remove invalid tags that freak out lxml emptytag = re.compile(r'''(<\s*[/]*\s*>)''') data=emptytag.sub("", data); # handle double tag start badtagstart = re.compile(r'''(<[^>]*<)''') extrastart = re.compile(r'''<\s*<'''); missingend = re.compile(r'''<\s*[a-zA-Z:]+[^<]*\s<''') startinattrib = re.compile(r'''<\s*[a-z:A-Z]+[^<]*["'][^<"']*<''') mo = badtagstart.search(data) while mo is not None: fixdata = data[mo.start(1):mo.end(1)] mextra = extrastart.match(fixdata) mmiss = missingend.match(fixdata) mattr = startinattrib.match(fixdata) if mextra is not None: fixdata = fixdata[1:] elif mattr is not None: fixdata = fixdata[0:-1] + "&lt;" elif mmiss is not None: fixdata = fixdata[0:-1].rstrip() + "> <" else: fixdata = "&lt;" + fixdata[1:] data = data[0:mo.start(1)] + fixdata + data[mo.end(1):] mo = badtagstart.search(data) # handle double tag end badtagend = re.compile(r'''(>[^<]*>)''') extraend = re.compile(r'''>\s*>'''); missingstart = re.compile(r'''>\s[^>]*[a-zA-Z:]+[^>]*>''') endinattrib = re.compile(r'''>[^>]*["'][^>'"]*>''') mo = badtagend.search(data) while mo is not None: fixdata = data[mo.start(1):mo.end(1)] mextra = extraend.match(fixdata) mmiss = missingstart.match(fixdata) mattr = endinattrib.match(fixdata) if mextra is not None: fixdata = fixdata[0:-1] elif mattr is not None: fixdata = "&gt;" + fixdata[1:] elif mmiss is not None: fixdata = "> <" + fixdata[1:].lstrip() else: fixdata = fixdata[0:-1] + "&gt;" data = data[0:mo.start(1)] + fixdata + data[mo.end(1):] mo = badtagend.search(data) return data # ncx_text_pattern = re.compile(r'''(<text>)\s*(\S[^<]*\S)\s*(</text>)''',re.IGNORECASE) # re.sub(ncx_text_pattern,r'\1\2\3',newdata) # data is expectedd to be in unicode def WellFormedXMLErrorCheck(data, mtype=""): newdata = _remove_xml_header(data) if isinstance(newdata, str): newdata = newdata.encode('utf-8') line = "-1" column = "-1" message = "well-formed" try: parser = etree.XMLParser(encoding='utf-8', recover=False) tree = etree.parse(BytesIO(newdata), parser) except Exception: line = "0" column = "0" message = "exception" if len(parser.error_log) > 0: error = parser.error_log[0] message = error.message if isinstance(message, bytes): message = message.decode('utf-8') line = "%d" % error.line column = "%d" % error.column pass result = [line, column, message] return result def IsWellFormedXML(data, mtype=""): [line, column, message] = WellFormedXMLErrorCheck(data, mtype) result = line == "-1" return result # data is expected to be in unicode # note: bs4 with lxml for xml strips whitespace so always prettyprint xml def repairXML(data, mtype="", indent_chars=" "): newdata = _remove_xml_header(data) # if well-formed - don't mess with it if _well_formed(newdata): return data newdata = _make_it_sane(newdata) if not _well_formed(newdata): newdata = _reformat(newdata) if mtype == "application/oebps-package+xml": newdata = newdata.decode('utf-8') newdata = Opf_Parser(newdata).rebuild_opfxml() # lxml requires utf-8 on Mac, won't work with unicode if isinstance(newdata, str): newdata = newdata.encode('utf-8') voidtags = get_void_tags(mtype) xmlbuilder = LXMLTreeBuilderForXML(parser=None, empty_element_tags=voidtags) soup = BeautifulSoup(newdata, features=None, from_encoding="utf-8", builder=xmlbuilder) newdata = soup.decodexml(indent_level=0, formatter='minimal', indent_chars=indent_chars) return newdata def anchorNCXUpdates(data, originating_filename, keylist, valuelist): data = _remove_xml_header(data) # lxml on a Mac does not seem to handle full unicode properly, so encode as utf-8 data = data.encode('utf-8') # rebuild serialized lookup dictionary id_dict = {} for i in range(0, len(keylist)): id_dict[ keylist[i] ] = valuelist[i] xmlbuilder = LXMLTreeBuilderForXML(parser=None, empty_element_tags=ebook_xml_empty_tags) soup = BeautifulSoup(data, features=None, from_encoding="utf-8", builder=xmlbuilder) original_filename_with_relative_path = TEXT_FOLDER_NAME + "/" + originating_filename for tag in soup.find_all("content"): if "src" in tag.attrs: src = tag["src"] if src.find(":") == -1: parts = src.split('#') if (parts is not None) and (len(parts) > 1) and (parts[0] == original_filename_with_relative_path) and (parts[1] != ""): fragment_id = parts[1] if fragment_id in id_dict: attribute_value = TEXT_FOLDER_NAME + "/" + quoteurl(id_dict[fragment_id]) + "#" + fragment_id tag["src"] = attribute_value newdata = soup.decodexml(indent_level=0, formatter='minimal', indent_chars=" ") return newdata def performNCXSourceUpdates(data, currentdir, keylist, valuelist): data = _remove_xml_header(data) # lxml on a Mac does not seem to handle full unicode properly, so encode as utf-8 data = data.encode('utf-8') # rebuild serialized lookup dictionary updates = {} for i in range(0, len(keylist)): updates[ keylist[i] ] = valuelist[i] xmlbuilder = LXMLTreeBuilderForXML(parser=None, empty_element_tags=ebook_xml_empty_tags) soup = BeautifulSoup(data, features=None, from_encoding="utf-8", builder=xmlbuilder) for tag in soup.find_all("content"): if "src" in tag.attrs: src = tag["src"] if src.find(":") == -1: parts = src.split('#') url = parts[0] fragment = "" if len(parts) > 1: fragment = parts[1] bookrelpath = os.path.join(currentdir, unquoteurl(url)) bookrelpath = os.path.normpath(bookrelpath) bookrelpath = bookrelpath.replace(os.sep, "/") if bookrelpath in updates: attribute_value = updates[bookrelpath] if fragment != "": attribute_value = attribute_value + "#" + fragment attribute_value = quoteurl(attribute_value) tag["src"] = attribute_value newdata = soup.decodexml(indent_level=0, formatter='minimal', indent_chars=" ") return newdata def performOPFSourceUpdates(data, currentdir, keylist, valuelist): data = _remove_xml_header(data) # lxml on a Mac does not seem to handle full unicode properly, so encode as utf-8 data = data.encode('utf-8') # rebuild serialized lookup dictionary updates = {} for i in range(0, len(keylist)): updates[ keylist[i] ] = valuelist[i] xmlbuilder = LXMLTreeBuilderForXML(parser=None, empty_element_tags=ebook_xml_empty_tags) soup = BeautifulSoup(data, features=None, from_encoding="utf-8", builder=xmlbuilder) for tag in soup.find_all(["item","reference","site"]): if "href" in tag.attrs : href = tag["href"] if href.find(":") == -1 : parts = href.split('#') url = parts[0] fragment = "" if len(parts) > 1: fragment = parts[1] bookrelpath = os.path.join(currentdir, unquoteurl(url)) bookrelpath = os.path.normpath(bookrelpath) bookrelpath = bookrelpath.replace(os.sep, "/") if bookrelpath in updates: attribute_value = updates[bookrelpath] if fragment != "": attribute_value = attribute_value + "#" + fragment attribute_value = quoteurl(attribute_value) tag["href"] = attribute_value newdata = soup.decodexml(indent_level=0, formatter='minimal', indent_chars=" ") return newdata # Note xml_updates has paths relative to the OEBPS folder as base # As if they were meant only for OEBPS/content.opf and OEBPS/toc.ncx # So adjust them to be relative to the Misc directory where .smil files live in Sigil def performSMILUpdates(data, currentdir, keylist, valuelist): data = _remove_xml_header(data) # lxml on a Mac does not seem to handle full unicode properly, so encode as utf-8 data = data.encode('utf-8') # rebuild serialized lookup dictionary of xml_updates, properly adjusted updates = {} for i in range(0, len(keylist)): updates[ keylist[i] ] = "../" + valuelist[i] xml_empty_tags = ["text", "audio"] xmlbuilder = LXMLTreeBuilderForXML(parser=None, empty_element_tags=xml_empty_tags) soup = BeautifulSoup(data, features=None, from_encoding="utf-8", builder=xmlbuilder) for tag in soup.find_all(["body","seq","text","audio"]): for att in ["src", "epub:textref"]: if att in tag.attrs : ref = tag[att] if ref.find(":") == -1 : parts = ref.split('#') url = parts[0] fragment = "" if len(parts) > 1: fragment = parts[1] bookrelpath = os.path.join(currentdir, unquoteurl(url)) bookrelpath = os.path.normpath(bookrelpath) bookrelpath = bookrelpath.replace(os.sep, "/") if bookrelpath in updates: attribute_value = updates[bookrelpath] if fragment != "": attribute_value = attribute_value + "#" + fragment attribute_value = quoteurl(attribute_value) tag[att] = attribute_value newdata = soup.decodexml(indent_level=0, formatter='minimal', indent_chars=" ") return newdata # Note xml_updates has urls/iris relative to the OEBPS folder as base # As if they were meant only for OEBPS/content.opf and OEBPS/toc.ncx # So adjust them to be relative to the Misc directory where page-map.xml lives def performPageMapUpdates(data, currentdir, keylist, valuelist): data = _remove_xml_header(data) # lxml on a Mac does not seem to handle full unicode properly, so encode as utf-8 data = data.encode('utf-8') # rebuild serialized lookup dictionary of xml_updates properly adjusted updates = {} for i in range(0, len(keylist)): updates[ keylist[i] ] = "../" + valuelist[i] xml_empty_tags = ["page"] xmlbuilder = LXMLTreeBuilderForXML(parser=None, empty_element_tags=xml_empty_tags) soup = BeautifulSoup(data, features=None, from_encoding="utf-8", builder=xmlbuilder) for tag in soup.find_all(["page"]): for att in ["href"]: if att in tag.attrs : ref = tag[att] if ref.find(":") == -1 : parts = ref.split('#') url = parts[0] fragment = "" if len(parts) > 1: fragment = parts[1] bookrelpath = os.path.join(currentdir, unquoteurl(url)) bookrelpath = os.path.normpath(bookrelpath) bookrelpath = bookrelpath.replace(os.sep, "/") if bookrelpath in updates: attribute_value = updates[bookrelpath] if fragment != "": attribute_value = attribute_value + "#" + fragment attribute_value = quoteurl(attribute_value) tag[att] = attribute_value newdata = soup.decodexml(indent_level=0, formatter='minimal', indent_chars=" ") return newdata def main(): argv = sys.argv opfxml = ''' <?xml version="1.0" encoding="utf-8" standalone="yes"?> <package xmlns="http://www.idpf.org/2007/opf" unique-identifier="BookId" version="2.0"> <metadata xmlns:mydc="http://purl.org/dc/elements/1.1/" xmlns:opf="http://www.idpf.org/2007/opf"> <mydc:identifier id="BookId" opf:scheme="UUID">urn:uuid:a418a8f1-dcbc-4c5d-a18f-533765e34ee8</mydc:identifier> </metadata> <manifest> <!-- this has a lot of bad characters & < > \" \'--> <item href="toc.ncx" id="ncx" media-type="application/x-dtbncx+xml" /> <item href="Text/Section0001.xhtml" id="Section0001.xhtml" media-type="application/xhtml+xml" /> </manifest> < <spine toc="ncx"> <itemref idref="Section0001.xhtml"> </spine> <text> this is a bunch of nonsense </text> <text> this is a bunch of nonsense 1 </text> <text> this is a bunch of nonsense 2 </text> <guide /> </package> ''' print(argv) if not argv[-1].endswith("xmlprocessor.py"): with open(argv[-1],'rb') as f: opfxml = f.read(); if isinstance(opfxml, bytes): opfxml = opfxml.decode('utf-8') print(repairXML(opfxml, "application/oebps-package+xml")) return 0 if __name__ == '__main__': sys.exit(main())
gpl-3.0
-1,157,109,961,533,576,400
39.412346
136
0.587646
false
3.627438
false
false
false
rdcrt/pystarling
test/api_objects/test_Account.py
1
1419
import dateutil import pytest from pystarling.api_objects.Account import Account class TestAccount(object): test_data = { 'id': 'ee8152d7-6ff2-4f79-b9de-39861bdec427', 'number': '99999999', 'sortCode': '608371', 'iban': 'GB26SRLG60837199999999', 'bic': 'SRLGGB2L', 'currency': 'GBP', 'createdAt': '2017-05-16T12:00:00.000Z' } incomplete_data = { 'id': 'ee8152d7-6ff2-4f79-b9de-39861bdec427' } def test_incomplete_data_raises_error(self): with pytest.raises(KeyError): Account(self.incomplete_data) def test_data_parsed_correctly(self): account = Account(self.test_data) assert account.id == 'ee8152d7-6ff2-4f79-b9de-39861bdec427' assert account.sort_code == '608371' assert account.number == '99999999' assert account.iban == 'GB26SRLG60837199999999' assert account.bic == 'SRLGGB2L' assert account.currency == 'GBP' assert account.created_at == dateutil.parser.parse('2017-05-16T12:00:00.000Z') def test_get_readable_sort_code_formatted_correctly(self): account = Account(self.test_data) assert account.get_readable_sort_code() == '60-83-71' def test_get_readable_iban_formatted_correctly(self): account = Account(self.test_data) assert account.get_readable_iban() == "GB26 SRLG 6083 7199 9999 99"
mit
2,434,672,469,967,569,000
32.785714
86
0.639183
false
3.118681
true
false
false
APMonitor/arduino
2_Regression/2nd_order_MIMO/GEKKO/tclab_2nd_order_linear.py
1
3283
import numpy as np import time import matplotlib.pyplot as plt import random # get gekko package with: # pip install gekko from gekko import GEKKO import pandas as pd # import data data = pd.read_csv('data.txt') tm = data['Time (sec)'].values Q1s = data[' Heater 1'].values Q2s = data[' Heater 2'].values T1s = data[' Temperature 1'].values T2s = data[' Temperature 2'].values ######################################################### # Initialize Model as Estimator ######################################################### m = GEKKO(name='tclab-mhe') #m.server = 'http://127.0.0.1' # if local server is installed # 120 second time horizon, 40 steps m.time = tm # Parameters to Estimate K1 = m.FV(value=0.5) K1.STATUS = 1 K1.FSTATUS = 0 K1.LOWER = 0.1 K1.UPPER = 1.0 K2 = m.FV(value=0.3) K2.STATUS = 1 K2.FSTATUS = 0 K2.LOWER = 0.1 K2.UPPER = 1.0 K3 = m.FV(value=0.1) K3.STATUS = 1 K3.FSTATUS = 0 K3.LOWER = 0.0001 K3.UPPER = 1.0 tau12 = m.FV(value=150) tau12.STATUS = 1 tau12.FSTATUS = 0 tau12.LOWER = 50.0 tau12.UPPER = 250 tau3 = m.FV(value=15) tau3.STATUS = 0 tau3.FSTATUS = 0 tau3.LOWER = 10 tau3.UPPER = 20 # Measured inputs Q1 = m.MV(value=0) Q1.FSTATUS = 1 # measured Q1.value = Q1s Q2 = m.MV(value=0) Q2.FSTATUS = 1 # measured Q2.value = Q2s # Ambient temperature Ta = m.Param(value=23.0) # degC # State variables TH1 = m.SV(value=T1s[0]) TH2 = m.SV(value=T2s[0]) # Measurements for model alignment TC1 = m.CV(value=T1s) TC1.STATUS = 1 # minimize error between simulation and measurement TC1.FSTATUS = 1 # receive measurement TC1.MEAS_GAP = 0.1 # measurement deadband gap TC2 = m.CV(value=T1s[0]) TC2.STATUS = 1 # minimize error between simulation and measurement TC2.FSTATUS = 1 # receive measurement TC2.MEAS_GAP = 0.1 # measurement deadband gap TC2.value = T2s # Heat transfer between two heaters DT = m.Intermediate(TH2-TH1) # Empirical correlations m.Equation(tau12 * TH1.dt() + (TH1-Ta) == K1*Q1 + K3*DT) m.Equation(tau12 * TH2.dt() + (TH2-Ta) == K2*Q2 - K3*DT) m.Equation(tau3 * TC1.dt() + TC1 == TH1) m.Equation(tau3 * TC2.dt() + TC2 == TH2) # Global Options m.options.IMODE = 5 # MHE m.options.EV_TYPE = 2 # Objective type m.options.NODES = 3 # Collocation nodes m.options.SOLVER = 3 # IPOPT m.options.COLDSTART = 0 # COLDSTART on first cycle # Predict Parameters and Temperatures # use remote=False for local solve m.solve() # Create plot plt.figure(figsize=(10,7)) ax=plt.subplot(2,1,1) ax.grid() plt.plot(tm,T1s,'ro',label=r'$T_1$ measured') plt.plot(tm,TC1.value,'k-',label=r'$T_1$ predicted') plt.plot(tm,T2s,'bx',label=r'$T_2$ measured') plt.plot(tm,TC2.value,'k--',label=r'$T_2$ predicted') plt.ylabel('Temperature (degC)') plt.legend(loc=2) ax=plt.subplot(2,1,2) ax.grid() plt.plot(tm,Q1s,'r-',label=r'$Q_1$') plt.plot(tm,Q2s,'b:',label=r'$Q_2$') plt.ylabel('Heaters') plt.xlabel('Time (sec)') plt.legend(loc='best') # Print optimal values print('K1: ' + str(K1.newval)) print('K2: ' + str(K2.newval)) print('K3: ' + str(K3.newval)) print('tau12: ' + str(tau12.newval)) print('tau3: ' + str(tau3.newval)) # Save figure plt.savefig('tclab_estimation.png') plt.show()
apache-2.0
-3,404,360,134,149,806,000
22.318519
70
0.624733
false
2.355093
false
false
false
DistrictDataLabs/yellowbrick
yellowbrick/contrib/scatter.py
1
11862
# yellowbrick.contrib.scatter # Implements a 2d scatter plot for feature analysis. # # Author: Nathan Danielsen # Created: Fri Feb 26 19:40:00 2017 -0400 # # Copyright (C) 2017 The scikit-yb developers # For license information, see LICENSE.txt # # ID: scatter.py [a89633e] [email protected] $ """ Implements a 2D scatter plot for feature analysis. """ ########################################################################## # Imports ########################################################################## import itertools import numpy as np from yellowbrick.features.base import DataVisualizer from yellowbrick.utils import is_dataframe, is_structured_array from yellowbrick.utils import has_ndarray_int_columns from yellowbrick.exceptions import YellowbrickValueError from yellowbrick.style.colors import resolve_colors ########################################################################## # Quick Methods ########################################################################## def scatterviz( X, y=None, ax=None, features=None, classes=None, color=None, colormap=None, markers=None, alpha=1.0, **kwargs ): """Displays a bivariate scatter plot. This helper function is a quick wrapper to utilize the ScatterVisualizer (Transformer) for one-off analysis. Parameters ---------- X : ndarray or DataFrame of shape n x m A matrix of n instances with m features y : ndarray or Series of length n, default: None An array or series of target or class values ax : matplotlib axes, default: None The axes to plot the figure on. features : list of strings, default: None The names of two features or columns. More than that will raise an error. classes : list of strings, default: None The names of the classes in the target color : list or tuple of colors, default: None Specify the colors for each individual class colormap : string or matplotlib cmap, default: None Sequential colormap for continuous target markers : iterable of strings, default: ,+o*vhd Matplotlib style markers for points on the scatter plot points alpha : float, default: 1.0 Specify a transparency where 1 is completely opaque and 0 is completely transparent. This property makes densely clustered points more visible. Returns ------- viz : ScatterVisualizer Returns the fitted, finalized visualizer """ # Instantiate the visualizer visualizer = ScatterVisualizer( ax=ax, features=features, classes=classes, color=color, colormap=colormap, markers=markers, alpha=alpha, **kwargs ) # Fit and transform the visualizer (calls draw) visualizer.fit(X, y, **kwargs) visualizer.transform(X) # Return the visualizer object return visualizer ########################################################################## # Static ScatterVisualizer Visualizer ########################################################################## class ScatterVisualizer(DataVisualizer): """ ScatterVisualizer is a bivariate feature data visualization algorithm that plots using the Cartesian coordinates of each point. Parameters ---------- ax : a matplotlib plot, default: None The axis to plot the figure on. x : string, default: None The feature name that corresponds to a column name or index postion in the matrix that will be plotted against the x-axis y : string, default: None The feature name that corresponds to a column name or index postion in the matrix that will be plotted against the y-axis features : a list of two feature names to use, default: None List of two features that correspond to the columns in the array. The order of the two features correspond to X and Y axes on the graph. More than two feature names or columns will raise an error. If a DataFrame is passed to fit and features is None, feature names are selected that are the columns of the DataFrame. classes : a list of class names for the legend, default: None If classes is None and a y value is passed to fit then the classes are selected from the target vector. color : optional list or tuple of colors to colorize points, default: None Use either color to colorize the points on a per class basis or colormap to color them on a continuous scale. colormap : optional string or matplotlib cmap to colorize points, default: None Use either color to colorize the points on a per class basis or colormap to color them on a continuous scale. markers : iterable of strings, default: ,+o*vhd Matplotlib style markers for points on the scatter plot points alpha : float, default: 1.0 Specify a transparency where 1 is completely opaque and 0 is completely transparent. This property makes densely clustered points more visible. kwargs : keyword arguments passed to the super class. These parameters can be influenced later on in the visualization process, but can and should be set as early as possible. """ def __init__( self, ax=None, x=None, y=None, features=None, classes=None, color=None, colormap=None, markers=None, alpha=1.0, **kwargs ): """ Initialize the base scatter with many of the options required in order to make the visualization work. """ super(ScatterVisualizer, self).__init__( ax=ax, features=features, classes=classes, color=color, colormap=colormap, **kwargs ) self.x = x self.y = y self.alpha = alpha self.markers = itertools.cycle( kwargs.pop("markers", (",", "+", "o", "*", "v", "h", "d")) ) self.color = color self.colormap = colormap if self.x is not None and self.y is not None and self.features is not None: raise YellowbrickValueError("Please specify x,y or features, not both.") if self.x is not None and self.y is not None and self.features is None: self.features = [self.x, self.y] # Ensure with init that features doesn't have more than two features if features is not None: if len(features) != 2: raise YellowbrickValueError( "ScatterVisualizer only accepts two features." ) def fit(self, X, y=None, **kwargs): """ The fit method is the primary drawing input for the parallel coords visualization since it has both the X and y data required for the viz and the transform method does not. Parameters ---------- X : ndarray or DataFrame of shape n x m A matrix of n instances with 2 features y : ndarray or Series of length n An array or series of target or class values kwargs : dict Pass generic arguments to the drawing method Returns ------- self : instance Returns the instance of the transformer/visualizer """ _, ncols = X.shape # NOTE: Do not call super for this class, it conflicts with the fit. # Setting these variables is similar to the old behavior of DataVisualizer. # TODO: refactor to make use of the new DataVisualizer functionality self.features_ = self.features self.classes_ = self.classes if ncols == 2: X_two_cols = X if self.features_ is None: self.features_ = ["Feature One", "Feature Two"] # Handle the feature names if they're None. elif self.features_ is not None and is_dataframe(X): X_two_cols = X[self.features_].values # handle numpy named/ structured array elif self.features_ is not None and is_structured_array(X): X_selected = X[self.features_] X_two_cols = X_selected.copy().view( (np.float64, len(X_selected.dtype.names)) ) # handle features that are numeric columns in ndarray matrix elif self.features_ is not None and has_ndarray_int_columns(self.features_, X): f_one, f_two = self.features_ X_two_cols = X[:, [int(f_one), int(f_two)]] else: raise YellowbrickValueError( """ ScatterVisualizer only accepts two features, please explicitly set these two features in the init kwargs or pass a matrix/ dataframe in with only two columns.""" ) # Store the classes for the legend if they're None. if self.classes_ is None: # TODO: Is this the most efficient method? self.classes_ = [str(label) for label in np.unique(y)] # Draw the instances self.draw(X_two_cols, y, **kwargs) # Fit always returns self. return self def draw(self, X, y, **kwargs): """Called from the fit method, this method creates a scatter plot that draws each instance as a class or target colored point, whose location is determined by the feature data set. """ # Set the axes limits self.ax.set_xlim([-1, 1]) self.ax.set_ylim([-1, 1]) # set the colors color_values = resolve_colors( n_colors=len(self.classes_), colormap=self.colormap, colors=self.color ) colors = dict(zip(self.classes_, color_values)) # Create a data structure to hold the scatter plot representations to_plot = {} for kls in self.classes_: to_plot[kls] = [[], []] # Add each row of the data set to to_plot for plotting # TODO: make this an independent function for override for i, row in enumerate(X): row_ = np.repeat(np.expand_dims(row, axis=1), 2, axis=1) x_, y_ = row_[0], row_[1] kls = self.classes_[y[i]] to_plot[kls][0].append(x_) to_plot[kls][1].append(y_) # Add the scatter plots from the to_plot function # TODO: store these plots to add more instances to later # TODO: make this a separate function for i, kls in enumerate(self.classes_): self.ax.scatter( to_plot[kls][0], to_plot[kls][1], marker=next(self.markers), color=colors[kls], label=str(kls), alpha=self.alpha, **kwargs ) self.ax.axis("equal") def finalize(self, **kwargs): """ Adds a title and a legend and ensures that the axis labels are set as the feature names being visualized. Parameters ---------- kwargs: generic keyword arguments. Notes ----- Generally this method is called from show and not directly by the user. """ # Divide out the two features feature_one, feature_two = self.features_ # Set the title self.set_title( "Scatter Plot: {0} vs {1}".format(str(feature_one), str(feature_two)) ) # Add the legend self.ax.legend(loc="best") self.ax.set_xlabel(str(feature_one)) self.ax.set_ylabel(str(feature_two)) # Alias for ScatterViz ScatterViz = ScatterVisualizer
apache-2.0
-159,934,294,901,768,700
32.041783
87
0.583966
false
4.587007
false
false
false
dichen001/Go4Jobs
JackChen/hash/18. 4Sum.py
1
1449
""" Given an array S of n integers, are there elements a, b, c, and d in S such that a + b + c + d = target? Find all unique quadruplets in the array which gives the sum of target. Note: The solution set must not contain duplicate quadruplets. For example, given array S = [1, 0, -1, 0, -2, 2], and target = 0. A solution set is: [ [-1, 0, 0, 1], [-2, -1, 1, 2], [-2, 0, 0, 2] ] """ class Solution(object): def fourSum(self, nums, target): """ :type nums: List[int] :type target: int :rtype: List[List[int]] """ nums.sort() results = [] for i in range(len(nums)-3): if i > 0 and nums[i] == nums[i-1]: continue sum_3 = target - nums[i] for j in range(i+1, len(nums) -2): if j > i+1 and nums[j] == nums[j-1]: continue l, h, sum_2 = j+1, len(nums) - 1, sum_3 - nums[j] while l < h: if nums[l] + nums[h] < sum_2: l += 1 elif nums[l] + nums[h] > sum_2: h -= 1 else: results.append([nums[i], nums[j], nums[l], nums[h]]) while l < h and nums[l] == nums[l+1]: l += 1 while l < h and nums[h] == nums[h-1]: h -= 1 l, h = l+1, h-1 return results
gpl-3.0
125,500,663,320,398,770
34.275
176
0.429952
false
3.331034
false
false
false
santiago-salas-v/walas
node_images.py
1
1746
import matplotlib import matplotlib.pyplot as plt fig = plt.figure() ax = fig.add_subplot(111) patch1 = matplotlib.patches.Circle( [0.5,0.5],0.05 ) patch2 = matplotlib.patches.Rectangle( [0.3,0.3],0.4, 0.4, alpha=0.5, fill=False, edgecolor='black', linestyle = '--' ) arrow1 = matplotlib.patches.Arrow( 0, 0.5,0.45,0, width=0.05, color='black' ) arrow2 = matplotlib.patches.Arrow( 0.55, 0.5,0.45,0, width=0.05, color='black' ) line1 = matplotlib.lines.Line2D( [0.5,0.5], [0,0.45], linestyle='--', color='black' ) text1 = matplotlib.text.Text( 0, 0.45, '$n_{A0}$\n$V_0$\n$U_A=0$' ) text2 = matplotlib.text.Text( 0.8, 0.45, '$n_{A1}$\n$V_1$\n$U_{A1}$' ) for artist in [ patch1,patch2,arrow1,arrow2, line1,text1,text2 ]: ax.add_artist(artist) ax.set_frame_on(False) ax.set_axis_off() ax.set_aspect(1.0) fig. fig = plt.figure() ax = fig.add_subplot(111) patch1 = matplotlib.patches.Circle( [0.5,0.5],0.05 ) patch2 = matplotlib.patches.Rectangle( [0.3,0.3],0.4, 0.4, alpha=0.5, fill=False, edgecolor='black', linestyle = '--' ) arrow1 = matplotlib.patches.Arrow( 0, 0.5,0.45,0, width=0.05, color='black' ) arrow2 = matplotlib.patches.Arrow( 0.55, 0.5,0.45,0, width=0.05, color='black' ) arrow3 = matplotlib.patches.Arrow( 0.5, 0.0, 0,0.45, width=0.05, color='black' ) text1 = matplotlib.text.Text( 0, 0.45, '$n_{A0}$\n$V_0$\n$U_A=0$' ) text2 = matplotlib.text.Text( 0.8, 0.45, '$n_{A1}$\n$V_1$\n$U_{A1}$' ) text3 = matplotlib.text.Text( 0.55, 0.1, '$n_{Ar}$\n$V_r$' ) for artist in [ patch1,patch2,arrow1,arrow2, arrow3,text1,text2,text3 ]: ax.add_artist(artist) ax.set_frame_on(False) ax.set_axis_off() ax.set_aspect(1.0)
mit
-8,638,347,603,755,213,000
20.567901
42
0.611111
false
2.282353
false
false
false
audiohacked/pyBusPirate
src/buspirate/uart.py
1
5375
# Created by Sean Nelson on 2018-08-19. # Copyright 2018 Sean Nelson <[email protected]> # # This file is part of pyBusPirate. # # pyBusPirate is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 2 of the License, or # (at your option) any later version. # # pyBusPirate is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with pyBusPirate. If not, see <https://www.gnu.org/licenses/>. """ UART class """ from enum import IntEnum from buspirate.base import BusPirate class UartSpeed(IntEnum): """ UART Speed Enum """ BAUD_300 = 0b0000 BAUD_1200 = 0b0001 BAUD_2400 = 0b0010 BAUD_4800 = 0b0011 BAUD_9600 = 0b0100 BAUD_19200 = 0b0101 BAUD_31250 = 0b0110 BAUD_MIDI = 0b0110 MIDI = 0b0110 BAUD_38400 = 0b0111 BAUD_57600 = 0b1000 BAUD_115200 = 0b1010 class UartConfiguration(object): """ UART Configuration Enum Base """ class PinOutput(IntEnum): """ Enum for Pin Output """ HIZ = 0b00000 V3P3 = 0b10000 PIN_HIZ = 0b00000 PIN_3P3V = 0b10000 class DataBitsAndParity(IntEnum): """ Enum for Data bits and Parity """ EIGHT_NONE = 0b0000 EIGHT_EVEN = 0b0100 EIGHT_ODD = 0b1000 NINE_NONE = 0b1100 class StopBits(IntEnum): """ Enum for Stop bits """ ONE = 0b00 TWO = 0b10 class RxPolarity(IntEnum): """ Enum for Rx Polarity """ IDLE_1 = 0b0 IDLE_0 = 0b1 class UART(BusPirate): """ UART BitBanging on the BusPirate """ @property def enter(self) -> bool: """ Enter UART Mode on the BusPirate :returns: returns Success or Failure """ self.write(0x03) return self.read(4) == "ART1" def echo_rx(self, start_stop: int = 0) -> bool: """ Enable disable RX Echoing :param start_stop: Give 0 for Start Echo, Give 1 to Stop Echo :type start_stop: int :returns: Success or Failure :rtype: bool """ self.write(0x02|start_stop) return self.read(1) == 0x01 def manual_baudrate(self, brg_register: int = 0x0000) -> bool: """ Set Baudrate Manually :param brg_register: BRG Register value based on 32mhz osc, divider = 2, and BRGH = 1 :type brg_register: int :returns: Success or Failure :rtype: bool """ data = [0x07, brg_register] self.write(data) return self.read(3) == [0x01, 0x01, 0x01] @property def bridge_mode(self) -> bool: """ Enable Bridge mode. Hard Reset BP to exit. :returns: Success or Failure :rtype: bool """ self.write(0x0F) return self.read(1) == 0x01 @property def speed(self): """ Speed Property Getter """ return self._speed @speed.setter def speed(self, value): """ Speed Property Setter """ self._speed = value return self.uart_speed(value) def uart_speed(self, baudrate: int = UartSpeed.BAUD_115200) -> bool: """ Set UART Speed :param baudrate: Uart Baud Rates :type baudrate: int :returns: Success or Failure :rtype: bool """ self.write(0x60|baudrate) return self.read(1) == 0x01 @property def config(self): """ Configuration Property Getter """ return self._config @config.setter def config(self, value): """ Configuration Property Setter """ self._config = value pin_outputs = value & 0b1000 data_parity = value & 0b0100 uastop_bits = value & 0b0010 rx_polarity = value & 0b0001 return self.uart_configuration(pin_outputs, data_parity, uastop_bits, rx_polarity) def uart_configuration(self, pin_output: int = UartConfiguration.PinOutput.HIZ, databits_parity: int = UartConfiguration.DataBitsAndParity.EIGHT_NONE, stop_bits: int = UartConfiguration.StopBits.ONE, rx_polarity: int = UartConfiguration.RxPolarity.IDLE_1) -> bool: """ UART Configuration :param pin_output: The Pin Configuration for Power Pins :type pin_output: int. :param clock_phase: The Pin Configuration for Pull Up Pins :type clock_phase: int. :param clock_edge: The Pin Configuration for AUX pin :type clock_edge: int. :param sample_time: The Pin Configuration for Chip Select Pin :type sample_time: int. :returns: returns Success or Failure :rtype: bool. """ uart_configuration = 0 uart_configuration += pin_output uart_configuration += databits_parity uart_configuration += stop_bits uart_configuration += rx_polarity self.write(0x80|uart_configuration) return self.read(1) == 0x01 if __name__ == '__main__': pass
gpl-2.0
5,007,357,886,985,508,000
27.439153
97
0.599256
false
3.583333
true
false
false
Re4son/Kali-Pi
Menus/menu-9p.py
1
2924
#!/usr/bin/env python import kalipi from kalipi import * ############################# ## Local Functions ## ## Local Functions ## ############################# ############################# ## Buttons ## # define all of the buttons label1 = Button(labelPadding * " " + " ", originX, originX, buttonHeight, buttonWidth * 3 + spacing * 2, tron_ora, tron_yel, labelFont) label2 = Button(labelPadding * " " + " ", originX, originY, buttonHeight, buttonWidth * 3 + spacing * 2, tron_ora, tron_yel, labelFont) label3 = Button(labelPadding * " " + " ", originX, originY + buttonHeight + spacing, buttonHeight, buttonWidth * 3 + spacing * 2, tron_ora, tron_yel, labelFont) button7 = Button(labelPadding * " " + " <<<", originX, originY + (buttonHeight * 2) + (spacing * 2), buttonHeight, buttonWidth, tron_ora, tron_yel, labelFont) button9 = Button(labelPadding * " " + " Refresh", originX + (buttonWidth * 2) + (spacing * 2), originY + (buttonHeight * 2) + (spacing * 2), buttonHeight, buttonWidth, tron_ora, tron_yel, labelFont) # Define each button press action def button(number): if number == 7: if button7.disable == 1: return # Previous page pygame.quit() page=os.environ["MENUDIR"] + "menu-pin.py" retPage=kalipi.get_retPage() args = [page, retPage] os.execvp("python", ["python"] + args) sys.exit() if number == 9: if button9.disable == 1: return # Refresh pygame.quit() menu9p() ## Buttons ## ############################# def menu9p(): # Init screen kalipi.screen() # Outer Border kalipi.border(tron_ora) ############################# ## Buttons ## # Buttons and labels # See variables at the top of the document to adjust the menu # First Row # label 1 label1.text=labelPadding * " " + kalipi.get_clock() label1.draw() # Second Row # Button 2 label2.text=labelPadding * " " + kalipi.get_temp() label2.draw() # Third Row # Label 3 label3.text=labelPadding * " " + kalipi.get_volts() label3.draw() # Fourth Row # Button 7 button7.disable = 0 # "1" disables button if button7.disable == 1: button7.draw() else: # Add button launch code here button7.draw() # Button 9 button9.disable = 0 # "1" disables button if button9.disable == 1: button9.draw() else: # Add button launch code here button9.draw() ## Buttons ## ############################# ############################# ## Input loop ## while 1: butNo=kalipi.inputLoop("menu-9p.py") button(butNo) ## Input loop ## ############################# if __name__ == "__main__": menu9p()
gpl-3.0
1,339,044,619,860,689,200
25.107143
202
0.515048
false
3.578947
false
false
false
JKarathiya/Lean
Algorithm.Python/InceptionDateSelectionRegressionAlgorithm.py
1
2432
# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. # Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from clr import AddReference AddReference("System") AddReference("QuantConnect.Algorithm") AddReference("QuantConnect.Common") from System import * from QuantConnect import * from QuantConnect.Algorithm import * from QuantConnect.Algorithm.Framework.Selection import * from QuantConnect.Data import * from QuantConnect.Data.UniverseSelection import * from datetime import timedelta ### <summary> ### Regression algorithm to test universe additions and removals with open positions ### </summary> ### <meta name="tag" content="regression test" /> class InceptionDateSelectionRegressionAlgorithm(QCAlgorithm): def Initialize(self): self.SetStartDate(2013,10,1) self.SetEndDate(2013,10,31) self.SetCash(100000) self.changes = None self.UniverseSettings.Resolution = Resolution.Hour # select IBM once a week, empty universe the other days self.AddUniverseSelection(CustomUniverseSelectionModel("my-custom-universe", lambda dt: ["IBM"] if dt.day % 7 == 0 else [])) # Adds SPY 5 days after StartDate and keep it in Universe self.AddUniverseSelection(InceptionDateUniverseSelectionModel("spy-inception", {"SPY": self.StartDate + timedelta(5)})); def OnData(self, slice): if self.changes is None: return # we'll simply go long each security we added to the universe for security in self.changes.AddedSecurities: self.SetHoldings(security.Symbol, .5) self.changes = None def OnSecuritiesChanged(self, changes): # liquidate removed securities for security in changes.RemovedSecurities: self.Liquidate(security.Symbol, "Removed from Universe") self.changes = changes
apache-2.0
-5,988,067,062,033,275,000
38.209677
132
0.733333
false
3.996711
false
false
false
kret0s/gnuhealth-live
tryton/server/trytond-3.8.3/trytond/ir/property.py
1
5773
# This file is part of Tryton. The COPYRIGHT file at the top level of # this repository contains the full copyright notices and license terms. from decimal import Decimal from ..model import ModelView, ModelSQL, fields from ..transaction import Transaction from ..cache import Cache from ..pool import Pool __all__ = [ 'Property', ] _CAST = { 'numeric': Decimal, 'integer': int, 'float': float, } class Property(ModelSQL, ModelView): "Property" __name__ = 'ir.property' _rec_name = 'field' value = fields.Reference('Value', selection='models_get') res = fields.Reference('Resource', selection='models_get', select=True) field = fields.Many2One('ir.model.field', 'Field', ondelete='CASCADE', required=True, select=True) _models_get_cache = Cache('ir_property.models_get', context=False) @classmethod def models_get(cls): pool = Pool() Model = pool.get('ir.model') models = cls._models_get_cache.get(None) if models: return models cursor = Transaction().cursor model = Model.__table__() cursor.execute(*model.select(model.model, model.name, order_by=model.name.asc)) models = cursor.fetchall() + [('', '')] cls._models_get_cache.set(None, models) return models @classmethod def get(cls, names, model, res_ids=None): """ Return named property values for each res_ids of model """ pool = Pool() ModelAccess = pool.get('ir.model.access') res = {} ModelAccess.check(model, 'read') names_list = True if not isinstance(names, list): names_list = False names = [names] if res_ids is None: res_ids = [] properties = cls.search([ ('field.name', 'in', names), ['OR', ('res', '=', None), ('res', 'in', ['%s,%s' % (model, x) for x in res_ids]), ], ], order=[]) default_vals = dict((x, None) for x in names) for property_ in (x for x in properties if not x.res): value = property_.value val = None if value is not None: if not isinstance(value, basestring): val = int(value) else: if property_.field.ttype in _CAST: cast = _CAST[property_.field.ttype] val = cast(value.split(',')[1]) elif property_.field.ttype in ('char', 'selection'): val = value.split(',')[1] else: raise Exception('Not implemented') default_vals[property_.field.name] = val if not res_ids: if not names_list: return default_vals[names[0]] return default_vals for name in names: res[name] = dict((x, default_vals[name]) for x in res_ids) for property_ in (x for x in properties if x.res): val = None if property_.value is not None: if not isinstance(property_.value, basestring): val = int(property_.value) else: if property_.field.ttype in _CAST: cast = _CAST[property_.field.ttype] val = cast(property_.value.split(',')[1]) elif property_.field.ttype in ('char', 'selection'): val = property_.value.split(',')[1] else: raise Exception('Not implemented') res[property_.field.name][int(property_.res)] = val if not names_list: return res[names[0]] return res @staticmethod def _set_values(model, res_id, val, field_id): return { 'value': val, 'res': model + ',' + str(res_id), 'field': field_id, } @classmethod def set(cls, name, model, ids, val): """ Set named property value for ids of model Return the id of the record created """ pool = Pool() ModelField = pool.get('ir.model.field') ModelAccess = pool.get('ir.model.access') ModelAccess.check(model, 'write') model_field, = ModelField.search([ ('name', '=', name), ('model.model', '=', model), ], order=[], limit=1) Model = pool.get(model) field = Model._fields[name] properties = cls.search([ ('field', '=', model_field.id), ('res', 'in', [model + ',' + str(res_id) for res_id in ids]), ], order=[]) cls.delete(properties) defaults = cls.search([ ('field', '=', model_field.id), ('res', '=', None), ], order=[], limit=1) default_val = None if defaults: value = cls(defaults[0].id).value default_val = None if value is not None: if not isinstance(value, basestring): default_val = int(value) else: if field._type in _CAST: cast = _CAST[field._type] default_val = cast(value.split(',')[1]) elif field._type in ('char', 'selection'): default_val = value.split(',')[1] else: raise Exception('Not implemented') if (val != default_val): for res_id in ids: vals = cls._set_values(model, res_id, val, model_field.id) cls.create([vals])
gpl-3.0
-8,129,677,329,808,463,000
32.760234
75
0.493677
false
4.327586
false
false
false
larsks/cloud-init
cloudinit/sources/DataSourceBigstep.py
2
1917
# Copyright (C) 2015-2016 Bigstep Cloud Ltd. # # Author: Alexandru Sirbu <[email protected]> # # This file is part of cloud-init. See LICENSE file for license information. import errno import json from cloudinit import log as logging from cloudinit import sources from cloudinit import url_helper from cloudinit import util LOG = logging.getLogger(__name__) class DataSourceBigstep(sources.DataSource): dsname = 'Bigstep' def __init__(self, sys_cfg, distro, paths): sources.DataSource.__init__(self, sys_cfg, distro, paths) self.metadata = {} self.vendordata_raw = "" self.userdata_raw = "" def _get_data(self, apply_filter=False): url = get_url_from_file() if url is None: return False response = url_helper.readurl(url) decoded = json.loads(response.contents.decode()) self.metadata = decoded["metadata"] self.vendordata_raw = decoded["vendordata_raw"] self.userdata_raw = decoded["userdata_raw"] return True def _get_subplatform(self): """Return the subplatform metadata source details.""" return 'metadata (%s)' % get_url_from_file() def get_url_from_file(): try: content = util.load_file("/var/lib/cloud/data/seed/bigstep/url") except IOError as e: # If the file doesn't exist, then the server probably isn't a Bigstep # instance; otherwise, another problem exists which needs investigation if e.errno == errno.ENOENT: return None else: raise return content # Used to match classes to dependencies datasources = [ (DataSourceBigstep, (sources.DEP_FILESYSTEM, sources.DEP_NETWORK)), ] # Return a list of data sources that match this set of dependencies def get_datasource_list(depends): return sources.list_from_depends(depends, datasources) # vi: ts=4 expandtab
gpl-3.0
2,950,398,994,128,199,700
27.61194
79
0.664058
false
3.766208
false
false
false
praphull27/diskBasedLdaBenchmarkingTools
readXmlAndOutputToTxt.py
1
1444
from bs4 import BeautifulSoup import re import os import multiprocessing def read_and_tokenize (file_name): xml_file_handle = open(file_name, 'rb') xml_file_contents = xml_file_handle.read() xml_file_handle.close() xml_file_text = '' full_text_all = BeautifulSoup(xml_file_contents).find_all(class_="full_text") for full_text in full_text_all: xml_file_text += full_text.get_text(" ") xml_file_text = re.sub(r'[^a-zA-Z]', ' ', xml_file_text) xml_file_text = (xml_file_text.strip()).lower() xml_file_text_tokenized = xml_file_text.split() xml_file_filtered_words = [word for word in xml_file_text_tokenized if len(word) >=3] xml_file_filtered_text = " ".join(xml_file_filtered_words) return xml_file_filtered_text root_path = "/Users/praphull/Desktop/msProject/nyt_corpus/" paths = [os.path.join(root, name) for root, dirs, files in os.walk(root_path) for name in files] paths_list = [] num = 10000 no_of_parts = len(paths) / num if len(paths) % num != 0: no_of_parts += 1 paths_list = [paths[a*num:(a+1)*num] for a in range(no_of_parts)] out_handle = open("nyt_corpus_original.txt", 'wb') file_count = 0 for paths in paths_list: p = multiprocessing.Pool(processes=(multiprocessing.cpu_count() - 1)) results = p.map(read_and_tokenize, paths) p.close() p.join() out_handle.write("\n".join(results) + "\n") file_count += 1 if file_count % 10 == 0: print file_count*num else: print '.' out_handle.close() #1855658
mit
5,477,891,135,625,652,000
28.489796
96
0.687673
false
2.674074
false
false
false
dc3-plaso/dfvfs
dfvfs/credentials/keychain.py
1
2743
# -*- coding: utf-8 -*- """The path specification key chain. The key chain is used to manage credentials for path specifications. E.g. BitLocker Drive Encryption (BDE) encrypted volumes can require a credential (e.g. password) to access the unencrypted data (unlock). """ from dfvfs.credentials import manager class KeyChain(object): """Class that implements the key chain.""" def __init__(self): """Initializes the key chain.""" super(KeyChain, self).__init__() self._credentials_per_path_spec = {} def Empty(self): """Empties the key chain.""" self._credentials_per_path_spec = {} def ExtractCredentialsFromPathSpec(self, path_spec): """Extracts credentials from a path specification. Args: path_spec (PathSpec): path specification to extract credentials from. """ credentials = manager.CredentialsManager.GetCredentials(path_spec) for identifier in credentials.CREDENTIALS: value = getattr(path_spec, identifier, None) if value is None: continue self.SetCredential(path_spec, identifier, value) def GetCredential(self, path_spec, identifier): """Retrieves a specific credential from the key chain. Args: path_spec (PathSpec): path specification. identifier (str): credential identifier. Returns: object: credential or None if the credential for the path specification is not set. """ credentials = self._credentials_per_path_spec.get(path_spec.comparable, {}) return credentials.get(identifier, None) def GetCredentials(self, path_spec): """Retrieves all credentials for the path specification. Args: path_spec (PathSpec): path specification. Returns: dict[str,object]: credentials for the path specification. """ return self._credentials_per_path_spec.get(path_spec.comparable, {}) def SetCredential(self, path_spec, identifier, data): """Sets a specific credential for the path specification. Args: path_spec (PathSpec): path specification. identifier (str): credential identifier. data (object): credential data. Raises: KeyError: if the credential is not supported by the path specification type. """ supported_credentials = manager.CredentialsManager.GetCredentials(path_spec) if identifier not in supported_credentials.CREDENTIALS: raise KeyError(( u'Unsuppored credential: {0:s} for path specification type: ' u'{1:s}').format(identifier, path_spec.type_indicator)) credentials = self._credentials_per_path_spec.get(path_spec.comparable, {}) credentials[identifier] = data self._credentials_per_path_spec[path_spec.comparable] = credentials
apache-2.0
-8,760,681,104,130,690,000
31.654762
80
0.692308
false
4.265941
false
false
false
hbldh/skboost
skboost/stumps/decision_stump.py
1
17561
#!/usr/bin/env python # -*- coding: utf-8 -*- """ :mod:`decision_stump` ================== .. module:: decision_stump :platform: Unix, Windows :synopsis: .. moduleauthor:: hbldh <[email protected]> Created on 2014-08-31, 01:52 """ from __future__ import division from __future__ import print_function from __future__ import unicode_literals from __future__ import absolute_import from warnings import warn from operator import itemgetter import concurrent.futures as cfut import psutil import numpy as np from scipy.sparse import issparse import six from sklearn.base import ClassifierMixin from sklearn.utils import check_random_state, check_array from numpy.lib.arraysetops import unique from sklearn.tree import DecisionTreeClassifier from sklearn.tree import _tree try: import skboost.stumps.ext.classifiers as c_classifiers except ImportError as e: c_classifiers = None _all__ = ["NMMDecisionStump", ] # ============================================================================= # Types and constants # ============================================================================= DTYPE = _tree.DTYPE DOUBLE = _tree.DOUBLE class DecisionStump(DecisionTreeClassifier): """A decision tree classifier. Parameters ---------- criterion : string, optional (default="gini") Not used in Stratos Decision Stump. max_features : int, float, string or None, optional (default=None) Not used in Stratos Decision Stump. max_depth : integer or None, optional (default=None) Not used in Stratos Decision Stump. Always a depth 1 tree. min_samples_split : integer, optional (default=2) Not used in Stratos Decision Stump. min_samples_leaf : integer, optional (default=1) Not used in Stratos Decision Stump. random_state : int, RandomState instance or None, optional (default=None) Not used in Stratos Decision Stump. Nothing random in learning. Attributes ---------- `tree_` : Tree object The underlying Tree object. `classes_` : array of shape = [n_classes] or a list of such arrays The classes labels (single output problem), or a list of arrays of class labels (multi-output problem). `n_classes_` : int or list Alwats 2 fr this class. """ def __init__(self, criterion="gini", splitter="best", max_depth=None, min_samples_split=2, min_samples_leaf=1, max_features=None, random_state=None, min_density=None, compute_importances=None, distributed_learning=True, calculate_probabilites=False, method='bp'): super(DecisionStump, self).__init__(criterion=criterion, splitter=splitter, max_depth=max_depth, min_samples_split=min_samples_split, min_samples_leaf=min_samples_leaf, max_features=max_features, random_state=random_state) if min_density is not None: warn("The min_density parameter is deprecated as of version 0.14 " "and will be removed in 0.16.", DeprecationWarning) if compute_importances is not None: warn("Setting compute_importances is no longer required as " "version 0.14. Variable importances are now computed on the " "fly when accessing the feature_importances_ attribute. " "This parameter will be removed in 0.16.", DeprecationWarning) self.distributed_learning = distributed_learning self.calculate_probabilites = calculate_probabilites self.method = method def fit(self, X, y, sample_mask=None, X_argsorted=None, check_input=True, sample_weight=None): # Deprecations if sample_mask is not None: warn("The sample_mask parameter is deprecated as of version 0.14 " "and will be removed in 0.16.", DeprecationWarning) # Convert data random_state = check_random_state(self.random_state) if check_input: X = check_array(X, dtype=DTYPE, accept_sparse="csc") if issparse(X): X.sort_indices() if X.indices.dtype != np.intc or X.indptr.dtype != np.intc: raise ValueError("No support for np.int64 index based " "sparse matrices") # Determine output settings n_samples, self.n_features_ = X.shape is_classification = isinstance(self, ClassifierMixin) y = np.atleast_1d(y) if y.ndim == 1: # reshape is necessary to preserve the data contiguity against vs # [:, np.newaxis] that does not. y = np.reshape(y, (-1, 1)) self.n_outputs_ = y.shape[1] if is_classification: y = np.copy(y) self.classes_ = [] self.n_classes_ = [] for k in six.moves.range(self.n_outputs_): classes_k, y[:, k] = unique(y[:, k], return_inverse=True) self.classes_.append(classes_k) self.n_classes_.append(classes_k.shape[0]) else: self.classes_ = [None] * self.n_outputs_ self.n_classes_ = [1] * self.n_outputs_ self.n_classes_ = np.array(self.n_classes_, dtype=np.intp) max_depth = 1 max_features = 10 if getattr(y, "dtype", None) != DOUBLE or not y.flags.contiguous: y = np.ascontiguousarray(y, dtype=DOUBLE) if len(y) != n_samples: raise ValueError("Number of labels=%d does not match " "number of samples=%d" % (len(y), n_samples)) if self.min_samples_split <= 0: raise ValueError("min_samples_split must be greater than zero.") if self.min_samples_leaf <= 0: raise ValueError("min_samples_leaf must be greater than zero.") if max_depth <= 0: raise ValueError("max_depth must be greater than zero. ") if sample_weight is not None: if (getattr(sample_weight, "dtype", None) != DOUBLE or not sample_weight.flags.contiguous): sample_weight = np.ascontiguousarray( sample_weight, dtype=DOUBLE) if len(sample_weight.shape) > 1: raise ValueError("Sample weights array has more " "than one dimension: %d" % len(sample_weight.shape)) if len(sample_weight) != n_samples: raise ValueError("Number of weights=%d does not match " "number of samples=%d" % (len(sample_weight), n_samples)) if self.method == 'bp': self.tree_ = _fit_binary_decision_stump_breakpoint( X, y, sample_weight, X_argsorted, self.calculate_probabilites) elif self.method == 'bp_threaded': self.tree_ = _fit_binary_decision_stump_breakpoint_threaded( X, y, sample_weight, X_argsorted, self.calculate_probabilites) else: self.tree_ = _fit_binary_decision_stump_breakpoint( X, y, sample_weight, X_argsorted, self.calculate_probabilites) if self.n_outputs_ == 1: self.n_classes_ = self.n_classes_[0] self.classes_ = self.classes_[0] return self def predict(self, X, check_input=True): """Predict class or regression value for X. For a classification model, the predicted class for each sample in X is returned. For a regression model, the predicted value based on X is returned. Parameters ---------- X : array-like of shape = [n_samples, n_features] The input samples. Returns ------- y : array of shape = [n_samples] or [n_samples, n_outputs] The predicted classes, or the predict values. """ if getattr(X, "dtype", None) != DTYPE or X.ndim != 2: X = check_array(X, dtype=DTYPE) n_samples, n_features = X.shape if self.tree_ is None: raise Exception("Tree not initialized. Perform a fit first") if self.n_features_ != n_features: raise ValueError("Number of features of the model must " " match the input. Model n_features is %s and " " input n_features is %s " % (self.n_features_, n_features)) if self.tree_.get('direction') > 0: return ((X[:, self.tree_.get('best_dim')] > self.tree_.get('threshold')) * 2) - 1 else: return ((X[:, self.tree_.get('best_dim')] <= self.tree_.get('threshold')) * 2) - 1 def predict_proba(self, X, check_input=True): """Predict class probabilities of the input samples X. Parameters ---------- X : array-like of shape = [n_samples, n_features] The input samples. Returns ------- p : array of shape = [n_samples, n_classes], or a list of n_outputs such arrays if n_outputs > 1. The class probabilities of the input samples. Classes are ordered by arithmetical order. """ if getattr(X, "dtype", None) != DTYPE or X.ndim != 2: X = check_array(X, dtype=DTYPE) n_samples, n_features = X.shape if self.tree_ is None: raise Exception("Tree not initialized. Perform a fit first.") if self.n_features_ != n_features: raise ValueError("Number of features of the model must " " match the input. Model n_features is %s and " " input n_features is %s " % (self.n_features_, n_features)) proba = np.array(self.tree_['probabilities']).take(self.predict(X) > 0, axis=0) if self.n_outputs_ == 1: proba = proba[:, :self.n_classes_] normalizer = proba.sum(axis=1)[:, np.newaxis] normalizer[normalizer == 0.0] = 1.0 proba /= normalizer return proba else: all_proba = [] for k in six.moves.range(self.n_outputs_): proba_k = proba[:, k, :self.n_classes_[k]] normalizer = proba_k.sum(axis=1)[:, np.newaxis] normalizer[normalizer == 0.0] = 1.0 proba_k /= normalizer all_proba.append(proba_k) return all_proba def _fit_binary_decision_stump_breakpoint(X, y, sample_weight, argsorted_X=None, calculate_probabilities=False): Y = (y.flatten() * 2) - 1 results = { 'min_value': None, 'best_dim': 0, 'threshold': 0, 'direction': 0, 'probabilities': [] } if sample_weight is None: sample_weight = np.ones(shape=(X.shape[0],), dtype='float') / (X.shape[0],) else: sample_weight /= np.sum(sample_weight) classifier_result = [] for dim in six.moves.range(X.shape[1]): if argsorted_X is not None: sorted_x = X[argsorted_X[:, dim], dim] w = sample_weight[argsorted_X[:, dim]] sorted_y = Y[argsorted_X[:, dim]] else: data_order = np.argsort(X[:, dim]) sorted_x = X[data_order, dim] w = sample_weight[data_order] sorted_y = Y[data_order] breakpoint_indices = np.where(np.diff(sorted_x))[0] + 1 w_pos_c = (w * (sorted_y > 0)).cumsum() w_neg_c = (w * (sorted_y < 0)).cumsum() left_errors = w_pos_c[breakpoint_indices] - w_neg_c[breakpoint_indices] + w_neg_c[-1] right_errors = w_neg_c[breakpoint_indices] - w_pos_c[breakpoint_indices] + w_pos_c[-1] best_left_point = np.argmin(left_errors) best_right_point = np.argmin(right_errors) if best_left_point < best_right_point: output = [dim, left_errors[best_left_point], (sorted_x[breakpoint_indices[best_left_point] + 1] + sorted_x[breakpoint_indices[best_left_point]]) / 2, 1] else: output = [dim, right_errors[best_right_point], (sorted_x[breakpoint_indices[best_right_point] + 1] + sorted_x[breakpoint_indices[best_right_point]]) / 2, -1] classifier_result.append(output) del sorted_x, sorted_y, left_errors, right_errors, w, w_pos_c, w_neg_c # Sort the returned data after lowest error. classifier_result = sorted(classifier_result, key=itemgetter(1)) best_result = classifier_result[0] results['best_dim'] = int(best_result[0]) results['min_value'] = float(best_result[1]) # If the data is in integers, then set the threshold in integer as well. if X.dtype.kind in ('u', 'i'): results['threshold'] = int(best_result[2]) else: results['threshold'] = float(best_result[2]) # Direction is defined as 1 if the positives labels are at # higher values and -1 otherwise. results['direction'] = int(best_result[3]) if calculate_probabilities: results['probabilities'] = _calculate_probabilities( X[:, results['best_dim']], Y, results) return results def _fit_binary_decision_stump_breakpoint_threaded(X, y, sample_weight, argsorted_X=None, calculate_probabilities=False): Y = y.flatten() * 2 - 1 results = { 'min_value': None, 'best_dim': 0, 'threshold': 0, 'direction': 0, 'probabilities': [] } if sample_weight is None: sample_weight = np.ones(shape=(X.shape[0],), dtype='float') / (X.shape[0],) else: sample_weight /= np.sum(sample_weight) classifier_result = [] tpe = cfut.ThreadPoolExecutor(max_workers=psutil.cpu_count()) futures = [] if argsorted_X is not None: for dim in six.moves.range(X.shape[1]): futures.append( tpe.submit(_breakpoint_learn_one_dimension, dim, X[:, dim], Y, sample_weight, argsorted_X[:, dim])) else: for dim in six.moves.range(X.shape[1]): futures.append(tpe.submit(_breakpoint_learn_one_dimension, dim, X[:, dim], Y, sample_weight)) for future in cfut.as_completed(futures): classifier_result.append(future.result()) # Sort the returned data after lowest error. classifier_result = sorted(classifier_result, key=itemgetter(1)) best_result = classifier_result[0] results['best_dim'] = int(best_result[0]) results['min_value'] = float(best_result[1]) # If the data is in integers, then set the threshold in integer as well. if X.dtype.kind in ('u', 'i'): results['threshold'] = int(best_result[2]) else: results['threshold'] = float(best_result[2]) # Direction is defined as 1 if the positives labels are at # higher values and -1 otherwise. results['direction'] = int(best_result[3]) if calculate_probabilities: results['probabilities'] = _calculate_probabilities(X[:, results['best_dim']], Y, results) return results def _calculate_probabilities(X, Y, results): if results['direction'] > 0: labels = X > results['threshold'] else: labels = X <= results['threshold'] n_correct_negs = sum(Y[-labels] < 0) n_false_negs = sum(Y[-labels] > 0) n_false_pos = sum(Y[labels] < 0) n_correct_pos = sum(Y[labels] > 0) return [[n_correct_negs / len(Y), n_false_negs / len(Y)], [n_false_pos / len(Y), n_correct_pos / len(Y)]] def _breakpoint_learn_one_dimension(dim_nbr, x, y, sample_weights, sorting_argument=None): if sorting_argument is None: sorting_argument = np.argsort(x) sorted_x = x[sorting_argument] w = sample_weights[sorting_argument] sorted_y = y[sorting_argument] breakpoint_indices = np.where(np.diff(sorted_x))[0] + 1 w_pos_c = (w * (sorted_y > 0)).cumsum() w_neg_c = (w * (sorted_y < 0)).cumsum() left_errors = w_pos_c[breakpoint_indices] - w_neg_c[breakpoint_indices] + w_neg_c[-1] right_errors = w_neg_c[breakpoint_indices] - w_pos_c[breakpoint_indices] + w_pos_c[-1] best_left_point = np.argmin(left_errors) best_right_point = np.argmin(right_errors) if best_left_point < best_right_point: output = [dim_nbr, left_errors[best_left_point], (sorted_x[breakpoint_indices[best_left_point] - 1] + sorted_x[breakpoint_indices[best_left_point]]) / 2, 1] else: output = [dim_nbr, right_errors[best_right_point], (sorted_x[breakpoint_indices[best_right_point] + 1] + sorted_x[breakpoint_indices[best_right_point]]) / 2, -1] return output
mit
-5,267,852,490,259,074,000
35.509356
115
0.553442
false
3.937444
false
false
false
deepmind/lab2d
dmlab2d/lib/game_scripts/levels/clean_up/play.py
1
3449
# Copyright 2020 The DMLab2D Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A simple human player for testing the `clean_up` level. Use `WASD` keys to move the character around. Use `Q and E` to turn the character. Use `SPACE` to fire clean. Use `LEFT_CTRL` to fire fine. Use `TAB` to switch between players. Use `[]` to switch between levels. Use `R` to restart a level. Use `ESCAPE` to quit. """ import argparse import collections import json from typing import Mapping from dmlab2d import ui_renderer _ACTION_MAP = { 'move': ui_renderer.get_direction_pressed, 'turn': ui_renderer.get_turn_pressed, 'fireClean': ui_renderer.get_space_key_pressed, 'fireFine': ui_renderer.get_left_control_pressed } _FRAMES_PER_SECOND = 8 def _run(rgb_observation: str, config: Mapping[str, str]): """Run multiplayer environment, with per player rendering and actions.""" player_count = int(config.get('numPlayers', '1')) score = collections.defaultdict(float) total_contrib = collections.defaultdict(float) prefixes = [str(i + 1) + '.' for i in range(player_count)] ui = ui_renderer.Renderer( config=config, action_map=_ACTION_MAP, rgb_observation=rgb_observation, player_prefixes=[str(i + 1) + '.' for i in range(player_count)], frames_per_second=_FRAMES_PER_SECOND) def player_printer(idx: int): print(f'Player({idx}) contrib({total_contrib[idx]}) score({score[idx]})') for step in ui.run(): if step.type == ui_renderer.StepType.FIRST: print(f'=== Start episode {step.episode} ===') print_player = False for idx, prefix in enumerate(prefixes): reward = step.env.observation(prefix + 'REWARD') score[idx] += reward contrib = step.env.observation(prefix + 'CONTRIB') total_contrib[idx] += contrib if step.player == idx and (reward != 0 or contrib != 0): print_player = True if print_player: player_printer(step.player) if step.type == ui_renderer.StepType.LAST: print(f'=== End episode {step.episode} ===') for idx in range(player_count): player_printer(idx) print('======') print('=== Exiting ===') for idx in range(player_count): player_printer(idx) def main(): parser = argparse.ArgumentParser(description=__doc__) parser.add_argument( '--observation', type=str, default='RGB', help='Observation to render') parser.add_argument( '--settings', type=json.loads, default={}, help='Settings as JSON string') parser.add_argument( '--players', type=int, default=4, help='Number of players.') args = parser.parse_args() if 'levelName' not in args.settings: args.settings['levelName'] = 'clean_up' if 'numPlayers' not in args.settings: args.settings['numPlayers'] = args.players for k in args.settings: args.settings[k] = str(args.settings[k]) _run(args.observation, args.settings) if __name__ == '__main__': main()
apache-2.0
7,325,948,526,025,038,000
30.642202
80
0.677298
false
3.548354
false
false
false
cdiener/pyart
asciinator.py
1
1723
#!/usr/bin/env python # asciinator.py # # Copyright 2014 Christian Diener <[email protected]> # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, # MA 02110-1301, USA. # # from __future__ import print_function # for python2 compat import sys; from PIL import Image; import numpy as np # ascii chars sorted by "density" chars = np.asarray(list(' .,:;irsXA253hMHGS#9B&@')) # check command line arguments if len(sys.argv) != 4: print( 'Usage: asciinator.py image scale factor' ) sys.exit() # set basic program parameters # f = filename, SC = scale, GCF = gamma correction factor, WCF = width correction factor f, SC, GCF, WCF = sys.argv[1], float(sys.argv[2]), float(sys.argv[3]), 7.0/4.0 # open, scale and normalize image by pixel intensities img = Image.open(f) S = (int(img.size[0]*SC*WCF), int(img.size[1]*SC)) img = np.sum( np.asarray(img.resize(S), dtype="float"), axis=2) img -= img.min() img = (1.0 - img/img.max())**GCF*(chars.size-1) # Assemble and print ascii art print( "\n".join(("".join(r) for r in chars[img.astype(int)]))) print()
gpl-3.0
-7,175,192,178,625,269,000
32.784314
89
0.702263
false
3.098921
false
false
false
katchengli/tech-interview-prep
interview_cake/ic3.py
1
1451
#constraint: list_of_ints will always have at least 3 integers #can have negative numbers def highest_product_three_ints(list_of_ints): biggest_int = max(list_of_ints) list_of_ints.remove(biggest_int) max_int1 = max(list_of_ints) list_of_ints.remove(max_int1) max_int2 = max(list_of_ints) list_of_ints.remove(max_int2) if list_of_ints: min_int1 = min(list_of_ints) list_of_ints.remove(min_int1) else: return biggest_int * max_int1 * max_int2 if list_of_ints: min_int2 = min(list_of_ints) #list_of_ints.remove(min_int2) else: min_int2 = max_int2 potent_highest_product1 = biggest_int * min_int1 * min_int2 potent_highest_product2 = biggest_int * max_int1 * max_int2 if potent_highest_product1 > potent_highest_product2: return potent_highest_product1 else: return potent_highest_product2 print(highest_product_three_ints([3, 4, 5, 6])) #should return 120 print(highest_product_three_ints([-10, -10, 5, 6])) #should return 600 print(highest_product_three_ints([-60, -100, -1, -2])) #should return -120 print(highest_product_three_ints([600, 200, -1, -2])) #should return 1200 print(highest_product_three_ints([1000, -1000, -1, 1])) #should return 1000000 print(highest_product_three_ints([1000, -1000, -1, 1, 800])) #should return 1000000 print(highest_product_three_ints([1000, -1000, -1, 1, -800])) #should return 800000000
apache-2.0
2,525,693,542,367,842,300
30.543478
63
0.671261
false
2.890438
false
false
false
hemidactylus/flaskbiblio
config.py
1
1074
import os # directories and so on basedir = os.path.abspath(os.path.dirname(__file__)) DB_DIRECTORY=os.path.join(basedir,'app/database') DB_NAME='biblio.db' # stuff for Flask WTF_CSRF_ENABLED = True from sensible_config import SECRET_KEY # formats, etc DATETIME_STR_FORMAT = '%Y-%m-%d %H:%M:%S' SHORT_DATETIME_STR_FORMAT = '%d/%m/%y' FILENAME_DATETIME_STR_FORMAT = '%Y_%m_%d' USERS_TIMEZONE='Europe/Rome' # similarity thresholds for author (last- and complete-) names SIMILAR_USE_DIGRAMS=True # otherwise: use single-letter grams # Different thresholds are required depending on the type of vectoring if SIMILAR_USE_DIGRAMS: SIMILAR_AUTHOR_THRESHOLD=0.7 SIMILAR_BOOK_THRESHOLD=0.7 else: SIMILAR_AUTHOR_THRESHOLD=0.90 SIMILAR_BOOK_THRESHOLD=0.93 # what are the smallest tokens to employ in similar-search in book titles? MINIMUM_SIMILAR_BOOK_TOKEN_SIZE=4 # Are multiple books with the same title allowed? (suggested: yes) ALLOW_DUPLICATE_BOOKS=True # temporary directory for storing import-related files TEMP_DIRECTORY=os.path.join(basedir,'app/temp')
gpl-3.0
-1,613,392,918,894,984,700
29.685714
74
0.752328
false
3.016854
false
false
false
mharrys/sudoku
sudoku.py
1
7848
import fileinput from dlx import DLX from numpy import array, unique from optparse import OptionParser class SudokuError(Exception): """Raised when any error related to Sudoku is found during construction and validation such as unexpected values or contradictions. """ def __init__(self, value): self.value = value def __str__(self): return self.value.encode('string_escape') class Sudoku(object): """Complete all necessary steps to solve a Sudoku challenge using Dancing Links (DLX) including validating the challenge and building and validating the possible solution found by DLX. The expected input is one line of 81 characters where each unknown digit is represented as a '.' (dot). """ def __init__(self, validate, pretty): self.validate = validate self.pretty = pretty def solve(self, line): """Return list of solutions from specified line. Return empty list if no solutions are found and return at most one solution if validation is enabled or all solutions if validation is disabled. It is possible for a Sudoku challenge to have more than one solution but such challenge is concidered to be an invalid. """ grid = self.build_challenge(line) self.validate_challenge(grid) self.grids = [] dlx = DLX.from_sudoku(grid, self.result) dlx.run(self.validate) return self.grids def build_challenge(self, line): """Returns 9x9 numpy array from specified line. SudokuError is raised if unexpected value is found. """ grid = [] for c in line: if c != '.': if c < '1' or c > '9': msg = 'Unexpected value "%s" when building challenge.' % c raise SudokuError(msg) grid.append(int(c)) else: grid.append(0) return array(grid).reshape(9, 9) def validate_challenge(self, grid): """Search specified grid (9x9 numpy array) for contradictions. SudokuError is raised if a contradiction is found. """ # validate rows for row in grid: cells = [] for cell in row: if cell != 0: if cell in cells: msg = 'Row digits are not unique in challenge.' raise SudokuError(msg) else: cells.append(cell) # validate columns for column in grid.transpose(): cells = [] for cell in column: if cell != 0: if cell in cells: msg = 'Column digits are not unique in challenge.' raise SudokuError(msg) else: cells.append(cell) # validate boxes for i in range(3): # row slice rs = i * 3 re = i * 3 + 3 for j in range(3): # column slice cs = j * 3 ce = j * 3 + 3 # box slice box = grid[rs:re, cs:ce] cells = [] for cell in box.flatten(): if cell != 0: if cell in cells: msg = 'Box digits are no unique in challenge.' raise SudokuError(msg) else: cells.append(cell) def build_solution(self, s): """Return 9x9 grid from a solution found by DLX. """ rows = [] for k in s: rows.append(k.ID) rows.sort() grid = [] for row in rows: grid.append(row % 9 + 1) return array(grid).reshape(9, 9) def validate_solution(self, grid): """Search specified grid (9x9 numpy array) for contradictions. SudokuError is raised if a contradiction is found. """ # validate cells for cell in grid.flatten(): if cell not in range(1, 10): msg = 'Cell digit is not between 1 and 9 in solution.' raise SudokuError(msg) # validate rows for row in grid: if unique(row).size != 9: msg = 'Row digits are not unique in solution.' raise SudokuError(msg) # validate columns for col in grid.transpose(): if unique(col).size != 9: msg = 'Column digits are not unique in solution.' raise SudokuError(msg) # validate boxes for i in range(3): # row slice rs = i * 3 re = i * 3 + 3 for j in range(3): # column slice cs = j * 3 ce = j * 3 + 3 # box slice box = grid[rs:re, cs:ce] if unique(box.flatten()).size != 9: msg = 'Box digits are not unique in solution.' raise SudokuError(msg) def result(self, solutions, s): """Build, validate and save recieved solution. SudokuError is raised if validation is enabled and more than one solution exist or contradiction is found in solution. """ grid = self.build_solution(s) if self.validate: if solutions > 1: msg = 'More than one solution exist.' raise SudokuError(msg) self.validate_solution(grid) if self.pretty: self.grids.append(self.format_pretty(grid)) else: self.grids.append(self.format_simple(grid)) def format_simple(self, grid): """Return solution in the same format as expected input line. """ f = '' for s in grid.ravel(): f += str(s) return f def format_pretty(self, grid): """Return solution in a more human readable format. """ f = '+-------+-------+-------+\n' for i, s in enumerate(grid): num = str(s)[1:-1].replace(',', '') f += '| %s | %s | %s |\n' % (num[0:5], num[6:11], num[12:17]) if (i + 1) % 3 == 0: f += '+-------+-------+-------+' if (i + 1) < len(grid): f += '\n' return f def print_error(n, msg): print('sudoku: Error on line %s: %s' % (n, msg)) def print_solutions(grids): for grid in grids: print(grid) def solve_line(sudoku, line, line_num): if len(line) < 82 or line[81] != '\n': print_error(line_num, 'Input line must be exactly 81 chars long.') else: grids = [] try: grids = sudoku.solve(line[:81]) # slice off '\n' except SudokuError as e: print_error(line_num, e) else: print_solutions(grids) def solve_line_by_line(options, args): sudoku = Sudoku(options.validate, options.pretty) for line in fileinput.input(args): solve_line(sudoku, line, fileinput.lineno()) if __name__ == '__main__': parser = OptionParser() parser.add_option( '-v', '--validate', dest='validate', help='validate solution (longer search time)', action='store_true' ) parser.add_option( '-p', '--pretty', dest='pretty', help='pretty print solution', action='store_true' ) options, args = parser.parse_args() try: solve_line_by_line(options, args) except IOError as e: print('sudoku: %s' % e) except (KeyboardInterrupt, SystemExit) as e: print('') print('sudoku: Interrupt caught ... exiting')
gpl-3.0
3,664,689,965,295,890,400
28.727273
78
0.507645
false
4.208043
false
false
false
Bekt/tweetement
src/service.py
1
3578
import logging import string import tweepy from credentials import (consumer_key, consumer_secret) from models import Stopword from collections import Counter class Service(object): # Map uppercase to lowercase, and deletes any punctuation. trans = {ord(string.ascii_uppercase[i]): ord(string.ascii_lowercase[i]) for i in range(26)} trans.update({ord(c): None for c in string.punctuation}) def __init__(self, access_token='', access_token_secret=''): self._tw_api = None self._access_token = access_token self._access_token_secret = access_token_secret @property def tw_api(self): """Tweepy API client.""" if self._tw_api is None: auth = tweepy.OAuthHandler(consumer_key, consumer_secret) auth.set_access_token(self._access_token, self._access_token_secret) self._tw_api = tweepy.API(auth) return self._tw_api def fetch(self, query, limit=100): """Fetches search results for the given query.""" # Cursor doesn't work with dev_appserver.py :( # return list(tweepy.Cursor(self.tw_api.search, q=query, lang='en', # result_type='popular').items(limit)) query += ' -filter:retweets' # Try to get as many 'popular' posts as possible. # Twitter limits this really hard. res_type = 'popular' last_id = -1 tweets = [] while len(tweets) < limit: count = limit - len(tweets) try: t = self.tw_api.search(q=query, count=count, result_type=res_type, lang='en', max_id=str(last_id - 1)) if len(t) < 3 and res_type == 'popular': tweets.extend(t) res_type = 'mixed' last_id = -1 continue if len(t) < 3 and res_type == 'mixed': tweets.extend(t) break tweets.extend(t) last_id = t[-1].id except tweepy.TweepError as e: logging.exception(e) break return tweets @staticmethod def top_hashtags(tweets, limit=5): """Extracts most frequent hashtags from given tweets.""" hashtags = Counter() for t in tweets: for h in t.entities['hashtags']: if 'text' in h: hashtags[h['text'].lower()] += 1 top = hashtags.most_common(limit) return ['#' + t[0] for t in top] @staticmethod def top_keywords(tweets, limit=5, exclude=set()): """Extracts most frequent keywords from given tweets.""" exc = set() for w in exclude: ok, text = _token_okay(w) if ok: exc.add(text) words = Counter() for t in tweets: for token in set(t.text.split()): ok, text = _token_okay(token) if ok and text not in exc: words[text] += 1 top = words.most_common(limit) return [t[0] for t in top] def _token_okay(text): """Decides whether the given token is a valid expandable query.""" text = ''.join(c for c in text if 127 > ord(c) > 31) try: text = text.translate(Service.trans) except TypeError: return False, text if (len(text) < 2 or text.isdigit() or Stopword.gql('WHERE token = :1', text).get() is not None): return False, text return True, text
mit
-3,306,388,078,736,274,000
34.425743
82
0.536333
false
3.906114
false
false
false
nbessi/pyhiccup
pyhiccup/page.py
1
3037
# -*- coding: utf-8 -*- ############################################################################## # # Author: Nicolas Bessi # Copyright 2014 # Original concept by James Reeves # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License 3 # along with this program. If not, see <http://www.gnu.org/licenses/>. # ############################################################################## from __future__ import unicode_literals DOC_TYPES = { 'html4': "<!DOCTYPE html PUBLIC \"-//W3C//DTD HTML 4.01//EN\" " "\"http://www.w3.org/TR/html4/strict.dtd\">\n", 'xhtml-strict': "<!DOCTYPE html PUBLIC \"-//W3C//DTD XHTML 1.0 ""Strict//EN\" " "\"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd\">\n", 'xhtml-transitional': "<!DOCTYPE html PUBLIC \"-//W3C//DTD XHTML 1.0 Transitional//EN\" " "\"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd\">\n", 'html5': "<!DOCTYPE html>\n", } DEFAULT_XMLNS = 'http://www.w3.org/1999/xhtml' XMl_DECLARATION = '<?xml version="1.0" encoding="UTF-8"?>' def get_doc_type(doc_type): """Return a DOCTYPE declaration :param doc_type: doc type string must be in ``page.DOC_TYPES`` :type doc_type: str :return: DOCTYPE declaration :rtype: str """ if doc_type not in DOC_TYPES: raise ValueError( 'Invalid DOCTYPE %s available values are %s' % (doc_type, DOC_TYPES.keys()) ) return DOC_TYPES[doc_type] def build_html_enclosing_tag(etype, **kwargs): """Generate html tag list representation :param etype: html doc type `html5, html4, xhtml-strict, xhtml-transitional` :type etype: str :param kwargs: dict of attribute for HTML tag will override defaults :type kwargs: dict :return: html tag list representation ['html', {'xmlns': ...}] :rtype: dict """ attrs = {} if etype in DOC_TYPES: attrs['lang'] = 'en' attrs['dir'] = 'rtl' attrs['xml:lang'] = 'en' if 'xhtml' in etype: attrs[u'xmlns'] = DEFAULT_XMLNS attrs.update(kwargs) return ['html', attrs] def build_xml_enclosing_tag(etype, **kwargs): """Generate XML root tag list representation :param etype: root tag name :type etype: str :param kwargs: dict of attribute for root tag :type kwargs: dict :return: root xml tag list representation ['atag', {'attr': ...}] :rtype: dict """ return [etype, kwargs]
agpl-3.0
384,448,600,303,087,940
32.01087
93
0.591373
false
3.667874
false
false
false
docusign/docusign-python-client
docusign_esign/models/external_file.py
1
7550
# coding: utf-8 """ DocuSign REST API The DocuSign REST API provides you with a powerful, convenient, and simple Web services API for interacting with DocuSign. # noqa: E501 OpenAPI spec version: v2.1 Contact: [email protected] Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six class ExternalFile(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { '_date': 'str', 'id': 'str', 'img': 'str', 'name': 'str', 'size': 'str', 'supported': 'str', 'type': 'str', 'uri': 'str' } attribute_map = { '_date': 'date', 'id': 'id', 'img': 'img', 'name': 'name', 'size': 'size', 'supported': 'supported', 'type': 'type', 'uri': 'uri' } def __init__(self, _date=None, id=None, img=None, name=None, size=None, supported=None, type=None, uri=None): # noqa: E501 """ExternalFile - a model defined in Swagger""" # noqa: E501 self.__date = None self._id = None self._img = None self._name = None self._size = None self._supported = None self._type = None self._uri = None self.discriminator = None if _date is not None: self._date = _date if id is not None: self.id = id if img is not None: self.img = img if name is not None: self.name = name if size is not None: self.size = size if supported is not None: self.supported = supported if type is not None: self.type = type if uri is not None: self.uri = uri @property def _date(self): """Gets the _date of this ExternalFile. # noqa: E501 # noqa: E501 :return: The _date of this ExternalFile. # noqa: E501 :rtype: str """ return self.__date @_date.setter def _date(self, _date): """Sets the _date of this ExternalFile. # noqa: E501 :param _date: The _date of this ExternalFile. # noqa: E501 :type: str """ self.__date = _date @property def id(self): """Gets the id of this ExternalFile. # noqa: E501 # noqa: E501 :return: The id of this ExternalFile. # noqa: E501 :rtype: str """ return self._id @id.setter def id(self, id): """Sets the id of this ExternalFile. # noqa: E501 :param id: The id of this ExternalFile. # noqa: E501 :type: str """ self._id = id @property def img(self): """Gets the img of this ExternalFile. # noqa: E501 # noqa: E501 :return: The img of this ExternalFile. # noqa: E501 :rtype: str """ return self._img @img.setter def img(self, img): """Sets the img of this ExternalFile. # noqa: E501 :param img: The img of this ExternalFile. # noqa: E501 :type: str """ self._img = img @property def name(self): """Gets the name of this ExternalFile. # noqa: E501 # noqa: E501 :return: The name of this ExternalFile. # noqa: E501 :rtype: str """ return self._name @name.setter def name(self, name): """Sets the name of this ExternalFile. # noqa: E501 :param name: The name of this ExternalFile. # noqa: E501 :type: str """ self._name = name @property def size(self): """Gets the size of this ExternalFile. # noqa: E501 Reserved: TBD # noqa: E501 :return: The size of this ExternalFile. # noqa: E501 :rtype: str """ return self._size @size.setter def size(self, size): """Sets the size of this ExternalFile. Reserved: TBD # noqa: E501 :param size: The size of this ExternalFile. # noqa: E501 :type: str """ self._size = size @property def supported(self): """Gets the supported of this ExternalFile. # noqa: E501 # noqa: E501 :return: The supported of this ExternalFile. # noqa: E501 :rtype: str """ return self._supported @supported.setter def supported(self, supported): """Sets the supported of this ExternalFile. # noqa: E501 :param supported: The supported of this ExternalFile. # noqa: E501 :type: str """ self._supported = supported @property def type(self): """Gets the type of this ExternalFile. # noqa: E501 # noqa: E501 :return: The type of this ExternalFile. # noqa: E501 :rtype: str """ return self._type @type.setter def type(self, type): """Sets the type of this ExternalFile. # noqa: E501 :param type: The type of this ExternalFile. # noqa: E501 :type: str """ self._type = type @property def uri(self): """Gets the uri of this ExternalFile. # noqa: E501 # noqa: E501 :return: The uri of this ExternalFile. # noqa: E501 :rtype: str """ return self._uri @uri.setter def uri(self, uri): """Sets the uri of this ExternalFile. # noqa: E501 :param uri: The uri of this ExternalFile. # noqa: E501 :type: str """ self._uri = uri def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(ExternalFile, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, ExternalFile): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
mit
7,504,362,721,954,708,000
23.121406
140
0.513907
false
4.046088
false
false
false
edx/ecommerce
ecommerce/extensions/voucher/migrations/0001_initial.py
1
3161
# -*- coding: utf-8 -*- from decimal import Decimal from django.conf import settings from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('order', '0001_initial'), ('offer', '0001_initial'), migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Voucher', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(verbose_name='Name', max_length=128, help_text='This will be shown in the checkout and basket once the voucher is entered')), ('code', models.CharField(max_length=128, verbose_name='Code', unique=True, db_index=True, help_text='Case insensitive / No spaces allowed')), ('usage', models.CharField(default='Multi-use', max_length=128, verbose_name='Usage', choices=[('Single use', 'Can be used once by one customer'), ('Multi-use', 'Can be used multiple times by multiple customers'), ('Once per customer', 'Can only be used once per customer')])), ('start_datetime', models.DateTimeField(verbose_name='Start datetime')), ('end_datetime', models.DateTimeField(verbose_name='End datetime')), ('num_basket_additions', models.PositiveIntegerField(default=0, verbose_name='Times added to basket')), ('num_orders', models.PositiveIntegerField(default=0, verbose_name='Times on orders')), ('total_discount', models.DecimalField(default=Decimal('0.00'), max_digits=12, decimal_places=2, verbose_name='Total discount')), ('date_created', models.DateField(auto_now_add=True)), ('offers', models.ManyToManyField(related_name='vouchers', verbose_name='Offers', to='offer.ConditionalOffer')), ], options={ 'verbose_name_plural': 'Vouchers', 'get_latest_by': 'date_created', 'verbose_name': 'Voucher', 'abstract': False, }, bases=(models.Model,), ), migrations.CreateModel( name='VoucherApplication', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('date_created', models.DateField(auto_now_add=True, verbose_name='Date Created')), ('order', models.ForeignKey(verbose_name='Order', to='order.Order', on_delete=models.CASCADE)), ('user', models.ForeignKey(null=True, verbose_name='User', to=settings.AUTH_USER_MODEL, blank=True, on_delete=models.CASCADE)), ('voucher', models.ForeignKey(verbose_name='Voucher', related_name='applications', to='voucher.Voucher', on_delete=models.CASCADE)), ], options={ 'verbose_name_plural': 'Voucher Applications', 'verbose_name': 'Voucher Application', 'abstract': False, }, bases=(models.Model,), ), ]
agpl-3.0
9,208,904,800,063,817,000
53.5
293
0.598545
false
4.348006
false
false
false
AlfioEmanueleFresta/practical-ecb-lib
cp_ecb/image.py
1
4402
from PIL import Image class InMemoryImage: """ A very simple class to represent an image. """ def __init__(self, w, h, c=3, b=b'', encrypted=False): """ Instantiate a new image. :param w: The width of the image (px). :param h: The height of the image (px). :param c: The number of colour channels of the image. Default is 3. :param b: A byte literal for the body of the image. :param encrypted: A flag to say whether the image is encrypted or not. """ self.w = w self.h = h self.c = c self.b = b self.encrypted = encrypted def __repr__(self): return "<InMemoryImage(%s): channels=%d, width=%d, height=%d>" % ( "encrypted" if self.encrypted else "unencrypted", self.c, self.w, self.h ) def load_image(input_file, encrypted=False): """ Load an image file into memory as a InMemoryImage object. :param input_file: The file to load. :param encrypted: Whether to flag the file as an encrypted image or not. :return: An instantiated InMemoryImage object. """ image_file = Image.open(input_file) image = image_file.convert('RGB') image_size = image.size image_b = b'' for y in range(image_size[1]): for x in range(image_size[0]): r, g, b = image.getpixel((x, y)) image_b += bytes([r, g, b]) image_file.close() return InMemoryImage(w=image_size[0], h=image_size[1], c=3, b=image_b, encrypted=encrypted) def save_image(image, output_file): output = Image.new("RGB", (image.w, image.h)) maxlen = len(image.b) - (len(image.b) % image.c) data = tuple(tuple(image.b[i:i + image.c]) for i in range(0, maxlen, image.c)) data = data[:(image.w * image.h)] output.putdata(data) output.save(output_file) def _crypt_image(encrypt, image, function): if type(image) is not InMemoryImage: raise ValueError("You need to pass this function a valid InMemoryImage object.") if encrypt and image.encrypted: raise ValueError("The input image is already encrypted.") elif (not encrypt) and (not image.encrypted): raise ValueError("The input image is not flagged as encrypted and can't be decrypted.") image.b = function(image.b) # Allow return list of ordinals if type(image.b) is list: image.b = bytes(image.b) image.encrypted = encrypt return image def encrypt_image(image, function): """ Encrypt the content of an InMemoryImage using a given function. :param image: The unencrypted InMemoryImage object. :param function: An encryption function which takes a single bytes literal and returns a single bytes literal. :return: An encrypted InMemoryImage object. """ return _crypt_image(encrypt=True, image=image, function=function) def decrypt_image(image, function): """ Decrypt the content of an InMemoryImage using a given function. :param image: The encrypted InMemoryImage object. :param function: A decryption function which takes a single bytes literal and returns a single bytes literal. :return: An unencrypted InMemoryImage object. """ return _crypt_image(encrypt=False, image=image, function=function) def encrypt_image_file(input_file, function, output_file): """ Loads an image file, encrypts its contents and saves it as another image file. :param input_file: The original unencrytped image file. :param function: The encryption function to use. This must take a single bytes literal and return a single bytes literal. :param output_file: The file name for the encrypted image. """ image = load_image(input_file) image = encrypt_image(image, function) save_image(image, output_file) def decrypt_image_file(input_file, function, output_file): """ Loads an encrypted image file, decrypts its contents and saves it as another image file. :param input_file: The encrypted image file. :param function: The decryption function to use. This must take a single bytes literal and return a single bytes literal. :param output_file: The file name for the decrypted image. """ image = load_image(input_file, encrypted=True) image = decrypt_image(image, function) save_image(image, output_file)
gpl-3.0
2,049,984,958,980,118,500
33.124031
125
0.655838
false
3.841187
false
false
false
jamesiter/JimV-N
models/event_process.py
1
9567
#!/usr/bin/env python # -*- coding: utf-8 -*- import libvirt from models.initialize import guest_event_emit from models import Guest __author__ = 'James Iter' __date__ = '2017/6/15' __contact__ = '[email protected]' __copyright__ = '(c) 2017 by James Iter.' class EventProcess(object): conn = None guest_callbacks = list() VIR_DOMAIN_EVENT_SHUTDOWN_GUEST = 1 VIR_DOMAIN_EVENT_SHUTDOWN_HOST = 2 def __init__(self): pass @classmethod def guest_event_callback(cls, conn, dom, event, detail, opaque): if not isinstance(dom, libvirt.virDomain): # 跳过已经不再本宿主机的 guest return if event == libvirt.VIR_DOMAIN_EVENT_STOPPED and detail == libvirt.VIR_DOMAIN_EVENT_STOPPED_MIGRATED: # Guest 从本宿主机迁出完成后不做状态通知 return Guest.guest_state_report(dom=dom) if event == libvirt.VIR_DOMAIN_EVENT_DEFINED: if detail == libvirt.VIR_DOMAIN_EVENT_DEFINED_ADDED: # 创建出一个 Guest 后被触发 pass elif detail == libvirt.VIR_DOMAIN_EVENT_DEFINED_UPDATED: # 更新 Guest 配置后被触发 pass elif detail == libvirt.VIR_DOMAIN_EVENT_DEFINED_RENAMED: # 变更 Guest 名称,待测试。猜测为 Guest 变更为新名称时触发 pass elif detail == libvirt.VIR_DOMAIN_EVENT_DEFINED_FROM_SNAPSHOT: # Config was restored from a snapshot 待测试。猜测为,依照一个 Guest 快照的当前配置,创建一个新的 Guest pass else: pass elif event == libvirt.VIR_DOMAIN_EVENT_UNDEFINED: if detail == libvirt.VIR_DOMAIN_EVENT_UNDEFINED_REMOVED: # 删除一个 Guest 定义 pass elif detail == libvirt.VIR_DOMAIN_EVENT_UNDEFINED_RENAMED: # 变更 Guest 名称,待测试。猜测为 Guest 旧名称消失时触发 pass else: pass elif event == libvirt.VIR_DOMAIN_EVENT_STARTED: if detail == libvirt.VIR_DOMAIN_EVENT_STARTED_BOOTED: # 正常启动 pass elif detail == libvirt.VIR_DOMAIN_EVENT_STARTED_MIGRATED: # Guest 从另一个宿主机迁入时触发 pass elif detail == libvirt.VIR_DOMAIN_EVENT_STARTED_RESTORED: # 从一个状态文件中恢复 Guest pass elif detail == libvirt.VIR_DOMAIN_EVENT_STARTED_FROM_SNAPSHOT: # 从快照中恢复 Guest 时触发 pass elif detail == libvirt.VIR_DOMAIN_EVENT_STARTED_WAKEUP: # 唤醒时触发,待测试。 pass else: pass elif event == libvirt.VIR_DOMAIN_EVENT_SUSPENDED: if detail == libvirt.VIR_DOMAIN_EVENT_SUSPENDED_PAUSED: # 管理员暂停 Guest 时触发 pass elif detail == libvirt.VIR_DOMAIN_EVENT_SUSPENDED_MIGRATED: # 为了在线迁移,临时暂停当前准备迁出的 Guest 时触发 pass elif detail == libvirt.VIR_DOMAIN_EVENT_SUSPENDED_IOERROR: # 磁盘 IO 错误时,被暂停时触发,待测试 pass elif detail == libvirt.VIR_DOMAIN_EVENT_SUSPENDED_WATCHDOG: # 触发看门狗时触发,待测试 pass elif detail == libvirt.VIR_DOMAIN_EVENT_SUSPENDED_RESTORED: # 从暂停的 Guest 状态文件恢复时触发 pass elif detail == libvirt.VIR_DOMAIN_EVENT_SUSPENDED_FROM_SNAPSHOT: # 从暂停的 Guest 快照恢复时触发 pass elif detail == libvirt.VIR_DOMAIN_EVENT_SUSPENDED_API_ERROR: # 调用 libvirt API 失败后触发 pass elif detail == libvirt.VIR_DOMAIN_EVENT_SUSPENDED_POSTCOPY: # 以 post-copy 模式迁移 Guest,被暂停时触发 pass elif detail == libvirt.VIR_DOMAIN_EVENT_SUSPENDED_POSTCOPY_FAILED: # post-copy 模式迁移失败时触发 pass else: pass elif event == libvirt.VIR_DOMAIN_EVENT_RESUMED: if detail == libvirt.VIR_DOMAIN_EVENT_RESUMED_UNPAUSED: # 取消暂停,正常恢复时触发 pass elif detail == libvirt.VIR_DOMAIN_EVENT_RESUMED_MIGRATED: # Guest 迁移的目标宿主机,迁移完成时触发 pass elif detail == libvirt.VIR_DOMAIN_EVENT_RESUMED_FROM_SNAPSHOT: # 从快照恢复时触发 pass elif detail == libvirt.VIR_DOMAIN_EVENT_RESUMED_POSTCOPY: # 恢复,但迁移任然在 post-copy 模式下进行,待测试 pass else: pass elif event == libvirt.VIR_DOMAIN_EVENT_STOPPED: if detail == libvirt.VIR_DOMAIN_EVENT_STOPPED_SHUTDOWN: # 正常关机时触发 pass elif detail == libvirt.VIR_DOMAIN_EVENT_STOPPED_DESTROYED: # 从宿主机中强行断开 Guest 电源时触发 pass elif detail == libvirt.VIR_DOMAIN_EVENT_STOPPED_CRASHED: # Guest 崩溃时触发 pass elif detail == libvirt.VIR_DOMAIN_EVENT_STOPPED_MIGRATED: # Guest 从本宿主机迁出完成后触发 pass elif detail == libvirt.VIR_DOMAIN_EVENT_STOPPED_SAVED: # 保存 Guest 为状态文件后触发 pass elif detail == libvirt.VIR_DOMAIN_EVENT_STOPPED_FAILED: # 宿主机上的模拟器或管理器失败时触发 pass elif detail == libvirt.VIR_DOMAIN_EVENT_STOPPED_FROM_SNAPSHOT: # 加载完离线快照后触发,待测试 pass elif event == libvirt.VIR_DOMAIN_EVENT_SHUTDOWN: if detail == libvirt.VIR_DOMAIN_EVENT_SHUTDOWN_FINISHED: # Guest 正常关机后触发 pass elif detail == cls.VIR_DOMAIN_EVENT_SHUTDOWN_GUEST: # Guest 自己触发关机信号后触发(即,此时硬件还运行着,系统已经被关闭。有别于 poweroff),待测试 pass elif detail == cls.VIR_DOMAIN_EVENT_SHUTDOWN_HOST: # 从宿主机通过信号方式关闭 Guest 后触发 pass else: pass elif event == libvirt.VIR_DOMAIN_EVENT_PMSUSPENDED: if detail == libvirt.VIR_DOMAIN_EVENT_PMSUSPENDED_MEMORY: # Guest 的内存被电源管理器暂停 pass elif detail == libvirt.VIR_DOMAIN_EVENT_PMSUSPENDED_DISK: # Guest 的磁盘被电源管理器暂停 pass else: pass elif event == libvirt.VIR_DOMAIN_EVENT_CRASHED: if detail == libvirt.VIR_DOMAIN_EVENT_CRASHED_PANICKED: # Guest 奔溃时触发 pass else: pass else: pass @staticmethod def guest_event_migration_iteration_callback(conn, dom, iteration, opaque): try: migrate_info = dict() migrate_info['type'], migrate_info['time_elapsed'], migrate_info['time_remaining'], \ migrate_info['data_total'], migrate_info['data_processed'], migrate_info['data_remaining'], \ migrate_info['mem_total'], migrate_info['mem_processed'], migrate_info['mem_remaining'], \ migrate_info['file_total'], migrate_info['file_processed'], migrate_info['file_remaining'] = \ dom.jobInfo() guest_event_emit.migrating(uuid=dom.UUIDString(), migrating_info=migrate_info) except libvirt.libvirtError as e: pass @staticmethod def guest_event_device_added_callback(conn, dom, dev, opaque): Guest.update_xml(dom=dom) @staticmethod def guest_event_device_removed_callback(conn, dom, dev, opaque): Guest.update_xml(dom=dom) @classmethod def guest_event_register(cls): cls.conn = libvirt.open() cls.conn.domainEventRegister(cls.guest_event_callback, None) # 参考地址:https://libvirt.org/html/libvirt-libvirt-domain.html#virDomainEventID cls.guest_callbacks.append(cls.conn.domainEventRegisterAny( None, libvirt.VIR_DOMAIN_EVENT_ID_MIGRATION_ITERATION, cls.guest_event_migration_iteration_callback, None)) cls.guest_callbacks.append(cls.conn.domainEventRegisterAny( None, libvirt.VIR_DOMAIN_EVENT_ID_DEVICE_ADDED, cls.guest_event_device_added_callback, None)) cls.guest_callbacks.append(cls.conn.domainEventRegisterAny( None, libvirt.VIR_DOMAIN_EVENT_ID_DEVICE_REMOVED, cls.guest_event_device_removed_callback, None)) @classmethod def guest_event_deregister(cls): cls.conn.domainEventDeregister(cls.guest_event_callback) for eid in cls.guest_callbacks: cls.conn.domainEventDeregisterAny(eid)
gpl-3.0
7,831,306,273,110,688,000
35.497872
110
0.55847
false
3.11099
false
false
false
petrvanblokland/Xierpa3
xierpa3/sites/examples/helloworldblueprint/make.py
1
9548
# -*- coding: UTF-8 -*- # ----------------------------------------------------------------------------- # xierpa server # Copyright (c) 2014+ [email protected], www.petr.com, www.xierpa.com # # X I E R P A 3 # Distribution by the MIT License. # # ----------------------------------------------------------------------------- # # make.py # import webbrowser from xierpa3.toolbox.transformer import TX from xierpa3.components import Theme, Page, Column from xierpa3.builders.cssbuilder import CssBuilder from xierpa3.builders.htmlbuilder import HtmlBuilder from xierpa3.attributes import Em, Margin, Perc, Color from xierpa3.descriptors.media import Media from xierpa3.descriptors.blueprint import BluePrint BODYFAMILY = 'Impact, Verdana, sans' CAPTIONFAMILY = 'Georgia, serif' class HelloWorldBluePrintText(Column): # Get Constants->Config as class variable, so inheriting classes can redefine values. C = Theme.C # The BluePrint defined the parameters for the component. They can be adjusted by parent # components who implement this component on a page, or by inheriting classes that # only want to redefine part of the parameters. The actual self.style is created during # compilation of the start (not during run-time) as cascading result of all parent BLUEPRINT # dictionaries. # Furthermore the documentation builder is using the BluePrint instance to visualize # the interface of each component available. # BLUEPRINT = BluePrint( # Attribute, documentation about the attribute. # Main div block bodyFamily=BODYFAMILY, doc_bodyFamily=u'Body font family of this example. For now, in this example we only use system fonts.', fontSize=Em(4), doc_fontSize=u'Font size of the body text, relative to the body font size.', lineHeight=Em(1.2), doc_lineHeight=u'Line height (leading) of body text.', textAlign=C.CENTER, doc_textAlign=u'Horizontal alignment of text.', color=Color('yellow'), doc_color=u'Color of the main column.', colorTablet=Color('orange'), doc_colorTablet=u'Text color of the main column for tablet.', colorMobile=Color('red'), doc_colorMobile=u'Text color of the main column for mobile.', backgroundColor=Color('red'), doc_backgroundColor=u'Background color of the main column', backgroundColorTablet=Color('green'), doc_backgroundColorTablet=u'Background color of the main column for tablet.', backgroundColorMobile=Color('#BBB'), doc_backgroundColorMobile=u'Background color of the main column for mobile.', paddingTop=Em(0.5), doc_paddingTop=u'Padding on top of the page', paddingBottom=Em(0.5), doc_paddingBottom=u'Padding at bottom of the page.', margin=Margin(0, C.AUTO), doc_margin=u'Page margin of the column. In this case, horizontally centered on the page.', width=Perc(80), doc_width=u'Width of the main column. Default is 80% os the page with.', maxWidth=700, doc_maxWidth=u'Maximal width of the column.', minWidth=300, doc_minWidth=u'Minimal width of the column.', # Caption captionFont=CAPTIONFAMILY, doc_captionFont=u'Caption font family for this example. For now, in this example we only use system fonts.', captionColor=Color('#888'), doc_captionColor=u'Color of the caption.', captionPaddingTop=Em(0.2), doc_captionPaddingTop=u'Padding top of the caption.', ) def buildBlock(self, b): u"""Build the column, using the parameters from the class BluePrint instance. This dictionary is builds the **self.style()** by cascading all BlurPrint instances of the parent classes. The result is a complete specification of all the parameters the direction the style and behavior of this component.""" s = self.style b.div(class_=self.getClassName(), color=s.color, margin=s.margin, width=s.width, maxwidth=s.maxWidth, minwidth=s.minWidth, backgroundcolor=s.backgroundColor, paddingtop=s.paddingTop, paddingbottom=s.paddingBottom, fontfamily=s.bodyFamily, fontsize=s.fontSize, textalign=s.textAlign, lineheight=s.lineHeight, # Now define the @media parameters, where they belong: inside the definition of the element. # The media parameters are collected and sorted for output at the end of the CSS document. media=( # Example for table, show lighter background, change color of text and smaller size. Media(min=self.C.M_TABLET_MIN, max=self.C.M_TABLET_MAX, backgroundcolor=s.backgroundColorTablet, color=s.colorTablet, fontsize=Em(3), width=self.C.AUTO, float=self.C.NONE), # For mobile, even more lighter background, change color of text and smaller size. Media(max=self.C.M_MOBILE_MAX, backgroundcolor=s.backgroundColorMobile, color=s.colorMobile, fontsize=Em(2), width=self.C.AUTO, float=self.C.NONE) )) b.text('Hello parametric world.') # One of the advantages of using a real programming language to generate # HTML/CSS code, is that repetitions can be written as a loop. Not necessary # fewer lines, but more expandable and less redundant distribution of # knowledge in the code. data = ( # class, minWidth, maxWidth, text ('c1', self.C.M_DESKTOP_MIN, None, 'Responsive desktop mode.' ), ('c2', self.C.M_TABLET_MIN, self.C.M_TABLET_MAX, 'Responsive tablet mode.' ), ('c3', None, self.C.M_MOBILE_MAX, 'Responsive mobile mode..' ), ) for class_, minWidth, maxWidth, text in data: b.div(class_=class_, display=self.C.NONE, fontsize=Em(0.7), color=Color(self.C.WHITE), media=Media(min=minWidth, max=maxWidth, display=self.C.BLOCK)) b.text(text) b._div() b._div() b.div(class_=self.C.CLASS_CAPTION, color=s.captionColor, margin=Margin(0, self.C.AUTO), width=Perc(100), maxwidth=700, minwidth=300, paddingtop=s.captionPaddingTop, fontfamily=s.captionFont, fontsize=Em(0.9), textalign=s.textAlign, fontstyle=self.C.ITALIC, # Change background color of the line to indicate the illustrate the difference for mobile size. #media=Media(max=self.M_MOBILE_MAX, backgroundcolor='yellow', color='#222', fontsize=Em(1), # margin=0, width=Perc(100), ) b.text('Responsive page, generated by Xierpa3. Using BluePrint parameters.') b._div() class HelloWorldBluePrint(Theme): u"""The **HelloWorldResponsive** class implements a basic "Hello, world!" page, running as batch process, saving the result as an HTML file. Double click the generated file or drag to a browser see the result.""" TITLE = u'The responsive "Hello, world!" page using BluePrint styling.' # Use as title of window. def baseComponents(self): u"""Create a theme site with just one single template home page. Answer a list of page instances that are used as templates for this site.""" # Create an instance (=object) of the text component to be placed on the page. hw = HelloWorldBluePrintText() # Create an instance (=object) of the page, containing the "hw" component. # The class is also the page name in the url. # Components can be a single component or a list of components. homePage = Page(class_=self.C.TEMPLATE_INDEX, components=hw, title=self.TITLE) # Answer a list of types of pages for this site. return [homePage] def make(self, root): u"""The instance of this class builds CSS and HTML files at the optional path **root**. If not defined, then the default ~/Desktop/Xierpa3Examples/[component.name] is used as export path, as set by Builder.DEFAULT_ROOTPATH""" # Create an "instance" (=object) of type "HelloWorldLayout". The type (=class) defines # the behavior of the object that is made by calling the class. if root is None: root = TX.asDir(self.C.PATH_EXAMPLES) # Expand user path to full directory path. # C S S # Create the main CSS builder instance to build the SASS/CSS part of the site. cssBuilder = CssBuilder() # Compile (=build) the SCSS to CSS and save the file in "css/style.css". self.build(cssBuilder) # Build from entire site theme, not just from template. Result is stream in builder. cssBuilder.save(self, root) # H T M L # Create the main HTML builder instance to build the HTML part of the site. htmlBuilder = HtmlBuilder() # Compile the HTML and save the resulting HTML file in "helloWorld.html". self.build(htmlBuilder) # Build from entire site theme, not just from template. Result is stream in builder. # Answer the path, so we can directly open the file with a browser. return htmlBuilder.save(self, root) if __name__ == '__main__': # This construction "__name__ == '__main__'" makes this Python file only # be executed when called in direct mode, such as "python make.py" in the terminal. # Since no rootPath is added to make(), the file export is in ~/Desktop/Xierpa3Examples/HelloWorldBluePrint/ site = HelloWorldBluePrint() path = site.make() webbrowser.open(path) # Open file path with browser
mit
-8,731,468,573,358,479,000
59.43038
143
0.662233
false
3.897143
false
false
false
bd-j/magellanic
magellanic/sfhs/prediction_scripts/predicted_total.py
1
5894
import sys, pickle, copy import numpy as np import matplotlib.pyplot as pl import astropy.io.fits as pyfits import magellanic.regionsed as rsed import magellanic.mcutils as utils from magellanic.lfutils import * try: import fsps from sedpy import observate except ImportError: #you wont be able to predict the integrated spectrum or magnitudes # filterlist must be set to None in calls to total_cloud_data sps = None wlengths = {'2': '{4.5\mu m}', '4': '{8\mu m}'} dmod = {'smc':18.9, 'lmc':18.5} cloud_info = {} cloud_info['smc'] = [utils.smc_regions(), 20, 23, [7, 13, 16], [3,5,6]] cloud_info['lmc'] = [utils.lmc_regions(), 48, 38, [7, 11, 13, 16], [3,4,5,6]] def total_cloud_data(cloud, filternames = None, basti=False, lfstring=None, agb_dust=1.0, one_metal=None): ######### # SPS ######### # if filternames is not None: sps = fsps.StellarPopulation(add_agb_dust_model=True) sps.params['sfh'] = 0 sps.params['agb_dust'] = agb_dust dust = ['nodust', 'agbdust'] sps.params['imf_type'] = 0.0 #salpeter filterlist = observate.load_filters(filternames) else: filterlist = None ########## # SFHs ########## regions, nx, ny, zlist, zlist_basti = cloud_info[cloud.lower()] if basti: zlist = basti_zlist if 'header' in regions.keys(): rheader = regions.pop('header') #dump the header info from the reg. dict total_sfhs = None for n, dat in regions.iteritems(): total_sfhs = sum_sfhs(total_sfhs, dat['sfhs']) total_zmet = dat['zmet'] #collapse SFHs to one metallicity if one_metal is not None: ts = None for sfh in total_sfhs: ts = sum_sfhs(ts, sfh) total_sfh = ts zlist = [zlist[one_metal]] total_zmet = [total_zmet[one_metal]] ############# # LFs ############ bins = rsed.lfbins if lfstring is not None: # these are stored as a list of different metallicities lffiles = [lfstring.format(z) for z in zlist] lf_base = [read_villaume_lfs(f) for f in lffiles] #get LFs broken out by age and metallicity as well as the total lfs_zt, lf, logages = rsed.one_region_lfs(copy.deepcopy(total_sfhs), lf_base) else: lfs_zt, lf, logages = None, None, None ########### # SED ############ if filterlist is not None: spec, wave, mass = rsed.one_region_sed(copy.deepcopy(total_sfhs), total_zmet, sps) mags = observate.getSED(wave, spec*rsed.to_cgs, filterlist=filterlist) maggies = 10**(-0.4 * np.atleast_1d(mags)) else: maggies, mass = None, None ############# # Write output ############ total_values = {} total_values['agb_clf'] = lf total_values['agb_clfs_zt'] = lfs_zt total_values['clf_mags'] = bins total_values['logages'] = logages total_values['sed_ab_maggies'] = maggies total_values['sed_filters'] = filternames total_values['lffile'] = lfstring total_values['mstar'] = mass total_values['zlist'] = zlist return total_values, total_sfhs def sum_sfhs(sfhs1, sfhs2): """ Accumulate individual sets of SFHs into a total set of SFHs. This assumes that the individual SFH sets all have the same number and order of metallicities, and the same time binning. """ if sfhs1 is None: return copy.deepcopy(sfhs2) elif sfhs2 is None: return copy.deepcopy(sfhs1) else: out = copy.deepcopy(sfhs1) for s1, s2 in zip(out, sfhs2): s1['sfr'] += s2['sfr'] return out if __name__ == '__main__': filters = ['galex_NUV', 'spitzer_irac_ch2', 'spitzer_irac_ch4', 'spitzer_mips_24'] #filters = None ldir, cdir = 'lf_data/', 'composite_lfs/' outst = '{0}_n2teffcut.p' # total_cloud_data will loop over the appropriate (for the # isochrone) metallicities for a given lfst filename template lfst = '{0}z{{0:02.0f}}_tau{1:2.1f}_vega_irac{2}_n2_teffcut_lf.txt' basti = False agb_dust=1.0 agebins = np.arange(9)*0.3 + 7.4 #loop over clouds (and bands and agb_dust) to produce clfs for cloud in ['smc']: rdir = '{0}cclf_{1}_'.format(cdir, cloud) for band in ['2','4']: lfstring = lfst.format(ldir, agb_dust, band) dat, sfhs = total_cloud_data(cloud, filternames=filters, agb_dust=agb_dust, lfstring=lfstring, basti=basti) agebins = sfhs[0]['t1'][3:-1] outfile = lfstring.replace(ldir, rdir).replace('z{0:02.0f}_','').replace('.txt','.dat') write_clf_many([dat['clf_mags'], dat['agb_clf']], outfile, lfstring) #fig, ax = plot_weighted_lfs(dat, agebins = agebins, dm=dmod[cloud]) #fig.suptitle('{0} @ IRAC{1}'.format(cloud.upper(), band)) #fig.savefig('byage_clfs/{0}_clfs_by_age_and_Z_irac{1}'.format(cloud, band)) #pl.close(fig) colheads = (len(agebins)-1) * ' N<m(t={})' colheads = colheads.format(*(agebins[:-1]+agebins[1:])/2.) tbin_lfs = np.array([rebin_lfs(lf, ages, agebins) for lf, ages in zip(dat['agb_clfs_zt'], dat['logages'])]) write_clf_many([dat['clf_mags'], tbin_lfs.sum(axis=0)], outfile.replace(cdir,'byage_clfs/'), lfstring, colheads=colheads) pl.figure() for s, z in zip(sfhs, dat['zlist']): pl.step(s['t1'], s['sfr'], where='post', label='zind={0}'.format(z), linewidth=3) pl.legend(loc=0) pl.title(cloud.upper()) print(cloud, dat['mstar'])
gpl-2.0
5,455,226,854,893,435,000
34.721212
99
0.557686
false
3.055469
false
false
false
reverse-CSE-591/reverse
driver.py
1
19133
#!/usr/bin/python -tt ##################################################################################################################### # CSE 591: Security and Vulnerability Analysis # # Team 5: # # Kartheek Nallepalli # Bhargavi Rajagopalan # Priya Pipada # Ayush Maheshwari # Nikhil Aourpally # # # This is the driver program. Run the main function here to find potential vulnerabilities in the website ##################################################################################################################### # Python Imports from __future__ import division from bs4 import BeautifulSoup from lxml import html from os import system, path from random import randint from urlparse import urlparse import ast import json import math import nltk import re import requests import sys import time import urllib import urllib2 # This is a global set that contains all the URL's crawled from the website. urls = set() stopWords = [] ##################################################################################################################### # This method takes in a form to be filled and the url and tries to guess valid inputs that would result in a # successful response from the server # Inputs: # params[] (List[String]): list of parameters along with the types in the following format. # ex: ["username::text", "password::password"] # action (String): The action the form should take when submitted # url (String): The page URL for getting the HTML data and figuring out what to fill # Output: # validResponse (String): returns the HTML string of the valid response ##################################################################################################################### def getValidResponse(params, action, url, cookies): formInput={} for key in params: value = params[key] formInput[key] = generateValue(value['label'],value['type']) #print cookies, type(cookies) (header,validResponse) = constructPostRequest(formInput, cookies, action) return validResponse ##################################################################################################################### # This method constructs a HTTP Post Request to submit the form to it # Inputs: #Output: ##################################################################################################################### def constructPostRequest(formInput, input_cookies, action): r = requests.post(action, data=formInput, verify=False, cookies=input_cookies) return (r.headers,r.text) ##################################################################################################################### # This method takes in a form to be filled and the url and inserts <scripts> into the fields. # Inputs: # params{} (Dictionary): list of parameters along with the types in the following format. # ex: ["username::text", "password::password"] # action (String): The action the form should take when submitted # Output: # xssResponse (String): returns the HTML response ##################################################################################################################### def getXssResponse(params, action, url, cookies): formInput={} for key in params: value = params[key] formInput[key]="<sCript>xssAttack</sCript>" (header,xssInjResponse) = constructPostRequest(formInput,cookies,action) return xssInjResponse ##################################################################################################################### # This method computes the XSS injection score for the given response # Inputs: #Output: ##################################################################################################################### def getXssScore(xssResponse, input_cookies): urls = open("crawledURLs.txt") for url in urls: response = requests.get(re.sub("\n","",url), verify=False, cookies=input_cookies).text if bool(re.search('<sCript>xssAttack</sCript>', response)): return 1 return 0 ##################################################################################################################### # This method takes in a form to be filled and the url and tries SQL injection in the fields # Inputs: # params[] (List[String]): list of parameters along with the types in the following format. # ex: ["username::text", "password::password"] # action (String): The action the form should take when submitted # Output: # xssResponse (String): returns the HTML response ##################################################################################################################### def getSqlInjResponse(params, action, url, cookies): formInput={} for key in params: value = params[key] formInput[key] ="' or 1=1 --'" (header,sqlInjResponse) = constructPostRequest(formInput,cookies,action) return sqlInjResponse ##################################################################################################################### # This method takes in two HTML strings, compares them and assigns a similarity score. The idea is to use this # score to see how similar pages with valid and invalid outputs are. # Inputs: # html_1 (String): The first HTML page # html_2 (String): The second HTML page # Output: # score (double): similarity between pages ##################################################################################################################### def getSimilarityScore(html_1, html_2): cleanResponse1 = BeautifulSoup(html_1).get_text() cleanResponse2 = BeautifulSoup(html_2).get_text() return calculateCosineSimilarity(formatVector(cleanResponse1), formatVector(cleanResponse2)) ##################################################################################################################### # The method calculates the cosine similarity between two groups # Inputs: #Output: ##################################################################################################################### def calculateCosineSimilarity(group1, group2): doc1sq = doc2sq = frequency = 0 for i in group1: if i in group2: frequency += group1[i] * group2[i] for j in group1: doc1sq += math.pow(group1[j], 2) for k in group2: doc2sq += math.pow(group2[k], 2) score = float(frequency) / (math.sqrt(doc1sq) * math.sqrt(doc2sq)) return score ##################################################################################################################### # This method constructs a HTTP Post Request to submit the form to it # Inputs: #Output: ##################################################################################################################### def formatVector(response): global stopWords cleanResponse = map(lambda x:re.split(" ", x), re.split("\n", response)) vectorList = [] vectorDict = {} for i in cleanResponse: vectorList.extend(i) vector = [] for i in vectorList: if str(i) != '' or str(i) not in stopWords: vector.append(i.lower()) for j in vector: if j in vectorDict: vectorDict[j] += 1 else: vectorDict[j] = 1 return vectorDict ##################################################################################################################### # This method takes in the original label extracted, gets the similarity score and predicts the valid form entries # by understanding meaning of the labes and mapping them to known labels using dictionary similarity and edit- # distance score. # # TODO : Faced problems with wu-palmer similarity over wordNet (flase positives and not all terms present) # Currently using just the edit distance # # Inputs: # label (String): Label generated from the scarppy code extended # Output: # generated value (String): Valid generated form input value ##################################################################################################################### def getLabel(orglabel): userset = ['user','username','user_name'] maxscore =0 newlabel ='' for field in userset: score = getEdidDistanceScore(orglabel, field) if(score > maxscore): maxscore = score newlabel = 'username' #print 'Max score' + str(maxscore), 'Label' + newlabel if(maxscore<0.5): newlabel = orglabel return newlabel ##################################################################################################################### # This method generates random values based on the form field type and implements intelligent form filling # Inputs: #Output: ##################################################################################################################### def generateValue(label, labeltype): if labeltype == 'text': newlabel = getLabel(label) if newlabel == 'username': return 'reverse'+ str(time.time()) else: return 'reverserandom'+ str(time.time()) elif labeltype == 'password': return 'reversePass'+ str(time.time()) elif labeltype == 'email': return 'reverse'+str(time.time())+'@reverse.com' elif labeltype == 'number': return randint(0,10000) ##################################################################################################################### # Helper methods ##################################################################################################################### # Get the specific form parameters def getFormParams(link): params = {} labels = [] source = link['source'].replace("\n","") for i in range(0, len(source)): label = '' if source[i] == '>': while source[i] != '<': label += source[i] i = i + 1 if i >= len(source) - 1: break; if label[1:] and not label[1:].isspace(): labels.append(label[1:]) i = 0 for j in link['form']: params[j['name']] = {} params[j['name']]['type'] = j['type'] params[j['name']]['label'] = labels[0] i = i + 1 return (link['target'], params) # This method gets the list of stopwords def getStopWords(): global stopWords f = open("stopwords.en") for i in f: stopWords.append(re.sub("\n","",i)) # Get the edit-distance score between two words def getEdidDistanceScore(word1, word2): distance = nltk.metrics.distance.edit_distance(word1, word2, transpositions=False) avgLength = (len(word1) + len(word2))/2 score = distance/avgLength return score #Get cookies from user def getCookies(): flag = 0 cookies = {} print "Enter cookies(Press X to exit): " while True: if not flag: key = raw_input("Enter Key: ") flag = 1 if key == 'X': break; else: value = raw_input("Enter value: ") flag = 0 if value == 'X': break; cookies[key] = value return cookies ##################################################################################################################### # Method to inject malicious input values into the application to check if nth order SQL injection is possible ##################################################################################################################### def nthOrderSQLInjection(params, action, url, cookies, index, urlForms): UserName = "reverse_12345" Password = "aXb675hjWF@" SQLKeyWord = "' union select " TableInfo = 'from dual;--' responseString = None for i in range(0,5): formInput = {} ParameterPadding = 'Null,' * i Parameter = '"Evilmax"' + str(index) + ' ' MaliciousInputValue = UserName + SQLKeyWord + ParameterPadding + Parameter + TableInfo for key in params: value = params[key] if value['type'] != 'password': formInput[key] = MaliciousInputValue else: formInput[key] = Password constructPostRequest(formInput, cookies, action) for urlForm in urlForms: (newAction, newParams) = getFormParams(urlForm) newFormInput = {} for newParam in newParams: value = newParams[newParam] if value['type'] != 'password': newFormInput[newParam] = UserName else: newFormInput[newParam] = Password (header, response) = constructPostRequest(formInput, cookies, newAction) if 'EvilMax' in response: SplitString = response.split("EvilMax") Index = SplitString[1].split(' ') if index != Index: responseString = responseString + "nth Order SQL injection present in " + newAction + "\n" return responseString ##################################################################################################################### # The method takes the URLs extracted from the crawler scrapy and performs a "deeper" crawling by seeing if the # server is setting any cookies after login and adds that to the list of cookies. #Output: Updates cookies (Dictionary) ##################################################################################################################### def deepCrawling(urlForms,cookies): storedFormInputs=[] formInput={} login=False for urlForm in urlForms: (action, params) = getFormParams(urlForm) credentials = {'username': None, 'password' : None} for key in params: value = params[key] if value['type'] != 'submit': formInput[key] = generateValue(value['label'],value['type']) newLabel = getLabel(value['label']) if newLabel == 'username': credentials['username'] = formInput[key] if value['type'] == 'password': credentials['password'] = formInput[key] if credentials: storedFormInputs.append(credentials) (header,response) = constructPostRequest(formInput,cookies,action) if "registered" in response.lower() or "created" in response.lower() or "authenticated" in response.lower(): login=True if login == True: for urlForm in urlForms: (action, params) = getFormParams(urlForm) for storedFormInput in storedFormInputs: formInput = {} for key in params: value = params[key] newLabel = getLabel(value['label']) if newLabel == 'username': formInput[key] = storedFormInput['username'] if value['type'] == 'password' and storedFormInput['password']: formInput[key] = storedFormInput['password'] (header, response) = constructPostRequest(formInput,cookies,action) if 'set-cookie' in header.keys(): newCookie = str(header['set-cookie']).split(';')[0] CookieSplit = str(newCookie).split('=') cookies[CookieSplit[0]] = CookieSplit[1] return cookies ##################################################################################################################### # This is the main method that gets called and submits the report on possible vulnerabilities ##################################################################################################################### def main(): # Init Global variables getStopWords() # Add the required headers, most likely its just the login cookie for the page. #opener = urllib2.build_opener() #opener.addheaders.append(('Cookie', 'cse591=kP047iYtubEZ6ZnMKmxO')) # domain = "129.219.253.30:80" url = raw_input("Enter the web address: ") cookies = getCookies() domain = urlparse(url).netloc # Remove any residual files system("rm items.json") system("rm crawledURLs.txt") system("rm reverse_report") system("rm reverse_response") # Use Scrapy to get recursively get all URLs, Stores the system("scrapy crawl ReverseCrawler -a domain="+domain+" -a start_urls="+url+" -a cookies=\""+str(cookies)+"\" -o items.json") #cookies = ast.literal_eval(cookies) # Iterate over all the URL's and their forms UrlForms = json.load(open("items.json")) print "\n\n\n" # Open report, response file reportFile = open('reverse_report','w') responseFile = open('reverse_response','w') # Perform a deeper crawling and re-crawl using scrapy to fetch more URLs cookies = deepCrawling(UrlForms,cookies) system("rm -f items.json") system("scrapy crawl ReverseCrawler -a domain="+domain+" -a start_urls="+url+" -a cookies=\""+str(cookies)+"\" -o items.json") UrlForms = json.load(open("items.json")) # Iterate through all possible forms index = 0 for urlForm in UrlForms: (action, params) = getFormParams(urlForm) print "[INFO] action: ", action # Get the valid response validResponse = getValidResponse(params, action, url, cookies) # Append the resposes to response file responseFile.write("%%%%%%%%%%%%%%%%%%%%%%%%%% Start Valid Response %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n") responseFile.write(action + "\n") responseFile.write(str(params) + "\n") responseFile.write(BeautifulSoup(validResponse).get_text() + "\n") responseFile.write("############################ Start SQL Injection response ###########################\n") # Attempt SQL Injection and Get the score sqlInjResponse = getSqlInjResponse(params, action, url, cookies) responseFile.write(BeautifulSoup(sqlInjResponse).get_text() + "\n") responseFile.write("@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ Start XSS response @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@\n") sqlInjectionScore = float(1) - getSimilarityScore(validResponse, sqlInjResponse) print "[INFO] SQL_INJ_Score = ", sqlInjectionScore # Attempt nth Order SQL injection responseString = nthOrderSQLInjection(params, action, url, cookies, index, UrlForms) # Attempt XSS and get the score xssResponse = getXssResponse(params, action, url, cookies) responseFile.write("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n") xssScore = getXssScore(xssResponse, cookies) print "[INFO] XSS_Score = ", xssScore # Add scores to the report reportFile.write("[Params]:: " + str(params) + "\n") reportFile.write("[Action]:: " + action + "\n") reportFile.write("[SQL_Inj_Score]:: " + str(sqlInjectionScore) + "\n") reportFile.write("[XSS_Inj_Score]:: " + str(xssScore) + "\n\n") if responseString is not None: reportFile.write("[nth Order SQL Injection]::" + responseString + "\n") print "\n\n" index = index + 1 # Close the report reportFile.close() responseFile.close() if __name__ == '__main__': main()
mit
6,833,721,684,920,172,000
39.111111
130
0.516176
false
4.391324
false
false
false
woelfware/BluMote
test/button_tx.py
1
1963
#!/usr/bin/env python # Copyright (C) 2011 Woelfware from bluetooth import * import blumote import cPickle from glob import glob import os import sys import time class Blumote_Client(blumote.Services): def __init__(self): blumote.Services.__init__(self) self.addr = None def find_blumote_pods(self, pod_name = None): if pod_name is None: pod_name = self.service["name"] print "Searching for \"%s\" service..." % (pod_name) return find_service(name = pod_name) def connect_to_blumote_pod(self, addr): self.client_sock = BluetoothSocket(RFCOMM) self.client_sock.connect((addr, 1)) def transport_tx(self, cmd, msg): full_msg = struct.pack("B", cmd) full_msg += msg self.client_sock.send(full_msg) def ir_transmit(self, msg): self.transport_tx(self.cmd_codes.ir_transmit, msg) return self.client_sock.recv(128) if __name__ == "__main__": bm_remote = Blumote_Client() found = False while not found: try: nearby_devices = discover_devices(lookup_names = True) except: print 'failed to find a blumote... retrying' nearby_devices = () print 'found %d device(s)' % len(nearby_devices) for addr, name in nearby_devices: if name[:len('BluMote')] == 'BluMote': print 'connecting to', addr, name bm_remote.connect_to_blumote_pod(addr) found = True break buttons = glob('*.pkl') print 'Available buttons:' for i, button in enumerate(buttons): print '\t%i: %s' % (i, os.path.splitext(button)[0]) print while True: selection = raw_input('Select a button to transmit (-1 to quit): ') try: selection = int(selection) except ValueError: print 'Invalid selection' continue if selection == -1: break if ((selection < 0) or (selection >= len(buttons))): print 'Invalid selecion' continue button = open(buttons[selection], 'rb') key_code = cPickle.load(button) button.close() bm_remote.ir_transmit(''.join(['\x03', key_code])) bm_remote.client_sock.close()
gpl-3.0
-4,726,947,572,065,195,000
23.5375
69
0.671931
false
2.903846
false
false
false
VcamX/grpc
src/python/grpcio/grpc/framework/alpha/_face_utilities.py
1
7822
# Copyright 2015-2016, Google Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import abc import collections import six # face_interfaces is referenced from specification in this module. from grpc.framework.common import cardinality from grpc.framework.face import interfaces as face_interfaces # pylint: disable=unused-import from grpc.framework.face import utilities as face_utilities from grpc.framework.alpha import _reexport from grpc.framework.alpha import interfaces def _qualified_name(service_name, method_name): return '/%s/%s' % (service_name, method_name) # TODO(nathaniel): This structure is getting bloated; it could be shrunk if # implementations._Stub used a generic rather than a dynamic underlying # face-layer stub. class InvocationBreakdown(six.with_metaclass(abc.ABCMeta)): """An intermediate representation of invocation-side views of RPC methods. Attributes: cardinalities: A dictionary from RPC method name to interfaces.Cardinality value. qualified_names: A dictionary from unqualified RPC method name to service-qualified RPC method name. face_cardinalities: A dictionary from service-qualified RPC method name to to cardinality.Cardinality value. request_serializers: A dictionary from service-qualified RPC method name to callable behavior to be used serializing request values for the RPC. response_deserializers: A dictionary from service-qualified RPC method name to callable behavior to be used deserializing response values for the RPC. """ class _EasyInvocationBreakdown( InvocationBreakdown, collections.namedtuple( '_EasyInvocationBreakdown', ('cardinalities', 'qualified_names', 'face_cardinalities', 'request_serializers', 'response_deserializers'))): pass class ServiceBreakdown(six.with_metaclass(abc.ABCMeta)): """An intermediate representation of service-side views of RPC methods. Attributes: implementations: A dictionary from service-qualified RPC method name to face_interfaces.MethodImplementation implementing the RPC method. request_deserializers: A dictionary from service-qualified RPC method name to callable behavior to be used deserializing request values for the RPC. response_serializers: A dictionary from service-qualified RPC method name to callable behavior to be used serializing response values for the RPC. """ class _EasyServiceBreakdown( ServiceBreakdown, collections.namedtuple( '_EasyServiceBreakdown', ('implementations', 'request_deserializers', 'response_serializers'))): pass def break_down_invocation(service_name, method_descriptions): """Derives an InvocationBreakdown from several RPC method descriptions. Args: service_name: The package-qualified full name of the service. method_descriptions: A dictionary from RPC method name to interfaces.RpcMethodInvocationDescription describing the RPCs. Returns: An InvocationBreakdown corresponding to the given method descriptions. """ cardinalities = {} qualified_names = {} face_cardinalities = {} request_serializers = {} response_deserializers = {} for name, method_description in six.iteritems(method_descriptions): qualified_name = _qualified_name(service_name, name) method_cardinality = method_description.cardinality() cardinalities[name] = method_description.cardinality() qualified_names[name] = qualified_name face_cardinalities[qualified_name] = _reexport.common_cardinality( method_cardinality) request_serializers[qualified_name] = method_description.serialize_request response_deserializers[qualified_name] = ( method_description.deserialize_response) return _EasyInvocationBreakdown( cardinalities, qualified_names, face_cardinalities, request_serializers, response_deserializers) def break_down_service(service_name, method_descriptions): """Derives a ServiceBreakdown from several RPC method descriptions. Args: method_descriptions: A dictionary from RPC method name to interfaces.RpcMethodServiceDescription describing the RPCs. Returns: A ServiceBreakdown corresponding to the given method descriptions. """ implementations = {} request_deserializers = {} response_serializers = {} for name, method_description in six.iteritems(method_descriptions): qualified_name = _qualified_name(service_name, name) method_cardinality = method_description.cardinality() if method_cardinality is interfaces.Cardinality.UNARY_UNARY: def service( request, face_rpc_context, service_behavior=method_description.service_unary_unary): return service_behavior( request, _reexport.rpc_context(face_rpc_context)) implementations[qualified_name] = face_utilities.unary_unary_inline( service) elif method_cardinality is interfaces.Cardinality.UNARY_STREAM: def service( request, face_rpc_context, service_behavior=method_description.service_unary_stream): return service_behavior( request, _reexport.rpc_context(face_rpc_context)) implementations[qualified_name] = face_utilities.unary_stream_inline( service) elif method_cardinality is interfaces.Cardinality.STREAM_UNARY: def service( request_iterator, face_rpc_context, service_behavior=method_description.service_stream_unary): return service_behavior( request_iterator, _reexport.rpc_context(face_rpc_context)) implementations[qualified_name] = face_utilities.stream_unary_inline( service) elif method_cardinality is interfaces.Cardinality.STREAM_STREAM: def service( request_iterator, face_rpc_context, service_behavior=method_description.service_stream_stream): return service_behavior( request_iterator, _reexport.rpc_context(face_rpc_context)) implementations[qualified_name] = face_utilities.stream_stream_inline( service) request_deserializers[qualified_name] = ( method_description.deserialize_request) response_serializers[qualified_name] = ( method_description.serialize_response) return _EasyServiceBreakdown( implementations, request_deserializers, response_serializers)
bsd-3-clause
5,831,767,619,180,549,000
41.743169
94
0.749297
false
4.531866
false
false
false
ovnicraft/openerp-server
openerp/addons/base/module/wizard/base_update_translations.py
1
2901
# -*- coding: utf-8 -*- ############################################################################## # # OpenERP, Open Source Management Solution # Copyright (C) 2004-2009 Tiny SPRL (<http://tiny.be>). # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ############################################################################## from osv import osv, fields import tools import cStringIO from tools.translate import _ class base_update_translations(osv.osv_memory): def _get_languages(self, cr, uid, context): lang_obj = self.pool.get('res.lang') ids = lang_obj.search(cr, uid, ['&', ('active', '=', True), ('translatable', '=', True),]) langs = lang_obj.browse(cr, uid, ids) return [(lang.code, lang.name) for lang in langs] def _get_lang_name(self, cr, uid, lang_code): lang_obj = self.pool.get('res.lang') ids = lang_obj.search(cr, uid, [('code', '=', lang_code)]) if not ids: raise osv.except_osv(_('Error!'), _('No language with code "%s" exists') % lang_code) lang = lang_obj.browse(cr, uid, ids[0]) return lang.name def act_update(self, cr, uid, ids, context=None): this = self.browse(cr, uid, ids)[0] lang_name = self._get_lang_name(cr, uid, this.lang) buf = cStringIO.StringIO() tools.trans_export(this.lang, ['all'], buf, 'csv', cr) tools.trans_load_data(cr, buf, 'csv', this.lang, lang_name=lang_name) buf.close() return {'type': 'ir.actions.act_window_close'} def default_get(self, cr, uid, fields, context=None): if context is None: context = {} res = super(base_update_translations, self).default_get(cr, uid, fields, context=context) if context.get('active_model') != "res.lang": return res record_id = context.get('active_id', False) or False if record_id: lang = self.pool.get('res.lang').browse(cr, uid, record_id).code res.update(lang=lang) return res _name = 'base.update.translations' _columns = { 'lang': fields.selection(_get_languages, 'Language', required=True), } # vim:expandtab:smartindent:tabstop=4:softtabstop=4:shiftwidth=4:
agpl-3.0
-5,133,423,672,400,212,000
40.442857
98
0.592554
false
3.79712
false
false
false
PageArkanis/StEVE
steve/constellation.py
1
1217
from steve.backend.sqlitedb import SDB from steve.system import System class Constellation(object): def __init__(self, universe, data): self.universe = universe self.regionID = data[0] self.uid = data[1] self.name = data[2] self.x = data[3] self.y = data[4] self.z = data[5] self.xMin = data[6] self.xMax = data[7] self.yMin = data[8] self.yMax = data[9] self.zMin = data[10] self.zMax = data[11] self.factionID = data[12] self.radius = data[13] self._systems = {} @property def system(self): if len(self._constellations) == 0: query = 'SELECT * from mapSolarSystems WHERE constellationID = %' % self.uid for entry in SDB.queryAll(query): system = System(self.universe, entry) self._systems[system.name] = system self._systems[system.uid] = system return self._systems @property def region(self): return self.universe.regions[self.regionID]
agpl-3.0
3,538,158,798,730,244,000
26.659091
88
0.501233
false
3.744615
false
false
false
blueyed/coveragepy
tests/test_templite.py
1
10970
# coding: utf-8 # Licensed under the Apache License: http://www.apache.org/licenses/LICENSE-2.0 # For details: https://github.com/nedbat/coveragepy/blob/master/NOTICE.txt """Tests for coverage.templite.""" import re from coverage.templite import Templite, TempliteSyntaxError, TempliteValueError from tests.coveragetest import CoverageTest # pylint: disable=unused-variable class AnyOldObject(object): """Simple testing object. Use keyword arguments in the constructor to set attributes on the object. """ def __init__(self, **attrs): for n, v in attrs.items(): setattr(self, n, v) class TempliteTest(CoverageTest): """Tests for Templite.""" run_in_temp_dir = False def try_render(self, text, ctx=None, result=None): """Render `text` through `ctx`, and it had better be `result`. Result defaults to None so we can shorten the calls where we expect an exception and never get to the result comparison. """ actual = Templite(text).render(ctx or {}) # If result is None, then an exception should have prevented us getting # to here. assert result is not None self.assertEqual(actual, result) def assertSynErr(self, msg): """Assert that a `TempliteSyntaxError` will happen. A context manager, and the message should be `msg`. """ pat = "^" + re.escape(msg) + "$" return self.assertRaisesRegex(TempliteSyntaxError, pat) def test_passthrough(self): # Strings without variables are passed through unchanged. self.assertEqual(Templite("Hello").render(), "Hello") self.assertEqual( Templite("Hello, 20% fun time!").render(), "Hello, 20% fun time!" ) def test_variables(self): # Variables use {{var}} syntax. self.try_render("Hello, {{name}}!", {'name':'Ned'}, "Hello, Ned!") def test_undefined_variables(self): # Using undefined names is an error. with self.assertRaises(Exception): self.try_render("Hi, {{name}}!") def test_pipes(self): # Variables can be filtered with pipes. data = { 'name': 'Ned', 'upper': lambda x: x.upper(), 'second': lambda x: x[1], } self.try_render("Hello, {{name|upper}}!", data, "Hello, NED!") # Pipes can be concatenated. self.try_render("Hello, {{name|upper|second}}!", data, "Hello, E!") def test_reusability(self): # A single Templite can be used more than once with different data. globs = { 'upper': lambda x: x.upper(), 'punct': '!', } template = Templite("This is {{name|upper}}{{punct}}", globs) self.assertEqual(template.render({'name':'Ned'}), "This is NED!") self.assertEqual(template.render({'name':'Ben'}), "This is BEN!") def test_attribute(self): # Variables' attributes can be accessed with dots. obj = AnyOldObject(a="Ay") self.try_render("{{obj.a}}", locals(), "Ay") obj2 = AnyOldObject(obj=obj, b="Bee") self.try_render("{{obj2.obj.a}} {{obj2.b}}", locals(), "Ay Bee") def test_member_function(self): # Variables' member functions can be used, as long as they are nullary. class WithMemberFns(AnyOldObject): """A class to try out member function access.""" def ditto(self): """Return twice the .txt attribute.""" return self.txt + self.txt obj = WithMemberFns(txt="Once") self.try_render("{{obj.ditto}}", locals(), "OnceOnce") def test_item_access(self): # Variables' items can be used. d = {'a':17, 'b':23} self.try_render("{{d.a}} < {{d.b}}", locals(), "17 < 23") def test_loops(self): # Loops work like in Django. nums = [1,2,3,4] self.try_render( "Look: {% for n in nums %}{{n}}, {% endfor %}done.", locals(), "Look: 1, 2, 3, 4, done." ) # Loop iterables can be filtered. def rev(l): """Return the reverse of `l`.""" l = l[:] l.reverse() return l self.try_render( "Look: {% for n in nums|rev %}{{n}}, {% endfor %}done.", locals(), "Look: 4, 3, 2, 1, done." ) def test_empty_loops(self): self.try_render( "Empty: {% for n in nums %}{{n}}, {% endfor %}done.", {'nums':[]}, "Empty: done." ) def test_multiline_loops(self): self.try_render( "Look: \n{% for n in nums %}\n{{n}}, \n{% endfor %}done.", {'nums':[1,2,3]}, "Look: \n\n1, \n\n2, \n\n3, \ndone." ) def test_multiple_loops(self): self.try_render( "{% for n in nums %}{{n}}{% endfor %} and " "{% for n in nums %}{{n}}{% endfor %}", {'nums': [1,2,3]}, "123 and 123" ) def test_comments(self): # Single-line comments work: self.try_render( "Hello, {# Name goes here: #}{{name}}!", {'name':'Ned'}, "Hello, Ned!" ) # and so do multi-line comments: self.try_render( "Hello, {# Name\ngoes\nhere: #}{{name}}!", {'name':'Ned'}, "Hello, Ned!" ) def test_if(self): self.try_render( "Hi, {% if ned %}NED{% endif %}{% if ben %}BEN{% endif %}!", {'ned': 1, 'ben': 0}, "Hi, NED!" ) self.try_render( "Hi, {% if ned %}NED{% endif %}{% if ben %}BEN{% endif %}!", {'ned': 0, 'ben': 1}, "Hi, BEN!" ) self.try_render( "Hi, {% if ned %}NED{% if ben %}BEN{% endif %}{% endif %}!", {'ned': 0, 'ben': 0}, "Hi, !" ) self.try_render( "Hi, {% if ned %}NED{% if ben %}BEN{% endif %}{% endif %}!", {'ned': 1, 'ben': 0}, "Hi, NED!" ) self.try_render( "Hi, {% if ned %}NED{% if ben %}BEN{% endif %}{% endif %}!", {'ned': 1, 'ben': 1}, "Hi, NEDBEN!" ) def test_complex_if(self): class Complex(AnyOldObject): """A class to try out complex data access.""" def getit(self): """Return it.""" return self.it obj = Complex(it={'x':"Hello", 'y': 0}) self.try_render( "@" "{% if obj.getit.x %}X{% endif %}" "{% if obj.getit.y %}Y{% endif %}" "{% if obj.getit.y|str %}S{% endif %}" "!", { 'obj': obj, 'str': str }, "@XS!" ) def test_loop_if(self): self.try_render( "@{% for n in nums %}{% if n %}Z{% endif %}{{n}}{% endfor %}!", {'nums': [0,1,2]}, "@0Z1Z2!" ) self.try_render( "X{%if nums%}@{% for n in nums %}{{n}}{% endfor %}{%endif%}!", {'nums': [0,1,2]}, "X@012!" ) self.try_render( "X{%if nums%}@{% for n in nums %}{{n}}{% endfor %}{%endif%}!", {'nums': []}, "X!" ) def test_nested_loops(self): self.try_render( "@" "{% for n in nums %}" "{% for a in abc %}{{a}}{{n}}{% endfor %}" "{% endfor %}" "!", {'nums': [0,1,2], 'abc': ['a', 'b', 'c']}, "@a0b0c0a1b1c1a2b2c2!" ) def test_whitespace_handling(self): self.try_render( "@{% for n in nums %}\n" " {% for a in abc %}{{a}}{{n}}{% endfor %}\n" "{% endfor %}!\n", {'nums': [0, 1, 2], 'abc': ['a', 'b', 'c']}, "@\n a0b0c0\n\n a1b1c1\n\n a2b2c2\n!\n" ) self.try_render( "@{% for n in nums -%}\n" " {% for a in abc -%}\n" " {# this disappears completely -#}\n" " {{a -}}\n" " {{n -}}\n" " {% endfor %}\n" "{% endfor %}!\n", {'nums': [0, 1, 2], 'abc': ['a', 'b', 'c']}, "@a0b0c0\na1b1c1\na2b2c2\n!\n" ) def test_non_ascii(self): self.try_render( u"{{where}} ollǝɥ", { 'where': u'ǝɹǝɥʇ' }, u"ǝɹǝɥʇ ollǝɥ" ) def test_exception_during_evaluation(self): # TypeError: Couldn't evaluate {{ foo.bar.baz }}: msg = "Couldn't evaluate None.bar" with self.assertRaisesRegex(TempliteValueError, msg): self.try_render( "Hey {{foo.bar.baz}} there", {'foo': None}, "Hey ??? there" ) def test_bad_names(self): with self.assertSynErr("Not a valid name: 'var%&!@'"): self.try_render("Wat: {{ var%&!@ }}") with self.assertSynErr("Not a valid name: 'filter%&!@'"): self.try_render("Wat: {{ foo|filter%&!@ }}") with self.assertSynErr("Not a valid name: '@'"): self.try_render("Wat: {% for @ in x %}{% endfor %}") def test_bogus_tag_syntax(self): with self.assertSynErr("Don't understand tag: 'bogus'"): self.try_render("Huh: {% bogus %}!!{% endbogus %}??") def test_malformed_if(self): with self.assertSynErr("Don't understand if: '{% if %}'"): self.try_render("Buh? {% if %}hi!{% endif %}") with self.assertSynErr("Don't understand if: '{% if this or that %}'"): self.try_render("Buh? {% if this or that %}hi!{% endif %}") def test_malformed_for(self): with self.assertSynErr("Don't understand for: '{% for %}'"): self.try_render("Weird: {% for %}loop{% endfor %}") with self.assertSynErr("Don't understand for: '{% for x from y %}'"): self.try_render("Weird: {% for x from y %}loop{% endfor %}") with self.assertSynErr("Don't understand for: '{% for x, y in z %}'"): self.try_render("Weird: {% for x, y in z %}loop{% endfor %}") def test_bad_nesting(self): with self.assertSynErr("Unmatched action tag: 'if'"): self.try_render("{% if x %}X") with self.assertSynErr("Mismatched end tag: 'for'"): self.try_render("{% if x %}X{% endfor %}") with self.assertSynErr("Too many ends: '{% endif %}'"): self.try_render("{% if x %}{% endif %}{% endif %}") def test_malformed_end(self): with self.assertSynErr("Don't understand end: '{% end if %}'"): self.try_render("{% if x %}X{% end if %}") with self.assertSynErr("Don't understand end: '{% endif now %}'"): self.try_render("{% if x %}X{% endif now %}")
apache-2.0
1,905,987,912,981,123,000
33.670886
79
0.478094
false
3.555988
true
false
false
RyanSkraba/beam
sdks/python/apache_beam/coders/typecoders.py
1
8078
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """Type coders registration. This module contains functionality to define and use coders for custom classes. Let's say we have a class Xyz and we are processing a PCollection with elements of type Xyz. If we do not register a coder for Xyz, a default pickle-based fallback coder will be used. This can be undesirable for two reasons. First, we may want a faster coder or a more space efficient one. Second, the pickle-based coder is not deterministic in the sense that objects like dictionaries or sets are not guaranteed to be encoded in the same way every time (elements are not really ordered). Two (sometimes three) steps are needed to define and use a custom coder: - define the coder class - associate the code with the class (a.k.a. coder registration) - typehint DoFns or transforms with the new class or composite types using the class. A coder class is defined by subclassing from CoderBase and defining the encode_to_bytes and decode_from_bytes methods. The framework uses duck-typing for coders so it is not strictly required to subclass from CoderBase as long as the encode/decode methods are defined. Registering a coder class is made with a register_coder() call:: from apache_beam import coders ... coders.registry.register_coder(Xyz, XyzCoder) Additionally, DoFns and PTransforms may need type hints. This is not always necessary since there is functionality to infer the return types of DoFns by analyzing the code. For instance, for the function below the return type of 'Xyz' will be inferred:: def MakeXyzs(v): return Xyz(v) If Xyz is inferred then its coder will be used whenever the framework needs to serialize data (e.g., writing to the shuffler subsystem responsible for group by key operations). If a typehint is needed it can be specified by decorating the DoFns or using with_input_types/with_output_types methods on PTransforms. For example, the above function can be decorated:: @with_output_types(Xyz) def MakeXyzs(v): return complex_operation_returning_Xyz(v) See apache_beam.typehints.decorators module for more details. """ from __future__ import absolute_import from builtins import object from typing import Any from typing import Dict from typing import Iterable from typing import List from typing import Type from past.builtins import unicode from apache_beam.coders import coders from apache_beam.typehints import typehints __all__ = ['registry'] class CoderRegistry(object): """A coder registry for typehint/coder associations.""" def __init__(self, fallback_coder=None): self._coders = {} # type: Dict[Any, Type[coders.Coder]] self.custom_types = [] # type: List[Any] self.register_standard_coders(fallback_coder) def register_standard_coders(self, fallback_coder): """Register coders for all basic and composite types.""" self._register_coder_internal(int, coders.VarIntCoder) self._register_coder_internal(float, coders.FloatCoder) self._register_coder_internal(bytes, coders.BytesCoder) self._register_coder_internal(bool, coders.BooleanCoder) self._register_coder_internal(unicode, coders.StrUtf8Coder) self._register_coder_internal(typehints.TupleConstraint, coders.TupleCoder) # Default fallback coders applied in that order until the first matching # coder found. default_fallback_coders = [coders.ProtoCoder, coders.FastPrimitivesCoder] self._fallback_coder = fallback_coder or FirstOf(default_fallback_coders) def _register_coder_internal(self, typehint_type, typehint_coder_class): # type: (Any, Type[coders.Coder]) -> None self._coders[typehint_type] = typehint_coder_class def register_coder(self, typehint_type, typehint_coder_class): # type: (Any, Type[coders.Coder]) -> None if not isinstance(typehint_coder_class, type): raise TypeError('Coder registration requires a coder class object. ' 'Received %r instead.' % typehint_coder_class) if typehint_type not in self.custom_types: self.custom_types.append(typehint_type) self._register_coder_internal(typehint_type, typehint_coder_class) def get_coder(self, typehint): # type: (Any) -> coders.Coder coder = self._coders.get( typehint.__class__ if isinstance(typehint, typehints.TypeConstraint) else typehint, None) if isinstance(typehint, typehints.TypeConstraint) and coder is not None: return coder.from_type_hint(typehint, self) if coder is None: # We use the fallback coder when there is no coder registered for a # typehint. For example a user defined class with no coder specified. if not hasattr(self, '_fallback_coder'): raise RuntimeError( 'Coder registry has no fallback coder. This can happen if the ' 'fast_coders module could not be imported.') if isinstance(typehint, (typehints.IterableTypeConstraint, typehints.ListConstraint)): return coders.IterableCoder.from_type_hint(typehint, self) elif typehint is None: # In some old code, None is used for Any. # TODO(robertwb): Clean this up. pass elif typehint is object or typehint == typehints.Any: # We explicitly want the fallback coder. pass elif isinstance(typehint, typehints.TypeVariable): # TODO(robertwb): Clean this up when type inference is fully enabled. pass else: # TODO(robertwb): Re-enable this warning when it's actionable. # warnings.warn('Using fallback coder for typehint: %r.' % typehint) pass coder = self._fallback_coder return coder.from_type_hint(typehint, self) def get_custom_type_coder_tuples(self, types): """Returns type/coder tuples for all custom types passed in.""" return [(t, self._coders[t]) for t in types if t in self.custom_types] def verify_deterministic(self, key_coder, op_name, silent=True): if not key_coder.is_deterministic(): error_msg = ('The key coder "%s" for %s ' 'is not deterministic. This may result in incorrect ' 'pipeline output. This can be fixed by adding a type ' 'hint to the operation preceding the GroupByKey step, ' 'and for custom key classes, by writing a ' 'deterministic custom Coder. Please see the ' 'documentation for more details.' % (key_coder, op_name)) return key_coder.as_deterministic_coder(op_name, error_msg) else: return key_coder class FirstOf(object): """For internal use only; no backwards-compatibility guarantees. A class used to get the first matching coder from a list of coders.""" def __init__(self, coders): # type: (Iterable[Type[coders.Coder]]) -> None self._coders = coders def from_type_hint(self, typehint, registry): messages = [] for coder in self._coders: try: return coder.from_type_hint(typehint, self) except Exception as e: msg = ('%s could not provide a Coder for type %s: %s' % (coder, typehint, e)) messages.append(msg) raise ValueError('Cannot provide coder for %s: %s' % (typehint, ';'.join(messages))) registry = CoderRegistry()
apache-2.0
-3,578,803,315,472,674,000
41.072917
80
0.709953
false
3.87806
false
false
false
sunshinelover/chanlun
vn.trader/ctaAlgo/uiChanlunWidget.py
1
68647
# encoding: UTF-8 """ 缠论模块相关的GUI控制组件 """ from vtGateway import VtSubscribeReq from uiBasicWidget import QtGui, QtCore, BasicCell,BasicMonitor,TradingWidget from eventEngine import * from ctaBase import * import pyqtgraph as pg import numpy as np import pymongo from pymongo.errors import * from datetime import datetime, timedelta from ctaHistoryData import HistoryDataEngine import time import types import pandas as pd ######################################################################## class MyStringAxis(pg.AxisItem): def __init__(self, xdict, *args, **kwargs): pg.AxisItem.__init__(self, *args, **kwargs) self.x_values = np.asarray(xdict.keys()) self.x_strings = xdict.values() def tickStrings(self, values, scale, spacing): strings = [] for v in values: # vs is the original tick value vs = v * scale # if we have vs in our values, show the string # otherwise show nothing if vs in self.x_values: # Find the string with x_values closest to vs vstr = self.x_strings[np.abs(self.x_values - vs).argmin()] else: vstr = "" strings.append(vstr) return strings ######################################################################## class ChanlunEngineManager(QtGui.QWidget): """chanlun引擎管理组件""" signal = QtCore.pyqtSignal(type(Event())) # ---------------------------------------------------------------------- def __init__(self, chanlunEngine, eventEngine, mainEngine, parent=None): """Constructor""" super(ChanlunEngineManager, self).__init__(parent) self.chanlunEngine = chanlunEngine self.eventEngine = eventEngine self.mainEngine = mainEngine self.penLoaded = False self.segmentLoaded = False self.tickLoaded = False self.zhongShuLoaded = False self.instrumentid = '' self.initUi() self.registerEvent() # 记录日志 self.chanlunEngine.writeChanlunLog(u'缠论引擎启动成功') # ---------------------------------------------------------------------- def initUi(self): """初始化界面""" self.setWindowTitle(u'缠论策略') # 期货代码输入框 self.codeEdit = QtGui.QLineEdit() self.codeEdit.setPlaceholderText(u'在此输入期货代码') self.codeEdit.setMaximumWidth(200) self.data = pd.DataFrame() #画图所需数据, 重要 self.fenX = [] #分笔分段所需X轴坐标 self.fenY = [] #分笔分段所需Y轴坐标 self.zhongshuPos = [] #中枢的位置 self.zhongShuType = [] #中枢的方向 # 金融图 self.PriceW = PriceWidget(self.eventEngine, self.chanlunEngine, self.data) self.TickW = None # MongoDB数据库相关 self.__mongoConnected = False self.__mongoConnection = None # 调用函数 self.__connectMongo() # 按钮 penButton = QtGui.QPushButton(u'分笔') segmentButton = QtGui.QPushButton(u'分段') zhongshuButton = QtGui.QPushButton(u'走势中枢') shopButton = QtGui.QPushButton(u'买卖点') restoreButton = QtGui.QPushButton(u'还原') penButton.clicked.connect(self.pen) segmentButton.clicked.connect(self.segment) zhongshuButton.clicked.connect(self.zhongShu) shopButton.clicked.connect(self.shop) restoreButton.clicked.connect(self.restore) # Chanlun组件的日志监控 self.chanlunLogMonitor = QtGui.QTextEdit() self.chanlunLogMonitor.setReadOnly(True) self.chanlunLogMonitor.setMaximumHeight(180) # 设置布局 self.hbox2 = QtGui.QHBoxLayout() self.hbox2.addWidget(self.codeEdit) self.hbox2.addWidget(penButton) self.hbox2.addWidget(segmentButton) self.hbox2.addWidget(zhongshuButton) self.hbox2.addWidget(shopButton) self.hbox2.addWidget(restoreButton) self.hbox2.addStretch() tickButton = QtGui.QPushButton(u'Tick') oneMButton = QtGui.QPushButton(u"1分") fiveMButton = QtGui.QPushButton(u'5分') fifteenMButton = QtGui.QPushButton(u'15分') thirtyMButton = QtGui.QPushButton(u'30分') sixtyMButton = QtGui.QPushButton(u'60分') dayButton = QtGui.QPushButton(u'日') weekButton = QtGui.QPushButton(u'周') monthButton = QtGui.QPushButton(u'月') oneMButton.checked = True self.vbox1 = QtGui.QVBoxLayout() tickButton.clicked.connect(self.openTick) oneMButton.clicked.connect(self.oneM) fiveMButton.clicked.connect(self.fiveM) fifteenMButton.clicked.connect(self.fifteenM) thirtyMButton.clicked.connect(self.thirtyM) sixtyMButton.clicked.connect(self.sixtyM) dayButton.clicked.connect(self.daily) weekButton.clicked.connect(self.weekly) monthButton.clicked.connect(self.monthly) self.vbox2 = QtGui.QVBoxLayout() self.vbox1.addWidget(self.PriceW) self.vbox2.addWidget(tickButton) self.vbox2.addWidget(oneMButton) self.vbox2.addWidget(fiveMButton) self.vbox2.addWidget(fifteenMButton) self.vbox2.addWidget(thirtyMButton) self.vbox2.addWidget(sixtyMButton) self.vbox2.addWidget(dayButton) self.vbox2.addWidget(weekButton) self.vbox2.addWidget(monthButton) self.vbox2.addStretch() self.hbox3 = QtGui.QHBoxLayout() self.hbox3.addStretch() self.hbox3.addLayout(self.vbox1) self.hbox3.addLayout(self.vbox2) self.vbox = QtGui.QVBoxLayout() self.vbox.addLayout(self.hbox2) self.vbox.addLayout(self.hbox3) self.vbox.addWidget(self.chanlunLogMonitor) self.setLayout(self.vbox) self.codeEdit.returnPressed.connect(self.updateSymbol) #----------------------------------------------------------------------- #从通联数据端获取历史数据 def downloadData(self, symbol, unit): listBar = [] #K线数据 num = 0 #从通联客户端获取K线数据 historyDataEngine = HistoryDataEngine() # unit为int型获取分钟数据,为String类型获取日周月K线数据 if type(unit) is types.IntType: #从通联数据端获取当日分钟数据并存入数据库 historyDataEngine.downloadFuturesIntradayBar(symbol, unit) # 从数据库获取前几天的分钟数据 cx = self.getDbData(symbol, unit) if cx: for data in cx: barOpen = data['open'] barClose = data['close'] barLow = data['low'] barHigh = data['high'] barTime = data['datetime'] listBar.append((num, barTime, barOpen, barClose, barLow, barHigh)) num += 1 elif type(unit) is types.StringType: data = historyDataEngine.downloadFuturesBar(symbol, unit) if data: for d in data: barOpen = d.get('openPrice', 0) barClose = d.get('closePrice', 0) barLow = d.get('lowestPrice', 0) barHigh = d.get('highestPrice', 0) if unit == "daily": barTime = d.get('tradeDate', '').replace('-', '') else: barTime = d.get('endDate', '').replace('-', '') listBar.append((num, barTime, barOpen, barClose, barLow, barHigh)) num += 1 if unit == "monthly" or unit == "weekly": listBar.reverse() else: print "参数格式错误" return #将List数据转换成dataFormat类型,方便处理 df = pd.DataFrame(listBar, columns=['num', 'time', 'open', 'close', 'low', 'high']) df.index = df['time'].tolist() df = df.drop('time', 1) return df #----------------------------------------------------------------------- #从数据库获取前两天的分钟数据 def getDbData(self, symbol, unit): #周六周日不交易,无分钟数据 # 给数据库命名 dbname = '' days = 7 if unit == 1: dbname = MINUTE_DB_NAME elif unit == 5: dbname = MINUTE5_DB_NAME elif unit == 15: dbname = MINUTE15_DB_NAME elif unit == 30: dbname = MINUTE30_DB_NAME elif unit == 60: dbname = MINUTE60_DB_NAME weekday = datetime.now().weekday() # weekday() 返回的是0-6是星期一到星期日 if days == 2: if weekday == 6: aDay = timedelta(days=3) elif weekday == 0 or weekday == 1: aDay = timedelta(days=4) else: aDay = timedelta(days=2) else: aDay = timedelta(days=7) startDate = (datetime.now() - aDay).strftime('%Y%m%d') print startDate if self.__mongoConnected: collection = self.__mongoConnection[dbname][symbol] cx = collection.find({'date': {'$gte': startDate}}) return cx else: return None #---------------------------------------------------------------------------------- #"""合约变化""" def updateSymbol(self): # 读取组件数据 instrumentid = str(self.codeEdit.text()) self.chanlunEngine.writeChanlunLog(u'查询合约%s' % (instrumentid)) # 从通联数据客户端获取当日分钟数据 self.data = self.downloadData(instrumentid, 1) if self.data.empty: self.chanlunEngine.writeChanlunLog(u'合约%s 不存在' % (instrumentid)) else: if self.tickLoaded: self.vbox1.removeWidget(self.TickW) self.TickW.deleteLater() else: self.vbox1.removeWidget(self.PriceW) self.PriceW.deleteLater() self.PriceW = PriceWidget(self.eventEngine, self.chanlunEngine, self.data) self.vbox1.addWidget(self.PriceW) # 画K线图 self.PriceW.plotHistorticData() self.chanlunEngine.writeChanlunLog(u'打开合约%s 1分钟K线图' % (instrumentid)) self.penLoaded = False self.segmentLoaded = False self.tickLoaded = False self.zhongShuLoaded = False # # 订阅合约[仿照ctaEngine.py写的] # # 先取消订阅之前的合约,再订阅最新输入的合约 # contract = self.mainEngine.getContract(self.instrumentid) # if contract: # req = VtSubscribeReq() # req.symbol = contract.symbol # self.mainEngine.unsubscribe(req, contract.gatewayName) # # contract = self.mainEngine.getContract(instrumentid) # if contract: # req = VtSubscribeReq() # req.symbol = contract.symbol # self.mainEngine.subscribe(req, contract.gatewayName) # else: # self.chanlunEngine.writeChanlunLog(u'交易合约%s无法找到' % (instrumentid)) # # # 重新注册事件监听 # self.eventEngine.unregister(EVENT_TICK + self.instrumentid, self.signal.emit) # self.eventEngine.register(EVENT_TICK + instrumentid, self.signal.emit) # 更新目前的合约 self.instrumentid = instrumentid def oneM(self): "打开1分钟K线图" self.chanlunEngine.writeChanlunLog(u'打开合约%s 1分钟K线图' % (self.instrumentid)) # 从通联数据客户端获取数据 self.data = self.downloadData(self.instrumentid, 1) if self.tickLoaded: self.vbox1.removeWidget(self.TickW) self.TickW.deleteLater() else: self.vbox1.removeWidget(self.PriceW) self.PriceW.deleteLater() self.PriceW = PriceWidget(self.eventEngine, self.chanlunEngine, self.data) self.vbox1.addWidget(self.PriceW) # 画K线图 self.PriceW.plotHistorticData() self.tickLoaded = False self.penLoaded = False self.segmentLoaded = False self.zhongShuLoaded = False # ---------------------------------------------------------------------- def fiveM(self): "打开5分钟K线图" self.chanlunEngine.writeChanlunLog(u'打开合约%s 5分钟K线图' % (self.instrumentid)) # 从通联数据客户端获取数据 self.data = self.downloadData(self.instrumentid, 5) if self.tickLoaded: self.vbox1.removeWidget(self.TickW) self.TickW.deleteLater() else: self.vbox1.removeWidget(self.PriceW) self.PriceW.deleteLater() self.PriceW = PriceWidget(self.eventEngine, self.chanlunEngine, self.data) self.vbox1.addWidget(self.PriceW) # 画K线图 self.PriceW.plotHistorticData() self.tickLoaded = False self.penLoaded = False self.segmentLoaded = False self.zhongShuLoaded = False # ---------------------------------------------------------------------- def fifteenM(self): "打开15分钟K线图" self.chanlunEngine.writeChanlunLog(u'打开合约%s 15分钟K线图' % (self.instrumentid)) # 从通联数据客户端获取数据 self.data = self.downloadData(self.instrumentid, 15) if self.tickLoaded: self.vbox1.removeWidget(self.TickW) self.TickW.deleteLater() else: self.vbox1.removeWidget(self.PriceW) self.PriceW.deleteLater() self.PriceW = PriceWidget(self.eventEngine, self.chanlunEngine, self.data) self.vbox1.addWidget(self.PriceW) # 画K线图 self.PriceW.plotHistorticData() self.tickLoaded = False self.penLoaded = False self.segmentLoaded = False self.zhongShuLoaded = False # ---------------------------------------------------------------------- def thirtyM(self): "打开30分钟K线图" self.chanlunEngine.writeChanlunLog(u'打开合约%s 30分钟K线图' % (self.instrumentid)) # 从通联数据客户端获取数据 self.data = self.downloadData(self.instrumentid, 30) if self.tickLoaded: self.vbox1.removeWidget(self.TickW) self.TickW.deleteLater() else: self.vbox1.removeWidget(self.PriceW) self.PriceW.deleteLater() self.PriceW = PriceWidget(self.eventEngine, self.chanlunEngine, self.data) self.vbox1.addWidget(self.PriceW) # 画K线图 self.PriceW.plotHistorticData() self.tickLoaded = False self.penLoaded = False self.segmentLoaded = False self.zhongShuLoaded = False # ---------------------------------------------------------------------- def sixtyM(self): "打开60分钟K线图" self.chanlunEngine.writeChanlunLog(u'打开合约%s 60分钟K线图' % (self.instrumentid)) # 从通联数据客户端获取数据 self.data = self.downloadData(self.instrumentid, 60) if self.tickLoaded: self.vbox1.removeWidget(self.TickW) self.TickW.deleteLater() else: self.vbox1.removeWidget(self.PriceW) self.PriceW.deleteLater() self.PriceW = PriceWidget(self.eventEngine, self.chanlunEngine, self.data) self.vbox1.addWidget(self.PriceW) # 画K线图 self.PriceW.plotHistorticData() self.tickLoaded = False self.penLoaded = False self.segmentLoaded = False self.zhongShuLoaded = False # ---------------------------------------------------------------------- def daily(self): """打开日K线图""" self.chanlunEngine.writeChanlunLog(u'打开合约%s 日K线图' % (self.instrumentid)) # 从通联数据客户端获取数据 self.data = self.downloadData(self.instrumentid, "daily") if self.tickLoaded: self.vbox1.removeWidget(self.TickW) self.TickW.deleteLater() else: self.vbox1.removeWidget(self.PriceW) self.PriceW.deleteLater() self.PriceW = PriceWidget(self.eventEngine, self.chanlunEngine, self.data) self.vbox1.addWidget(self.PriceW) # 画K线图 self.PriceW.plotHistorticData() self.tickLoaded = False self.penLoaded = False self.segmentLoaded = False self.zhongShuLoaded = False # ---------------------------------------------------------------------- def weekly(self): """打开周K线图""" self.chanlunEngine.writeChanlunLog(u'打开合约%s 周K线图' % (self.instrumentid)) # 从通联数据客户端获取数据 self.data = self.downloadData(self.instrumentid, "weekly") if self.tickLoaded: self.vbox1.removeWidget(self.TickW) self.TickW.deleteLater() else: self.vbox1.removeWidget(self.PriceW) self.PriceW.deleteLater() self.PriceW = PriceWidget(self.eventEngine, self.chanlunEngine, self.data) self.vbox1.addWidget(self.PriceW) # 画K线图 self.PriceW.plotHistorticData() self.tickLoaded = False self.penLoaded = False self.segmentLoaded = False self.zhongShuLoaded = False def monthly(self): """打开月K线图""" self.chanlunEngine.writeChanlunLog(u'打开合约%s 月K线图' % (self.instrumentid)) # 从通联数据客户端获取数据并画图 self.data = self.downloadData(self.instrumentid, "monthly") if self.tickLoaded: self.vbox1.removeWidget(self.TickW) self.TickW.deleteLater() else: self.vbox1.removeWidget(self.PriceW) self.PriceW.deleteLater() self.PriceW = PriceWidget(self.eventEngine, self.chanlunEngine, self.data) self.vbox1.addWidget(self.PriceW) # 画K线图 self.PriceW.plotHistorticData() self.tickLoaded = False self.penLoaded = False self.segmentLoaded = False self.zhongShuLoaded = False # ---------------------------------------------------------------------- def openTick(self): """切换成tick图""" self.chanlunEngine.writeChanlunLog(u'打开tick图') self.vbox1.removeWidget(self.PriceW) self.PriceW.deleteLater() self.TickW = TickWidget(self.eventEngine, self.chanlunEngine) self.vbox1.addWidget(self.TickW) self.tickLoaded = True self.penLoaded = False self.segmentLoaded = False self.zhongShuLoaded = False # ---------------------------------------------------------------------- def restore(self): """还原初始k线状态""" self.chanlunEngine.writeChanlunLog(u'还原加载成功') if self.tickLoaded: self.vbox1.removeWidget(self.TickW) self.TickW.deleteLater() else: self.vbox1.removeWidget(self.PriceW) self.PriceW.deleteLater() self.data = self.downloadData(self.instrumentid, 1) self.PriceW = PriceWidget(self.eventEngine, self.chanlunEngine, self.data, self) self.vbox1.addWidget(self.PriceW) # 画K线图 self.PriceW.plotHistorticData() self.chanlunEngine.writeChanlunLog(u'还原为1分钟k线图') self.penLoaded = False self.segmentLoaded = False self.tickLoaded = False # ---------------------------------------------------------------------- def pen(self): """加载分笔""" # 先合并K线数据,记录新建PriceW之前合并K线的数据 if not self.penLoaded: after_fenxing = self.judgeInclude() #判断self.data中K线数据的包含关系 # 清空画布时先remove已有的Widget再新建 self.vbox1.removeWidget(self.PriceW) self.PriceW.deleteLater() self.PriceW = PriceWidget(self.eventEngine, self.chanlunEngine, after_fenxing) self.vbox1.addWidget(self.PriceW) #使用合并K线的数据重新画K线图 self.plotAfterFenXing(after_fenxing) # 找出顶和底 fenxing_data, fenxing_type = self.findTopAndLow(after_fenxing) arrayFenxingdata = np.array(fenxing_data) arrayTypedata = np.array(fenxing_type) self.fenY = [] self.fenX = [m[0] for m in arrayFenxingdata] fenbiY1 = [m[4] for m in arrayFenxingdata] # 顶分型标志最高价 fenbiY2 = [m[3] for m in arrayFenxingdata] # 底分型标志最低价 for i in xrange(len(self.fenX)): if arrayTypedata[i] == 1: self.fenY.append(fenbiY1[i]) else: self.fenY.append(fenbiY2[i]) if not self.penLoaded: if self.fenX: self.fenX.append(self.fenX[-1]) self.fenY.append(self.fenY[-1]) print "self.fenX: ", self.fenX print "self.fenY: ", self.fenY self.fenbi(self.fenX, self.fenY) self.fenX.pop() self.fenY.pop() self.chanlunEngine.writeChanlunLog(u'分笔加载成功') self.penLoaded = True # ---------------------------------------------------------------------- def segment(self): if not self.penLoaded: self.pen() #先分笔才能分段 segmentX = [] #分段点X轴值 segmentY = [] #分段点Y轴值 temp_type = 0 #标志线段方向,向上为1,向下为-1, 未判断前三笔是否重合为0 i = 0 while i < len(self.fenX) - 4: if temp_type == 0: if self.fenY[i] > self.fenY[i+1] and self.fenY[i] > self.fenY[i+3]: temp_type = -1 #向下线段,三笔重合 segmentX.append(self.fenX[i]) segmentY.append(self.fenY[i]) elif self.fenY[i] < self.fenY[i+1] and self.fenY[i] < self.fenY[i+3]: temp_type = 1 #向上线段,三笔重合 segmentX.append(self.fenX[i]) segmentY.append(self.fenY[i]) else: temp_type = 0 i += 1 continue if temp_type == 1: #向上线段 j = i+1 high = [] # 记录顶 low = [] # 记录低 while j < len(self.fenX) - 1: #记录顶底 high.append(self.fenY[j]) low.append(self.fenY[j+1]) j += 2 if self.fenY[i+4] < self.fenY[i+1]: #向上线段被向下笔破坏 j = 0 while j < len(high)-2: # 顶底出现顶分型,向上线段结束 if high[j+1] > high[j] and high[j+1] > high[j+2]: num = i + 2 * j + 3 #线段结束点位置 segmentX.append(self.fenX[num]) segmentY.append(self.fenY[num]) i = num temp_type = -1 #向上线段一定由向下线段结束 break j += 1 if j == len(high)-2: break else: #向上线段未被向下笔破坏 j = 1 while j < len(high)-2: # 顶底出现底分型,向上线段结束 if low[j + 1] < low[j] and low[j + 1] < low[j + 2]: num = i + 2 * j + 1 # 线段结束点位置 segmentX.append(self.fenX[num]) segmentY.append(self.fenY[num]) i = num temp_type = -1 # 向上线段一定由向下线段结束 break j += 1 if j == len(high)-2: break elif temp_type == -1: # 向下线段 j = i + 1 high = [] # 记录顶 low = [] # 记录低 while j < len(self.fenX) - 1: # 记录顶底 high.append(self.fenY[j + 1]) low.append(self.fenY[j]) j += 2 if self.fenY[i + 4] > self.fenY[i + 1]: # 向下线段被向上笔破坏 j = 0 while j < len(high) - 2: # 顶底出现底分型,向下线段结束 if low[j + 1] < low[j] and low[j + 1] < low[j + 2]: num = i + 2 * j + 3 # 线段结束点位置 segmentX.append(self.fenX[num]) segmentY.append(self.fenY[num]) i = num temp_type = 1 # 向下线段一定由向上线段结束 break j += 1 if j == len(high) - 2: break else: # 向下线段未被向上笔破坏 j = 1 while j < len(high) - 2: # 顶底出现顶分型,向下线段结束 if high[j + 1] > high[j] and high[j + 1] > high[j + 2]: num = i + 2 * j + 1 # 线段结束点位置 segmentX.append(self.fenX[num]) segmentY.append(self.fenY[num]) i = num temp_type = 1 # 向下线段一定由向上线段结束 break j += 1 if j == len(high) - 2: break print "segmentX: ", segmentX print "segmentY: ", segmentY if not self.segmentLoaded: if len(segmentX) > 1: segmentX.append(segmentX[-1]) segmentY.append(segmentY[-1]) segmentX = [int(x) for x in segmentX] segmentY = [int(y) for y in segmentY] self.fenduan(segmentX, segmentY) self.chanlunEngine.writeChanlunLog(u'分段加载成功') self.segmentLoaded = True # ---------------------------------------------------------------------- def updateChanlunLog(self, event): """更新缠论相关日志""" log = event.dict_['data'] # print type(log) if(log.logTime): content = '\t'.join([log.logTime, log.logContent]) self.chanlunLogMonitor.append(content) else: print 0 #----------------------------------------------------------------------- def zhongShu(self): if not self.penLoaded: self.pen() # 先分笔才能画走势中枢 # temp_type = 0 # 标志中枢方向,向上为1,向下为-1 i = 0 temp_high, temp_low = 0, 0 minX, maxY = 0, 0 self.zhongshuPos = [] # 记录所有的中枢开始段和结束段的位置 self.zhongShuType = [] #记录所有中枢的方向 while i < len(self.fenX) - 4: if (self.fenY[i] > self.fenY[i + 1] and self.fenY[i + 1] < self.fenY[i + 4]): #判断进入段方向 temp_low = max(self.fenY[i + 1], self.fenY[i + 3]) temp_high = min(self.fenY[i + 2], self.fenY[i + 4]) #记录中枢内顶的最小值与底的最大值 minX = self.fenX[i+1] self.zhongshuPos.append(i) self.zhongShuType.append(-1) j = i while i < len(self.fenX) - 4: j = i if self.fenY[i + 1] < self.fenY[i + 4] and self.fenY[i + 4] > temp_low and self.fenY[i + 3] < temp_high : maxX = self.fenX[i+4] if self.fenY[i + 3] > temp_low: temp_low = self.fenY[i + 3] if self.fenY[i + 4] < temp_high: temp_high = self.fenY[i + 4] i = i + 1 elif self.fenY[i + 1] > self.fenY[i + 4] and self.fenY[i + 4] < temp_high and self.fenY[i + 3] > temp_low : maxX = self.fenX[i + 4] if self.fenY[i + 3] < temp_high: temp_high = self.fenY[i + 3] if self.fenY[i + 4] > temp_low: temp_low = self.fenY[i + 4] i = i + 1 if j == i: break elif (self.fenY[i] < self.fenY[i + 1] and self.fenY[i + 1] > self.fenY[i + 4]): temp_high = min(self.fenY[i + 1], self.fenY[i + 3]) temp_low = max(self.fenY[i + 2], self.fenY[i + 4]) minX = self.fenX[i + 1] self.zhongshuPos.append(i) self.zhongShuType.append(1) j = i while i < len(self.fenX) - 4: j = i if self.fenY[i + 1] > self.fenY[i + 4] and self.fenY[i + 4] < temp_high and self.fenY[i + 3] > temp_low: maxX = self.fenX[i + 4] if self.fenY[i + 3] < temp_high: temp_high = self.fenY[i + 3] if self.fenY[i + 4] > temp_low: temp_low = self.fenY[i + 4] i = i + 1 elif self.fenY[i + 1] < self.fenY[i + 4] and self.fenY[i + 4] > temp_low and self.fenY[i + 3] < temp_high: maxX = self.fenX[i + 4] if self.fenY[i + 3] > temp_low: temp_low = self.fenY[i + 3] if self.fenY[i + 4] < temp_high: temp_high = self.fenY[i + 4] i = i + 1 if i == j: break else: i += 1 continue # 画出当前判断出的中枢 if minX != 0 and maxX == 0: maxX = self.fenX[i+4] i = i + 1 self.zhongshuPos.append(i + 4) else: self.zhongshuPos.append(i + 3) minY, maxY = temp_low, temp_high print minX, minY, maxX, maxY if int(maxY) > int(minY): plotX = [minX, minX, maxX, maxX, minX] plotY = [minY, maxY, maxY, minY, minY] plotX = [int(x) for x in plotX] plotY = [int(y) for y in plotY] self.zhongshu(plotX, plotY) i = i + 4 self.zhongShuLoaded = True self.chanlunEngine.writeChanlunLog(u'走势中枢加载成功') # ---------------------------------------------------------------------- def shop(self): """加载买卖点""" if not self.zhongShuLoaded: self.zhongShu() i = 0 while i < len(self.zhongShuType) - 1: startPos, endPos = self.zhongshuPos[2*i], self.zhongshuPos[2*i + 1] # 中枢开始段的位置和结束段的位置 startY = self.fenY[startPos + 1] - self.fenY[startPos] # 开始段Y轴距离 startX = self.fenX[startPos + 1] - self.fenX[startPos] # 开始段X轴距离 startK = abs(startY * startX) # 开始段投影面积 endY = self.fenY[endPos + 1] - self.fenY[endPos] # 结束段Y轴距离 endX = self.fenX[endPos + 1] - self.fenX[endPos] # 结束段段X轴距离 endK = abs(endY * endX) # 开始段投影面积 if endK < startK: print startPos, endPos if self.zhongShuType[i] == 1 and self.zhongShuType[i + 1] == -1: # 一卖 self.sellpoint([self.fenX[endPos + 1]], [self.fenY[endPos + 1]], 1) # 二卖,一卖后一个顶点 self.sellpoint([self.fenX[endPos + 3]], [self.fenY[endPos + 3]], 2) # 三卖,一卖之后中枢结束段的第一个顶 i = i + 1 nextPos = self.zhongshuPos[2*i + 1] # 下一个中枢结束位置 if nextPos + 1 < len(self.fenY): if self.fenY[nextPos + 1] > self.fenY[nextPos]: self.sellpoint([self.fenX[nextPos + 1]], [self.fenY[nextPos + 1]], 3) else: self.sellpoint([self.fenX[nextPos]], [self.fenY[nextPos]], 3) elif self.zhongShuType[i] == -1 and self.zhongShuType[i + 1] == 1: # 一买 self.buypoint([self.fenX[endPos + 1]], [self.fenY[endPos + 1]], 1) # 二买,一买后一个底点 self.buypoint([self.fenX[endPos + 3]], [self.fenY[endPos + 3]], 2) # 三买,一买之后中枢结束段的第一个顶 i = i + 1 nextPos = self.zhongshuPos[2*i + 1] # 下一个中枢结束位置 if nextPos + 1 < len(self.fenY): if self.fenY[nextPos + 1] < self.fenY[nextPos]: self.buypoint([self.fenX[nextPos + 1]], [self.fenY[nextPos + 1]], 3) else: self.buypoint([self.fenX[nextPos]], [self.fenY[nextPos]], 3) i = i + 1 # 接着判断之后的中枢是否出现背驰 self.chanlunEngine.writeChanlunLog(u'买卖点加载成功') # ---------------------------------------------------------------------- def fenbi(self, fenbix, fenbiy): self.PriceW.pw2.plotItem.plot(x=fenbix, y=fenbiy, pen=QtGui.QPen(QtGui.QColor(255, 236, 139))) def fenduan(self, fenduanx, fenduany): self.PriceW.pw2.plot(x=fenduanx, y=fenduany, symbol='o', pen=QtGui.QPen(QtGui.QColor(131, 111, 255))) def zhongshu(self, zhongshux, zhongshuy): self.PriceW.pw2.plot(x=zhongshux, y=zhongshuy, pen=QtGui.QPen(QtGui.QColor(255,165,0))) def buypoint(self, buyx, buyy, point): if point == 1: self.PriceW.pw2.plot(x=buyx, y=buyy, symbolSize=18, symbolBrush=(255,0,0), symbolPen=(255,0,0), symbol='star') elif point == 2: self.PriceW.pw2.plot(x=buyx, y=buyy, symbolSize=18, symbolBrush=(238,130,238), symbolPen=(238,130,238),symbol='star') elif point == 3: self.PriceW.pw2.plot(x=buyx, y=buyy, symbolSize=18, symbolBrush=(138,43,226), symbolPen=(138,43,226),symbol='star') def sellpoint(self, sellx, selly, point): if point == 1: self.PriceW.pw2.plot(x=sellx, y=selly, symbolSize=18, symbolBrush=(119,172,48), symbolPen=(119,172,48), symbol='star') elif point == 2: self.PriceW.pw2.plot(x=sellx, y=selly, symbolSize=18, symbolBrush=(221,221,34), symbolPen=(221,221,34),symbol='star') elif point == 3: self.PriceW.pw2.plot(x=sellx, y=selly, symbolSize=18, symbolBrush=(179,158,77), symbolPen=(179,158,77),symbol='star') # ---------------------------------------------------------------------- # 判断包含关系,仿照聚框,合并K线数据 def judgeInclude(self): ## 判断包含关系 k_data = self.data # 保存分型后dataFrame的值 after_fenxing = pd.DataFrame() temp_data = k_data[:1] zoushi = [3] # 3-持平 4-向下 5-向上 for i in xrange(len(k_data)): case1 = temp_data.high[-1] >= k_data.high[i] and temp_data.low[-1] <= k_data.low[i] # 第1根包含第2根 case2 = temp_data.high[-1] <= k_data.high[i] and temp_data.low[-1] >= k_data.low[i] # 第2根包含第1根 case3 = temp_data.high[-1] == k_data.high[i] and temp_data.low[-1] == k_data.low[i] # 第1根等于第2根 case4 = temp_data.high[-1] > k_data.high[i] and temp_data.low[-1] > k_data.low[i] # 向下趋势 case5 = temp_data.high[-1] < k_data.high[i] and temp_data.low[-1] < k_data.low[i] # 向上趋势 if case3: zoushi.append(3) continue elif case1: print temp_data if zoushi[-1] == 4: temp_data.ix[0, 4] = k_data.high[i] #向下走取高点的低点 else: temp_data.ix[0, 3] = k_data.low[i] #向上走取低点的高点 elif case2: temp_temp = temp_data[-1:] temp_data = k_data[i:i + 1] if zoushi[-1] == 4: temp_data.ix[0, 4] = temp_temp.high[0] else: temp_data.ix[0, 3] = temp_temp.low[0] elif case4: zoushi.append(4) after_fenxing = pd.concat([after_fenxing, temp_data], axis=0) temp_data = k_data[i:i + 1] elif case5: zoushi.append(5) after_fenxing = pd.concat([after_fenxing, temp_data], axis=0) temp_data = k_data[i:i + 1] return after_fenxing # ---------------------------------------------------------------------- #画出合并后的K线图,分笔 def plotAfterFenXing(self, after_fenxing): #判断包含关系,合并K线 for i in xrange(len(after_fenxing)): #处理k线的最大最小值、开盘收盘价,合并后k线不显示影线。 after_fenxing.iloc[i, 0] = i if after_fenxing.open[i] > after_fenxing.close[i]: after_fenxing.iloc[i, 1] = after_fenxing.high[i] after_fenxing.iloc[i, 2] = after_fenxing.low[i] else: after_fenxing.iloc[i, 1] = after_fenxing.low[i] after_fenxing.iloc[i, 2] = after_fenxing.high[i] self.PriceW.onBarAfterFenXing(i, after_fenxing.index[i], after_fenxing.open[i], after_fenxing.close[i], after_fenxing.low[i], after_fenxing.high[i]) self.PriceW.plotKlineAfterFenXing() print "plotKLine after fenxing" # ---------------------------------------------------------------------- # 找出顶和底 def findTopAndLow(self, after_fenxing): temp_num = 0 # 上一个顶或底的位置 temp_high = 0 # 上一个顶的high值 temp_low = 0 # 上一个底的low值 temp_type = 0 # 上一个记录位置的类型 i = 1 fenxing_type = [] # 记录分型点的类型,1为顶分型,-1为底分型 fenxing_data = pd.DataFrame() # 分型点的DataFrame值 while (i < len(after_fenxing) - 1): case1 = after_fenxing.high[i - 1] < after_fenxing.high[i] and after_fenxing.high[i] > after_fenxing.high[i + 1] # 顶分型 case2 = after_fenxing.low[i - 1] > after_fenxing.low[i] and after_fenxing.low[i] < after_fenxing.low[i + 1] # 底分型 if case1: if temp_type == 1: # 如果上一个分型为顶分型,则进行比较,选取高点更高的分型 if after_fenxing.high[i] <= temp_high: i += 1 else: temp_high = after_fenxing.high[i] temp_num = i temp_type = 1 i += 1 elif temp_type == 2: # 如果上一个分型为底分型,则记录上一个分型,用当前分型与后面的分型比较,选取同向更极端的分型 if temp_low >= after_fenxing.high[i]: # 如果上一个底分型的底比当前顶分型的顶高,则跳过当前顶分型。 i += 1 elif i < temp_num + 4: # 顶和底至少5k线 i += 1 else: fenxing_type.append(-1) fenxing_data = pd.concat([fenxing_data, after_fenxing[temp_num:temp_num + 1]], axis=0) temp_high = after_fenxing.high[i] temp_num = i temp_type = 1 i += 1 else: temp_high = after_fenxing.high[i] temp_num = i temp_type = 1 i += 1 elif case2: if temp_type == 2: # 如果上一个分型为底分型,则进行比较,选取低点更低的分型 if after_fenxing.low[i] >= temp_low: i += 1 else: temp_low = after_fenxing.low[i] temp_num = i temp_type = 2 i += 1 elif temp_type == 1: # 如果上一个分型为顶分型,则记录上一个分型,用当前分型与后面的分型比较,选取同向更极端的分型 if temp_high <= after_fenxing.low[i]: # 如果上一个顶分型的底比当前底分型的底低,则跳过当前底分型。 i += 1 elif i < temp_num + 4: # 顶和底至少5k线 i += 1 else: fenxing_type.append(1) fenxing_data = pd.concat([fenxing_data, after_fenxing[temp_num:temp_num + 1]], axis=0) temp_low = after_fenxing.low[i] temp_num = i temp_type = 2 i += 1 else: temp_low = after_fenxing.low[i] temp_num = i temp_type = 2 i += 1 else: i += 1 # if fenxing_type: # if fenxing_type[-1] == 1 and temp_type == 2: # fenxing_type.append(-1) # fenxing_data = pd.concat([fenxing_data, after_fenxing[temp_num:temp_num + 1]], axis=0) # # if fenxing_type[-1] == -1 and temp_type == 1: # fenxing_type.append(1) # fenxing_data = pd.concat([fenxing_data, after_fenxing[temp_num:temp_num + 1]], axis=0) return fenxing_data, fenxing_type # ---------------------------------------------------------------------- # 连接MongoDB数据库 def __connectMongo(self): try: self.__mongoConnection = pymongo.MongoClient("localhost", 27017) self.__mongoConnected = True except ConnectionFailure: pass # ---------------------------------------------------------------------- def registerEvent(self): """注册事件监听""" self.signal.connect(self.updateChanlunLog) self.eventEngine.register(EVENT_CHANLUN_LOG, self.signal.emit) ######################################################################## class PriceWidget(QtGui.QWidget): """用于显示价格走势图""" signal = QtCore.pyqtSignal(type(Event())) symbol = '' class CandlestickItem(pg.GraphicsObject): def __init__(self, data): pg.GraphicsObject.__init__(self) self.data = data ## data must have fields: time, open, close, min, max self.generatePicture() def generatePicture(self): ## pre-computing a QPicture object allows paint() to run much more quickly, ## rather than re-drawing the shapes every time. self.picture = QtGui.QPicture() p = QtGui.QPainter(self.picture) p.setPen(pg.mkPen(color='w', width=0.4)) # 0.4 means w*2 # w = (self.data[1][0] - self.data[0][0]) / 3. w = 0.2 for (n, t, open, close, min, max) in self.data: p.drawLine(QtCore.QPointF(n, min), QtCore.QPointF(n, max)) if open > close: p.setBrush(pg.mkBrush('g')) else: p.setBrush(pg.mkBrush('r')) p.drawRect(QtCore.QRectF(n-w, open, w*2, close-open)) pg.setConfigOption('leftButtonPan', False) p.end() def paint(self, p, *args): p.drawPicture(0, 0, self.picture) def boundingRect(self): ## boundingRect _must_ indicate the entire area that will be drawn on ## or else we will get artifacts and possibly crashing. ## (in this case, QPicture does all the work of computing the bouning rect for us) return QtCore.QRectF(self.picture.boundingRect()) #---------------------------------------------------------------------- def __init__(self, eventEngine, chanlunEngine, data, parent=None): """Constructor""" super(PriceWidget, self).__init__(parent) # K线图EMA均线的参数、变量 self.EMAFastAlpha = 0.0167 # 快速EMA的参数,60 self.EMASlowAlpha = 0.0083 # 慢速EMA的参数,120 self.fastEMA = 0 # 快速EMA的数值 self.slowEMA = 0 # 慢速EMA的数值 self.listfastEMA = [] self.listslowEMA = [] # 保存K线数据的列表对象 self.listBar = [] self.listClose = [] self.listHigh = [] self.listLow = [] self.listOpen = [] # 是否完成了历史数据的读取 self.initCompleted = False self.__eventEngine = eventEngine self.__chanlunEngine = chanlunEngine self.data = data #画图所需数据 # MongoDB数据库相关 self.__mongoConnected = False self.__mongoConnection = None # 调用函数 self.__connectMongo() self.initUi() # self.registerEvent() #---------------------------------------------------------------------- def initUi(self): """初始化界面""" self.setWindowTitle(u'Price') self.vbl_1 = QtGui.QHBoxLayout() self.initplotKline() # plotKline初始化 self.setLayout(self.vbl_1) #---------------------------------------------------------------------- def initplotKline(self): """Kline""" s = self.data.index #横坐标值 print "numbers of KLine: ", len(s) xdict = dict(enumerate(s)) self.__axisTime = MyStringAxis(xdict, orientation='bottom') self.pw2 = pg.PlotWidget(axisItems={'bottom': self.__axisTime}) # K线图 pw2x = self.pw2.getAxis('bottom') pw2x.setGrid(150) # 设置默认x轴网格 pw2y = self.pw2.getAxis('left') pw2y.setGrid(150) # 设置默认y轴网格 self.vbl_1.addWidget(self.pw2) self.pw2.setMinimumWidth(1500) self.pw2.setMaximumWidth(1800) self.pw2.setDownsampling(mode='peak') self.pw2.setClipToView(True) self.curve5 = self.pw2.plot() self.curve6 = self.pw2.plot() self.candle = self.CandlestickItem(self.listBar) self.pw2.addItem(self.candle) ## Draw an arrowhead next to the text box # self.arrow = pg.ArrowItem() # self.pw2.addItem(self.arrow) # 从数据库读取一分钟数据画分钟线 def plotMin(self, symbol): self.initCompleted = True cx = self.__mongoMinDB[symbol].find() print cx.count() if cx: for data in cx: self.barOpen = data['open'] self.barClose = data['close'] self.barLow = data['low'] self.barHigh = data['high'] self.barOpenInterest = data['openInterest'] # print self.num, self.barOpen, self.barClose, self.barLow, self.barHigh, self.barOpenInterest self.onBar(self.num, self.barOpen, self.barClose, self.barLow, self.barHigh, self.barOpenInterest) self.num += 1 # 画历史数据K线图 def plotHistorticData(self): self.initCompleted = True for i in xrange(len(self.data)): self.onBar(i, self.data.index[i], self.data.open[i], self.data.close[i], self.data.low[i], self.data.high[i]) self.plotKline() print "plotKLine success" #---------------------------------------------------------------------- def initHistoricalData(self): """初始历史数据""" if self.symbol!='': print "download histrical data:",self.symbol self.initCompleted = True # 读取历史数据完成 td = timedelta(days=1) # 读取3天的历史TICK数据 # if startDate: # cx = self.loadTick(self.symbol, startDate-td) # else: # today = datetime.today().replace(hour=0, minute=0, second=0, microsecond=0) # cx = self.loadTick(self.symbol, today-td) print cx.count() if cx: for data in cx: tick = Tick(data['symbol']) tick.openPrice = data['lastPrice'] tick.highPrice = data['upperLimit'] tick.lowPrice = data['lowerLimit'] tick.lastPrice = data['lastPrice'] tick.volume = data['volume'] tick.openInterest = data['openInterest'] tick.upperLimit = data['upperLimit'] tick.lowerLimit = data['lowerLimit'] tick.time = data['time'] # tick.ms = data['UpdateMillisec'] tick.bidPrice1 = data['bidPrice1'] tick.bidPrice2 = data['bidPrice2'] tick.bidPrice3 = data['bidPrice3'] tick.bidPrice4 = data['bidPrice4'] tick.bidPrice5 = data['bidPrice5'] tick.askPrice1 = data['askPrice1'] tick.askPrice2 = data['askPrice2'] tick.askPrice3 = data['askPrice3'] tick.askPrice4 = data['askPrice4'] tick.askPrice5 = data['askPrice5'] tick.bidVolume1 = data['bidVolume1'] tick.bidVolume2 = data['bidVolume2'] tick.bidVolume3 = data['bidVolume3'] tick.bidVolume4 = data['bidVolume4'] tick.bidVolume5 = data['bidVolume5'] tick.askVolume1 = data['askVolume1'] tick.askVolume2 = data['askVolume2'] tick.askVolume3 = data['askVolume3'] tick.askVolume4 = data['askVolume4'] tick.askVolume5 = data['askVolume5'] self.onTick(tick) print('load historic data completed') #---------------------------------------------------------------------- def plotKline(self): """K线图""" if self.initCompleted: # 均线 self.curve5.setData(self.listfastEMA, pen=(255, 0, 0), name="Red curve") self.curve6.setData(self.listslowEMA, pen=(0, 255, 0), name="Green curve") # 画K线 self.pw2.removeItem(self.candle) self.candle = self.CandlestickItem(self.listBar) self.pw2.addItem(self.candle) #---------------------------------------------------------------------- def plotText(self): lenClose = len(self.listClose) if lenClose >= 5: # Fractal Signal if self.listClose[-1] > self.listClose[-2] and self.listClose[-3] > self.listClose[-2] and self.listClose[-4] > self.listClose[-2] and self.listClose[-5] > self.listClose[-2] and self.listfastEMA[-1] > self.listslowEMA[-1]: ## Draw an arrowhead next to the text box # self.pw2.removeItem(self.arrow) self.arrow = pg.ArrowItem(pos=(lenClose-1, self.listLow[-1]), angle=90, brush=(255, 0, 0))#红色 self.pw2.addItem(self.arrow) elif self.listClose[-1] < self.listClose[-2] and self.listClose[-3] < self.listClose[-2] and self.listClose[-4] < self.listClose[-2] and self.listClose[-5] < self.listClose[-2] and self.listfastEMA[-1] < self.listslowEMA[-1]: ## Draw an arrowhead next to the text box # self.pw2.removeItem(self.arrow) self.arrow = pg.ArrowItem(pos=(lenClose-1, self.listHigh[-1]), angle=-90, brush=(0, 255, 0))#绿色 self.pw2.addItem(self.arrow) #---------------------------------------------------------------------- def onBar(self, n, t, o, c, l, h): self.listBar.append((n, t, o, c, l, h)) self.listOpen.append(o) self.listClose.append(c) self.listHigh.append(h) self.listLow.append(l) #计算K线图EMA均线 if self.fastEMA: self.fastEMA = c*self.EMAFastAlpha + self.fastEMA*(1-self.EMAFastAlpha) self.slowEMA = c*self.EMASlowAlpha + self.slowEMA*(1-self.EMASlowAlpha) else: self.fastEMA = c self.slowEMA = c self.listfastEMA.append(self.fastEMA) self.listslowEMA.append(self.slowEMA) self.plotText() #显示开仓位置 # ---------------------------------------------------------------------- #画合并后的K线Bar def onBarAfterFenXing(self, n, t, o, c, l, h): self.listBar.append((n, t, o, c, l, h)) def plotKlineAfterFenXing(self): # 画K线 self.pw2.removeItem(self.candle) self.candle = self.CandlestickItem(self.listBar) self.pw2.addItem(self.candle) #---------------------------------------------------------------------- def __connectMongo(self): """连接MongoDB数据库""" try: self.__mongoConnection = pymongo.MongoClient("localhost", 27017) self.__mongoConnected = True self.__mongoMinDB = self.__mongoConnection['VnTrader_1Min_Db'] except ConnectionFailure: pass ######################################################################## class TickWidget(QtGui.QWidget): """用于显示价格走势图""" signal = QtCore.pyqtSignal(type(Event())) # tick图的相关参数、变量 listlastPrice = np.empty(1000) fastMA = 0 midMA = 0 slowMA = 0 listfastMA = np.empty(1000) listmidMA = np.empty(1000) listslowMA = np.empty(1000) tickFastAlpha = 0.0333 # 快速均线的参数,30 tickMidAlpha = 0.0167 # 中速均线的参数,60 tickSlowAlpha = 0.0083 # 慢速均线的参数,120 ptr = 0 ticktime = None # tick数据时间 class CandlestickItem(pg.GraphicsObject): def __init__(self, data): pg.GraphicsObject.__init__(self) self.data = data ## data must have fields: time, open, close, min, max self.generatePicture() def generatePicture(self): ## pre-computing a QPicture object allows paint() to run much more quickly, ## rather than re-drawing the shapes every time. self.picture = QtGui.QPicture() p = QtGui.QPainter(self.picture) p.setPen(pg.mkPen(color='w', width=0.4)) # 0.4 means w*2 a = pg.AxisItem('bottom', pen=None, linkView=None, parent=None, maxTickLength=-5, showValues=True) a.setFixedWidth(1) a.setWidth(1) a.setLabel(show=True) a.setGrid(grid=True) labelStyle = {'color': '#FFF', 'font-size': '14pt'} a.setLabel('label text', units='V', **labelStyle) # w = (self.data[1][0] - self.data[0][0]) / 3. w = 0.2 for (t, open, close, min, max) in self.data: p.drawLine(QtCore.QPointF(t, min), QtCore.QPointF(t, max)) if open > close: p.setBrush(pg.mkBrush('g')) else: p.setBrush(pg.mkBrush('r')) p.drawRect(QtCore.QRectF(t-w, open, w*2, close-open)) pg.setConfigOption('leftButtonPan', False) p.end() def paint(self, p, *args): p.drawPicture(0, 0, self.picture) def boundingRect(self): ## boundingRect _must_ indicate the entire area that will be drawn on ## or else we will get artifacts and possibly crashing. ## (in this case, QPicture does all the work of computing the bouning rect for us) return QtCore.QRectF(self.picture.boundingRect()) #---------------------------------------------------------------------- def __init__(self, eventEngine, chanlunEngine, parent=None): """Constructor""" super(TickWidget, self).__init__(parent) self.__eventEngine = eventEngine self.__chanlunEngine = chanlunEngine # MongoDB数据库相关 self.__mongoConnected = False self.__mongoConnection = None self.__mongoTickDB = None # 调用函数 self.initUi() self.registerEvent() #---------------------------------------------------------------------- def initUi(self): """初始化界面""" self.setWindowTitle(u'Tick') self.vbl_1 = QtGui.QHBoxLayout() self.initplotTick() # plotTick初始化 self.setLayout(self.vbl_1) #---------------------------------------------------------------------- def initplotTick(self): """""" self.pw1 = pg.PlotWidget(name='Plot1') self.vbl_1.addWidget(self.pw1) self.pw1.setMinimumWidth(1500) self.pw1.setMaximumWidth(1800) self.pw1.setRange(xRange=[-360, 0]) self.pw1.setLimits(xMax=5) self.pw1.setDownsampling(mode='peak') self.pw1.setClipToView(True) self.curve1 = self.pw1.plot() self.curve2 = self.pw1.plot() self.curve3 = self.pw1.plot() self.curve4 = self.pw1.plot() # #---------------------------------------------------------------------- # def initHistoricalData(self,startDate=None): # """初始历史数据""" # print "download histrical data" # self.initCompleted = True # 读取历史数据完成 # td = timedelta(days=1) # 读取3天的历史TICK数据 # # if startDate: # cx = self.loadTick(self.symbol, startDate-td) # else: # today = datetime.today().replace(hour=0, minute=0, second=0, microsecond=0) # cx = self.loadTick(self.symbol, today-td) # # print cx.count() # # if cx: # for data in cx: # tick = Tick(data['symbol']) # # tick.openPrice = data['lastPrice'] # tick.highPrice = data['upperLimit'] # tick.lowPrice = data['lowerLimit'] # tick.lastPrice = data['lastPrice'] # # tick.volume = data['volume'] # tick.openInterest = data['openInterest'] # # tick.upperLimit = data['upperLimit'] # tick.lowerLimit = data['lowerLimit'] # # tick.time = data['time'] # # tick.ms = data['UpdateMillisec'] # # tick.bidPrice1 = data['bidPrice1'] # tick.bidPrice2 = data['bidPrice2'] # tick.bidPrice3 = data['bidPrice3'] # tick.bidPrice4 = data['bidPrice4'] # tick.bidPrice5 = data['bidPrice5'] # # tick.askPrice1 = data['askPrice1'] # tick.askPrice2 = data['askPrice2'] # tick.askPrice3 = data['askPrice3'] # tick.askPrice4 = data['askPrice4'] # tick.askPrice5 = data['askPrice5'] # # tick.bidVolume1 = data['bidVolume1'] # tick.bidVolume2 = data['bidVolume2'] # tick.bidVolume3 = data['bidVolume3'] # tick.bidVolume4 = data['bidVolume4'] # tick.bidVolume5 = data['bidVolume5'] # # tick.askVolume1 = data['askVolume1'] # tick.askVolume2 = data['askVolume2'] # tick.askVolume3 = data['askVolume3'] # tick.askVolume4 = data['askVolume4'] # tick.askVolume5 = data['askVolume5'] # # self.onTick(tick) # # print('load historic data completed') #---------------------------------------------------------------------- def plotTick(self): """画tick图""" self.curve1.setData(self.listlastPrice[:self.ptr]) self.curve2.setData(self.listfastMA[:self.ptr], pen=(255, 0, 0), name="Red curve") self.curve3.setData(self.listmidMA[:self.ptr], pen=(0, 255, 0), name="Green curve") self.curve4.setData(self.listslowMA[:self.ptr], pen=(0, 0, 255), name="Blue curve") self.curve1.setPos(-self.ptr, 0) self.curve2.setPos(-self.ptr, 0) self.curve3.setPos(-self.ptr, 0) self.curve4.setPos(-self.ptr, 0) #---------------------------------------------------------------------- def updateMarketData(self, event): """更新行情""" data = event.dict_['data'] print "update", data['InstrumentID'] symbol = data['InstrumentID'] tick = Tick(symbol) tick.openPrice = data['OpenPrice'] tick.highPrice = data['HighestPrice'] tick.lowPrice = data['LowestPrice'] tick.lastPrice = data['LastPrice'] tick.volume = data['Volume'] tick.openInterest = data['OpenInterest'] tick.upperLimit = data['UpperLimitPrice'] tick.lowerLimit = data['LowerLimitPrice'] tick.time = data['UpdateTime'] tick.ms = data['UpdateMillisec'] tick.bidPrice1 = data['BidPrice1'] tick.bidPrice2 = data['BidPrice2'] tick.bidPrice3 = data['BidPrice3'] tick.bidPrice4 = data['BidPrice4'] tick.bidPrice5 = data['BidPrice5'] tick.askPrice1 = data['AskPrice1'] tick.askPrice2 = data['AskPrice2'] tick.askPrice3 = data['AskPrice3'] tick.askPrice4 = data['AskPrice4'] tick.askPrice5 = data['AskPrice5'] tick.bidVolume1 = data['BidVolume1'] tick.bidVolume2 = data['BidVolume2'] tick.bidVolume3 = data['BidVolume3'] tick.bidVolume4 = data['BidVolume4'] tick.bidVolume5 = data['BidVolume5'] tick.askVolume1 = data['AskVolume1'] tick.askVolume2 = data['AskVolume2'] tick.askVolume3 = data['AskVolume3'] tick.askVolume4 = data['AskVolume4'] tick.askVolume5 = data['AskVolume5'] self.onTick(tick) # tick数据更新 self.__recordTick(tick) #记录Tick数据 #---------------------------------------------------------------------- def onTick(self, tick): """tick数据更新""" from datetime import time # 首先生成datetime.time格式的时间(便于比较),从字符串时间转化为time格式的时间 hh, mm, ss = tick.time.split(':') self.ticktime = time(int(hh), int(mm), int(ss), microsecond=tick.ms) # 计算tick图的相关参数 if self.ptr == 0: self.fastMA = tick.lastPrice self.midMA = tick.lastPrice self.slowMA = tick.lastPrice else: self.fastMA = (1-self.tickFastAlpha) * self.fastMA + self.tickFastAlpha * tick.lastPrice self.midMA = (1-self.tickMidAlpha) * self.midMA + self.tickMidAlpha * tick.lastPrice self.slowMA = (1-self.tickSlowAlpha) * self.slowMA + self.tickSlowAlpha * tick.lastPrice self.listlastPrice[self.ptr] = int(tick.lastPrice) self.listfastMA[self.ptr] = int(self.fastMA) self.listmidMA[self.ptr] = int(self.midMA) self.listslowMA[self.ptr] = int(self.slowMA) self.ptr += 1 print(self.ptr) if self.ptr >= self.listlastPrice.shape[0]: tmp = self.listlastPrice self.listlastPrice = np.empty(self.listlastPrice.shape[0] * 2) self.listlastPrice[:tmp.shape[0]] = tmp tmp = self.listfastMA self.listfastMA = np.empty(self.listfastMA.shape[0] * 2) self.listfastMA[:tmp.shape[0]] = tmp tmp = self.listmidMA self.listmidMA = np.empty(self.listmidMA.shape[0] * 2) self.listmidMA[:tmp.shape[0]] = tmp tmp = self.listslowMA self.listslowMA = np.empty(self.listslowMA.shape[0] * 2) self.listslowMA[:tmp.shape[0]] = tmp # 调用画图函数 self.plotTick() # tick图 #---------------------------------------------------------------------- def __connectMongo(self): """连接MongoDB数据库""" try: self.__mongoConnection = pymongo.MongoClient("localhost", 27017) self.__mongoConnected = True self.__mongoTickDB = self.__mongoConnection['VnTrader_Tick_Db'] except ConnectionFailure: pass #---------------------------------------------------------------------- def __recordTick(self, data): """将Tick数据插入到MongoDB中""" if self.__mongoConnected: symbol = data['InstrumentID'] data['date'] = datetime.now().strftime('%Y%m%d') self.__mongoTickDB[symbol].insert(data) # #---------------------------------------------------------------------- # def loadTick(self, symbol, startDate, endDate=None): # """从MongoDB中读取Tick数据""" # cx = self.__mongoTickDB[symbol].find() # print cx.count() # return cx # # if self.__mongoConnected: # # collection = self.__mongoTickDB[symbol] # # # # # 如果输入了读取TICK的最后日期 # # if endDate: # # cx = collection.find({'date': {'$gte': startDate, '$lte': endDate}}) # # else: # # cx = collection.find({'date': {'$gte': startDate}}) # # return cx # # else: # # return None #---------------------------------------------------------------------- def registerEvent(self): """注册事件监听""" print "connect" self.signal.connect(self.updateMarketData) self.__eventEngine.register(EVENT_MARKETDATA, self.signal.emit) class Tick: """Tick数据对象""" #---------------------------------------------------------------------- def __init__(self, symbol): """Constructor""" self.symbol = symbol # 合约代码 self.openPrice = 0 # OHLC self.highPrice = 0 self.lowPrice = 0 self.lastPrice = 0 self.volume = 0 # 成交量 self.openInterest = 0 # 持仓量 self.upperLimit = 0 # 涨停价 self.lowerLimit = 0 # 跌停价 self.time = '' # 更新时间和毫秒 self.ms = 0 self.bidPrice1 = 0 # 深度行情 self.bidPrice2 = 0 self.bidPrice3 = 0 self.bidPrice4 = 0 self.bidPrice5 = 0 self.askPrice1 = 0 self.askPrice2 = 0 self.askPrice3 = 0 self.askPrice4 = 0 self.askPrice5 = 0 self.bidVolume1 = 0 self.bidVolume2 = 0 self.bidVolume3 = 0 self.bidVolume4 = 0 self.bidVolume5 = 0 self.askVolume1 = 0 self.askVolume2 = 0 self.askVolume3 = 0 self.askVolume4 = 0 self.askVolume5 = 0
mit
1,005,031,568,701,190,500
37.755556
237
0.49587
false
3.238819
false
false
false
blsmit5728/PokeAlarm
PokeAlarm/Events/MonEvent.py
1
13089
# Standard Library Imports from datetime import datetime # 3rd Party Imports # Local Imports from PokeAlarm import Unknown from PokeAlarm.Utilities import MonUtils from PokeAlarm.Utils import ( get_gmaps_link, get_move_type, get_move_damage, get_move_dps, get_move_duration, get_move_energy, get_pokemon_size, get_applemaps_link, get_time_as_str, get_seconds_remaining, get_base_types, get_dist_as_str, get_weather_emoji, get_type_emoji) from . import BaseEvent class MonEvent(BaseEvent): """ Event representing the discovery of a Pokemon. """ def __init__(self, data): """ Creates a new Monster Event based on the given dict. """ super(MonEvent, self).__init__('monster') check_for_none = BaseEvent.check_for_none # Identification self.enc_id = data['encounter_id'] self.monster_id = int(data['pokemon_id']) # Time Left self.disappear_time = datetime.utcfromtimestamp(data['disappear_time']) self.time_left = get_seconds_remaining(self.disappear_time) # Spawn Data self.spawn_start = check_for_none( int, data.get('spawn_start'), Unknown.REGULAR) self.spawn_end = check_for_none( int, data.get('spawn_end'), Unknown.REGULAR) self.spawn_verified = check_for_none(bool, data.get('verified'), False) # Location self.lat = float(data['latitude']) self.lng = float(data['longitude']) self.distance = Unknown.SMALL # Completed by Manager self.direction = Unknown.TINY # Completed by Manager self.weather_id = check_for_none( int, data.get('weather'), Unknown.TINY) self.boosted_weather_id = check_for_none( int, data.get('boosted_weather') or data.get('weather_boosted_condition'), 0) # Encounter Stats self.mon_lvl = check_for_none( int, data.get('pokemon_level'), Unknown.TINY) self.cp = check_for_none(int, data.get('cp'), Unknown.TINY) # IVs self.atk_iv = check_for_none( int, data.get('individual_attack'), Unknown.TINY) self.def_iv = check_for_none( int, data.get('individual_defense'), Unknown.TINY) self.sta_iv = check_for_none( int, data.get('individual_stamina'), Unknown.TINY) if Unknown.is_not(self.atk_iv, self.def_iv, self.sta_iv): self.iv = \ 100 * (self.atk_iv + self.def_iv + self.sta_iv) / float(45) else: self.iv = Unknown.SMALL # Quick Move self.quick_id = check_for_none( int, data.get('move_1'), Unknown.TINY) self.quick_type = get_move_type(self.quick_id) self.quick_damage = get_move_damage(self.quick_id) self.quick_dps = get_move_dps(self.quick_id) self.quick_duration = get_move_duration(self.quick_id) self.quick_energy = get_move_energy(self.quick_id) # Charge Move self.charge_id = check_for_none( int, data.get('move_2'), Unknown.TINY) self.charge_type = get_move_type(self.charge_id) self.charge_damage = get_move_damage(self.charge_id) self.charge_dps = get_move_dps(self.charge_id) self.charge_duration = get_move_duration(self.charge_id) self.charge_energy = get_move_energy(self.charge_id) # Catch Probs self.base_catch = check_for_none( float, data.get('base_catch'), Unknown.TINY) self.great_catch = check_for_none( float, data.get('great_catch'), Unknown.TINY) self.ultra_catch = check_for_none( float, data.get('ultra_catch'), Unknown.TINY) # Attack Rating self.atk_grade = check_for_none( str, data.get('atk_grade'), Unknown.TINY) self.def_grade = check_for_none( str, data.get('def_grade'), Unknown.TINY) # Cosmetic self.gender = MonUtils.get_gender_sym( check_for_none(int, data.get('gender'), Unknown.TINY)) self.height = check_for_none(float, data.get('height'), Unknown.SMALL) self.weight = check_for_none(float, data.get('weight'), Unknown.SMALL) if Unknown.is_not(self.height, self.weight): self.size_id = get_pokemon_size( self.monster_id, self.height, self.weight) else: self.size_id = Unknown.SMALL self.types = get_base_types(self.monster_id) # Form self.form_id = check_for_none(int, data.get('form'), 0) # Costume self.costume_id = check_for_none(int, data.get('costume'), 0) # Correct this later self.name = self.monster_id self.geofence = Unknown.REGULAR self.custom_dts = {} def generate_dts(self, locale, timezone, units): """ Return a dict with all the DTS for this event. """ time = get_time_as_str(self.disappear_time, timezone) form_name = locale.get_form_name(self.monster_id, self.form_id) costume_name = locale.get_costume_name( self.monster_id, self.costume_id) weather_name = locale.get_weather_name(self.weather_id) boosted_weather_name = locale.get_weather_name(self.boosted_weather_id) type1 = locale.get_type_name(self.types[0]) type2 = locale.get_type_name(self.types[1]) dts = self.custom_dts.copy() dts.update({ # Identification 'encounter_id': self.enc_id, 'mon_name': locale.get_pokemon_name(self.monster_id), 'mon_id': self.monster_id, 'mon_id_3': "{:03}".format(self.monster_id), # Time Remaining 'time_left': time[0], '12h_time': time[1], '24h_time': time[2], # Spawn Data 'spawn_start': self.spawn_start, 'spawn_end': self.spawn_end, 'spawn_verified': self.spawn_verified, # Location 'lat': self.lat, 'lng': self.lng, 'lat_5': "{:.5f}".format(self.lat), 'lng_5': "{:.5f}".format(self.lng), 'distance': ( get_dist_as_str(self.distance, units) if Unknown.is_not(self.distance) else Unknown.SMALL), 'direction': self.direction, 'gmaps': get_gmaps_link(self.lat, self.lng), 'applemaps': get_applemaps_link(self.lat, self.lng), 'geofence': self.geofence, # Weather 'weather_id': self.weather_id, 'weather': weather_name, 'weather_or_empty': Unknown.or_empty(weather_name), 'weather_emoji': get_weather_emoji(self.weather_id), 'boosted_weather_id': self.boosted_weather_id, 'boosted_weather': boosted_weather_name, 'boosted_weather_or_empty': ( '' if self.boosted_weather_id == 0 else Unknown.or_empty(boosted_weather_name)), 'boosted_weather_emoji': get_weather_emoji(self.boosted_weather_id), 'boosted_or_empty': locale.get_boosted_text() if \ Unknown.is_not(self.boosted_weather_id) and self.boosted_weather_id != 0 else '', # Encounter Stats 'mon_lvl': self.mon_lvl, 'cp': self.cp, # IVs 'iv_0': ( "{:.0f}".format(self.iv) if Unknown.is_not(self.iv) else Unknown.TINY), 'iv': ( "{:.1f}".format(self.iv) if Unknown.is_not(self.iv) else Unknown.SMALL), 'iv_2': ( "{:.2f}".format(self.iv) if Unknown.is_not(self.iv) else Unknown.SMALL), 'atk': self.atk_iv, 'def': self.def_iv, 'sta': self.sta_iv, # Type 'type1': type1, 'type1_or_empty': Unknown.or_empty(type1), 'type1_emoji': Unknown.or_empty(get_type_emoji(self.types[0])), 'type2': type2, 'type2_or_empty': Unknown.or_empty(type2), 'type2_emoji': Unknown.or_empty(get_type_emoji(self.types[1])), 'types': ( "{}/{}".format(type1, type2) if Unknown.is_not(type2) else type1), 'types_emoji': ( "{}{}".format( get_type_emoji(self.types[0]), get_type_emoji(self.types[1])) if Unknown.is_not(type2) else get_type_emoji(self.types[0])), # Form 'form': form_name, 'form_or_empty': Unknown.or_empty(form_name), 'form_id': self.form_id, 'form_id_3': "{:03d}".format(self.form_id), # Costume 'costume': costume_name, 'costume_or_empty': Unknown.or_empty(costume_name), 'costume_id': self.costume_id, 'costume_id_3': "{:03d}".format(self.costume_id), # Quick Move 'quick_move': locale.get_move_name(self.quick_id), 'quick_id': self.quick_id, 'quick_type_id': self.quick_type, 'quick_type': locale.get_type_name(self.quick_type), 'quick_type_emoji': get_type_emoji(self.quick_type), 'quick_damage': self.quick_damage, 'quick_dps': self.quick_dps, 'quick_duration': self.quick_duration, 'quick_energy': self.quick_energy, # Charge Move 'charge_move': locale.get_move_name(self.charge_id), 'charge_id': self.charge_id, 'charge_type_id': self.charge_type, 'charge_type': locale.get_type_name(self.charge_type), 'charge_type_emoji': get_type_emoji(self.charge_type), 'charge_damage': self.charge_damage, 'charge_dps': self.charge_dps, 'charge_duration': self.charge_duration, 'charge_energy': self.charge_energy, # Cosmetic 'gender': self.gender, 'height_0': ( "{:.0f}".format(self.height) if Unknown.is_not(self.height) else Unknown.TINY), 'height': ( "{:.1f}".format(self.height) if Unknown.is_not(self.height) else Unknown.SMALL), 'height_2': ( "{:.2f}".format(self.height) if Unknown.is_not(self.height) else Unknown.SMALL), 'weight_0': ( "{:.0f}".format(self.weight) if Unknown.is_not(self.weight) else Unknown.TINY), 'weight': ( "{:.1f}".format(self.weight) if Unknown.is_not(self.weight) else Unknown.SMALL), 'weight_2': ( "{:.2f}".format(self.weight) if Unknown.is_not(self.weight) else Unknown.SMALL), 'size': locale.get_size_name(self.size_id), # Attack rating 'atk_grade': ( Unknown.or_empty(self.atk_grade, Unknown.TINY)), 'def_grade': ( Unknown.or_empty(self.def_grade, Unknown.TINY)), # Catch Prob 'base_catch_0': ( "{:.0f}".format(self.base_catch * 100) if Unknown.is_not(self.base_catch) else Unknown.TINY), 'base_catch': ( "{:.1f}".format(self.base_catch * 100) if Unknown.is_not(self.base_catch) else Unknown.SMALL), 'base_catch_2': ( "{:.2f}".format(self.base_catch * 100) if Unknown.is_not(self.base_catch) else Unknown.SMALL), 'great_catch_0': ( "{:.0f}".format(self.great_catch * 100) if Unknown.is_not(self.great_catch) else Unknown.TINY), 'great_catch': ( "{:.1f}".format(self.great_catch * 100) if Unknown.is_not(self.great_catch) else Unknown.SMALL), 'great_catch_2': ( "{:.2f}".format(self.great_catch * 100) if Unknown.is_not(self.great_catch) else Unknown.SMALL), 'ultra_catch_0': ( "{:.0f}".format(self.ultra_catch * 100) if Unknown.is_not(self.ultra_catch) else Unknown.TINY), 'ultra_catch': ( "{:.1f}".format(self.ultra_catch * 100) if Unknown.is_not(self.ultra_catch) else Unknown.SMALL), 'ultra_catch_2': ( "{:.2f}".format(self.ultra_catch * 100) if Unknown.is_not(self.ultra_catch) else Unknown.SMALL), # Misc 'big_karp': ( 'big' if self.monster_id == 129 and Unknown.is_not(self.weight) and self.weight >= 13.13 else ''), 'tiny_rat': ( 'tiny' if self.monster_id == 19 and Unknown.is_not(self.weight) and self.weight <= 2.41 else '') }) return dts
agpl-3.0
1,737,988,250,561,061,600
39.150307
79
0.533578
false
3.544273
false
false
false
PLyczkowski/Sticky-Keymap
2.74/scripts/addons/io_anim_bvh/__init__.py
1
8032
# ##### BEGIN GPL LICENSE BLOCK ##### # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software Foundation, # Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. # # ##### END GPL LICENSE BLOCK ##### # <pep8-80 compliant> bl_info = { "name": "BioVision Motion Capture (BVH) format", "author": "Campbell Barton", "blender": (2, 74, 0), "location": "File > Import-Export", "description": "Import-Export BVH from armature objects", "warning": "", "wiki_url": "http://wiki.blender.org/index.php/Extensions:2.6/Py/" "Scripts/Import-Export/MotionCapture_BVH", "support": 'OFFICIAL', "category": "Import-Export"} if "bpy" in locals(): import importlib if "import_bvh" in locals(): importlib.reload(import_bvh) if "export_bvh" in locals(): importlib.reload(export_bvh) import bpy from bpy.props import (StringProperty, FloatProperty, IntProperty, BoolProperty, EnumProperty, ) from bpy_extras.io_utils import (ImportHelper, ExportHelper, orientation_helper_factory, axis_conversion, ) ImportBVHOrientationHelper = orientation_helper_factory("ImportBVHOrientationHelper", axis_forward='-Z', axis_up='Y') class ImportBVH(bpy.types.Operator, ImportHelper, ImportBVHOrientationHelper): """Load a BVH motion capture file""" bl_idname = "import_anim.bvh" bl_label = "Import BVH" bl_options = {'REGISTER', 'UNDO'} filename_ext = ".bvh" filter_glob = StringProperty(default="*.bvh", options={'HIDDEN'}) target = EnumProperty(items=( ('ARMATURE', "Armature", ""), ('OBJECT', "Object", ""), ), name="Target", description="Import target type", default='ARMATURE') global_scale = FloatProperty( name="Scale", description="Scale the BVH by this value", min=0.0001, max=1000000.0, soft_min=0.001, soft_max=100.0, default=1.0, ) frame_start = IntProperty( name="Start Frame", description="Starting frame for the animation", default=1, ) use_fps_scale = BoolProperty( name="Scale FPS", description=("Scale the framerate from the BVH to " "the current scenes, otherwise each " "BVH frame maps directly to a Blender frame"), default=False, ) use_cyclic = BoolProperty( name="Loop", description="Loop the animation playback", default=False, ) rotate_mode = EnumProperty( name="Rotation", description="Rotation conversion", items=(('QUATERNION', "Quaternion", "Convert rotations to quaternions"), ('NATIVE', "Euler (Native)", ("Use the rotation order " "defined in the BVH file")), ('XYZ', "Euler (XYZ)", "Convert rotations to euler XYZ"), ('XZY', "Euler (XZY)", "Convert rotations to euler XZY"), ('YXZ', "Euler (YXZ)", "Convert rotations to euler YXZ"), ('YZX', "Euler (YZX)", "Convert rotations to euler YZX"), ('ZXY', "Euler (ZXY)", "Convert rotations to euler ZXY"), ('ZYX', "Euler (ZYX)", "Convert rotations to euler ZYX"), ), default='NATIVE', ) def execute(self, context): keywords = self.as_keywords(ignore=("axis_forward", "axis_up", "filter_glob", )) global_matrix = axis_conversion(from_forward=self.axis_forward, from_up=self.axis_up, ).to_4x4() keywords["global_matrix"] = global_matrix from . import import_bvh return import_bvh.load(self, context, **keywords) class ExportBVH(bpy.types.Operator, ExportHelper): """Save a BVH motion capture file from an armature""" bl_idname = "export_anim.bvh" bl_label = "Export BVH" filename_ext = ".bvh" filter_glob = StringProperty( default="*.bvh", options={'HIDDEN'}, ) global_scale = FloatProperty( name="Scale", description="Scale the BVH by this value", min=0.0001, max=1000000.0, soft_min=0.001, soft_max=100.0, default=1.0, ) frame_start = IntProperty( name="Start Frame", description="Starting frame to export", default=0, ) frame_end = IntProperty( name="End Frame", description="End frame to export", default=0, ) rotate_mode = EnumProperty( name="Rotation", description="Rotation conversion", items=(('NATIVE', "Euler (Native)", "Use the rotation order defined in the BVH file"), ('XYZ', "Euler (XYZ)", "Convert rotations to euler XYZ"), ('XZY', "Euler (XZY)", "Convert rotations to euler XZY"), ('YXZ', "Euler (YXZ)", "Convert rotations to euler YXZ"), ('YZX', "Euler (YZX)", "Convert rotations to euler YZX"), ('ZXY', "Euler (ZXY)", "Convert rotations to euler ZXY"), ('ZYX', "Euler (ZYX)", "Convert rotations to euler ZYX"), ), default='NATIVE', ) root_transform_only = BoolProperty( name="Root Translation Only", description="Only write out translation channels for the root bone", default=False, ) @classmethod def poll(cls, context): obj = context.object return obj and obj.type == 'ARMATURE' def invoke(self, context, event): self.frame_start = context.scene.frame_start self.frame_end = context.scene.frame_end return super().invoke(context, event) def execute(self, context): if self.frame_start == 0 and self.frame_end == 0: self.frame_start = context.scene.frame_start self.frame_end = context.scene.frame_end keywords = self.as_keywords(ignore=("check_existing", "filter_glob")) from . import export_bvh return export_bvh.save(self, context, **keywords) def menu_func_import(self, context): self.layout.operator(ImportBVH.bl_idname, text="Motion Capture (.bvh)") def menu_func_export(self, context): self.layout.operator(ExportBVH.bl_idname, text="Motion Capture (.bvh)") def register(): bpy.utils.register_module(__name__) bpy.types.INFO_MT_file_import.append(menu_func_import) bpy.types.INFO_MT_file_export.append(menu_func_export) def unregister(): bpy.utils.unregister_module(__name__) bpy.types.INFO_MT_file_import.remove(menu_func_import) bpy.types.INFO_MT_file_export.remove(menu_func_export) if __name__ == "__main__": register()
gpl-2.0
8,315,018,521,340,759,000
35.017937
117
0.54868
false
4.058615
false
false
false
desihub/desimodel
py/desimodel/weather.py
1
15591
# See LICENSE.rst for BSD 3-clause license info # -*- coding: utf-8 -*- """ desimodel.weather ================= Model of the expected weather conditions at KPNO during the DESI survey. To generate a random time series of expected FWHM seeing in arcsecs and atmospheric transparency, use, for example:: n = 10000 dt = 300 # seconds t = np.arange(n) * dt gen = np.random.RandomState(seed=123) seeing = sample_seeing(n, dt_sec=dt, gen=gen) transp = sample_transp(n, dt_sec=dt, gen=gen) The resulting arrays are randomly sampled from models of the 1D probability density and 2-point power spectral density derived from MzLS observations. See `DESI-doc-3087 <https://desi.lbl.gov/DocDB/cgi-bin/private/ShowDocument?docid=3087>`__ for details. Used by :mod:`surveysim.weather` for simulations of DESI observing and survey strategy studies. """ from __future__ import print_function, division import os import datetime import calendar import numpy as np import scipy.interpolate import scipy.special import astropy.table def whiten_transforms_from_cdf(x, cdf): """ Calculate a pair of transforms to whiten and unwhiten a distribution. The whitening transform is monotonic and invertible. Parameters ---------- x : array 1D array of non-decreasing values giving bin edges for the distribution to whiten and unwhiten. cdf : array 1D array of non-decreasing values giving the cummulative probability density associated with each bin edge. Does not need to be normalized. Must have the same length as x. Returns ------- tuple Tuple (F,G) of callable objects that whiten y=F(x) and unwhiten x=G(y) samples x of the input distribution, so that y has a Gaussian distribution with zero mean and unit variance. """ x = np.asarray(x) cdf = np.asarray(cdf) if x.shape != cdf.shape: raise ValueError('Input arrays must have same shape.') if len(x.shape) != 1: raise ValueError('Input arrays must be 1D.') if not np.all(np.diff(x) >= 0): raise ValueError('Values of x must be non-decreasing.') if not np.all(np.diff(cdf) >= 0): raise ValueError('Values of cdf must be non-decreasing.') # Normalize. cdf /= cdf[-1] # Use linear interpolation for the forward and inverse transforms between # the input range and Gaussian CDF values. args = dict( kind='linear', assume_sorted=True, copy=False, bounds_error=True) forward = scipy.interpolate.interp1d(x, cdf, **args) backward = scipy.interpolate.interp1d(cdf, x, **args) # Add wrappers to convert between CDF and PDF samples. root2 = np.sqrt(2) forward_transform = ( lambda x: root2 * scipy.special.erfinv(2 * forward(x) - 1)) inverse_transform = ( lambda y: backward(0.5 * (1 + scipy.special.erf(y / root2)))) return forward_transform, inverse_transform def whiten_transforms(data, data_min=None, data_max=None): """Calculate a pair of transforms to whiten and unwhiten a distribution. Uses :func:`desimodel.weather.whiten_transforms_from_cdf`. Parameters ---------- data : array 1D array of samples from the distribution to whiten. data_min : float or None Clip the distribution to this minimum value, or at min(data) if None. Must be <= min(data). data_max : float or None Clip the distribution to this maximum value, or at max(data) if None. Must be >= max(data). Returns ------- tuple See :func:`desimodel.weather.whiten_transforms_from_cdf`. """ n_data = len(data) # Sort the input data with padding at each end for the min/max values. sorted_data = np.empty(shape=n_data + 2, dtype=data.dtype) sorted_data[1:-1] = np.sort(data) if data_min is None: sorted_data[0] = sorted_data[1] else: if data_min > sorted_data[1]: raise ValueError('data_min > min(data)') sorted_data[0] = data_min if data_max is None: sorted_data[-1] = sorted_data[-2] else: if data_max < sorted_data[-2]: raise ValueError('data_max < max(data)') sorted_data[-1] = data_max # Calculate the Gaussian CDF value associated with each input value in # sorted order. The pad values are associated with CDF = 0, 1 respectively. cdf = np.arange(n_data + 2) / (n_data + 1.) return whiten_transforms_from_cdf(sorted_data, cdf) def _seeing_fit_model(x): """Evalute the fit to MzLS seeing described in DESI-doc-3087. """ p = np.array([ 0.07511146, 0.44276671, 23.02442192, 38.07691498]) y = (1 + ((x - p[0]) / p[1]) ** 2) ** (-p[2]) * x ** p[3] return y / (y.sum() * np.gradient(x)) def get_seeing_pdf(median_seeing=1.1, max_seeing=2.5, n=250): """Return PDF of FWHM seeing for specified clipped median value. Note that this is atmospheric seeing, not delivered image quality. The reference wavelength for seeing values is 6355A, in the r band, and the observed wavelength dependence in Dey & Valdes is closer to ``lambda ** (-1/15)`` than the ``lambda ** (-1/5)`` predicted by Kolmogorov theory. See DESI-doc-3087 for details. Scales the clipped MzLS seeing PDF in order to achieve the requested median value. Note that clipping is applied before scaling, so the output PDF is clipped at scale * max_seeing. Parameters ---------- median_seeing : float Target FWHM seeing value in arcsec. Must be in the range [0.95, 1.30]. max_seeing : float Calculate scaled median using unscaled values below this value. n : int Size of grid to use for tabulating the returned arrays. Returns ------- tuple Tuple (fwhm, pdf) that tabulates pdf[fwhm]. Normalized so that ``np.sum(pdf * np.gradient(fwhm)) = 1``. """ # Tabulate the nominal (scale=1) seeing PDF. fwhm = np.linspace(0., max_seeing, n) pdf = _seeing_fit_model(fwhm) pdf /= (pdf.sum() * np.gradient(fwhm)) cdf = np.cumsum(pdf) cdf /= cdf[-1] # Tabulate the median as a function of FWHM scale. scale = np.linspace(0.9, 1.4, 11) median = np.empty_like(scale) for i, s in enumerate(scale): median[i] = np.interp(0.5, cdf, s * fwhm) if median_seeing < median[0] or median_seeing > median[-1]: raise ValueError('Requested median is outside allowed range.') # Interpolate to find the scale factor that gives the requested median. s = np.interp(median_seeing, median, scale) return fwhm * s, pdf / s def sample_timeseries(x_grid, pdf_grid, psd, n_sample, dt_sec=180., gen=None): """Sample a time series specified by a power spectrum and 1D PDF. The PSD should describe the temporal correlations of whitened samples. Generated samples will then be unwhitened to recover the input 1D PDF. See DESI-doc-3087 for details. Uses :func:`whiten_transforms_from_cdf`. Parameters ---------- x_grid : array 1D array of N increasing grid values covering the parameter range to sample from. pdf_grid : array 1D array of N increasing PDF values corresponding to each x_grid. Does not need to be normalized. psd : callable Function of frequency in 1/days that returns the power-spectral density of whitened temporal fluctations to sample from. Will only be called for positive frequencies. Normalization does not matter. n_sample : int Number of equally spaced samples to generate. dt_sec : float Time interval between samples in seconds. gen : np.random.RandomState or None Provide an existing RandomState for full control of reproducible random numbers, or None for non-reproducible random numbers. """ x_grid = np.array(x_grid) pdf_grid = np.array(pdf_grid) if not np.all(np.diff(x_grid) > 0): raise ValueError('x_grid values are not increasing.') if x_grid.shape != pdf_grid.shape: raise ValueError('x_grid and pdf_grid arrays have different shapes.') # Initialize random numbers if necessary. if gen is None: gen = np.random.RandomState() # Calculate the CDF. cdf_grid = np.cumsum(pdf_grid) cdf_grid /= cdf_grid[-1] # Calculate whitening / unwhitening transforms. whiten, unwhiten = whiten_transforms_from_cdf(x_grid, cdf_grid) # Build a linear grid of frequencies present in the Fourier transform # of the requested time series. Frequency units are 1/day. dt_day = dt_sec / (24. * 3600.) df_day = 1. / (n_sample * dt_day) f_grid = np.arange(1 + (n_sample // 2)) * df_day # Tabulate the power spectral density at each frequency. The PSD # describes seeing fluctuations that have been "whitened", i.e., mapped # via a non-linear monotonic transform to have unit Gaussian probability # density. psd_grid = np.empty_like(f_grid) psd_grid[1:] = psd(f_grid[1:]) # Force the mean to zero. psd_grid[0] = 0. # Force the variance to one. psd_grid[1:] /= psd_grid[1:].sum() * df_day ** 2 # Generate random whitened samples. n_psd = len(psd_grid) x_fft = np.ones(n_psd, dtype=complex) x_fft[1:-1].real = gen.normal(size=n_psd - 2) x_fft[1:-1].imag = gen.normal(size=n_psd - 2) x_fft *= np.sqrt(psd_grid) / (2 * dt_day) x_fft[0] *= np.sqrt(2) x = np.fft.irfft(x_fft, n_sample) # Un-whiten the samples to recover the desired 1D PDF. x_cdf = 0.5 * (1 + scipy.special.erf(x / np.sqrt(2))) return np.interp(x_cdf, cdf_grid, x_grid) def _seeing_psd(freq): """Evaluate the 'chi-by-eye' fit of the seeing PSD described in DESI-doc-3087. """ N, f0, a0, a1 = 8000, 0.10, 2.8, -1.1 return (N * (freq/f0)**a0 / (1 + (freq/f0)**a0) * (freq/f0) ** a1 / (10 + (freq/f0) ** a1)) def sample_seeing(n_sample, dt_sec=180., median_seeing=1.1, max_seeing=2.5, gen=None): """Generate a random time series of FWHM seeing values. See DESI-doc-3087 for details. Uses :func:`get_seeing_pdf`, :func:`_seeing_psd` and :func:`sample_timeseries`. Parameters ---------- n_sample : int Number of equally spaced samples to generate. dt_sec : float Time interval between samples in seconds. median_seeing : float See :func:`get_seeing_pdf`. mex_seeing : float See :func:`get_seeing_pdf`. gen : np.random.RandomState or None Provide an existing RandomState for full control of reproducible random numbers, or None for non-reproducible random numbers. Returns ------- array 1D array of randomly generated samples. """ fwhm_grid, pdf_grid = get_seeing_pdf(median_seeing, max_seeing) return sample_timeseries( fwhm_grid, pdf_grid, _seeing_psd, n_sample, dt_sec, gen) _transp_pdf_cum = np.array([0.06,0.11,1.0]) _transp_pdf_powers = np.array([0., 2.5, 35.]) def get_transp_pdf(n=250): """Return PDF of atmospheric transparency. Derived from MzLS observations, but corrected for dust accumulation and measurement error. See DESI-doc-3087 for details. Parameters ---------- n : int Size of grid to use for tabulating the returned arrays. Returns ------- tuple Tuple (transp, pdf) that tabulates pdf[transp]. Normalized so that ``np.sum(pdf * np.gradient(transp)) = 1``. """ transp = np.linspace(0., 1., n) pdf = np.zeros_like(transp) last_c = 0. for c, p in zip(_transp_pdf_cum, _transp_pdf_powers): pdf += (c - last_c) * np.power(transp, p) * (p + 1) last_c = c pdf /= pdf.sum() * np.gradient(transp) return transp, pdf def _transp_psd(freq): """Evaluate the 'chi-by-eye' fit of the transparency PSD described in DESI-doc-3087. """ N, f0, a0, a1 = 500, 1.5, 0.0, -1.5 return (N * (freq/f0)**a0 / (1 + (freq/f0)**a0) * (freq/f0) ** a1 / (1 + (freq/f0) ** a1)) def sample_transp(n_sample, dt_sec=180., gen=None): """Generate a random time series of atmospheric transparency values. See DESI-doc-3087 for details. Uses :func:`get_transp_pdf`, :func:`_transp_psd` and :func:`sample_timeseries`. Parameters ---------- n_sample : int Number of equally spaced samples to generate. dt_sec : float Time interval between samples in seconds. gen : np.random.RandomState or None Provide an existing RandomState for full control of reproducible random numbers, or None for non-reproducible random numbers. Returns ------- array 1D array of randomly generated samples. """ transp_grid, pdf_grid = get_transp_pdf() return sample_timeseries( transp_grid, pdf_grid, _transp_psd, n_sample, dt_sec, gen) def dome_closed_fractions(start_date, stop_date, replay='Y2007,Y2008,Y2009,Y2010,Y2011,Y2012,Y2013,Y2014'): """Return dome-closed fractions for each night of the survey. Years can be replayed in any order. If the number of years to replay is less than the survey duration, they are repeated. Parameters ---------- start_date : datetime.date or None Survey starts on the evening of this date. Use the ``first_day`` config parameter if None (the default). stop_date : datetime.date or None Survey stops on the morning of this date. Use the ``last_day`` config parameter if None (the default). replay : str Comma-separated list of years to replay, identified by arbitrary strings that must match column names in the DESIMODEL weather history. Returns ------- numpy array 1D array of N probabilities between 0-1, where N is the number of nights spanned by the start and stop dates. """ # Check the inputs. num_nights = (stop_date - start_date).days if num_nights <= 0: raise ValueError('Expected start_date < stop_date.') replay = replay.split(',') # Load tabulated daily weather history. DESIMODEL = os.getenv('DESIMODEL') path = os.path.join(DESIMODEL, 'data', 'weather', 'daily-2007-2017.csv') t = astropy.table.Table.read(path) if not len(t) == 365: raise ValueError('Invalid weather history length (expected 365).') years = t.colnames lostfracs = [] for yr in replay: if yr not in years: raise ValueError('Replay year "{}" not in weather history.'.format(yr)) lostfrac = t[yr].data if not np.all((lostfrac >= 0) & (lostfrac <= 1)): raise ValueError('Invalid weather history for replay year "{}".'.format(yr)) lostfracs.append(lostfrac) # Replay the specified years (with wrap-around if necessary), # overlaid on the actual survey dates. probs = np.zeros(num_nights) start = start_date for year_num, year in enumerate(range(start_date.year, stop_date.year + 1)): first = datetime.date(year=year, month=1, day=1) stop = datetime.date(year=year + 1, month=1, day=1) if stop > stop_date: stop = stop_date n = (stop - start).days if n == 0: break if calendar.isleap(year): n -= 1 idx = (start - start_date).days jdx = (start - first).days lostfrac = lostfracs[year_num % len(replay)] probs[idx:idx + n] = lostfrac[jdx:jdx + n] start = stop return probs
bsd-3-clause
-3,878,208,059,081,789,000
35.174014
88
0.635944
false
3.441722
false
false
false
taoliu/taolib
Scripts/kmeans2image.py
1
1598
#!/usr/bin/env python # Time-stamp: <2009-04-14 14:07:21 Tao Liu> import os import sys import re from PIL import Image, ImageDraw # ------------------------------------ # Main function # ------------------------------------ help_message = """ Draw the K-means clustering result. need 6 parameter: %s <kmeans_file> <lim> <x_points> <y_points> <x_ext> <y_ext> kmeans_file : tab-delimited plain text file. First column is cluster number by k-means, and following columns are data columns. lim : data value limit x_points : number of data value columns y_points : number of rows x_ext : pixels extended in x-axis y_ext : pixels extended in y-axis """ % sys.argv[0] def main(): if len(sys.argv) < 7: sys.stderr.write(help_message) sys.exit(1) fhd = open (sys.argv[1]) lim = int(sys.argv[2]) x_points = int(sys.argv[3]) y_points = int(sys.argv[4]) x_ext = int(sys.argv[5]) y_ext = int(sys.argv[6]) a = Image.new("RGB",(x_points*x_ext,y_points*y_ext),"white") d = ImageDraw.Draw(a) y = 0 for i in fhd: y += 1 i.strip() if not re.search("^\d+",i): continue values = map(float,i.split()) x = 0 cl = values[0] for v in values[1:]: x += 1 c = "hsl(%d,100%%,%d%%)" % (cl*70,min(1,v/lim)*90.0) d.rectangle([(int(x*x_ext),int(y*y_ext)),(int((x+1)*x_ext),int((y+1)*y_ext))],outline=c,fill=c) a.save(sys.argv[1]+".png") print "check %s!" % (sys.argv[1]+".png") if __name__ == '__main__': main()
bsd-3-clause
-4,875,349,459,735,880,000
25.196721
127
0.530663
false
2.910747
false
false
false
TripleSnail/blender-zombie
python/text.py
1
1754
# ##### BEGIN GPL LICENSE BLOCK ##### # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software Foundation, # Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. # # ##### END GPL LICENSE BLOCK ##### import bge import bgl import blf DPI = 72 class TextObject(object): def __init__(self, text, px, py, size, time=0): self.text = text self.px = px self.py = py self.size = size self.time = time text_objects = [] def init(controller): font_path = bge.logic.expandPath('//fonts/DejaVuSans.ttf') bge.logic.font_id = blf.load(font_path) scene = bge.logic.getCurrentScene() scene.post_draw = [write] def write(): width = bge.render.getWindowWidth() height = bge.render.getWindowHeight() bgl.glMatrixMode(bgl.GL_PROJECTION) bgl.glLoadIdentity() bgl.gluOrtho2D(0, width, 0, height) bgl.glMatrixMode(bgl.GL_MODELVIEW) bgl.glLoadIdentity() font_id = bge.logic.font_id for text_obj in text_objects: blf.position(font_id, width * text_obj.px , height * text_obj.py, 0) blf.size(font_id, text_obj.size, DPI) blf.draw(font_id, text_obj.text)
gpl-2.0
8,312,866,228,532,016,000
28.728814
76
0.676739
false
3.31569
false
false
false
renyi/drum
drum/links/templatetags/drum_tags.py
1
1472
from __future__ import unicode_literals from collections import defaultdict from django.template.defaultfilters import timesince from mezzanine import template from mezzanine.generic.models import ThreadedComment from drum.links.utils import order_by_score from drum.links.models import LinkCategory from drum.links.views import CommentList, USER_PROFILE_RELATED_NAME register = template.Library() @register.filter def get_profile(user): """ Returns the profile object associated with the given user. """ return getattr(user, USER_PROFILE_RELATED_NAME) @register.simple_tag(takes_context=True) def order_comments_by_score_for(context, link): """ Preloads threaded comments in the same way Mezzanine initially does, but here we order them by score. """ comments = defaultdict(list) qs = link.comments.visible().select_related( "user", "user__%s" % (USER_PROFILE_RELATED_NAME) ) for comment in order_by_score(qs, CommentList.score_fields, "submit_date"): comments[comment.replied_to_id].append(comment) context["all_comments"] = comments return "" @register.filter def short_timesince(date): return timesince(date).split(",")[0] @register.as_tag def link_category_list(*args): return LinkCategory.objects.all() @register.as_tag def latest_comments(limit=5, *args): qs = ThreadedComment.objects.filter(is_removed=False, is_public=True) return qs.reverse()[:limit]
bsd-2-clause
-4,074,832,187,691,731,000
25.763636
79
0.724185
false
3.607843
false
false
false
gdsfactory/gdsfactory
pp/layers.py
1
9564
"""A GDS layer is a tuple of two integers. You can: - Define your layers in a dataclass - Load it from Klayout XML file (.lyp) LayerSet adapted from phidl.device_layout load_lyp, name_to_description, name_to_short_name adapted from phidl.utilities preview_layerset adapted from phidl.geometry """ import pathlib from pathlib import Path from typing import Optional, Tuple import xmltodict from phidl.device_layout import Layer as LayerPhidl from phidl.device_layout import LayerSet as LayerSetPhidl from pp.component import Component from pp.name import clean_name from pp.tech import TECH from pp.types import PathType LAYER = TECH.layer class LayerSet(LayerSetPhidl): def add_layer( self, name: str = "unnamed", gds_layer: int = 0, gds_datatype: int = 0, description: Optional[str] = None, color: Optional[str] = None, inverted: bool = False, alpha: float = 0.6, dither: bool = None, ): """Adds a layer to an existing LayerSet object for nice colors. Args: name: Name of the Layer. gds_layer: GDSII Layer number. gds_datatype: GDSII datatype. description: Layer description. color: Hex code of color for the Layer. inverted: If true, inverts the Layer. alpha: layer opacity between 0 and 1. dither: KLayout dither style, only used in phidl.utilities.write_lyp(). """ new_layer = LayerPhidl( gds_layer=gds_layer, gds_datatype=gds_datatype, name=name, description=description, inverted=inverted, color=color, alpha=alpha, dither=dither, ) if name in self._layers: raise ValueError( f"Adding {name} already defined {list(self._layers.keys())}" ) else: self._layers[name] = new_layer # def __getitem__(self, val: str) -> Tuple[int, int]: # """Returns gds layer tuple.""" # if val not in self._layers: # raise ValueError(f"Layer {val} not in {list(self._layers.keys())}") # else: # layer = self._layers[val] # return layer.gds_layer, layer.gds_datatype def __repr__(self): """Prints the number of Layers in the LayerSet object.""" return ( f"LayerSet ({len(self._layers)} layers total) \n" + f"{list(self._layers.keys())}" ) def get(self, name: str) -> LayerPhidl: """Returns Layer from name.""" if name not in self._layers: raise ValueError(f"Layer {name} not in {list(self._layers.keys())}") else: return self._layers[name] def get_from_tuple(self, layer_tuple: Tuple[int, int]) -> LayerPhidl: """Returns Layer from layer tuple (gds_layer, gds_datatype).""" tuple_to_name = { (v.gds_layer, v.gds_datatype): k for k, v in self._layers.items() } if layer_tuple not in tuple_to_name: raise ValueError(f"Layer {layer_tuple} not in {list(tuple_to_name.keys())}") name = tuple_to_name[layer_tuple] return self._layers[name] LAYER_COLORS = LayerSet() # Layerset makes plotgds look good LAYER_COLORS.add_layer("WG", LAYER.WG[0], 0, "wg", color="gray", alpha=1) LAYER_COLORS.add_layer("WGCLAD", LAYER.WGCLAD[0], 0, "", color="gray", alpha=0) LAYER_COLORS.add_layer("SLAB150", LAYER.SLAB150[0], 0, "", color="lightblue", alpha=0.6) LAYER_COLORS.add_layer("SLAB90", LAYER.SLAB90[0], 0, "", color="lightblue", alpha=0.2) LAYER_COLORS.add_layer("WGN", LAYER.WGN[0], 0, "", color="orange", alpha=1) LAYER_COLORS.add_layer("WGN_CLAD", LAYER.WGN_CLAD[0], 0, "", color="gray", alpha=0) LAYER_COLORS.add_layer("DEVREC", LAYER.DEVREC[0], 0, "", color="gray", alpha=0.1) PORT_LAYER_TO_TYPE = { LAYER.PORT: "optical", LAYER.PORTE: "dc", LAYER.PORTH: "heater", LAYER.TE: "vertical_te", LAYER.TM: "vertical_tm", } PORT_TYPE_TO_LAYER = {v: k for k, v in PORT_LAYER_TO_TYPE.items()} def preview_layerset( ls: LayerSet = LAYER_COLORS, size: float = 100.0, spacing: float = 100.0 ) -> Component: """Generates a preview Device with representations of all the layers, used for previewing LayerSet color schemes in quickplot or saved .gds files """ import numpy as np import pp D = Component(name="layerset") scale = size / 100 num_layers = len(ls._layers) matrix_size = int(np.ceil(np.sqrt(num_layers))) sorted_layers = sorted( ls._layers.values(), key=lambda x: (x.gds_layer, x.gds_datatype) ) for n, layer in enumerate(sorted_layers): R = pp.components.rectangle(size=(100 * scale, 100 * scale), layer=layer) T = pp.components.text( text="%s\n%s / %s" % (layer.name, layer.gds_layer, layer.gds_datatype), size=20 * scale, position=(50 * scale, -20 * scale), justify="center", layer=layer, ) xloc = n % matrix_size yloc = int(n // matrix_size) D.add_ref(R).movex((100 + spacing) * xloc * scale).movey( -(100 + spacing) * yloc * scale ) D.add_ref(T).movex((100 + spacing) * xloc * scale).movey( -(100 + spacing) * yloc * scale ) return D def _name_to_short_name(name_str: str) -> str: """Maps the name entry of the lyp element to a name of the layer, i.e. the dictionary key used to access it. Default format of the lyp name is key - layer/datatype - description or key - description """ if name_str is None: raise IOError(f"layer {name_str} has no name") fields = name_str.split("-") name = fields[0].split()[0].strip() return clean_name(name) def _name_to_description(name_str) -> str: """Gets the description of the layer contained in the lyp name field. It is not strictly necessary to have a description. If none there, it returns ''. Default format of the lyp name is key - layer/datatype - description or key - description """ if name_str is None: raise IOError(f"layer {name_str} has no name") fields = name_str.split() description = "" if len(fields) > 1: description = " ".join(fields[1:]) return description def _add_layer(entry, lys: LayerSet) -> LayerSet: """Entry is a dict of one element of 'properties'. No return value. It adds it to the lys variable directly """ info = entry["source"].split("@")[0] # skip layers without name or with */* if "'" in info or "*" in info: return name = entry.get("name") or entry.get("source") if not name: return gds_layer, gds_datatype = info.split("/") gds_layer = gds_layer.split()[-1] gds_datatype = gds_datatype.split()[-1] settings = dict() settings["gds_layer"] = int(gds_layer) settings["gds_datatype"] = int(gds_datatype) settings["color"] = entry["fill-color"] settings["dither"] = entry["dither-pattern"] settings["name"] = _name_to_short_name(name) settings["description"] = _name_to_description(name) lys.add_layer(**settings) return lys def load_lyp(filepath: Path) -> LayerSet: """Returns a LayerSet object from a Klayout lyp file in XML format.""" with open(filepath, "r") as fx: lyp_dict = xmltodict.parse(fx.read(), process_namespaces=True) # lyp files have a top level that just has one dict: layer-properties # That has multiple children 'properties', each for a layer. So it gives a list lyp_list = lyp_dict["layer-properties"]["properties"] if not isinstance(lyp_list, list): lyp_list = [lyp_list] lys = LayerSet() for entry in lyp_list: try: group_members = entry["group-members"] except KeyError: # it is a real layer _add_layer(entry, lys) else: # it is a group of other entries if not isinstance(group_members, list): group_members = [group_members] for member in group_members: _add_layer(member, lys) return lys # For port labelling purpose # LAYERS_OPTICAL = [LAYER.WG] # LAYERS_ELECTRICAL = [LAYER.M1, LAYER.M2, LAYER.M3] # LAYERS_HEATER = [LAYER.HEATER] def lyp_to_dataclass(lyp_filepath: PathType, overwrite: bool = True) -> str: filepathin = pathlib.Path(lyp_filepath) filepathout = filepathin.with_suffix(".py") if filepathout.exists() and not overwrite: raise FileExistsError(f"You can delete {filepathout}") script = """ import dataclasses @dataclasses.dataclass class LayerMap(): """ lys = load_lyp(filepathin) for layer_name, layer in sorted(lys._layers.items()): script += ( f" {layer_name}: Layer = ({layer.gds_layer}, {layer.gds_datatype})\n" ) filepathout.write_text(script) return script def test_load_lyp(): from pp.config import layer_path lys = load_lyp(layer_path) assert len(lys._layers) == 82 return lys if __name__ == "__main__": pass # print(LAYER_STACK.get_from_tuple((1, 0))) # print(LAYER_STACK.get_layer_to_material()) # lys = test_load_lyp() # c = preview_layerset(ls) # c.show() # print(LAYERS_OPTICAL) # print(layer("wgcore")) # print(layer("wgclad")) # print(layer("padding")) # print(layer("TEXT")) # print(type(layer("wgcore")))
mit
7,863,857,862,018,327,000
30.564356
88
0.603199
false
3.429186
false
false
false
alissonperez/django-onmydesk
onmydesk/utils.py
1
1501
"""Module with common utilities to this package""" import re from datetime import timedelta import importlib def my_import(class_name): """ Usage example:: Report = my_import('myclass.models.Report') model_instance = Report() model_instance.name = 'Test' model_instance.save() :param str class_name: Class name :returns: Class object """ *packs, class_name = class_name.split('.') try: module = importlib.import_module('.'.join(packs)) klass = getattr(module, class_name) return klass except (ImportError, AttributeError) as e: msg = 'Could not import "{}" from {}: {}.'.format( class_name, e.__class__.__name__, e) raise ImportError(msg) def str_to_date(value, reference_date): ''' Convert a string like 'D-1' to a "reference_date - timedelta(days=1)" :param str value: String like 'D-1', 'D+1', 'D'... :param date reference_date: Date to be used as 'D' :returns: Result date :rtype: date ''' n_value = value.strip(' ').replace(' ', '').upper() if not re.match('^D[\-+][0-9]+$|^D$', n_value): raise ValueError('Wrong value "{}"'.format(value)) if n_value == 'D': return reference_date elif n_value[:2] == 'D-': days = int(n_value[2:]) return reference_date - timedelta(days=days) elif n_value[:2] == 'D+': days = int(n_value[2:]) return reference_date + timedelta(days=days)
mit
-7,885,954,554,795,849,000
26.290909
73
0.578281
false
3.643204
false
false
false
bradallred/gemrb
gemrb/GUIScripts/iwd2/Abilities.py
1
7433
# GemRB - Infinity Engine Emulator # Copyright (C) 2003 The GemRB Project # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. # # #character generation, ability (GUICG4) import GemRB from GUIDefines import * import CharOverview import CommonTables from ie_stats import IE_STR, IE_DEX, IE_CON, IE_INT, IE_WIS, IE_CHR AbilityWindow = 0 TextAreaControl = 0 DoneButton = 0 AbilityTable = 0 PointsLeft = 0 Minimum = 0 Maximum = 0 Add = 0 KitIndex = 0 CharGen = 0 Stats = [ IE_STR, IE_DEX, IE_CON, IE_INT, IE_WIS, IE_CHR ] def CalcLimits(Abidx): global Minimum, Maximum, Add if not CharGen: pc = GemRB.GameGetSelectedPCSingle () Minimum = GemRB.GetPlayerStat (pc, Stats[Abidx], 1) Maximum = 25 return Abracead = GemRB.LoadTable("ABRACEAD") RaceID = GemRB.GetVar("Race") RowIndex = CommonTables.Races.FindValue(3, RaceID) RaceName = CommonTables.Races.GetRowName(RowIndex) Minimum = 3 Maximum = 18 Abclasrq = GemRB.LoadTable("ABCLASRQ") tmp = Abclasrq.GetValue(KitIndex, Abidx) if tmp!=0 and tmp>Minimum: Minimum = tmp Abracerq = GemRB.LoadTable("ABRACERQ") Race = Abracerq.GetRowIndex(RaceName) tmp = Abracerq.GetValue(Race, Abidx*2) if tmp!=0 and tmp>Minimum: Minimum = tmp tmp = Abracerq.GetValue(Race, Abidx*2+1) if tmp!=0 and tmp>Maximum: Maximum = tmp Race = Abracead.GetRowIndex(RaceName) Add = Abracead.GetValue(Race, Abidx) Maximum = Maximum + Add Minimum = Minimum + Add if Minimum<1: Minimum=1 return def GetModColor(mod): if mod < 0: return {'r' : 255, 'g' : 0, 'b' : 0} elif mod > 0: return {'r' : 0, 'g' : 255, 'b' : 0} else: return {'r' : 255, 'g' : 255, 'b' : 255} def RollPress(): global Add GemRB.SetVar("Ability",0) SumLabel = AbilityWindow.GetControl(0x10000002) SumLabel.SetTextColor ({'r' : 255, 'g' : 255, 'b' : 0}) SumLabel.SetUseRGB(1) SumLabel.SetText(str(PointsLeft)) for i in range(0,6): CalcLimits(i) v = 10+Add if not CharGen: v = Minimum b = v//2-5 GemRB.SetVar("Ability "+str(i), v ) Label = AbilityWindow.GetControl(0x10000003+i) Label.SetText(str(v) ) Label = AbilityWindow.GetControl(0x10000024+i) Label.SetUseRGB(1) Label.SetTextColor (GetModColor (b)) Label.SetText("%+d"%(b)) return def OnLoad(): OpenAbilitiesWindow (1, 16) def OpenAbilitiesWindow(chargen, points): global AbilityWindow, TextAreaControl, DoneButton global CharGen, PointsLeft global AbilityTable global KitIndex, Minimum, Maximum CharGen = chargen PointsLeft = points AbilityTable = GemRB.LoadTable ("ability") if chargen: Kit = GemRB.GetVar("Class Kit") Class = GemRB.GetVar("Class")-1 if Kit == 0: KitName = CommonTables.Classes.GetRowName(Class) else: #rowname is just a number, first value row what we need here KitName = CommonTables.KitList.GetValue(Kit, 0) Abclasrq = GemRB.LoadTable("ABCLASRQ") KitIndex = Abclasrq.GetRowIndex(KitName) # in a fit of clarity, they used the same ids in both windowpacks if chargen: AbilityWindow = GemRB.LoadWindow (4, "GUICG") else: AbilityWindow = GemRB.LoadWindow (7, "GUIREC") CharOverview.PositionCharGenWin(AbilityWindow) RollPress () for i in range(0,6): Button = AbilityWindow.GetControl(i+30) Button.SetEvent(IE_GUI_BUTTON_ON_PRESS, JustPress) Button.SetVarAssoc("Ability", i) Button = AbilityWindow.GetControl(i*2+16) Button.SetEvent(IE_GUI_BUTTON_ON_PRESS, LeftPress) Button.SetVarAssoc("Ability", i ) Button.SetActionInterval (200) Button = AbilityWindow.GetControl(i*2+17) Button.SetEvent(IE_GUI_BUTTON_ON_PRESS, RightPress) Button.SetVarAssoc("Ability", i ) Button.SetActionInterval (200) if chargen: BackButton = AbilityWindow.GetControl (36) BackButton.SetText (15416) BackButton.MakeEscape() BackButton.SetEvent (IE_GUI_BUTTON_ON_PRESS, BackPress) else: AbilityWindow.DeleteControl (36) DoneButton = AbilityWindow.GetControl(0) DoneButton.SetText(36789) DoneButton.MakeDefault() DoneButton.SetState(IE_GUI_BUTTON_DISABLED) DoneButton.SetEvent(IE_GUI_BUTTON_ON_PRESS, NextPress) TextAreaControl = AbilityWindow.GetControl(29) TextAreaControl.SetText(17247) if not chargen: AbilityWindow.ShowModal (MODAL_SHADOW_GRAY) else: AbilityWindow.Focus() return def RightPress(btn, Abidx): global PointsLeft Ability = GemRB.GetVar("Ability "+str(Abidx) ) #should be more elaborate CalcLimits(Abidx) GemRB.SetToken("MINIMUM",str(Minimum) ) GemRB.SetToken("MAXIMUM",str(Maximum) ) TextAreaControl.SetText(AbilityTable.GetValue(Abidx, 1) ) if Ability<=Minimum: return Ability -= 1 GemRB.SetVar("Ability "+str(Abidx), Ability) PointsLeft = PointsLeft + 1 SumLabel = AbilityWindow.GetControl(0x10000002) SumLabel.SetText(str(PointsLeft) ) SumLabel.SetTextColor ({'r' : 255, 'g' : 255, 'b' : 0}) Label = AbilityWindow.GetControl(0x10000003+Abidx) Label.SetText(str(Ability) ) Label = AbilityWindow.GetControl(0x10000024+Abidx) b = Ability // 2 - 5 Label.SetTextColor (GetModColor (b)) Label.SetText("%+d"%(b)) DoneButton.SetState(IE_GUI_BUTTON_DISABLED) return def JustPress(btn, Abidx): Ability = GemRB.GetVar("Ability "+str(Abidx) ) #should be more elaborate CalcLimits(Abidx) GemRB.SetToken("MINIMUM",str(Minimum) ) GemRB.SetToken("MAXIMUM",str(Maximum) ) TextAreaControl.SetText(AbilityTable.GetValue(Abidx, 1) ) return def LeftPress(btn, Abidx): global PointsLeft CalcLimits(Abidx) GemRB.SetToken("MINIMUM",str(Minimum) ) GemRB.SetToken("MAXIMUM",str(Maximum) ) Ability = GemRB.GetVar("Ability "+str(Abidx) ) TextAreaControl.SetText(AbilityTable.GetValue(Abidx, 1) ) if PointsLeft == 0: return if Ability>=Maximum: #should be more elaborate return Ability += 1 GemRB.SetVar("Ability "+str(Abidx), Ability) PointsLeft = PointsLeft - 1 SumLabel = AbilityWindow.GetControl(0x10000002) if PointsLeft == 0: SumLabel.SetTextColor({'r' : 255, 'g' : 255, 'b' : 255}) SumLabel.SetText(str(PointsLeft) ) Label = AbilityWindow.GetControl(0x10000003+Abidx) Label.SetText(str(Ability) ) Label = AbilityWindow.GetControl(0x10000024+Abidx) b = Ability // 2 - 5 Label.SetTextColor (GetModColor (b)) Label.SetText("%+d"%(b)) if PointsLeft == 0: DoneButton.SetState(IE_GUI_BUTTON_ENABLED) return def BackPress(): if AbilityWindow: AbilityWindow.Unload() GemRB.SetNextScript("CharGen5") for i in range(6): GemRB.SetVar("Ability "+str(i),0) #scrapping the abilities return def NextPress(): if AbilityWindow: AbilityWindow.Unload() if CharGen: GemRB.SetNextScript("CharGen6") #skills else: # set the upgraded stats pc = GemRB.GameGetSelectedPCSingle () for i in range (len(Stats)): newValue = GemRB.GetVar ("Ability "+str(i)) GemRB.SetPlayerStat (pc, Stats[i], newValue) # open up the next levelup window import Enemy Enemy.OpenEnemyWindow () return
gpl-2.0
7,460,413,711,233,489,000
26.428044
81
0.727297
false
2.695069
false
false
false
Southpaw-TACTIC/Team
src/python/Lib/site-packages/pythonwin/pywin/tools/browseProjects.py
1
8295
import hierlist, string, regutil, os import win32con, win32ui, win32api import commctrl from pywin.mfc import dialog import glob import pyclbr import pywin.framework.scriptutils import afxres class HLIErrorItem(hierlist.HierListItem): def __init__(self, text): self.text = text hierlist.HierListItem.__init__(self) def GetText(self): return self.text class HLICLBRItem(hierlist.HierListItem): def __init__(self, name, file, lineno, suffix = ""): # If the 'name' object itself has a .name, use it. Not sure # how this happens, but seems pyclbr related. # See PyWin32 bug 817035 self.name = getattr(name, "name", name) self.file = file self.lineno = lineno self.suffix = suffix def __cmp__(self, other): return cmp(self.name, other.name) def GetText(self): return self.name + self.suffix def TakeDefaultAction(self): if self.file: pywin.framework.scriptutils.JumpToDocument(self.file, self.lineno, bScrollToTop=1) else: win32ui.SetStatusText("The source of this object is unknown") def PerformItemSelected(self): if self.file is None: msg = "%s - source can not be located." % (self.name, ) else: msg = "%s defined at line %d of %s" % (self.name, self.lineno, self.file) win32ui.SetStatusText(msg) class HLICLBRClass(HLICLBRItem): def __init__(self, clbrclass, suffix = ""): try: name = clbrclass.name file = clbrclass.file lineno = clbrclass.lineno self.super = clbrclass.super self.methods = clbrclass.methods except AttributeError: name = clbrclass file = lineno = None self.super = []; self.methods = {} HLICLBRItem.__init__(self, name, file, lineno, suffix) def GetSubList(self): ret = [] for c in self.super: ret.append(HLICLBRClass(c, " (Parent class)")) for meth, lineno in self.methods.items(): ret.append(HLICLBRMethod(meth, self.file, lineno, " (method)")) return ret def IsExpandable(self): return len(self.methods) + len(self.super) def GetBitmapColumn(self): return 21 class HLICLBRFunction(HLICLBRClass): def GetBitmapColumn(self): return 22 class HLICLBRMethod(HLICLBRItem): def GetBitmapColumn(self): return 22 class HLIModuleItem(hierlist.HierListItem): def __init__(self, path): hierlist.HierListItem.__init__(self) self.path = path def GetText(self): return os.path.split(self.path)[1] + " (module)" def IsExpandable(self): return 1 def TakeDefaultAction(self): win32ui.GetApp().OpenDocumentFile( self.path ) def GetBitmapColumn(self): col = 4 # Default try: if win32api.GetFileAttributes(self.path) & win32con.FILE_ATTRIBUTE_READONLY: col = 5 except win32api.error: pass return col def GetSubList(self): mod, path = pywin.framework.scriptutils.GetPackageModuleName(self.path) win32ui.SetStatusText("Building class list - please wait...", 1) win32ui.DoWaitCursor(1) try: try: reader = pyclbr.readmodule_ex # Post 1.5.2 interface. extra_msg = " or functions" except AttributeError: reader = pyclbr.readmodule extra_msg = "" data = reader(mod, [path]) if data: ret = [] for item in data.values(): if item.__class__ != pyclbr.Class: # ie, it is a pyclbr Function instance (only introduced post 1.5.2) ret.append(HLICLBRFunction( item, " (function)" ) ) else: ret.append(HLICLBRClass( item, " (class)") ) ret.sort() return ret else: return [HLIErrorItem("No Python classes%s in module." % (extra_msg,))] finally: win32ui.DoWaitCursor(0) win32ui.SetStatusText(win32ui.LoadString(afxres.AFX_IDS_IDLEMESSAGE)) def MakePathSubList(path): ret = [] for filename in glob.glob(os.path.join(path,'*')): if os.path.isdir(filename) and os.path.isfile(os.path.join(filename, "__init__.py")): ret.append(HLIDirectoryItem(filename, os.path.split(filename)[1])) else: if string.lower(os.path.splitext(filename)[1]) in ['.py', '.pyw']: ret.append(HLIModuleItem(filename)) return ret class HLIDirectoryItem(hierlist.HierListItem): def __init__(self, path, displayName = None, bSubDirs = 0): hierlist.HierListItem.__init__(self) self.path = path self.bSubDirs = bSubDirs if displayName: self.displayName = displayName else: self.displayName = path def IsExpandable(self): return 1 def GetText(self): return self.displayName def GetSubList(self): ret = MakePathSubList(self.path) if os.path.split(self.path)[1] == "win32com": # Complete and utter hack for win32com. try: path = win32api.GetFullPathName(os.path.join(self.path, "..\\win32comext")) ret = ret + MakePathSubList(path) except win32ui.error: pass return ret class HLIProjectRoot(hierlist.HierListItem): def __init__(self, projectName, displayName = None): hierlist.HierListItem.__init__(self) self.projectName = projectName self.displayName = displayName or projectName def GetText(self): return self.displayName def IsExpandable(self): return 1 def GetSubList(self): paths = regutil.GetRegisteredNamedPath(self.projectName) pathList = string.split(paths,";") if len(pathList)==1: # Single dir - dont bother putting the dir in ret = MakePathSubList(pathList[0]) else: ret = map( HLIDirectoryItem, pathList ) return ret class HLIRoot(hierlist.HierListItem): def __init__(self): hierlist.HierListItem.__init__(self) def IsExpandable(self): return 1 def GetSubList(self): keyStr = regutil.BuildDefaultPythonKey() + "\\PythonPath" hKey = win32api.RegOpenKey(regutil.GetRootKey(), keyStr) try: ret = [] ret.append(HLIProjectRoot("", "Standard Python Library")) # The core path. index = 0 while 1: try: ret.append(HLIProjectRoot(win32api.RegEnumKey(hKey, index))) index = index + 1 except win32api.error: break return ret finally: win32api.RegCloseKey(hKey) class dynamic_browser (dialog.Dialog): style = win32con.WS_OVERLAPPEDWINDOW | win32con.WS_VISIBLE cs = ( win32con.WS_CHILD | win32con.WS_VISIBLE | commctrl.TVS_HASLINES | commctrl.TVS_LINESATROOT | commctrl.TVS_HASBUTTONS ) dt = [ ["Python Projects", (0, 0, 200, 200), style, None, (8, "MS Sans Serif")], ["SysTreeView32", None, win32ui.IDC_LIST1, (0, 0, 200, 200), cs] ] def __init__ (self, hli_root): dialog.Dialog.__init__ (self, self.dt) self.hier_list = hierlist.HierListWithItems ( hli_root, win32ui.IDB_BROWSER_HIER ) self.HookMessage (self.on_size, win32con.WM_SIZE) def OnInitDialog (self): self.hier_list.HierInit (self) return dialog.Dialog.OnInitDialog (self) def on_size (self, params): lparam = params[3] w = win32api.LOWORD(lparam) h = win32api.HIWORD(lparam) self.GetDlgItem (win32ui.IDC_LIST1).MoveWindow((0,0,w,h)) def BrowseDialog(): root = HLIRoot() if not root.IsExpandable(): raise TypeError, "Browse() argument must have __dict__ attribute, or be a Browser supported type" dlg = dynamic_browser (root) dlg.CreateWindow() def DockableBrowserCreator(parent): root = HLIRoot() hl = hierlist.HierListWithItems ( root, win32ui.IDB_BROWSER_HIER ) style = win32con.WS_CHILD | win32con.WS_VISIBLE | win32con.WS_BORDER | commctrl.TVS_HASLINES | commctrl.TVS_LINESATROOT | commctrl.TVS_HASBUTTONS control = win32ui.CreateTreeCtrl() control.CreateWindow(style, (0, 0, 150, 300), parent, win32ui.IDC_LIST1) list = hl.HierInit (parent, control) return control def DockablePathBrowser(): import pywin.docking.DockingBar bar = pywin.docking.DockingBar.DockingBar() bar.CreateWindow(win32ui.GetMainFrame(), DockableBrowserCreator, "Path Browser", 0x8e0a) bar.SetBarStyle( bar.GetBarStyle()|afxres.CBRS_TOOLTIPS|afxres.CBRS_FLYBY|afxres.CBRS_SIZE_DYNAMIC) bar.EnableDocking(afxres.CBRS_ALIGN_ANY) win32ui.GetMainFrame().DockControlBar(bar) # The "default" entry point Browse = DockablePathBrowser
epl-1.0
5,805,571,004,573,647,000
30.276265
146
0.66522
false
3.014172
false
false
false
Commonists/SurfaceImageContentGap
surfaceimagecontentgap/rc.py
1
2812
from argparse import ArgumentParser import datetime import time from surfaceimagecontentgap.imagegap import isthereanimage from surfaceimagecontentgap.bot import SurfaceContentGapBot def last_rc_time(site): """Datetime of last change.""" rc = site.recentchanges() last_rev = rc.next() return datetime.datetime \ .utcfromtimestamp(time.mktime(last_rev['timestamp'])) def previoushour(dt): """One hour previous given datetime.""" delta = datetime.timedelta(hours=1) return dt - delta def previousday(dt): """One day before given datetime.""" delta = datetime.timedelta(days=1) return dt - delta def rc_from(site, dt): """Recent changes from a given datetime.""" kwargs = { 'end': dt.strftime('%Y%m%d%H%M%S'), 'namespace': 0 } rc = site.recentchanges(**kwargs) # revisions changes = [] # page titles pages = [] for rev in rc: changes.append(rev) title = rev['title'].encode('utf-8') if title not in pages: pages.append(title) return { 'list_revisions': changes, 'list_pages': pages } def articles_from_titles(site, titles): """Articles object from list of titles""" return [site.Pages[title.decode('utf-8')] for title in titles] def list_articles(bot): # site site = bot.site # last hours rc end_dt = previoushour(last_rc_time(site)) recent_changes = rc_from(site, end_dt) pages = recent_changes['list_pages'] return articles_from_titles(site, pages) def main(): description = 'Analyzing Wikipedia to surface image content gap (rc).' parser = ArgumentParser(description=description) parser.add_argument('-w', '--wikipedia', type=str, dest='lang', required=False, default='fr', help='Language code for Wikipedia') parser.add_argument('-r', '--report', type=str, dest='report', required=True, help='Page name to write a report.') parser.add_argument('-f', '--configfile', type=str, dest='config', required=True, help='Config file with login and password.') args = parser.parse_args() kwargs = { 'config_file': args.config, 'lang': args.lang, 'report': args.report, 'list_fun': list_articles, 'filter_fun': lambda bot, x: not isthereanimage(x), 'rank_fun': lambda bot, x: 0, 'frequency': 60 } rc_bot = SurfaceContentGapBot(**kwargs) rc_bot.run() if __name__ == '__main__': main()
mit
8,370,749,980,757,185,000
26.568627
74
0.558677
false
4.111111
false
false
false
Purg/SMQTK
python/smqtk/bin/classifyFiles.py
1
5843
""" Based on an input, trained classifier configuration, classify a number of media files, whose descriptor is computed by the configured descriptor generator. Input files that classify as the given label are then output to standard out. Thus, this script acts like a filter. """ import glob import json import logging import os from smqtk.algorithms import get_classifier_impls from smqtk.algorithms import get_descriptor_generator_impls from smqtk.representation import ClassificationElementFactory from smqtk.representation import DescriptorElementFactory from smqtk.representation.data_element.file_element import DataFileElement from smqtk.utils import plugin from smqtk.utils.bin_utils import ( initialize_logging, output_config, basic_cli_parser, ) __author__ = "[email protected]" def get_cli_parser(): parser = basic_cli_parser(__doc__) g_classifier = parser.add_argument_group("Classification") g_classifier.add_argument('--overwrite', action='store_true', default=False, help='When generating a configuration file, ' 'overwrite an existing file.') g_classifier.add_argument('-l', '--label', type=str, default=None, help='The class to filter by. This is based on ' 'the classifier configuration/model used. ' 'If this is not provided, we will list the ' 'available labels in the provided ' 'classifier configuration.') # Positional parser.add_argument("file_globs", nargs='*', metavar='GLOB', help='Series of shell globs specifying the files to ' 'classify.') return parser def get_default_config(): return { "descriptor_factory": DescriptorElementFactory.get_default_config(), "descriptor_generator": plugin.make_config(get_descriptor_generator_impls()), "classification_factory": ClassificationElementFactory.get_default_config(), "classifier": plugin.make_config(get_classifier_impls()), } def main(): log = logging.getLogger(__name__) parser = get_cli_parser() args = parser.parse_args() config_path = args.config generate_config = args.generate_config config_overwrite = args.overwrite is_debug = args.verbose label = args.label file_globs = args.file_globs initialize_logging(logging.getLogger(__name__), is_debug and logging.DEBUG or logging.INFO) initialize_logging(logging.getLogger('smqtk'), is_debug and logging.DEBUG or logging.INFO) log.debug("Showing debug messages.") config = get_default_config() config_loaded = False if config_path and os.path.isfile(config_path): with open(config_path) as f: log.info("Loading configuration: %s", config_path) config.update( json.load(f) ) config_loaded = True output_config(generate_config, config, log, config_overwrite, 100) if not config_loaded: log.error("No configuration provided") exit(101) classify_files(config, label, file_globs) def classify_files(config, label, file_globs): log = logging.getLogger(__name__) #: :type: smqtk.algorithms.Classifier classifier = \ plugin.from_plugin_config(config['classifier'], get_classifier_impls()) def log_avaialable_labels(): log.info("Available classifier labels:") for l in classifier.get_labels(): log.info("- %s", l) if label is None: log_avaialable_labels() return elif label not in classifier.get_labels(): log.error("Invalid classification label provided to compute and filter " "on: '%s'", label) log_avaialable_labels() return log.info("Collecting files from globs") #: :type: list[DataFileElement] data_elements = [] uuid2filepath = {} for g in file_globs: if os.path.isfile(g): d = DataFileElement(g) data_elements.append(d) uuid2filepath[d.uuid()] = g else: log.debug("expanding glob: %s", g) for fp in glob.iglob(g): d = DataFileElement(fp) data_elements.append(d) uuid2filepath[d.uuid()] = fp if not data_elements: raise RuntimeError("No files provided for classification.") log.info("Computing descriptors") descriptor_factory = \ DescriptorElementFactory.from_config(config['descriptor_factory']) #: :type: smqtk.algorithms.DescriptorGenerator descriptor_generator = \ plugin.from_plugin_config(config['descriptor_generator'], get_descriptor_generator_impls()) descr_map = descriptor_generator\ .compute_descriptor_async(data_elements, descriptor_factory) log.info("Classifying descriptors") classification_factory = ClassificationElementFactory \ .from_config(config['classification_factory']) classification_map = classifier\ .classify_async(descr_map.values(), classification_factory) log.info("Printing input file paths that classified as the given label.") # map of UUID to filepath: uuid2c = dict((c.uuid, c) for c in classification_map.itervalues()) for data in data_elements: if uuid2c[data.uuid()].max_label() == label: print uuid2filepath[data.uuid()] if __name__ == '__main__': main()
bsd-3-clause
-9,202,389,211,392,059,000
33.169591
80
0.610303
false
4.403165
true
false
false
bgris/ODL_bgris
lib/python3.5/site-packages/odl/util/graphics.py
1
15419
# Copyright 2014-2016 The ODL development group # # This file is part of ODL. # # ODL is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # ODL is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with ODL. If not, see <http://www.gnu.org/licenses/>. """Functions for graphical output.""" # Imports for common Python 2/3 codebase from __future__ import print_function, division, absolute_import from future import standard_library standard_library.install_aliases() import numpy as np from odl.util.testutils import run_doctests from odl.util.utility import is_real_dtype __all__ = ('show_discrete_data',) def _safe_minmax(values): """Calculate min and max of array with guards for nan and inf.""" # Nan and inf guarded min and max minval = np.min(values[np.isfinite(values)]) maxval = np.max(values[np.isfinite(values)]) return minval, maxval def _colorbar_ticks(minval, maxval): """Return the ticks (values show) in the colorbar.""" return [minval, (maxval + minval) / 2., maxval] def _digits(minval, maxval): """Digits needed to comforatbly display values in [minval, maxval]""" if minval == maxval: return 3 else: return min(10, max(2, int(1 + abs(np.log10(maxval - minval))))) def _colorbar_format(minval, maxval): """Return the format string for the colorbar.""" return '%.{}f'.format(_digits(minval, maxval)) def _axes_info(grid, npoints=5): result = [] min_pt = grid.min() max_pt = grid.max() for axis in range(grid.ndim): xmin = min_pt[axis] xmax = max_pt[axis] points = np.linspace(xmin, xmax, npoints) indices = np.linspace(0, grid.shape[axis] - 1, npoints, dtype=int) tick_values = grid.coord_vectors[axis][indices] # Do not use corner point in case of a partition, use outer corner tick_values[[0, -1]] = xmin, xmax format_str = '{:.' + str(_digits(xmin, xmax)) + 'f}' tick_labels = [format_str.format(f) for f in tick_values] result += [(points, tick_labels)] return result def show_discrete_data(values, grid, title=None, method='', force_show=False, fig=None, **kwargs): """Display a discrete 1d or 2d function. Parameters ---------- values : `numpy.ndarray` The values to visualize grid : `TensorGrid` or `RectPartition` Grid of the values title : string, optional Set the title of the figure method : string, optional 1d methods: 'plot' : graph plot 'scatter' : scattered 2d points (2nd axis <-> value) 2d methods: 'imshow' : image plot with coloring according to value, including a colorbar. 'scatter' : cloud of scattered 3d points (3rd axis <-> value) 'wireframe', 'plot_wireframe' : surface plot force_show : bool, optional Whether the plot should be forced to be shown now or deferred until later. Note that some backends always displays the plot, regardless of this value. fig : `matplotlib.figure.Figure`, optional The figure to show in. Expected to be of same "style", as the figure given by this function. The most common usecase is that fig is the return value from an earlier call to this function. Default: New figure interp : {'nearest', 'linear'}, optional Interpolation method to use. Default: 'nearest' axis_labels : string, optional Axis labels, default: ['x', 'y'] update_in_place : bool, optional Update the content of the figure in place. Intended for faster real time plotting, typically ~5 times faster. This is only performed for ``method == 'imshow'`` with real data and ``fig != None``. Otherwise this parameter is treated as False. Default: False axis_fontsize : int, optional Fontsize for the axes. Default: 16 kwargs : {'figsize', 'saveto', ...} Extra keyword arguments passed on to display method See the Matplotlib functions for documentation of extra options. Returns ------- fig : `matplotlib.figure.Figure` The resulting figure. It is also shown to the user. See Also -------- matplotlib.pyplot.plot : Show graph plot matplotlib.pyplot.imshow : Show data as image matplotlib.pyplot.scatter : Show scattered 3d points """ # Importing pyplot takes ~2 sec, only import when needed. import matplotlib.pyplot as plt args_re = [] args_im = [] dsp_kwargs = {} sub_kwargs = {} arrange_subplots = (121, 122) # horzontal arrangement # Create axis labels which remember their original meaning axis_labels = kwargs.pop('axis_labels', ['x', 'y']) values_are_complex = not is_real_dtype(values.dtype) figsize = kwargs.pop('figsize', None) saveto = kwargs.pop('saveto', None) interp = kwargs.pop('interp', 'nearest') axis_fontsize = kwargs.pop('axis_fontsize', 16) # Check if we should and can update the plot in place update_in_place = kwargs.pop('update_in_place', False) if (update_in_place and (fig is None or values_are_complex or values.ndim != 2 or (values.ndim == 2 and method not in ('', 'imshow')))): update_in_place = False if values.ndim == 1: # TODO: maybe a plotter class would be better if not method: if interp == 'nearest': method = 'step' dsp_kwargs['where'] = 'mid' elif interp == 'linear': method = 'plot' else: method = 'plot' if method == 'plot' or method == 'step' or method == 'scatter': args_re += [grid.coord_vectors[0], values.real] args_im += [grid.coord_vectors[0], values.imag] else: raise ValueError('`method` {!r} not supported' ''.format(method)) elif values.ndim == 2: if not method: method = 'imshow' if method == 'imshow': args_re = [np.rot90(values.real)] args_im = [np.rot90(values.imag)] if values_are_complex else [] extent = [grid.min()[0], grid.max()[0], grid.min()[1], grid.max()[1]] if interp == 'nearest': interpolation = 'nearest' elif interp == 'linear': interpolation = 'bilinear' else: interpolation = 'none' dsp_kwargs.update({'interpolation': interpolation, 'cmap': 'bone', 'extent': extent, 'aspect': 'auto'}) elif method == 'scatter': pts = grid.points() args_re = [pts[:, 0], pts[:, 1], values.ravel().real] args_im = ([pts[:, 0], pts[:, 1], values.ravel().imag] if values_are_complex else []) sub_kwargs.update({'projection': '3d'}) elif method in ('wireframe', 'plot_wireframe'): method = 'plot_wireframe' x, y = grid.meshgrid args_re = [x, y, np.rot90(values.real)] args_im = ([x, y, np.rot90(values.imag)] if values_are_complex else []) sub_kwargs.update({'projection': '3d'}) else: raise ValueError('`method` {!r} not supported' ''.format(method)) else: raise NotImplementedError('no method for {}d display implemented' ''.format(values.ndim)) # Additional keyword args are passed on to the display method dsp_kwargs.update(**kwargs) if fig is not None: # Reuse figure if given as input if not isinstance(fig, plt.Figure): raise TypeError('`fig` {} not a matplotlib figure'.format(fig)) if not plt.fignum_exists(fig.number): # If figure does not exist, user either closed the figure or # is using IPython, in this case we need a new figure. fig = plt.figure(figsize=figsize) updatefig = False else: # Set current figure to given input fig = plt.figure(fig.number) updatefig = True if values.ndim > 1 and not update_in_place: # If the figure is larger than 1d, we can clear it since we # dont reuse anything. Keeping it causes performance problems. fig.clf() else: fig = plt.figure(figsize=figsize) updatefig = False if values_are_complex: # Real if len(fig.axes) == 0: # Create new axis if needed sub_re = plt.subplot(arrange_subplots[0], **sub_kwargs) sub_re.set_title('Real part') sub_re.set_xlabel(axis_labels[0], fontsize=axis_fontsize) if values.ndim == 2: sub_re.set_ylabel(axis_labels[1], fontsize=axis_fontsize) else: sub_re.set_ylabel('value') else: sub_re = fig.axes[0] display_re = getattr(sub_re, method) csub_re = display_re(*args_re, **dsp_kwargs) # Axis ticks if method == 'imshow' and not grid.is_uniform: (xpts, xlabels), (ypts, ylabels) = _axes_info(grid) plt.xticks(xpts, xlabels) plt.yticks(ypts, ylabels) if method == 'imshow' and len(fig.axes) < 2: # Create colorbar if none seems to exist # Use clim from kwargs if given if 'clim' not in kwargs: minval_re, maxval_re = _safe_minmax(values.real) else: minval_re, maxval_re = kwargs['clim'] ticks_re = _colorbar_ticks(minval_re, maxval_re) format_re = _colorbar_format(minval_re, maxval_re) plt.colorbar(csub_re, orientation='horizontal', ticks=ticks_re, format=format_re) # Imaginary if len(fig.axes) < 3: sub_im = plt.subplot(arrange_subplots[1], **sub_kwargs) sub_im.set_title('Imaginary part') sub_im.set_xlabel(axis_labels[0], fontsize=axis_fontsize) if values.ndim == 2: sub_im.set_ylabel(axis_labels[1], fontsize=axis_fontsize) else: sub_im.set_ylabel('value') else: sub_im = fig.axes[2] display_im = getattr(sub_im, method) csub_im = display_im(*args_im, **dsp_kwargs) # Axis ticks if method == 'imshow' and not grid.is_uniform: (xpts, xlabels), (ypts, ylabels) = _axes_info(grid) plt.xticks(xpts, xlabels) plt.yticks(ypts, ylabels) if method == 'imshow' and len(fig.axes) < 4: # Create colorbar if none seems to exist # Use clim from kwargs if given if 'clim' not in kwargs: minval_im, maxval_im = _safe_minmax(values.imag) else: minval_im, maxval_im = kwargs['clim'] ticks_im = _colorbar_ticks(minval_im, maxval_im) format_im = _colorbar_format(minval_im, maxval_im) plt.colorbar(csub_im, orientation='horizontal', ticks=ticks_im, format=format_im) else: if len(fig.axes) == 0: # Create new axis object if needed sub = plt.subplot(111, **sub_kwargs) sub.set_xlabel(axis_labels[0], fontsize=axis_fontsize) if values.ndim == 2: sub.set_ylabel(axis_labels[1], fontsize=axis_fontsize) else: sub.set_ylabel('value') try: # For 3d plots sub.set_zlabel('z') except AttributeError: pass else: sub = fig.axes[0] if update_in_place: import matplotlib as mpl imgs = [obj for obj in sub.get_children() if isinstance(obj, mpl.image.AxesImage)] if len(imgs) > 0 and updatefig: imgs[0].set_data(args_re[0]) csub = imgs[0] # Update min-max if 'clim' not in kwargs: minval, maxval = _safe_minmax(values) else: minval, maxval = kwargs['clim'] csub.set_clim(minval, maxval) else: display = getattr(sub, method) csub = display(*args_re, **dsp_kwargs) else: display = getattr(sub, method) csub = display(*args_re, **dsp_kwargs) # Axis ticks if method == 'imshow' and not grid.is_uniform: (xpts, xlabels), (ypts, ylabels) = _axes_info(grid) plt.xticks(xpts, xlabels) plt.yticks(ypts, ylabels) if method == 'imshow': # Add colorbar # Use clim from kwargs if given if 'clim' not in kwargs: minval, maxval = _safe_minmax(values) else: minval, maxval = kwargs['clim'] ticks = _colorbar_ticks(minval, maxval) format = _colorbar_format(minval, maxval) if len(fig.axes) < 2: # Create colorbar if none seems to exist plt.colorbar(mappable=csub, ticks=ticks, format=format) elif update_in_place: # If it exists and we should update it csub.colorbar.set_clim(minval, maxval) csub.colorbar.set_ticks(ticks) csub.colorbar.set_ticklabels([format % tick for tick in ticks]) csub.colorbar.draw_all() # Fixes overlapping stuff at the expense of potentially squashed subplots if not update_in_place: fig.tight_layout() if title is not None: if not values_are_complex: # Do not overwrite title for complex values plt.title(title) fig.canvas.manager.set_window_title(title) if updatefig or plt.isinteractive(): # If we are running in interactive mode, we can always show the fig # This causes an artifact, where users of `CallbackShow` without # interactive mode only shows the figure after the second iteration. plt.show(block=False) if not update_in_place: plt.draw() plt.pause(0.0001) else: try: sub.draw_artist(csub) fig.canvas.blit(fig.bbox) fig.canvas.update() fig.canvas.flush_events() except AttributeError: plt.draw() plt.pause(0.0001) if force_show: plt.show() if saveto is not None: fig.savefig(saveto) return fig if __name__ == '__main__': run_doctests()
gpl-3.0
-3,538,194,548,052,486,700
33.037528
79
0.560672
false
4.01223
false
false
false
kylejusticemagnuson/pyti
tests/test_stochastic.py
1
15612
from __future__ import absolute_import import unittest import numpy as np from tests.sample_data import SampleData from pyti import stochastic class TestStochastic(unittest.TestCase): def setUp(self): """Create data to use for testing.""" self.data = SampleData().get_sample_close_data() self.percent_k_period_6_expected = [np.nan, np.nan, np.nan, np.nan, np.nan, 0.9856979405034324, 1.0, 1.0, 0.63513513513513342, 0.27567567567568274, 1.0, 1.0, 0.68322981366460012, 0.0, 0.15515515515516184, 0.0, 0.0, 0.0, 0.06131650135257203, 0.0, 0.0, 0.4255711127487089, 1.0, 0.85463958582237798, 0.63201911589008342, 0.58422939068100166, 0.67256637168141331, 0.55555555555554825, 0.0, 1.0, 0.39352306182532032, 0.0, 0.0, 0.56253794778384958, 0.82179720704310821, 1.0, 1.0, 0.83066712049012859, 0.23241362167536711, 0.059955822025878437, 0.23704663212435031, 0.78950777202072531, 1.0, 1.0, 0.94086165373294273, 1.0, 1.0, 1.0, 0.36487221315932178, 0.23273518216421837, 0.38695960311835798, 0.0, 0.0, 0.0, 0.0, 0.33420252064319617, 0.31533601378518206, 1.0, 0.0, 0.17607726597325543, 0.038632986627041961, 0.15453194650816784, 0.0, 1.0, 0.61413043478261453, 1.0, 1.0, 0.21932367149758231, 1.0, 1.0, 0.17894736842105138, 0.0, 0.0, 0.12548638132295883, 0.2840466926070046, 0.0, 0.0, 0.80735411670663715, 0.0, 1.0, 1.0, 1.0, 0.42937563971340847, 0.14943705220061232, 0.0, 0.11392405063290814, 0.32856356631810901, 0.48005698005698194, 0.24288107202678813, 0.62814070351758511, 1.0, 1.0, 1.0, 1.0, 1.0, 0.52095130237826281, 1.0, 1.0, 1.0, 1.0, 0.86164383561643876, 0.0, 0.52147239263801737, 0.0, 0.14857651245551226, 0.28054740957966762, 0.3811983471074456, 0.0, 0.0, 0.0, 0.0, 0.0, 0.052040212891779666, 0.0, 0.35317460317461002, 0.0, 0.0, 0.0, 0.0079254079254060007, 0.0, 0.12661930631007018, 0.0, 0.0, 0.0, 0.067722772277229157, 0.0, 0.24025100851636036] self.percent_k_period_8_expected = [np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, 1.0, 0.78084415584415301, 0.49576669802445755, 1.0, 1.0, 0.68940316686967806, 0.0, 0.15515515515516184, 0.0, 0.0, 0.0, 0.048909134500121687, 0.0, 0.0, 0.25598404255319046, 0.81420233463035285, 0.79071481208548022, 0.63201911589008342, 0.58422939068100166, 0.82317801672640178, 0.81521306252488657, 0.0066371681415952387, 0.75649591685225837, 0.39352306182532032, 0.0, 0.0, 0.56253794778384958, 0.82179720704310821, 1.0, 1.0, 0.83066712049012859, 0.47447243022464258, 0.49302246426140284, 0.41436738752174873, 0.79488797727989935, 0.93264248704663077, 1.0, 0.94253770150806226, 1.0, 1.0, 1.0, 0.61401189689358671, 0.45394736842105277, 0.52963567156063163, 0.22512234910277268, 0.0, 0.0, 0.0, 0.33420252064319617, 0.23859191655801873, 0.43850499782702834, 0.0, 0.17607726597325543, 0.038632986627041961, 0.15453194650816784, 0.0, 0.26686004350978676, 0.16388687454677281, 1.0, 1.0, 0.21932367149758231, 1.0, 1.0, 0.17956423741547525, 0.0, 0.0, 0.12548638132295883, 0.2840466926070046, 0.0, 0.0, 0.61925199264255404, 0.0, 1.0, 1.0, 1.0, 0.42937563971340847, 0.14943705220061232, 0.070112589559877536, 0.17604912998976188, 0.32856356631810901, 0.18547055586131053, 0.079801871216287013, 0.53418803418803562, 1.0, 1.0, 1.0, 1.0, 1.0, 0.7004249291784771, 1.0, 1.0, 1.0, 1.0, 0.86164383561643876, 0.55342465753424508, 0.78630136986300425, 0.0, 0.14857651245551226, 0.25533807829181515, 0.32829181494662379, 0.0, 0.0, 0.0, 0.0, 0.0, 0.040534315983417502, 0.0, 0.07229894394801159, 0.0, 0.0, 0.0, 0.0071881606765310463, 0.0, 0.1097826086956511, 0.0, 0.0, 0.0, 0.059915907498249425, 0.0, 0.19406227371469995] self.percent_k_period_10_expected = [np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, 0.76439560439560383, 1.0, 1.0, 0.74727452923687354, 0.009910802775026999, 0.15515515515516184, 0.0, 0.0, 0.0, 0.048909134500121687, 0.0, 0.0, 0.22642619094295152, 0.55651595744680871, 0.47562056737588476, 0.51459143968871746, 0.54053058216654259, 0.82317801672640178, 0.81521306252488657, 0.46356033452807566, 0.86937475109517781, 0.30235988200590008, 0.0, 0.0, 0.56253794778384958, 0.82179720704310821, 1.0, 1.0, 0.83066712049012859, 0.47447243022464258, 0.49302246426140284, 0.59904697072838564, 0.88938053097345127, 0.94829729057916878, 1.0, 0.94253770150806226, 1.0, 1.0, 1.0, 0.78188608776843938, 0.70181741335587489, 0.7141440846001329, 0.44852941176470656, 0.0, 0.0, 0.0, 0.24289324068224727, 0.17340492735312743, 0.43850499782702834, 0.0, 0.089840788476118455, 0.025024061597689246, 0.15453194650816784, 0.0, 0.26686004350978676, 0.16388687454677281, 0.70195794053661897, 0.75054387237128717, 0.21932367149758231, 1.0, 1.0, 0.2986512524084754, 0.0, 0.0, 0.12548638132295883, 0.2840466926070046, 0.0, 0.0, 0.3709144326110913, 0.0, 0.86767371601208776, 1.0, 1.0, 0.42937563971340847, 0.14943705220061232, 0.070112589559877536, 0.17604912998976188, 0.37563971340839536, 0.24257932446264166, 0.079801871216287013, 0.2063841496973037, 0.37094111172262106, 1.0, 1.0, 1.0, 1.0, 0.7004249291784771, 1.0, 1.0, 1.0, 1.0, 0.9124783362218376, 0.63122171945701588, 0.78630136986300425, 0.0, 0.14857651245551226, 0.25533807829181515, 0.32829181494662379, 0.0, 0.0, 0.0, 0.0, 0.0, 0.040534315983417502, 0.0, 0.057382333978080118, 0.0, 0.0, 0.0, 0.0064540622627167372, 0.0, 0.10167785234899253, 0.0, 0.0, 0.0, 0.037053087757313918, 0.0, 0.17340666450986797] self.percent_d_period_6_expected = [np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, 0.99523264683447754, 0.87837837837837773, 0.63693693693693865, 0.63693693693693876, 0.75855855855856091, 0.8944099378882, 0.56107660455486663, 0.27946165627325398, 0.051718385051720613, 0.051718385051720613, 0.0, 0.020438833784190678, 0.020438833784190678, 0.020438833784190678, 0.14185703758290297, 0.47519037091623634, 0.76007023285702902, 0.82888623390415372, 0.69029603079782087, 0.62960495941749939, 0.60411710597265433, 0.40937397574565387, 0.51851851851851605, 0.46450768727510677, 0.46450768727510677, 0.13117435394177343, 0.18751264926128319, 0.46144505160898591, 0.79477838494231923, 0.9405990690143694, 0.94355570683004286, 0.68769358072183184, 0.37434552139712474, 0.17647202527519865, 0.36217007539031804, 0.6755181347150252, 0.9298359240069084, 0.98028721791098095, 0.98028721791098095, 0.98028721791098095, 1.0, 0.78829073771977398, 0.53253579844118004, 0.32818899948063268, 0.20656492842752547, 0.12898653437278598, 0.0, 0.0, 0.11140084021439872, 0.2165128448094594, 0.54984617814279269, 0.43844533792839407, 0.39202575532441847, 0.071570084200099124, 0.12308073303615508, 0.064388311045069938, 0.38484398216938925, 0.53804347826087151, 0.87137681159420488, 0.87137681159420488, 0.73977455716586071, 0.73977455716586071, 0.73977455716586071, 0.7263157894736838, 0.39298245614035049, 0.059649122807017126, 0.041828793774319611, 0.13651102464332113, 0.13651102464332113, 0.09468223086900153, 0.26911803890221236, 0.26911803890221236, 0.60245137223554568, 0.66666666666666663, 1.0, 0.80979187990446944, 0.52627089730467358, 0.19293756397134029, 0.08778703427784014, 0.1474958723170057, 0.307514865669333, 0.35050053946729304, 0.45035958520045166, 0.6236739251814577, 0.87604690117252837, 1.0, 1.0, 1.0, 0.84031710079275435, 0.84031710079275435, 0.84031710079275435, 1.0, 1.0, 0.95388127853881288, 0.62054794520547951, 0.46103874275148532, 0.17382413087933912, 0.22334963503117655, 0.14304130734505996, 0.27010742304754182, 0.22058191889570442, 0.12706611570248186, 0.0, 0.0, 0.0, 0.017346737630593221, 0.017346737630593221, 0.13507160535546323, 0.11772486772487001, 0.11772486772487001, 0.0, 0.0026418026418020004, 0.0026418026418020004, 0.044848238078492059, 0.04220643543669006, 0.04220643543669006, 0.0, 0.022574257425743052, 0.022574257425743052, 0.10265792693119651] self.percent_d_period_8_expected = [np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, 0.75887028462287021, 0.75887028462287009, 0.83192223267481913, 0.89646772228989269, 0.56313438895655932, 0.28151944067494666, 0.051718385051720613, 0.051718385051720613, 0.0, 0.016303044833373897, 0.016303044833373897, 0.016303044833373897, 0.085328014184396825, 0.35672879239451444, 0.62030039642300794, 0.74564542086863883, 0.66898777288552169, 0.67980884109916229, 0.74087348997742997, 0.54834274913096126, 0.52611538250624668, 0.38555204893972461, 0.38333965955919291, 0.13117435394177343, 0.18751264926128319, 0.46144505160898591, 0.79477838494231923, 0.9405990690143694, 0.94355570683004286, 0.76837985023825706, 0.59938733832539137, 0.46062076066926472, 0.56742594302101701, 0.71396595061609303, 0.9091768214421766, 0.95839339618489772, 0.98084590050268738, 0.98084590050268738, 1.0, 0.87133729896452883, 0.68931975510487975, 0.53253164562509037, 0.40290179636148565, 0.25158600688780147, 0.075040783034257555, 0.0, 0.11140084021439872, 0.19093147906707164, 0.33709981167608111, 0.22569897146168236, 0.20486075460009459, 0.071570084200099124, 0.12308073303615508, 0.064388311045069938, 0.14046399667265153, 0.14358230601885319, 0.4769156393521865, 0.72129562484892418, 0.73977455716586071, 0.73977455716586071, 0.73977455716586071, 0.72652141247182511, 0.3931880791384918, 0.05985474580515842, 0.041828793774319611, 0.13651102464332113, 0.13651102464332113, 0.09468223086900153, 0.20641733088085135, 0.20641733088085135, 0.53975066421418472, 0.66666666666666663, 1.0, 0.80979187990446944, 0.52627089730467358, 0.21630842715796614, 0.13186625725008391, 0.19157509528924946, 0.23002775072306048, 0.19794533113190219, 0.26648682042187771, 0.53799663513477425, 0.84472934472934524, 1.0, 1.0, 1.0, 0.9001416430594924, 0.9001416430594924, 0.9001416430594924, 1.0, 1.0, 0.95388127853881288, 0.80502283105022787, 0.73378995433789607, 0.44657534246574976, 0.31162596077283883, 0.1346381969157758, 0.24406880189798374, 0.19454329774614632, 0.10943060498220793, 0.0, 0.0, 0.0, 0.013511438661139167, 0.013511438661139167, 0.037611086643809695, 0.02409964798267053, 0.02409964798267053, 0.0, 0.0023960535588436823, 0.0023960535588436823, 0.038990256457394047, 0.036594202898550365, 0.036594202898550365, 0.0, 0.019971969166083143, 0.019971969166083143, 0.084659393737649788] self.percent_d_period_10_expected = [np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, 0.92146520146520128, 0.91575817641229118, 0.58572844400396684, 0.30411349572235413, 0.055021985976729616, 0.051718385051720613, 0.0, 0.016303044833373897, 0.016303044833373897, 0.016303044833373897, 0.075475396980983836, 0.26098071612992008, 0.41952090525521496, 0.51557598817047035, 0.5102475297437149, 0.62610001286055394, 0.72630722047261032, 0.70065047125978808, 0.71604938271604668, 0.54509832254305113, 0.39057821103369261, 0.10078662733530003, 0.18751264926128319, 0.46144505160898591, 0.79477838494231923, 0.9405990690143694, 0.94355570683004286, 0.76837985023825706, 0.59938733832539137, 0.52218062173814372, 0.66048332198774662, 0.81224159742700186, 0.94589260718420665, 0.96361166402907694, 0.98084590050268738, 0.98084590050268738, 1.0, 0.92729536258947975, 0.82790116704143812, 0.73261586190814898, 0.62149696990690473, 0.38755783212161315, 0.14950980392156885, 0.0, 0.080964413560749085, 0.13876605601179157, 0.284934388620801, 0.20396997506005191, 0.17611526210104891, 0.038288283357935902, 0.089798932193991862, 0.059852002701952366, 0.14046399667265153, 0.14358230601885319, 0.37756828619772614, 0.53879622915155967, 0.55727516146849621, 0.65662251462295651, 0.73977455716586071, 0.76621708413615852, 0.43288375080282515, 0.099550417469491795, 0.041828793774319611, 0.13651102464332113, 0.13651102464332113, 0.09468223086900153, 0.12363814420369711, 0.12363814420369711, 0.41286271620772635, 0.62255790533736255, 0.95589123867069592, 0.80979187990446944, 0.52627089730467358, 0.21630842715796614, 0.13186625725008391, 0.20726714431934493, 0.26475605595359963, 0.23267363636244134, 0.17625511512541078, 0.21904237754540393, 0.52577508713997501, 0.79031370390754041, 1.0, 1.0, 0.9001416430594924, 0.9001416430594924, 0.9001416430594924, 1.0, 1.0, 0.97082611207394587, 0.84790001855961783, 0.7766671418472858, 0.47250769644000673, 0.31162596077283883, 0.1346381969157758, 0.24406880189798374, 0.19454329774614632, 0.10943060498220793, 0.0, 0.0, 0.0, 0.013511438661139167, 0.013511438661139167, 0.032638883320499211, 0.019127444659360039, 0.019127444659360039, 0.0, 0.0021513540875722457, 0.0021513540875722457, 0.036043971537236423, 0.033892617449664174, 0.033892617449664174, 0.0, 0.012351029252437973, 0.012351029252437973, 0.070153250755727301] def test_percent_k_period_6(self): period = 6 percent_k = stochastic.percent_k(self.data, period) np.testing.assert_array_equal(percent_k, self.percent_k_period_6_expected) def test_percent_k_period_8(self): period = 8 percent_k = stochastic.percent_k(self.data, period) np.testing.assert_array_equal(percent_k, self.percent_k_period_8_expected) def test_percent_k_period_10(self): period = 10 percent_k = stochastic.percent_k(self.data, period) np.testing.assert_array_equal(percent_k, self.percent_k_period_10_expected) def test_percent_k_invalid_period(self): period = 128 with self.assertRaises(Exception): stochastic.percent_k(self.data, period) def test_percent_d_period_6(self): period = 6 percent_d = stochastic.percent_d(self.data, period) np.testing.assert_array_equal(percent_d, self.percent_d_period_6_expected) def test_percent_d_period_8(self): period = 8 percent_d = stochastic.percent_d(self.data, period) np.testing.assert_array_equal(percent_d, self.percent_d_period_8_expected) def test_percent_d_period_10(self): period = 10 percent_d = stochastic.percent_d(self.data, period) np.testing.assert_array_equal(percent_d, self.percent_d_period_10_expected) def test_percent_d_invalid_period(self): period = 128 with self.assertRaises(Exception) as cm: stochastic.percent_d(self.data, period) expected = "Error: data_len < period" self.assertEqual(str(cm.exception), expected)
mit
5,619,512,950,334,885,000
61.951613
83
0.711248
false
2.240207
true
false
false
edcast-inc/edx-platform-edcast
common/djangoapps/student/tests/test_login.py
1
25194
''' Tests for student activation and login ''' import json import unittest from unittest import skip from django.test import TestCase from django.test.client import Client from django.test.utils import override_settings from django.conf import settings from django.core.cache import cache from django.core.urlresolvers import reverse, NoReverseMatch from django.http import HttpResponseBadRequest, HttpResponse import httpretty from mock import patch from social.apps.django_app.default.models import UserSocialAuth from external_auth.models import ExternalAuthMap from student.tests.factories import UserFactory, RegistrationFactory, UserProfileFactory from student.views import login_oauth_token from third_party_auth.tests.utils import ( ThirdPartyOAuthTestMixin, ThirdPartyOAuthTestMixinFacebook, ThirdPartyOAuthTestMixinGoogle ) from xmodule.modulestore.tests.factories import CourseFactory from xmodule.modulestore.tests.django_utils import ModuleStoreTestCase class LoginTest(TestCase): ''' Test student.views.login_user() view ''' def setUp(self): super(LoginTest, self).setUp() # Create one user and save it to the database self.user = UserFactory.build(username='test', email='[email protected]') self.user.set_password('test_password') self.user.save() # Create a registration for the user RegistrationFactory(user=self.user) # Create a profile for the user UserProfileFactory(user=self.user) # Create the test client self.client = Client() cache.clear() # Store the login url try: self.url = reverse('login_post') except NoReverseMatch: self.url = reverse('login') def test_login_success(self): response, mock_audit_log = self._login_response('[email protected]', 'test_password', patched_audit_log='student.models.AUDIT_LOG') self._assert_response(response, success=True) self._assert_audit_log(mock_audit_log, 'info', [u'Login success', u'[email protected]']) @patch.dict("django.conf.settings.FEATURES", {'SQUELCH_PII_IN_LOGS': True}) def test_login_success_no_pii(self): response, mock_audit_log = self._login_response('[email protected]', 'test_password', patched_audit_log='student.models.AUDIT_LOG') self._assert_response(response, success=True) self._assert_audit_log(mock_audit_log, 'info', [u'Login success']) self._assert_not_in_audit_log(mock_audit_log, 'info', [u'[email protected]']) def test_login_success_unicode_email(self): unicode_email = u'test' + unichr(40960) + u'@edx.org' self.user.email = unicode_email self.user.save() response, mock_audit_log = self._login_response(unicode_email, 'test_password', patched_audit_log='student.models.AUDIT_LOG') self._assert_response(response, success=True) self._assert_audit_log(mock_audit_log, 'info', [u'Login success', unicode_email]) def test_login_fail_no_user_exists(self): nonexistent_email = u'[email protected]' response, mock_audit_log = self._login_response(nonexistent_email, 'test_password') self._assert_response(response, success=False, value='Email or password is incorrect') self._assert_audit_log(mock_audit_log, 'warning', [u'Login failed', u'Unknown user email', nonexistent_email]) @patch.dict("django.conf.settings.FEATURES", {'ADVANCED_SECURITY': True}) def test_login_fail_incorrect_email_with_advanced_security(self): nonexistent_email = u'[email protected]' response, mock_audit_log = self._login_response(nonexistent_email, 'test_password') self._assert_response(response, success=False, value='Email or password is incorrect') self._assert_audit_log(mock_audit_log, 'warning', [u'Login failed', u'Unknown user email', nonexistent_email]) @patch.dict("django.conf.settings.FEATURES", {'SQUELCH_PII_IN_LOGS': True}) def test_login_fail_no_user_exists_no_pii(self): nonexistent_email = u'[email protected]' response, mock_audit_log = self._login_response(nonexistent_email, 'test_password') self._assert_response(response, success=False, value='Email or password is incorrect') self._assert_audit_log(mock_audit_log, 'warning', [u'Login failed', u'Unknown user email']) self._assert_not_in_audit_log(mock_audit_log, 'warning', [nonexistent_email]) def test_login_fail_wrong_password(self): response, mock_audit_log = self._login_response('[email protected]', 'wrong_password') self._assert_response(response, success=False, value='Email or password is incorrect') self._assert_audit_log(mock_audit_log, 'warning', [u'Login failed', u'password for', u'[email protected]', u'invalid']) @patch.dict("django.conf.settings.FEATURES", {'SQUELCH_PII_IN_LOGS': True}) def test_login_fail_wrong_password_no_pii(self): response, mock_audit_log = self._login_response('[email protected]', 'wrong_password') self._assert_response(response, success=False, value='Email or password is incorrect') self._assert_audit_log(mock_audit_log, 'warning', [u'Login failed', u'password for', u'invalid']) self._assert_not_in_audit_log(mock_audit_log, 'warning', [u'[email protected]']) def test_login_not_activated(self): # De-activate the user self.user.is_active = False self.user.save() # Should now be unable to login response, mock_audit_log = self._login_response('[email protected]', 'test_password') self._assert_response(response, success=False, value="This account has not been activated") self._assert_audit_log(mock_audit_log, 'warning', [u'Login failed', u'Account not active for user']) @patch.dict("django.conf.settings.FEATURES", {'SQUELCH_PII_IN_LOGS': True}) def test_login_not_activated_no_pii(self): # De-activate the user self.user.is_active = False self.user.save() # Should now be unable to login response, mock_audit_log = self._login_response('[email protected]', 'test_password') self._assert_response(response, success=False, value="This account has not been activated") self._assert_audit_log(mock_audit_log, 'warning', [u'Login failed', u'Account not active for user']) self._assert_not_in_audit_log(mock_audit_log, 'warning', [u'test']) def test_login_unicode_email(self): unicode_email = u'[email protected]' + unichr(40960) response, mock_audit_log = self._login_response(unicode_email, 'test_password') self._assert_response(response, success=False) self._assert_audit_log(mock_audit_log, 'warning', [u'Login failed', unicode_email]) def test_login_unicode_password(self): unicode_password = u'test_password' + unichr(1972) response, mock_audit_log = self._login_response('[email protected]', unicode_password) self._assert_response(response, success=False) self._assert_audit_log(mock_audit_log, 'warning', [u'Login failed', u'password for', u'[email protected]', u'invalid']) def test_logout_logging(self): response, _ = self._login_response('[email protected]', 'test_password') self._assert_response(response, success=True) logout_url = reverse('logout') with patch('student.models.AUDIT_LOG') as mock_audit_log: response = self.client.post(logout_url) self.assertEqual(response.status_code, 302) self._assert_audit_log(mock_audit_log, 'info', [u'Logout', u'test']) def test_login_user_info_cookie(self): response, _ = self._login_response('[email protected]', 'test_password') self._assert_response(response, success=True) # Verify the format of the "user info" cookie set on login cookie = self.client.cookies[settings.EDXMKTG_USER_INFO_COOKIE_NAME] user_info = json.loads(cookie.value) # Check that the version is set self.assertEqual(user_info["version"], settings.EDXMKTG_USER_INFO_COOKIE_VERSION) # Check that the username and email are set self.assertEqual(user_info["username"], self.user.username) self.assertEqual(user_info["email"], self.user.email) # Check that the URLs are absolute for url in user_info["header_urls"].values(): self.assertIn("http://testserver/", url) @skip('we skip in edcast') def test_logout_deletes_mktg_cookies(self): response, _ = self._login_response('[email protected]', 'test_password') self._assert_response(response, success=True) # Check that the marketing site cookies have been set self.assertIn(settings.EDXMKTG_LOGGED_IN_COOKIE_NAME, self.client.cookies) self.assertIn(settings.EDXMKTG_USER_INFO_COOKIE_NAME, self.client.cookies) # Log out logout_url = reverse('logout') response = self.client.post(logout_url) # Check that the marketing site cookies have been deleted # (cookies are deleted by setting an expiration date in 1970) for cookie_name in [settings.EDXMKTG_LOGGED_IN_COOKIE_NAME, settings.EDXMKTG_USER_INFO_COOKIE_NAME]: cookie = self.client.cookies[cookie_name] self.assertIn("01-Jan-1970", cookie.get('expires')) @override_settings( EDXMKTG_LOGGED_IN_COOKIE_NAME=u"unicode-logged-in", EDXMKTG_USER_INFO_COOKIE_NAME=u"unicode-user-info", ) @skip('we skip in edcast') def test_unicode_mktg_cookie_names(self): # When logged in cookie names are loaded from JSON files, they may # have type `unicode` instead of `str`, which can cause errors # when calling Django cookie manipulation functions. response, _ = self._login_response('[email protected]', 'test_password') self._assert_response(response, success=True) response = self.client.post(reverse('logout')) self.assertRedirects(response, "/") @patch.dict("django.conf.settings.FEATURES", {'SQUELCH_PII_IN_LOGS': True}) def test_logout_logging_no_pii(self): response, _ = self._login_response('[email protected]', 'test_password') self._assert_response(response, success=True) logout_url = reverse('logout') with patch('student.models.AUDIT_LOG') as mock_audit_log: response = self.client.post(logout_url) self.assertEqual(response.status_code, 302) self._assert_audit_log(mock_audit_log, 'info', [u'Logout']) self._assert_not_in_audit_log(mock_audit_log, 'info', [u'test']) def test_login_ratelimited_success(self): # Try (and fail) logging in with fewer attempts than the limit of 30 # and verify that you can still successfully log in afterwards. for i in xrange(20): password = u'test_password{0}'.format(i) response, _audit_log = self._login_response('[email protected]', password) self._assert_response(response, success=False) # now try logging in with a valid password response, _audit_log = self._login_response('[email protected]', 'test_password') self._assert_response(response, success=True) def test_login_ratelimited(self): # try logging in 30 times, the default limit in the number of failed # login attempts in one 5 minute period before the rate gets limited for i in xrange(30): password = u'test_password{0}'.format(i) self._login_response('[email protected]', password) # check to see if this response indicates that this was ratelimited response, _audit_log = self._login_response('[email protected]', 'wrong_password') self._assert_response(response, success=False, value='Too many failed login attempts') @patch.dict("django.conf.settings.FEATURES", {'PREVENT_CONCURRENT_LOGINS': True}) def test_single_session(self): creds = {'email': '[email protected]', 'password': 'test_password'} client1 = Client() client2 = Client() response = client1.post(self.url, creds) self._assert_response(response, success=True) # Reload the user from the database self.user = UserFactory.FACTORY_FOR.objects.get(pk=self.user.pk) self.assertEqual(self.user.profile.get_meta()['session_id'], client1.session.session_key) # second login should log out the first response = client2.post(self.url, creds) self._assert_response(response, success=True) try: # this test can be run with either lms or studio settings # since studio does not have a dashboard url, we should # look for another url that is login_required, in that case url = reverse('dashboard') except NoReverseMatch: url = reverse('upload_transcripts') response = client1.get(url) # client1 will be logged out self.assertEqual(response.status_code, 302) @patch.dict("django.conf.settings.FEATURES", {'PREVENT_CONCURRENT_LOGINS': True}) def test_single_session_with_url_not_having_login_required_decorator(self): # accessing logout url as it does not have login-required decorator it will avoid redirect # and go inside the enforce_single_login creds = {'email': '[email protected]', 'password': 'test_password'} client1 = Client() client2 = Client() response = client1.post(self.url, creds) self._assert_response(response, success=True) self.assertEqual(self.user.profile.get_meta()['session_id'], client1.session.session_key) # second login should log out the first response = client2.post(self.url, creds) self._assert_response(response, success=True) url = reverse('logout') response = client1.get(url) self.assertEqual(response.status_code, 302) def test_change_enrollment_400(self): """ Tests that a 400 in change_enrollment doesn't lead to a 404 and in fact just logs in the user without incident """ # add this post param to trigger a call to change_enrollment extra_post_params = {"enrollment_action": "enroll"} with patch('student.views.change_enrollment') as mock_change_enrollment: mock_change_enrollment.return_value = HttpResponseBadRequest("I am a 400") response, _ = self._login_response( '[email protected]', 'test_password', extra_post_params=extra_post_params, ) response_content = json.loads(response.content) self.assertIsNone(response_content["redirect_url"]) self._assert_response(response, success=True) def test_change_enrollment_200_no_redirect(self): """ Tests "redirect_url" is None if change_enrollment returns a HttpResponse with no content """ # add this post param to trigger a call to change_enrollment extra_post_params = {"enrollment_action": "enroll"} with patch('student.views.change_enrollment') as mock_change_enrollment: mock_change_enrollment.return_value = HttpResponse() response, _ = self._login_response( '[email protected]', 'test_password', extra_post_params=extra_post_params, ) response_content = json.loads(response.content) self.assertIsNone(response_content["redirect_url"]) self._assert_response(response, success=True) def _login_response(self, email, password, patched_audit_log='student.views.AUDIT_LOG', extra_post_params=None): ''' Post the login info ''' post_params = {'email': email, 'password': password} if extra_post_params is not None: post_params.update(extra_post_params) with patch(patched_audit_log) as mock_audit_log: result = self.client.post(self.url, post_params) return result, mock_audit_log def _assert_response(self, response, success=None, value=None): ''' Assert that the response had status 200 and returned a valid JSON-parseable dict. If success is provided, assert that the response had that value for 'success' in the JSON dict. If value is provided, assert that the response contained that value for 'value' in the JSON dict. ''' self.assertEqual(response.status_code, 200) try: response_dict = json.loads(response.content) except ValueError: self.fail("Could not parse response content as JSON: %s" % str(response.content)) if success is not None: self.assertEqual(response_dict['success'], success) if value is not None: msg = ("'%s' did not contain '%s'" % (str(response_dict['value']), str(value))) self.assertTrue(value in response_dict['value'], msg) def _assert_audit_log(self, mock_audit_log, level, log_strings): """ Check that the audit log has received the expected call as its last call. """ method_calls = mock_audit_log.method_calls name, args, _kwargs = method_calls[-1] self.assertEquals(name, level) self.assertEquals(len(args), 1) format_string = args[0] for log_string in log_strings: self.assertIn(log_string, format_string) def _assert_not_in_audit_log(self, mock_audit_log, level, log_strings): """ Check that the audit log has received the expected call as its last call. """ method_calls = mock_audit_log.method_calls name, args, _kwargs = method_calls[-1] self.assertEquals(name, level) self.assertEquals(len(args), 1) format_string = args[0] for log_string in log_strings: self.assertNotIn(log_string, format_string) class ExternalAuthShibTest(ModuleStoreTestCase): """ Tests how login_user() interacts with ExternalAuth, in particular Shib """ def setUp(self): super(ExternalAuthShibTest, self).setUp() self.course = CourseFactory.create( org='Stanford', number='456', display_name='NO SHIB', user_id=self.user.id, ) self.shib_course = CourseFactory.create( org='Stanford', number='123', display_name='Shib Only', enrollment_domain='shib:https://idp.stanford.edu/', user_id=self.user.id, ) self.user_w_map = UserFactory.create(email='[email protected]') self.extauth = ExternalAuthMap(external_id='[email protected]', external_email='[email protected]', external_domain='shib:https://idp.stanford.edu/', external_credentials="", user=self.user_w_map) self.user_w_map.save() self.extauth.save() self.user_wo_map = UserFactory.create(email='[email protected]') self.user_wo_map.save() @unittest.skipUnless(settings.FEATURES.get('AUTH_USE_SHIB'), "AUTH_USE_SHIB not set") def test_login_page_redirect(self): """ Tests that when a shib user types their email address into the login page, they get redirected to the shib login. """ response = self.client.post(reverse('login'), {'email': self.user_w_map.email, 'password': ''}) self.assertEqual(response.status_code, 200) obj = json.loads(response.content) self.assertEqual(obj, { 'success': False, 'redirect': reverse('shib-login'), }) @unittest.skipUnless(settings.FEATURES.get('AUTH_USE_SHIB'), "AUTH_USE_SHIB not set") def test_login_required_dashboard(self): """ Tests redirects to when @login_required to dashboard, which should always be the normal login, since there is no course context """ response = self.client.get(reverse('dashboard')) self.assertEqual(response.status_code, 302) self.assertEqual(response['Location'], 'http://testserver/login?next=/dashboard') @unittest.skipUnless(settings.FEATURES.get('AUTH_USE_SHIB'), "AUTH_USE_SHIB not set") def test_externalauth_login_required_course_context(self): """ Tests the redirects when visiting course-specific URL with @login_required. Should vary by course depending on its enrollment_domain """ TARGET_URL = reverse('courseware', args=[self.course.id.to_deprecated_string()]) # pylint: disable=invalid-name noshib_response = self.client.get(TARGET_URL, follow=True) self.assertEqual(noshib_response.redirect_chain[-1], ('http://testserver/login?next={url}'.format(url=TARGET_URL), 302)) self.assertContains(noshib_response, ("Sign in or Register | {platform_name}" .format(platform_name=settings.PLATFORM_NAME))) self.assertEqual(noshib_response.status_code, 200) TARGET_URL_SHIB = reverse('courseware', args=[self.shib_course.id.to_deprecated_string()]) # pylint: disable=invalid-name shib_response = self.client.get(**{'path': TARGET_URL_SHIB, 'follow': True, 'REMOTE_USER': self.extauth.external_id, 'Shib-Identity-Provider': 'https://idp.stanford.edu/'}) # Test that the shib-login redirect page with ?next= and the desired page are part of the redirect chain # The 'courseware' page actually causes a redirect itself, so it's not the end of the chain and we # won't test its contents self.assertEqual(shib_response.redirect_chain[-3], ('http://testserver/shib-login/?next={url}'.format(url=TARGET_URL_SHIB), 302)) self.assertEqual(shib_response.redirect_chain[-2], ('http://testserver{url}'.format(url=TARGET_URL_SHIB), 302)) self.assertEqual(shib_response.status_code, 200) @httpretty.activate class LoginOAuthTokenMixin(ThirdPartyOAuthTestMixin): """ Mixin with tests for the login_oauth_token view. A TestCase that includes this must define the following: BACKEND: The name of the backend from python-social-auth USER_URL: The URL of the endpoint that the backend retrieves user data from UID_FIELD: The field in the user data that the backend uses as the user id """ def setUp(self): super(LoginOAuthTokenMixin, self).setUp() self.url = reverse(login_oauth_token, kwargs={"backend": self.BACKEND}) def _assert_error(self, response, status_code, error): """Assert that the given response was a 400 with the given error code""" self.assertEqual(response.status_code, status_code) self.assertEqual(json.loads(response.content), {"error": error}) self.assertNotIn("partial_pipeline", self.client.session) def test_success(self): self._setup_provider_response(success=True) response = self.client.post(self.url, {"access_token": "dummy"}) self.assertEqual(response.status_code, 204) self.assertEqual(self.client.session['_auth_user_id'], self.user.id) # pylint: disable=no-member def test_invalid_token(self): self._setup_provider_response(success=False) response = self.client.post(self.url, {"access_token": "dummy"}) self._assert_error(response, 401, "invalid_token") def test_missing_token(self): response = self.client.post(self.url) self._assert_error(response, 400, "invalid_request") def test_unlinked_user(self): UserSocialAuth.objects.all().delete() self._setup_provider_response(success=True) response = self.client.post(self.url, {"access_token": "dummy"}) self._assert_error(response, 401, "invalid_token") def test_get_method(self): response = self.client.get(self.url, {"access_token": "dummy"}) self.assertEqual(response.status_code, 405) # This is necessary because cms does not implement third party auth @unittest.skipUnless(settings.FEATURES.get("ENABLE_THIRD_PARTY_AUTH"), "third party auth not enabled") class LoginOAuthTokenTestFacebook(LoginOAuthTokenMixin, ThirdPartyOAuthTestMixinFacebook, TestCase): """Tests login_oauth_token with the Facebook backend""" pass # This is necessary because cms does not implement third party auth @unittest.skipUnless(settings.FEATURES.get("ENABLE_THIRD_PARTY_AUTH"), "third party auth not enabled") class LoginOAuthTokenTestGoogle(LoginOAuthTokenMixin, ThirdPartyOAuthTestMixinGoogle, TestCase): """Tests login_oauth_token with the Google backend""" pass
agpl-3.0
888,919,011,720,206,700
45.828996
134
0.645114
false
3.910897
true
false
false
yantrabuddhi/blocos
tabs/UploadTab.py
1
13455
# -*- coding: utf-8 -*- # Este arquivo é parte do programa Monitor # Monitor é um software livre; você pode redistribui-lo e/ou # modifica-lo dentro dos termos da Licença Pública Geral GNU como # publicada pela Fundação do Software Livre (FSF); na versão 3 da # Licença, ou (na sua opinião) qualquer versão. # # Este programa é distribuido na esperança que possa ser util, # mas SEM NENHUMA GARANTIA; sem uma garantia implicita de ADEQUAÇÂO a qualquer # MERCADO ou APLICAÇÃO EM PARTICULAR. Veja a # Licença Pública Geral GNU para maiores detalhes. # # Você deve ter recebido uma cópia da Licença Pública Geral GNU # junto com este programa, se não, escreva para a Fundação do Software # Livre(FSF) Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # Centro de Tecnologia da Informação Renato Archer, Campinas-SP, Brasil # Projeto realizado com fundos do Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPQ) # Esse código faz parte do projeto BR-Gogo, disponível em http://sourceforge.net/projects/br-gogo/ import os if os.name=='nt': import win32api import win32con from gettext import gettext as _ try: import gtk except ImportError: #print _('GTK+ Runtime Enviromnt precisa ser instalado:') print _('GTK+ Runtime Enviroment needs to be installed:') print "http://downloads.sourceforge.net/gladewin32/gtk-2.12.9-win32-1.exe?modtime=1208401479&big_mirror=0" raw_input() from Tab import Tab from pyLogoCompiler.Exceptions import ConnectionProblem import pango import math from cairoplot import plots from cairoplot.series import Series # >>>>>>>>>>>>>>>>> temp # For non-dev machines, quick hack at attempt to show traceback in in a msg dialog import sys import traceback def logexception(type, value, tb): text = ' '.join(t for t in traceback.format_exception(type, value, tb)) print text try: dialog = gtk.MessageDialog(None, gtk.DIALOG_MODAL, \ gtk.MESSAGE_INFO, \ gtk.BUTTONS_OK, \ text) dialog.run() dialog.destroy() except: pass sys.excepthook = logexception # <<<<<<<<<<<<<<<<<<< temp class UploadTab(Tab): LAST_DATA_FILENAME = '.last_data.txt' defaultTab = 9 def __init__(self, gui, GoGo, liststoreSensorsTypes, sensorTypes): self.gui = gui self.GoGo = GoGo self.sensorTypes = sensorTypes self.dataFilename = "" self.data = [] self.colDataRaw = [] self.colDataMapped = [] self.textviewData = self.gui.get_widget('textviewData') self.textviewData.modify_font(pango.FontDescription('monospace')) self.textviewBuffer = gtk.TextBuffer() self.textviewData.set_buffer(self.textviewBuffer) self.spinbuttonColumns = self.gui.get_widget('spinbuttonColumns') self.checkbuttonShowHeaders = self.gui.get_widget('checkbuttonShowHeaders') self.checkbuttonTwoLineHeader = self.gui.get_widget('checkbuttonTwoLineHeader') self.radiobuttonUploadAuto = self.gui.get_widget("radiobuttonUploadAuto") self.uploadCount = self.gui.get_widget("spinbuttonUploadCount") self.progressbar = self.gui.get_widget('progressbarUpload') self.lblProgress = self.gui.get_widget('labelValuesUploaded') self.colSpec = [] for c in range(8): w = self.gui.get_widget('comboboxC%i' % c) w.set_active(0) w.set_sensitive(c == 0) w.set_model(liststoreSensorsTypes) self.colSpec.append(w) try: f=open(self.LAST_DATA_FILENAME,'r') self.textviewBuffer.set_text(f.read()) f.close() except: pass self.graphContainer = None self.graphWidth = 50 self.graphHeight = 50 self.graphData = None self.graph = None self.graphVisible = False self.graphUpdateRequired = False self.notebookDataView = self.gui.get_widget('notebookDataView') #self.notebookDataView.set_current_page(0) def buttonStartUpload_clicked_cb(self,widget): try: self.progressbar.set_fraction(0.0) self.lblProgress.set_text(_("%i Values Uploaded") % 0) while gtk.events_pending(): gtk.main_iteration(False) if self.radiobuttonUploadAuto.get_active(): self.data = self.GoGo.autoUpload(None, self.uploadProgress_cb) else: count = self.uploadCount.get_value_as_int() self.data = self.GoGo.autoUpload(count, self.uploadProgress_cb) except ConnectionProblem: self.showWarning(_("Check GoGo plugged in, turned on and connected")) return except: self.showError(_("Error communicating")) return else: self.lblProgress.set_text(_("%i Values Uploaded") % len(self.data)) if self.refreshTextView(): self.showInfo(_("Data successfully uploaded."), self.gui.get_widget('mainWindow')) def buttonSaveData_clicked_cb(self,widget): if len(self.data) == 0: return dialog = gtk.FileChooserDialog(_("Save As.."), None, gtk.FILE_CHOOSER_ACTION_SAVE, (gtk.STOCK_CANCEL,gtk.RESPONSE_CANCEL,gtk.STOCK_SAVE, gtk.RESPONSE_OK)) dialog.set_default_response(gtk.RESPONSE_OK) response = dialog.run() if response == gtk.RESPONSE_OK: self.dataFilename = dialog.get_filename() try: FILE = open(self.dataFilename,"w") FILE.write(self.dataFormattedForSaving()) FILE.close() except: self.showError(Exception.__str__()) dialog.destroy() def buttonClearData_clicked_cb(self,widget): self.data = [] self.colDataRaw = [] self.colDataMapped = [] self.dataFilename = "" self.progressbar.set_fraction(0.0) self.lblProgress.set_text(_("%i Values Uploaded") % 0) self.refreshTextView() def spinbuttonColumns_changed_cb(self,widget): cc = self.spinbuttonColumns.get_value_as_int() for c in range(8): self.colSpec[c].set_sensitive(c < cc) self.refreshTextView() def colSpec_changed_cb(self,widget): self.refreshTextView() def checkbuttonShowHeaders_toggled_cb(self,widget): self.checkbuttonTwoLineHeader.set_sensitive(widget.get_active()) self.refreshTextView() def checkbuttonTwoLineHeader_toggled_cb(self,widget): self.refreshTextView() def notebookDataView_switch_page_cb(self,widget,page,page_num): self.graphVisible = page_num == 1 if self.graphVisible: self.refreshGraph() def getSelectedSensors(self): sensorIndexes = [w.get_active() for w in self.colSpec[:self.spinbuttonColumns.get_value_as_int()]] for i in [i for i,v in enumerate(sensorIndexes) if v == -1]: sensorIndexes[i] = 0 try: return [self.sensorTypes[n] for n in sensorIndexes] except: return None def calibrateData(self): self.colDataMapped = [] maxRows = max([len(c) for c in self.colDataRaw]) sensors = self.getSelectedSensors() for c,data in enumerate(self.colDataRaw): m = [round(sensors[c].get_new_value(v),3) for v in data] if len(m) < maxRows: m += [''] * (maxRows - len(m)) self.colDataMapped += [m] def getSensorHeaders(self): self.useHdrs = False self.hdrs = [] if not self.checkbuttonShowHeaders.get_active(): return False sensors = self.getSelectedSensors() if not sensors: return False self.hdrs = [[s.name,s.unit] for s in sensors] for i in [i for i,h in enumerate(self.hdrs) if h[1] == None or h[1] == '']: self.hdrs[i][1] = 'None' self.useHdrs = True return True def csvHeaders(self): if not self.useHdrs: return '' if not self.checkbuttonTwoLineHeader.get_active(): t = ','.join([('%s (%s)' % (h[0],h[1])) for h in self.hdrs]) + '\n' return t t = ','.join([h[0] for h in self.hdrs]) + '\n' t += ','.join([h[1] for h in self.hdrs]) + '\n' return t def displayHeaders(self): if not self.useHdrs: return '' t = '' if not self.checkbuttonTwoLineHeader.get_active(): hdrs = [('%s (%s)' % (h[0],h[1])) for h in self.hdrs] hdrs = [h.rjust(max(len(h),self.defaultTab), ' ') for h in hdrs] self.hdrTabs = [] for h in hdrs: t += h + ' ' self.hdrTabs.extend([len(h)]) return t + '\n' + ('-' * len(t)) + '\n' hdrs0 = [] hdrs1 = [] for h in self.hdrs: w = max(len(h[0]), len(h[1]), self.defaultTab) hdrs0 += [h[0].rjust(w, ' ')] hdrs1 += [h[1].rjust(w, ' ')] self.hdrTabs = [] for h in hdrs0: t += h + ' ' self.hdrTabs.extend([len(h)]) w = len(t) t += '\n' for h in hdrs1: t += h + ' ' return t + '\n' + ('-' * w) + '\n' def dataFormattedForSaving(self): t = self.csvHeaders() for line in self.colDataMapped: t = t + ','.join(map(str, line)) + '\n' return t def dataFormattedForDisplay(self): t = self.displayHeaders() if len(self.colDataMapped) == 1: d = zip(self.colDataMapped[0]) else: d = zip(*self.colDataMapped) for r,rowData in enumerate(d): for c,v in enumerate(rowData): if self.useHdrs: t = t + str(v).rjust(self.hdrTabs[c], ' ') + ' ' else: t = t + str(v).rjust(self.defaultTab, ' ') + ' ' t = t + '\n' return t def refreshTextView(self): if len(self.data) == 0: self.textviewBuffer.set_text("") return False if self.getSensorHeaders(): nCols = self.spinbuttonColumns.get_value_as_int() if nCols == 1: self.colDataRaw = [self.data] else: self.colDataRaw = list(self.data[i::nCols] for i in range(nCols)) for i in range(nCols-1, -1): if len(self.colDataRaw[i]) > len(self.colDataRaw[i+1]): self.colDataRaw[i].pop() print "aqui" self.calibrateData() self.textviewBuffer.set_text(self.dataFormattedForDisplay()) self.graphUpdateRequired = True self.refreshGraph() return True else: self.showWarning(_("Please, add at least one sensor in Sensors Tab")) return False def refreshGraph(self): if not (self.graphVisible and self.graphUpdateRequired): return if self.graphContainer == None: self.graphContainer = self.gui.get_widget("dataGraphContainer") if self.graphContainer == None: return r = self.graphContainer.get_allocation() self.graphWidth, self.graphHeight = (r.width,r.height) self.graph = None data = {} for c,t in enumerate(self.colDataMapped): lbl = '%(colNum)i-%(name)s (%(units)s)' % \ {'colNum': c+1, 'name': self.hdrs[c][0], 'units': self.hdrs[c][1]} data[lbl] = t #if len(self.data) % self.spinbuttonColumns.get_value_as_int() > 0: # self.showWarning(_("The graph can not be generated with this configuration.\nPlease check the number of columns.")) #else: self.drawGraph(data,[str(x) for x in range(len(self.colDataMapped[0]))]) self.graphUpdateRequired = False def drawGraph(self, data=[], xLabels=[]): if data == {}: return if self.graph != None: self.graphContainer.remove(self.graph.handler) self.graph = plots.DotLinePlot('gtk', data=data, x_labels=xLabels, width=self.graphWidth, height=self.graphHeight, background="white", border=5, axis=True, grid=True, series_legend = True) self.graphContainer.add(self.graph.handler) self.graph.handler.show() def uploadProgress_cb(self, count, total): self.progressbar.set_fraction(float(count) / total) self.lblProgress.set_text(_('%i Values Uploaded' % count)) while gtk.events_pending(): gtk.main_iteration(False)
gpl-3.0
-6,296,304,755,429,825,000
33.242347
127
0.554943
false
3.703918
false
false
false
AnumSheraz/IP-Controlled-Robotic-Car
Manual-IP-Controlled-Robotic-Car/Code.py
1
1696
import sys from PyQt4 import QtGui, QtCore import time, socket, json from main import Ui_MainWindow s=socket.socket(socket.AF_INET,socket.SOCK_DGRAM) IP = "localhost" PORT = 8001 class main_menu(QtGui.QMainWindow): def __init__(self): super(main_menu, self).__init__() self.ui=Ui_MainWindow() self.ui.setupUi(self) self.show() def keyPressEvent(self, event1): verbose = {"FB":"", "LR":""} if event1.key() == QtCore.Qt.Key_W: #print "Up pressed" verbose["FB"] = "F" if event1.key() == QtCore.Qt.Key_S: #print "D pressed" verbose["FB"] = "B" if event1.key() == QtCore.Qt.Key_A: #print "L pressed" verbose["LR"] = "L" if event1.key() == QtCore.Qt.Key_D: #print "R pressed" verbose["LR"] = "R" print verbose json_data=json.dumps(verbose) s.sendto((json_data), (IP, PORT)) def keyReleaseEvent(self, event): verbose = {"FB":"", "LR":""} if event.key() == QtCore.Qt.Key_W: #print "Up rel" verbose["FB"] = "S" if event.key() == QtCore.Qt.Key_S: #print "D rel" verbose["FB"] = "S" if event.key() == QtCore.Qt.Key_A: #print "L pressed" verbose["LR"] = "S" if event.key() == QtCore.Qt.Key_D: #print "R pressed" verbose["LR"] = "S" print verbose json_data=json.dumps(verbose) s.sendto((json_data), (IP, PORT)) def main(): app = QtGui.QApplication(sys.argv) ex = main_menu() app.exec_() if __name__ == '__main__': main()
gpl-2.0
5,014,913,625,355,572,000
23.228571
49
0.504717
false
3.299611
false
false
false
be-cloud-be/horizon-addons
horizon/school_evaluations/wizard/evaluation_summary.py
1
3973
# -*- encoding: utf-8 -*- ############################################################################## # # Copyright (c) 2015 be-cloud.be # Jerome Sonnet <[email protected]> # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ############################################################################## import logging from openerp import api, fields, models, _ from openerp.exceptions import UserError from openerp.tools.safe_eval import safe_eval from openerp.tools import DEFAULT_SERVER_DATE_FORMAT from dateutil.relativedelta import relativedelta from datetime import datetime,date import openerp.addons.decimal_precision as dp _logger = logging.getLogger(__name__) class EvaluationSummaryWizard(models.TransientModel): _name = "school.evaluation.summary.wizard" _description = "School Evaluation Summary Wizard" year_id = fields.Many2one('school.year', string='Year', default=lambda self: self.env.user.current_year_id, ondelete='cascade') domain_id = fields.Many2one('school.domain', string='Domain', ondelete='cascade') session = fields.Selection([ ('first','First Session'), ('second','Second Session'), ], string="Session") @api.multi def generate_summary(self): self.ensure_one() data = {} data['year_id'] = self.year_id.id data['domain_id'] = self.domain_id.id data['session'] = self.session return self.env['report'].get_action(self, 'school_evaluations.evaluation_summary_content', data=data) class ReportEvaluationSummary(models.AbstractModel): _name = 'report.school_evaluations.evaluation_summary_content' @api.multi def render_html(self, data): _logger.info('render_html') year_id = data['year_id'] session = data['session'] domain_id = data['domain_id'] if session == 'first': states = ['postponed','awarded_first_session'] else: states = ['awarded_second_session','failed'] if domain_id: records = self.env['school.individual_bloc'].search([('year_id','=',year_id),('source_bloc_domain_id','=',domain_id),('state','in',states)],order="source_bloc_level, name") else: records = self.env['school.individual_bloc'].search([('year_id','=',year_id),('state','in',states)],order="source_bloc_level, name") docs = [ { "name" : 'Bac 1', 'blocs' : [], }, { "name" : 'Bac 2', 'blocs' : [], }, { "name" : 'Bac 3', 'blocs' : [], }, { "name" : 'Master 1', 'blocs' : [], }, { "name" : 'Master 2', 'blocs' : [], }, ] for record in records: docs[int(record.source_bloc_level)-1]['blocs'].append(record) docargs = { 'doc_model': 'school.individual_bloc', 'docs': docs, 'year' : self.env['school.year'].browse(year_id).name, } return self.env['report'].render('school_evaluations.evaluation_summary_content', docargs)
agpl-3.0
5,508,467,179,672,360,000
36.490566
184
0.558017
false
4.151515
false
false
false
migihajami/memin
memin/frontend.py
1
10715
__author__ = 'algol' import cherrypy from jinja2 import Environment, PackageLoader import memin.core as mc from configparser import ConfigParser class Menu: def __init__(self): self.menu = [ {'name': 'Главная', 'link': '/'}, {'name': 'Персоны', 'link': '/persons'}, {'name': 'Залы', 'link': '/classrooms'}, {'name': 'Занятия', 'link': '/lessons'}, {'name': 'Типы платежей', 'link': '/payment_types'} ] class FrontendBase: def __init__(self): self.env = Environment(loader=PackageLoader('memin', 'templates')) self.menu = Menu() def get_template(self, template_name='index.html'): return self.env.get_template(template_name) class Main(FrontendBase): def __init__(self): super().__init__() @staticmethod def checkPassword(realm, username, password): c = ConfigParser() c.read('config.ini') users = {k: c['users'][k].strip("'") for k in c['users']} if password == users.get(username, None): return True return False @cherrypy.expose def index(self, name=''): return self.get_template('index.html').render(nick=name, title='Main page', h1='Главная страница', menu=self.menu.menu ) @cherrypy.expose def halt(self): cherrypy.engine.exit() @cherrypy.expose def persons(self): return self.get_template('persons.html').render( title='Main page', h1='Персоны', menu=self.menu.menu, table_title='Персоны', url_prefix='person', ptypes=str({a.pk_value: a.name for a in mc.PaymentType.get_all()}), classrooms=str({a.pk_value: a.name for a in mc.Classroom.get_all()}), lessons=str({a.pk_value: a.name for a in mc.Lesson.get_all()}) ) @cherrypy.expose def payment_types(self): return self.get_template('payment_types.html').render( title='Типы платежей', h1='Типы платежей', menu=self.menu.menu, table_title='Типы платежей', url_prefix='ptype' ) @cherrypy.expose def classrooms(self): return self.get_template('classrooms.html').render( title='Залы для занятий', h1='Залы для занятий', menu=self.menu.menu, table_title='список залов', url_prefix='classroom' ) @cherrypy.expose def lessons(self): return self.get_template('lessons.html').render( title='Занятия', h1='Занятия', menu=self.menu.menu, table_title='Список занятий', url_prefix='lesson' ) class MeminCrud(FrontendBase): def __init__(self): super().__init__() @cherrypy.expose @cherrypy.tools.json_out() def list(self, **args): raise Exception("Not implemented yet") @cherrypy.expose @cherrypy.tools.json_out() def create(self, **args): raise Exception("Not implemented yet") @cherrypy.expose @cherrypy.tools.json_out() def update(self, **args): raise Exception("Not implemented yet") @cherrypy.expose @cherrypy.tools.json_out() def delete(self, **args): raise Exception("Not implemented yet") class Person(MeminCrud): def __init__(self): super().__init__() @cherrypy.expose @cherrypy.tools.json_out() def list(self, **args): prs = mc.Person.get_all() persons = [{'PersonID': p.pk_value, 'Fname': p.fname, 'Lname': p.lname, 'Phone': p.phone, 'Email': p.email, 'InsertDate': p.insert_date } for p in prs] res = {'Result': 'OK' if prs else 'ERROR', 'Records': persons, 'Args': args} return res @cherrypy.expose @cherrypy.tools.json_out() def create(self, **args): p = mc.Person(args['Fname'], args['Lname'], args['Phone'], args['Email']) args['PersonID'] = p.save() return {'Result': 'OK', 'Record': args} @cherrypy.expose @cherrypy.tools.json_out() def update(self, **args): p = mc.Person.load(args['PersonID']) p.fname = args['Fname'] p.lname = args['Lname'] p.phone = args['Phone'] p.email = args['Email'] p.save() return {'Result': 'OK'} class PaymentType(MeminCrud): def __init__(self): super().__init__() @cherrypy.expose @cherrypy.tools.json_out() def list(self, **args): ptypes = mc.PaymentType.get_all() res = [{'Name': p.name, 'Comment': p.comment, 'PaymentTypeID': p.pk_value} for p in ptypes] return {'Result': 'OK' if ptypes else 'ERROR', 'Records': res} @cherrypy.expose @cherrypy.tools.json_out() def create(self, **args): pt = mc.PaymentType(args['Name'], args['Comment']) args['PaymenTypeID'] = pt.save() return {'Result': 'OK', 'Record': args} @cherrypy.expose @cherrypy.tools.json_out() def update(self, **args): pt = mc.PaymentType.load(args['PaymentTypeID']) pt.name = args['Name'] pt.comment = args['Comment'] pt.save() return {'Result': 'OK'} @cherrypy.expose @cherrypy.tools.json_out() def delete(self, **args): raise Exception("Not implemented yet") class Classroom(MeminCrud): def __init__(self): super().__init__() @cherrypy.expose @cherrypy.tools.json_out() def list(self, **args): cl = mc.Classroom.get_all() res = [{'Name': c.name, 'Address': c.address, 'Comment': c.comment, 'Active': c.active, 'ClassroomID': c.pk_value} for c in cl] return {'Result': 'OK' if cl else 'ERROR', 'Records': res} @cherrypy.expose @cherrypy.tools.json_out() def create(self, **args): cl = mc.Classroom(args['Name'], args['Address'], args['Comment'], args['Active'] if 'Active' in args else 0 ) args['ClassroomID'] = cl.save() return {'Result': 'OK', 'Record': args} @cherrypy.expose @cherrypy.tools.json_out() def update(self, **args): cl = mc.Classroom.load(args['ClassroomID']) cl.comment = args['Comment'] cl.name = args['Name'] cl.active = args['Active'] if 'Active' in args else 0 cl.address = args['Address'] cl.save() return {'Result': 'OK'} @cherrypy.expose @cherrypy.tools.json_out() def delete(self, **args): raise Exception("Not implemented yet") class Lesson(MeminCrud): def __init__(self): super().__init__() @cherrypy.expose @cherrypy.tools.json_out() def list(self, **args): lsns = mc.Lesson.get_all() res = [{'Name': l.name, 'Comment': l.comment, 'Duration': l.duration, 'LessonID': l.pk_value } for l in lsns] return {'Result': 'OK' if lsns else 'ERROR', 'Records': res} @cherrypy.expose @cherrypy.tools.json_out() def create(self, **args): l = mc.Lesson(args['Name'], args['Duration'], args['Comment']) args['LessonID'] = l.save() return {'Result': 'OK', 'Record': args} @cherrypy.expose @cherrypy.tools.json_out() def update(self, **args): l = mc.Lesson.load(args['LessonID']) l.name = args['Name'] l.comment = args['Comment'] l.duration = args['Duration'] l.save() return {'Result': 'OK'} @cherrypy.expose @cherrypy.tools.json_out() def delete(self, **args): raise Exception("Not implemented yet") class Payment(MeminCrud): def __init__(self): super().__init__() @cherrypy.expose @cherrypy.tools.json_out() def list(self, **args): pl = mc.Payment.get_all({'PersonID': args['PersonID']}) res = [{'PersonID': p.person_id, 'PaymentType': p.payment_type_id, 'PaymentTypeID': p.payment_type_id, 'PaymentID': p.pk_value, 'Amount': p.amount, 'Date': '-'.join(reversed(p.date.split('.'))) } for p in pl] return {'Result': 'OK' if pl else 'ERROR', 'Records': res} @cherrypy.expose @cherrypy.tools.json_out() def create(self, **args): p = mc.Payment(args['PersonID'], args['Amount'], args['PaymentType']) args['PaymentID'] = p.save() args['Date'] = p.date return {'Result': 'OK', 'Record': args} @cherrypy.expose @cherrypy.tools.json_out() def update(self, **args): raise Exception("Not implemented yet") @cherrypy.expose @cherrypy.tools.json_out() def delete(self, **args): raise Exception("Not implemented yet") class Visit(MeminCrud): def __init__(self): super().__init__() @cherrypy.expose @cherrypy.tools.json_out() def list(self, PersonID, **args): visits = mc.Visit.get_all({'PersonID': PersonID}) res = [{'VisitID': a.pk_value, 'Classroom': a.classroom_id, 'Lesson': a.lesson_id, 'Date': '-'.join(reversed(a.date.split('.'))) } for a in visits] return {'Result': 'OK' if visits else 'ERROR', 'Records': res} @cherrypy.expose @cherrypy.tools.json_out() def create(self, **args): v = mc.Visit(args['PersonID'], args['Classroom'], args['Lesson'], args['Date']) args['VisitID'] = v.save() return {'Result': 'OK', 'Record': args} @cherrypy.expose @cherrypy.tools.json_out() def update(self, **args): v = mc.Visit.load(args.get('VisitID')) if v: v.classroom_id = args['Classroom'] v.lesson_id = args['Lesson'] v.date = args['Date'] v.save() return {'Result': 'OK'} return {'Result': 'ERROR'} @cherrypy.expose @cherrypy.tools.json_out() def delete(self, **args): raise Exception("Not implemented yet")
bsd-3-clause
-6,257,122,399,343,155,000
29.134286
87
0.526216
false
3.623154
false
false
false
MShel/ttw
listener/packets/udpPacket.py
1
1408
from listener.packets.abstractPacket import AbstractPacket from struct import unpack class UdpPacket(AbstractPacket): UNPACK_FORMAT = '!HHHH' UDP_HEADER_LENGTH = 8 PROTOCOL_NAME = 'UDP' def __init__(self, binPacket: bytes, margin: int): self.binPacket = binPacket self.headerMargin = margin self.parse() def parse(self): AbstractPacket.addMsg(AbstractPacket, 'Started Parsing UDP packet') binUdpHeader = self.binPacket[self.headerMargin:self.headerMargin + self.UDP_HEADER_LENGTH] unpackedHeader = unpack(self.UNPACK_FORMAT, binUdpHeader) self.fromPort = str(unpackedHeader[0]) self.toPort = str(unpackedHeader[1]) self.udpHeaderLength = unpackedHeader[2] self.udpCheckSum = unpackedHeader[3] fullHeaderSize = self.headerMargin + self.udpHeaderLength self.dataSize = len(self.binPacket) - fullHeaderSize # get data from the packet self.data = self.binPacket[fullHeaderSize:] AbstractPacket.addMsg(AbstractPacket, 'Parsed UDP packet from port: ' + self.fromPort + ' to: ' + self.toPort) AbstractPacket.addMsg(AbstractPacket, 'UDP-PACKET data:\n\n\n ' + str(self.data) +'\n\n') def getMsg(self): return self.msg def getName(self): return self.PROTOCOL_NAME def __del__(self): pass
mit
2,091,908,008,284,972,500
36.078947
119
0.651989
false
3.857534
false
false
false
aerler/WRF-Tools
Python/wrfavg/wrfout_average.py
1
79431
''' Created on 2013-09-28, revised 2014-06-17, added daily output 2020-05-04 A script to average WRF output; the default settings are meant for my 'fineIO' output configuration and process the smaller diagnostic files. The script can run in parallel mode, with each process averaging one filetype and domain, producing exactly one output file. @author: Andre R. Erler, GPL v3 ''' #TODO: add time-dependent auxiliary files to file processing (use prerequisites from other files) #TODO: add option to discard prerequisit variables #TODO: add base variables for correlation and standard deviation (and (co-)variance). #TODO: more variables: tropopause height, baroclinicity, PV, water flux (require full 3D fields) #TODO: add shape-averaged output stream (shapes based on a template file) ## imports import numpy as np from collections import OrderedDict #import numpy.ma as ma import os, re, sys, shutil, gc import netCDF4 as nc # my own netcdf stuff from utils.nctools import add_coord, copy_dims, copy_ncatts, copy_vars from processing.multiprocess import asyncPoolEC # import module providing derived variable classes import wrfavg.derived_variables as dv # aliases days_per_month_365 = dv.days_per_month_365 dtype_float = dv.dtype_float # thresholds for wet-day variables (from AMS glossary and ETCCDI Climate Change Indices) from utils.constants import precip_thresholds # N.B.: importing from WRF Tools to GeoPy causes a name collision # date error class class DateError(Exception): ''' Exceptions related to wrfout date strings, e.g. in file names. ''' pass # date error class class ArgumentError(Exception): ''' Exceptions related to arguments passed to the script. ''' pass def getDateRegX(period): ''' function to define averaging period based on argument ''' # use '\d' for any number and [1-3,45] for ranges; '\d\d\d\d' if period == '1979-1980': prdrgx = '19(79|80)' # 2 year historical period elif period == '1979-1981': prdrgx = '19(79|8[0-1])' # 3 year historical period elif period == '1979-1983': prdrgx = '19(79|8[0-3])' # 5 year historical period elif period == '1979-1988': prdrgx = '19(79|8[0-8])' # 10 year historical period elif period == '1980-1994': prdrgx = '19(8[0-9]|9[04])' # 15 year historical period elif period == '2045-2047': prdrgx = '204[5-7]' # 3 year future period elif period == '2045-2049': prdrgx = '204[5-9]' # 5 year future period elif period == '2045-2054': prdrgx = '20(4[5-9]|5[0-4])' # 10 year future period elif period == '2045-2059': prdrgx = '20(4[5-9]|5[0-9])' # 15 year future period elif period == '2085-2087': prdrgx = '208[5-7]' # 3 year future period elif period == '2085-2089': prdrgx = '208[5-9]' # 5 year future period elif period == '2085-2094': prdrgx = '20(8[5-9]|9[0-4])' # 10 year future period elif period == '2085-2099': prdrgx = '20(8[5-9]|9[0-9])' # 15 year future period elif period == '2090-2094': prdrgx = '209[0-4]' # 5 year future period else: prdrgx = None if prdrgx: print(("\nLoading regular expression for date string: '{:s}'".format(period))) return prdrgx ## read arguments # number of processes NP if 'PYAVG_THREADS' in os.environ: NP = int(os.environ['PYAVG_THREADS']) else: NP = None # only compute derived variables if 'PYAVG_DERIVEDONLY' in os.environ: lderivedonly = os.environ['PYAVG_DERIVEDONLY'] == 'DERIVEDONLY' else: lderivedonly = False # i.e. all # # scale dry-day threshold # if os.environ.has_key('PYAVG_DRYDAY') and bool(os.environ['PYAVG_DRYDAY']): # i.e. not empty and non-zero # dryday_correction = float(os.environ['PYAVG_DRYDAY']) # relative to WMO recommendation # dv.dryday_threshold = dv.dryday_threshold * dryday_correction # precip treshold for a dry day: 2.3e-7 mm/s # print("\n *** The dry-day threshold was increased by a factor of {:3.2f} relative to WMO recommendation *** \n".format(dryday_correction)) # recompute last timestep and continue (usefule after a crash) if 'PYAVG_RECOVER' in os.environ: lrecover = os.environ['PYAVG_RECOVER'] == 'RECOVER' else: lrecover = False # i.e. normal operation # just add new and leave old if 'PYAVG_ADDNEW' in os.environ: laddnew = os.environ['PYAVG_ADDNEW'] == 'ADDNEW' else: laddnew = False # i.e. recompute all # recompute specified variables if 'PYAVG_RECALC' in os.environ: if os.environ['PYAVG_RECALC'] == 'DERIVEDONLY': # recalculate all derived variables and leave others in place lrecalc = True; lderivedonly = True; recalcvars = [] else: recalcvars = os.environ['PYAVG_RECALC'].split() # space separated list (other characters cause problems...) if len(recalcvars) > 0 and len(recalcvars[0]) > 0: lrecalc = True # if there is a variable to recompute else: lrecalc = False # lrecalc uses the same pathway, but they can operate independently else: lrecalc = False # i.e. recompute all # overwrite existing data if 'PYAVG_OVERWRITE' in os.environ: loverwrite = os.environ['PYAVG_OVERWRITE'] == 'OVERWRITE' if loverwrite: laddnew = False; lrecalc = False else: loverwrite = False # i.e. append # N.B.: when loverwrite is True and and prdarg is empty, the entire file is replaced, # otherwise only the selected months are recomputed # file types to process if 'PYAVG_FILETYPES' in os.environ: filetypes = os.environ['PYAVG_FILETYPES'].split() # space separated list (other characters cause problems...) if len(filetypes) == 1 and len(filetypes[0]) == 0: filetypes = None # empty string, substitute default else: filetypes = None # defaults are set below # domains to process if 'PYAVG_DOMAINS' in os.environ: domains = os.environ['PYAVG_DOMAINS'].split() # space separated list (other characters cause problems...) if len(domains) == 1: domains = [int(i) for i in domains[0]] # string of single-digit indices else: domains = [int(i) for i in domains] # semi-colon separated list else: domains = None # defaults are set below # run script in debug mode if 'PYAVG_DEBUG' in os.environ: ldebug = os.environ['PYAVG_DEBUG'] == 'DEBUG' lderivedonly = ldebug or lderivedonly # usually this is what we are debugging, anyway... else: ldebug = False # operational mode # wipe temporary storage after every month (no carry-over) if 'PYAVG_CARRYOVER' in os.environ: lcarryover = os.environ['PYAVG_CARRYOVER'] == 'CARRYOVER' else: lcarryover = True # operational mode # use simple differences or centered differences for accumulated variables if 'PYAVG_SMPLDIFF' in os.environ: lsmplDiff = os.environ['PYAVG_SMPLDIFF'] == 'SMPLDIFF' else: lsmplDiff = False # default mode: centered differences # generate formatted daily/sub-daily output files for selected variables if 'PYAVG_DAILY' in os.environ: lglobaldaily = os.environ['PYAVG_DAILY'] == 'DAILY' else: lglobaldaily = False # operational mode # working directories exproot = os.getcwd() exp = exproot.split('/')[-1] # root folder name infolder = exproot + '/wrfout/' # input folder outfolder = exproot + '/wrfavg/' # output folder # figure out time period # N.B.: values or regex' can be passed for year, month, and day as arguments in this order; alternatively, # a single argument with the values/regex separated by commas (',') can be used if len(sys.argv) == 1 or not any(sys.argv[1:]): # treat empty arguments as no argument period = [] # means recompute everything elif len(sys.argv) == 2: period = sys.argv[1].split(',') # regular expression identifying else: period = sys.argv[1:] # prdarg = '1979'; period = prdarg.split('-') # for tests # default time intervals yearstr = '\d\d\d\d'; monthstr = '\d\d'; daystr = '\d\d' # figure out time interval if len(period) >= 1: # first try some common expressions yearstr = getDateRegX(period[0]) if yearstr is None: yearstr = period[0] if len(period) >= 2: monthstr = period[1] if len(period) >= 3: daystr = period[2] # N.B.: the timestr variables are interpreted as strings and support Python regex syntax if len(period) > 0 or ldebug: print('Date string interpretation:',yearstr,monthstr,daystr) ## definitions # input files and folders filetypes = filetypes or ['srfc', 'plev3d', 'xtrm', 'hydro', 'lsm', 'rad', 'snow'] domains = domains or [1,2,3,4] # filetypes and domains can also be set in an semi-colon-separated environment variable (see above) # file pattern (WRF output and averaged files) # inputpattern = 'wrf{0:s}_d{1:02d}_{2:s}-{3:s}-{4:s}_\d\d:\d\d:\d\d.nc' # expanded with format(type,domain,year,month) inputpattern = '^wrf{0:s}_d{1:s}_{2:s}_\d\d[_:]\d\d[_:]\d\d(?:\.nc$|$)' # expanded with format(type,domain,datestring) #inputpattern = '^wrf{0:s}_d{1:s}_{2:s}_\d\d[_:]\d\d[_:]\d\d.*$' # expanded with format(type,domain,datestring) # N.B.: the last section (?:\.nc$|$) matches either .nc at the end or just the end of the string; # ?: just means that the group defined by () can not be retrieved (it is just to hold "|") constpattern = 'wrfconst_d{0:02d}' # expanded with format(domain), also WRF output # N.B.: file extension is added automatically for constpattern and handled by regex for inputpattern monthlypattern = 'wrf{0:s}_d{1:02d}_monthly.nc' # expanded with format(type,domain) dailypattern = 'wrf{0:s}_d{1:02d}_daily.nc' # expanded with format(type,domain) # variable attributes wrftime = 'Time' # time dim in wrfout files wrfxtime = 'XTIME' # time in minutes since WRF simulation start wrfaxes = dict(Time='tax', west_east='xax', south_north='yax', num_press_levels_stag='pax') wrftimestamp = 'Times' # time-stamp variable in WRF time = 'time' # time dim in monthly mean files dimlist = ['x','y'] # dimensions we just copy dimmap = {time:wrftime} #{time:wrftime, 'x':'west_east','y':'south_north'} midmap = dict(list(zip(list(dimmap.values()),list(dimmap.keys())))) # reverse dimmap # accumulated variables (only total accumulation since simulation start, not, e.g., daily accumulated) acclist = dict(RAINNC=100.,RAINC=100.,RAINSH=None,SNOWNC=None,GRAUPELNC=None,SFCEVP=None,POTEVP=None, # srfc vars SFROFF=None,UDROFF=None,ACGRDFLX=None,ACSNOW=None,ACSNOM=None,ACHFX=None,ACLHF=None, # lsm vars ACSWUPT=1.e9,ACSWUPTC=1.e9,ACSWDNT=1.e9,ACSWDNTC=1.e9,ACSWUPB=1.e9,ACSWUPBC=1.e9,ACSWDNB=1.e9,ACSWDNBC=1.e9, # rad vars ACLWUPT=1.e9,ACLWUPTC=1.e9,ACLWDNT=1.e9,ACLWDNTC=1.e9,ACLWUPB=1.e9,ACLWUPBC=1.e9,ACLWDNB=1.e9,ACLWDNBC=1.e9) # rad vars # N.B.: keys = variables and values = bucket sizes; value = None or 0 means no bucket bktpfx = 'I_' # prefix for bucket variables; these are processed together with their accumulated variables # derived variables derived_variables = {filetype:[] for filetype in filetypes} # derived variable lists by file type derived_variables['srfc'] = [dv.Rain(), dv.LiquidPrecipSR(), dv.SolidPrecipSR(), dv.NetPrecip(sfcevp='QFX'), dv.WaterVapor(), dv.OrographicIndex(), dv.CovOIP(), dv.WindSpeed(), dv.SummerDays(threshold=25., temp='T2'), dv.FrostDays(threshold=0., temp='T2')] # N.B.: measures the fraction of 6-hourly samples above/below the threshold (day and night) derived_variables['xtrm'] = [dv.RainMean(), dv.TimeOfConvection(), dv.SummerDays(threshold=25., temp='T2MAX'), dv.FrostDays(threshold=0., temp='T2MIN')] derived_variables['hydro'] = [dv.Rain(), dv.LiquidPrecip(), dv.SolidPrecip(), dv.NetPrecip(sfcevp='SFCEVP'), dv.NetWaterFlux(), dv.WaterForcing()] derived_variables['rad'] = [dv.NetRadiation(), dv.NetLWRadiation()] derived_variables['lsm'] = [dv.RunOff()] derived_variables['plev3d'] = [dv.OrographicIndexPlev(), dv.Vorticity(), dv.WindSpeed(), dv.WaterDensity(), dv.WaterFlux_U(), dv.WaterFlux_V(), dv.ColumnWater(), dv.WaterTransport_U(), dv.WaterTransport_V(), dv.HeatFlux_U(), dv.HeatFlux_V(), dv.ColumnHeat(), dv.HeatTransport_U(),dv.HeatTransport_V(), dv.GHT_Var(), dv.Vorticity_Var()] # add wet-day variables for different thresholds wetday_variables = [dv.WetDays, dv.WetDayRain, dv.WetDayPrecip] for threshold in precip_thresholds: for wetday_var in wetday_variables: derived_variables['srfc'].append(wetday_var(threshold=threshold, rain='RAIN')) derived_variables['hydro'].append(wetday_var(threshold=threshold, rain='RAIN')) derived_variables['xtrm'].append(wetday_var(threshold=threshold, rain='RAINMEAN')) # N.B.: derived variables need to be listed in order of computation # Consecutive exceedance variables consecutive_variables = {filetype:None for filetype in filetypes} # consecutive variable lists by file type # skip in debug mode (only specific ones for debug) if ldebug: print("Skipping 'Consecutive Days of Exceedance' Variables") else: consecutive_variables['srfc'] = {'CFD' : ('T2', 'below', 273.14, 'Consecutive Frost Days (< 0C)'), 'CSD' : ('T2', 'above', 273.14+25., 'Consecutive Summer Days (>25C)'), # N.B.: night temperatures >25C will rarely happen... so this will be very short 'CNWD' : ('NetPrecip', 'above', 0., 'Consecutive Net Wet Days'), 'CNDD' : ('NetPrecip', 'below', 0., 'Consecutive Net Dry Days'),} consecutive_variables['xtrm'] = {'CFD' : ('T2MIN', 'below', 273.14, 'Consecutive Frost Days (< 0C)'), 'CSD' : ('T2MAX', 'above', 273.14+25., 'Consecutive Summer Days (>25C)'),} consecutive_variables['hydro'] = {'CNWD' : ('NetPrecip', 'above', 0., 'Consecutive Net Wet Days'), 'CNDD' : ('NetPrecip', 'below', 0., 'Consecutive Net Dry Days'), 'CWGD' : ('NetWaterFlux', 'above', 0., 'Consecutive Water Gain Days'), 'CWLD' : ('NetWaterFlux', 'below', 0., 'Consecutive Water Loss Days'),} # add wet-day variables for different thresholds for threshold in precip_thresholds: for filetype,rain_var in zip(['srfc','hydro','xtrm'],['RAIN','RAIN','RAINMEAN']): suffix = '_{:03d}'.format(int(10*threshold)); name_suffix = '{:3.1f} mm/day)'.format(threshold) consecutive_variables[filetype]['CWD'+suffix] = (rain_var, 'above', threshold/86400., 'Consecutive Wet Days (>'+name_suffix) consecutive_variables[filetype]['CDD'+suffix] = (rain_var, 'below', threshold/86400. , 'Consecutive Dry Days (<'+name_suffix) ## single- and multi-step Extrema maximum_variables = {filetype:[] for filetype in filetypes} # maxima variable lists by file type daymax_variables = {filetype:[] for filetype in filetypes} # maxima variable lists by file type daymin_variables = {filetype:[] for filetype in filetypes} # mininma variable lists by file type weekmax_variables = {filetype:[] for filetype in filetypes} # maxima variable lists by file type minimum_variables = {filetype:[] for filetype in filetypes} # minima variable lists by file type weekmin_variables = {filetype:[] for filetype in filetypes} # mininma variable lists by file type # skip in debug mode (only specific ones for debug) if ldebug: print("Skipping Single- and Multi-step Extrema") else: # Maxima (just list base variables; derived variables will be created later) maximum_variables['srfc'] = ['T2', 'U10', 'V10', 'RAIN', 'RAINC', 'RAINNC', 'NetPrecip', 'WindSpeed'] maximum_variables['xtrm'] = ['T2MEAN', 'T2MAX', 'SPDUV10MEAN', 'SPDUV10MAX', 'RAINMEAN', 'RAINNCVMAX', 'RAINCVMAX'] maximum_variables['hydro'] = ['RAIN', 'RAINC', 'RAINNC', 'ACSNOW', 'ACSNOM', 'NetPrecip', 'NetWaterFlux', 'WaterForcing'] maximum_variables['lsm'] = ['SFROFF', 'Runoff'] maximum_variables['plev3d'] = ['S_PL', 'GHT_PL', 'Vorticity'] # daily (smoothed) maxima daymax_variables['srfc'] = ['T2','RAIN', 'RAINC', 'RAINNC', 'NetPrecip', 'WindSpeed'] # daily (smoothed) minima daymin_variables['srfc'] = ['T2'] # weekly (smoothed) maxima weekmax_variables['xtrm'] = ['T2MEAN', 'T2MAX', 'SPDUV10MEAN'] weekmax_variables['hydro'] = ['RAIN', 'RAINC', 'RAINNC', 'ACSNOW', 'ACSNOM', 'NetPrecip', 'NetWaterFlux', 'WaterForcing'] weekmax_variables['lsm'] = ['SFROFF', 'UDROFF', 'Runoff'] # Maxima (just list base variables; derived variables will be created later) minimum_variables['srfc'] = ['T2'] minimum_variables['xtrm'] = ['T2MEAN', 'T2MIN', 'SPDUV10MEAN'] minimum_variables['hydro'] = ['RAIN', 'NetPrecip', 'NetWaterFlux', 'WaterForcing'] minimum_variables['plev3d'] = ['GHT_PL', 'Vorticity'] # weekly (smoothed) minima weekmin_variables['xtrm'] = ['T2MEAN', 'T2MIN', 'SPDUV10MEAN'] weekmin_variables['hydro'] = ['RAIN', 'NetPrecip', 'NetWaterFlux', 'WaterForcing'] weekmin_variables['lsm'] = ['SFROFF','UDROFF','Runoff'] # N.B.: it is important that the derived variables are listed in order of dependency! # set of pre-requisites prereq_vars = {key:set() for key in derived_variables.keys()} # pre-requisite variable set by file type for key in prereq_vars.keys(): prereq_vars[key].update(*[devar.prerequisites for devar in derived_variables[key] if not devar.linear]) ## daily variables (can also be 6-hourly or hourly, depending on source file) if lglobaldaily: daily_variables = {filetype:[] for filetype in filetypes} # daily variable lists by file type daily_variables['srfc'] = ['T2', 'PSFC', 'WaterVapor', 'WindSpeed',] # surface climate daily_variables['xtrm'] = ['T2MIN', 'T2MAX'] # min/max T2 daily_variables['hydro'] = ['RAIN', 'RAINC', 'LiquidPrecip', 'WaterForcing', 'SFCEVP', 'POTEVP'] # water budget daily_variables['rad'] = ['NetRadiation','ACSWDNB','ACLWDNB','NetLWRadiation',] # surface radiation budget #daily_variables['lsm'] = [] # runoff and soil temperature ## main work function # N.B.: the loop iterations should be entirely independent, so that they can be run in parallel def processFileList(filelist, filetype, ndom, lparallel=False, pidstr='', logger=None, ldebug=False): ''' This function is doing the main work, and is supposed to be run in a multiprocessing environment. ''' ## setup files and folders # load first file to copy some meta data wrfoutfile = infolder+filelist[0] logger.debug("\n{0:s} Opening first input file '{1:s}'.".format(pidstr,wrfoutfile)) wrfout = nc.Dataset(wrfoutfile, 'r', format='NETCDF4') # timeless variables (should be empty, since all timeless variables should be in constant files!) timeless = [varname for varname,var in wrfout.variables.items() if 'Time' not in var.dimensions] assert len(timeless) == 0 # actually useless, since all WRF variables have a time dimension... # time-dependent variables varlist = [] # list of time-dependent variables to be processed for varname,var in wrfout.variables.items(): if ('Time' in var.dimensions) and np.issubdtype(var.dtype, np.number) and varname[0:len(bktpfx)] != bktpfx: varlist.append(varname) varlist.sort() # alphabetical order... ## derived variables, extrema, and dependencies # derived variable list derived_vars = OrderedDict() # it is important that the derived variables are computed in order: # the reason is that derived variables can depend on other derived variables, and the order in # which they are listed, should take this into account for devar in derived_variables[filetype]: derived_vars[devar.name] = devar # create consecutive extrema variables if consecutive_variables[filetype] is not None: for key,value in consecutive_variables[filetype].items(): if value[0] in derived_vars: derived_vars[key] = dv.ConsecutiveExtrema(derived_vars[value[0]], value[1], threshold=value[2], name=key, long_name=value[3]) else: derived_vars[key] = dv.ConsecutiveExtrema(wrfout.variables[value[0]], value[1], threshold=value[2], name=key, long_name=value[3], dimmap=midmap) # method to create derived variables for extrema def addExtrema(new_variables, mode, interval=0): for exvar in new_variables[filetype]: # create derived variable instance if exvar in derived_vars: if interval == 0: devar = dv.Extrema(derived_vars[exvar],mode) else: devar = dv.MeanExtrema(derived_vars[exvar],mode,interval=interval) else: if interval == 0: devar = dv.Extrema(wrfout.variables[exvar],mode, dimmap=midmap) else: devar = dv.MeanExtrema(wrfout.variables[exvar],mode, interval=interval, dimmap=midmap) # append to derived variables derived_vars[devar.name] = devar # derived_vars is from the parent scope, not local! # and now add them addExtrema(maximum_variables, 'max') addExtrema(minimum_variables, 'min') addExtrema(daymax_variables, 'max', interval=1) addExtrema(daymin_variables, 'min', interval=1) addExtrema(weekmax_variables, 'max', interval=5) # 5 days is the preferred interval, according to addExtrema(weekmin_variables, 'min', interval=5) # ETCCDI Climate Change Indices ldaily = False if lglobaldaily: # get varlist (does not include dependencies) daily_varlist_full = daily_variables[filetype] if len(daily_varlist_full)>0: ldaily = True daily_varlist = []; daily_derived_vars = [] for varname in daily_varlist_full: if varname in wrfout.variables: daily_varlist.append(varname) elif varname in derived_vars: daily_derived_vars.append(varname) else: raise ArgumentError("Variable '{}' not found in wrfout or derived variables; can only output derived variables that are already being computed for monthly output.".format(varname)) else: logger.info("\n{0:s} Skipping (sub-)daily output for filetype '{1:s}', since variable list is empty.\n".format(pidstr,filetype)) # if we are only computing derived variables, remove all non-prerequisites prepq = set().union(*[devar.prerequisites for devar in derived_vars.values()]) if ldaily: prepq |= set(daily_varlist) if lderivedonly: varlist = [var for var in varlist if var in prepq] # get some meta info and construct title string (printed after file creation) begindate = str(nc.chartostring(wrfout.variables[wrftimestamp][0,:10])) # first timestamp in first file beginyear, beginmonth, beginday = [int(tmp) for tmp in begindate.split('-')] # always need to begin on the first of a month (discard incomplete data of first month) if beginday != 1: beginmonth += 1 # move on to next month beginday = 1 # and start at the first (always...) begindate = '{0:04d}-{1:02d}-{2:02d}'.format(beginyear, beginmonth, beginday) # rewrite begin date # open last file and get last date lastoutfile = infolder+filelist[-1] logger.debug("{0:s} Opening last input file '{1:s}'.".format(pidstr,lastoutfile)) lastout = nc.Dataset(lastoutfile, 'r', format='NETCDF4') lstidx = lastout.variables[wrftimestamp].shape[0]-1 # netcdf library has problems with negative indexing enddate = str(nc.chartostring(lastout.variables[wrftimestamp][lstidx,:10])) # last timestamp in last file endyear, endmonth, endday = [int(tmp) for tmp in enddate.split('-')]; del endday # make warning go away... # the last timestamp should be the next month (i.e. that month is not included) if endmonth == 1: endmonth = 12; endyear -= 1 # previous year else: endmonth -= 1 endday = 1 # first day of last month (always 1st..) assert 1 <= endday <= 31 and 1 <= endmonth <= 12 # this is kinda trivial... enddate = '{0:04d}-{1:02d}-{2:02d}'.format(endyear, endmonth, endday) # rewrite begin date ## open/create monthly mean output file monthly_file = monthlypattern.format(filetype,ndom) if lparallel: tmppfx = 'tmp_wrfavg_{:s}_'.format(pidstr[1:-1]) else: tmppfx = 'tmp_wrfavg_' monthly_filepath = outfolder + monthly_file tmp_monthly_filepath = outfolder + tmppfx + monthly_file if os.path.exists(monthly_filepath): if loverwrite or os.path.getsize(monthly_filepath) < 1e6: os.remove(monthly_filepath) # N.B.: NetCDF files smaller than 1MB are usually incomplete header fragments from a previous crashed job if os.path.exists(tmp_monthly_filepath) and not lrecover: os.remove(tmp_monthly_filepath) # remove old temp files if os.path.exists(monthly_filepath): # make a temporary copy of the file to work on (except, if we are recovering a broken temp file) if not ( lrecover and os.path.exists(tmp_monthly_filepath) ): shutil.copy(monthly_filepath,tmp_monthly_filepath) # open (temporary) file logger.debug("{0:s} Opening existing output file '{1:s}'.\n".format(pidstr,monthly_filepath)) monthly_dataset = nc.Dataset(tmp_monthly_filepath, mode='a', format='NETCDF4') # open to append data (mode='a') # infer start index meanbeginyear, meanbeginmonth, meanbeginday = [int(tmp) for tmp in monthly_dataset.begin_date.split('-')] assert meanbeginday == 1, 'always have to begin on the first of a month' t0 = (beginyear-meanbeginyear)*12 + (beginmonth-meanbeginmonth) + 1 # check time-stamps in old datasets if monthly_dataset.end_date < begindate: assert t0 == len(monthly_dataset.dimensions[time]) + 1 # another check else: assert t0 <= len(monthly_dataset.dimensions[time]) + 1 # get time index where we start; in month beginning 1979 ## ## *** special functions like adding new and recalculating old variables could be added later for daily output *** ## # checks for new variables if laddnew or lrecalc: if t0 != 1: raise DateError("Have to start at the beginning to add new or recompute old variables!") # t0 starts with 1, not 0 meanendyear, meanendmonth, meanendday = [int(tmp) for tmp in monthly_dataset.end_date.split('-')] assert meanendday == 1 endyear, endmonth = meanendyear, meanendmonth # just adding new, not extending! enddate = monthly_dataset.end_date # for printing... # check base variables if laddnew or lrecalc: newvars = [] for var in varlist: if var not in monthly_dataset.variables: if laddnew: newvars.append(var) else: varlist.remove(var) #raise IOError, "{0:s} variable '{1:s}' not found in file '{2:s}'".format(pidstr,var.name,monthly_file) # add new variables to netcdf file if laddnew and len(newvars) > 0: # copy remaining dimensions to new datasets if midmap is not None: dimlist = [midmap.get(dim,dim) for dim in wrfout.dimensions.keys() if dim != wrftime] else: dimlist = [dim for dim in wrfout.dimensions.keys() if dim != wrftime] dimlist = [dim for dim in dimlist if dim not in monthly_dataset.dimensions] # only the new ones! copy_dims(monthly_dataset, wrfout, dimlist=dimlist, namemap=dimmap, copy_coords=False) # don't have coordinate variables # create time-dependent variable in new datasets copy_vars(monthly_dataset, wrfout, varlist=newvars, dimmap=dimmap, copy_data=False) # do not copy data - need to average # change units of accumulated variables (per second) for varname in newvars: # only new vars assert varname in monthly_dataset.variables if varname in acclist: meanvar = monthly_dataset.variables[varname] meanvar.units = meanvar.units + '/s' # units per second! # add variables that should be recalculated if lrecalc: for var in recalcvars: if var in monthly_dataset.variables and var in wrfout.variables: if var not in newvars: newvars.append(var) #else: raise ArgumentError, "Variable '{:s}' scheduled for recalculation is not present in output file '{:s}'.".format(var,monthly_filepath) # check derived variables if laddnew or lrecalc: newdevars = [] for varname,var in derived_vars.items(): if varname in monthly_dataset.variables: var.checkPrerequisites(monthly_dataset) if not var.checked: raise ValueError("Prerequisits for derived variable '{:s}' not found.".format(varname)) if lrecalc: if ( lderivedonly and len(recalcvars) == 0 ) or ( varname in recalcvars ): newdevars.append(varname) var.checkPrerequisites(monthly_dataset) # as long as they are sorted correctly... #del monthly_dataset.variables[varname]; monthly_dataset.sync() #var.createVariable(monthly_dataset) # this does not seem to work... else: if laddnew: var.checkPrerequisites(monthly_dataset) # as long as they are sorted correctly... var.createVariable(monthly_dataset) newdevars.append(varname) else: del derived_vars[varname] # don't bother # N.B.: it is not possible that a previously computed variable depends on a missing variable, # unless it was purposefully deleted, in which case this will crash! #raise (dv.DerivedVariableError, "{0:s} Derived variable '{1:s}' not found in file '{2:s}'".format(pidstr,var.name,monthly_file)) # now figure out effective variable list if laddnew or lrecalc: varset = set(newvars) devarset = set(newdevars) ndv = -1 # check prerequisites while ndv != len(devarset): ndv = len(devarset) for devar in list(devarset): # normal variables don't have prerequisites for pq in derived_vars[devar].prerequisites: if pq in derived_vars: devarset.add(pq) else: varset.add(pq) # N.B.: this algorithm for dependencies relies on the fact that derived_vars is already ordered correctly, # and unused variables can simply be removed (below), without changing the order; # a stand-alone dependency resolution would require soring the derived_vars in order of execution # consolidate lists for devar in derived_vars.keys(): if devar not in devarset: del derived_vars[devar] # don't bother with this one... varlist = list(varset) # order doesnt really matter... but whatever... varlist.sort() # ... alphabetical order... else: logger.debug("{0:s} Creating new output file '{1:s}'.\n".format(pidstr,monthly_filepath)) monthly_dataset = nc.Dataset(tmp_monthly_filepath, 'w', format='NETCDF4') # open to start a new file (mode='w') t0 = 1 # time index where we start (first month) monthly_dataset.createDimension(time, size=None) # make time dimension unlimited add_coord(monthly_dataset, time, data=None, dtype='i4', atts=dict(units='month since '+begindate)) # unlimited time dimension # copy remaining dimensions to new datasets if midmap is not None: dimlist = [midmap.get(dim,dim) for dim in wrfout.dimensions.keys() if dim != wrftime] else: dimlist = [dim for dim in wrfout.dimensions.keys() if dim != wrftime] copy_dims(monthly_dataset, wrfout, dimlist=dimlist, namemap=dimmap, copy_coords=False) # don't have coordinate variables # copy time-less variable to new datasets copy_vars(monthly_dataset, wrfout, varlist=timeless, dimmap=dimmap, copy_data=True) # copy data # create time-dependent variable in new datasets copy_vars(monthly_dataset, wrfout, varlist=varlist, dimmap=dimmap, copy_data=False) # do not copy data - need to average # change units of accumulated variables (per second) for varname in acclist: if varname in monthly_dataset.variables: meanvar = monthly_dataset.variables[varname] meanvar.units = meanvar.units + '/s' # units per second! # also create variable for time-stamps in new datasets if wrftimestamp in wrfout.variables: copy_vars(monthly_dataset, wrfout, varlist=[wrftimestamp], dimmap=dimmap, copy_data=False) # do nto copy data - need to average # create derived variables for var in derived_vars.values(): var.checkPrerequisites(monthly_dataset) # as long as they are sorted correctly... var.createVariable(monthly_dataset) # derived variables need to be added in order of computation # copy global attributes copy_ncatts(monthly_dataset, wrfout, prefix='') # copy all attributes (no need for prefix; all upper case are original) # some new attributes monthly_dataset.acc_diff_mode = 'simple' if lsmplDiff else 'centered' monthly_dataset.description = 'wrf{0:s}_d{1:02d} monthly means'.format(filetype,ndom) monthly_dataset.begin_date = begindate monthly_dataset.experiment = exp monthly_dataset.creator = 'Andre R. Erler' # sync with file monthly_dataset.sync() ## open/create daily output file if ldaily: # get datetime begindatetime = dv.getTimeStamp(wrfout, 0, wrftimestamp) # figure out filename daily_file = dailypattern.format(filetype,ndom) if lparallel: tmppfx = 'tmp_wrfavg_{:s}_'.format(pidstr[1:-1]) else: tmppfx = 'tmp_wrfavg_' daily_filepath = outfolder + daily_file tmp_daily_filepath = outfolder + tmppfx + daily_file if os.path.exists(daily_filepath): if loverwrite or os.path.getsize(daily_filepath) < 1e6: os.remove(daily_filepath) # N.B.: NetCDF files smaller than 1MB are usually incomplete header fragments from a previous crashed job if os.path.exists(tmp_daily_filepath) and not lrecover: os.remove(tmp_daily_filepath) # remove old temp files if os.path.exists(daily_filepath): raise NotImplementedError("Currently, updating of and appending to (sub-)daily output files is not supported.") else: logger.debug("{0:s} Creating new (sub-)daily output file '{1:s}'.\n".format(pidstr,daily_filepath)) daily_dataset = nc.Dataset(tmp_daily_filepath, 'w', format='NETCDF4') # open to start a new file (mode='w') timestep_start = 0 # time step where we start (first tiem step) daily_dataset.createDimension(time, size=None) # make time dimension unlimited add_coord(daily_dataset, time, data=None, dtype='i8', atts=dict(units='seconds since '+begindatetime)) # unlimited time dimension # copy remaining dimensions to new datasets if midmap is not None: dimlist = [midmap.get(dim,dim) for dim in wrfout.dimensions.keys() if dim != wrftime] else: dimlist = [dim for dim in wrfout.dimensions.keys() if dim != wrftime] copy_dims(daily_dataset, wrfout, dimlist=dimlist, namemap=dimmap, copy_coords=False) # don't have coordinate variables # copy time-less variable to new datasets copy_vars(daily_dataset, wrfout, varlist=timeless, dimmap=dimmap, copy_data=True) # copy data # create time-dependent variable in new datasets copy_vars(daily_dataset, wrfout, varlist=daily_varlist, dimmap=dimmap, copy_data=False) # do not copy data - need to resolve buckets and straighten time # change units of accumulated variables (per second) for varname in acclist: if varname in daily_dataset.variables: dayvar = daily_dataset.variables[varname] dayvar.units = dayvar.units + '/s' # units per second! # also create variable for time-stamps in new datasets if wrftimestamp in wrfout.variables: copy_vars(daily_dataset, wrfout, varlist=[wrftimestamp], dimmap=dimmap, copy_data=False) # do not copy data - need to straighten out time axis if wrfxtime in wrfout.variables: copy_vars(daily_dataset, wrfout, varlist=[wrfxtime], dimmap=dimmap, copy_data=False) # do not copy data - need to straighten out time axis # create derived variables for devarname in daily_derived_vars: # don't need to check for prerequisites, since they are already being checked and computed for monthly output derived_vars[devarname].createVariable(daily_dataset) # derived variables need to be added in order of computation # copy global attributes copy_ncatts(daily_dataset, wrfout, prefix='') # copy all attributes (no need for prefix; all upper case are original) # some new attributes daily_dataset.acc_diff_mode = 'simple' if lsmplDiff else 'centered' daily_dataset.description = 'wrf{0:s}_d{1:02d} post-processed timestep output'.format(filetype,ndom) daily_dataset.begin_date = begindatetime daily_dataset.experiment = exp daily_dataset.creator = 'Andre R. Erler' # sync with file daily_dataset.sync() ## construct dependencies # update linearity: dependencies of non-linear variables have to be treated as non-linear themselves lagain = True # parse through dependencies until nothing changes anymore while lagain: lagain = False for dename,devar in derived_vars.items(): # variables for daily output can be treated as non-linear, so that they are computed at the native timestep if ldaily and dename in daily_derived_vars: devar.linear = False if not devar.linear: # make sure all dependencies are also treated as non-linear for pq in devar.prerequisites: if pq in derived_vars and derived_vars[pq].linear: lagain = True # indicate modification derived_vars[pq].linear = False # construct dependency set (should include extrema now) pqset = set().union(*[devar.prerequisites for devar in derived_vars.values() if not devar.linear]) if ldaily: # daily output variables need to be treated as prerequisites, so that full timestep fields are loaded for bucket variables pqset |= set(daily_varlist) cset = set().union(*[devar.constants for devar in derived_vars.values() if devar.constants is not None]) # initialize dictionary for temporary storage tmpdata = dict() # not allocated - use sparingly # load constants, if necessary const = dict() lconst = len(cset) > 0 if lconst: constfile = infolder+constpattern.format(ndom) if not os.path.exists(constfile): constfile += '.nc' # try with extension if not os.path.exists(constfile): raise IOError("No constants file found! ({:s})".format(constfile)) logger.debug("\n{0:s} Opening constants file '{1:s}'.\n".format(pidstr,constfile)) wrfconst = nc.Dataset(constfile, 'r', format='NETCDF4') # constant variables for cvar in cset: if cvar in wrfconst.variables: const[cvar] = wrfconst.variables[cvar][:] elif cvar in wrfconst.ncattrs(): const[cvar] = wrfconst.getncattr(cvar) else: raise ValueError("Constant variable/attribute '{:s}' not found in constants file '{:s}'.".format(cvar,constfile)) else: const = None # check axes order of prerequisits and constants for devar in derived_vars.values(): for pq in devar.prerequisites: # get dimensions of prerequisite if pq in varlist: pqax = wrfout.variables[pq].dimensions elif lconst and pq in wrfconst.variables: pqax = wrfconst.variables[pq].dimensions elif lconst and pq in const: pqax = () # a scalar value, i.e. no axes elif pq in derived_vars: pqax = derived_vars[pq].axes else: raise ValueError("Prerequisite '{:s} for variable '{:s}' not found!".format(pq,devar.name)) # check axes for consistent order index = -1 for ax in devar.axes: if ax in pqax: idx = pqax.index(ax) if idx > index: index = idx else: raise IndexError("The axis order of '{:s}' and '{:s}' is inconsistent - this can lead to unexpected results!".format(devar.name,pq)) # announcement: format title string and print varstr = ''; devarstr = '' # make variable list, also for derived variables for var in varlist: varstr += '{}, '.format(var) for devar in derived_vars.values(): devarstr += '%s, '%devar.name titlestr = '\n\n{0:s} *** Processing wrf{1:s} files for domain {2:d}. ***'.format(pidstr,filetype,ndom) titlestr += '\n (monthly means from {0:s} to {1:s}, incl.)'.format(begindate,enddate) if varstr: titlestr += '\n Variable list: {0:s}'.format(str(varstr),) else: titlestr += '\n Variable list: None' if devarstr: titlestr += '\n Derived variables: {0:s}'.format(str(devarstr),) # print meta info (print everything in one chunk, so output from different processes does not get mangled) logger.info(titlestr) # extend time dimension in monthly average if (endyear < beginyear) or (endyear == beginyear and endmonth < beginmonth): raise DateError("End date is before begin date: {:04d}-{:02d} < {:04d}-{:02d}".format(endyear,endmonth,beginyear,beginmonth)) times = np.arange(t0,t0+(endyear-beginyear)*12+endmonth-beginmonth+1) # handling of time intervals for accumulated variables if wrfxtime in wrfout.variables: lxtime = True # simply compute differences from XTIME (assuming minutes) time_desc = wrfout.variables[wrfxtime].description assert time_desc.startswith("minutes since "), time_desc assert "simulation start" in time_desc or begindate in time_desc or '**' in time_desc, time_desc # N.B.: the last check (**) is for cases where the date in WRF is garbled... if t0 == 1 and not wrfout.variables[wrfxtime][0] == 0: raise ValueError( 'XTIME in first input file does not start with 0!\n'+ '(this can happen, when the first input file is missing)' ) elif wrftimestamp in wrfout.variables: lxtime = False # interpret timestamp in Times using datetime module else: raise TypeError # check if there is a missing_value flag if 'P_LEV_MISSING' in wrfout.ncattrs(): missing_value = wrfout.P_LEV_MISSING # usually -999. # N.B.: this is only used in plev3d files, where pressure levels intersect the ground else: missing_value = None # allocate fields data = dict() # temporary data arrays for var in varlist: tmpshape = list(wrfout.variables[var].shape) del tmpshape[wrfout.variables[var].dimensions.index(wrftime)] # allocated arrays have no time dimension assert len(tmpshape) == len(wrfout.variables[var].shape) -1 data[var] = np.zeros(tmpshape, dtype=dtype_float) # allocate #if missing_value is not None: # data[var] += missing_value # initialize with missing value # allocate derived data arrays (for non-linear variables) pqdata = {pqvar:None for pqvar in pqset} # temporary data array holding instantaneous values to compute derived variables # N.B.: since data is only referenced from existing arrays, allocation is not necessary dedata = dict() # non-linear derived variables # N.B.: linear derived variables are computed directly from the monthly averages for dename,devar in derived_vars.items(): if not devar.linear: tmpshape = [len(wrfout.dimensions[ax]) for ax in devar.axes if ax != time] # infer shape assert len(tmpshape) == len(devar.axes) -1 # no time dimension dedata[dename] = np.zeros(tmpshape, dtype=dtype_float) # allocate # prepare computation of monthly means filecounter = 0 # number of wrfout file currently processed i0 = t0-1 # index position we write to: i = i0 + n (zero-based, of course) if ldaily: daily_start_idx = daily_end_idx = timestep_start # for each file cycle, the time index where to write the data ## start loop over month if lparallel: progressstr = '' # a string printing the processed dates else: logger.info('\n Processed dates:') try: # loop over month and progressively stepping through input files for n,meantime in enumerate(times): # meantime: (complete) month since simulation start lasttimestamp = None # carry over start time, when moving to the next file (defined below) # N.B.: when moving to the next file, the script auto-detects and resets this property, no need to change here! # However (!) it is necessary to reset this for every month, because it is not consistent! # extend time array / month counter meanidx = i0 + n if meanidx == len(monthly_dataset.variables[time]): lskip = False # append next data point / time step elif loverwrite or laddnew or lrecalc: lskip = False # overwrite this step or add data point for new variables elif meanidx == len(monthly_dataset.variables[time])-1: if lrecover or monthly_dataset.variables[time][meanidx] == -1: lskip = False # recompute last step, because it may be incomplete else: lskip = True else: lskip = True # skip this step, but we still have to verify the timing # check if we are overwriting existing data if meanidx != len(monthly_dataset.variables[time]): assert meanidx < len(monthly_dataset.variables[time]) assert meantime == monthly_dataset.variables[time][meanidx] or monthly_dataset.variables[time][meanidx] == -1 # N.B.: writing records is delayed to avoid incomplete records in case of a crash # current date currentyear, currentmonth = divmod(n+beginmonth-1,12) currentyear += beginyear; currentmonth +=1 # sanity checks assert meanidx + 1 == meantime currentdate = '{0:04d}-{1:02d}'.format(currentyear,currentmonth) # determine appropriate start index wrfstartidx = 0 while currentdate > str(nc.chartostring(wrfout.variables[wrftimestamp][wrfstartidx,0:7])): wrfstartidx += 1 # count forward if wrfstartidx != 0: logger.debug('\n{0:s} {1:s}: Starting month at index {2:d}.'.format(pidstr, currentdate, wrfstartidx)) # save WRF time-stamp for beginning of month for the new file, for record firsttimestamp_chars = wrfout.variables[wrftimestamp][wrfstartidx,:] #logger.debug('\n{0:s}{1:s}-01_00:00:00, {2:s}'.format(pidstr, currentdate, str(nc.chartostring(wrfout.variables[wrftimestamp][wrfstartidx,:]))) if '{0:s}-01_00:00:00'.format(currentdate,) == str(nc.chartostring(wrfout.variables[wrftimestamp][wrfstartidx,:])): pass # proper start of the month elif meanidx == 0 and '{0:s}-01_06:00:00'.format(currentdate,) == str(nc.chartostring(wrfout.variables[wrftimestamp][wrfstartidx,:])): pass # for some reanalysis... but only at start of simulation else: raise DateError("{0:s} Did not find first day of month to compute monthly average.".format(pidstr) + "file: {0:s} date: {1:s}-01_00:00:00".format(monthly_file,currentdate)) # prepare summation of output time steps lcomplete = False # ntime = 0 # accumulated output time steps # time when accumulation starts (in minutes) # N.B.: the first value is saved as negative, so that adding the last value yields a positive interval if lxtime: xtime = -1 * wrfout.variables[wrfxtime][wrfstartidx] # minutes monthlytimestamps = [] # list of timestamps, also used for time period calculation # clear temporary arrays for varname,var in data.items(): # base variables data[varname] = np.zeros(var.shape, dtype=dtype_float) # reset to zero for dename,devar in dedata.items(): # derived variables dedata[dename] = np.zeros(devar.shape, dtype=dtype_float) # reset to zero ## loop over files and average while not lcomplete: # determine valid end index by checking dates from the end counting backwards # N.B.: start index is determined above (if a new file was opened in the same month, # the start index is automatically set to 0 or 1 when the file is opened, below) wrfendidx = len(wrfout.dimensions[wrftime])-1 while wrfendidx >= 0 and currentdate < str(nc.chartostring(wrfout.variables[wrftimestamp][wrfendidx,0:7])): if not lcomplete: lcomplete = True # break loop over file if next month is in this file (critical!) wrfendidx -= 1 # count backwards #if wrfendidx < len(wrfout.dimensions[wrftime])-1: # check if count-down actually happened wrfendidx += 1 # reverse last step so that counter sits at first step of next month # N.B.: if this is not the last file, there was no iteration and wrfendidx should be the length of the the file; # in this case, wrfendidx is only used to define Python ranges, which are exclusive to the upper boundary; # if the first date in the file is already the next month, wrfendidx will be 0 and this is the final step; assert wrfendidx >= wrfstartidx # i.e. wrfendidx = wrfstartidx = 0 is an empty step to finalize accumulation assert lcomplete or wrfendidx == len(wrfout.dimensions[wrftime]) # if this is the last file and the month is not complete, we have to forcefully terminate if filecounter == len(filelist)-1 and not lcomplete: lcomplete = True # end loop lskip = True # don't write results for this month! if not lskip: ## compute monthly averages # loop over variables for varname in varlist: logger.debug('{0:s} {1:s}'.format(pidstr,varname)) if varname not in wrfout.variables: logger.info("{:s} Variable {:s} missing in file '{:s}' - filling with NaN!".format(pidstr,varname,filelist[filecounter])) data[varname] *= np.NaN # turn everything into NaN, if variable is missing # N.B.: this can happen, when an output stream was reconfigured between cycle steps else: var = wrfout.variables[varname] tax = var.dimensions.index(wrftime) # index of time axis slices = [slice(None)]*len(var.shape) # construct informative IOError message ioerror = "An Error occcured in file '{:s}'; variable: '{:s}'\n('{:s}')".format(filelist[filecounter], varname, infolder) # decide how to average ## Accumulated Variables if varname in acclist: if missing_value is not None: raise NotImplementedError("Can't handle accumulated variables with missing values yet.") # compute mean as difference between end points; normalize by time difference if ntime == 0: # first time step of the month slices[tax] = wrfstartidx # relevant time interval try: tmp = var.__getitem__(slices) # get array except: raise IOError(ioerror) # informative IO Error if acclist[varname] is not None: # add bucket level, if applicable bkt = wrfout.variables[bktpfx+varname] tmp += bkt.__getitem__(slices) * acclist[varname] # check that accumulated fields at the beginning of the simulation are zero if meanidx == 0 and wrfstartidx == 0: # note that if we are skipping the first step, there is no check if np.max(tmp) != 0 or np.min(tmp) != 0: raise ValueError( 'Accumulated fields were not initialized with zero!\n' + '(this can happen, when the first input file is missing)' ) data[varname] = -1 * tmp # so we can do an in-place operation later # N.B.: both, begin and end, can be in the same file, hence elif is not appropriate! if lcomplete: # last step slices[tax] = wrfendidx # relevant time interval try: tmp = var.__getitem__(slices) # get array except: raise IOError(ioerror) # informative IO Error if acclist[varname] is not None: # add bucket level, if applicable bkt = wrfout.variables[bktpfx+varname] tmp += bkt.__getitem__(slices) * acclist[varname] data[varname] += tmp # the starting data is already negative # if variable is a prerequisit to others, compute instantaneous values if varname in pqset: # compute mean via sum over all elements; normalize by number of time steps if lsmplDiff: slices[tax] = slice(wrfstartidx,wrfendidx+1) # load longer time interval for diff else: slices[tax] = slice(wrfstartidx,wrfendidx) # relevant time interval try: tmp = var.__getitem__(slices) # get array except: raise IOError(ioerror) # informative IO Error if acclist[varname] is not None: # add bucket level, if applicable bkt = wrfout.variables[bktpfx+varname] tmp = tmp + bkt.__getitem__(slices) * acclist[varname] if lsmplDiff: pqdata[varname] = np.diff(tmp, axis=tax) # simple differences else: pqdata[varname] = dv.ctrDiff(tmp, axis=tax, delta=1) # normalization comes later ## ## *** daily values for bucket variables are generated here, *** ## *** but should we really use *centered* differences??? *** ## elif varname[0:len(bktpfx)] == bktpfx: pass # do not process buckets ## Normal Variables else: # skip "empty" steps (only needed to difference accumulated variables) if wrfendidx > wrfstartidx: # compute mean via sum over all elements; normalize by number of time steps slices[tax] = slice(wrfstartidx,wrfendidx) # relevant time interval try: tmp = var.__getitem__(slices) # get array except: raise IOError(ioerror) # informative IO Error if missing_value is not None: # N.B.: missing value handling is really only necessary when missing values are time-dependent tmp = np.where(tmp == missing_value, np.NaN, tmp) # set missing values to NaN #tmp = ma.masked_equal(tmp, missing_value, copy=False) # mask missing values data[varname] = data[varname] + tmp.sum(axis=tax) # add to sum # N.B.: in-place operations with non-masked array destroy the mask, hence need to use this # keep data in memory if used in computation of derived variables if varname in pqset: pqdata[varname] = tmp ## compute derived variables # but first generate a list of timestamps if lcomplete: tmpendidx = wrfendidx else: tmpendidx = wrfendidx -1 # end of file # assemble list of time stamps currenttimestamps = [] # relevant timestamps in this file for i in range(wrfstartidx,tmpendidx+1): timestamp = str(nc.chartostring(wrfout.variables[wrftimestamp][i,:])) currenttimestamps.append(timestamp) monthlytimestamps.extend(currenttimestamps) # add to monthly collection # write daily timestamps if ldaily: nsteps = wrfendidx - wrfstartidx daily_start_idx = daily_end_idx # from previous step daily_end_idx = daily_start_idx + nsteps # set time values to -1, to inticate they are being worked on daily_dataset.variables[time][daily_start_idx:daily_end_idx] = -1 ncvar = None; vardata = None # dummies, to prevent crash later on, if varlist is empty # copy timestamp and xtime data daily_dataset.variables[wrftimestamp][daily_start_idx:daily_end_idx,:] = wrfout.variables[wrftimestamp][wrfstartidx:wrfendidx,:] if lxtime: daily_dataset.variables[wrfxtime][daily_start_idx:daily_end_idx] = wrfout.variables[wrfxtime][wrfstartidx:wrfendidx] daily_dataset.sync() # normalize accumulated pqdata with output interval time if wrfendidx > wrfstartidx: assert tmpendidx > wrfstartidx, 'There should never be a single value in a file: wrfstartidx={:d}, wrfendidx={:d}, lcomplete={:s}'.format(wrfstartidx,wrfendidx,str(lcomplete)) # compute time delta delta = dv.calcTimeDelta(currenttimestamps) if lxtime: xdelta = wrfout.variables[wrfxtime][tmpendidx] - wrfout.variables[wrfxtime][wrfstartidx] xdelta *= 60. # convert minutes to seconds if delta != xdelta: raise ValueError("Time calculation from time stamps and model time are inconsistent: {:f} != {:f}".format(delta,xdelta)) delta /= float(tmpendidx - wrfstartidx) # the average interval between output time steps # loop over time-step data for pqname,pqvar in pqdata.items(): if pqname in acclist: pqvar /= delta # normalize # write to daily file if ldaily: # loop over variables and save data arrays for varname in daily_varlist: ncvar = daily_dataset.variables[varname] # destination variable in daily output vardata = pqdata[varname] # timestep data if missing_value is not None: # make sure the missing value flag is preserved vardata = np.where(np.isnan(vardata), missing_value, vardata) ncvar.missing_value = missing_value # just to make sure if ncvar.ndim > 1: ncvar[daily_start_idx:daily_end_idx,:] = vardata # here time is always the outermost index else: ncvar[daily_start_idx:daily_end_idx] = vardata daily_dataset.sync() # loop over derived variables # special treatment for certain string variables if 'Times' in pqset: pqdata['Times'] = currenttimestamps[:wrfendidx-wrfstartidx] # need same length as actual time dimension logger.debug('\n{0:s} Available prerequisites: {1:s}'.format(pidstr, str(list(pqdata.keys())))) for dename,devar in derived_vars.items(): if not devar.linear: # only non-linear ones here, linear one at the end logger.debug('{0:s} {1:s} {2:s}'.format(pidstr, dename, str(devar.prerequisites))) tmp = devar.computeValues(pqdata, aggax=tax, delta=delta, const=const, tmp=tmpdata) # possibly needed as pre-requisite dedata[dename] = devar.aggregateValues(tmp, aggdata=dedata[dename], aggax=tax) # N.B.: in-place operations with non-masked array destroy the mask, hence need to use this if dename in pqset: pqdata[dename] = tmp # save to daily output if ldaily: if dename in daily_derived_vars: ncvar = daily_dataset.variables[dename] # destination variable in daily output vardata = tmp if missing_value is not None: # make sure the missing value flag is preserved vardata = np.where(np.isnan(vardata), missing_value, vardata) ncvar.missing_value = missing_value # just to make sure if ncvar.ndim > 1: ncvar[daily_start_idx:daily_end_idx,:] = vardata # here time is always the outermost index else: ncvar[daily_start_idx:daily_end_idx] = vardata # N.B.: missing values should be handled implicitly, following missing values in pre-requisites del tmp # memory hygiene if ldaily: # add time in seconds, based on index and time delta daily_dataset.variables[time][daily_start_idx:daily_end_idx] = np.arange(daily_start_idx,daily_end_idx, dtype='i8')*int(delta) daily_dataset.end_date = dv.getTimeStamp(wrfout, wrfendidx-1, wrftimestamp) # update current end date # N.B.: adding the time coordinate and attributes finalized this step # sync data and clear memory daily_dataset.sync(); daily_dataset.close() # sync and close dataset del daily_dataset, ncvar, vardata # remove all other references to data gc.collect() # clean up memory # N.B.: the netCDF4 module keeps all data written to a netcdf file in memory; there is no flush command daily_dataset = nc.Dataset(tmp_daily_filepath, mode='a', format='NETCDF4') # re-open to append more data (mode='a') # N.B.: flushing the mean file here prevents repeated close/re-open when no data was written (i.e. # the month was skiped); only flush memory when data was actually written. # increment counters ntime += wrfendidx - wrfstartidx if lcomplete: # N.B.: now wrfendidx should be a valid time step # check time steps for this month laststamp = monthlytimestamps[0] for timestamp in monthlytimestamps[1:]: if laststamp >= timestamp: raise DateError('Timestamps not in order, or repetition: {:s}'.format(timestamp)) laststamp = timestamp # calculate time period and check against model time (if available) timeperiod = dv.calcTimeDelta(monthlytimestamps) if lxtime: xtime += wrfout.variables[wrfxtime][wrfendidx] # get final time interval (in minutes) xtime *= 60. # convert minutes to seconds if timeperiod != xtime: logger.info("Time calculation from time stamps and model time are inconsistent: {:f} != {:f}".format(timeperiod,xtime)) # two possible ends: month is done or reached end of file # if we reached the end of the file, open a new one and go again if not lcomplete: # N.B.: here wrfendidx is not a valid time step, but the length of the file, i.e. wrfendidx-1 is the last valid time step lasttimestamp = str(nc.chartostring(wrfout.variables[wrftimestamp][wrfendidx-1,:])) # needed to determine, if first timestep is the same as last assert lskip or lasttimestamp == monthlytimestamps[-1] # lasttimestep is also used for leap-year detection later on assert len(wrfout.dimensions[wrftime]) == wrfendidx, (len(wrfout.dimensions[wrftime]),wrfendidx) # wrfendidx should be the length of the file, not the last index! ## find first timestep (compare to last of previous file) and (re-)set time step counter # initialize search tmptimestamp = lasttimestamp; filelen1 = len(wrfout.dimensions[wrftime]) - 1; wrfstartidx = filelen1; while tmptimestamp <= lasttimestamp: if wrfstartidx < filelen1: wrfstartidx += 1 # step forward in current file else: # open next file, if we reach the end wrfout.close() # close file #del wrfout; gc.collect() # doesn't seem to work here - strange error # N.B.: filecounter +1 < len(filelist) is already checked above filecounter += 1 # move to next file if filecounter < len(filelist): logger.debug("\n{0:s} Opening input file '{1:s}'.\n".format(pidstr,filelist[filecounter])) wrfout = nc.Dataset(infolder+filelist[filecounter], 'r', format='NETCDF4') # ... and open new one filelen1 = len(wrfout.dimensions[wrftime]) - 1 # length of new file wrfstartidx = 0 # reset index # check consistency of missing value flag assert missing_value is None or missing_value == wrfout.P_LEV_MISSING else: break # this is not really tested... tmptimestamp = str(nc.chartostring(wrfout.variables[wrftimestamp][wrfstartidx,:])) # some checks firsttimestamp = str(nc.chartostring(wrfout.variables[wrftimestamp][0,:])) error_string = "Inconsistent time-stamps between files:\n lasttimestamp='{:s}', firsttimestamp='{:s}', wrfstartidx={:d}" if firsttimestamp == lasttimestamp: # skip the initialization step (was already processed in last step) if wrfstartidx != 1: raise DateError(error_string.format(lasttimestamp, firsttimestamp, wrfstartidx)) if firsttimestamp > lasttimestamp: # no duplicates: first timestep in next file was not present in previous file if wrfstartidx != 0: raise DateError(error_string.format(lasttimestamp, firsttimestamp, wrfstartidx)) if firsttimestamp < lasttimestamp: # files overlap: count up to next timestamp in sequence #if wrfstartidx == 2: warn(error_string.format(lasttimestamp, firsttimestamp, wrfstartidx)) if wrfstartidx == 0: raise DateError(error_string.format(lasttimestamp, firsttimestamp, wrfstartidx)) else: # month complete # print feedback (the current month) to indicate completion if lparallel: progressstr += '{0:s}, '.format(currentdate) # bundle output in parallel mode else: logger.info('{0:s},'.format(currentdate)) # serial mode # clear temporary storage if lcarryover: for devar in list(derived_vars.values()): if not (devar.tmpdata is None or devar.carryover): if devar.tmpdata in tmpdata: del tmpdata[devar.tmpdata] else: tmpdata = dict() # reset entire temporary storage # N.B.: now wrfendidx is a valid timestep, but indicates the first of the next month lasttimestamp = str(nc.chartostring(wrfout.variables[wrftimestamp][wrfendidx,:])) # this should be the first timestep of the next month assert lskip or lasttimestamp == monthlytimestamps[-1] # open next file (if end of month and file coincide) if wrfendidx == len(wrfout.dimensions[wrftime])-1: # reach end of file ## find first timestep (compare to last of previous file) and (re-)set time step counter # initialize search tmptimestamp = lasttimestamp; filelen1 = len(wrfout.dimensions[wrftime]) - 1; wrfstartidx = filelen1; while tmptimestamp <= lasttimestamp: if wrfstartidx < filelen1: wrfstartidx += 1 # step forward in current file else: # open next file, if we reach the end wrfout.close() # close file #del wrfout; gc.collect() # doesn't seem to work here - strange error # N.B.: filecounter +1 < len(filelist) is already checked above filecounter += 1 # move to next file if filecounter < len(filelist): logger.debug("\n{0:s} Opening input file '{1:s}'.\n".format(pidstr,filelist[filecounter])) wrfout = nc.Dataset(infolder+filelist[filecounter], 'r', format='NETCDF4') # ... and open new one filelen1 = len(wrfout.dimensions[wrftime]) - 1 # length of new file wrfstartidx = 0 # reset index # check consistency of missing value flag assert missing_value is None or missing_value == wrfout.P_LEV_MISSING else: break # this is not really tested... tmptimestamp = str(nc.chartostring(wrfout.variables[wrftimestamp][wrfstartidx,:])) # N.B.: same code as in "not complete" section # wrfout.close() # close file # #del wrfout; gc.collect() # doesn't seem to work here - strange error # filecounter += 1 # move to next file # if filecounter < len(filelist): # logger.debug("\n{0:s} Opening input file '{1:s}'.\n".format(pidstr,filelist[filecounter])) # wrfout = nc.Dataset(infolder+filelist[filecounter], 'r', format='NETCDF4') # ... and open new one # firsttimestamp = str(nc.chartostring(wrfout.variables[wrftimestamp][0,:])) # check first timestep (compare to last of previous file) # wrfstartidx = 0 # always use initialization step (but is reset above anyway) # if firsttimestamp != lasttimestamp: # raise NotImplementedError, "If the first timestep of the next month is the last timestep in the file, it has to be duplicated in the next file." ## now the the loop over files has terminated and we need to normalize and save the results if not lskip: # extend time axis monthly_dataset.variables[time][meanidx] = -1 # mark timestep in progress ncvar = None; vardata = None # dummies, to prevent crash later on, if varlist is empty # loop over variable names for varname in varlist: vardata = data[varname] # decide how to normalize if varname in acclist: vardata /= timeperiod else: vardata /= ntime # save variable ncvar = monthly_dataset.variables[varname] # this time the destination variable if missing_value is not None: # make sure the missing value flag is preserved vardata = np.where(np.isnan(vardata), missing_value, vardata) ncvar.missing_value = missing_value # just to make sure if ncvar.ndim > 1: ncvar[meanidx,:] = vardata # here time is always the outermost index else: ncvar[meanidx] = vardata # compute derived variables #logger.debug('\n{0:s} Derived Variable Stats: (mean/min/max)'.format(pidstr)) for dename,devar in derived_vars.items(): if devar.linear: vardata = devar.computeValues(data) # compute derived variable now from averages elif devar.normalize: vardata = dedata[dename] / ntime # no accumulated variables here! else: vardata = dedata[dename] # just the data... # not all variables are normalized (e.g. extrema) #if ldebug: # mmm = (float(np.nanmean(vardata)),float(np.nanmin(vardata)),float(np.nanmax(vardata)),) # logger.debug('{0:s} {1:s}, {2:f}, {3:f}, {4:f}'.format(pidstr,dename,*mmm)) data[dename] = vardata # add to data array, so that it can be used to compute linear variables # save variable ncvar = monthly_dataset.variables[dename] # this time the destination variable if missing_value is not None: # make sure the missing value flag is preserved vardata = np.where(np.isnan(vardata), missing_value, vardata) ncvar.missing_value = missing_value # just to make sure if ncvar.ndim > 1: ncvar[meanidx,:] = vardata # here time is always the outermost index else: ncvar[meanidx] = vardata #raise dv.DerivedVariableError, "%s Derived variable '%s' is not linear."%(pidstr,devar.name) # update current end date monthly_dataset.end_date = str(nc.chartostring(firsttimestamp_chars[:10])) # the date of the first day of the last included month monthly_dataset.variables[wrftimestamp][meanidx,:] = firsttimestamp_chars monthly_dataset.variables[time][meanidx] = meantime # update time axis (last action) # sync data and clear memory monthly_dataset.sync(); monthly_dataset.close() # sync and close dataset del monthly_dataset, ncvar, vardata # remove all other references to data gc.collect() # clean up memory # N.B.: the netCDF4 module keeps all data written to a netcdf file in memory; there is no flush command monthly_dataset = nc.Dataset(tmp_monthly_filepath, mode='a', format='NETCDF4') # re-open to append more data (mode='a') # N.B.: flushing the mean file here prevents repeated close/re-open when no data was written (i.e. # the month was skiped); only flush memory when data was actually written. ec = 0 # set zero exit code for this operation except Exception: # report error logger.exception('\n # {0:s} WARNING: an Error occured while stepping through files! '.format(pidstr)+ '\n # Last State: month={0:d}, variable={1:s}, file={2:s}'.format(meanidx,varname,filelist[filecounter])+ '\n # Saving current data and exiting\n') wrfout.close() #logger.exception(pidstr) # print stack trace of last exception and current process ID ec = 1 # set non-zero exit code # N.B.: this enables us to still close the file! ## here the loop over months finishes and we can close the output file # print progress # save to file if not lparallel: logger.info('') # terminate the line (of dates) else: logger.info('\n{0:s} Processed dates: {1:s}'.format(pidstr, progressstr)) monthly_dataset.sync() logger.info("\n{0:s} Writing monthly output to: {1:s}\n('{2:s}')\n".format(pidstr, monthly_file, monthly_filepath)) if ldaily: daily_dataset.sync() logger.info("\n{0:s} Writing (sub-)daily output to: {1:s}\n('{2:s}')\n".format(pidstr, daily_file, daily_filepath)) # Finalize: close files and rename to proper names, clean up monthly_dataset.close() # close NetCDF file os.rename(tmp_monthly_filepath,monthly_filepath) # rename file to proper name del monthly_dataset, data # clean up memory if ldaily: daily_dataset.close() # close NetCDF file os.rename(tmp_daily_filepath,daily_filepath) # rename file to proper name del daily_dataset # clean up memory gc.collect() # return exit code return ec ## now begin execution if __name__ == '__main__': # print settings print('') print(('OVERWRITE: {:s}, RECOVER: {:s}, CARRYOVER: {:s}, SMPLDIFF: {:s}'.format( str(loverwrite), str(lrecover), str(lcarryover), str(lsmplDiff)))) print(('DERIVEDONLY: {:s}, ADDNEW: {:s}, RECALC: {:s}'.format( str(lderivedonly), str(laddnew), str(recalcvars) if lrecalc else str(lrecalc)))) print(('DAILY: {:s}, FILETYPES: {:s}, DOMAINS: {:s}'.format(str(lglobaldaily),str(filetypes),str(domains)))) print(('THREADS: {:s}, DEBUG: {:s}'.format(str(NP),str(ldebug)))) print('') # compile regular expression, used to infer start and end dates and month (later, during computation) datestr = '{0:s}-{1:s}-{2:s}'.format(yearstr,monthstr,daystr) datergx = re.compile(datestr) # get file list wrfrgx = re.compile(inputpattern.format('.*','\d\d',datestr,)) # for initial search (all filetypes) # regular expression to match the name pattern of WRF timestep output files masterlist = [wrfrgx.match(filename) for filename in os.listdir(infolder)] # list folder and match masterlist = [match.group() for match in masterlist if match is not None] # assemble valid file list if len(masterlist) == 0: raise IOError('No matching WRF output files found for date: {0:s}'.format(datestr)) ## loop over filetypes and domains to construct job list args = [] for filetype in filetypes: # make list of files filelist = [] for domain in domains: typergx = re.compile(inputpattern.format(filetype,"{:02d}".format(domain), datestr)) # N.B.: domain has to be inserted as string, because above it is replaced by a regex # regular expression to also match type and domain index filelist = [typergx.match(filename) for filename in masterlist] # list folder and match filelist = [match.group() for match in filelist if match is not None] # assemble valid file list filelist.sort() # now, when the list is shortest, we can sort... # N.B.: sort alphabetically, so that files are in temporally sequence # now put everything into the lists if len(filelist) > 0: args.append( (filelist, filetype, domain) ) else: print(("Can not process filetype '{:s}' (domain {:d}): no source files.".format(filetype,domain))) print('\n') # call parallel execution function kwargs = dict() # no keyword arguments ec = asyncPoolEC(processFileList, args, kwargs, NP=NP, ldebug=ldebug, ltrialnerror=True) # exit with number of failures plus 10 as exit code exit(int(10+ec) if ec > 0 else 0)
gpl-3.0
659,906,441,429,333,200
64.054054
196
0.6327
false
3.803074
false
false
false
Aloomaio/googleads-python-lib
examples/ad_manager/v201808/creative_wrapper_service/update_creative_wrappers.py
1
2747
#!/usr/bin/env python # # Copyright 2015 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """This code example updates a creative wrapper to the 'OUTER' wrapping order. To determine which creative wrappers exist, run get_all_creative_wrappers.py. The LoadFromStorage method is pulling credentials and properties from a "googleads.yaml" file. By default, it looks for this file in your home directory. For more information, see the "Caching authentication information" section of our README. """ # Import appropriate modules from the client library. from googleads import ad_manager # Set the ID of the creative wrapper to update. CREATIVE_WRAPPER_ID = 'INSERT_CREATIVE_WRAPPER_ID_HERE' def main(client, creative_wrapper_id): # Initialize appropriate service. creative_wrapper_service = client.GetService('CreativeWrapperService', version='v201808') # Create statement to get a creative wrapper by ID. statement = (ad_manager.StatementBuilder(version='v201808') .Where('id = :creativeWrapperId') .WithBindVariable('creativeWrapperId', long(creative_wrapper_id))) # Get creative wrappers. response = creative_wrapper_service.getCreativeWrappersByStatement( statement.ToStatement()) if 'results' in response and len(response['results']): updated_creative_wrappers = [] for creative_wrapper in response['results']: creative_wrapper['ordering'] = 'OUTER' updated_creative_wrappers.append(creative_wrapper) # Update the creative wrappers on the server. creative_wrappers = creative_wrapper_service.updateCreativeWrappers( updated_creative_wrappers) # Display results. for creative_wrapper in creative_wrappers: print (('Creative wrapper with ID "%s" and wrapping order "%s" ' 'was updated.') % (creative_wrapper['id'], creative_wrapper['ordering'])) else: print 'No creative wrappers found to update.' if __name__ == '__main__': # Initialize client object. ad_manager_client = ad_manager.AdManagerClient.LoadFromStorage() main(ad_manager_client, CREATIVE_WRAPPER_ID)
apache-2.0
8,009,690,733,829,738,000
36.630137
78
0.705497
false
4.106129
false
false
false
icomms/wqmanager
apps/domain/models.py
1
6972
from django.contrib.auth.models import User from django.contrib.contenttypes.models import ContentType from django.contrib.contenttypes import generic from django.db import models from domain import Permissions from wqm.models import WqmAuthority from locations.models import LocationType ############################################################################################################## # # Originally had my own hacky global storage of content type, but it turns out that contenttype.models # wisely caches content types! No hit to the db beyond the first call - no need for us to do our own # custom caching. # # See ContentType.get_for_model() code for details. class Domain(models.Model): '''Domain is the highest level collection of people/stuff in the system. Pretty much everything happens at the domain-level, including user membership, permission to see data, reports, charts, etc.''' name = models.CharField(max_length=64, unique=True) full_name = models.CharField(max_length = 100, null=True) is_active = models.BooleanField(default=False) #description = models.CharField(max_length=255, null=True, blank=True) #timezone = models.CharField(max_length=64,null=True) # Utility function - gets active domains in which user has an active membership # Note that User.is_active is not checked here - we're only concerned about usable # domains in which the user can theoretically participate, not whether the user # is cleared to login. @staticmethod def active_for_user(user): return Domain.objects.filter( membership__member_type = ContentType.objects.get_for_model(User), membership__member_id = user.id, membership__is_active=True, # Looks in membership table is_active=True) # Looks in domain table def save(self, *args, **kwargs): edit = False if self.pk is not None: edit = True super(Domain, self).save(*args, **kwargs) if edit: wqmauthority = WqmAuthority.objects.get(domain=self) wqmauthority.code = self.name wqmauthority.name = self.full_name wqmauthority.save() else: type = LocationType.objects.get(name="authority") wqmauthority = WqmAuthority(name=self.full_name, domain=self, type=type, code=self.name) wqmauthority.save() def __unicode__(self): return self.name ############################################################################################################## # # Use cases: # # Get all members in a domain: # Member.objects.filter(member_type = 3, domain = 1) then iterate - slow, because of one query (for User) per row # User.objects.filter(membership__domain = 2) - fast, but requires the addition of a GenericRelation to User. # See UserInDomain, below. # # Get all domains to which a member belongs: # User.objects.get(id = 1).membership.all() and then iterate to pick out domains - slow, because of one query # (for Domain) per row. Requires GenericRelation on User. # Member.objects.filter(member_type = 3, member_id = 1).query.as_sql() Generate same SQL, and require same # slow iteration # Domain.objects.filter(membership__member_type = 3, membership__member_id = 1) - fast, and requires no new fields # (as Domain is a FK of Member) # member_limits = {'model__in':('user', 'formdatagroup')} class Membership(models.Model): domain = models.ForeignKey(Domain) member_type = models.ForeignKey(ContentType, limit_choices_to=member_limits) member_id = models.PositiveIntegerField() member_object = generic.GenericForeignKey('member_type', 'member_id') is_active = models.BooleanField(default=False) def __unicode__(self): return str(self.member_type) + str(self.member_id) + str(self.member_object) ############################################################################################################## class RegistrationRequest(models.Model): tos_confirmed = models.BooleanField(default=False) # No verbose name on times and IPs - filled in on server request_time = models.DateTimeField() request_ip = models.IPAddressField() activation_guid = models.CharField(max_length=32, unique=True) # confirm info is blank until a confirming click is received confirm_time = models.DateTimeField(null=True, blank=True) confirm_ip = models.IPAddressField(null=True, blank=True) domain = models.OneToOneField(Domain) new_user = models.ForeignKey(User, related_name='new_user') # Not clear if we'll always create a new user - might be many reqs to one user, thus FK # requesting_user is only filled in if a logged-in user requests a domain. requesting_user = models.ForeignKey(User, related_name='requesting_user', null=True, blank=True) # blank and null -> FK is optional. class Meta: db_table = 'domain_registration_request' # To be added: # language # number pref # currency pref # date pref # time pref ############################################################################################################## class Settings(models.Model): domain = models.OneToOneField(Domain) max_users = models.PositiveIntegerField() # To be added - all of the date, time, etc. fields that will go into RegistrationRequest ############################################################################################################## # # http://bolhoed.net/blog/how-to-dynamically-add-fields-to-a-django-model shows: # # User.add_to_class('membership', generic.GenericRelation(Membership, content_type_field='member_type', object_id_field='member_id')) # # Rather than that hackery, I tried to implemenet a trivial proxy model for User, containing just the # GenericRelation field. Doesn't work, though! Django complains about a field being defined on a proxy model. # # Looks like we have to enable the above hackery if we want an easy means of filtering users in a domain. Makes # life easier, too, in that views will have access to this information. # User.add_to_class('domain_membership', generic.GenericRelation( Membership, content_type_field='member_type', object_id_field='member_id' ) ) ############################################################################################################## # Monkeypatch a function onto User to tell if user is administrator of selected domain def _admin_p (self): dom = getattr(self, 'selected_domain', None) if dom is not None: return self.has_row_perm(dom, Permissions.ADMINISTRATOR) else: return False User.is_selected_dom_admin = _admin_p
bsd-3-clause
1,128,780,121,399,136,400
44.575163
152
0.613884
false
4.26683
false
false
false
ArcherSys/ArcherSys
Lib/opcode.py
1
16466
<<<<<<< HEAD <<<<<<< HEAD """ opcode module - potentially shared between dis and other modules which operate on bytecodes (e.g. peephole optimizers). """ __all__ = ["cmp_op", "hasconst", "hasname", "hasjrel", "hasjabs", "haslocal", "hascompare", "hasfree", "opname", "opmap", "HAVE_ARGUMENT", "EXTENDED_ARG", "hasnargs"] # It's a chicken-and-egg I'm afraid: # We're imported before _opcode's made. # With exception unheeded # (stack_effect is not needed) # Both our chickens and eggs are allayed. # --Larry Hastings, 2013/11/23 try: from _opcode import stack_effect __all__.append('stack_effect') except ImportError: pass cmp_op = ('<', '<=', '==', '!=', '>', '>=', 'in', 'not in', 'is', 'is not', 'exception match', 'BAD') hasconst = [] hasname = [] hasjrel = [] hasjabs = [] haslocal = [] hascompare = [] hasfree = [] hasnargs = [] opmap = {} opname = [''] * 256 for op in range(256): opname[op] = '<%r>' % (op,) del op def def_op(name, op): opname[op] = name opmap[name] = op def name_op(name, op): def_op(name, op) hasname.append(op) def jrel_op(name, op): def_op(name, op) hasjrel.append(op) def jabs_op(name, op): def_op(name, op) hasjabs.append(op) # Instruction opcodes for compiled code # Blank lines correspond to available opcodes def_op('POP_TOP', 1) def_op('ROT_TWO', 2) def_op('ROT_THREE', 3) def_op('DUP_TOP', 4) def_op('DUP_TOP_TWO', 5) def_op('NOP', 9) def_op('UNARY_POSITIVE', 10) def_op('UNARY_NEGATIVE', 11) def_op('UNARY_NOT', 12) def_op('UNARY_INVERT', 15) def_op('BINARY_POWER', 19) def_op('BINARY_MULTIPLY', 20) def_op('BINARY_MODULO', 22) def_op('BINARY_ADD', 23) def_op('BINARY_SUBTRACT', 24) def_op('BINARY_SUBSCR', 25) def_op('BINARY_FLOOR_DIVIDE', 26) def_op('BINARY_TRUE_DIVIDE', 27) def_op('INPLACE_FLOOR_DIVIDE', 28) def_op('INPLACE_TRUE_DIVIDE', 29) def_op('STORE_MAP', 54) def_op('INPLACE_ADD', 55) def_op('INPLACE_SUBTRACT', 56) def_op('INPLACE_MULTIPLY', 57) def_op('INPLACE_MODULO', 59) def_op('STORE_SUBSCR', 60) def_op('DELETE_SUBSCR', 61) def_op('BINARY_LSHIFT', 62) def_op('BINARY_RSHIFT', 63) def_op('BINARY_AND', 64) def_op('BINARY_XOR', 65) def_op('BINARY_OR', 66) def_op('INPLACE_POWER', 67) def_op('GET_ITER', 68) def_op('PRINT_EXPR', 70) def_op('LOAD_BUILD_CLASS', 71) def_op('YIELD_FROM', 72) def_op('INPLACE_LSHIFT', 75) def_op('INPLACE_RSHIFT', 76) def_op('INPLACE_AND', 77) def_op('INPLACE_XOR', 78) def_op('INPLACE_OR', 79) def_op('BREAK_LOOP', 80) def_op('WITH_CLEANUP', 81) def_op('RETURN_VALUE', 83) def_op('IMPORT_STAR', 84) def_op('YIELD_VALUE', 86) def_op('POP_BLOCK', 87) def_op('END_FINALLY', 88) def_op('POP_EXCEPT', 89) HAVE_ARGUMENT = 90 # Opcodes from here have an argument: name_op('STORE_NAME', 90) # Index in name list name_op('DELETE_NAME', 91) # "" def_op('UNPACK_SEQUENCE', 92) # Number of tuple items jrel_op('FOR_ITER', 93) def_op('UNPACK_EX', 94) name_op('STORE_ATTR', 95) # Index in name list name_op('DELETE_ATTR', 96) # "" name_op('STORE_GLOBAL', 97) # "" name_op('DELETE_GLOBAL', 98) # "" def_op('LOAD_CONST', 100) # Index in const list hasconst.append(100) name_op('LOAD_NAME', 101) # Index in name list def_op('BUILD_TUPLE', 102) # Number of tuple items def_op('BUILD_LIST', 103) # Number of list items def_op('BUILD_SET', 104) # Number of set items def_op('BUILD_MAP', 105) # Number of dict entries (upto 255) name_op('LOAD_ATTR', 106) # Index in name list def_op('COMPARE_OP', 107) # Comparison operator hascompare.append(107) name_op('IMPORT_NAME', 108) # Index in name list name_op('IMPORT_FROM', 109) # Index in name list jrel_op('JUMP_FORWARD', 110) # Number of bytes to skip jabs_op('JUMP_IF_FALSE_OR_POP', 111) # Target byte offset from beginning of code jabs_op('JUMP_IF_TRUE_OR_POP', 112) # "" jabs_op('JUMP_ABSOLUTE', 113) # "" jabs_op('POP_JUMP_IF_FALSE', 114) # "" jabs_op('POP_JUMP_IF_TRUE', 115) # "" name_op('LOAD_GLOBAL', 116) # Index in name list jabs_op('CONTINUE_LOOP', 119) # Target address jrel_op('SETUP_LOOP', 120) # Distance to target address jrel_op('SETUP_EXCEPT', 121) # "" jrel_op('SETUP_FINALLY', 122) # "" def_op('LOAD_FAST', 124) # Local variable number haslocal.append(124) def_op('STORE_FAST', 125) # Local variable number haslocal.append(125) def_op('DELETE_FAST', 126) # Local variable number haslocal.append(126) def_op('RAISE_VARARGS', 130) # Number of raise arguments (1, 2, or 3) def_op('CALL_FUNCTION', 131) # #args + (#kwargs << 8) hasnargs.append(131) def_op('MAKE_FUNCTION', 132) # Number of args with default values def_op('BUILD_SLICE', 133) # Number of items def_op('MAKE_CLOSURE', 134) def_op('LOAD_CLOSURE', 135) hasfree.append(135) def_op('LOAD_DEREF', 136) hasfree.append(136) def_op('STORE_DEREF', 137) hasfree.append(137) def_op('DELETE_DEREF', 138) hasfree.append(138) def_op('CALL_FUNCTION_VAR', 140) # #args + (#kwargs << 8) hasnargs.append(140) def_op('CALL_FUNCTION_KW', 141) # #args + (#kwargs << 8) hasnargs.append(141) def_op('CALL_FUNCTION_VAR_KW', 142) # #args + (#kwargs << 8) hasnargs.append(142) jrel_op('SETUP_WITH', 143) def_op('LIST_APPEND', 145) def_op('SET_ADD', 146) def_op('MAP_ADD', 147) def_op('LOAD_CLASSDEREF', 148) hasfree.append(148) def_op('EXTENDED_ARG', 144) EXTENDED_ARG = 144 del def_op, name_op, jrel_op, jabs_op ======= """ opcode module - potentially shared between dis and other modules which operate on bytecodes (e.g. peephole optimizers). """ __all__ = ["cmp_op", "hasconst", "hasname", "hasjrel", "hasjabs", "haslocal", "hascompare", "hasfree", "opname", "opmap", "HAVE_ARGUMENT", "EXTENDED_ARG", "hasnargs"] # It's a chicken-and-egg I'm afraid: # We're imported before _opcode's made. # With exception unheeded # (stack_effect is not needed) # Both our chickens and eggs are allayed. # --Larry Hastings, 2013/11/23 try: from _opcode import stack_effect __all__.append('stack_effect') except ImportError: pass cmp_op = ('<', '<=', '==', '!=', '>', '>=', 'in', 'not in', 'is', 'is not', 'exception match', 'BAD') hasconst = [] hasname = [] hasjrel = [] hasjabs = [] haslocal = [] hascompare = [] hasfree = [] hasnargs = [] opmap = {} opname = [''] * 256 for op in range(256): opname[op] = '<%r>' % (op,) del op def def_op(name, op): opname[op] = name opmap[name] = op def name_op(name, op): def_op(name, op) hasname.append(op) def jrel_op(name, op): def_op(name, op) hasjrel.append(op) def jabs_op(name, op): def_op(name, op) hasjabs.append(op) # Instruction opcodes for compiled code # Blank lines correspond to available opcodes def_op('POP_TOP', 1) def_op('ROT_TWO', 2) def_op('ROT_THREE', 3) def_op('DUP_TOP', 4) def_op('DUP_TOP_TWO', 5) def_op('NOP', 9) def_op('UNARY_POSITIVE', 10) def_op('UNARY_NEGATIVE', 11) def_op('UNARY_NOT', 12) def_op('UNARY_INVERT', 15) def_op('BINARY_POWER', 19) def_op('BINARY_MULTIPLY', 20) def_op('BINARY_MODULO', 22) def_op('BINARY_ADD', 23) def_op('BINARY_SUBTRACT', 24) def_op('BINARY_SUBSCR', 25) def_op('BINARY_FLOOR_DIVIDE', 26) def_op('BINARY_TRUE_DIVIDE', 27) def_op('INPLACE_FLOOR_DIVIDE', 28) def_op('INPLACE_TRUE_DIVIDE', 29) def_op('STORE_MAP', 54) def_op('INPLACE_ADD', 55) def_op('INPLACE_SUBTRACT', 56) def_op('INPLACE_MULTIPLY', 57) def_op('INPLACE_MODULO', 59) def_op('STORE_SUBSCR', 60) def_op('DELETE_SUBSCR', 61) def_op('BINARY_LSHIFT', 62) def_op('BINARY_RSHIFT', 63) def_op('BINARY_AND', 64) def_op('BINARY_XOR', 65) def_op('BINARY_OR', 66) def_op('INPLACE_POWER', 67) def_op('GET_ITER', 68) def_op('PRINT_EXPR', 70) def_op('LOAD_BUILD_CLASS', 71) def_op('YIELD_FROM', 72) def_op('INPLACE_LSHIFT', 75) def_op('INPLACE_RSHIFT', 76) def_op('INPLACE_AND', 77) def_op('INPLACE_XOR', 78) def_op('INPLACE_OR', 79) def_op('BREAK_LOOP', 80) def_op('WITH_CLEANUP', 81) def_op('RETURN_VALUE', 83) def_op('IMPORT_STAR', 84) def_op('YIELD_VALUE', 86) def_op('POP_BLOCK', 87) def_op('END_FINALLY', 88) def_op('POP_EXCEPT', 89) HAVE_ARGUMENT = 90 # Opcodes from here have an argument: name_op('STORE_NAME', 90) # Index in name list name_op('DELETE_NAME', 91) # "" def_op('UNPACK_SEQUENCE', 92) # Number of tuple items jrel_op('FOR_ITER', 93) def_op('UNPACK_EX', 94) name_op('STORE_ATTR', 95) # Index in name list name_op('DELETE_ATTR', 96) # "" name_op('STORE_GLOBAL', 97) # "" name_op('DELETE_GLOBAL', 98) # "" def_op('LOAD_CONST', 100) # Index in const list hasconst.append(100) name_op('LOAD_NAME', 101) # Index in name list def_op('BUILD_TUPLE', 102) # Number of tuple items def_op('BUILD_LIST', 103) # Number of list items def_op('BUILD_SET', 104) # Number of set items def_op('BUILD_MAP', 105) # Number of dict entries (upto 255) name_op('LOAD_ATTR', 106) # Index in name list def_op('COMPARE_OP', 107) # Comparison operator hascompare.append(107) name_op('IMPORT_NAME', 108) # Index in name list name_op('IMPORT_FROM', 109) # Index in name list jrel_op('JUMP_FORWARD', 110) # Number of bytes to skip jabs_op('JUMP_IF_FALSE_OR_POP', 111) # Target byte offset from beginning of code jabs_op('JUMP_IF_TRUE_OR_POP', 112) # "" jabs_op('JUMP_ABSOLUTE', 113) # "" jabs_op('POP_JUMP_IF_FALSE', 114) # "" jabs_op('POP_JUMP_IF_TRUE', 115) # "" name_op('LOAD_GLOBAL', 116) # Index in name list jabs_op('CONTINUE_LOOP', 119) # Target address jrel_op('SETUP_LOOP', 120) # Distance to target address jrel_op('SETUP_EXCEPT', 121) # "" jrel_op('SETUP_FINALLY', 122) # "" def_op('LOAD_FAST', 124) # Local variable number haslocal.append(124) def_op('STORE_FAST', 125) # Local variable number haslocal.append(125) def_op('DELETE_FAST', 126) # Local variable number haslocal.append(126) def_op('RAISE_VARARGS', 130) # Number of raise arguments (1, 2, or 3) def_op('CALL_FUNCTION', 131) # #args + (#kwargs << 8) hasnargs.append(131) def_op('MAKE_FUNCTION', 132) # Number of args with default values def_op('BUILD_SLICE', 133) # Number of items def_op('MAKE_CLOSURE', 134) def_op('LOAD_CLOSURE', 135) hasfree.append(135) def_op('LOAD_DEREF', 136) hasfree.append(136) def_op('STORE_DEREF', 137) hasfree.append(137) def_op('DELETE_DEREF', 138) hasfree.append(138) def_op('CALL_FUNCTION_VAR', 140) # #args + (#kwargs << 8) hasnargs.append(140) def_op('CALL_FUNCTION_KW', 141) # #args + (#kwargs << 8) hasnargs.append(141) def_op('CALL_FUNCTION_VAR_KW', 142) # #args + (#kwargs << 8) hasnargs.append(142) jrel_op('SETUP_WITH', 143) def_op('LIST_APPEND', 145) def_op('SET_ADD', 146) def_op('MAP_ADD', 147) def_op('LOAD_CLASSDEREF', 148) hasfree.append(148) def_op('EXTENDED_ARG', 144) EXTENDED_ARG = 144 del def_op, name_op, jrel_op, jabs_op >>>>>>> b875702c9c06ab5012e52ff4337439b03918f453 ======= """ opcode module - potentially shared between dis and other modules which operate on bytecodes (e.g. peephole optimizers). """ __all__ = ["cmp_op", "hasconst", "hasname", "hasjrel", "hasjabs", "haslocal", "hascompare", "hasfree", "opname", "opmap", "HAVE_ARGUMENT", "EXTENDED_ARG", "hasnargs"] # It's a chicken-and-egg I'm afraid: # We're imported before _opcode's made. # With exception unheeded # (stack_effect is not needed) # Both our chickens and eggs are allayed. # --Larry Hastings, 2013/11/23 try: from _opcode import stack_effect __all__.append('stack_effect') except ImportError: pass cmp_op = ('<', '<=', '==', '!=', '>', '>=', 'in', 'not in', 'is', 'is not', 'exception match', 'BAD') hasconst = [] hasname = [] hasjrel = [] hasjabs = [] haslocal = [] hascompare = [] hasfree = [] hasnargs = [] opmap = {} opname = [''] * 256 for op in range(256): opname[op] = '<%r>' % (op,) del op def def_op(name, op): opname[op] = name opmap[name] = op def name_op(name, op): def_op(name, op) hasname.append(op) def jrel_op(name, op): def_op(name, op) hasjrel.append(op) def jabs_op(name, op): def_op(name, op) hasjabs.append(op) # Instruction opcodes for compiled code # Blank lines correspond to available opcodes def_op('POP_TOP', 1) def_op('ROT_TWO', 2) def_op('ROT_THREE', 3) def_op('DUP_TOP', 4) def_op('DUP_TOP_TWO', 5) def_op('NOP', 9) def_op('UNARY_POSITIVE', 10) def_op('UNARY_NEGATIVE', 11) def_op('UNARY_NOT', 12) def_op('UNARY_INVERT', 15) def_op('BINARY_POWER', 19) def_op('BINARY_MULTIPLY', 20) def_op('BINARY_MODULO', 22) def_op('BINARY_ADD', 23) def_op('BINARY_SUBTRACT', 24) def_op('BINARY_SUBSCR', 25) def_op('BINARY_FLOOR_DIVIDE', 26) def_op('BINARY_TRUE_DIVIDE', 27) def_op('INPLACE_FLOOR_DIVIDE', 28) def_op('INPLACE_TRUE_DIVIDE', 29) def_op('STORE_MAP', 54) def_op('INPLACE_ADD', 55) def_op('INPLACE_SUBTRACT', 56) def_op('INPLACE_MULTIPLY', 57) def_op('INPLACE_MODULO', 59) def_op('STORE_SUBSCR', 60) def_op('DELETE_SUBSCR', 61) def_op('BINARY_LSHIFT', 62) def_op('BINARY_RSHIFT', 63) def_op('BINARY_AND', 64) def_op('BINARY_XOR', 65) def_op('BINARY_OR', 66) def_op('INPLACE_POWER', 67) def_op('GET_ITER', 68) def_op('PRINT_EXPR', 70) def_op('LOAD_BUILD_CLASS', 71) def_op('YIELD_FROM', 72) def_op('INPLACE_LSHIFT', 75) def_op('INPLACE_RSHIFT', 76) def_op('INPLACE_AND', 77) def_op('INPLACE_XOR', 78) def_op('INPLACE_OR', 79) def_op('BREAK_LOOP', 80) def_op('WITH_CLEANUP', 81) def_op('RETURN_VALUE', 83) def_op('IMPORT_STAR', 84) def_op('YIELD_VALUE', 86) def_op('POP_BLOCK', 87) def_op('END_FINALLY', 88) def_op('POP_EXCEPT', 89) HAVE_ARGUMENT = 90 # Opcodes from here have an argument: name_op('STORE_NAME', 90) # Index in name list name_op('DELETE_NAME', 91) # "" def_op('UNPACK_SEQUENCE', 92) # Number of tuple items jrel_op('FOR_ITER', 93) def_op('UNPACK_EX', 94) name_op('STORE_ATTR', 95) # Index in name list name_op('DELETE_ATTR', 96) # "" name_op('STORE_GLOBAL', 97) # "" name_op('DELETE_GLOBAL', 98) # "" def_op('LOAD_CONST', 100) # Index in const list hasconst.append(100) name_op('LOAD_NAME', 101) # Index in name list def_op('BUILD_TUPLE', 102) # Number of tuple items def_op('BUILD_LIST', 103) # Number of list items def_op('BUILD_SET', 104) # Number of set items def_op('BUILD_MAP', 105) # Number of dict entries (upto 255) name_op('LOAD_ATTR', 106) # Index in name list def_op('COMPARE_OP', 107) # Comparison operator hascompare.append(107) name_op('IMPORT_NAME', 108) # Index in name list name_op('IMPORT_FROM', 109) # Index in name list jrel_op('JUMP_FORWARD', 110) # Number of bytes to skip jabs_op('JUMP_IF_FALSE_OR_POP', 111) # Target byte offset from beginning of code jabs_op('JUMP_IF_TRUE_OR_POP', 112) # "" jabs_op('JUMP_ABSOLUTE', 113) # "" jabs_op('POP_JUMP_IF_FALSE', 114) # "" jabs_op('POP_JUMP_IF_TRUE', 115) # "" name_op('LOAD_GLOBAL', 116) # Index in name list jabs_op('CONTINUE_LOOP', 119) # Target address jrel_op('SETUP_LOOP', 120) # Distance to target address jrel_op('SETUP_EXCEPT', 121) # "" jrel_op('SETUP_FINALLY', 122) # "" def_op('LOAD_FAST', 124) # Local variable number haslocal.append(124) def_op('STORE_FAST', 125) # Local variable number haslocal.append(125) def_op('DELETE_FAST', 126) # Local variable number haslocal.append(126) def_op('RAISE_VARARGS', 130) # Number of raise arguments (1, 2, or 3) def_op('CALL_FUNCTION', 131) # #args + (#kwargs << 8) hasnargs.append(131) def_op('MAKE_FUNCTION', 132) # Number of args with default values def_op('BUILD_SLICE', 133) # Number of items def_op('MAKE_CLOSURE', 134) def_op('LOAD_CLOSURE', 135) hasfree.append(135) def_op('LOAD_DEREF', 136) hasfree.append(136) def_op('STORE_DEREF', 137) hasfree.append(137) def_op('DELETE_DEREF', 138) hasfree.append(138) def_op('CALL_FUNCTION_VAR', 140) # #args + (#kwargs << 8) hasnargs.append(140) def_op('CALL_FUNCTION_KW', 141) # #args + (#kwargs << 8) hasnargs.append(141) def_op('CALL_FUNCTION_VAR_KW', 142) # #args + (#kwargs << 8) hasnargs.append(142) jrel_op('SETUP_WITH', 143) def_op('LIST_APPEND', 145) def_op('SET_ADD', 146) def_op('MAP_ADD', 147) def_op('LOAD_CLASSDEREF', 148) hasfree.append(148) def_op('EXTENDED_ARG', 144) EXTENDED_ARG = 144 del def_op, name_op, jrel_op, jabs_op >>>>>>> b875702c9c06ab5012e52ff4337439b03918f453
mit
-3,256,446,462,933,646,000
26.171617
80
0.635005
false
2.584929
false
false
false
benagricola/exabgp
lib/exabgp/bgp/message/update/nlri/evpn/multicast.py
1
2426
""" multicast.py Created by Thomas Morin on 2014-06-23. Copyright (c) 2014-2015 Orange. All rights reserved. """ from exabgp.protocol.ip import IP from exabgp.bgp.message.update.nlri.qualifier import RouteDistinguisher from exabgp.bgp.message.update.nlri.qualifier import EthernetTag from exabgp.bgp.message.update.nlri.evpn.nlri import EVPN # +---------------------------------------+ # | RD (8 octets) | # +---------------------------------------+ # | Ethernet Tag ID (4 octets) | # +---------------------------------------+ # | IP Address Length (1 octet) | # +---------------------------------------+ # | Originating Router's IP Addr | # | (4 or 16 octets) | # +---------------------------------------+ # ===================================================================== EVPNNLRI @EVPN.register class Multicast (EVPN): CODE = 3 NAME = "Inclusive Multicast Ethernet Tag" SHORT_NAME = "Multicast" def __init__ (self, rd, etag, ip, packed=None,nexthop=None,action=None,addpath=None): EVPN.__init__(self,action,addpath) self.nexthop = nexthop self.rd = rd self.etag = etag self.ip = ip self._pack(packed) def __ne__ (self, other): return not self.__eq__(other) def __str__ (self): return "%s:%s:%s:%s" % ( self._prefix(), self.rd._str(), self.etag, self.ip, ) def __hash__ (self): return hash((self.afi,self.safi,self.CODE,self.rd,self.etag,self.ip)) def _pack (self, packed=None): if self._packed: return self._packed if packed: self._packed = packed return packed self._packed = '%s%s%s%s' % ( self.rd.pack(), self.etag.pack(), chr(len(self.ip)*8), self.ip.pack() ) return self._packed @classmethod def unpack (cls, data): rd = RouteDistinguisher.unpack(data[:8]) etag = EthernetTag.unpack(data[8:12]) iplen = ord(data[12]) if iplen not in (4*8,16*8): raise Exception("IP len is %d, but EVPN route currently support only IPv4" % iplen) ip = IP.unpack(data[13:13+iplen/8]) return cls(rd,etag,ip,data) def json (self, compact=None): content = ' "code": %d, ' % self.CODE content += '"parsed": true, ' content += '"raw": "%s", ' % self._raw() content += '"name": "%s", ' % self.NAME content += '%s, ' % self.rd.json() content += self.etag.json() if self.ip: content += ', "ip": "%s"' % str(self.ip) return '{%s }' % content
bsd-3-clause
8,568,785,827,975,385,000
25.659341
86
0.54122
false
2.980344
false
false
false
emoronayuso/beeton
asterisk-bee/asteriskbee/api_status/scripts_graficas/recoge_marcas_graficas.py
1
2307
#!/usr/bin/python import matplotlib.pyplot as plt import numpy as np #import calendar from datetime import datetime from django.conf import settings settings.configure() import os #para conexion con la bases de datos de beeton (asteriskbee) import sqlite3 as dbapi ##Directorio de la aplicaion ### STATIC_ROOT = '/var/www/asterisk-bee/asteriskbee/' #directorio = settings.STATIC_ROOT+"api_status/" directorio = "/var/www/asterisk-bee/asteriskbee/api_status/" ##Numero de tuplas maximas por grafica num_cpu_dia = 20 def recoge_marcas(): #Conexion con la base de datos de estadisticas bbdd = dbapi.connect(directorio+"bbdd/estadisticas.db") cursor = bbdd.cursor() os.system("ps -e -o pcpu,cpu,nice,state,cputime,args --sort pcpu | sed '/^ 0.0 /d' > "+directorio+"scripts_graficas/temp/temp_cpu_dia; cat "+directorio+"scripts_graficas/temp/temp_cpu_dia | sed 's/^[ \t]*//;s/[ \t]*$//' | grep -v 'recoge_marcas_graficas.py' | cut -d ' ' -f 1 > "+directorio+"scripts_graficas/temp/temp_cpu_dia2") total = 0.0 f = open(directorio+'scripts_graficas/temp/temp_cpu_dia2','r') ##Leemos la primera linea para quitar el encabezado linea = f.readline() while True: linea = f.readline() if not linea: break #Quitamos el uso de la cpu del script que recoge las marcas else: total = total + float(linea) f.close() res = total # print str(res) #Creamos la consulta ordenada por fecha con_ordenada = """select * from api_status_marcas_graficas where tipo='cpu_dia' order by fecha_hora;""" cursor.execute(con_ordenada) p = cursor.fetchall() if len(p) < num_cpu_dia: #insetar en al base de datos insert = "insert into api_status_marcas_graficas (tipo,valor) values ('cpu_dia',?);" cursor.execute(insert ,(res,)) bbdd.commit() else: #Ordenar por fecha, eliminar el ultimo e introducir nuevo # strftime('%d-%m-%Y %H:%M',calldate) hora_actual = datetime.now() con_update = " update api_status_marcas_graficas set fecha_hora=datetime(?),valor=? where id=?; " # print "Antes del update, hora_actual->"+str(hora_actual)+"valor->"+str(res)+ " id->"+str(p[0][0]) cursor.execute(con_update ,(hora_actual,res,p[0][0])) bbdd.commit() ##Cerramos la conexion con la BBDD cursor.close() bbdd.close() if __name__ == "__main__": recoge_marcas()
gpl-3.0
2,008,526,283,982,816,800
24.633333
330
0.688773
false
2.595051
false
false
false
diedthreetimes/VCrash
pybindgen-0.15.0.795/pybindgen/typehandlers/inttype.py
1
29684
# docstrings not needed here (the type handler interfaces are fully # documented in base.py) # pylint: disable-msg=C0111 import struct assert struct.calcsize('i') == 4 # assumption is made that sizeof(int) == 4 for all platforms pybindgen runs on from base import ReturnValue, Parameter, PointerParameter, PointerReturnValue, \ ReverseWrapperBase, ForwardWrapperBase, TypeConfigurationError, NotSupportedError class IntParam(Parameter): DIRECTIONS = [Parameter.DIRECTION_IN] CTYPES = ['int', 'int32_t'] def convert_c_to_python(self, wrapper): assert isinstance(wrapper, ReverseWrapperBase) wrapper.build_params.add_parameter('i', [self.value]) def convert_python_to_c(self, wrapper): assert isinstance(wrapper, ForwardWrapperBase) name = wrapper.declarations.declare_variable(self.ctype_no_const, self.name, self.default_value) wrapper.parse_params.add_parameter('i', ['&'+name], self.name, optional=bool(self.default_value)) wrapper.call_params.append(name) class UnsignedIntParam(Parameter): DIRECTIONS = [Parameter.DIRECTION_IN] CTYPES = ['unsigned int', 'uint32_t'] def convert_c_to_python(self, wrapper): assert isinstance(wrapper, ReverseWrapperBase) wrapper.build_params.add_parameter('N', ["PyLong_FromUnsignedLong(%s)" % self.value]) def convert_python_to_c(self, wrapper): assert isinstance(wrapper, ForwardWrapperBase) name = wrapper.declarations.declare_variable('unsigned int', self.name, self.default_value) wrapper.parse_params.add_parameter('I', ['&'+name], self.name, optional=bool(self.default_value)) wrapper.call_params.append(name) class UnsignedIntPtrParam(PointerParameter): DIRECTIONS = [Parameter.DIRECTION_IN, Parameter.DIRECTION_OUT, Parameter.DIRECTION_INOUT] CTYPES = ['unsigned int*', 'uint32_t*'] def __init__(self, ctype, name, direction=Parameter.DIRECTION_IN, is_const=False, default_value=None, transfer_ownership=False, array_length=None): super(UnsignedIntPtrParam, self).__init__(ctype, name, direction, is_const, default_value, transfer_ownership) self.array_length = array_length if transfer_ownership: raise NotSupportedError("%s: transfer_ownership=True not yet implemented." % ctype) def convert_c_to_python(self, wrapper): if self.direction & self.DIRECTION_IN: wrapper.build_params.add_parameter('I', ['*'+self.value]) if self.direction & self.DIRECTION_OUT: wrapper.parse_params.add_parameter('I', [self.value], self.name) def convert_python_to_c(self, wrapper): #assert self.ctype == 'unsigned int*' if self.array_length is None: name = wrapper.declarations.declare_variable(str(self.type_traits.target), self.name) wrapper.call_params.append('&'+name) if self.direction & self.DIRECTION_IN: wrapper.parse_params.add_parameter('I', ['&'+name], self.name) if self.direction & self.DIRECTION_OUT: wrapper.build_params.add_parameter('I', [name]) else: # complicated code path to deal with arrays... name = wrapper.declarations.declare_variable(str(self.type_traits.target), self.name, array="[%i]" % self.array_length) py_list = wrapper.declarations.declare_variable("PyObject*", "py_list") idx = wrapper.declarations.declare_variable("int", "idx") wrapper.call_params.append(name) if self.direction & self.DIRECTION_IN: elem = wrapper.declarations.declare_variable("PyObject*", "element") wrapper.parse_params.add_parameter('O!', ['&PyList_Type', '&'+py_list], self.name) wrapper.before_call.write_error_check( 'PyList_Size(%s) != %i' % (py_list, self.array_length), 'PyErr_SetString(PyExc_TypeError, "Parameter `%s\' must be a list of %i ints/longs");' % (self.name, self.array_length)) wrapper.before_call.write_code( "for (%s = 0; %s < %i; %s++) {" % (idx, idx, self.array_length, idx)) wrapper.before_call.indent() wrapper.before_call.write_code("%(elem)s = PyList_GET_ITEM(%(py_list)s, %(idx)s);" % vars()) wrapper.before_call.write_error_check( '!(PyInt_Check(%(elem)s) || PyLong_Check(%(elem)s))', 'PyErr_SetString(PyExc_TypeError, "Parameter `%s\' must be a list of %i ints / longs");' % (self.name, self.array_length)) wrapper.before_call.write_code("%(name)s[%(idx)s] = PyLong_AsUnsignedInt(%(elem)s);" % vars()) wrapper.before_call.unindent() wrapper.before_call.write_code('}') if self.direction & self.DIRECTION_OUT: wrapper.after_call.write_code("%s = PyList_New(%i);" % (py_list, self.array_length)) wrapper.after_call.write_code( "for (%s = 0; %s < %i; %s++) {" % (idx, idx, self.array_length, idx)) wrapper.after_call.indent() wrapper.after_call.write_code("PyList_SET_ITEM(%(py_list)s, %(idx)s, PyLong_FromUnsignedLong(%(name)s[%(idx)s]));" % vars()) wrapper.after_call.unindent() wrapper.after_call.write_code('}') wrapper.build_params.add_parameter("N", [py_list]) class IntReturn(ReturnValue): CTYPES = ['int', 'int32_t'] def get_c_error_return(self): return "return INT_MIN;" def convert_python_to_c(self, wrapper): wrapper.parse_params.add_parameter("i", ["&"+self.value], prepend=True) def convert_c_to_python(self, wrapper): wrapper.build_params.add_parameter("i", [self.value], prepend=True) class UnsignedIntReturn(ReturnValue): CTYPES = ['unsigned int', 'uint32_t'] def get_c_error_return(self): return "return 0;" def convert_python_to_c(self, wrapper): wrapper.parse_params.add_parameter("I", ["&"+self.value], prepend=True) def convert_c_to_python(self, wrapper): wrapper.build_params.add_parameter('N', ["PyLong_FromUnsignedLong(%s)" % self.value], prepend=True) class IntPtrParam(PointerParameter): DIRECTIONS = [Parameter.DIRECTION_IN, Parameter.DIRECTION_OUT, Parameter.DIRECTION_IN|Parameter.DIRECTION_OUT] CTYPES = ['int*'] def __init__(self, ctype, name, direction=None, is_const=None, transfer_ownership=None): if direction is None: if is_const: direction = Parameter.DIRECTION_IN else: raise TypeConfigurationError("direction not given") super(IntPtrParam, self).__init__(ctype, name, direction, is_const, transfer_ownership) def convert_c_to_python(self, wrapper): if self.direction & self.DIRECTION_IN: wrapper.build_params.add_parameter('i', ['*'+self.value]) if self.direction & self.DIRECTION_OUT: wrapper.parse_params.add_parameter("i", [self.value], self.name) def convert_python_to_c(self, wrapper): name = wrapper.declarations.declare_variable(self.ctype_no_const[:-1], self.name) wrapper.call_params.append('&'+name) if self.direction & self.DIRECTION_IN: wrapper.parse_params.add_parameter('i', ['&'+name], self.name) if self.direction & self.DIRECTION_OUT: wrapper.build_params.add_parameter("i", [name]) class IntRefParam(Parameter): DIRECTIONS = [Parameter.DIRECTION_IN, Parameter.DIRECTION_OUT, Parameter.DIRECTION_IN|Parameter.DIRECTION_OUT] CTYPES = ['int&'] def convert_c_to_python(self, wrapper): if self.direction & self.DIRECTION_IN: wrapper.build_params.add_parameter('i', [self.value]) if self.direction & self.DIRECTION_OUT: wrapper.parse_params.add_parameter("i", [self.value], self.name) def convert_python_to_c(self, wrapper): #assert self.ctype == 'int&' name = wrapper.declarations.declare_variable(self.ctype_no_const[:-1], self.name) wrapper.call_params.append(name) if self.direction & self.DIRECTION_IN: wrapper.parse_params.add_parameter('i', ['&'+name], self.name) if self.direction & self.DIRECTION_OUT: wrapper.build_params.add_parameter("i", [name]) class UnsignedIntRefParam(Parameter): DIRECTIONS = [Parameter.DIRECTION_IN, Parameter.DIRECTION_OUT, Parameter.DIRECTION_IN|Parameter.DIRECTION_OUT] CTYPES = ['unsigned int&', 'unsigned &'] def convert_c_to_python(self, wrapper): if self.direction & self.DIRECTION_IN: wrapper.build_params.add_parameter('I', [self.value]) if self.direction & self.DIRECTION_OUT: wrapper.parse_params.add_parameter("I", [self.value], self.name) def convert_python_to_c(self, wrapper): #assert self.ctype == 'int&' name = wrapper.declarations.declare_variable(self.ctype_no_const[:-1], self.name) wrapper.call_params.append(name) if self.direction & self.DIRECTION_IN: wrapper.parse_params.add_parameter('I', ['&'+name], self.name) if self.direction & self.DIRECTION_OUT: wrapper.build_params.add_parameter("I", [name]) class UInt16Return(ReturnValue): CTYPES = ['uint16_t', 'unsigned short', 'unsigned short int', 'short unsigned int'] def get_c_error_return(self): return "return 0;" def convert_python_to_c(self, wrapper): tmp_var = wrapper.declarations.declare_variable("int", "tmp") wrapper.parse_params.add_parameter("i", ["&"+tmp_var], prepend=True) wrapper.after_call.write_error_check('%s > 0xffff' % tmp_var, 'PyErr_SetString(PyExc_ValueError, "Out of range");') wrapper.after_call.write_code( "%s = %s;" % (self.value, tmp_var)) def convert_c_to_python(self, wrapper): wrapper.build_params.add_parameter("i", [self.value], prepend=True) class Int16Return(ReturnValue): CTYPES = ['int16_t', 'short', 'short int'] def get_c_error_return(self): return "return 0;" def convert_python_to_c(self, wrapper): tmp_var = wrapper.declarations.declare_variable("int", "tmp") wrapper.parse_params.add_parameter("i", ["&"+tmp_var], prepend=True) wrapper.after_call.write_error_check('%s > 32767 || %s < -32768' % (tmp_var, tmp_var), 'PyErr_SetString(PyExc_ValueError, "Out of range");') wrapper.after_call.write_code( "%s = %s;" % (self.value, tmp_var)) def convert_c_to_python(self, wrapper): wrapper.build_params.add_parameter("i", [self.value], prepend=True) class UInt16Param(Parameter): DIRECTIONS = [Parameter.DIRECTION_IN] CTYPES = ['uint16_t', 'unsigned short', 'unsigned short int'] def convert_c_to_python(self, wrapper): assert isinstance(wrapper, ReverseWrapperBase) wrapper.build_params.add_parameter('i', ["(int) "+self.value]) def convert_python_to_c(self, wrapper): assert isinstance(wrapper, ForwardWrapperBase) name = wrapper.declarations.declare_variable("int", self.name, self.default_value) wrapper.parse_params.add_parameter('i', ['&'+name], self.name, optional=bool(self.default_value)) wrapper.before_call.write_error_check('%s > 0xffff' % name, 'PyErr_SetString(PyExc_ValueError, "Out of range");') wrapper.call_params.append(name) class UInt16RefParam(Parameter): DIRECTIONS = [Parameter.DIRECTION_IN, Parameter.DIRECTION_INOUT, Parameter.DIRECTION_OUT] CTYPES = ['uint16_t&', 'unsigned short&', 'unsigned short int&', 'short unsigned&', 'short unsigned int&'] def convert_c_to_python(self, wrapper): assert isinstance(wrapper, ReverseWrapperBase) if self.direction & self.DIRECTION_IN: wrapper.build_params.add_parameter('H', [self.value]) if self.direction & self.DIRECTION_OUT: wrapper.parse_params.add_parameter("H", [self.value], self.name) def convert_python_to_c(self, wrapper): name = wrapper.declarations.declare_variable(self.ctype_no_const[:-1], self.name) wrapper.call_params.append(name) if self.direction & self.DIRECTION_IN: wrapper.parse_params.add_parameter('H', ['&'+name], self.name) if self.direction & self.DIRECTION_OUT: wrapper.build_params.add_parameter("H", [name]) class Int16Param(Parameter): DIRECTIONS = [Parameter.DIRECTION_IN] CTYPES = ['int16_t', 'short', 'short int'] def convert_c_to_python(self, wrapper): assert isinstance(wrapper, ReverseWrapperBase) wrapper.build_params.add_parameter('i', ["(int) "+self.value]) def convert_python_to_c(self, wrapper): assert isinstance(wrapper, ForwardWrapperBase) name = wrapper.declarations.declare_variable("int", self.name, self.default_value) wrapper.parse_params.add_parameter('i', ['&'+name], self.name, optional=bool(self.default_value)) wrapper.before_call.write_error_check('%s > 0x7fff' % name, 'PyErr_SetString(PyExc_ValueError, "Out of range");') wrapper.call_params.append(name) class Int16RefParam(Parameter): DIRECTIONS = [Parameter.DIRECTION_IN, Parameter.DIRECTION_INOUT, Parameter.DIRECTION_OUT] CTYPES = ['int16_t&', 'short&', 'short int&'] def convert_c_to_python(self, wrapper): assert isinstance(wrapper, ReverseWrapperBase) if self.direction & self.DIRECTION_IN: wrapper.build_params.add_parameter('h', [self.value]) if self.direction & self.DIRECTION_OUT: wrapper.parse_params.add_parameter("h", [self.value], self.name) def convert_python_to_c(self, wrapper): name = wrapper.declarations.declare_variable(self.ctype_no_const[:-1], self.name) wrapper.call_params.append(name) if self.direction & self.DIRECTION_IN: wrapper.parse_params.add_parameter('h', ['&'+name], self.name) if self.direction & self.DIRECTION_OUT: wrapper.build_params.add_parameter("h", [name]) class UInt8Param(Parameter): DIRECTIONS = [Parameter.DIRECTION_IN] CTYPES = ['uint8_t', 'unsigned char', 'char unsigned'] def convert_c_to_python(self, wrapper): assert isinstance(wrapper, ReverseWrapperBase) wrapper.build_params.add_parameter('i', ["(int) "+self.value]) def convert_python_to_c(self, wrapper): assert isinstance(wrapper, ForwardWrapperBase) name = wrapper.declarations.declare_variable("int", self.name, self.default_value) wrapper.parse_params.add_parameter('i', ['&'+name], self.name, optional=bool(self.default_value)) wrapper.before_call.write_error_check('%s > 0xff' % name, 'PyErr_SetString(PyExc_ValueError, "Out of range");') wrapper.call_params.append(name) class UInt8RefParam(Parameter): DIRECTIONS = [Parameter.DIRECTION_IN, Parameter.DIRECTION_INOUT, Parameter.DIRECTION_OUT] CTYPES = ['uint8_t&', 'unsigned char&', 'char unsigned&'] def convert_c_to_python(self, wrapper): assert isinstance(wrapper, ReverseWrapperBase) if self.direction & self.DIRECTION_IN: wrapper.build_params.add_parameter('B', [self.value]) if self.direction & self.DIRECTION_OUT: wrapper.parse_params.add_parameter("B", [self.value], self.name) def convert_python_to_c(self, wrapper): name = wrapper.declarations.declare_variable(self.ctype_no_const[:-1], self.name) wrapper.call_params.append(name) if self.direction & self.DIRECTION_IN: wrapper.parse_params.add_parameter('B', ['&'+name], self.name) if self.direction & self.DIRECTION_OUT: wrapper.build_params.add_parameter("B", [name]) class UInt8Return(ReturnValue): CTYPES = ['uint8_t', 'unsigned char', 'char unsigned'] def get_c_error_return(self): return "return 0;" def convert_python_to_c(self, wrapper): tmp_var = wrapper.declarations.declare_variable("int", "tmp") wrapper.parse_params.add_parameter("i", ["&"+tmp_var], prepend=True) wrapper.after_call.write_error_check('%s > 0xff' % tmp_var, 'PyErr_SetString(PyExc_ValueError, "Out of range");') wrapper.after_call.write_code( "%s = %s;" % (self.value, tmp_var)) def convert_c_to_python(self, wrapper): wrapper.build_params.add_parameter("i", ['(int)' + self.value], prepend=True) class Int8Param(Parameter): DIRECTIONS = [Parameter.DIRECTION_IN] CTYPES = ['int8_t', 'signed char', 'char signed'] def convert_c_to_python(self, wrapper): assert isinstance(wrapper, ReverseWrapperBase) wrapper.build_params.add_parameter('i', ["(int) "+self.value]) def convert_python_to_c(self, wrapper): assert isinstance(wrapper, ForwardWrapperBase) name = wrapper.declarations.declare_variable("int", self.name, self.default_value) wrapper.parse_params.add_parameter('i', ['&'+name], self.name, optional=bool(self.default_value)) wrapper.before_call.write_error_check('%s > 0x7f' % name, 'PyErr_SetString(PyExc_ValueError, "Out of range");') wrapper.call_params.append(name) class Int8RefParam(Parameter): DIRECTIONS = [Parameter.DIRECTION_IN, Parameter.DIRECTION_INOUT, Parameter.DIRECTION_OUT] CTYPES = ['int8_t&', 'signed char &', 'char signed&'] def convert_c_to_python(self, wrapper): assert isinstance(wrapper, ReverseWrapperBase) if self.direction & self.DIRECTION_IN: wrapper.build_params.add_parameter('b', [self.value]) if self.direction & self.DIRECTION_OUT: wrapper.parse_params.add_parameter("b", [self.value], self.name) def convert_python_to_c(self, wrapper): name = wrapper.declarations.declare_variable(self.ctype_no_const[:-1], self.name) wrapper.call_params.append(name) if self.direction & self.DIRECTION_IN: wrapper.parse_params.add_parameter('b', ['&'+name], self.name) if self.direction & self.DIRECTION_OUT: wrapper.build_params.add_parameter("b", [name]) class Int8Return(ReturnValue): CTYPES = ['int8_t', 'signed char'] def get_c_error_return(self): return "return 0;" def convert_python_to_c(self, wrapper): tmp_var = wrapper.declarations.declare_variable("int", "tmp") wrapper.parse_params.add_parameter("i", ["&"+tmp_var], prepend=True) wrapper.after_call.write_error_check('%s > 128 || %s < -127' % (tmp_var, tmp_var), 'PyErr_SetString(PyExc_ValueError, "Out of range");') wrapper.after_call.write_code( "%s = %s;" % (self.value, tmp_var)) def convert_c_to_python(self, wrapper): wrapper.build_params.add_parameter("i", [self.value], prepend=True) class UnsignedLongLongParam(Parameter): DIRECTIONS = [Parameter.DIRECTION_IN] CTYPES = ['unsigned long long', 'uint64_t', 'unsigned long long int', 'long long unsigned int', 'long long unsigned'] def get_ctype_without_ref(self): return str(self.type_traits.ctype_no_const) def convert_c_to_python(self, wrapper): assert isinstance(wrapper, ReverseWrapperBase) wrapper.build_params.add_parameter('K', [self.value]) def convert_python_to_c(self, wrapper): assert isinstance(wrapper, ForwardWrapperBase) name = wrapper.declarations.declare_variable(self.get_ctype_without_ref(), self.name, self.default_value) wrapper.parse_params.add_parameter('K', ['&'+name], self.name, optional=bool(self.default_value)) wrapper.call_params.append(name) class UnsignedLongLongRefParam(UnsignedLongLongParam): DIRECTIONS = [Parameter.DIRECTION_IN] CTYPES = ['unsigned long long&', 'uint64_t&', 'long long unsigned int&'] def get_ctype_without_ref(self): assert self.type_traits.target is not None return str(self.type_traits.target) class UnsignedLongLongReturn(ReturnValue): CTYPES = ['unsigned long long', 'uint64_t', 'long long unsigned int'] def get_c_error_return(self): return "return 0;" def convert_python_to_c(self, wrapper): wrapper.parse_params.add_parameter("K", ["&"+self.value], prepend=True) def convert_c_to_python(self, wrapper): wrapper.build_params.add_parameter("K", [self.value], prepend=True) class UnsignedLongParam(Parameter): DIRECTIONS = [Parameter.DIRECTION_IN] CTYPES = ['unsigned long', 'unsigned long int', 'long unsigned', 'long unsigned int'] def get_ctype_without_ref(self): return str(self.type_traits.ctype_no_const) def convert_c_to_python(self, wrapper): assert isinstance(wrapper, ReverseWrapperBase) wrapper.build_params.add_parameter('k', [self.value]) def convert_python_to_c(self, wrapper): assert isinstance(wrapper, ForwardWrapperBase) name = wrapper.declarations.declare_variable(self.get_ctype_without_ref(), self.name, self.default_value) wrapper.parse_params.add_parameter('k', ['&'+name], self.name, optional=bool(self.default_value)) wrapper.call_params.append(name) class UnsignedLongRefParam(UnsignedLongParam): DIRECTIONS = [Parameter.DIRECTION_IN] CTYPES = ['unsigned long&', 'long unsigned&', 'long unsigned int&', 'unsigned long int&'] def get_ctype_without_ref(self): assert self.type_traits.target is not None return str(self.type_traits.target) class UnsignedLongReturn(ReturnValue): CTYPES = ['unsigned long', 'long unsigned int'] def get_c_error_return(self): return "return 0;" def convert_python_to_c(self, wrapper): wrapper.parse_params.add_parameter("k", ["&"+self.value], prepend=True) def convert_c_to_python(self, wrapper): wrapper.build_params.add_parameter("k", [self.value], prepend=True) class LongParam(Parameter): DIRECTIONS = [Parameter.DIRECTION_IN] CTYPES = ['signed long', 'signed long int', 'long', 'long int', 'long signed', 'long signed int'] def get_ctype_without_ref(self): return str(self.type_traits.ctype_no_const) def convert_c_to_python(self, wrapper): assert isinstance(wrapper, ReverseWrapperBase) wrapper.build_params.add_parameter('l', [self.value]) def convert_python_to_c(self, wrapper): assert isinstance(wrapper, ForwardWrapperBase) name = wrapper.declarations.declare_variable(self.get_ctype_without_ref(), self.name, self.default_value) wrapper.parse_params.add_parameter('l', ['&'+name], self.name, optional=bool(self.default_value)) wrapper.call_params.append(name) class LongRefParam(LongParam): DIRECTIONS = [Parameter.DIRECTION_IN] CTYPES = ['signed long&', 'long signed&', 'long&', 'long int&', 'long signed int&', 'signed long int&'] def get_ctype_without_ref(self): assert self.type_traits.target is not None return str(self.type_traits.target) class LongReturn(ReturnValue): CTYPES = ['signed long', 'long signed int', 'long', 'long int'] def get_c_error_return(self): return "return 0;" def convert_python_to_c(self, wrapper): wrapper.parse_params.add_parameter("l", ["&"+self.value], prepend=True) def convert_c_to_python(self, wrapper): wrapper.build_params.add_parameter("l", [self.value], prepend=True) class SizeTReturn(ReturnValue): CTYPES = ['size_t',] def get_c_error_return(self): return "return 0;" def convert_python_to_c(self, wrapper): # using the intermediate variable is not always necessary but # it's safer this way in case of weird platforms where # sizeof(size_t) != sizeof(unsigned PY_LONG_LONG). name = wrapper.declarations.declare_variable("unsigned PY_LONG_LONG", "retval_tmp", self.value) wrapper.parse_params.add_parameter("K", ["&"+name], prepend=True) wrapper.after_call.write_code("retval = %s;" % (name)) def convert_c_to_python(self, wrapper): wrapper.build_params.add_parameter("K", ["((unsigned PY_LONG_LONG) %s)" % self.value], prepend=True) class SizeTParam(Parameter): DIRECTIONS = [Parameter.DIRECTION_IN] CTYPES = ['size_t'] def get_ctype_without_ref(self): return str(self.type_traits.ctype_no_const) def convert_c_to_python(self, wrapper): assert isinstance(wrapper, ReverseWrapperBase) wrapper.build_params.add_parameter('K', ["((unsigned PY_LONG_LONG) %s)" % self.value]) def convert_python_to_c(self, wrapper): assert isinstance(wrapper, ForwardWrapperBase) name = wrapper.declarations.declare_variable("unsigned PY_LONG_LONG", self.name, self.default_value) wrapper.parse_params.add_parameter('K', ['&'+name], self.name, optional=bool(self.default_value)) wrapper.call_params.append(name) class LongLongParam(Parameter): DIRECTIONS = [Parameter.DIRECTION_IN] CTYPES = ['long long', 'int64_t', 'long long int'] def get_ctype_without_ref(self): return str(self.type_traits.ctype_no_const) def convert_c_to_python(self, wrapper): assert isinstance(wrapper, ReverseWrapperBase) wrapper.build_params.add_parameter('L', [self.value]) def convert_python_to_c(self, wrapper): assert isinstance(wrapper, ForwardWrapperBase) name = wrapper.declarations.declare_variable(self.get_ctype_without_ref(), self.name, self.default_value) wrapper.parse_params.add_parameter('L', ['&'+name], self.name, optional=bool(self.default_value)) wrapper.call_params.append(name) class LongLongRefParam(LongLongParam): DIRECTIONS = [Parameter.DIRECTION_IN] # other directions not yet implemented CTYPES = ['long long&', 'int64_t&', 'long long int&'] def get_ctype_without_ref(self): assert self.type_traits.target is not None return str(self.type_traits.target) class LongLongReturn(ReturnValue): CTYPES = ['long long', 'int64_t', 'long long int'] def get_c_error_return(self): return "return 0;" def convert_python_to_c(self, wrapper): wrapper.parse_params.add_parameter("L", ["&"+self.value], prepend=True) def convert_c_to_python(self, wrapper): wrapper.build_params.add_parameter("L", [self.value], prepend=True) class Int8PtrParam(PointerParameter): DIRECTIONS = [Parameter.DIRECTION_IN, Parameter.DIRECTION_OUT, Parameter.DIRECTION_IN|Parameter.DIRECTION_OUT] CTYPES = ['int8_t*'] def __init__(self, ctype, name, direction=None, is_const=None, default_value=None, transfer_ownership=None): if direction is None: if is_const: direction = Parameter.DIRECTION_IN else: raise TypeConfigurationError("direction not given") super(Int8PtrParam, self).__init__(ctype, name, direction, is_const, default_value, transfer_ownership) def convert_c_to_python(self, wrapper): if self.direction & self.DIRECTION_IN: wrapper.build_params.add_parameter('b', ['*'+self.value]) if self.direction & self.DIRECTION_OUT: wrapper.parse_params.add_parameter("b", [self.value], self.name) def convert_python_to_c(self, wrapper): name = wrapper.declarations.declare_variable('int8_t', self.name) wrapper.call_params.append('&'+name) if self.direction & self.DIRECTION_IN: wrapper.parse_params.add_parameter('b', ['&'+name], self.name) if self.direction & self.DIRECTION_OUT: wrapper.build_params.add_parameter("b", [name]) class UInt8PtrParam(PointerParameter): DIRECTIONS = [Parameter.DIRECTION_IN, Parameter.DIRECTION_OUT, Parameter.DIRECTION_IN|Parameter.DIRECTION_OUT] CTYPES = ['uint8_t*'] def __init__(self, ctype, name, direction=None, is_const=None, default_value=None, transfer_ownership=None): if direction is None: if is_const: direction = Parameter.DIRECTION_IN else: raise TypeConfigurationError("direction not given") super(UInt8PtrParam, self).__init__(ctype, name, direction, is_const, default_value, transfer_ownership) def convert_c_to_python(self, wrapper): if self.direction & self.DIRECTION_IN: wrapper.build_params.add_parameter('B', ['*'+self.value]) if self.direction & self.DIRECTION_OUT: wrapper.parse_params.add_parameter("B", [self.value], self.name) def convert_python_to_c(self, wrapper): name = wrapper.declarations.declare_variable('uint8_t', self.name) wrapper.call_params.append('&'+name) if self.direction & self.DIRECTION_IN: wrapper.parse_params.add_parameter('B', ['&'+name], self.name) if self.direction & self.DIRECTION_OUT: wrapper.build_params.add_parameter("B", [name])
gpl-2.0
8,058,617,483,119,672,000
41.164773
131
0.638997
false
3.645787
false
false
false
persandstrom/home-assistant
homeassistant/components/sensor/netatmo_public.py
1
4390
""" Support for Sensors using public Netatmo data. For more details about this platform, please refer to the documentation at https://home-assistant.io/components/sensor.netatmo_public/. """ from datetime import timedelta import logging import voluptuous as vol from homeassistant.components.sensor import PLATFORM_SCHEMA from homeassistant.const import (CONF_NAME, CONF_TYPE) from homeassistant.helpers import config_validation as cv from homeassistant.helpers.entity import Entity from homeassistant.util import Throttle _LOGGER = logging.getLogger(__name__) DEPENDENCIES = ['netatmo'] CONF_AREAS = 'areas' CONF_LAT_NE = 'lat_ne' CONF_LON_NE = 'lon_ne' CONF_LAT_SW = 'lat_sw' CONF_LON_SW = 'lon_sw' DEFAULT_NAME = 'Netatmo Public Data' DEFAULT_TYPE = 'max' SENSOR_TYPES = {'max', 'avg'} # NetAtmo Data is uploaded to server every 10 minutes MIN_TIME_BETWEEN_UPDATES = timedelta(seconds=600) PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend({ vol.Required(CONF_AREAS): vol.All(cv.ensure_list, [ { vol.Required(CONF_LAT_NE): cv.latitude, vol.Required(CONF_LAT_SW): cv.latitude, vol.Required(CONF_LON_NE): cv.longitude, vol.Required(CONF_LON_SW): cv.longitude, vol.Optional(CONF_NAME, default=DEFAULT_NAME): cv.string, vol.Optional(CONF_TYPE, default=DEFAULT_TYPE): vol.In(SENSOR_TYPES) } ]), }) def setup_platform(hass, config, add_entities, discovery_info=None): """Set up the access to Netatmo binary sensor.""" netatmo = hass.components.netatmo sensors = [] areas = config.get(CONF_AREAS) for area_conf in areas: data = NetatmoPublicData(netatmo.NETATMO_AUTH, lat_ne=area_conf.get(CONF_LAT_NE), lon_ne=area_conf.get(CONF_LON_NE), lat_sw=area_conf.get(CONF_LAT_SW), lon_sw=area_conf.get(CONF_LON_SW), calculation=area_conf.get(CONF_TYPE)) sensors.append(NetatmoPublicSensor(area_conf.get(CONF_NAME), data)) add_entities(sensors) class NetatmoPublicSensor(Entity): """Represent a single sensor in a Netatmo.""" def __init__(self, name, data): """Initialize the sensor.""" self.netatmo_data = data self._name = name self._state = None @property def name(self): """Return the name of the sensor.""" return self._name @property def icon(self): """Icon to use in the frontend.""" return 'mdi:weather-rainy' @property def device_class(self): """Return the device class of the sensor.""" return None @property def state(self): """Return true if binary sensor is on.""" return self._state @property def unit_of_measurement(self): """Return the unit of measurement of this entity.""" return 'mm' def update(self): """Get the latest data from NetAtmo API and updates the states.""" self.netatmo_data.update() self._state = self.netatmo_data.data class NetatmoPublicData: """Get the latest data from NetAtmo.""" def __init__(self, auth, lat_ne, lon_ne, lat_sw, lon_sw, calculation): """Initialize the data object.""" self.auth = auth self.data = None self.lat_ne = lat_ne self.lon_ne = lon_ne self.lat_sw = lat_sw self.lon_sw = lon_sw self.calculation = calculation @Throttle(MIN_TIME_BETWEEN_UPDATES) def update(self): """Request an update from the Netatmo API.""" import pyatmo raindata = pyatmo.PublicData(self.auth, LAT_NE=self.lat_ne, LON_NE=self.lon_ne, LAT_SW=self.lat_sw, LON_SW=self.lon_sw, required_data_type="rain") if raindata.CountStationInArea() == 0: _LOGGER.warning('No Rain Station available in this area.') return raindata_live = raindata.getLive() if self.calculation == 'avg': self.data = sum(raindata_live.values()) / len(raindata_live) else: self.data = max(raindata_live.values())
apache-2.0
-397,387,515,900,327,800
30.134752
75
0.591116
false
3.761782
false
false
false
ryfeus/lambda-packs
pytorch/source/torch/nn/parallel/deprecated/distributed_cpu.py
1
4290
import torch from torch._utils import _flatten_dense_tensors, _unflatten_dense_tensors import torch.distributed.deprecated as dist from torch.nn.modules import Module from collections import defaultdict from torch.autograd import Variable import torch.utils.hooks class DistributedDataParallelCPU(Module): r"""Implements distributed data parallelism for CPU at the module level. This module support the ``mpi``, ``gloo``, ``tcp`` backends. This container parallelizes the application of the given module by splitting the input across the specified devices by chunking in the batch dimension. The module is replicated on each machine, and each such replica handles a portion of the input. During the backwards pass, gradients from each node are averaged. This module could be used in conjunction with the DistributedSampler, (see :class `torch.utils.data.distributed.DistributedSampler`) which will load a subset of the original datset for each node with the same batch size. So strong scaling should be configured like this: n = 1, batch size = 128 n = 2, batch size = 64 n = 4, batch size = 32 n = 8, batch size = 16 Creation of this class requires the distributed package to be already initialized in the process group mode (see :func:`torch.distributed.deprecated.init_process_group`). .. warning:: Constructor, forward method, and differentiation of the output (or a function of the output of this module) is a distributed synchronization point. Take that into account in case different node might be executing different code. .. warning:: This module assumes all parameters are registered in the model by the time it is created. No parameters should be added nor removed later. .. warning:: This module assumes all gradients are dense. .. warning:: This module doesn't work with :func:`torch.autograd.grad` (i.e. it will only work if gradients are to be accumulated in ``.grad`` attributes of parameters). .. note:: Parameters are broadcast between nodes in the __init__() function. The module performs an all-reduce step on gradients and assumes that they will be modified by the optimizer in all nodes in the same way. .. warning:: Forward and backward hooks defined on :attr:`module` and its submodules won't be invoked anymore, unless the hooks are initialized in the :meth:`forward` method. Args: module: module to be parallelized Example:: >>> torch.distributed.deprecated.init_process_group(world_size=4, init_method='...') >>> net = torch.nn.DistributedDataParallelCPU(model) """ def __init__(self, module): super(DistributedDataParallelCPU, self).__init__() self.module = module self.sync_parameters() def allreduce_params(): if self.needs_reduction: self.needs_reduction = False buckets = defaultdict(list) for param in self.module.parameters(): if param.requires_grad and param.grad is not None: tp = type(param.data) buckets[tp].append(param) for bucket in buckets.values(): grads = [param.grad.data for param in bucket] coalesced = _flatten_dense_tensors(grads) dist.all_reduce(coalesced) coalesced /= dist.get_world_size() for buf, synced in zip(grads, _unflatten_dense_tensors(coalesced, grads)): buf.copy_(synced) for param in list(self.module.parameters()): @torch.utils.hooks.unserializable_hook def allreduce_hook(*unused): Variable._execution_engine.queue_callback(allreduce_params) if param.requires_grad: param.register_hook(allreduce_hook) def sync_parameters(self): for param in self.module.parameters(): dist.broadcast(param.data, 0) def forward(self, *inputs, **kwargs): self.needs_reduction = True return self.module(*inputs, **kwargs)
mit
-3,092,668,904,383,977,500
39.093458
94
0.648485
false
4.673203
false
false
false
geky/pyOCD
pyOCD/target/target_lpc4330.py
1
2872
""" mbed CMSIS-DAP debugger Copyright (c) 2006-2015 ARM Limited Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from cortex_m import CortexM class LPC4330(CortexM): memoryMapXML = """<?xml version="1.0"?> <!DOCTYPE memory-map PUBLIC "+//IDN gnu.org//DTD GDB Memory Map V1.0//EN" "http://sourceware.org/gdb/gdb-memory-map.dtd"> <memory-map> <memory type="flash" start="0x14000000" length="0x4000000"> <property name="blocksize">0x400</property></memory> <memory type="ram" start="0x10000000" length="0x20000"> </memory> <memory type="ram" start="0x10080000" length="0x12000"> </memory> <memory type="ram" start="0x20000000" length="0x8000"> </memory> <memory type="ram" start="0x20008000" length="0x8000"> </memory> </memory-map> """ def __init__(self, transport): super(LPC4330, self).__init__(transport) self.ignoreReset = False def setFlash(self, flash): self.flash = flash def reset(self, software_reset = False): # Always use software reset for LPC4330 since the hardware version # will reset the DAP. CortexM.reset(self, True) def resetStopOnReset(self, software_reset = False): if self.ignoreReset: return # Set core up to run some code in RAM that is guaranteed to be valid # since FLASH could be corrupted and that is what user is trying to fix. self.writeMemory(0x10000000, 0x10087ff0) # Initial SP self.writeMemory(0x10000004, 0x1000000d) # Reset Handler self.writeMemory(0x10000008, 0x1000000d) # Hard Fault Handler self.writeMemory(0x1000000c, 0xe7fee7fe) # Infinite loop self.writeMemory(0x40043100, 0x10000000) # Shadow 0x0 to RAM # Always use software reset for LPC4330 since the hardware version # will reset the DAP. CortexM.resetStopOnReset(self, True) # Map shadow memory to SPIFI FLASH self.writeMemory(0x40043100, 0x80000000) # The LPC4330 flash init routine can be used to remount FLASH. self.ignoreReset = True self.flash.init() self.ignoreReset = False # Set SP and PC based on interrupt vector in SPIFI_FLASH sp = self.readMemory(0x14000000) pc = self.readMemory(0x14000004) self.writeCoreRegisterRaw('sp', sp) self.writeCoreRegisterRaw('pc', pc)
apache-2.0
-5,108,212,287,236,866,000
38.342466
121
0.68071
false
3.585518
false
false
false
opennode/nodeconductor-assembly-waldur
src/waldur_slurm/apps.py
1
2931
from django.apps import AppConfig from django.db.models import signals class SlurmConfig(AppConfig): name = 'waldur_slurm' verbose_name = 'SLURM' service_name = 'SLURM' def ready(self): from waldur_core.quotas.fields import QuotaField, CounterQuotaField from waldur_core.structure import SupportedServices from waldur_core.structure import models as structure_models from waldur_core.structure import signals as structure_signals from waldur_freeipa import models as freeipa_models from .backend import SlurmBackend from . import handlers, models, utils SupportedServices.register_backend(SlurmBackend) signals.post_save.connect( handlers.process_user_creation, sender=freeipa_models.Profile, dispatch_uid='waldur_slurm.handlers.process_user_creation', ) signals.pre_delete.connect( handlers.process_user_deletion, sender=freeipa_models.Profile, dispatch_uid='waldur_slurm.handlers.process_user_deletion', ) structure_models_with_roles = ( structure_models.Customer, structure_models.Project, ) for model in structure_models_with_roles: structure_signals.structure_role_granted.connect( handlers.process_role_granted, sender=model, dispatch_uid='waldur_slurm.handlers.process_role_granted.%s' % model.__class__, ) structure_signals.structure_role_revoked.connect( handlers.process_role_revoked, sender=model, dispatch_uid='waldur_slurm.handlers.process_role_revoked.%s' % model.__class__, ) for quota in utils.QUOTA_NAMES: structure_models.Customer.add_quota_field( name=quota, quota_field=QuotaField(is_backend=True) ) structure_models.Project.add_quota_field( name=quota, quota_field=QuotaField(is_backend=True) ) structure_models.Project.add_quota_field( name='nc_allocation_count', quota_field=CounterQuotaField( target_models=lambda: [models.Allocation], path_to_scope='service_project_link.project', ), ) structure_models.Customer.add_quota_field( name='nc_allocation_count', quota_field=CounterQuotaField( target_models=lambda: [models.Allocation], path_to_scope='service_project_link.project.customer', ), ) signals.post_save.connect( handlers.update_quotas_on_allocation_usage_update, sender=models.Allocation, dispatch_uid='waldur_slurm.handlers.update_quotas_on_allocation_usage_update', )
mit
-963,469,003,066,524,500
34.743902
90
0.606619
false
4.278832
false
false
false
addisonElliott/SmartShopTouchScreen
Windows/ExpirationBox_ui.py
1
8236
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'ExpirationBox.ui' # # Created by: PyQt5 UI code generator 5.7.1 # # WARNING! All changes made in this file will be lost! from PyQt5 import QtCore, QtGui, QtWidgets class Ui_ExpirationBox(object): def setupUi(self, ExpirationBox): ExpirationBox.setObjectName("ExpirationBox") ExpirationBox.resize(506, 364) font = QtGui.QFont() font.setPointSize(19) ExpirationBox.setFont(font) ExpirationBox.setStyleSheet("QDialog\n" "{\n" " border: 1px solid #76797C;\n" "}") self.gridLayout = QtWidgets.QGridLayout(ExpirationBox) self.gridLayout.setContentsMargins(5, 5, 5, 5) self.gridLayout.setObjectName("gridLayout") self.day_label = QtWidgets.QLabel(ExpirationBox) font = QtGui.QFont() font.setFamily("Segoe UI") font.setPointSize(15) self.day_label.setFont(font) self.day_label.setAlignment(QtCore.Qt.AlignCenter) self.day_label.setObjectName("day_label") self.gridLayout.addWidget(self.day_label, 3, 2, 1, 1) self.day_combo = QtWidgets.QComboBox(ExpirationBox) font = QtGui.QFont() font.setFamily("Segoe UI") font.setPointSize(16) font.setBold(False) font.setWeight(50) self.day_combo.setFont(font) self.day_combo.setObjectName("day_combo") self.day_combo.addItem("") self.day_combo.setItemText(0, "") self.gridLayout.addWidget(self.day_combo, 4, 2, 1, 1) self.month_label = QtWidgets.QLabel(ExpirationBox) font = QtGui.QFont() font.setFamily("Segoe UI") font.setPointSize(15) self.month_label.setFont(font) self.month_label.setAlignment(QtCore.Qt.AlignCenter) self.month_label.setObjectName("month_label") self.gridLayout.addWidget(self.month_label, 3, 1, 1, 1) self.month_combo = QtWidgets.QComboBox(ExpirationBox) font = QtGui.QFont() font.setFamily("Segoe UI") font.setPointSize(16) font.setBold(False) font.setItalic(False) font.setWeight(50) self.month_combo.setFont(font) self.month_combo.setStyleSheet("QDialog\n" "{\n" " border: 1px solid #76797C;\n" "}") self.month_combo.setObjectName("month_combo") self.month_combo.addItem("") self.month_combo.setItemText(0, "") self.gridLayout.addWidget(self.month_combo, 4, 1, 1, 1) self.year_combo = QtWidgets.QComboBox(ExpirationBox) font = QtGui.QFont() font.setFamily("Segoe UI") font.setPointSize(16) font.setBold(False) font.setItalic(False) font.setWeight(50) self.year_combo.setFont(font) self.year_combo.setObjectName("year_combo") self.year_combo.addItem("") self.year_combo.setItemText(0, "") self.gridLayout.addWidget(self.year_combo, 4, 3, 1, 1) spacerItem = QtWidgets.QSpacerItem(20, 20, QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Fixed) self.gridLayout.addItem(spacerItem, 13, 1, 1, 1) self.year_label = QtWidgets.QLabel(ExpirationBox) font = QtGui.QFont() font.setFamily("Segoe UI") font.setPointSize(15) self.year_label.setFont(font) self.year_label.setAlignment(QtCore.Qt.AlignCenter) self.year_label.setObjectName("year_label") self.gridLayout.addWidget(self.year_label, 3, 3, 1, 1) self.qty_label = QtWidgets.QLabel(ExpirationBox) font = QtGui.QFont() font.setFamily("Segoe UI") font.setPointSize(15) self.qty_label.setFont(font) self.qty_label.setObjectName("qty_label") self.gridLayout.addWidget(self.qty_label, 6, 1, 1, 2) self.horizontalLayout_1 = QtWidgets.QHBoxLayout() self.horizontalLayout_1.setContentsMargins(-1, 0, -1, -1) self.horizontalLayout_1.setSpacing(15) self.horizontalLayout_1.setObjectName("horizontalLayout_1") self.cancel_label = QtWidgets.QLabel(ExpirationBox) font = QtGui.QFont() font.setFamily("Segoe UI") font.setPointSize(15) self.cancel_label.setFont(font) self.cancel_label.setObjectName("cancel_label") self.horizontalLayout_1.addWidget(self.cancel_label) spacerItem1 = QtWidgets.QSpacerItem(40, 20, QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Minimum) self.horizontalLayout_1.addItem(spacerItem1) self.accept_button = TouchButton(ExpirationBox) self.accept_button.setMinimumSize(QtCore.QSize(48, 48)) self.accept_button.setMaximumSize(QtCore.QSize(48, 48)) self.accept_button.setStyleSheet("background-color: transparent;\n" "border: 0;") self.accept_button.setText("") icon = QtGui.QIcon() icon.addPixmap(QtGui.QPixmap(":/Icons/Icons/GreenCheckIcon_Finished.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.accept_button.setIcon(icon) self.accept_button.setIconSize(QtCore.QSize(48, 48)) self.accept_button.setObjectName("accept_button") self.horizontalLayout_1.addWidget(self.accept_button) self.cancel_button = TouchButton(ExpirationBox) self.cancel_button.setMinimumSize(QtCore.QSize(48, 48)) self.cancel_button.setMaximumSize(QtCore.QSize(48, 48)) self.cancel_button.setStyleSheet("background-color: transparent;\n" "border: 0;") self.cancel_button.setText("") icon1 = QtGui.QIcon() icon1.addPixmap(QtGui.QPixmap(":/Icons/Icons/RedCancelIcon_Finished.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.cancel_button.setIcon(icon1) self.cancel_button.setIconSize(QtCore.QSize(48, 48)) self.cancel_button.setObjectName("cancel_button") self.horizontalLayout_1.addWidget(self.cancel_button) self.gridLayout.addLayout(self.horizontalLayout_1, 14, 1, 1, 3) self.qty_combo = QtWidgets.QComboBox(ExpirationBox) font = QtGui.QFont() font.setFamily("Segoe UI") font.setPointSize(16) font.setBold(False) font.setItalic(False) font.setWeight(50) self.qty_combo.setFont(font) self.qty_combo.setObjectName("qty_combo") self.gridLayout.addWidget(self.qty_combo, 7, 1, 1, 3) self.label = QtWidgets.QLabel(ExpirationBox) font = QtGui.QFont() font.setFamily("Segoe UI") font.setPointSize(15) self.label.setFont(font) self.label.setObjectName("label") self.gridLayout.addWidget(self.label, 2, 1, 1, 1) self.itemNameLabel = QtWidgets.QLabel(ExpirationBox) font = QtGui.QFont() font.setFamily("Segoe UI") font.setPointSize(15) self.itemNameLabel.setFont(font) self.itemNameLabel.setObjectName("itemNameLabel") self.gridLayout.addWidget(self.itemNameLabel, 2, 2, 1, 2) self.exp_label = QtWidgets.QLabel(ExpirationBox) font = QtGui.QFont() font.setFamily("Cronus Round") font.setPointSize(21) self.exp_label.setFont(font) self.exp_label.setObjectName("exp_label") self.gridLayout.addWidget(self.exp_label, 1, 1, 1, 3, QtCore.Qt.AlignHCenter) self.retranslateUi(ExpirationBox) QtCore.QMetaObject.connectSlotsByName(ExpirationBox) def retranslateUi(self, ExpirationBox): _translate = QtCore.QCoreApplication.translate ExpirationBox.setWindowTitle(_translate("ExpirationBox", "Dialog")) self.day_label.setText(_translate("ExpirationBox", "Day")) self.month_label.setText(_translate("ExpirationBox", "Month")) self.year_label.setText(_translate("ExpirationBox", "Year")) self.qty_label.setText(_translate("ExpirationBox", "Quantity")) self.cancel_label.setText(_translate("ExpirationBox", "Scan to continue")) self.label.setText(_translate("ExpirationBox", "Item Name:")) self.itemNameLabel.setText(_translate("ExpirationBox", "Label")) self.exp_label.setText(_translate("ExpirationBox", "Expiration Date")) from Widgets.touchButton import TouchButton import Resource_BY_rc import style_rc
agpl-3.0
-5,871,618,067,304,195,000
43.76087
119
0.662943
false
3.571552
false
false
false
goddardl/gaffer
apps/gui/gui-1.py
1
5810
########################################################################## # # Copyright (c) 2011-2012, John Haddon. All rights reserved. # Copyright (c) 2011-2013, Image Engine Design Inc. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above # copyright notice, this list of conditions and the following # disclaimer. # # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided with # the distribution. # # * Neither the name of John Haddon nor the names of # any other contributors to this software may be used to endorse or # promote products derived from this software without specific prior # written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS # IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ########################################################################## import os import gc import IECore import Gaffer import GafferUI class gui( Gaffer.Application ) : def __init__( self ) : Gaffer.Application.__init__( self, "This application provides a graphical user interface for editing node graphs." ) self.parameters().addParameters( [ IECore.StringVectorParameter( name = "scripts", description = "A list of scripts to edit.", defaultValue = IECore.StringVectorData(), ), IECore.BoolParameter( name = "fullScreen", description = "Opens the UI in full screen mode.", defaultValue = False, ), ] ) self.parameters().userData()["parser"] = IECore.CompoundObject( { "flagless" : IECore.StringVectorData( [ "scripts" ] ) } ) self.__setupClipboardSync() def _run( self, args ) : GafferUI.ScriptWindow.connect( self.root() ) if len( args["scripts"] ) : for fileName in args["scripts"] : scriptNode = Gaffer.ScriptNode() scriptNode["fileName"].setValue( os.path.abspath( fileName ) ) # \todo: Display load errors in a dialog, like in python/GafferUI/FileMenu.py scriptNode.load( continueOnError = True ) self.root()["scripts"].addChild( scriptNode ) GafferUI.FileMenu.addRecentFile( self, fileName ) del scriptNode else : self.root()["scripts"].addChild( Gaffer.ScriptNode() ) if args["fullScreen"].value : primaryScript = self.root()["scripts"][-1] primaryWindow = GafferUI.ScriptWindow.acquire( primaryScript ) primaryWindow.setFullScreen( True ) GafferUI.EventLoop.mainEventLoop().start() return 0 def __setupClipboardSync( self ) : ## This function sets up two way syncing between the clipboard held in the Gaffer::ApplicationRoot # and the global QtGui.QClipboard which is shared with external applications, and used by the cut and paste # operations in GafferUI's underlying QWidgets. This is very useful, as it allows nodes to be copied from # the graph and pasted into emails/chats etc, and then copied out of emails/chats and pasted into the node graph. # ## \todo I don't think this is the ideal place for this functionality. Firstly, we need it in all apps # rather than just the gui app. Secondly, we want a way of using the global clipboard using GafferUI # public functions without needing an ApplicationRoot. Thirdly, it's questionable that ApplicationRoot should # have a clipboard anyway - it seems like a violation of separation between the gui and non-gui libraries. # Perhaps we should abolish the ApplicationRoot clipboard and the ScriptNode cut/copy/paste routines, relegating # them all to GafferUI functionality? QtGui = GafferUI._qtImport( "QtGui" ) self.__clipboardContentsChangedConnection = self.root().clipboardContentsChangedSignal().connect( Gaffer.WeakMethod( self.__clipboardContentsChanged ) ) QtGui.QApplication.clipboard().dataChanged.connect( Gaffer.WeakMethod( self.__qtClipboardContentsChanged ) ) self.__ignoreQtClipboardContentsChanged = False def __clipboardContentsChanged( self, applicationRoot ) : assert( applicationRoot.isSame( self.root() ) ) data = applicationRoot.getClipboardContents() QtGui = GafferUI._qtImport( "QtGui" ) clipboard = QtGui.QApplication.clipboard() try : self.__ignoreQtClipboardContentsChanged = True # avoid triggering an unecessary copy back in __qtClipboardContentsChanged clipboard.setText( str( data ) ) finally : self.__ignoreQtClipboardContentsChanged = False def __qtClipboardContentsChanged( self ) : if self.__ignoreQtClipboardContentsChanged : return QtGui = GafferUI._qtImport( "QtGui" ) text = str( QtGui.QApplication.clipboard().text() ) if text : with Gaffer.BlockedConnection( self.__clipboardContentsChangedConnection ) : self.root().setClipboardContents( IECore.StringData( text ) ) IECore.registerRunTimeTyped( gui )
bsd-3-clause
-2,702,933,978,917,300,000
36.973856
154
0.704819
false
4.031922
false
false
false
MaStanford/AnglishWordbook
Anglish/SyncWikia.py
1
4522
__author__ = 'm.stanford' import string from socket import error as SocketError import json, httplib STARTING_PAGE = 72; ENDING_PAGE = 98; invalidWords = ["un-English", "Anglish/English", "attested", "unattested", "Class"] delimiter = "\'\'\'" wierdfunkInSomeWords = ["\'\' \'\'\'", "\'\'\',", '\'\'\'\'\'', '\"\'\''] def getWordPage(page): connection = httplib.HTTPConnection('anglish.wikia.com', 80) connection.connect() connection.request('GET', '/api.php?action=query&prop=revisions&rvprop=content&format=json&pageids=' + str(page)) result = json.loads(connection.getresponse().read()) print result return result def processRawPage(page, number): words = page['query'] words = words['pages'] words = words[str(number)] words = words['revisions'] words = words[0] listOfWords = [] for key, value in words.iteritems(): listOfLines = value for strings in wierdfunkInSomeWords: listOfLines = listOfLines.replace(strings, '') listOfLines = value.split(delimiter) print 'Raw Line: ' + str(listOfLines) length = len(listOfLines) i = 10; while not isValidWord(listOfLines[i]): i += 1 even = i % 2 while i < length: #Check if we have an invalid word in a place where it should be valid. We then will append that line to the previous line in the list of words. if not isValidWord(listOfLines[i]) and i % 2 == even: out = listOfWords[len(listOfWords)-1] + listOfLines[i] out = out.replace("\'\'", '').replace('|', '\n') listOfWords.remove(listOfWords[len(listOfWords)-1]) listOfWords.append(out) print 'Found odd line: ' + out.replace('\n', ' ') i += 1 even = i % 2 else: print 'Valid Line: ' + listOfLines[i].replace("\'\'", '').replace('|', '').replace('\n', ' ') listOfWords.append(listOfLines[i].replace("\'\'", '').replace('|', '\n')) i += 1 return listOfWords def buildWordDef(processedHead, processedDef): word = {} word['word'] = processedHead.lower() listOfDefs = [x for x in processedDef.split('\n') if x] # print 'Def: ' + processedHead + ' : ' + str(listOfDefs) if len(listOfDefs) > 3: word['attested_definitions'] = listOfDefs[1].replace('-\n', '').replace('\n', '').replace(' ', '').split(',') word['unattested_definitions'] = listOfDefs[2].replace('-\n', '').replace('\n', '').replace(' ', '').split(',') word['type'] = listOfDefs[0].replace("\'", "") else: word['attested_definitions'] = [] word['unattested_definitions'] = [] word['type'] = '' print "buildWordDef" + str(word) return word def addWord(wordDef): word = wordDef['word'] attested = wordDef['attested_definitions'] unattested = wordDef['unattested_definitions'] wordType = wordDef['type'] try: connection = httplib.HTTPSConnection('https://anglishwordbook.herokuapp.com/', 443) connection.connect() connection.request('POST', '/1/classes/Word', json.dumps({ "Word": word, "Attested": attested, "Unattested": unattested, "Type": wordType }), { "X-Parse-Application-Id": "ApuxkukQC9mFuLIdIjG3qC27ms5kZ4XZbopxUohp", "X-Parse-Master-Key ": "ME6doa9GdB2PTGesScr8DwNQVzlzMwmoEurf3kIX", "Content-Type": "application/json" }) result = json.loads(connection.getresponse().read()) if 'objectId' in result: print result return True else: return False except SocketError as e: return addWord(wordDef) def isValidWord(line): if len(line.split(' ')) > 2: return False if line in invalidWords: return False if all(c in string.punctuation for c in line.replace(' ', '').replace('\n','')): return False return True for j in range(STARTING_PAGE, ENDING_PAGE): rawPage = getWordPage(j) processedPage = processRawPage(rawPage, j) index = len(processedPage) k = 0 while k < index - 1: # print 'Obj 1 ' + processedPage[i] # print 'Obj 2 ' + processedPage[i+1] wordDef = buildWordDef(processedPage[k], processedPage[k+1]) if addWord(wordDef): k += 2 else: k = k
apache-2.0
-7,765,113,058,141,094,000
28.363636
156
0.570102
false
3.586043
true
false
false
jsirois/pants
src/python/pants/backend/python/goals/setup_py.py
1
37779
# Copyright 2019 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). import enum import io import itertools import logging import os import pickle from abc import ABC, abstractmethod from collections import abc, defaultdict from dataclasses import dataclass from typing import Any, Dict, List, Mapping, Set, Tuple, cast from pants.backend.python.macros.python_artifact import PythonArtifact from pants.backend.python.subsystems.setuptools import Setuptools from pants.backend.python.target_types import ( PexEntryPointField, PythonProvidesField, PythonRequirementsField, PythonSources, ResolvedPexEntryPoint, ResolvePexEntryPointRequest, SetupPyCommandsField, ) from pants.backend.python.util_rules.pex import ( PexInterpreterConstraints, PexRequest, PexRequirements, VenvPex, VenvPexProcess, ) from pants.backend.python.util_rules.python_sources import ( PythonSourceFilesRequest, StrippedPythonSourceFiles, ) from pants.backend.python.util_rules.python_sources import rules as python_sources_rules from pants.base.specs import AddressSpecs, AscendantAddresses from pants.core.goals.package import BuiltPackage, BuiltPackageArtifact, PackageFieldSet from pants.core.target_types import FilesSources, ResourcesSources from pants.engine.addresses import Address, UnparsedAddressInputs from pants.engine.collection import Collection, DeduplicatedCollection from pants.engine.fs import ( AddPrefix, CreateDigest, Digest, DigestContents, DigestSubset, FileContent, MergeDigests, PathGlobs, RemovePrefix, Snapshot, ) from pants.engine.process import ProcessResult from pants.engine.rules import Get, MultiGet, collect_rules, rule from pants.engine.target import ( Dependencies, DependenciesRequest, Sources, Target, Targets, TransitiveTargets, TransitiveTargetsRequest, ) from pants.engine.unions import UnionMembership, UnionRule, union from pants.option.subsystem import Subsystem from pants.python.python_setup import PythonSetup from pants.util.docutil import docs_url from pants.util.logging import LogLevel from pants.util.memo import memoized_property from pants.util.meta import frozen_after_init from pants.util.strutil import ensure_text logger = logging.getLogger(__name__) class InvalidSetupPyArgs(Exception): """Indicates invalid arguments to setup.py.""" class TargetNotExported(Exception): """Indicates a target that was expected to be exported is not.""" class InvalidEntryPoint(Exception): """Indicates that a specified binary entry point was invalid.""" class OwnershipError(Exception): """An error related to target ownership calculation.""" def __init__(self, msg: str): super().__init__( f"{msg} See {docs_url('python-distributions')} for " f"how python_library targets are mapped to distributions." ) class NoOwnerError(OwnershipError): """Indicates an exportable target has no owning exported target.""" class AmbiguousOwnerError(OwnershipError): """Indicates an exportable target has more than one owning exported target.""" @dataclass(frozen=True) class ExportedTarget: """A target that explicitly exports a setup.py artifact, using a `provides=` stanza. The code provided by this artifact can be from this target or from any targets it owns. """ target: Target # In practice, a PythonDistribution. @property def provides(self) -> PythonArtifact: return self.target[PythonProvidesField].value @dataclass(frozen=True) class DependencyOwner: """An ExportedTarget in its role as an owner of other targets. We need this type to prevent rule ambiguities when computing the list of targets owned by an ExportedTarget (which involves going from ExportedTarget -> dep -> owner (which is itself an ExportedTarget) and checking if owner is the original ExportedTarget. """ exported_target: ExportedTarget @dataclass(frozen=True) class OwnedDependency: """A target that is owned by some ExportedTarget. Code in this target is published in the owner's distribution. The owner of a target T is T's closest filesystem ancestor among the python_distribution targets that directly or indirectly depend on it (including T itself). """ target: Target class OwnedDependencies(Collection[OwnedDependency]): pass class ExportedTargetRequirements(DeduplicatedCollection[str]): """The requirements of an ExportedTarget. Includes: - The "normal" 3rdparty requirements of the ExportedTarget and all targets it owns. - The published versions of any other ExportedTargets it depends on. """ sort_input = True @dataclass(frozen=True) class PythonDistributionFieldSet(PackageFieldSet): required_fields = (PythonProvidesField,) provides: PythonProvidesField @dataclass(frozen=True) class SetupPySourcesRequest: targets: Targets py2: bool # Whether to use py2 or py3 package semantics. @dataclass(frozen=True) class SetupPySources: """The sources required by a setup.py command. Includes some information derived from analyzing the source, namely the packages, namespace packages and resource files in the source. """ digest: Digest packages: Tuple[str, ...] namespace_packages: Tuple[str, ...] package_data: Tuple["PackageDatum", ...] @dataclass(frozen=True) class SetupPyChrootRequest: """A request to create a chroot containing a setup.py and the sources it operates on.""" exported_target: ExportedTarget py2: bool # Whether to use py2 or py3 package semantics. @frozen_after_init @dataclass(unsafe_hash=True) class SetupKwargs: """The keyword arguments to the `setup()` function in the generated `setup.py`.""" _pickled_bytes: bytes def __init__( self, kwargs: Mapping[str, Any], *, address: Address, _allow_banned_keys: bool = False ) -> None: super().__init__() if "version" not in kwargs: raise ValueError(f"Missing a `version` kwarg in the `provides` field for {address}.") if not _allow_banned_keys: for arg in { "data_files", "namespace_packages", "package_dir", "package_data", "packages", "install_requires", }: if arg in kwargs: raise ValueError( f"{arg} cannot be set in the `provides` field for {address}, but it was " f"set to {kwargs[arg]}. Pants will dynamically set the value for you." ) # We serialize with `pickle` so that is hashable. We don't use `FrozenDict` because it # would require that all values are immutable, and we may have lists and dictionaries as # values. It's too difficult/clunky to convert those all, then to convert them back out of # `FrozenDict`. We don't use JSON because it does not preserve data types like `tuple`. self._pickled_bytes = pickle.dumps({k: v for k, v in sorted(kwargs.items())}, protocol=4) @memoized_property def kwargs(self) -> Dict[str, Any]: return cast(Dict[str, Any], pickle.loads(self._pickled_bytes)) @property def name(self) -> str: return cast(str, self.kwargs["name"]) @property def version(self) -> str: return cast(str, self.kwargs["version"]) # Note: This only exists as a hook for additional logic for the `setup()` kwargs, e.g. for plugin # authors. To resolve `SetupKwargs`, call `await Get(SetupKwargs, ExportedTarget)`, which handles # running any custom implementations vs. using the default implementation. @union @dataclass(frozen=True) # type: ignore[misc] class SetupKwargsRequest(ABC): """A request to allow setting the kwargs passed to the `setup()` function. By default, Pants will pass the kwargs provided in the BUILD file unchanged. To customize this behavior, subclass `SetupKwargsRequest`, register the rule `UnionRule(SetupKwargsRequest, MyCustomSetupKwargsRequest)`, and add a rule that takes your subclass as a parameter and returns `SetupKwargs`. """ target: Target @classmethod @abstractmethod def is_applicable(cls, target: Target) -> bool: """Whether the kwargs implementation should be used for this target or not.""" @property def explicit_kwargs(self) -> Dict[str, Any]: return self.target[PythonProvidesField].value.kwargs class FinalizedSetupKwargs(SetupKwargs): """The final kwargs used for the `setup()` function, after Pants added requirements and sources information.""" def __init__(self, kwargs: Mapping[str, Any], *, address: Address) -> None: super().__init__(kwargs, address=address, _allow_banned_keys=True) @dataclass(frozen=True) class SetupPyChroot: """A chroot containing a generated setup.py and the sources it operates on.""" digest: Digest setup_kwargs: FinalizedSetupKwargs @dataclass(frozen=True) class RunSetupPyRequest: """A request to run a setup.py command.""" exported_target: ExportedTarget interpreter_constraints: PexInterpreterConstraints chroot: SetupPyChroot args: Tuple[str, ...] @dataclass(frozen=True) class RunSetupPyResult: """The result of running a setup.py command.""" output: Digest # The state of the chroot after running setup.py. @enum.unique class FirstPartyDependencyVersionScheme(enum.Enum): EXACT = "exact" # i.e., == COMPATIBLE = "compatible" # i.e., ~= ANY = "any" # i.e., no specifier class SetupPyGeneration(Subsystem): options_scope = "setup-py-generation" help = "Options to control how setup.py is generated from a `python_distribution` target." @classmethod def register_options(cls, register): super().register_options(register) register( "--first-party-dependency-version-scheme", type=FirstPartyDependencyVersionScheme, default=FirstPartyDependencyVersionScheme.EXACT, help=( "What version to set in `install_requires` when a `python_distribution` depends on " "other `python_distribution`s. If `exact`, will use `==`. If `compatible`, will " "use `~=`. If `any`, will leave off the version. See " "https://www.python.org/dev/peps/pep-0440/#version-specifiers." ), ) def first_party_dependency_version(self, version: str) -> str: """Return the version string (e.g. '~=4.0') for a first-party dependency. If the user specified to use "any" version, then this will return an empty string. """ scheme = self.options.first_party_dependency_version_scheme if scheme == FirstPartyDependencyVersionScheme.ANY: return "" specifier = "==" if scheme == FirstPartyDependencyVersionScheme.EXACT else "~=" return f"{specifier}{version}" def validate_commands(commands: Tuple[str, ...]): # We rely on the dist dir being the default, so we know where to find the created dists. if "--dist-dir" in commands or "-d" in commands: raise InvalidSetupPyArgs( "Cannot set --dist-dir/-d in setup.py args. To change where dists " "are written, use the global --pants-distdir option." ) # We don't allow publishing via setup.py, as we don't want the setup.py running rule, # which is not a @goal_rule, to side-effect (plus, we'd need to ensure that publishing # happens in dependency order). Note that `upload` and `register` were removed in # setuptools 42.0.0, in favor of Twine, but we still check for them in case the user modified # the default version used by our Setuptools subsystem. # TODO: A `publish` rule, that can invoke Twine to do the actual uploading. # See https://github.com/pantsbuild/pants/issues/8935. if "upload" in commands or "register" in commands: raise InvalidSetupPyArgs("Cannot use the `upload` or `register` setup.py commands") @rule async def package_python_dist( field_set: PythonDistributionFieldSet, python_setup: PythonSetup, ) -> BuiltPackage: transitive_targets = await Get(TransitiveTargets, TransitiveTargetsRequest([field_set.address])) exported_target = ExportedTarget(transitive_targets.roots[0]) interpreter_constraints = PexInterpreterConstraints.create_from_targets( transitive_targets.closure, python_setup ) chroot = await Get( SetupPyChroot, SetupPyChrootRequest(exported_target, py2=interpreter_constraints.includes_python2()), ) # If commands were provided, run setup.py with them; Otherwise just dump chroots. commands = exported_target.target.get(SetupPyCommandsField).value or () if commands: validate_commands(commands) setup_py_result = await Get( RunSetupPyResult, RunSetupPyRequest(exported_target, interpreter_constraints, chroot, commands), ) dist_snapshot = await Get(Snapshot, Digest, setup_py_result.output) return BuiltPackage( setup_py_result.output, tuple(BuiltPackageArtifact(path) for path in dist_snapshot.files), ) else: dirname = f"{chroot.setup_kwargs.name}-{chroot.setup_kwargs.version}" rel_chroot = await Get(Digest, AddPrefix(chroot.digest, dirname)) return BuiltPackage(rel_chroot, (BuiltPackageArtifact(dirname),)) # We write .py sources into the chroot under this dir. CHROOT_SOURCE_ROOT = "src" SETUP_BOILERPLATE = """ # DO NOT EDIT THIS FILE -- AUTOGENERATED BY PANTS # Target: {target_address_spec} from setuptools import setup setup(**{setup_kwargs_str}) """ @rule async def run_setup_py(req: RunSetupPyRequest, setuptools: Setuptools) -> RunSetupPyResult: """Run a setup.py command on a single exported target.""" # Note that this pex has no entrypoint. We use it to run our generated setup.py, which # in turn imports from and invokes setuptools. setuptools_pex = await Get( VenvPex, PexRequest( output_filename="setuptools.pex", internal_only=True, requirements=PexRequirements(setuptools.all_requirements), interpreter_constraints=( req.interpreter_constraints if setuptools.options.is_default("interpreter_constraints") else PexInterpreterConstraints(setuptools.interpreter_constraints) ), ), ) # The setuptools dist dir, created by it under the chroot (not to be confused with # pants's own dist dir, at the buildroot). dist_dir = "dist/" result = await Get( ProcessResult, VenvPexProcess( setuptools_pex, argv=("setup.py", *req.args), input_digest=req.chroot.digest, # setuptools commands that create dists write them to the distdir. # TODO: Could there be other useful files to capture? output_directories=(dist_dir,), description=f"Run setuptools for {req.exported_target.target.address}", level=LogLevel.DEBUG, ), ) output_digest = await Get(Digest, RemovePrefix(result.output_digest, dist_dir)) return RunSetupPyResult(output_digest) @rule async def determine_setup_kwargs( exported_target: ExportedTarget, union_membership: UnionMembership ) -> SetupKwargs: target = exported_target.target setup_kwargs_requests = union_membership.get(SetupKwargsRequest) # type: ignore[misc] applicable_setup_kwargs_requests = tuple( request for request in setup_kwargs_requests if request.is_applicable(target) ) # If no provided implementations, fall back to our default implementation that simply returns # what the user explicitly specified in the BUILD file. if not applicable_setup_kwargs_requests: return SetupKwargs(exported_target.provides.kwargs, address=target.address) if len(applicable_setup_kwargs_requests) > 1: possible_requests = sorted(plugin.__name__ for plugin in applicable_setup_kwargs_requests) raise ValueError( f"Multiple of the registered `SetupKwargsRequest`s can work on the target " f"{target.address}, and it's ambiguous which to use: {possible_requests}\n\nPlease " "activate fewer implementations, or make the classmethod `is_applicable()` more " "precise so that only one implementation is applicable for this target." ) setup_kwargs_request = tuple(applicable_setup_kwargs_requests)[0] return await Get(SetupKwargs, SetupKwargsRequest, setup_kwargs_request(target)) @rule async def generate_chroot(request: SetupPyChrootRequest) -> SetupPyChroot: exported_target = request.exported_target exported_addr = exported_target.target.address owned_deps, transitive_targets = await MultiGet( Get(OwnedDependencies, DependencyOwner(exported_target)), Get(TransitiveTargets, TransitiveTargetsRequest([exported_target.target.address])), ) # files() targets aren't owned by a single exported target - they aren't code, so # we allow them to be in multiple dists. This is helpful for, e.g., embedding # a standard license file in a dist. files_targets = (tgt for tgt in transitive_targets.closure if tgt.has_field(FilesSources)) targets = Targets(itertools.chain((od.target for od in owned_deps), files_targets)) sources, requirements = await MultiGet( Get(SetupPySources, SetupPySourcesRequest(targets, py2=request.py2)), Get(ExportedTargetRequirements, DependencyOwner(exported_target)), ) # Generate the kwargs for the setup() call. In addition to using the kwargs that are either # explicitly provided or generated via a user's plugin, we add additional kwargs based on the # resolved requirements and sources. target = exported_target.target resolved_setup_kwargs = await Get(SetupKwargs, ExportedTarget, exported_target) setup_kwargs = resolved_setup_kwargs.kwargs.copy() # NB: We are careful to not overwrite these values, but we also don't expect them to have been # set. The user must have have gone out of their way to use a `SetupKwargs` plugin, and to have # specified `SetupKwargs(_allow_banned_keys=True)`. setup_kwargs.update( { "package_dir": {"": CHROOT_SOURCE_ROOT, **setup_kwargs.get("package_dir", {})}, "packages": (*sources.packages, *(setup_kwargs.get("packages", []))), "namespace_packages": ( *sources.namespace_packages, *setup_kwargs.get("namespace_packages", []), ), "package_data": {**dict(sources.package_data), **setup_kwargs.get("package_data", {})}, "install_requires": (*requirements, *setup_kwargs.get("install_requires", [])), } ) # Add any `pex_binary` targets from `setup_py().with_binaries()` to the dist's entry points. key_to_binary_spec = exported_target.provides.binaries binaries = await Get( Targets, UnparsedAddressInputs(key_to_binary_spec.values(), owning_address=target.address) ) entry_point_requests = [] for binary in binaries: if not binary.has_field(PexEntryPointField): raise InvalidEntryPoint( "Expected addresses to `pex_binary` targets in `.with_binaries()` for the " f"`provides` field for {exported_addr}, but found {binary.address} with target " f"type {binary.alias}." ) entry_point = binary[PexEntryPointField].value url = "https://python-packaging.readthedocs.io/en/latest/command-line-scripts.html#the-console-scripts-entry-point" if not entry_point: raise InvalidEntryPoint( "Every `pex_binary` used in `.with_binaries()` for the `provides` field for " f"{exported_addr} must explicitly set the `entry_point` field, but " f"{binary.address} left the field off. Set `entry_point` to either " f"`app.py:func` or the longhand `path.to.app:func`. See {url}." ) if not entry_point.function: raise InvalidEntryPoint( "Every `pex_binary` used in `with_binaries()` for the `provides()` field for " f"{exported_addr} must end in the format `:my_func` for the `entry_point` field, " f"but {binary.address} set it to {entry_point.spec!r}. For example, set " f"`entry_point='{entry_point.module}:main'. See {url}." ) entry_point_requests.append(ResolvePexEntryPointRequest(binary[PexEntryPointField])) binary_entry_points = await MultiGet( Get(ResolvedPexEntryPoint, ResolvePexEntryPointRequest, request) for request in entry_point_requests ) for key, binary_entry_point in zip(key_to_binary_spec.keys(), binary_entry_points): entry_points = setup_kwargs.setdefault("entry_points", {}) console_scripts = entry_points.setdefault("console_scripts", []) if binary_entry_point.val is not None: console_scripts.append(f"{key}={binary_entry_point.val.spec}") # Generate the setup script. setup_py_content = SETUP_BOILERPLATE.format( target_address_spec=target.address.spec, setup_kwargs_str=distutils_repr(setup_kwargs), ).encode() files_to_create = [ FileContent("setup.py", setup_py_content), FileContent("MANIFEST.in", "include *.py".encode()), ] extra_files_digest, src_digest = await MultiGet( Get(Digest, CreateDigest(files_to_create)), # Nest the sources under the src/ prefix. Get(Digest, AddPrefix(sources.digest, CHROOT_SOURCE_ROOT)), ) chroot_digest = await Get(Digest, MergeDigests((src_digest, extra_files_digest))) return SetupPyChroot(chroot_digest, FinalizedSetupKwargs(setup_kwargs, address=target.address)) @rule async def get_sources(request: SetupPySourcesRequest) -> SetupPySources: python_sources_request = PythonSourceFilesRequest( targets=request.targets, include_resources=False, include_files=False ) all_sources_request = PythonSourceFilesRequest( targets=request.targets, include_resources=True, include_files=True ) python_sources, all_sources = await MultiGet( Get(StrippedPythonSourceFiles, PythonSourceFilesRequest, python_sources_request), Get(StrippedPythonSourceFiles, PythonSourceFilesRequest, all_sources_request), ) python_files = set(python_sources.stripped_source_files.snapshot.files) all_files = set(all_sources.stripped_source_files.snapshot.files) resource_files = all_files - python_files init_py_digest_contents = await Get( DigestContents, DigestSubset( python_sources.stripped_source_files.snapshot.digest, PathGlobs(["**/__init__.py"]) ), ) packages, namespace_packages, package_data = find_packages( python_files=python_files, resource_files=resource_files, init_py_digest_contents=init_py_digest_contents, py2=request.py2, ) return SetupPySources( digest=all_sources.stripped_source_files.snapshot.digest, packages=packages, namespace_packages=namespace_packages, package_data=package_data, ) @rule(desc="Compute distribution's 3rd party requirements") async def get_requirements( dep_owner: DependencyOwner, union_membership: UnionMembership, setup_py_generation: SetupPyGeneration, ) -> ExportedTargetRequirements: transitive_targets = await Get( TransitiveTargets, TransitiveTargetsRequest([dep_owner.exported_target.target.address]) ) ownable_tgts = [ tgt for tgt in transitive_targets.closure if is_ownable_target(tgt, union_membership) ] owners = await MultiGet(Get(ExportedTarget, OwnedDependency(tgt)) for tgt in ownable_tgts) owned_by_us: Set[Target] = set() owned_by_others: Set[Target] = set() for tgt, owner in zip(ownable_tgts, owners): (owned_by_us if owner == dep_owner.exported_target else owned_by_others).add(tgt) # Get all 3rdparty deps of our owned deps. # # Note that we need only consider requirements that are direct dependencies of our owned deps: # If T depends on R indirectly, then it must be via some direct deps U1, U2, ... For each such U, # if U is in the owned deps then we'll pick up R through U. And if U is not in the owned deps # then it's owned by an exported target ET, and so R will be in the requirements for ET, and we # will require ET. direct_deps_tgts = await MultiGet( Get(Targets, DependenciesRequest(tgt.get(Dependencies))) for tgt in owned_by_us ) reqs = PexRequirements.create_from_requirement_fields( tgt[PythonRequirementsField] for tgt in itertools.chain.from_iterable(direct_deps_tgts) if tgt.has_field(PythonRequirementsField) ) req_strs = list(reqs) # Add the requirements on any exported targets on which we depend. kwargs_for_exported_targets_we_depend_on = await MultiGet( Get(SetupKwargs, OwnedDependency(tgt)) for tgt in owned_by_others ) req_strs.extend( f"{kwargs.name}{setup_py_generation.first_party_dependency_version(kwargs.version)}" for kwargs in set(kwargs_for_exported_targets_we_depend_on) ) return ExportedTargetRequirements(req_strs) @rule(desc="Find all code to be published in the distribution", level=LogLevel.DEBUG) async def get_owned_dependencies( dependency_owner: DependencyOwner, union_membership: UnionMembership ) -> OwnedDependencies: """Find the dependencies of dependency_owner that are owned by it. Includes dependency_owner itself. """ transitive_targets = await Get( TransitiveTargets, TransitiveTargetsRequest([dependency_owner.exported_target.target.address]), ) ownable_targets = [ tgt for tgt in transitive_targets.closure if is_ownable_target(tgt, union_membership) ] owners = await MultiGet(Get(ExportedTarget, OwnedDependency(tgt)) for tgt in ownable_targets) owned_dependencies = [ tgt for owner, tgt in zip(owners, ownable_targets) if owner == dependency_owner.exported_target ] return OwnedDependencies(OwnedDependency(t) for t in owned_dependencies) @rule(desc="Get exporting owner for target") async def get_exporting_owner(owned_dependency: OwnedDependency) -> ExportedTarget: """Find the exported target that owns the given target (and therefore exports it). The owner of T (i.e., the exported target in whose artifact T's code is published) is: 1. An exported target that depends on T (or is T itself). 2. Is T's closest filesystem ancestor among those satisfying 1. If there are multiple such exported targets at the same degree of ancestry, the ownership is ambiguous and an error is raised. If there is no exported target that depends on T and is its ancestor, then there is no owner and an error is raised. """ target = owned_dependency.target ancestor_addrs = AscendantAddresses(target.address.spec_path) ancestor_tgts = await Get(Targets, AddressSpecs([ancestor_addrs])) # Note that addresses sort by (spec_path, target_name), and all these targets are # ancestors of the given target, i.e., their spec_paths are all prefixes. So sorting by # address will effectively sort by closeness of ancestry to the given target. exported_ancestor_tgts = sorted( [t for t in ancestor_tgts if t.has_field(PythonProvidesField)], key=lambda t: t.address, reverse=True, ) exported_ancestor_iter = iter(exported_ancestor_tgts) for exported_ancestor in exported_ancestor_iter: transitive_targets = await Get( TransitiveTargets, TransitiveTargetsRequest([exported_ancestor.address]) ) if target in transitive_targets.closure: owner = exported_ancestor # Find any exported siblings of owner that also depend on target. They have the # same spec_path as it, so they must immediately follow it in ancestor_iter. sibling_owners = [] sibling = next(exported_ancestor_iter, None) while sibling and sibling.address.spec_path == owner.address.spec_path: transitive_targets = await Get( TransitiveTargets, TransitiveTargetsRequest([sibling.address]) ) if target in transitive_targets.closure: sibling_owners.append(sibling) sibling = next(exported_ancestor_iter, None) if sibling_owners: all_owners = [exported_ancestor] + sibling_owners raise AmbiguousOwnerError( f"Found multiple sibling python_distribution targets that are the closest " f"ancestor dependees of {target.address} and are therefore candidates to " f"own it: {', '.join(o.address.spec for o in all_owners)}. Only a " f"single such owner is allowed, to avoid ambiguity." ) return ExportedTarget(owner) raise NoOwnerError( f"No python_distribution target found to own {target.address}. Note that " f"the owner must be in or above the owned target's directory, and must " f"depend on it (directly or indirectly)." ) def is_ownable_target(tgt: Target, union_membership: UnionMembership) -> bool: return ( # Note that we check for a PythonProvides field so that a python_distribution # target can be owned (by itself). This is so that if there are any 3rdparty # requirements directly on the python_distribution target, we apply them to the dist. # This isn't particularly useful (3rdparty requirements should be on the python_library # that consumes them)... but users may expect it to work anyway. tgt.has_field(PythonProvidesField) or tgt.has_field(PythonSources) or tgt.has_field(ResourcesSources) or tgt.get(Sources).can_generate(PythonSources, union_membership) ) # Convenient type alias for the pair (package name, data files in the package). PackageDatum = Tuple[str, Tuple[str, ...]] # Distutils does not support unicode strings in setup.py, so we must explicitly convert to binary # strings as pants uses unicode_literals. A natural and prior technique was to use `pprint.pformat`, # but that embeds u's in the string itself during conversion. For that reason we roll out own # literal pretty-printer here. # # Note that we must still keep this code, even though Pants only runs with Python 3, because # the created product may still be run by Python 2. # # For more information, see http://bugs.python.org/issue13943. def distutils_repr(obj): """Compute a string repr suitable for use in generated setup.py files.""" output = io.StringIO() linesep = os.linesep def _write(data): output.write(ensure_text(data)) def _write_repr(o, indent=False, level=0): pad = " " * 4 * level if indent: _write(pad) level += 1 if isinstance(o, (bytes, str)): # The py2 repr of str (unicode) is `u'...'` and we don't want the `u` prefix; likewise, # the py3 repr of bytes is `b'...'` and we don't want the `b` prefix so we hand-roll a # repr here. o_txt = ensure_text(o) if linesep in o_txt: _write('"""{}"""'.format(o_txt.replace('"""', r"\"\"\""))) else: _write("'{}'".format(o_txt.replace("'", r"\'"))) elif isinstance(o, abc.Mapping): _write("{" + linesep) for k, v in o.items(): _write_repr(k, indent=True, level=level) _write(": ") _write_repr(v, indent=False, level=level) _write("," + linesep) _write(pad + "}") elif isinstance(o, abc.Iterable): if isinstance(o, abc.MutableSequence): open_collection, close_collection = "[]" elif isinstance(o, abc.Set): open_collection, close_collection = "{}" else: open_collection, close_collection = "()" _write(open_collection + linesep) for i in o: _write_repr(i, indent=True, level=level) _write("," + linesep) _write(pad + close_collection) else: _write(repr(o)) # Numbers and bools. _write_repr(obj) return output.getvalue() def find_packages( *, python_files: Set[str], resource_files: Set[str], init_py_digest_contents: DigestContents, py2: bool, ) -> Tuple[Tuple[str, ...], Tuple[str, ...], Tuple[PackageDatum, ...]]: """Analyze the package structure for the given sources. Returns a tuple (packages, namespace_packages, package_data), suitable for use as setup() kwargs. """ # Find all packages implied by the sources. packages: Set[str] = set() package_data: Dict[str, List[str]] = defaultdict(list) for python_file in python_files: # Python 2: An __init__.py file denotes a package. # Python 3: Any directory containing python source files is a package. if not py2 or os.path.basename(python_file) == "__init__.py": packages.add(os.path.dirname(python_file).replace(os.path.sep, ".")) # Now find all package_data. for resource_file in resource_files: # Find the closest enclosing package, if any. Resources will be loaded relative to that. maybe_package: str = os.path.dirname(resource_file).replace(os.path.sep, ".") while maybe_package and maybe_package not in packages: maybe_package = maybe_package.rpartition(".")[0] # If resource is not in a package, ignore it. There's no principled way to load it anyway. if maybe_package: package_data[maybe_package].append( os.path.relpath(resource_file, maybe_package.replace(".", os.path.sep)) ) # See which packages are pkg_resources-style namespace packages. # Note that implicit PEP 420 namespace packages and pkgutil-style namespace packages # should *not* be listed in the setup namespace_packages kwarg. That's for pkg_resources-style # namespace packages only. See https://github.com/pypa/sample-namespace-packages/. namespace_packages: Set[str] = set() init_py_by_path: Dict[str, bytes] = {ipc.path: ipc.content for ipc in init_py_digest_contents} for pkg in packages: path = os.path.join(pkg.replace(".", os.path.sep), "__init__.py") if path in init_py_by_path and declares_pkg_resources_namespace_package( init_py_by_path[path].decode() ): namespace_packages.add(pkg) return ( tuple(sorted(packages)), tuple(sorted(namespace_packages)), tuple((pkg, tuple(sorted(files))) for pkg, files in package_data.items()), ) def declares_pkg_resources_namespace_package(python_src: str) -> bool: """Given .py file contents, determine if it declares a pkg_resources-style namespace package. Detects pkg_resources-style namespaces. See here for details: https://packaging.python.org/guides/packaging-namespace-packages/. Note: Accepted namespace package decls are valid Python syntax in all Python versions, so this code can, e.g., detect namespace packages in Python 2 code while running on Python 3. """ import ast def is_name(node: ast.AST, name: str) -> bool: return isinstance(node, ast.Name) and node.id == name def is_call_to(node: ast.AST, func_name: str) -> bool: if not isinstance(node, ast.Call): return False func = node.func return (isinstance(func, ast.Attribute) and func.attr == func_name) or is_name( func, func_name ) def has_args(call_node: ast.Call, required_arg_ids: Tuple[str, ...]) -> bool: args = call_node.args if len(args) != len(required_arg_ids): return False actual_arg_ids = tuple(arg.id for arg in args if isinstance(arg, ast.Name)) return actual_arg_ids == required_arg_ids try: python_src_ast = ast.parse(python_src) except SyntaxError: # The namespace package incantations we check for are valid code in all Python versions. # So if the code isn't parseable we know it isn't a valid namespace package. return False # Note that these checks are slightly heuristic. It is possible to construct adversarial code # that would defeat them. But the only consequence would be an incorrect namespace_packages list # in setup.py, and we're assuming our users aren't trying to shoot themselves in the foot. for ast_node in ast.walk(python_src_ast): # pkg_resources-style namespace, e.g., # __import__('pkg_resources').declare_namespace(__name__). if is_call_to(ast_node, "declare_namespace") and has_args( cast(ast.Call, ast_node), ("__name__",) ): return True return False def rules(): return [ *python_sources_rules(), *collect_rules(), UnionRule(PackageFieldSet, PythonDistributionFieldSet), ]
apache-2.0
-2,219,731,043,789,042,400
39.710129
123
0.672675
false
4.041399
false
false
false
azumimuo/family-xbmc-addon
plugin.video.bubbles/resources/lib/externals/hachoir/hachoir_parser/image/bmp.py
1
6874
""" Microsoft Bitmap picture parser. - file extension: ".bmp" Author: Victor Stinner Creation: 16 december 2005 """ from resources.lib.externals.hachoir.hachoir_parser import Parser from resources.lib.externals.hachoir.hachoir_core.field import (FieldSet, UInt8, UInt16, UInt32, Bits, String, RawBytes, Enum, PaddingBytes, NullBytes, createPaddingField) from resources.lib.externals.hachoir.hachoir_core.endian import LITTLE_ENDIAN from resources.lib.externals.hachoir.hachoir_core.text_handler import textHandler, hexadecimal from resources.lib.externals.hachoir.hachoir_parser.image.common import RGB, PaletteRGBA from resources.lib.externals.hachoir.hachoir_core.tools import alignValue class Pixel4bit(Bits): static_size = 4 def __init__(self, parent, name): Bits.__init__(self, parent, name, 4) class ImageLine(FieldSet): def __init__(self, parent, name, width, pixel_class): FieldSet.__init__(self, parent, name) self._pixel = pixel_class self._width = width self._size = alignValue(self._width * self._pixel.static_size, 32) def createFields(self): for x in xrange(self._width): yield self._pixel(self, "pixel[]") size = self.size - self.current_size if size: yield createPaddingField(self, size) class ImagePixels(FieldSet): def __init__(self, parent, name, width, height, pixel_class, size=None): FieldSet.__init__(self, parent, name, size=size) self._width = width self._height = height self._pixel = pixel_class def createFields(self): for y in xrange(self._height-1, -1, -1): yield ImageLine(self, "line[%u]" % y, self._width, self._pixel) size = (self.size - self.current_size) // 8 if size: yield NullBytes(self, "padding", size) class CIEXYZ(FieldSet): def createFields(self): yield UInt32(self, "x") yield UInt32(self, "y") yield UInt32(self, "z") class BmpHeader(FieldSet): color_space_name = { 1: "Business (Saturation)", 2: "Graphics (Relative)", 4: "Images (Perceptual)", 8: "Absolute colormetric (Absolute)", } def getFormatVersion(self): if "gamma_blue" in self: return 4 if "important_color" in self: return 3 return 2 def createFields(self): # Version 2 (12 bytes) yield UInt32(self, "header_size", "Header size") yield UInt32(self, "width", "Width (pixels)") yield UInt32(self, "height", "Height (pixels)") yield UInt16(self, "nb_plan", "Number of plan (=1)") yield UInt16(self, "bpp", "Bits per pixel") # may be zero for PNG/JPEG picture # Version 3 (40 bytes) if self["header_size"].value < 40: return yield Enum(UInt32(self, "compression", "Compression method"), BmpFile.COMPRESSION_NAME) yield UInt32(self, "image_size", "Image size (bytes)") yield UInt32(self, "horizontal_dpi", "Horizontal DPI") yield UInt32(self, "vertical_dpi", "Vertical DPI") yield UInt32(self, "used_colors", "Number of color used") yield UInt32(self, "important_color", "Number of import colors") # Version 4 (108 bytes) if self["header_size"].value < 108: return yield textHandler(UInt32(self, "red_mask"), hexadecimal) yield textHandler(UInt32(self, "green_mask"), hexadecimal) yield textHandler(UInt32(self, "blue_mask"), hexadecimal) yield textHandler(UInt32(self, "alpha_mask"), hexadecimal) yield Enum(UInt32(self, "color_space"), self.color_space_name) yield CIEXYZ(self, "red_primary") yield CIEXYZ(self, "green_primary") yield CIEXYZ(self, "blue_primary") yield UInt32(self, "gamma_red") yield UInt32(self, "gamma_green") yield UInt32(self, "gamma_blue") def parseImageData(parent, name, size, header): if ("compression" not in header) or (header["compression"].value in (0, 3)): width = header["width"].value height = header["height"].value bpp = header["bpp"].value if bpp == 32: cls = UInt32 elif bpp == 24: cls = RGB elif bpp == 8: cls = UInt8 elif bpp == 4: cls = Pixel4bit else: cls = None if cls: return ImagePixels(parent, name, width, height, cls, size=size*8) return RawBytes(parent, name, size) class BmpFile(Parser): PARSER_TAGS = { "id": "bmp", "category": "image", "file_ext": ("bmp",), "mime": (u"image/x-ms-bmp", u"image/x-bmp"), "min_size": 30*8, # "magic": (("BM", 0),), "magic_regex": (( # "BM", <filesize>, <reserved>, header_size=(12|40|108) "BM.{4}.{8}[\x0C\x28\x6C]\0{3}", 0),), "description": "Microsoft bitmap (BMP) picture" } endian = LITTLE_ENDIAN COMPRESSION_NAME = { 0: u"Uncompressed", 1: u"RLE 8-bit", 2: u"RLE 4-bit", 3: u"Bitfields", 4: u"JPEG", 5: u"PNG", } def validate(self): if self.stream.readBytes(0, 2) != 'BM': return "Wrong file signature" if self["header/header_size"].value not in (12, 40, 108): return "Unknown header size (%s)" % self["header_size"].value if self["header/nb_plan"].value != 1: return "Invalid number of planes" return True def createFields(self): yield String(self, "signature", 2, "Header (\"BM\")", charset="ASCII") yield UInt32(self, "file_size", "File size (bytes)") yield PaddingBytes(self, "reserved", 4, "Reserved") yield UInt32(self, "data_start", "Data start position") yield BmpHeader(self, "header") # Compute number of color header = self["header"] bpp = header["bpp"].value if 0 < bpp <= 8: if "used_colors" in header and header["used_colors"].value: nb_color = header["used_colors"].value else: nb_color = (1 << bpp) else: nb_color = 0 # Color palette (if any) if nb_color: yield PaletteRGBA(self, "palette", nb_color) # Seek to data start field = self.seekByte(self["data_start"].value) if field: yield field # Image pixels size = min(self["file_size"].value-self["data_start"].value, (self.size - self.current_size)//8) yield parseImageData(self, "pixels", size, header) def createDescription(self): return u"Microsoft Bitmap version %s" % self["header"].getFormatVersion() def createContentSize(self): return self["file_size"].value * 8
gpl-2.0
6,517,626,528,385,999,000
34.251282
104
0.586267
false
3.654439
false
false
false
msullivan/advent-of-code
2020/17a.py
1
1655
#!/usr/bin/env python3 import copy from collections import defaultdict import sys import re def extract(s): return [int(x) for x in re.findall(r'-?\d+', s)] def first(grid, x, y, dx, dy): while True: x += dx y += dy if x < 0 or x >= len(grid[0]) or y < 0 or y >= len(grid): return '' if grid[y][x] in ('L', '#'): return grid[y][x] nbrs = [(x, y, z) for x in range(-1, 2) for y in range(-1, 2) for z in range(-1, 2) if not x == y == z == 0] def add(v1, v2): return tuple(x + y for x, y in zip(v1, v2)) def step(grid): ngrid = copy.deepcopy(grid) # ngrid = [x[:] for x in grid] change = False for pos in list(grid): for dx in nbrs + [(0, 0, 0)]: npos = add(dx, pos) cnt = 0 for d in nbrs: if grid[add(npos, d)] == "#": cnt += 1 print(cnt) if grid[npos] == '#' and not (cnt == 2 or cnt == 3): ngrid[npos] = '.' change = True elif grid[npos] == '.' and cnt == 3: ngrid[npos] = '#' change = True return ngrid, change def main(args): # data = [x.split('\n') for x in sys.stdin.read().split('\n\n')] data = [list(s.strip()) for s in sys.stdin] grid = defaultdict(lambda: ".") for y in range(len(data)): for x in range(len(data[0])): grid[x,y,0] = data[y][x] for i in range(6): print(i, grid) grid, _ = step(grid) print(len([x for x in grid.values() if x == '#'])) if __name__ == '__main__': sys.exit(main(sys.argv))
mit
4,169,982,579,958,940,000
24.859375
108
0.467674
false
3.099251
false
false
false
asamerh4/mesos
support/push-commits.py
1
4982
#!/usr/bin/env python # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This script is typically used by Mesos committers to push a locally applied review chain to ASF git repo and mark the reviews as submitted on ASF ReviewBoard. Example Usage: > git checkout master > git pull origin > ./support/apply-reviews.py -c -r 1234 > ./support/push-commits.py """ # TODO(vinod): Also post the commit message to the corresponding ASF JIRA # tickets and resolve them if necessary. import argparse import os import re import sys from subprocess import check_output REVIEWBOARD_URL = 'https://reviews.apache.org' def get_reviews(revision_range): """Return the list of reviews found in the commits in the revision range.""" reviews = [] # List of (review id, commit log) tuples rev_list = check_output(['git', 'rev-list', '--reverse', revision_range]).strip().split('\n') for rev in rev_list: commit_log = check_output(['git', '--no-pager', 'show', '--no-color', '--no-patch', rev]).strip() pos = commit_log.find('Review: ') if pos != -1: pattern = re.compile('Review: ({url})$'.format( url=os.path.join(REVIEWBOARD_URL, 'r', '[0-9]+'))) match = pattern.search(commit_log.strip().strip('/')) if match is None: print "\nInvalid ReviewBoard URL: '{}'".format(commit_log[pos:]) sys.exit(1) url = match.group(1) reviews.append((os.path.basename(url), commit_log)) return reviews def close_reviews(reviews, options): """Mark the given reviews as submitted on ReviewBoard.""" for review_id, commit_log in reviews: print 'Closing review', review_id if not options['dry_run']: check_output(['rbt', 'close', '--description', commit_log, review_id]) def parse_options(): """Return a dictionary of options parsed from command line arguments.""" parser = argparse.ArgumentParser() parser.add_argument('-n', '--dry-run', action='store_true', help='Perform a dry run.') args = parser.parse_args() options = {} options['dry_run'] = args.dry_run return options def main(): """Main function to push the commits in this branch as review requests.""" options = parse_options() current_branch_ref = check_output(['git', 'symbolic-ref', 'HEAD']).strip() current_branch = current_branch_ref.replace('refs/heads/', '', 1) if current_branch != 'master': print 'Please run this script from master branch' sys.exit(1) remote_tracking_branch = check_output(['git', 'rev-parse', '--abbrev-ref', 'master@{upstream}']).strip() merge_base = check_output([ 'git', 'merge-base', remote_tracking_branch, 'master']).strip() if merge_base == current_branch_ref: print 'No new commits found to push' sys.exit(1) reviews = get_reviews(merge_base + ".." + current_branch_ref) # Push the current branch to remote master. remote = check_output(['git', 'config', '--get', 'branch.master.remote']).strip() print 'Pushing commits to', remote if options['dry_run']: check_output(['git', 'push', '--dry-run', remote, 'master:master']) else: check_output(['git', 'push', remote, 'master:master']) # Now mark the reviews as submitted. close_reviews(reviews, options) if __name__ == '__main__': main()
apache-2.0
-8,114,206,134,426,273,000
30.732484
80
0.545163
false
4.472172
false
false
false
quixey/scrapy-cluster
crawler/tests/tests_online.py
1
3938
''' Online link spider test ''' import unittest from unittest import TestCase import time import sys from os import path sys.path.append(path.dirname(path.dirname(path.abspath(__file__)))) import scrapy import redis from redis.exceptions import ConnectionError import json import threading, time from crawling.spiders.link_spider import LinkSpider from scrapy.utils.project import get_project_settings from twisted.internet import reactor from scrapy.crawler import CrawlerRunner from kafka import KafkaClient, SimpleConsumer class CustomSpider(LinkSpider): ''' Overridden link spider for testing ''' name = "test-spider" class TestLinkSpider(TestCase): example_feed = "\x80\x02}q\x00(X\x0f\x00\x00\x00allowed_domainsq\x01NX"\ "\x0b\x00\x00\x00allow_regexq\x02NX\a\x00\x00\x00crawlidq\x03X\x19"\ "\x00\x00\x0001234567890abcdefghijklmnq\x04X\x03\x00\x00\x00urlq\x05X"\ "\x13\x00\x00\x00www.istresearch.comq\x06X\a\x00\x00\x00expiresq\aK"\ "\x00X\b\x00\x00\x00priorityq\bK\x01X\n\x00\x00\x00deny_regexq\tNX\b"\ "\x00\x00\x00spideridq\nX\x0b\x00\x00\x00test-spiderq\x0bX\x05\x00"\ "\x00\x00attrsq\x0cNX\x05\x00\x00\x00appidq\rX\a\x00\x00\x00testappq"\ "\x0eX\x06\x00\x00\x00cookieq\x0fNX\t\x00\x00\x00useragentq\x10NX\x0f"\ "\x00\x00\x00deny_extensionsq\x11NX\b\x00\x00\x00maxdepthq\x12K\x00u." def setUp(self): self.settings = get_project_settings() self.settings.set('KAFKA_TOPIC_PREFIX', "demo_test") # set up redis self.redis_conn = redis.Redis(host=self.settings['REDIS_HOST'], port=self.settings['REDIS_PORT']) try: self.redis_conn.info() except ConnectionError: print "Could not connect to Redis" # plugin is essential to functionality sys.exit(1) # clear out older test keys if any keys = self.redis_conn.keys("test-spider:*") for key in keys: self.redis_conn.delete(key) # set up kafka to consumer potential result self.kafka_conn = KafkaClient(self.settings['KAFKA_HOSTS']) self.kafka_conn.ensure_topic_exists("demo_test.crawled_firehose") self.consumer = SimpleConsumer( self.kafka_conn, "demo-id", "demo_test.crawled_firehose", buffer_size=1024*100, fetch_size_bytes=1024*100, max_buffer_size=None ) # move cursor to end of kafka topic self.consumer.seek(0, 2) def test_crawler_process(self): runner = CrawlerRunner(self.settings) d = runner.crawl(CustomSpider) d.addBoth(lambda _: reactor.stop()) # add crawl to redis key = "test-spider:istresearch.com:queue" self.redis_conn.zadd(key, self.example_feed, -99) # run the spider, give 20 seconds to see the url, crawl it, # and send to kafka. Then we kill the reactor def thread_func(): time.sleep(20) reactor.stop() thread = threading.Thread(target=thread_func) thread.start() reactor.run() # ensure it was sent out to kafka message_count = 0 for message in self.consumer.get_messages(): if message is None: break else: the_dict = json.loads(message.message.value) if the_dict is not None and the_dict['appid'] == 'testapp' \ and the_dict['crawlid'] == '01234567890abcdefghijklmn': message_count += 1 self.assertEquals(message_count, 1) def tearDown(self): keys = self.redis_conn.keys('stats:crawler:*:test-spider:*') keys = keys + self.redis_conn.keys('test-spider:*') for key in keys: self.redis_conn.delete(key) if __name__ == '__main__': unittest.main()
mit
2,532,433,231,757,263,000
33.243478
79
0.623667
false
3.284404
true
false
false
yfauser/maxwindownotify
setup.py
1
1252
from setuptools import setup import io def read(*filenames, **kwargs): encoding = kwargs.get('encoding', 'utf-8') sep = kwargs.get('sep', '\n') buf = [] for filename in filenames: with io.open(filename, encoding=encoding) as f: buf.append(f.read()) return sep.join(buf) long_description = read('README.rst') setup( name='maxwindownotify', version='1.1.1', packages=['maxwindownotify'], package_data={'maxwindownotify':['*'], 'maxwindownotify':['notifier_modules/*']}, url='http://github.com/yfauser/maxwindownotify', license='MIT', author='yfauser', author_email='[email protected]', description='This little script (daemon) will poll for the status of all window sensors known to a MAX Cube system and check for open windows', long_description=long_description, classifiers=[ 'Development Status :: 5 - Production/Stable', 'Intended Audience :: End Users/Desktop', 'Topic :: Utilities', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 2.7'], install_requires=['requests>=2.7.0', 'netaddr>=0.7.18'], entry_points={ 'console_scripts': ['maxwindownotify = maxwindownotify.maxwindownotify:main'] } )
mit
2,280,797,815,360,075,000
33.777778
147
0.654153
false
3.748503
false
false
false
hazybluedot/indie_helper
util.py
1
2278
import requests import bleach import sys if sys.version < '3': from urlparse import urlparse text_type = unicode text_types = [ str, unicode ] binary_type = str else: from urllib.parse import urlparse text_type = str text_types = [ str ] binary_type = bytes def is_url(url): try: parts = urlparse(url) except TypeError: return False return parts.scheme in [ 'http', 'https' ] def flatten(item): if type(item) in [ list, tuple ] and len(item) == 1: return item[0] else: return item #bleach.ALLOWED_TAGS + ['p'] ALLOWED_TAGS=bleach.ALLOWED_TAGS + ['p', 'span'] def clean(text): return bleach.clean(text, tags=ALLOWED_TAGS) def clean_url(url): if url.startswith('javascript:'): return ''; return url def bleachify(entry, key=None): ## todo for each property if key == 'url': bleached = bleachify(entry) return [ clean_url(u) for u in bleached ] if hasattr(entry, 'items'): return dict([ (prop, bleachify(value, prop)) for prop, value in entry.items() ]) elif type(entry) is list: ## to flatten the list-of-one values that mf2py generates ## I have revisited this and decided to keep single element lists as this seems to be part of the mf2 defined format #if len(entry) == 1: # return bleachify(entry[0]) #else: return map(bleachify, entry) elif type(entry) in text_types: return clean(entry) else: print('unhandled type of entry: {0}'.format(type(entry))) return None def follow_redirects(url, max_depth): """perform http GET url, following any redirects up to max_depth. return resolved url. Raises TooManyRedirects exception if max_depth is exceeded""" def _wrapped(url, depth, acc): if depth > max_depth: raise TooManyRedirects('following redirects on {0} exceeded maximum depth of {1}'.format(url, max_depth)) r = requests.head(url) acc.append( { 'url': url, 'status_code': r.status_code} ) if r.status_code in [ 301, 302 ]: return _wrapped(r.headers['Location'], depth+1, acc) else: return acc return _wrapped(url, 0, [])
gpl-3.0
7,210,100,983,337,184,000
28.205128
124
0.611501
false
3.692058
false
false
false
jenshenrik/destiny-trader
destiny.py
1
3112
import sys import re TYPE_BATTLEFIELD = "Battlefield" def print_usage(): print(""" Star Wars: Destiny trade list builder Usage: $>python destiny.py <target-file> where <target-file> is the text-file to process. This file should be generated by logging into swdestiny.com, going to 'My collection', selecting all (Ctrl/Cmd + A), pasting into an empty file, and saving. """) # Opens file, and returns it as a list of lines def open_file(path): f = open(path, 'r+') lines = f.readlines() f.close() return lines def write_file(path, haves, wants): output = open(path, 'w') output.write("HAVES") for card in haves: qty = 0 if card.type == TYPE_BATTLEFIELD: qty = card.qty - 1 else: qty = card.qty - 2 output.write("\n%dx %s\t\t(%s)" % (qty, card.name, card.set_string)) output.write("\n\nWANTS") for card in wants: qty = 0 if card.type == TYPE_BATTLEFIELD: qty = 1 #you always only want 1 battlefield else: qty = 2 - card.qty output.write("\n%dx %s\t\t(%s)" % (qty, card.name, card.set_string)) output.close() def strip_header(lines): return lines[19:] def strip_footer(lines): return lines[:-11] class Card: def __init__(self, line): split = line.split("\t") self.name = split[0].lstrip().rstrip() self.qty = self.parse_qty(split[1]) self.type = split[6] self.rarity = split[7] self.set = self.parse_set(split[-1].lstrip().rstrip()) self.number = self.parse_number(split[-1]) self.set_string = split[-1].lstrip().rstrip() # Pulls number from quantity string def parse_qty(self, qty_string): found = re.findall(r'\d+', qty_string) return int(found[0]) # Parse the card's set name. # Assumes the last word is set number def parse_set(self, set_string): return set_string.rsplit(" ", 1)[0] # Parse the card's number in the set. # Assumes the last word is set number def parse_number(self, number_string): return int(number_string.rsplit(" ", 1)[1]) def check_usage(): num_args = len(sys.argv) if num_args < 2: print_usage() sys.exit() def extract_filename_and_extension(filename): split_name = filename.rsplit(".", 1) return (split_name[0], split_name[1]) # run script check_usage() input_file = sys.argv[1] file_lines = open_file(input_file) file_lines = strip_header(file_lines) file_lines = strip_footer(file_lines) cards = [] for line in file_lines: cards.append(Card(line)) haves = [] wants = [] for card in cards: if card.type == TYPE_BATTLEFIELD: if card.qty < 1: wants.append(card) elif card.qty > 1: haves.append(card) else: if card.qty < 2: wants.append(card) elif card.qty > 2: haves.append(card) (filename, extension) = extract_filename_and_extension(input_file) write_file(filename+"_trades."+extension, haves, wants)
gpl-3.0
8,064,256,526,302,666,000
24.719008
90
0.593509
false
3.314164
false
false
false
bfarr/kombine
examples/kepler/correlated_likelihood.py
1
2577
import numpy as np import numpy.linalg as nl import numpy.random as nr import rv_model as rv import scipy.linalg as sl import scipy.stats as ss def generate_covariance(ts, sigma, tau): r"""Generates a covariance matrix according to an squared-exponential autocovariance .. math:: \left\langle x_i x_j \right\rangle = \sigma_0^2 \delta_{ij} + \sigma^2 \exp\left[ - \frac{\left| t_i - t_j\right|^2}{2 \tau^2} \right] """ ndim = ts.shape[0] tis = ts[:, np.newaxis] tjs = ts[np.newaxis, :] return sigma*sigma*np.exp(-np.square(tis-tjs)/(2.0*tau*tau)) params_dtype = np.dtype([('mu', np.float), ('K', np.float), ('e', np.float), ('omega', np.float), ('chi', np.float), ('P', np.float), ('nu', np.float), ('sigma', np.float), ('tau', np.float)]) class Log1PPosterior(object): """Log of the posterior for a single planet system observed with a single telescope. """ def __init__(self, ts, vs, dvs): self.ts = np.sort(ts) self.vs = vs self.dvs = dvs self.T = self.ts[-1] - self.ts[0] self.dt_min = np.min(np.diff(self.ts)) def to_params(self, p): p = np.atleast_1d(p) return p.view(params_dtype) def log_prior(self, p): p = self.to_params(p) # Bounds if p['K'] < 0.0 or p['e'] < 0.0 or p['e'] > 1.0 or p['omega'] < 0.0 or p['omega'] > 2.0*np.pi or p['P'] < 0.0 or p['nu'] < 0.1 or p['nu'] > 10.0 or p['sigma'] < 0.0 or p['tau'] < 0.0 or p['tau'] > self.T: return np.NINF # Otherwise, flat prior on everything. return 0.0 def log_likelihood(self, p): p = self.to_params(p) v = self.rvs(p) res = self.vs - v - p['mu'] cov = p['nu']*p['nu']*np.diag(self.dvs*self.dvs) cov += generate_covariance(self.ts, p['sigma'], p['tau']) cfactor = sl.cho_factor(cov) cc, lower = cfactor n = self.ts.shape[0] return -0.5*n*np.log(2.0*np.pi) - np.sum(np.log(np.diag(cc))) - 0.5*np.dot(res, sl.cho_solve(cfactor, res)) def __call__(self, p): lp = self.log_prior(p) if lp == np.NINF: return np.NINF else: return lp + self.log_likelihood(p) def rvs(self, p): p = self.to_params(p) return rv.rv_model(self.ts, p['K'], p['e'], p['omega'], p['chi'], p['P'])
mit
-2,341,818,866,456,086,000
27.955056
212
0.498642
false
3.035336
false
false
false
FrancescoRizzi/AWSomesauce
articles/BAS4-pws/custauth/custauth.py
1
18186
#!/usr/bin/env python import os import json import StringIO from contextlib import closing import re import time import pprint import boto3 from boto3.session import Session import botocore import jwt from cryptography.x509 import load_pem_x509_certificate from cryptography.hazmat.backends import default_backend # Simplest form of logging using the standard logging module: # ============================================================ import logging logger = logging.getLogger() logger.setLevel(logging.INFO) # Top-Level Handler: # ============================================================ def lambda_handler(event, context): logger.info("CustAuth Triggered.") authToken = event.get('authorizationToken', '') methodArn = event.get('methodArn', '') authHeader = event.get('Authorization', '') logger.info("Authorization Token : '{0!s}'.".format(authToken)) logger.info("Method ARN : '{0!s}'.".format(methodArn)) logger.info("Authorization Header: '{0!s}'.".format(authHeader)) # Check Configuration before wasting time # ======================================================== # AUTH_APP_ID: required auth_app_id = os.environ.get('AUTH_APP_ID', None) if not auth_app_id: logger.error("Missing Required 'AUTH_APP_ID' Environmental Variable.") raise ValueError("Missing/blank 'AUTH_APP_ID'") logger.info("Auth App ID : '{0!s}'.".format(auth_app_id)) # AUTH_TENANT_ID: required auth_tenant_id = os.environ.get('AUTH_TENANT_ID', None) if not auth_tenant_id: logger.error("Missing Required 'AUTH_TENANT_ID' Environmental Variable.") raise ValueError("Missing/blank 'AUTH_TENANT_ID'") logger.info("Auth Tenant ID : '{0!s}'.".format(auth_tenant_id)) # CERTS_BUCKET: required certs_bucket = os.environ.get('CERTS_BUCKET', None) if not certs_bucket: logger.error("Missing Required 'CERTS_BUCKET' Environmental Variable.") raise ValueError("Missing/blank 'CERTS_BUCKET'") logger.info("Certificates Bucket : '{0!s}'.".format(certs_bucket)) # ======================================================== # Client credentials expected in the authorizationToken, in the form: # 'Bearer <id_token>' # Missing authorizationToken: # response 401 - Unauthorized (although we don't send back a 'WWW-Authenticate' header as we should) if not authToken: logger.warn("Missing Authorization Token: will trigger 401-Unauthorized response.") raise Exception('Unauthorized') validator = TokenValidator() validToken = validator.ValidateToken(authToken, auth_app_id, auth_tenant_id, certs_bucket) logger.info("Is the Authorization Token valid? {0!s}".format(validToken)) # authorizationToken invalid (format or contents): # respond with Policy DENYING access, which will trigger API Gateway to respond with # response 403 - Forbidden # authorizationToken valid (format and contents): # respond with Policy ALLOWING access, which will trigger API Gateway to # proceed with the backend integration configured on the method. principalId = auth_app_id arnParts = event['methodArn'].split(':') apiGatewayArnTmp = arnParts[5].split('/') awsAccountId = arnParts[4] policy = AuthPolicy(principalId, awsAccountId) policy.restApiId = apiGatewayArnTmp[0] policy.region = arnParts[3] policy.stage = apiGatewayArnTmp[1] policyDesc = '' if validToken: policy.allowAllMethods() policyDesc = 'ALLOW' else: policy.denyAllMethods() policyDesc = 'DENY' authResponse = policy.build() # Optional: context # The response can also include a 'context' key-value pairs mapping, # which will be rendered available to the configured backend # (if the policy is such that the request handling continues) # as $context.authorizer.<key> # This mapping is part of the cached response. # # context = { # 'key': 'value', # $context.authorizer.key -> value # 'number' : 1, # 'bool' : True # } # authResponse['context'] = context # # INVALID formats: # context['arr'] = ['foo'] # context['obj'] = {'foo':'bar'} logger.info("CustAuth completed: returning policy to {0!s} access.".format(policyDesc)) return authResponse # TokenValidator # ============================================================ class TokenValidator(object): PEMSTART = "-----BEGIN CERTIFICATE-----\n" PEMEND = "\n-----END CERTIFICATE-----\n" def __init__(self): self._session = None self._client = None def ValidateToken(self, auth_header, auth_app_id, auth_tenant_id, certs_bucket): # auth_header expected to be in the form: # 'Bearer <id_token>' (pre, encoded_token) = auth_header.split(' ', 2) if (not pre) or (pre.upper() != "BEARER"): logger.warn("Authorization Token did not match expected 'Bearer <id_token>' format.") return False expected_issuer = 'https://sts.windows.net/{0!s}/'.format(auth_tenant_id) unverified_headers = jwt.get_unverified_header(encoded_token) #unverified_token = jwt.decode(encoded_token, algorithms=['RS256'], audience=auth_app_id, issuer=expected_issuer, options={'verify_signature': False}) #x5t = unverified_token.get('x5t', None) #kid = unverified_token.get('kid', None) kid = unverified_headers.get('kid', None) logger.info("Token 'kid': '{0!s}'.".format(kid)) if not kid: logger.warn("Could not extract 'kid' property from token.") return False cert_pem = self.GetSigningCertificate(certs_bucket, kid) if cert_pem: logger.info("Retrieved Signing Certificate.") #if isinstance(cert_pem, unicode): # logger.info("Signing Certificate is unicode. Will attempt STRICT conversion.") # cert_pem = cert_pem.encode('ascii', 'strict') # logger.info("Signing Certificate unicode encoded to ASCII.") cert = load_pem_x509_certificate(cert_pem, default_backend()) logger.info("Loaded Signing Certificate.") public_key = cert.public_key() logger.info("Extracted Public Key from Signing Certificate.") decoded = jwt.decode(encoded_token, public_key, algorithms=['RS256'], audience=auth_app_id, issuer=expected_issuer) # NOTE: the JWT decode method verifies # - general format of the encoded token # - signature, using the given public key # - aud claim (Audience) vs audience value # - exp claim (Expiration) vs current datetime (UTC) # - nbf claim (Not Before) vs current datetime (UTC) # - iss claim (Issuer) vs issuer value if decoded: logger.info("Token Decoded and Validated Successfully.") return True else: logger.warn("Failed to Decode Token when verifying signature.") return False else: logger.warn("Could not retrieve signing certificate matching token's 'kid' property ('{0!s}').".format(kid)) return False def GetSigningCertificate(self, certs_bucket, kid): self.EnsureClient() discovery_record_str = None with closing(StringIO.StringIO()) as dest: self._client.download_fileobj( Bucket=certs_bucket, Key=kid, Fileobj=dest) discovery_record_str = dest.getvalue() if not discovery_record_str: logger.warn("Could not retrieve Discovery Record from Bucket.") return None logger.info("Retrieved Discovery Record Payload from Bucket.") # discovery_record_str is the payload extracted from # the bucket, presumed to be the JSON-formatted string # of the signing certificate discovery record. eg: # { # "x5t": "...", # "use": "...", # "e": "...", # "kty": "...", # "n": "...", # "x5c": [ # "..." # ], # "issuer": "...", # "kid": "..." # } # What we need to extract as 'certificate' is # the first value in the "x5c" property list discovery_record = json.loads(discovery_record_str) logger.info("Parsed Discovery Record JSON.") x5c = discovery_record.get('x5c', None) if not x5c: logger.warn("Could not find 'x5c' property from Discovery Record.") return None logger.info("Discovery Record x5c found.") raw_cert = "" if isinstance(x5c, list): raw_cert = x5c[0] elif isinstance(x5c, basestring): raw_cert = x5c else: logger.warn("Unexpected data type for x5c value from Discovery Record (expected string or list).") return None logger.info("Raw Cert:|{0!s}|".format(raw_cert)) if isinstance(raw_cert, unicode): logger.info("Raw Certificate is unicode. Attempting STRICT conversion to ASCII.") raw_cert = raw_cert.encode('ascii', 'strict') logger.info("Raw Certificate encoded to ASCII.") logger.info("Formatting Raw Certificate according to PEM 64-characters lines.") raw_cert = self.InsertNewLines(raw_cert) logger.info("Raw Certificate lines length normalized to PEM.") pem_cert = self.PEMSTART + raw_cert + self.PEMEND logger.info("After wrapping Raw certificate in PEM Markers:") logger.info(pem_cert) #tmp = "is NOT" #if isinstance(raw_cert, unicode): # tmp = "is" #logger.info("Before Wrapping in PEM delimiters, the raw_cert data type {0!s} unicode.".format(tmp)) # #pem_cert = self.PEMSTART + raw_cert + self.PEMEND #logger.info("PEM Cert:|{0!s}|".format(pem_cert)) # #tmp = "is NOT" #if isinstance(pem_cert, unicode): # tmp = "is" #logger.info("After Wrapping in PEM delimiters, the pem_cert data type {0!s} unicode.".format(tmp)) # #if isinstance(pem_cert, unicode): # logger.info("Signing Certificate is unicode. Will attempt STRICT conversion.") # pem_cert = pem_cert.encode('ascii', 'strict') # logger.info("Signing Certificate unicode encoded to ASCII.") # #logger.info("Splitting according to PEM format (64 characters per line).") #pem_cert = self.InsertNewLines(pem_cert) #logger.info("After splitting in 64-character long lines:") #logger.info(pem_cert) return pem_cert def InsertNewLines(self, s, every=64): lines = [] for i in xrange(0, len(s), every): lines.append(s[i:i+every]) return '\n'.join(lines) def EnsureClient(self): self.EnsureSession() if not self._client: self._client = self._session.client('s3') def EnsureSession(self): if not self._session: self._session = boto3.Session() # HttpVerbs # ============================================================ class HttpVerb: GET = "GET" POST = "POST" PUT = "PUT" PATCH = "PATCH" HEAD = "HEAD" DELETE = "DELETE" OPTIONS = "OPTIONS" ALL = "*" # AuthPolicy # ============================================================ class AuthPolicy(object): awsAccountId = "" """The AWS account id the policy will be generated for. This is used to create the method ARNs.""" principalId = "" """The principal used for the policy, this should be a unique identifier for the end user.""" version = "2012-10-17" """The policy version used for the evaluation. This should always be '2012-10-17'""" pathRegex = "^[/.a-zA-Z0-9-\*]+$" """The regular expression used to validate resource paths for the policy""" """these are the internal lists of allowed and denied methods. These are lists of objects and each object has 2 properties: A resource ARN and a nullable conditions statement. the build method processes these lists and generates the approriate statements for the final policy""" allowMethods = [] denyMethods = [] restApiId = "*" """The API Gateway API id. By default this is set to '*'""" region = "*" """The region where the API is deployed. By default this is set to '*'""" stage = "*" """The name of the stage used in the policy. By default this is set to '*'""" def __init__(self, principal, awsAccountId): self.awsAccountId = awsAccountId self.principalId = principal self.allowMethods = [] self.denyMethods = [] def _addMethod(self, effect, verb, resource, conditions): """Adds a method to the internal lists of allowed or denied methods. Each object in the internal list contains a resource ARN and a condition statement. The condition statement can be null.""" if verb != "*" and not hasattr(HttpVerb, verb): raise NameError("Invalid HTTP verb " + verb + ". Allowed verbs in HttpVerb class") resourcePattern = re.compile(self.pathRegex) if not resourcePattern.match(resource): raise NameError("Invalid resource path: " + resource + ". Path should match " + self.pathRegex) if resource[:1] == "/": resource = resource[1:] resourceArn = ("arn:aws:execute-api:" + self.region + ":" + self.awsAccountId + ":" + self.restApiId + "/" + self.stage + "/" + verb + "/" + resource) if effect.lower() == "allow": self.allowMethods.append({ 'resourceArn' : resourceArn, 'conditions' : conditions }) elif effect.lower() == "deny": self.denyMethods.append({ 'resourceArn' : resourceArn, 'conditions' : conditions }) def _getEmptyStatement(self, effect): """Returns an empty statement object prepopulated with the correct action and the desired effect.""" statement = { 'Action': 'execute-api:Invoke', 'Effect': effect[:1].upper() + effect[1:].lower(), 'Resource': [] } return statement def _getStatementForEffect(self, effect, methods): """This function loops over an array of objects containing a resourceArn and conditions statement and generates the array of statements for the policy.""" statements = [] if len(methods) > 0: statement = self._getEmptyStatement(effect) for curMethod in methods: if curMethod['conditions'] is None or len(curMethod['conditions']) == 0: statement['Resource'].append(curMethod['resourceArn']) else: conditionalStatement = self._getEmptyStatement(effect) conditionalStatement['Resource'].append(curMethod['resourceArn']) conditionalStatement['Condition'] = curMethod['conditions'] statements.append(conditionalStatement) statements.append(statement) return statements def allowAllMethods(self): """Adds a '*' allow to the policy to authorize access to all methods of an API""" self._addMethod("Allow", HttpVerb.ALL, "*", []) def denyAllMethods(self): """Adds a '*' allow to the policy to deny access to all methods of an API""" self._addMethod("Deny", HttpVerb.ALL, "*", []) def allowMethod(self, verb, resource): """Adds an API Gateway method (Http verb + Resource path) to the list of allowed methods for the policy""" self._addMethod("Allow", verb, resource, []) def denyMethod(self, verb, resource): """Adds an API Gateway method (Http verb + Resource path) to the list of denied methods for the policy""" self._addMethod("Deny", verb, resource, []) def allowMethodWithConditions(self, verb, resource, conditions): """Adds an API Gateway method (Http verb + Resource path) to the list of allowed methods and includes a condition for the policy statement. More on AWS policy conditions here: http://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html#Condition""" self._addMethod("Allow", verb, resource, conditions) def denyMethodWithConditions(self, verb, resource, conditions): """Adds an API Gateway method (Http verb + Resource path) to the list of denied methods and includes a condition for the policy statement. More on AWS policy conditions here: http://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html#Condition""" self._addMethod("Deny", verb, resource, conditions) def build(self): """Generates the policy document based on the internal lists of allowed and denied conditions. This will generate a policy with two main statements for the effect: one statement for Allow and one statement for Deny. Methods that includes conditions will have their own statement in the policy.""" if ((self.allowMethods is None or len(self.allowMethods) == 0) and (self.denyMethods is None or len(self.denyMethods) == 0)): raise NameError("No statements defined for the policy") policy = { 'principalId' : self.principalId, 'policyDocument' : { 'Version' : self.version, 'Statement' : [] } } policy['policyDocument']['Statement'].extend(self._getStatementForEffect("Allow", self.allowMethods)) policy['policyDocument']['Statement'].extend(self._getStatementForEffect("Deny", self.denyMethods)) return policy
mit
3,410,329,240,392,538,600
38.027897
158
0.600352
false
4.217532
false
false
false