repo_name
stringlengths
5
100
path
stringlengths
4
299
copies
stringclasses
990 values
size
stringlengths
4
7
content
stringlengths
666
1.03M
license
stringclasses
15 values
hash
int64
-9,223,351,895,964,839,000
9,223,297,778B
line_mean
float64
3.17
100
line_max
int64
7
1k
alpha_frac
float64
0.25
0.98
autogenerated
bool
1 class
mjenrungrot/algorithm
Kattis/collatz.py
2
1179
""" Problem: collatz Link: https://open.kattis.com/problems/collatz Source: Kattis / CTU Open 2011 """ while True: A, B = list(map(int, input().split())) if A == 0 and B == 0: break if A == B: print("{:} needs 0 steps, {:} needs 0 steps, they meet at {:}".format(A, B, A)) continue origA = A origB = B mapA = dict() mapB = dict() mapA[A] = 0 mapB[B] = 0 stepA = 0 stepB = 0 while True: if A != 1: if A % 2 == 0: A = A // 2 else: A = 3*A + 1 if A not in mapA: stepA += 1 mapA[A] = stepA if B != 1: if B % 2 == 0: B = B // 2 else: B = 3*B + 1 if B not in mapB: stepB += 1 mapB[B] = stepB if A in mapB: print("{:} needs {:} steps, {:} needs {:} steps, they meet at {:}".format(origA, stepA, origB, mapB[A], A)) break if B in mapA: print("{:} needs {:} steps, {:} needs {:} steps, they meet at {:}".format(origA, mapA[B], origB, stepB, B)) break
mit
1,773,556,188,656,078,800
22.117647
119
0.412214
false
SimenB/thefuck
tests/rules/test_terraform_init.py
3
1455
import pytest from thefuck.rules.terraform_init import match, get_new_command from thefuck.types import Command @pytest.mark.parametrize('script, output', [ ('terraform plan', 'Error: Initialization required. ' 'Please see the error message above.'), ('terraform plan', 'This module is not yet installed. Run "terraform init" ' 'to install all modules required by this configuration.'), ('terraform apply', 'Error: Initialization required. ' 'Please see the error message above.'), ('terraform apply', 'This module is not yet installed. Run "terraform init" ' 'to install all modules required by this configuration.')]) def test_match(script, output): assert match(Command(script, output)) @pytest.mark.parametrize('script, output', [ ('terraform --version', 'Terraform v0.12.2'), ('terraform plan', 'No changes. Infrastructure is up-to-date.'), ('terraform apply', 'Apply complete! Resources: 0 added, 0 changed, 0 destroyed.'), ]) def test_not_match(script, output): assert not match(Command(script, output=output)) @pytest.mark.parametrize('command, new_command', [ (Command('terraform plan', ''), 'terraform init && terraform plan'), (Command('terraform apply', ''), 'terraform init && terraform apply'), ]) def test_get_new_command(command, new_command): assert get_new_command(command) == new_command
mit
-2,430,255,138,444,243,000
43.090909
87
0.66323
false
vankesteren/jasp-desktop
Tools/modScripts/translationSplitter.py
6
7635
#!/usr/bin/python import os import sys import regex from collections import namedtuple from enum import Enum if len(sys.argv) < 4: print("Usage: python translationSplitter.py toBeTranslated.po alreadyTranslated.po { po-file-folder | po-file+ }") exit(1) keepTalking = False toBeTranslatedFilename = sys.argv[1] alreadyTranslatedFilename = sys.argv[2] poFiles = [] #collect the po files we need to check if len(sys.argv) == 4: #Maybe we've got a po-file-folder here possibleFolder = sys.argv[3] if os.path.isfile(possibleFolder): poFiles.append(possibleFolder) elif os.path.isdir(possibleFolder): #print("possibleFolder: " + possibleFolder) for entry in os.listdir(possibleFolder): entryFull = possibleFolder + "/" + entry if os.path.isfile(entryFull): poFiles.append(entryFull) else: for i in range(3, len(sys.argv)): poFiles.append(sys.argv[i]) print(poFiles) checkUs = poFiles poFiles = [] for poFile in checkUs: if not(poFile.endswith(".po")): print("poFile '" + poFile + "' does not end in .po, we will not use it!") else: poFiles.append(poFile) if len(poFiles) == 0: print("You didn't specify any *.po files (or the folder you specified didn't contain any") exit(2) class parseState(Enum): LIMBO = 1 MSGID = 2 MSGID_PLURAL = 3 MSGSTRS = 4 MSGCTXT = 5 msgFactory = namedtuple('msg', ['msgid', 'msgid_plural', 'msgstrs', 'msgctxt', 'comments']) msgsToDo = dict() msgsDone = dict() msgid = "" msgid_plural = "" msgstrs = [] msgstate = parseState.LIMBO msgctxt = "" comments = [] def resetMsgVars(): if keepTalking: print("Looking for new msg") global msgid global msgid_plural global msgstrs global msgstate global msgctxt msgctxt = "" msgid = "" msgid_plural = "" msgstrs = [] msgstate = parseState.LIMBO parseMsgstr = regex.compile(r"""\s* msgstr(\[\d+\])? #msgstr possibly with [#] behind it \s+(\"[^\"]*\") """, regex.VERBOSE | regex.MULTILINE) toDoDone = 0 def storeMsg(): global msgsDone global msgsToDo global toDoDone global msgid global msgid_plural global msgstrs global msgctxt global comments translatorFilledAll = True curMsg = msgFactory(msgid = msgid, msgid_plural=msgid_plural, msgstrs=msgstrs, msgctxt=msgctxt, comments=comments) comments = [] #This is cleared here to make sure we get any comments leading up to the next one if keepTalking: print("---------------------------------------------------\nStore msg: " + str(curMsg) + "---------------------------------------------------") for msgstr in msgstrs: m = parseMsgstr.match(msgstr) if m: cap = m.captures(2)[0] if keepTalking: print("For msgstr '" + msgstr + "' I find cap: '" + str(cap) + "' and length = " + str(len(cap))) if len(cap) == 2: #apparently this one is empty translatorFilledAll = False else: print("Couldnt parse msgstr '" + msgstr + "' for msgid '" + msgid + "' aborting!") exit(3) if translatorFilledAll: if msgid in msgsDone: print("msg was filled in twice, msgid doubled:" + msgid + " overwriting it (ctxt:"+msgsDone[msgid].msgctxt+" and msgstrs:" + str(msgsDone[msgid].msgstrs) + ") and keeping the last one (ctxt:" + msgctxt + " and msgstrs: " + str(msgstrs) + ").") oldComments = msgsDone[msgid].comments for comment in comments: oldComments.append(comment) comments = oldComments if msgid in msgsToDo: #Ok, it is also in the ToDo list, so we can remove it from there now, but keep the comments oldComments = msgsToDo[msgid].comments for comment in comments: oldComments.append(comment) comments = oldComments #We should keep the context for the one that is not filled in, because it probably is better! if msgsToDo[msgid].msgctxt != "": if msgctxt == "": comments.append("#Context for translated wasn't present") else: comments.append("#Context for translated: " + msgctxt) msgctxt = msgsToDo[msgid].msgctxt print("Using context from empty one (" + msgctxt + ")") del msgsToDo[msgid] toDoDone = toDoDone + 1 msgsDone[msgid] = curMsg else: if keepTalking: print("Not filled in...") if msgid in msgsDone: toDoDone = toDoDone + 1 else: msgsToDo[msgid] = curMsg def printParseLine(line): if keepTalking: print("State: " + str(msgstate) + " and line: " + line) def parseLineLimbo(line): global msgid global msgstate global msgctxt printParseLine(line) if line == "": #Boring but fine I guess? return if line.startswith("msgctxt"): #Great! resetMsgVars() msgctxt = line msgstate = parseState.MSGCTXT elif line.startswith("msgid"): #Also great! resetMsgVars() msgid = line msgstate = parseState.MSGID def parseLineMsgCtxt(line): global msgstate global msgid global msgctxt printParseLine(line) if line.startswith('"'): msgctxt += "\n" msgctxt += line elif line.startswith("msgid"): #Great! msgid = line msgstate = parseState.MSGID else: print("Expected a msgid after msgctxt, but didn't get it!") exit(5) def parseLineMsgid(line): global msgstate global msgid global msgid_plural printParseLine(line) if line.startswith('"'): msgid += "\n" msgid += line elif line.startswith("msgid_plural"): msgid_plural = line msgstate = parseState.MSGID_PLURAL elif line.startswith("msgstr"): msgstrs.append(line) msgstate = parseState.MSGSTRS def parseLineMsgidPlural(line): global msgstate global msgid_plural printParseLine(line) if line.startswith('"'): msgid_plural += "\n" msgid_plural += line elif line.startswith("msgstr"): msgstrs.append(line) msgstate = parseState.MSGSTRS def parseLineMsgStrs(line): global msgstate global msgstrs printParseLine(line) if line.startswith('"'): msgstrs[len(msgstrs) - 1] += "\n" msgstrs[len(msgstrs) - 1] += line elif line.startswith("msgstr"): msgstrs.append(line) elif line.startswith("msgid") or line.startswith("msgctxt"): msgstate = parseState.LIMBO storeMsg() parseLineLimbo(line) elif line == "": #I guess empty line means we are done with this msg? msgstate = parseState.LIMBO storeMsg() else: print("I am totally confused with this file, I was expecting something like 'msgstr' but got: " + line) exit(4) parseSwitch = { parseState.LIMBO : parseLineLimbo, parseState.MSGID : parseLineMsgid, parseState.MSGID_PLURAL : parseLineMsgidPlural, parseState.MSGSTRS : parseLineMsgStrs, parseState.MSGCTXT : parseLineMsgCtxt } def parsePoFile(poFilename): poFile = open(poFilename) poLines = poFile.readlines() for poLine in poLines: stripped = poLine.strip() if poLine.startswith("#"): comments.append(poLine) else: parseSwitch[msgstate](poLine.strip()) print("Start parsing") for poFileName in poFiles: parsePoFile(poFileName) print("Im done parsing!") def writeMsgsToFile(msgs, fileName): outFile = open(fileName, "w") for msgKey in msgs: msg = msgs[msgKey] msgid = msg.msgid msgid_plural = msg.msgid_plural msgstrs = msg.msgstrs msgctxt = msg.msgctxt comments = msg.comments for comment in comments: outFile.write(comment + "\n") if msgctxt != "": outFile.write(msgctxt + "\n") outFile.write(msgid + "\n") if msgid_plural != "": outFile.write(msgid_plural) outFile.write("\n") for msgstr in msgstrs: outFile.write(msgstr) outFile.write("\n") outFile.write("\n") writeMsgsToFile(msgsDone, alreadyTranslatedFilename) writeMsgsToFile(msgsToDo, toBeTranslatedFilename) print("Files written") print("Of the non-translated msgs there were #" + str(toDoDone) + " that turned out to be translated somewhere already!")
agpl-3.0
-3,025,433,825,465,988,000
23.24127
246
0.682515
false
infobloxopen/infoblox-netmri
infoblox_netmri/api/broker/v2_5_0/device_group_defn_broker.py
16
123011
from ..broker import Broker class DeviceGroupDefnBroker(Broker): controller = "device_group_defns" def index(self, **kwargs): """Lists the available device group defns. Any of the inputs listed may be be used to narrow the list; other inputs will be ignored. Of the various ways to query lists, using this method is most efficient. **Inputs** | ``api version min:`` 2.4 | ``api version max:`` 2.4 | ``required:`` False | ``default:`` None :param GroupID: The internal NetMRI identifier for this device group definition. :type GroupID: Integer | ``api version min:`` 2.5 | ``api version max:`` None | ``required:`` False | ``default:`` None :param GroupID: The internal NetMRI identifier for this device group definition. :type GroupID: Array of Integer | ``api version min:`` 2.4 | ``api version max:`` 2.4 | ``required:`` False | ``default:`` None :param GroupName: The device group name, as specified by the user. :type GroupName: String | ``api version min:`` 2.5 | ``api version max:`` None | ``required:`` False | ``default:`` None :param GroupName: The device group name, as specified by the user. :type GroupName: Array of String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` 0 :param start: The record number to return in the selected page of data. It will always appear, although it may not be the first record. See the :limit for more information. :type start: Integer | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` 1000 :param limit: The size of the page of data, that is, the maximum number of records returned. The limit size will be used to break the data up into pages and the first page with the start record will be returned. So if you have 100 records and use a :limit of 10 and a :start of 10, you will get records 10-19. The maximum limit is 10000. :type limit: Integer | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` GroupID :param sort: The data field(s) to use for sorting the output. Default is GroupID. Valid values are GroupID, ParentDeviceGroupID, GroupName, Criteria, Rank, SNMPPolling, CLIPolling, SNMPAnalysis, FingerPrint, CCSCollection, VendorDefaultCollection, ConfigPolling, PortScanning, StandardsCompliance, MemberCount, ConfigLocked, PrivilegedPollingInd, UseGlobalPolFreq, PolFreqModifier, PolicyScheduleMode, PerfEnvPollingInd, SPMCollectionInd, NetBIOSScanningInd, ARPCacheRefreshInd, SAMLicensedInd, StartBlackoutSchedule, BlackoutDuration, StartPortControlBlackoutSchedule, PortControlBlackoutDuration, UpdatedAt, AdvancedGroupInd, IncludeEndHostsInd, CredentialGroupID, SystemGroupInd. :type sort: Array of String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` asc :param dir: The direction(s) in which to sort the data. Default is 'asc'. Valid values are 'asc' and 'desc'. :type dir: Array of String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param select: The list of attributes to return for each DeviceGroupDefn. Valid values are GroupID, ParentDeviceGroupID, GroupName, Criteria, Rank, SNMPPolling, CLIPolling, SNMPAnalysis, FingerPrint, CCSCollection, VendorDefaultCollection, ConfigPolling, PortScanning, StandardsCompliance, MemberCount, ConfigLocked, PrivilegedPollingInd, UseGlobalPolFreq, PolFreqModifier, PolicyScheduleMode, PerfEnvPollingInd, SPMCollectionInd, NetBIOSScanningInd, ARPCacheRefreshInd, SAMLicensedInd, StartBlackoutSchedule, BlackoutDuration, StartPortControlBlackoutSchedule, PortControlBlackoutDuration, UpdatedAt, AdvancedGroupInd, IncludeEndHostsInd, CredentialGroupID, SystemGroupInd. If empty or omitted, all attributes will be returned. :type select: Array | ``api version min:`` 2.8 | ``api version max:`` None | ``required:`` False | ``default:`` None :param goto_field: The field name for NIOS GOTO that is used for locating a row position of records. :type goto_field: String | ``api version min:`` 2.8 | ``api version max:`` None | ``required:`` False | ``default:`` None :param goto_value: The value of goto_field for NIOS GOTO that is used for locating a row position of records. :type goto_value: String **Outputs** | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :return device_group_defns: An array of the DeviceGroupDefn objects that match the specified input criteria. :rtype device_group_defns: Array of DeviceGroupDefn """ return self.api_list_request(self._get_method_fullname("index"), kwargs) def show(self, **kwargs): """Shows the details for the specified device group defn. **Inputs** | ``api version min:`` None | ``api version max:`` None | ``required:`` True | ``default:`` None :param GroupID: The internal NetMRI identifier for this device group definition. :type GroupID: Integer **Outputs** | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :return device_group_defn: The device group defn identified by the specified GroupID. :rtype device_group_defn: DeviceGroupDefn """ return self.api_request(self._get_method_fullname("show"), kwargs) def search(self, **kwargs): """Lists the available device group defns matching the input criteria. This method provides a more flexible search interface than the index method, but searching using this method is more demanding on the system and will not perform to the same level as the index method. The input fields listed below will be used as in the index method, to filter the result, along with the optional query string and XML filter described below. **Inputs** | ``api version min:`` 2.4 | ``api version max:`` 2.4 | ``required:`` False | ``default:`` None :param ARPCacheRefreshInd: A flag indicating whether to refresh the device ARP and forwarding table caches for devices in this group prior to data collection. :type ARPCacheRefreshInd: Boolean | ``api version min:`` 2.5 | ``api version max:`` None | ``required:`` False | ``default:`` None :param ARPCacheRefreshInd: A flag indicating whether to refresh the device ARP and forwarding table caches for devices in this group prior to data collection. :type ARPCacheRefreshInd: Array of Boolean | ``api version min:`` 2.4 | ``api version max:`` 2.4 | ``required:`` False | ``default:`` None :param AdvancedGroupInd: A flag indicating whether this group is an advanced group. :type AdvancedGroupInd: Boolean | ``api version min:`` 2.5 | ``api version max:`` None | ``required:`` False | ``default:`` None :param AdvancedGroupInd: A flag indicating whether this group is an advanced group. :type AdvancedGroupInd: Array of Boolean | ``api version min:`` 2.4 | ``api version max:`` 2.4 | ``required:`` False | ``default:`` None :param BlackoutDuration: The blackout duration in minutes. :type BlackoutDuration: Integer | ``api version min:`` 2.5 | ``api version max:`` None | ``required:`` False | ``default:`` None :param BlackoutDuration: The blackout duration in minutes. :type BlackoutDuration: Array of Integer | ``api version min:`` 2.4 | ``api version max:`` 2.4 | ``required:`` False | ``default:`` None :param CCSCollection: A flag indicating whether job execution is enabled against this group. :type CCSCollection: Integer | ``api version min:`` 2.5 | ``api version max:`` None | ``required:`` False | ``default:`` None :param CCSCollection: A flag indicating whether job execution is enabled against this group. :type CCSCollection: Array of Integer | ``api version min:`` 2.4 | ``api version max:`` 2.4 | ``required:`` False | ``default:`` None :param CLIPolling: A flag indicating whether this group should be polled via the command line interface. :type CLIPolling: Boolean | ``api version min:`` 2.5 | ``api version max:`` None | ``required:`` False | ``default:`` None :param CLIPolling: A flag indicating whether this group should be polled via the command line interface. :type CLIPolling: Array of Boolean | ``api version min:`` 2.4 | ``api version max:`` 2.4 | ``required:`` False | ``default:`` None :param ConfigLocked: Indicates whether configuration changes within this group are considered authorized or unauthorized. :type ConfigLocked: Integer | ``api version min:`` 2.5 | ``api version max:`` None | ``required:`` False | ``default:`` None :param ConfigLocked: Indicates whether configuration changes within this group are considered authorized or unauthorized. :type ConfigLocked: Array of Integer | ``api version min:`` 2.4 | ``api version max:`` 2.4 | ``required:`` False | ``default:`` None :param ConfigPolling: A flag indicating whether configuration file collection is enabled for this group. :type ConfigPolling: Integer | ``api version min:`` 2.5 | ``api version max:`` None | ``required:`` False | ``default:`` None :param ConfigPolling: A flag indicating whether configuration file collection is enabled for this group. :type ConfigPolling: Array of Integer | ``api version min:`` 2.4 | ``api version max:`` 2.4 | ``required:`` False | ``default:`` None :param CredentialGroupID: The unique identifier of the credential group. :type CredentialGroupID: Integer | ``api version min:`` 2.5 | ``api version max:`` None | ``required:`` False | ``default:`` None :param CredentialGroupID: The unique identifier of the credential group. :type CredentialGroupID: Array of Integer | ``api version min:`` 2.4 | ``api version max:`` 2.4 | ``required:`` False | ``default:`` None :param Criteria: The criteria used to place members within the group. :type Criteria: String | ``api version min:`` 2.5 | ``api version max:`` None | ``required:`` False | ``default:`` None :param Criteria: The criteria used to place members within the group. :type Criteria: Array of String | ``api version min:`` 2.4 | ``api version max:`` 2.4 | ``required:`` False | ``default:`` None :param FingerPrint: A flag indicating whether network fingerprinting should be performed on this group. :type FingerPrint: Integer | ``api version min:`` 2.5 | ``api version max:`` None | ``required:`` False | ``default:`` None :param FingerPrint: A flag indicating whether network fingerprinting should be performed on this group. :type FingerPrint: Array of Integer | ``api version min:`` 2.4 | ``api version max:`` 2.4 | ``required:`` False | ``default:`` None :param GroupID: The internal NetMRI identifier for this device group definition. :type GroupID: Integer | ``api version min:`` 2.5 | ``api version max:`` None | ``required:`` False | ``default:`` None :param GroupID: The internal NetMRI identifier for this device group definition. :type GroupID: Array of Integer | ``api version min:`` 2.4 | ``api version max:`` 2.4 | ``required:`` False | ``default:`` None :param GroupName: The device group name, as specified by the user. :type GroupName: String | ``api version min:`` 2.5 | ``api version max:`` None | ``required:`` False | ``default:`` None :param GroupName: The device group name, as specified by the user. :type GroupName: Array of String | ``api version min:`` 2.4 | ``api version max:`` 2.4 | ``required:`` False | ``default:`` None :param IncludeEndHostsInd: A flag indicating whether this group should include end host devices. :type IncludeEndHostsInd: Boolean | ``api version min:`` 2.5 | ``api version max:`` None | ``required:`` False | ``default:`` None :param IncludeEndHostsInd: A flag indicating whether this group should include end host devices. :type IncludeEndHostsInd: Array of Boolean | ``api version min:`` 2.4 | ``api version max:`` 2.4 | ``required:`` False | ``default:`` None :param MemberCount: Not used. :type MemberCount: Integer | ``api version min:`` 2.5 | ``api version max:`` None | ``required:`` False | ``default:`` None :param MemberCount: Not used. :type MemberCount: Array of Integer | ``api version min:`` 2.4 | ``api version max:`` 2.4 | ``required:`` False | ``default:`` None :param NetBIOSScanningInd: A flag indicating whether to scan this group for NetBOIS names. :type NetBIOSScanningInd: Boolean | ``api version min:`` 2.5 | ``api version max:`` None | ``required:`` False | ``default:`` None :param NetBIOSScanningInd: A flag indicating whether to scan this group for NetBOIS names. :type NetBIOSScanningInd: Array of Boolean | ``api version min:`` 2.4 | ``api version max:`` 2.4 | ``required:`` False | ``default:`` None :param ParentDeviceGroupID: Internal identifier for the parent device group. A value of 0 is used for root level groups. :type ParentDeviceGroupID: Integer | ``api version min:`` 2.5 | ``api version max:`` None | ``required:`` False | ``default:`` None :param ParentDeviceGroupID: Internal identifier for the parent device group. A value of 0 is used for root level groups. :type ParentDeviceGroupID: Array of Integer | ``api version min:`` 2.4 | ``api version max:`` 2.4 | ``required:`` False | ``default:`` None :param PerfEnvPollingInd: A flag that indicates if Performance and Environment polling is enabled for the device group members. :type PerfEnvPollingInd: Boolean | ``api version min:`` 2.5 | ``api version max:`` None | ``required:`` False | ``default:`` None :param PerfEnvPollingInd: A flag that indicates if Performance and Environment polling is enabled for the device group members. :type PerfEnvPollingInd: Array of Boolean | ``api version min:`` 2.4 | ``api version max:`` 2.4 | ``required:`` False | ``default:`` None :param PolFreqModifier: Polling frequency modifier for devices belonging to this device group. Actual polling frequency intervals for the device are calculated by multiplying the default intervals by this value. :type PolFreqModifier: Integer | ``api version min:`` 2.5 | ``api version max:`` None | ``required:`` False | ``default:`` None :param PolFreqModifier: Polling frequency modifier for devices belonging to this device group. Actual polling frequency intervals for the device are calculated by multiplying the default intervals by this value. :type PolFreqModifier: Array of Integer | ``api version min:`` 2.4 | ``api version max:`` 2.4 | ``required:`` False | ``default:`` None :param PolicyScheduleMode: Not used. :type PolicyScheduleMode: String | ``api version min:`` 2.5 | ``api version max:`` None | ``required:`` False | ``default:`` None :param PolicyScheduleMode: Not used. :type PolicyScheduleMode: Array of String | ``api version min:`` 2.4 | ``api version max:`` 2.4 | ``required:`` False | ``default:`` None :param PortControlBlackoutDuration: Port Control Blackout in minutes. :type PortControlBlackoutDuration: Integer | ``api version min:`` 2.5 | ``api version max:`` None | ``required:`` False | ``default:`` None :param PortControlBlackoutDuration: Port Control Blackout in minutes. :type PortControlBlackoutDuration: Array of Integer | ``api version min:`` 2.4 | ``api version max:`` 2.4 | ``required:`` False | ``default:`` None :param PortScanning: A flag indicating whether port scanning is enabled for this group. :type PortScanning: Integer | ``api version min:`` 2.5 | ``api version max:`` None | ``required:`` False | ``default:`` None :param PortScanning: A flag indicating whether port scanning is enabled for this group. :type PortScanning: Array of Integer | ``api version min:`` 2.4 | ``api version max:`` 2.4 | ``required:`` False | ``default:`` None :param PrivilegedPollingInd: A flag indicated that NetMRI should send enable command when interacting with device :type PrivilegedPollingInd: Boolean | ``api version min:`` 2.5 | ``api version max:`` None | ``required:`` False | ``default:`` None :param PrivilegedPollingInd: A flag indicated that NetMRI should send enable command when interacting with device :type PrivilegedPollingInd: Array of Boolean | ``api version min:`` 2.4 | ``api version max:`` 2.4 | ``required:`` False | ``default:`` None :param Rank: The rank is used to determine which group settings to apply to a device that is a member of multiple groups. The highest ranked group's settings will be used. :type Rank: String | ``api version min:`` 2.5 | ``api version max:`` None | ``required:`` False | ``default:`` None :param Rank: The rank is used to determine which group settings to apply to a device that is a member of multiple groups. The highest ranked group's settings will be used. :type Rank: Array of String | ``api version min:`` 2.4 | ``api version max:`` 2.4 | ``required:`` False | ``default:`` None :param SAMLicensedInd: A flag indicating whether or not access diff viewer is available for this entry. :type SAMLicensedInd: Boolean | ``api version min:`` 2.5 | ``api version max:`` None | ``required:`` False | ``default:`` None :param SAMLicensedInd: A flag indicating whether or not access diff viewer is available for this entry. :type SAMLicensedInd: Array of Boolean | ``api version min:`` 2.4 | ``api version max:`` 2.4 | ``required:`` False | ``default:`` None :param SNMPAnalysis: A flag indicating whether issue analysis should be performed on this group. :type SNMPAnalysis: Integer | ``api version min:`` 2.5 | ``api version max:`` None | ``required:`` False | ``default:`` None :param SNMPAnalysis: A flag indicating whether issue analysis should be performed on this group. :type SNMPAnalysis: Array of Integer | ``api version min:`` 2.4 | ``api version max:`` 2.4 | ``required:`` False | ``default:`` None :param SNMPPolling: A flag indicating whether this group should be polled via SNMP. :type SNMPPolling: Integer | ``api version min:`` 2.5 | ``api version max:`` None | ``required:`` False | ``default:`` None :param SNMPPolling: A flag indicating whether this group should be polled via SNMP. :type SNMPPolling: Array of Integer | ``api version min:`` 2.4 | ``api version max:`` 2.4 | ``required:`` False | ``default:`` None :param SPMCollectionInd: A flag indicating whether Switch Port Management collection applies to this group. :type SPMCollectionInd: Boolean | ``api version min:`` 2.5 | ``api version max:`` None | ``required:`` False | ``default:`` None :param SPMCollectionInd: A flag indicating whether Switch Port Management collection applies to this group. :type SPMCollectionInd: Array of Boolean | ``api version min:`` 2.4 | ``api version max:`` 2.4 | ``required:`` False | ``default:`` None :param StandardsCompliance: A flag indicating whether this group is subject to standard's compliance reporting. :type StandardsCompliance: Integer | ``api version min:`` 2.5 | ``api version max:`` None | ``required:`` False | ``default:`` None :param StandardsCompliance: A flag indicating whether this group is subject to standard's compliance reporting. :type StandardsCompliance: Array of Integer | ``api version min:`` 2.4 | ``api version max:`` 2.4 | ``required:`` False | ``default:`` None :param StartBlackoutSchedule: The blackout start time in cron format. :type StartBlackoutSchedule: String | ``api version min:`` 2.5 | ``api version max:`` None | ``required:`` False | ``default:`` None :param StartBlackoutSchedule: The blackout start time in cron format. :type StartBlackoutSchedule: Array of String | ``api version min:`` 2.4 | ``api version max:`` 2.4 | ``required:`` False | ``default:`` None :param StartPortControlBlackoutSchedule: Port Control Blackout in cron format. :type StartPortControlBlackoutSchedule: String | ``api version min:`` 2.5 | ``api version max:`` None | ``required:`` False | ``default:`` None :param StartPortControlBlackoutSchedule: Port Control Blackout in cron format. :type StartPortControlBlackoutSchedule: Array of String | ``api version min:`` 2.4 | ``api version max:`` 2.4 | ``required:`` False | ``default:`` None :param SystemGroupInd: A flag indicating if this device group is system-created :type SystemGroupInd: Boolean | ``api version min:`` 2.5 | ``api version max:`` None | ``required:`` False | ``default:`` None :param SystemGroupInd: A flag indicating if this device group is system-created :type SystemGroupInd: Array of Boolean | ``api version min:`` 2.4 | ``api version max:`` 2.4 | ``required:`` False | ``default:`` None :param UpdatedAt: The date and time this record was last modified. :type UpdatedAt: DateTime | ``api version min:`` 2.5 | ``api version max:`` None | ``required:`` False | ``default:`` None :param UpdatedAt: The date and time this record was last modified. :type UpdatedAt: Array of DateTime | ``api version min:`` 2.4 | ``api version max:`` 2.4 | ``required:`` False | ``default:`` None :param UseGlobalPolFreq: A flag indicating if Global Polling Frequency should be used instead Device Group Polling Frequency. :type UseGlobalPolFreq: Boolean | ``api version min:`` 2.5 | ``api version max:`` None | ``required:`` False | ``default:`` None :param UseGlobalPolFreq: A flag indicating if Global Polling Frequency should be used instead Device Group Polling Frequency. :type UseGlobalPolFreq: Array of Boolean | ``api version min:`` 2.4 | ``api version max:`` 2.4 | ``required:`` False | ``default:`` None :param VendorDefaultCollection: A flag indicating whether vendor default credential collection is enabled for this group. :type VendorDefaultCollection: Integer | ``api version min:`` 2.5 | ``api version max:`` None | ``required:`` False | ``default:`` None :param VendorDefaultCollection: A flag indicating whether vendor default credential collection is enabled for this group. :type VendorDefaultCollection: Array of Integer | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` 0 :param start: The record number to return in the selected page of data. It will always appear, although it may not be the first record. See the :limit for more information. :type start: Integer | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` 1000 :param limit: The size of the page of data, that is, the maximum number of records returned. The limit size will be used to break the data up into pages and the first page with the start record will be returned. So if you have 100 records and use a :limit of 10 and a :start of 10, you will get records 10-19. The maximum limit is 10000. :type limit: Integer | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` GroupID :param sort: The data field(s) to use for sorting the output. Default is GroupID. Valid values are GroupID, ParentDeviceGroupID, GroupName, Criteria, Rank, SNMPPolling, CLIPolling, SNMPAnalysis, FingerPrint, CCSCollection, VendorDefaultCollection, ConfigPolling, PortScanning, StandardsCompliance, MemberCount, ConfigLocked, PrivilegedPollingInd, UseGlobalPolFreq, PolFreqModifier, PolicyScheduleMode, PerfEnvPollingInd, SPMCollectionInd, NetBIOSScanningInd, ARPCacheRefreshInd, SAMLicensedInd, StartBlackoutSchedule, BlackoutDuration, StartPortControlBlackoutSchedule, PortControlBlackoutDuration, UpdatedAt, AdvancedGroupInd, IncludeEndHostsInd, CredentialGroupID, SystemGroupInd. :type sort: Array of String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` asc :param dir: The direction(s) in which to sort the data. Default is 'asc'. Valid values are 'asc' and 'desc'. :type dir: Array of String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param select: The list of attributes to return for each DeviceGroupDefn. Valid values are GroupID, ParentDeviceGroupID, GroupName, Criteria, Rank, SNMPPolling, CLIPolling, SNMPAnalysis, FingerPrint, CCSCollection, VendorDefaultCollection, ConfigPolling, PortScanning, StandardsCompliance, MemberCount, ConfigLocked, PrivilegedPollingInd, UseGlobalPolFreq, PolFreqModifier, PolicyScheduleMode, PerfEnvPollingInd, SPMCollectionInd, NetBIOSScanningInd, ARPCacheRefreshInd, SAMLicensedInd, StartBlackoutSchedule, BlackoutDuration, StartPortControlBlackoutSchedule, PortControlBlackoutDuration, UpdatedAt, AdvancedGroupInd, IncludeEndHostsInd, CredentialGroupID, SystemGroupInd. If empty or omitted, all attributes will be returned. :type select: Array | ``api version min:`` 2.8 | ``api version max:`` None | ``required:`` False | ``default:`` None :param goto_field: The field name for NIOS GOTO that is used for locating a row position of records. :type goto_field: String | ``api version min:`` 2.8 | ``api version max:`` None | ``required:`` False | ``default:`` None :param goto_value: The value of goto_field for NIOS GOTO that is used for locating a row position of records. :type goto_value: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param query: This value will be matched against device group defns, looking to see if one or more of the listed attributes contain the passed value. You may also surround the value with '/' and '/' to perform a regular expression search rather than a containment operation. Any record that matches will be returned. The attributes searched are: ARPCacheRefreshInd, AdvancedGroupInd, BlackoutDuration, CCSCollection, CLIPolling, ConfigLocked, ConfigPolling, CredentialGroupID, Criteria, FingerPrint, GroupID, GroupName, IncludeEndHostsInd, MemberCount, NetBIOSScanningInd, ParentDeviceGroupID, PerfEnvPollingInd, PolFreqModifier, PolicyScheduleMode, PortControlBlackoutDuration, PortScanning, PrivilegedPollingInd, Rank, SAMLicensedInd, SNMPAnalysis, SNMPPolling, SPMCollectionInd, StandardsCompliance, StartBlackoutSchedule, StartPortControlBlackoutSchedule, SystemGroupInd, UpdatedAt, UseGlobalPolFreq, VendorDefaultCollection. :type query: String | ``api version min:`` 2.3 | ``api version max:`` None | ``required:`` False | ``default:`` None :param xml_filter: A SetFilter XML structure to further refine the search. The SetFilter will be applied AFTER any search query or field values, but before any limit options. The limit and pagination will be enforced after the filter. Remind that this kind of filter may be costly and inefficient if not associated with a database filtering. :type xml_filter: String **Outputs** | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :return device_group_defns: An array of the DeviceGroupDefn objects that match the specified input criteria. :rtype device_group_defns: Array of DeviceGroupDefn """ return self.api_list_request(self._get_method_fullname("search"), kwargs) def find(self, **kwargs): """Lists the available device group defns matching the input specification. This provides the most flexible search specification of all the query mechanisms, enabling searching using comparison operations other than equality. However, it is more complex to use and will not perform as efficiently as the index or search methods. In the input descriptions below, 'field names' refers to the following fields: ARPCacheRefreshInd, AdvancedGroupInd, BlackoutDuration, CCSCollection, CLIPolling, ConfigLocked, ConfigPolling, CredentialGroupID, Criteria, FingerPrint, GroupID, GroupName, IncludeEndHostsInd, MemberCount, NetBIOSScanningInd, ParentDeviceGroupID, PerfEnvPollingInd, PolFreqModifier, PolicyScheduleMode, PortControlBlackoutDuration, PortScanning, PrivilegedPollingInd, Rank, SAMLicensedInd, SNMPAnalysis, SNMPPolling, SPMCollectionInd, StandardsCompliance, StartBlackoutSchedule, StartPortControlBlackoutSchedule, SystemGroupInd, UpdatedAt, UseGlobalPolFreq, VendorDefaultCollection. **Inputs** | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param op_ARPCacheRefreshInd: The operator to apply to the field ARPCacheRefreshInd. Valid values are: =, <>, rlike, not rlike, >, >=, <, <=, like, not like, is null, is not null, between. ARPCacheRefreshInd: A flag indicating whether to refresh the device ARP and forwarding table caches for devices in this group prior to data collection. For the between operator the value will be treated as an Array if comma delimited string is passed, and it must contain an even number of values. :type op_ARPCacheRefreshInd: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_f_ARPCacheRefreshInd: If op_ARPCacheRefreshInd is specified, the field named in this input will be compared to the value in ARPCacheRefreshInd using the specified operator. That is, the value in this input will be treated as another field name, rather than a constant value. Either this field or val_c_ARPCacheRefreshInd must be specified if op_ARPCacheRefreshInd is specified. :type val_f_ARPCacheRefreshInd: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_c_ARPCacheRefreshInd: If op_ARPCacheRefreshInd is specified, this value will be compared to the value in ARPCacheRefreshInd using the specified operator. The value in this input will be treated as an explicit constant value. Either this field or val_f_ARPCacheRefreshInd must be specified if op_ARPCacheRefreshInd is specified. :type val_c_ARPCacheRefreshInd: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param op_AdvancedGroupInd: The operator to apply to the field AdvancedGroupInd. Valid values are: =, <>, rlike, not rlike, >, >=, <, <=, like, not like, is null, is not null, between. AdvancedGroupInd: A flag indicating whether this group is an advanced group. For the between operator the value will be treated as an Array if comma delimited string is passed, and it must contain an even number of values. :type op_AdvancedGroupInd: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_f_AdvancedGroupInd: If op_AdvancedGroupInd is specified, the field named in this input will be compared to the value in AdvancedGroupInd using the specified operator. That is, the value in this input will be treated as another field name, rather than a constant value. Either this field or val_c_AdvancedGroupInd must be specified if op_AdvancedGroupInd is specified. :type val_f_AdvancedGroupInd: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_c_AdvancedGroupInd: If op_AdvancedGroupInd is specified, this value will be compared to the value in AdvancedGroupInd using the specified operator. The value in this input will be treated as an explicit constant value. Either this field or val_f_AdvancedGroupInd must be specified if op_AdvancedGroupInd is specified. :type val_c_AdvancedGroupInd: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param op_BlackoutDuration: The operator to apply to the field BlackoutDuration. Valid values are: =, <>, rlike, not rlike, >, >=, <, <=, like, not like, is null, is not null, between. BlackoutDuration: The blackout duration in minutes. For the between operator the value will be treated as an Array if comma delimited string is passed, and it must contain an even number of values. :type op_BlackoutDuration: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_f_BlackoutDuration: If op_BlackoutDuration is specified, the field named in this input will be compared to the value in BlackoutDuration using the specified operator. That is, the value in this input will be treated as another field name, rather than a constant value. Either this field or val_c_BlackoutDuration must be specified if op_BlackoutDuration is specified. :type val_f_BlackoutDuration: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_c_BlackoutDuration: If op_BlackoutDuration is specified, this value will be compared to the value in BlackoutDuration using the specified operator. The value in this input will be treated as an explicit constant value. Either this field or val_f_BlackoutDuration must be specified if op_BlackoutDuration is specified. :type val_c_BlackoutDuration: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param op_CCSCollection: The operator to apply to the field CCSCollection. Valid values are: =, <>, rlike, not rlike, >, >=, <, <=, like, not like, is null, is not null, between. CCSCollection: A flag indicating whether job execution is enabled against this group. For the between operator the value will be treated as an Array if comma delimited string is passed, and it must contain an even number of values. :type op_CCSCollection: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_f_CCSCollection: If op_CCSCollection is specified, the field named in this input will be compared to the value in CCSCollection using the specified operator. That is, the value in this input will be treated as another field name, rather than a constant value. Either this field or val_c_CCSCollection must be specified if op_CCSCollection is specified. :type val_f_CCSCollection: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_c_CCSCollection: If op_CCSCollection is specified, this value will be compared to the value in CCSCollection using the specified operator. The value in this input will be treated as an explicit constant value. Either this field or val_f_CCSCollection must be specified if op_CCSCollection is specified. :type val_c_CCSCollection: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param op_CLIPolling: The operator to apply to the field CLIPolling. Valid values are: =, <>, rlike, not rlike, >, >=, <, <=, like, not like, is null, is not null, between. CLIPolling: A flag indicating whether this group should be polled via the command line interface. For the between operator the value will be treated as an Array if comma delimited string is passed, and it must contain an even number of values. :type op_CLIPolling: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_f_CLIPolling: If op_CLIPolling is specified, the field named in this input will be compared to the value in CLIPolling using the specified operator. That is, the value in this input will be treated as another field name, rather than a constant value. Either this field or val_c_CLIPolling must be specified if op_CLIPolling is specified. :type val_f_CLIPolling: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_c_CLIPolling: If op_CLIPolling is specified, this value will be compared to the value in CLIPolling using the specified operator. The value in this input will be treated as an explicit constant value. Either this field or val_f_CLIPolling must be specified if op_CLIPolling is specified. :type val_c_CLIPolling: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param op_ConfigLocked: The operator to apply to the field ConfigLocked. Valid values are: =, <>, rlike, not rlike, >, >=, <, <=, like, not like, is null, is not null, between. ConfigLocked: Indicates whether configuration changes within this group are considered authorized or unauthorized. For the between operator the value will be treated as an Array if comma delimited string is passed, and it must contain an even number of values. :type op_ConfigLocked: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_f_ConfigLocked: If op_ConfigLocked is specified, the field named in this input will be compared to the value in ConfigLocked using the specified operator. That is, the value in this input will be treated as another field name, rather than a constant value. Either this field or val_c_ConfigLocked must be specified if op_ConfigLocked is specified. :type val_f_ConfigLocked: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_c_ConfigLocked: If op_ConfigLocked is specified, this value will be compared to the value in ConfigLocked using the specified operator. The value in this input will be treated as an explicit constant value. Either this field or val_f_ConfigLocked must be specified if op_ConfigLocked is specified. :type val_c_ConfigLocked: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param op_ConfigPolling: The operator to apply to the field ConfigPolling. Valid values are: =, <>, rlike, not rlike, >, >=, <, <=, like, not like, is null, is not null, between. ConfigPolling: A flag indicating whether configuration file collection is enabled for this group. For the between operator the value will be treated as an Array if comma delimited string is passed, and it must contain an even number of values. :type op_ConfigPolling: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_f_ConfigPolling: If op_ConfigPolling is specified, the field named in this input will be compared to the value in ConfigPolling using the specified operator. That is, the value in this input will be treated as another field name, rather than a constant value. Either this field or val_c_ConfigPolling must be specified if op_ConfigPolling is specified. :type val_f_ConfigPolling: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_c_ConfigPolling: If op_ConfigPolling is specified, this value will be compared to the value in ConfigPolling using the specified operator. The value in this input will be treated as an explicit constant value. Either this field or val_f_ConfigPolling must be specified if op_ConfigPolling is specified. :type val_c_ConfigPolling: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param op_CredentialGroupID: The operator to apply to the field CredentialGroupID. Valid values are: =, <>, rlike, not rlike, >, >=, <, <=, like, not like, is null, is not null, between. CredentialGroupID: The unique identifier of the credential group. For the between operator the value will be treated as an Array if comma delimited string is passed, and it must contain an even number of values. :type op_CredentialGroupID: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_f_CredentialGroupID: If op_CredentialGroupID is specified, the field named in this input will be compared to the value in CredentialGroupID using the specified operator. That is, the value in this input will be treated as another field name, rather than a constant value. Either this field or val_c_CredentialGroupID must be specified if op_CredentialGroupID is specified. :type val_f_CredentialGroupID: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_c_CredentialGroupID: If op_CredentialGroupID is specified, this value will be compared to the value in CredentialGroupID using the specified operator. The value in this input will be treated as an explicit constant value. Either this field or val_f_CredentialGroupID must be specified if op_CredentialGroupID is specified. :type val_c_CredentialGroupID: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param op_Criteria: The operator to apply to the field Criteria. Valid values are: =, <>, rlike, not rlike, >, >=, <, <=, like, not like, is null, is not null, between. Criteria: The criteria used to place members within the group. For the between operator the value will be treated as an Array if comma delimited string is passed, and it must contain an even number of values. :type op_Criteria: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_f_Criteria: If op_Criteria is specified, the field named in this input will be compared to the value in Criteria using the specified operator. That is, the value in this input will be treated as another field name, rather than a constant value. Either this field or val_c_Criteria must be specified if op_Criteria is specified. :type val_f_Criteria: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_c_Criteria: If op_Criteria is specified, this value will be compared to the value in Criteria using the specified operator. The value in this input will be treated as an explicit constant value. Either this field or val_f_Criteria must be specified if op_Criteria is specified. :type val_c_Criteria: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param op_FingerPrint: The operator to apply to the field FingerPrint. Valid values are: =, <>, rlike, not rlike, >, >=, <, <=, like, not like, is null, is not null, between. FingerPrint: A flag indicating whether network fingerprinting should be performed on this group. For the between operator the value will be treated as an Array if comma delimited string is passed, and it must contain an even number of values. :type op_FingerPrint: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_f_FingerPrint: If op_FingerPrint is specified, the field named in this input will be compared to the value in FingerPrint using the specified operator. That is, the value in this input will be treated as another field name, rather than a constant value. Either this field or val_c_FingerPrint must be specified if op_FingerPrint is specified. :type val_f_FingerPrint: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_c_FingerPrint: If op_FingerPrint is specified, this value will be compared to the value in FingerPrint using the specified operator. The value in this input will be treated as an explicit constant value. Either this field or val_f_FingerPrint must be specified if op_FingerPrint is specified. :type val_c_FingerPrint: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param op_GroupID: The operator to apply to the field GroupID. Valid values are: =, <>, rlike, not rlike, >, >=, <, <=, like, not like, is null, is not null, between. GroupID: The internal NetMRI identifier for this device group definition. For the between operator the value will be treated as an Array if comma delimited string is passed, and it must contain an even number of values. :type op_GroupID: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_f_GroupID: If op_GroupID is specified, the field named in this input will be compared to the value in GroupID using the specified operator. That is, the value in this input will be treated as another field name, rather than a constant value. Either this field or val_c_GroupID must be specified if op_GroupID is specified. :type val_f_GroupID: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_c_GroupID: If op_GroupID is specified, this value will be compared to the value in GroupID using the specified operator. The value in this input will be treated as an explicit constant value. Either this field or val_f_GroupID must be specified if op_GroupID is specified. :type val_c_GroupID: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param op_GroupName: The operator to apply to the field GroupName. Valid values are: =, <>, rlike, not rlike, >, >=, <, <=, like, not like, is null, is not null, between. GroupName: The device group name, as specified by the user. For the between operator the value will be treated as an Array if comma delimited string is passed, and it must contain an even number of values. :type op_GroupName: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_f_GroupName: If op_GroupName is specified, the field named in this input will be compared to the value in GroupName using the specified operator. That is, the value in this input will be treated as another field name, rather than a constant value. Either this field or val_c_GroupName must be specified if op_GroupName is specified. :type val_f_GroupName: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_c_GroupName: If op_GroupName is specified, this value will be compared to the value in GroupName using the specified operator. The value in this input will be treated as an explicit constant value. Either this field or val_f_GroupName must be specified if op_GroupName is specified. :type val_c_GroupName: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param op_IncludeEndHostsInd: The operator to apply to the field IncludeEndHostsInd. Valid values are: =, <>, rlike, not rlike, >, >=, <, <=, like, not like, is null, is not null, between. IncludeEndHostsInd: A flag indicating whether this group should include end host devices. For the between operator the value will be treated as an Array if comma delimited string is passed, and it must contain an even number of values. :type op_IncludeEndHostsInd: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_f_IncludeEndHostsInd: If op_IncludeEndHostsInd is specified, the field named in this input will be compared to the value in IncludeEndHostsInd using the specified operator. That is, the value in this input will be treated as another field name, rather than a constant value. Either this field or val_c_IncludeEndHostsInd must be specified if op_IncludeEndHostsInd is specified. :type val_f_IncludeEndHostsInd: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_c_IncludeEndHostsInd: If op_IncludeEndHostsInd is specified, this value will be compared to the value in IncludeEndHostsInd using the specified operator. The value in this input will be treated as an explicit constant value. Either this field or val_f_IncludeEndHostsInd must be specified if op_IncludeEndHostsInd is specified. :type val_c_IncludeEndHostsInd: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param op_MemberCount: The operator to apply to the field MemberCount. Valid values are: =, <>, rlike, not rlike, >, >=, <, <=, like, not like, is null, is not null, between. MemberCount: Not used. For the between operator the value will be treated as an Array if comma delimited string is passed, and it must contain an even number of values. :type op_MemberCount: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_f_MemberCount: If op_MemberCount is specified, the field named in this input will be compared to the value in MemberCount using the specified operator. That is, the value in this input will be treated as another field name, rather than a constant value. Either this field or val_c_MemberCount must be specified if op_MemberCount is specified. :type val_f_MemberCount: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_c_MemberCount: If op_MemberCount is specified, this value will be compared to the value in MemberCount using the specified operator. The value in this input will be treated as an explicit constant value. Either this field or val_f_MemberCount must be specified if op_MemberCount is specified. :type val_c_MemberCount: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param op_NetBIOSScanningInd: The operator to apply to the field NetBIOSScanningInd. Valid values are: =, <>, rlike, not rlike, >, >=, <, <=, like, not like, is null, is not null, between. NetBIOSScanningInd: A flag indicating whether to scan this group for NetBOIS names. For the between operator the value will be treated as an Array if comma delimited string is passed, and it must contain an even number of values. :type op_NetBIOSScanningInd: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_f_NetBIOSScanningInd: If op_NetBIOSScanningInd is specified, the field named in this input will be compared to the value in NetBIOSScanningInd using the specified operator. That is, the value in this input will be treated as another field name, rather than a constant value. Either this field or val_c_NetBIOSScanningInd must be specified if op_NetBIOSScanningInd is specified. :type val_f_NetBIOSScanningInd: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_c_NetBIOSScanningInd: If op_NetBIOSScanningInd is specified, this value will be compared to the value in NetBIOSScanningInd using the specified operator. The value in this input will be treated as an explicit constant value. Either this field or val_f_NetBIOSScanningInd must be specified if op_NetBIOSScanningInd is specified. :type val_c_NetBIOSScanningInd: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param op_ParentDeviceGroupID: The operator to apply to the field ParentDeviceGroupID. Valid values are: =, <>, rlike, not rlike, >, >=, <, <=, like, not like, is null, is not null, between. ParentDeviceGroupID: Internal identifier for the parent device group. A value of 0 is used for root level groups. For the between operator the value will be treated as an Array if comma delimited string is passed, and it must contain an even number of values. :type op_ParentDeviceGroupID: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_f_ParentDeviceGroupID: If op_ParentDeviceGroupID is specified, the field named in this input will be compared to the value in ParentDeviceGroupID using the specified operator. That is, the value in this input will be treated as another field name, rather than a constant value. Either this field or val_c_ParentDeviceGroupID must be specified if op_ParentDeviceGroupID is specified. :type val_f_ParentDeviceGroupID: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_c_ParentDeviceGroupID: If op_ParentDeviceGroupID is specified, this value will be compared to the value in ParentDeviceGroupID using the specified operator. The value in this input will be treated as an explicit constant value. Either this field or val_f_ParentDeviceGroupID must be specified if op_ParentDeviceGroupID is specified. :type val_c_ParentDeviceGroupID: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param op_PerfEnvPollingInd: The operator to apply to the field PerfEnvPollingInd. Valid values are: =, <>, rlike, not rlike, >, >=, <, <=, like, not like, is null, is not null, between. PerfEnvPollingInd: A flag that indicates if Performance and Environment polling is enabled for the device group members. For the between operator the value will be treated as an Array if comma delimited string is passed, and it must contain an even number of values. :type op_PerfEnvPollingInd: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_f_PerfEnvPollingInd: If op_PerfEnvPollingInd is specified, the field named in this input will be compared to the value in PerfEnvPollingInd using the specified operator. That is, the value in this input will be treated as another field name, rather than a constant value. Either this field or val_c_PerfEnvPollingInd must be specified if op_PerfEnvPollingInd is specified. :type val_f_PerfEnvPollingInd: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_c_PerfEnvPollingInd: If op_PerfEnvPollingInd is specified, this value will be compared to the value in PerfEnvPollingInd using the specified operator. The value in this input will be treated as an explicit constant value. Either this field or val_f_PerfEnvPollingInd must be specified if op_PerfEnvPollingInd is specified. :type val_c_PerfEnvPollingInd: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param op_PolFreqModifier: The operator to apply to the field PolFreqModifier. Valid values are: =, <>, rlike, not rlike, >, >=, <, <=, like, not like, is null, is not null, between. PolFreqModifier: Polling frequency modifier for devices belonging to this device group. Actual polling frequency intervals for the device are calculated by multiplying the default intervals by this value. For the between operator the value will be treated as an Array if comma delimited string is passed, and it must contain an even number of values. :type op_PolFreqModifier: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_f_PolFreqModifier: If op_PolFreqModifier is specified, the field named in this input will be compared to the value in PolFreqModifier using the specified operator. That is, the value in this input will be treated as another field name, rather than a constant value. Either this field or val_c_PolFreqModifier must be specified if op_PolFreqModifier is specified. :type val_f_PolFreqModifier: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_c_PolFreqModifier: If op_PolFreqModifier is specified, this value will be compared to the value in PolFreqModifier using the specified operator. The value in this input will be treated as an explicit constant value. Either this field or val_f_PolFreqModifier must be specified if op_PolFreqModifier is specified. :type val_c_PolFreqModifier: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param op_PolicyScheduleMode: The operator to apply to the field PolicyScheduleMode. Valid values are: =, <>, rlike, not rlike, >, >=, <, <=, like, not like, is null, is not null, between. PolicyScheduleMode: Not used. For the between operator the value will be treated as an Array if comma delimited string is passed, and it must contain an even number of values. :type op_PolicyScheduleMode: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_f_PolicyScheduleMode: If op_PolicyScheduleMode is specified, the field named in this input will be compared to the value in PolicyScheduleMode using the specified operator. That is, the value in this input will be treated as another field name, rather than a constant value. Either this field or val_c_PolicyScheduleMode must be specified if op_PolicyScheduleMode is specified. :type val_f_PolicyScheduleMode: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_c_PolicyScheduleMode: If op_PolicyScheduleMode is specified, this value will be compared to the value in PolicyScheduleMode using the specified operator. The value in this input will be treated as an explicit constant value. Either this field or val_f_PolicyScheduleMode must be specified if op_PolicyScheduleMode is specified. :type val_c_PolicyScheduleMode: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param op_PortControlBlackoutDuration: The operator to apply to the field PortControlBlackoutDuration. Valid values are: =, <>, rlike, not rlike, >, >=, <, <=, like, not like, is null, is not null, between. PortControlBlackoutDuration: Port Control Blackout in minutes. For the between operator the value will be treated as an Array if comma delimited string is passed, and it must contain an even number of values. :type op_PortControlBlackoutDuration: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_f_PortControlBlackoutDuration: If op_PortControlBlackoutDuration is specified, the field named in this input will be compared to the value in PortControlBlackoutDuration using the specified operator. That is, the value in this input will be treated as another field name, rather than a constant value. Either this field or val_c_PortControlBlackoutDuration must be specified if op_PortControlBlackoutDuration is specified. :type val_f_PortControlBlackoutDuration: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_c_PortControlBlackoutDuration: If op_PortControlBlackoutDuration is specified, this value will be compared to the value in PortControlBlackoutDuration using the specified operator. The value in this input will be treated as an explicit constant value. Either this field or val_f_PortControlBlackoutDuration must be specified if op_PortControlBlackoutDuration is specified. :type val_c_PortControlBlackoutDuration: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param op_PortScanning: The operator to apply to the field PortScanning. Valid values are: =, <>, rlike, not rlike, >, >=, <, <=, like, not like, is null, is not null, between. PortScanning: A flag indicating whether port scanning is enabled for this group. For the between operator the value will be treated as an Array if comma delimited string is passed, and it must contain an even number of values. :type op_PortScanning: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_f_PortScanning: If op_PortScanning is specified, the field named in this input will be compared to the value in PortScanning using the specified operator. That is, the value in this input will be treated as another field name, rather than a constant value. Either this field or val_c_PortScanning must be specified if op_PortScanning is specified. :type val_f_PortScanning: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_c_PortScanning: If op_PortScanning is specified, this value will be compared to the value in PortScanning using the specified operator. The value in this input will be treated as an explicit constant value. Either this field or val_f_PortScanning must be specified if op_PortScanning is specified. :type val_c_PortScanning: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param op_PrivilegedPollingInd: The operator to apply to the field PrivilegedPollingInd. Valid values are: =, <>, rlike, not rlike, >, >=, <, <=, like, not like, is null, is not null, between. PrivilegedPollingInd: A flag indicated that NetMRI should send enable command when interacting with device For the between operator the value will be treated as an Array if comma delimited string is passed, and it must contain an even number of values. :type op_PrivilegedPollingInd: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_f_PrivilegedPollingInd: If op_PrivilegedPollingInd is specified, the field named in this input will be compared to the value in PrivilegedPollingInd using the specified operator. That is, the value in this input will be treated as another field name, rather than a constant value. Either this field or val_c_PrivilegedPollingInd must be specified if op_PrivilegedPollingInd is specified. :type val_f_PrivilegedPollingInd: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_c_PrivilegedPollingInd: If op_PrivilegedPollingInd is specified, this value will be compared to the value in PrivilegedPollingInd using the specified operator. The value in this input will be treated as an explicit constant value. Either this field or val_f_PrivilegedPollingInd must be specified if op_PrivilegedPollingInd is specified. :type val_c_PrivilegedPollingInd: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param op_Rank: The operator to apply to the field Rank. Valid values are: =, <>, rlike, not rlike, >, >=, <, <=, like, not like, is null, is not null, between. Rank: The rank is used to determine which group settings to apply to a device that is a member of multiple groups. The highest ranked group's settings will be used. For the between operator the value will be treated as an Array if comma delimited string is passed, and it must contain an even number of values. :type op_Rank: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_f_Rank: If op_Rank is specified, the field named in this input will be compared to the value in Rank using the specified operator. That is, the value in this input will be treated as another field name, rather than a constant value. Either this field or val_c_Rank must be specified if op_Rank is specified. :type val_f_Rank: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_c_Rank: If op_Rank is specified, this value will be compared to the value in Rank using the specified operator. The value in this input will be treated as an explicit constant value. Either this field or val_f_Rank must be specified if op_Rank is specified. :type val_c_Rank: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param op_SAMLicensedInd: The operator to apply to the field SAMLicensedInd. Valid values are: =, <>, rlike, not rlike, >, >=, <, <=, like, not like, is null, is not null, between. SAMLicensedInd: A flag indicating whether or not access diff viewer is available for this entry. For the between operator the value will be treated as an Array if comma delimited string is passed, and it must contain an even number of values. :type op_SAMLicensedInd: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_f_SAMLicensedInd: If op_SAMLicensedInd is specified, the field named in this input will be compared to the value in SAMLicensedInd using the specified operator. That is, the value in this input will be treated as another field name, rather than a constant value. Either this field or val_c_SAMLicensedInd must be specified if op_SAMLicensedInd is specified. :type val_f_SAMLicensedInd: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_c_SAMLicensedInd: If op_SAMLicensedInd is specified, this value will be compared to the value in SAMLicensedInd using the specified operator. The value in this input will be treated as an explicit constant value. Either this field or val_f_SAMLicensedInd must be specified if op_SAMLicensedInd is specified. :type val_c_SAMLicensedInd: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param op_SNMPAnalysis: The operator to apply to the field SNMPAnalysis. Valid values are: =, <>, rlike, not rlike, >, >=, <, <=, like, not like, is null, is not null, between. SNMPAnalysis: A flag indicating whether issue analysis should be performed on this group. For the between operator the value will be treated as an Array if comma delimited string is passed, and it must contain an even number of values. :type op_SNMPAnalysis: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_f_SNMPAnalysis: If op_SNMPAnalysis is specified, the field named in this input will be compared to the value in SNMPAnalysis using the specified operator. That is, the value in this input will be treated as another field name, rather than a constant value. Either this field or val_c_SNMPAnalysis must be specified if op_SNMPAnalysis is specified. :type val_f_SNMPAnalysis: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_c_SNMPAnalysis: If op_SNMPAnalysis is specified, this value will be compared to the value in SNMPAnalysis using the specified operator. The value in this input will be treated as an explicit constant value. Either this field or val_f_SNMPAnalysis must be specified if op_SNMPAnalysis is specified. :type val_c_SNMPAnalysis: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param op_SNMPPolling: The operator to apply to the field SNMPPolling. Valid values are: =, <>, rlike, not rlike, >, >=, <, <=, like, not like, is null, is not null, between. SNMPPolling: A flag indicating whether this group should be polled via SNMP. For the between operator the value will be treated as an Array if comma delimited string is passed, and it must contain an even number of values. :type op_SNMPPolling: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_f_SNMPPolling: If op_SNMPPolling is specified, the field named in this input will be compared to the value in SNMPPolling using the specified operator. That is, the value in this input will be treated as another field name, rather than a constant value. Either this field or val_c_SNMPPolling must be specified if op_SNMPPolling is specified. :type val_f_SNMPPolling: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_c_SNMPPolling: If op_SNMPPolling is specified, this value will be compared to the value in SNMPPolling using the specified operator. The value in this input will be treated as an explicit constant value. Either this field or val_f_SNMPPolling must be specified if op_SNMPPolling is specified. :type val_c_SNMPPolling: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param op_SPMCollectionInd: The operator to apply to the field SPMCollectionInd. Valid values are: =, <>, rlike, not rlike, >, >=, <, <=, like, not like, is null, is not null, between. SPMCollectionInd: A flag indicating whether Switch Port Management collection applies to this group. For the between operator the value will be treated as an Array if comma delimited string is passed, and it must contain an even number of values. :type op_SPMCollectionInd: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_f_SPMCollectionInd: If op_SPMCollectionInd is specified, the field named in this input will be compared to the value in SPMCollectionInd using the specified operator. That is, the value in this input will be treated as another field name, rather than a constant value. Either this field or val_c_SPMCollectionInd must be specified if op_SPMCollectionInd is specified. :type val_f_SPMCollectionInd: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_c_SPMCollectionInd: If op_SPMCollectionInd is specified, this value will be compared to the value in SPMCollectionInd using the specified operator. The value in this input will be treated as an explicit constant value. Either this field or val_f_SPMCollectionInd must be specified if op_SPMCollectionInd is specified. :type val_c_SPMCollectionInd: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param op_StandardsCompliance: The operator to apply to the field StandardsCompliance. Valid values are: =, <>, rlike, not rlike, >, >=, <, <=, like, not like, is null, is not null, between. StandardsCompliance: A flag indicating whether this group is subject to standard's compliance reporting. For the between operator the value will be treated as an Array if comma delimited string is passed, and it must contain an even number of values. :type op_StandardsCompliance: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_f_StandardsCompliance: If op_StandardsCompliance is specified, the field named in this input will be compared to the value in StandardsCompliance using the specified operator. That is, the value in this input will be treated as another field name, rather than a constant value. Either this field or val_c_StandardsCompliance must be specified if op_StandardsCompliance is specified. :type val_f_StandardsCompliance: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_c_StandardsCompliance: If op_StandardsCompliance is specified, this value will be compared to the value in StandardsCompliance using the specified operator. The value in this input will be treated as an explicit constant value. Either this field or val_f_StandardsCompliance must be specified if op_StandardsCompliance is specified. :type val_c_StandardsCompliance: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param op_StartBlackoutSchedule: The operator to apply to the field StartBlackoutSchedule. Valid values are: =, <>, rlike, not rlike, >, >=, <, <=, like, not like, is null, is not null, between. StartBlackoutSchedule: The blackout start time in cron format. For the between operator the value will be treated as an Array if comma delimited string is passed, and it must contain an even number of values. :type op_StartBlackoutSchedule: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_f_StartBlackoutSchedule: If op_StartBlackoutSchedule is specified, the field named in this input will be compared to the value in StartBlackoutSchedule using the specified operator. That is, the value in this input will be treated as another field name, rather than a constant value. Either this field or val_c_StartBlackoutSchedule must be specified if op_StartBlackoutSchedule is specified. :type val_f_StartBlackoutSchedule: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_c_StartBlackoutSchedule: If op_StartBlackoutSchedule is specified, this value will be compared to the value in StartBlackoutSchedule using the specified operator. The value in this input will be treated as an explicit constant value. Either this field or val_f_StartBlackoutSchedule must be specified if op_StartBlackoutSchedule is specified. :type val_c_StartBlackoutSchedule: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param op_StartPortControlBlackoutSchedule: The operator to apply to the field StartPortControlBlackoutSchedule. Valid values are: =, <>, rlike, not rlike, >, >=, <, <=, like, not like, is null, is not null, between. StartPortControlBlackoutSchedule: Port Control Blackout in cron format. For the between operator the value will be treated as an Array if comma delimited string is passed, and it must contain an even number of values. :type op_StartPortControlBlackoutSchedule: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_f_StartPortControlBlackoutSchedule: If op_StartPortControlBlackoutSchedule is specified, the field named in this input will be compared to the value in StartPortControlBlackoutSchedule using the specified operator. That is, the value in this input will be treated as another field name, rather than a constant value. Either this field or val_c_StartPortControlBlackoutSchedule must be specified if op_StartPortControlBlackoutSchedule is specified. :type val_f_StartPortControlBlackoutSchedule: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_c_StartPortControlBlackoutSchedule: If op_StartPortControlBlackoutSchedule is specified, this value will be compared to the value in StartPortControlBlackoutSchedule using the specified operator. The value in this input will be treated as an explicit constant value. Either this field or val_f_StartPortControlBlackoutSchedule must be specified if op_StartPortControlBlackoutSchedule is specified. :type val_c_StartPortControlBlackoutSchedule: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param op_SystemGroupInd: The operator to apply to the field SystemGroupInd. Valid values are: =, <>, rlike, not rlike, >, >=, <, <=, like, not like, is null, is not null, between. SystemGroupInd: A flag indicating if this device group is system-created For the between operator the value will be treated as an Array if comma delimited string is passed, and it must contain an even number of values. :type op_SystemGroupInd: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_f_SystemGroupInd: If op_SystemGroupInd is specified, the field named in this input will be compared to the value in SystemGroupInd using the specified operator. That is, the value in this input will be treated as another field name, rather than a constant value. Either this field or val_c_SystemGroupInd must be specified if op_SystemGroupInd is specified. :type val_f_SystemGroupInd: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_c_SystemGroupInd: If op_SystemGroupInd is specified, this value will be compared to the value in SystemGroupInd using the specified operator. The value in this input will be treated as an explicit constant value. Either this field or val_f_SystemGroupInd must be specified if op_SystemGroupInd is specified. :type val_c_SystemGroupInd: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param op_UpdatedAt: The operator to apply to the field UpdatedAt. Valid values are: =, <>, rlike, not rlike, >, >=, <, <=, like, not like, is null, is not null, between. UpdatedAt: The date and time this record was last modified. For the between operator the value will be treated as an Array if comma delimited string is passed, and it must contain an even number of values. :type op_UpdatedAt: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_f_UpdatedAt: If op_UpdatedAt is specified, the field named in this input will be compared to the value in UpdatedAt using the specified operator. That is, the value in this input will be treated as another field name, rather than a constant value. Either this field or val_c_UpdatedAt must be specified if op_UpdatedAt is specified. :type val_f_UpdatedAt: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_c_UpdatedAt: If op_UpdatedAt is specified, this value will be compared to the value in UpdatedAt using the specified operator. The value in this input will be treated as an explicit constant value. Either this field or val_f_UpdatedAt must be specified if op_UpdatedAt is specified. :type val_c_UpdatedAt: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param op_UseGlobalPolFreq: The operator to apply to the field UseGlobalPolFreq. Valid values are: =, <>, rlike, not rlike, >, >=, <, <=, like, not like, is null, is not null, between. UseGlobalPolFreq: A flag indicating if Global Polling Frequency should be used instead Device Group Polling Frequency. For the between operator the value will be treated as an Array if comma delimited string is passed, and it must contain an even number of values. :type op_UseGlobalPolFreq: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_f_UseGlobalPolFreq: If op_UseGlobalPolFreq is specified, the field named in this input will be compared to the value in UseGlobalPolFreq using the specified operator. That is, the value in this input will be treated as another field name, rather than a constant value. Either this field or val_c_UseGlobalPolFreq must be specified if op_UseGlobalPolFreq is specified. :type val_f_UseGlobalPolFreq: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_c_UseGlobalPolFreq: If op_UseGlobalPolFreq is specified, this value will be compared to the value in UseGlobalPolFreq using the specified operator. The value in this input will be treated as an explicit constant value. Either this field or val_f_UseGlobalPolFreq must be specified if op_UseGlobalPolFreq is specified. :type val_c_UseGlobalPolFreq: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param op_VendorDefaultCollection: The operator to apply to the field VendorDefaultCollection. Valid values are: =, <>, rlike, not rlike, >, >=, <, <=, like, not like, is null, is not null, between. VendorDefaultCollection: A flag indicating whether vendor default credential collection is enabled for this group. For the between operator the value will be treated as an Array if comma delimited string is passed, and it must contain an even number of values. :type op_VendorDefaultCollection: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_f_VendorDefaultCollection: If op_VendorDefaultCollection is specified, the field named in this input will be compared to the value in VendorDefaultCollection using the specified operator. That is, the value in this input will be treated as another field name, rather than a constant value. Either this field or val_c_VendorDefaultCollection must be specified if op_VendorDefaultCollection is specified. :type val_f_VendorDefaultCollection: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_c_VendorDefaultCollection: If op_VendorDefaultCollection is specified, this value will be compared to the value in VendorDefaultCollection using the specified operator. The value in this input will be treated as an explicit constant value. Either this field or val_f_VendorDefaultCollection must be specified if op_VendorDefaultCollection is specified. :type val_c_VendorDefaultCollection: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` 0 :param start: The record number to return in the selected page of data. It will always appear, although it may not be the first record. See the :limit for more information. :type start: Integer | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` 1000 :param limit: The size of the page of data, that is, the maximum number of records returned. The limit size will be used to break the data up into pages and the first page with the start record will be returned. So if you have 100 records and use a :limit of 10 and a :start of 10, you will get records 10-19. The maximum limit is 10000. :type limit: Integer | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` GroupID :param sort: The data field(s) to use for sorting the output. Default is GroupID. Valid values are GroupID, ParentDeviceGroupID, GroupName, Criteria, Rank, SNMPPolling, CLIPolling, SNMPAnalysis, FingerPrint, CCSCollection, VendorDefaultCollection, ConfigPolling, PortScanning, StandardsCompliance, MemberCount, ConfigLocked, PrivilegedPollingInd, UseGlobalPolFreq, PolFreqModifier, PolicyScheduleMode, PerfEnvPollingInd, SPMCollectionInd, NetBIOSScanningInd, ARPCacheRefreshInd, SAMLicensedInd, StartBlackoutSchedule, BlackoutDuration, StartPortControlBlackoutSchedule, PortControlBlackoutDuration, UpdatedAt, AdvancedGroupInd, IncludeEndHostsInd, CredentialGroupID, SystemGroupInd. :type sort: Array of String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` asc :param dir: The direction(s) in which to sort the data. Default is 'asc'. Valid values are 'asc' and 'desc'. :type dir: Array of String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param select: The list of attributes to return for each DeviceGroupDefn. Valid values are GroupID, ParentDeviceGroupID, GroupName, Criteria, Rank, SNMPPolling, CLIPolling, SNMPAnalysis, FingerPrint, CCSCollection, VendorDefaultCollection, ConfigPolling, PortScanning, StandardsCompliance, MemberCount, ConfigLocked, PrivilegedPollingInd, UseGlobalPolFreq, PolFreqModifier, PolicyScheduleMode, PerfEnvPollingInd, SPMCollectionInd, NetBIOSScanningInd, ARPCacheRefreshInd, SAMLicensedInd, StartBlackoutSchedule, BlackoutDuration, StartPortControlBlackoutSchedule, PortControlBlackoutDuration, UpdatedAt, AdvancedGroupInd, IncludeEndHostsInd, CredentialGroupID, SystemGroupInd. If empty or omitted, all attributes will be returned. :type select: Array | ``api version min:`` 2.8 | ``api version max:`` None | ``required:`` False | ``default:`` None :param goto_field: The field name for NIOS GOTO that is used for locating a row position of records. :type goto_field: String | ``api version min:`` 2.8 | ``api version max:`` None | ``required:`` False | ``default:`` None :param goto_value: The value of goto_field for NIOS GOTO that is used for locating a row position of records. :type goto_value: String | ``api version min:`` 2.3 | ``api version max:`` None | ``required:`` False | ``default:`` None :param xml_filter: A SetFilter XML structure to further refine the search. The SetFilter will be applied AFTER any search query or field values, but before any limit options. The limit and pagination will be enforced after the filter. Remind that this kind of filter may be costly and inefficient if not associated with a database filtering. :type xml_filter: String **Outputs** | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :return device_group_defns: An array of the DeviceGroupDefn objects that match the specified input criteria. :rtype device_group_defns: Array of DeviceGroupDefn """ return self.api_list_request(self._get_method_fullname("find"), kwargs) def create(self, **kwargs): """Creates a new device group defn. **Inputs** | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` 0 :param ARPCacheRefreshInd: A flag indicating whether to refresh the device ARP and forwarding table caches for devices in this group prior to data collection. :type ARPCacheRefreshInd: Boolean | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` 1 :param AdvancedGroupInd: A flag indicating whether this group is an advanced group. :type AdvancedGroupInd: Boolean | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` 0 :param BlackoutDuration: The blackout duration in minutes. :type BlackoutDuration: Integer | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` 0 :param CCSCollection: A flag indicating whether job execution is enabled against this group. :type CCSCollection: Integer | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` 0 :param CLIPolling: A flag indicating whether this group should be polled via the command line interface. :type CLIPolling: Boolean | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` 0 :param ConfigLocked: Indicates whether configuration changes within this group are considered authorized or unauthorized. :type ConfigLocked: Integer | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` 0 :param ConfigPolling: A flag indicating whether configuration file collection is enabled for this group. :type ConfigPolling: Integer | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param CredentialGroupID: The unique identifier of the credential group. :type CredentialGroupID: Integer | ``api version min:`` None | ``api version max:`` None | ``required:`` True | ``default:`` None :param Criteria: The criteria used to place members within the group. :type Criteria: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` 0 :param FingerPrint: A flag indicating whether network fingerprinting should be performed on this group. :type FingerPrint: Integer | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param GroupID: The internal NetMRI identifier for this device group definition. :type GroupID: Integer | ``api version min:`` None | ``api version max:`` None | ``required:`` True | ``default:`` None :param GroupName: The device group name, as specified by the user. :type GroupName: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` 1 :param IncludeEndHostsInd: A flag indicating whether this group should include end host devices. :type IncludeEndHostsInd: Boolean | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` 0 :param NetBIOSScanningInd: A flag indicating whether to scan this group for NetBOIS names. :type NetBIOSScanningInd: Boolean | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` 0 :param ParentDeviceGroupID: Internal identifier for the parent device group. A value of 0 is used for root level groups. :type ParentDeviceGroupID: Integer | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param PerfEnvPollingInd: A flag that indicates if Performance and Environment polling is enabled for the device group members. :type PerfEnvPollingInd: Boolean | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param PolFreqModifier: Polling frequency modifier for devices belonging to this device group. Actual polling frequency intervals for the device are calculated by multiplying the default intervals by this value. :type PolFreqModifier: Integer | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` 0 :param PortControlBlackoutDuration: Port Control Blackout in minutes. :type PortControlBlackoutDuration: Integer | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` 0 :param PortScanning: A flag indicating whether port scanning is enabled for this group. :type PortScanning: Integer | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` 1 :param PrivilegedPollingInd: A flag indicated that NetMRI should send enable command when interacting with device :type PrivilegedPollingInd: Boolean | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` 1 :param Rank: The rank is used to determine which group settings to apply to a device that is a member of multiple groups. The highest ranked group's settings will be used. :type Rank: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` 0 :param SAMLicensedInd: A flag indicating whether or not access diff viewer is available for this entry. :type SAMLicensedInd: Boolean | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` 0 :param SNMPAnalysis: A flag indicating whether issue analysis should be performed on this group. :type SNMPAnalysis: Integer | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` 0 :param SNMPPolling: A flag indicating whether this group should be polled via SNMP. :type SNMPPolling: Integer | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` 0 :param SPMCollectionInd: A flag indicating whether Switch Port Management collection applies to this group. :type SPMCollectionInd: Boolean | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` 0 :param StandardsCompliance: A flag indicating whether this group is subject to standard's compliance reporting. :type StandardsCompliance: Integer | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` :param StartBlackoutSchedule: The blackout start time in cron format. :type StartBlackoutSchedule: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` :param StartPortControlBlackoutSchedule: Port Control Blackout in cron format. :type StartPortControlBlackoutSchedule: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param UseGlobalPolFreq: A flag indicating if Global Polling Frequency should be used instead Device Group Polling Frequency. :type UseGlobalPolFreq: Boolean | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` 0 :param VendorDefaultCollection: A flag indicating whether vendor default credential collection is enabled for this group. :type VendorDefaultCollection: Integer **Outputs** | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :return id: The id of the newly created device group defn. :rtype id: Integer | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :return model: The class name of the newly created device group defn. :rtype model: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :return uri: A URI that may be used to retrieve the newly created device group defn. :rtype uri: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :return device_group_defn: The newly created device group defn. :rtype device_group_defn: DeviceGroupDefn """ return self.api_request(self._get_method_fullname("create"), kwargs) def update(self, **kwargs): """Updates an existing device group defn. **Inputs** | ``api version min:`` None | ``api version max:`` None | ``required:`` True | ``default:`` None :param GroupID: The internal NetMRI identifier for this device group definition. :type GroupID: Integer | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param ARPCacheRefreshInd: A flag indicating whether to refresh the device ARP and forwarding table caches for devices in this group prior to data collection. If omitted, this field will not be updated. :type ARPCacheRefreshInd: Boolean | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param AdvancedGroupInd: A flag indicating whether this group is an advanced group. If omitted, this field will not be updated. :type AdvancedGroupInd: Boolean | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param BlackoutDuration: The blackout duration in minutes. If omitted, this field will not be updated. :type BlackoutDuration: Integer | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param CCSCollection: A flag indicating whether job execution is enabled against this group. If omitted, this field will not be updated. :type CCSCollection: Integer | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param CLIPolling: A flag indicating whether this group should be polled via the command line interface. If omitted, this field will not be updated. :type CLIPolling: Boolean | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param ConfigLocked: Indicates whether configuration changes within this group are considered authorized or unauthorized. If omitted, this field will not be updated. :type ConfigLocked: Integer | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param ConfigPolling: A flag indicating whether configuration file collection is enabled for this group. If omitted, this field will not be updated. :type ConfigPolling: Integer | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param CredentialGroupID: The unique identifier of the credential group. If omitted, this field will not be updated. :type CredentialGroupID: Integer | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param Criteria: The criteria used to place members within the group. If omitted, this field will not be updated. :type Criteria: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param FingerPrint: A flag indicating whether network fingerprinting should be performed on this group. If omitted, this field will not be updated. :type FingerPrint: Integer | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param GroupName: The device group name, as specified by the user. If omitted, this field will not be updated. :type GroupName: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param IncludeEndHostsInd: A flag indicating whether this group should include end host devices. If omitted, this field will not be updated. :type IncludeEndHostsInd: Boolean | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param NetBIOSScanningInd: A flag indicating whether to scan this group for NetBOIS names. If omitted, this field will not be updated. :type NetBIOSScanningInd: Boolean | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param ParentDeviceGroupID: Internal identifier for the parent device group. A value of 0 is used for root level groups. If omitted, this field will not be updated. :type ParentDeviceGroupID: Integer | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param PerfEnvPollingInd: A flag that indicates if Performance and Environment polling is enabled for the device group members. If omitted, this field will not be updated. :type PerfEnvPollingInd: Boolean | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param PolFreqModifier: Polling frequency modifier for devices belonging to this device group. Actual polling frequency intervals for the device are calculated by multiplying the default intervals by this value. If omitted, this field will not be updated. :type PolFreqModifier: Integer | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param PolicyScheduleMode: Not used. If omitted, this field will not be updated. :type PolicyScheduleMode: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param PortControlBlackoutDuration: Port Control Blackout in minutes. If omitted, this field will not be updated. :type PortControlBlackoutDuration: Integer | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param PortScanning: A flag indicating whether port scanning is enabled for this group. If omitted, this field will not be updated. :type PortScanning: Integer | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param PrivilegedPollingInd: A flag indicated that NetMRI should send enable command when interacting with device If omitted, this field will not be updated. :type PrivilegedPollingInd: Boolean | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param Rank: The rank is used to determine which group settings to apply to a device that is a member of multiple groups. The highest ranked group's settings will be used. If omitted, this field will not be updated. :type Rank: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param SAMLicensedInd: A flag indicating whether or not access diff viewer is available for this entry. If omitted, this field will not be updated. :type SAMLicensedInd: Boolean | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param SNMPAnalysis: A flag indicating whether issue analysis should be performed on this group. If omitted, this field will not be updated. :type SNMPAnalysis: Integer | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param SNMPPolling: A flag indicating whether this group should be polled via SNMP. If omitted, this field will not be updated. :type SNMPPolling: Integer | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param SPMCollectionInd: A flag indicating whether Switch Port Management collection applies to this group. If omitted, this field will not be updated. :type SPMCollectionInd: Boolean | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param StandardsCompliance: A flag indicating whether this group is subject to standard's compliance reporting. If omitted, this field will not be updated. :type StandardsCompliance: Integer | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param StartBlackoutSchedule: The blackout start time in cron format. If omitted, this field will not be updated. :type StartBlackoutSchedule: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param StartPortControlBlackoutSchedule: Port Control Blackout in cron format. If omitted, this field will not be updated. :type StartPortControlBlackoutSchedule: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param UseGlobalPolFreq: A flag indicating if Global Polling Frequency should be used instead Device Group Polling Frequency. If omitted, this field will not be updated. :type UseGlobalPolFreq: Boolean | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param VendorDefaultCollection: A flag indicating whether vendor default credential collection is enabled for this group. If omitted, this field will not be updated. :type VendorDefaultCollection: Integer **Outputs** | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :return id: The id of the updated device group defn. :rtype id: Integer | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :return model: The class name of the updated device group defn. :rtype model: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :return uri: A URI that may be used to retrieve the updated device group defn. :rtype uri: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :return device_group_defn: The updated device group defn. :rtype device_group_defn: DeviceGroupDefn """ return self.api_request(self._get_method_fullname("update"), kwargs) def destroy(self, **kwargs): """Deletes the specified device group defn from NetMRI. **Inputs** | ``api version min:`` None | ``api version max:`` None | ``required:`` True | ``default:`` None :param GroupID: The internal NetMRI identifier for this device group definition. :type GroupID: Integer | ``api version min:`` 3.8 | ``api version max:`` None | ``required:`` False | ``default:`` False :param force: Set this to true to delete system-created group :type force: Boolean **Outputs** """ return self.api_request(self._get_method_fullname("destroy"), kwargs)
apache-2.0
-4,876,036,232,465,950,000
53.094547
999
0.612685
false
ocaisa/easybuild-framework
easybuild/tools/toolchain/toolchain.py
3
19735
# # # Copyright 2012-2015 Ghent University # # This file is part of EasyBuild, # originally created by the HPC team of Ghent University (http://ugent.be/hpc/en), # with support of Ghent University (http://ugent.be/hpc), # the Flemish Supercomputer Centre (VSC) (https://vscentrum.be/nl/en), # the Hercules foundation (http://www.herculesstichting.be/in_English) # and the Department of Economy, Science and Innovation (EWI) (http://www.ewi-vlaanderen.be/en). # # http://github.com/hpcugent/easybuild # # EasyBuild is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation v2. # # EasyBuild is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with EasyBuild. If not, see <http://www.gnu.org/licenses/>. # # """ The toolchain module with the abstract Toolchain class. Creating a new toolchain should be as simple as possible. @author: Stijn De Weirdt (Ghent University) @author: Kenneth Hoste (Ghent University) """ import os import re from vsc.utils import fancylogger from easybuild.tools.config import build_option, install_path from easybuild.tools.environment import setvar from easybuild.tools.modules import get_software_root, get_software_version, modules_tool from easybuild.tools.toolchain import DUMMY_TOOLCHAIN_NAME, DUMMY_TOOLCHAIN_VERSION from easybuild.tools.toolchain.options import ToolchainOptions from easybuild.tools.toolchain.toolchainvariables import ToolchainVariables _log = fancylogger.getLogger('tools.toolchain', fname=False) class Toolchain(object): """General toolchain class""" OPTIONS_CLASS = ToolchainOptions VARIABLES_CLASS = ToolchainVariables NAME = None VERSION = None # class method def _is_toolchain_for(cls, name): """see if this class can provide support for toolchain named name""" # TODO report later in the initialization the found version if name: if hasattr(cls, 'NAME') and name == cls.NAME: return True else: return False else: # is no name is supplied, check whether class can be used as a toolchain return hasattr(cls, 'NAME') and cls.NAME _is_toolchain_for = classmethod(_is_toolchain_for) def __init__(self, name=None, version=None, mns=None): """Toolchain constructor.""" self.base_init() self.dependencies = [] self.toolchain_dep_mods = [] if name is None: name = self.NAME if name is None: self.log.error("Toolchain init: no name provided") self.name = name if version is None: version = self.VERSION if version is None: self.log.error("Toolchain init: no version provided") self.version = version self.vars = None self.modules_tool = modules_tool() self.mns = mns self.mod_full_name = None self.mod_short_name = None self.init_modpaths = None if self.name != DUMMY_TOOLCHAIN_NAME: # sometimes no module naming scheme class instance can/will be provided, e.g. with --list-toolchains if self.mns is not None: tc_dict = self.as_dict() self.mod_full_name = self.mns.det_full_module_name(tc_dict) self.mod_short_name = self.mns.det_short_module_name(tc_dict) self.init_modpaths = self.mns.det_init_modulepaths(tc_dict) def base_init(self): if not hasattr(self, 'log'): self.log = fancylogger.getLogger(self.__class__.__name__, fname=False) if not hasattr(self, 'options'): self.options = self.OPTIONS_CLASS() if not hasattr(self, 'variables'): self.variables = self.VARIABLES_CLASS() if hasattr(self, 'LINKER_TOGGLE_START_STOP_GROUP'): self.variables.LINKER_TOGGLE_START_STOP_GROUP = self.LINKER_TOGGLE_START_STOP_GROUP if hasattr(self, 'LINKER_TOGGLE_STATIC_DYNAMIC'): self.variables.LINKER_TOGGLE_STATIC_DYNAMIC = self.LINKER_TOGGLE_STATIC_DYNAMIC def get_variable(self, name, typ=str): """Get value for specified variable. typ: indicates what type of return value is expected""" if typ == str: return str(self.variables[name]) elif typ == list: return self.variables[name].flatten() else: self.log.error("get_variable: Don't know how to create value of type %s." % typ) def set_variables(self): """Do nothing? Everything should have been set by others Needs to be defined for super() relations """ if self.options.option('packed-linker-options'): self.log.debug("set_variables: toolchain variables. packed-linker-options.") self.variables.try_function_on_element('set_packed_linker_options') self.log.debug("set_variables: toolchain variables. Do nothing.") def generate_vars(self): """Convert the variables in simple vars""" self.vars = {} for k, v in self.variables.items(): self.vars[k] = str(v) def show_variables(self, offset='', sep='\n', verbose=False): """Pretty print the variables""" if self.vars is None: self.generate_vars() var_names = self.variables.keys() var_names.sort() res = [] for v in var_names: res.append("%s=%s" % (v, self.variables[v])) if verbose: res.append("# type %s" % (type(self.variables[v]))) res.append("# %s" % (self.variables[v].show_el())) res.append("# repr %s" % (self.variables[v].__repr__())) if offset is None: offset = '' txt = sep.join(["%s%s" % (offset, x) for x in res]) self.log.debug("show_variables:\n%s" % txt) return txt def get_software_root(self, names): """Try to get the software root for all names""" return self._get_software_multiple(names, self._get_software_root) def get_software_version(self, names): """Try to get the software version for all names""" return self._get_software_multiple(names, self._get_software_version) def _get_software_multiple(self, names, function): """Execute function of each of names""" if isinstance(names, (str,)): names = [names] res = [] for name in names: res.append(function(name)) return res def _get_software_root(self, name): """Try to get the software root for name""" root = get_software_root(name) if root is None: self.log.error("get_software_root software root for %s was not found in environment" % name) else: self.log.debug("get_software_root software root %s for %s was found in environment" % (root, name)) return root def _get_software_version(self, name): """Try to get the software root for name""" version = get_software_version(name) if version is None: self.log.error("get_software_version software version for %s was not found in environment" % name) else: self.log.debug("get_software_version software version %s for %s was found in environment" % (version, name)) return version def as_dict(self, name=None, version=None): """Return toolchain specification as a dictionary.""" if name is None: name = self.name if version is None: version = self.version return { 'name': name, 'version': version, 'toolchain': {'name': DUMMY_TOOLCHAIN_NAME, 'version': DUMMY_TOOLCHAIN_VERSION}, 'versionsuffix': '', 'dummy': True, 'parsed': True, # pretend this is a parsed easyconfig file, as may be required by det_short_module_name 'hidden': False, } def det_short_module_name(self): """Determine module name for this toolchain.""" if self.mod_short_name is None: self.log.error("Toolchain module name was not set yet (using set_module_info).") return self.mod_short_name def _toolchain_exists(self): """ Verify if there exists a toolchain by this name and version """ # short-circuit to returning module name for this (non-dummy) toolchain if self.name == DUMMY_TOOLCHAIN_NAME: self.log.debug("_toolchain_exists: %s toolchain always exists, returning True" % DUMMY_TOOLCHAIN_NAME) return True else: if self.mod_short_name is None: self.log.error("Toolchain module name was not set yet (using set_module_info).") # check whether a matching module exists if self.mod_short_name contains a module name return self.modules_tool.exist([self.mod_full_name])[0] def set_options(self, options): """ Process toolchain options """ for opt in options.keys(): # Only process supported opts if opt in self.options: self.options[opt] = options[opt] else: # used to be warning, but this is a severe error imho known_opts = ','.join(self.options.keys()) self.log.error("Undefined toolchain option %s specified (known options: %s)" % (opt, known_opts)) def get_dependency_version(self, dependency): """ Generate a version string for a dependency on a module using this toolchain """ # Add toolchain to version string toolchain = '' if self.name != DUMMY_TOOLCHAIN_NAME: toolchain = '-%s-%s' % (self.name, self.version) elif self.version != DUMMY_TOOLCHAIN_VERSION: toolchain = '%s' % (self.version) # Check if dependency is independent of toolchain # TODO: assuming dummy here, what about version? if DUMMY_TOOLCHAIN_NAME in dependency and dependency[DUMMY_TOOLCHAIN_NAME]: toolchain = '' suffix = dependency.get('versionsuffix', '') if 'version' in dependency: version = "".join([dependency['version'], toolchain, suffix]) self.log.debug("get_dependency_version: version in dependency return %s" % version) return version else: toolchain_suffix = "".join([toolchain, suffix]) matches = self.modules_tool.available(dependency['name'], toolchain_suffix) # Find the most recent (or default) one if len(matches) > 0: version = matches[-1][-1] self.log.debug("get_dependency_version: version not in dependency return %s" % version) return else: tup = (dependency['name'], toolchain_suffix) self.log.error("No toolchain version for dependency name %s (suffix %s) found" % tup) def add_dependencies(self, dependencies): """ Verify if the given dependencies exist and add them """ self.log.debug("add_dependencies: adding toolchain dependencies %s" % dependencies) dep_mod_names = [dep['full_mod_name'] for dep in dependencies] deps_exist = self.modules_tool.exist(dep_mod_names) for dep, dep_mod_name, dep_exists in zip(dependencies, dep_mod_names, deps_exist): self.log.debug("add_dependencies: MODULEPATH: %s" % os.environ['MODULEPATH']) if not dep_exists: tup = (dep_mod_name, dep) self.log.error("add_dependencies: no module '%s' found for dependency %s" % tup) else: self.dependencies.append(dep) self.log.debug('add_dependencies: added toolchain dependency %s' % str(dep)) def is_required(self, name): """Determine whether this is a required toolchain element.""" # default: assume every element is required return True def definition(self): """ Determine toolchain elements for given Toolchain instance. """ var_suff = '_MODULE_NAME' tc_elems = {} for var in dir(self): if var.endswith(var_suff): tc_elems.update({var[:-len(var_suff)]: getattr(self, var)}) _log.debug("Toolchain definition for %s: %s" % (self.as_dict(), tc_elems)) return tc_elems def is_dep_in_toolchain_module(self, name): """Check whether a specific software name is listed as a dependency in the module for this toolchain.""" return any(map(lambda m: self.mns.is_short_modname_for(m, name), self.toolchain_dep_mods)) def prepare(self, onlymod=None): """ Prepare a set of environment parameters based on name/version of toolchain - load modules for toolchain and dependencies - generate extra variables and set them in the environment onlymod: Boolean/string to indicate if the toolchain should only load the environment with module (True) or also set all other variables (False) like compiler CC etc (If string: comma separated list of variables that will be ignored). """ if self.modules_tool is None: self.log.error("No modules tool defined in Toolchain instance.") if not self._toolchain_exists(): self.log.error("No module found for toolchain: %s" % self.mod_short_name) if self.name == DUMMY_TOOLCHAIN_NAME: if self.version == DUMMY_TOOLCHAIN_VERSION: self.log.info('prepare: toolchain dummy mode, dummy version; not loading dependencies') else: self.log.info('prepare: toolchain dummy mode and loading dependencies') self.modules_tool.load([dep['short_mod_name'] for dep in self.dependencies]) return # Load the toolchain and dependencies modules self.log.debug("Loading toolchain module and dependencies...") # make sure toolchain is available using short module name by running 'module use' on module path subdir if self.init_modpaths: mod_path_suffix = build_option('suffix_modules_path') for modpath in self.init_modpaths: self.modules_tool.prepend_module_path(os.path.join(install_path('mod'), mod_path_suffix, modpath)) self.modules_tool.load([self.det_short_module_name()]) self.modules_tool.load([dep['short_mod_name'] for dep in self.dependencies]) # determine direct toolchain dependencies mod_name = self.det_short_module_name() self.toolchain_dep_mods = self.modules_tool.dependencies_for(mod_name, depth=0) self.log.debug('prepare: list of direct toolchain dependencies: %s' % self.toolchain_dep_mods) # only retain names of toolchain elements, excluding toolchain name toolchain_definition = set([e for es in self.definition().values() for e in es if not e == self.name]) # filter out optional toolchain elements if they're not used in the module for elem_name in toolchain_definition.copy(): if self.is_required(elem_name) or self.is_dep_in_toolchain_module(elem_name): continue # not required and missing: remove from toolchain definition self.log.debug("Removing %s from list of optional toolchain elements." % elem_name) toolchain_definition.remove(elem_name) self.log.debug("List of toolchain dependencies from toolchain module: %s" % self.toolchain_dep_mods) self.log.debug("List of toolchain elements from toolchain definition: %s" % toolchain_definition) if all(map(self.is_dep_in_toolchain_module, toolchain_definition)): self.log.info("List of toolchain dependency modules and toolchain definition match!") else: self.log.error("List of toolchain dependency modules and toolchain definition do not match " \ "(%s vs %s)" % (self.toolchain_dep_mods, toolchain_definition)) # Generate the variables to be set self.set_variables() # set the variables # onlymod can be comma-separated string of variables not to be set if onlymod == True: self.log.debug("prepare: do not set additional variables onlymod=%s" % onlymod) self.generate_vars() else: self.log.debug("prepare: set additional variables onlymod=%s" % onlymod) # add LDFLAGS and CPPFLAGS from dependencies to self.vars self._add_dependency_variables() self.generate_vars() self._setenv_variables(onlymod) def _add_dependency_variables(self, names=None, cpp=None, ld=None): """ Add LDFLAGS and CPPFLAGS to the self.variables based on the dependencies names should be a list of strings containing the name of the dependency """ cpp_paths = ['include'] ld_paths = ['lib'] if not self.options.get('32bit', None): ld_paths.insert(0, 'lib64') if cpp is not None: for p in cpp: if not p in cpp_paths: cpp_paths.append(p) if ld is not None: for p in ld: if not p in ld_paths: ld_paths.append(p) if not names: deps = self.dependencies else: deps = [{'name': name} for name in names if name is not None] for root in self.get_software_root([dep['name'] for dep in deps]): self.variables.append_subdirs("CPPFLAGS", root, subdirs=cpp_paths) self.variables.append_subdirs("LDFLAGS", root, subdirs=ld_paths) def _setenv_variables(self, donotset=None): """Actually set the environment variables""" self.log.debug("_setenv_variables: setting variables: donotset=%s" % donotset) donotsetlist = [] if isinstance(donotset, str): # TODO : more legacy code that should be using proper type self.log.error("_setenv_variables: using commas-separated list. should be deprecated.") donotsetlist = donotset.split(',') elif isinstance(donotset, list): donotsetlist = donotset for key, val in self.vars.items(): if key in donotsetlist: self.log.debug("_setenv_variables: not setting environment variable %s (value: %s)." % (key, val)) continue self.log.debug("_setenv_variables: setting environment variable %s to %s" % (key, val)) setvar(key, val) # also set unique named variables that can be used in Makefiles # - so you can have 'CFLAGS = $(EBVARCFLAGS)' # -- 'CLFLAGS = $(CFLAGS)' gives '*** Recursive variable `CFLAGS' # references itself (eventually). Stop' error setvar("EBVAR%s" % key, val) def get_flag(self, name): """Get compiler flag for a certain option.""" return "-%s" % self.options.option(name) def comp_family(self): """ Return compiler family used in this toolchain (abstract method).""" raise NotImplementedError def mpi_family(self): """ Return type of MPI library used in this toolchain or 'None' if MPI is not supported. """ return None
gpl-2.0
-4,989,489,100,763,440,000
41.902174
120
0.618546
false
jMyles/AutobahnPython
examples/wamp/rpc/symmetric/client.py
18
1530
############################################################################### ## ## Copyright 2013 Tavendo GmbH ## ## Licensed under the Apache License, Version 2.0 (the "License"); ## you may not use this file except in compliance with the License. ## You may obtain a copy of the License at ## ## http://www.apache.org/licenses/LICENSE-2.0 ## ## Unless required by applicable law or agreed to in writing, software ## distributed under the License is distributed on an "AS IS" BASIS, ## WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ## See the License for the specific language governing permissions and ## limitations under the License. ## ############################################################################### import sys, time from twisted.python import log from twisted.internet import reactor from autobahn.websocket import connectWS from autobahn.wamp import exportRpc, WampClientFactory, WampClientProtocol class MyClientProtocol(WampClientProtocol): @exportRpc("getTime") def getTime(self): return time.strftime("%H:%M:%S", time.localtime()) def onSessionOpen(self): self.registerForRpc(self, "http://example.com/client#") if __name__ == '__main__': if len(sys.argv) > 1 and sys.argv[1] == 'debug': log.startLogging(sys.stdout) debug = True else: debug = False factory = WampClientFactory("ws://localhost:9000", debugWamp = debug) factory.protocol = MyClientProtocol connectWS(factory) reactor.run()
apache-2.0
3,721,318,196,799,021,600
29
79
0.636601
false
AuScope/vgml
src/main/resources/org/auscope/portal/server/scriptbuilder/templates/escript-magnetic.py
3
3212
############################################################################## # # Copyright (c) 2009-2013 by University of Queensland # http://www.uq.edu.au # # Primary Business: Queensland, Australia # Licensed under the Open Software License version 3.0 # http://www.opensource.org/licenses/osl-3.0.php # # Development until 2012 by Earth Systems Science Computational Center (ESSCC) # Development since 2012 by School of Earth Sciences # ############################################################################## """3D magnetic inversion example using netCDF data""" # Filename for input data DATASET='${inversion-file}' # background magnetic flux density (B_north, B_east, B_vertical) in nano Tesla. B_b = [${bb-north}, ${bb-east}, ${bb-vertical}] # maximum depth (in meters) DEPTH = ${max-depth} # buffer zone above data (in meters; 6-10km recommended) AIR = ${air-buffer} # number of mesh elements in vertical direction (~1 element per 2km recommended) NE_Z = ${vertical-mesh-elements} # amount of horizontal padding (this affects end result, about 20% recommended) PAD_X = ${x-padding} PAD_Y = ${y-padding} N_THREADS = ${n-threads} ####### Do not change anything below this line ####### import os import subprocess import sys try: from esys.downunder import * from esys.escript import unitsSI as U from esys.weipa import saveSilo except ImportError: line=["/opt/escript/bin/run-escript","-t" + str(N_THREADS)]+sys.argv ret=subprocess.call(line) sys.exit(ret) def saveAndUpload(fn, **args): saveSilo(fn, **args) subprocess.call(["cloud", "upload", fn, fn, "--set-acl=public-read"]) #Convert entered nano Tesla to Tesla B_b=[b*U.Nano*U.Tesla for b in B_b] DATA_UNITS = U.Nano * U.Tesla source=NetCdfData(DataSource.MAGNETIC, DATASET, scale_factor=DATA_UNITS) db=DomainBuilder() db.addSource(source) db.setVerticalExtents(depth=DEPTH, air_layer=AIR, num_cells=NE_Z) db.setFractionalPadding(PAD_X, PAD_Y) db.setBackgroundMagneticFluxDensity(B_b) db.fixSusceptibilityBelow(depth=DEPTH) inv=MagneticInversion() inv.setup(db) B, w = db.getMagneticSurveys()[0] susceptibility=inv.run() saveAndUpload('result.silo', magnetic_anomaly=B, magnetic_weight=w, susceptibility=susceptibility) print("Results saved in result.silo") # Visualise result.silo using VisIt import visit visit.LaunchNowin() saveatts = visit.SaveWindowAttributes() saveatts.fileName = 'result-visit.png' saveatts.family = 0 saveatts.width = 1024 saveatts.height = 768 saveatts.resConstraint = saveatts.NoConstraint saveatts.outputToCurrentDirectory = 1 visit.SetSaveWindowAttributes(saveatts) visit.OpenDatabase('result.silo') visit.AddPlot('Contour', 'susceptibility') c=visit.ContourAttributes() c.colorType=c.ColorByColorTable c.colorTableName = "hot" visit.SetPlotOptions(c) visit.DrawPlots() v=visit.GetView3D() v.viewNormal=(-0.554924, 0.703901, 0.443377) v.viewUp=(0.272066, -0.3501, 0.896331) visit.SetView3D(v) visit.SaveWindow() subprocess.call(["cloud", "upload", "result-visit.png", "result-visit.png", "--set-acl=public-read"]) visit.DeleteAllPlots() visit.CloseDatabase('result.silo')
gpl-3.0
-304,191,300,855,227,140
31.113402
101
0.687111
false
fenglu-g/incubator-airflow
airflow/config_templates/default_celery.py
4
4104
# -*- coding: utf-8 -*- # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import ssl from airflow import configuration from airflow.exceptions import AirflowConfigException, AirflowException from airflow.utils.log.logging_mixin import LoggingMixin def _broker_supports_visibility_timeout(url): return url.startswith("redis://") or url.startswith("sqs://") log = LoggingMixin().log broker_url = configuration.conf.get('celery', 'BROKER_URL') broker_transport_options = configuration.conf.getsection( 'celery_broker_transport_options' ) if 'visibility_timeout' not in broker_transport_options: if _broker_supports_visibility_timeout(broker_url): broker_transport_options['visibility_timeout'] = 21600 DEFAULT_CELERY_CONFIG = { 'accept_content': ['json', 'pickle'], 'event_serializer': 'json', 'worker_prefetch_multiplier': 1, 'task_acks_late': True, 'task_default_queue': configuration.conf.get('celery', 'DEFAULT_QUEUE'), 'task_default_exchange': configuration.conf.get('celery', 'DEFAULT_QUEUE'), 'broker_url': broker_url, 'broker_transport_options': broker_transport_options, 'result_backend': configuration.conf.get('celery', 'RESULT_BACKEND'), 'worker_concurrency': configuration.conf.getint('celery', 'WORKER_CONCURRENCY'), } celery_ssl_active = False try: celery_ssl_active = configuration.conf.getboolean('celery', 'SSL_ACTIVE') except AirflowConfigException: log.warning("Celery Executor will run without SSL") try: if celery_ssl_active: if 'amqp://' in broker_url: broker_use_ssl = {'keyfile': configuration.conf.get('celery', 'SSL_KEY'), 'certfile': configuration.conf.get('celery', 'SSL_CERT'), 'ca_certs': configuration.conf.get('celery', 'SSL_CACERT'), 'cert_reqs': ssl.CERT_REQUIRED} elif 'redis://' in broker_url: broker_use_ssl = {'ssl_keyfile': configuration.conf.get('celery', 'SSL_KEY'), 'ssl_certfile': configuration.conf.get('celery', 'SSL_CERT'), 'ssl_ca_certs': configuration.conf.get('celery', 'SSL_CACERT'), 'ssl_cert_reqs': ssl.CERT_REQUIRED} else: raise AirflowException('The broker you configured does not support SSL_ACTIVE to be True. ' 'Please use RabbitMQ or Redis if you would like to use SSL for broker.') DEFAULT_CELERY_CONFIG['broker_use_ssl'] = broker_use_ssl except AirflowConfigException: raise AirflowException('AirflowConfigException: SSL_ACTIVE is True, ' 'please ensure SSL_KEY, ' 'SSL_CERT and SSL_CACERT are set') except Exception as e: raise AirflowException('Exception: There was an unknown Celery SSL Error. ' 'Please ensure you want to use ' 'SSL and/or have all necessary certs and key ({}).'.format(e)) result_backend = DEFAULT_CELERY_CONFIG['result_backend'] if 'amqp://' in result_backend or 'redis://' in result_backend or 'rpc://' in result_backend: log.warning("You have configured a result_backend of %s, it is highly recommended " "to use an alternative result_backend (i.e. a database).", result_backend)
apache-2.0
1,846,901,440,203,672,600
44.6
107
0.662768
false
joachimwolff/minHashNearestNeighbors
sparse_neighbors_search/cluster/minHashDBSCAN.py
1
3421
# Copyright 2016, 2017, 2018, 2019, 2020 Joachim Wolff # PhD Thesis # # Copyright 2015, 2016 Joachim Wolff # Master Thesis # Tutor: Fabrizio Costa # Winter semester 2015/2016 # # Chair of Bioinformatics # Department of Computer Science # Faculty of Engineering # Albert-Ludwigs-University Freiburg im Breisgau from sklearn.cluster import DBSCAN from ..neighbors import MinHash import numpy as np class MinHashDBSCAN(): def __init__(self, eps=0.5, min_samples=5, algorithm='auto', leaf_size=30, p=None, random_state=None, fast=False, n_neighbors=5, radius=1.0, number_of_hash_functions=400, max_bin_size=50, minimal_blocks_in_common=1, shingle_size=4, excess_factor=5, number_of_cores=None, chunk_size=None): self.eps = eps self.min_samples = min_samples # self.metric = metric self.algorithm = algorithm self.leaf_size = leaf_size self.p = p self.random_state = random_state self.radius = radius self.fast = fast self.number_of_hash_functions = number_of_hash_functions self.max_bin_size = max_bin_size self.minimal_blocks_in_common = minimal_blocks_in_common self.shingle_size = shingle_size self.excess_factor = excess_factor self.number_of_cores = number_of_cores self.chunk_size = chunk_size self.n_neighbors = n_neighbors self._dbscan = DBSCAN(eps=self.eps, min_samples=min_samples, metric='precomputed', algorithm=self.algorithm, leaf_size=self.leaf_size, p=self.p) self.labels_ = None self._precomputed_graph = None # only for compatible issues def fit(self, X, y=None, pSaveMemory=None): minHashNeighbors = MinHash(n_neighbors=self.n_neighbors, radius=self.radius, fast=self.fast, number_of_hash_functions=self.number_of_hash_functions, max_bin_size=self.max_bin_size, minimal_blocks_in_common=self.minimal_blocks_in_common, shingle_size=self.shingle_size, excess_factor=self.excess_factor, number_of_cores=self.number_of_cores, chunk_size=self.chunk_size, similarity=False) if pSaveMemory is not None and pSaveMemory > 0: if pSaveMemory > 1: pSaveMemory = 1 number_of_elements = X.shape[0] batch_size = int(np.floor(number_of_elements * pSaveMemory)) if batch_size < 1: batch_size = 1 minHashNeighbors.fit(X[0:batch_size, :]) if batch_size < number_of_elements: for i in range(batch_size, X.shape[0], batch_size): minHashNeighbors.partial_fit(X[i:i + batch_size, :]) else: minHashNeighbors.fit(X) # minHashNeighbors.fit(X, y) self._precomputed_graph = minHashNeighbors.kneighbors_graph(mode='distance') self._dbscan.fit(self._precomputed_graph) self.labels_ = self._dbscan.labels_ def fit_predict(self, X, y=None, pSaveMemory=None): self.fit(X, y, pSaveMemory=None) return self.labels_
mit
1,588,282,949,375,221,200
39.247059
91
0.579655
false
youssef-emad/shogun
examples/meta/generator/tests/test_translate_java.py
3
6770
from translate import Translator import json import unittest class TestJavaTranslator(unittest.TestCase): def setUp(self): with open("targets/java.json", "r") as targetFile: self.translator = Translator(json.load(targetFile)) def test_translateProgram(self): """ CSVFile trainf("train.dat") RealFeatures feats_train(trainf) CSVFile testf("test.dat") Translates to: import org.shogun.*; import org.jblas.*; class MyExample { static { System.loadLibrary("modshogun"); } public static void main(String argv[]) { modshogun.init_shogun_with_defaults(); CSVFile trainf = new CSVFile("train.dat"); RealFeatures feats_train = new RealFeatures(trainf); CSVFile testf = new CSVFile("test.dat"); } } """ programAST = [ {"Statement": {"Init": [{"ObjectType": "CSVFile"}, {"Identifier": "trainf"},{"ArgumentList": {"Expr": {"StringLiteral": "train.dat"}}}]}}, {"Statement": {"Init": [{"ObjectType": "RealFeatures"}, {"Identifier": "feats_train"}, {"ArgumentList": {"Expr": {"Identifier": "trainf"}}}]}}, {"Statement": {"Init": [{"ObjectType": "CSVFile"}, {"Identifier": "testf"}, {"ArgumentList": {"Expr": {"StringLiteral": "test.dat"}}}]}} ] translation = self.translator.translateProgram(programAST, "MyExample") self.assertEqual(translation, u"import org.shogun.*;\nimport org.jblas.*;\n\nclass MyExample {\nstatic {\nSystem.loadLibrary(\"modshogun\");\n}\n\npublic static void main(String argv[]) {\nmodshogun.init_shogun_with_defaults();\n\nCSVFile trainf = new CSVFile(\"train.dat\");\nRealFeatures feats_train = new RealFeatures(trainf);\nCSVFile testf = new CSVFile(\"test.dat\");\n\n}\n}\n") def test_translateProgramWithNewlines(self): programAST = [ {"Statement": {"Init": [{"ObjectType": "CSVFile"}, {"Identifier": "trainf"},{"ArgumentList": {"Expr": {"StringLiteral": "train.dat"}}}]}}, {"Statement": "\n"}, {"Statement": {"Init": [{"ObjectType": "RealFeatures"}, {"Identifier": "feats_train"}, {"ArgumentList": {"Expr": {"Identifier": "trainf"}}}]}}, {"Statement": "\n"}, {"Statement": {"Init": [{"ObjectType": "CSVFile"}, {"Identifier": "testf"}, {"ArgumentList": {"Expr": {"StringLiteral": "test.dat"}}}]}} ] translation = self.translator.translateProgram(programAST, "MyExample") self.assertEqual(translation, u"import org.shogun.*;\nimport org.jblas.*;\n\nclass MyExample {\nstatic {\nSystem.loadLibrary(\"modshogun\");\n}\n\npublic static void main(String argv[]) {\nmodshogun.init_shogun_with_defaults();\n\nCSVFile trainf = new CSVFile(\"train.dat\");\n\nRealFeatures feats_train = new RealFeatures(trainf);\n\nCSVFile testf = new CSVFile(\"test.dat\");\n\n}\n}\n") def test_translateInitCopy(self): initAST = [ {"ObjectType": "IntMatrix"}, {"Identifier": "multiple_k"}, {"Expr": {"MethodCall": [ {"Identifier": "knn"}, {"Identifier": "classify_for_multiple_k"} ]}} ] translation = self.translator.translateInit(initAST) self.assertEqual(translation, u"DoubleMatrix multiple_k = knn.classify_for_multiple_k()") def test_translateInitConstruct(self): initAST = [ {"ObjectType": "MulticlassLabels"}, {"Identifier": "labels"}, {"ArgumentList": { "Expr": {"Identifier": "train_labels"} }} ] translation = self.translator.translateInit(initAST) self.assertEqual(translation, u"MulticlassLabels labels = new MulticlassLabels(train_labels)") def test_translateInitConstructMultiple(self): initAST = [ {"ObjectType": "EuclideanDistance"}, {"Identifier": "distance"}, {"ArgumentList": [ {"Expr": {"Identifier": "feats_train"}}, {"Expr": {"Identifier": "feats_test"}} ]} ] translation = self.translator.translateInit(initAST) self.assertEqual(translation, u"EuclideanDistance distance = new EuclideanDistance(feats_train, feats_test)") def test_translateStatementAssign(self): stmtAST = { "Assign": [ {"Identifier": "knn_train"}, {"Expr": {"BoolLiteral": "False"} } ] } translation = self.translator.translateStatement(stmtAST) self.assertEqual(translation, u"knn_train = false;\n") def test_translateStatementExpr(self): stmtAST = { "Expr": { "MethodCall": [ {"Identifier": "knn"}, {"Identifier": "train"} ] } } translation = self.translator.translateStatement(stmtAST) self.assertEqual(translation, u"knn.train();\n") def test_translateStatementNewLine(self): stmtAST = "\n" translation = self.translator.translateStatement(stmtAST) self.assertEqual(translation, u"\n") def test_translateStatementPrint(self): stmtAST = { "Print": {"Expr": {"Identifier": "multiple_k"}} } translation = self.translator.translateStatement(stmtAST) self.assertEqual(translation, u"System.out.println(multiple_k);\n") def test_translateType(self): typeAST = { "ObjectType": "IntMatrix" } translation = self.translator.translateType(typeAST) self.assertEqual(translation, u"DoubleMatrix") def test_translateExprEnum(self): enumAST = { "Enum": [{"Identifier":"LIBLINEAR_SOLVER_TYPE"}, {"Identifier": "L2R_L2LOSS_SVC_DUAL"}] } translation = self.translator.translateExpr(enumAST) self.assertEqual(translation, u"L2R_L2LOSS_SVC_DUAL") self.assertTrue((u"LIBLINEAR_SOLVER_TYPE", u"L2R_L2LOSS_SVC_DUAL") in self.translator.dependencies["Enums"]) def test_translateProgramComment(self): programAST = [ {"Comment": " This is a comment"} ] translation = self.translator.translateProgram(programAST, "MyExample") trueTranslation = u"import org.shogun.*;\nimport org.jblas.*;\n\nclass MyExample {\nstatic {\nSystem.loadLibrary(\"modshogun\");\n}\n\npublic static void main(String argv[]) {\nmodshogun.init_shogun_with_defaults();\n\n// This is a comment\n\n}\n}\n" self.assertEqual(translation, trueTranslation) if __name__ == '__main__': unittest.main()
gpl-3.0
2,583,687,988,764,884,000
41.3125
397
0.588183
false
RealKinetic/locust_k8s
docker/locust-tasks/locustfile.py
2
1096
# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from locust import HttpLocust, TaskSet, task class UserBehavior(TaskSet): def on_start(self): """ on_start is called when a Locust start before any task is scheduled """ self.login() def login(self): self.client.post("/login", {"username":"ellen_key", "password":"education"}) @task(2) def index(self): self.client.get("/") @task(1) def profile(self): self.client.get("/profile") class WebsiteUser(HttpLocust): task_set = UserBehavior min_wait = 5000 max_wait = 9000
apache-2.0
1,910,149,797,277,030,400
28.621622
84
0.688869
false
tswast/google-cloud-python
bigquery/samples/table_insert_rows_explicit_none_insert_ids.py
1
1343
# Copyright 2019 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. def table_insert_rows_explicit_none_insert_ids(table_id): # [START bigquery_table_insert_rows_explicit_none_insert_ids] from google.cloud import bigquery # Construct a BigQuery client object. client = bigquery.Client() # TODO(developer): Set table_id to the ID of the model to fetch. # table_id = "your-project.your_dataset.your_table" table = client.get_table(table_id) # Make an API request. rows_to_insert = [(u"Phred Phlyntstone", 32), (u"Wylma Phlyntstone", 29)] errors = client.insert_rows( table, rows_to_insert, row_ids=[None] * len(rows_to_insert) ) # Make an API request. if errors == []: print("New rows have been added.") # [END bigquery_table_insert_rows_explicit_none_insert_ids]
apache-2.0
7,757,110,027,831,912,000
36.305556
77
0.707372
false
slinderman/pyhawkes
pyhawkes/internals/weights.py
1
24982
import numpy as np from scipy.special import gammaln, psi from scipy.special import logsumexp from joblib import Parallel, delayed from pybasicbayes.abstractions import GibbsSampling, MeanField, MeanFieldSVI from pyhawkes.internals.distributions import Bernoulli, Gamma from pyhawkes.utils.utils import logistic, logit class SpikeAndSlabGammaWeights(GibbsSampling): """ Encapsulates the KxK Bernoulli adjacency matrix and the KxK gamma weight matrix. Implements Gibbs sampling given the parent variables. """ def __init__(self, model, parallel_resampling=True): """ Initialize the spike-and-slab gamma weight model with either a network object containing the prior or rho, alpha, and beta to define an independent model. """ self.model = model self.K = model.K # assert isinstance(network, GibbsNetwork), "network must be a GibbsNetwork object" self.network = model.network # Specify whether or not to resample the columns of A in parallel self.parallel_resampling = parallel_resampling # Initialize parameters A and W self.A = np.ones((self.K, self.K)) self.W = np.zeros((self.K, self.K)) self.resample() @property def W_effective(self): return self.A * self.W def log_likelihood(self, x): """ Compute the log likelihood of the given A and W :param x: an (A,W) tuple :return: """ A,W = x assert isinstance(A, np.ndarray) and A.shape == (self.K,self.K), \ "A must be a KxK adjacency matrix" assert isinstance(W, np.ndarray) and W.shape == (self.K,self.K), \ "W must be a KxK weight matrix" # LL of A rho = np.clip(self.network.P, 1e-32, 1-1e-32) ll = (A * np.log(rho) + (1-A) * np.log(1-rho)).sum() ll = np.nan_to_num(ll) # Get the shape and scale parameters from the network model kappa = self.network.kappa v = self.network.V # Add the LL of the gamma weights lp_W = kappa * np.log(v) - gammaln(kappa) + \ (kappa-1) * np.log(W) - v * W ll += (A*lp_W).sum() return ll def log_probability(self): return self.log_likelihood((self.A, self.W)) def rvs(self,size=[]): A = np.random.rand(self.K, self.K) < self.network.P W = np.random.gamma(self.network.kappa, 1.0/self.network.V, size(self.K, self.K)) return A,W def _joint_resample_A_W(self): """ Not sure how to do this yet, but it would be nice to resample A from its marginal distribution after integrating out W, and then sample W | A. :return: """ raise NotImplementedError() def _joblib_resample_A_given_W(self, data): """ Resample A given W. This must be immediately followed by an update of z | A, W. This version uses joblib to parallelize over columns of A. :return: """ # Use the module trick to avoid copying globals import pyhawkes.internals.parallel_adjacency_resampling as par par.model = self.model par.data = data par.K = self.model.K if len(data) == 0: self.A = np.random.rand(self.K, self.K) < self.network.P return # We can naively parallelize over receiving neurons, k2 # To avoid serializing and copying the data object, we # manually extract the required arrays Sk, Fk, etc. A_cols = Parallel(n_jobs=-1, backend="multiprocessing")( delayed(par._resample_column_of_A)(k2)for k2 in range(self.K)) self.A = np.array(A_cols).T def _resample_A_given_W(self, data): """ Resample A given W. This must be immediately followed by an update of z | A, W. :return: """ p = self.network.P for k1 in range(self.K): for k2 in range(self.K): if self.model is None: ll0 = 0 ll1 = 0 else: # Compute the log likelihood of the events given W and A=0 self.A[k1,k2] = 0 ll0 = sum([d.log_likelihood_single_process(k2) for d in data]) # Compute the log likelihood of the events given W and A=1 self.A[k1,k2] = 1 ll1 = sum([d.log_likelihood_single_process(k2) for d in data]) # Sample A given conditional probability lp0 = ll0 + np.log(1.0 - p[k1,k2]) lp1 = ll1 + np.log(p[k1,k2]) Z = logsumexp([lp0, lp1]) # ln p(A=1) = ln (exp(lp1) / (exp(lp0) + exp(lp1))) # = lp1 - ln(exp(lp0) + exp(lp1)) # = lp1 - Z self.A[k1,k2] = np.log(np.random.rand()) < lp1 - Z def resample_W_given_A_and_z(self, data=[]): """ Resample the weights given A and z. :return: """ ss = np.zeros((2, self.K, self.K)) + \ sum([d.compute_weight_ss() for d in data]) # Account for whether or not a connection is present in N ss[1] *= self.A kappa_post = self.network.kappa + ss[0] v_post = self.network.V + ss[1 ] self.W = np.atleast_1d(np.random.gamma(kappa_post, 1.0/v_post)).reshape((self.K, self.K)) def resample(self, data=[]): """ Resample A and W given the parents :param N: A length-K vector specifying how many events occurred on each of the K processes :param Z: A TxKxKxB array of parent assignment counts """ # Resample W | A self.resample_W_given_A_and_z(data) # Resample A given W if self.parallel_resampling: self._joblib_resample_A_given_W(data) else: self._resample_A_given_W(data) class GammaMixtureWeights(GibbsSampling, MeanField, MeanFieldSVI): """ For variational inference we approximate the spike at zero with a smooth Gamma distribution that has infinite density at zero. """ def __init__(self, model, kappa_0=0.1, nu_0=10.0): """ Initialize the spike-and-slab gamma weight model with either a network object containing the prior or rho, alpha, and beta to define an independent model. :param K: Number of processes :param network: Pointer to a network object exposing rho, alpha, and beta :param kappa_1: Shape for weight distribution :param kappa_0: Shape for gamma spike (small) :param nu_0: Scale for gamma spike (large) """ self.model = model self.network = model.network self.K = model.K self.network = model.network assert model.network is not None, "A network object must be given" # Save gamma parameters self.kappa_0 = kappa_0 self.nu_0 = nu_0 # Initialize the variational parameters to the prior mean # Variational probability of edge # self.mf_p = network.P * np.ones((self.K, self.K)) self.mf_p = np.ones((self.K, self.K)) - 1e-3 # Variational weight distribution given that there is no edge self.mf_kappa_0 = self.kappa_0 * np.ones((self.K, self.K)) self.mf_v_0 = self.nu_0 * np.ones((self.K, self.K)) # Variational weight distribution given that there is an edge self.mf_kappa_1 = self.network.kappa * np.ones((self.K, self.K)) # self.mf_v_1 = network.alpha / network.beta * np.ones((self.K, self.K)) self.mf_v_1 = self.network.V * np.ones((self.K, self.K)) # Initialize parameters A and W self.A = np.ones((self.K, self.K)) self.W = np.zeros((self.K, self.K)) self.resample() @property def W_effective(self): return self.W def log_likelihood(self, x): """ Compute the log likelihood of the given A and W :param x: an (A,W) tuple :return: """ A,W = x assert isinstance(A, np.ndarray) and A.shape == (self.K,self.K), \ "A must be a KxK adjacency matrix" assert isinstance(W, np.ndarray) and W.shape == (self.K,self.K), \ "W must be a KxK weight matrix" # LL of A rho = self.network.P lp_A = (A * np.log(rho) + (1-A) * np.log(1-rho)) # Get the shape and scale parameters from the network model kappa = self.network.kappa v = self.network.V # Add the LL of the gamma weights # lp_W = np.zeros((self.K, self.K)) # lp_W = A * (kappa * np.log(v) - gammaln(kappa) # + (kappa-1) * np.log(W) - v * W) lp_W0 = (self.kappa_0 * np.log(self.nu_0) - gammaln(self.kappa_0) + (self.kappa_0-1) * np.log(W) - self.nu_0 * W)[A==0] lp_W1 = (kappa * np.log(v) - gammaln(kappa) + (kappa-1) * np.log(W) - v * W)[A==1] # lp_W = A * (kappa * np.log(v) - gammaln(kappa) # + (kappa-1) * np.log(W) - v * W) + \ # (1-A) * (self.kappa_0 * np.log(self.nu_0) - gammaln(self.kappa_0) # + (self.kappa_0-1) * np.log(W) - self.nu_0 * W) ll = lp_A.sum() + lp_W0.sum() + lp_W1.sum() return ll def log_probability(self): return self.log_likelihood((self.A, self.W)) def rvs(self,size=[]): raise NotImplementedError() def expected_A(self): return self.mf_p def expected_W(self): """ Compute the expected W under the variational approximation """ p_A = self.expected_A() E_W = p_A * self.expected_W_given_A(1.0) + (1-p_A) * self.expected_W_given_A(0.0) if not self.network.allow_self_connections: np.fill_diagonal(E_W, 0.0) return E_W def expected_W_given_A(self, A): """ Compute the expected W given A under the variational approximation :param A: Either zero or 1 """ return A * (self.mf_kappa_1 / self.mf_v_1) + \ (1.0 - A) * (self.mf_kappa_0 / self.mf_v_0) def std_A(self): """ Compute the standard deviation of A :return: """ return np.sqrt(self.mf_p * (1-self.mf_p)) def expected_log_W(self): """ Compute the expected log W under the variational approximation """ p_A = self.expected_A() E_ln_W = p_A * self.expected_log_W_given_A(1.0) + \ (1-p_A) * self.expected_log_W_given_A(0.0) if not self.network.allow_self_connections: np.fill_diagonal(E_ln_W, -np.inf) return E_ln_W def expected_log_W_given_A(self, A): """ Compute the expected log W given A under the variational approximation """ return A * (psi(self.mf_kappa_1) - np.log(self.mf_v_1)) + \ (1.0 - A) * (psi(self.mf_kappa_0) - np.log(self.mf_v_0)) def expected_log_likelihood(self,x): raise NotImplementedError() def meanfieldupdate_p(self, stepsize=1.0): """ Update p given the network parameters and the current variational parameters of the weight distributions. :return: """ logit_p = self.network.expected_log_p() - self.network.expected_log_notp() logit_p += self.network.kappa * self.network.expected_log_v() - gammaln(self.network.kappa) logit_p += gammaln(self.mf_kappa_1) - self.mf_kappa_1 * np.log(self.mf_v_1) logit_p += gammaln(self.kappa_0) - self.kappa_0 * np.log(self.nu_0) logit_p += self.mf_kappa_0 * np.log(self.mf_v_0) - gammaln(self.mf_kappa_0) # p_hat = logistic(logit_p) # self.mf_p = (1.0 - stepsize) * self.mf_p + stepsize * p_hat logit_p_hat = (1-stepsize) * logit(self.mf_p) + \ stepsize * logit_p # self.mf_p = logistic(logit_p_hat) self.mf_p = np.clip(logistic(logit_p_hat), 1e-8, 1-1e-8) def meanfieldupdate_kappa_v(self, data=[], minibatchfrac=1.0, stepsize=1.0): """ Update the variational weight distributions :return: """ exp_ss = sum([d.compute_exp_weight_ss() for d in data]) # kappa' = kappa + \sum_t \sum_b z[t,k,k',b] kappa0_hat = self.kappa_0 + exp_ss[0] / minibatchfrac kappa1_hat = self.network.kappa + exp_ss[0] / minibatchfrac self.mf_kappa_0 = (1.0 - stepsize) * self.mf_kappa_0 + stepsize * kappa0_hat self.mf_kappa_1 = (1.0 - stepsize) * self.mf_kappa_1 + stepsize * kappa1_hat # v_0'[k,k'] = self.nu_0 + N[k] v0_hat = self.nu_0 * np.ones((self.K, self.K)) + exp_ss[1] / minibatchfrac self.mf_v_0 = (1.0 - stepsize) * self.mf_v_0 + stepsize * v0_hat # v_1'[k,k'] = E[v[k,k']] + N[k] v1_hat = self.network.expected_v() + exp_ss[1] / minibatchfrac self.mf_v_1 = (1.0 - stepsize) * self.mf_v_1 + stepsize * v1_hat def meanfieldupdate(self, data=[]): self.meanfieldupdate_kappa_v(data) self.meanfieldupdate_p() def meanfield_sgdstep(self, data, minibatchfrac,stepsize): self.meanfieldupdate_kappa_v(data, minibatchfrac=minibatchfrac, stepsize=stepsize) self.meanfieldupdate_p(stepsize=stepsize) def get_vlb(self): """ Variational lower bound for A_kk' and W_kk' E[LN p(A_kk', W_kk' | p, kappa, v)] - E[LN q(A_kk', W_kk' | mf_p, mf_kappa, mf_v)] :return: """ vlb = 0 # First term: # E[LN p(A | p)] E_A = self.expected_A() E_notA = 1.0 - E_A E_ln_p = self.network.expected_log_p() E_ln_notp = self.network.expected_log_notp() vlb += Bernoulli().negentropy(E_x=E_A, E_notx=E_notA, E_ln_p=E_ln_p, E_ln_notp=E_ln_notp).sum() # E[LN p(W | A=1, kappa, v)] kappa = self.network.kappa E_v = self.network.expected_v() E_ln_v = self.network.expected_log_v() E_W1 = self.expected_W_given_A(A=1) E_ln_W1 = self.expected_log_W_given_A(A=1) vlb += (E_A * Gamma(kappa).negentropy(E_beta=E_v, E_ln_beta=E_ln_v, E_lambda=E_W1, E_ln_lambda=E_ln_W1)).sum() # E[LN p(W | A=0, kappa0, v0)] kappa0 = self.kappa_0 v0 = self.nu_0 E_W0 = self.expected_W_given_A(A=0) E_ln_W0 = self.expected_log_W_given_A(A=0) vlb += (E_notA * Gamma(kappa0, v0).negentropy(E_lambda=E_W0, E_ln_lambda=E_ln_W0)).sum() # Second term # E[LN q(A)] vlb -= Bernoulli(self.mf_p).negentropy().sum() # E[LN q(W | A=1)] vlb -= (E_A * Gamma(self.mf_kappa_1, self.mf_v_1).negentropy()).sum() vlb -= (E_notA * Gamma(self.mf_kappa_0, self.mf_v_0).negentropy()).sum() return vlb def resample_from_mf(self): """ Resample from the mean field distribution :return: """ self.A = np.random.rand(self.K, self.K) < self.mf_p self.W = (1-self.A) * np.random.gamma(self.mf_kappa_0, 1.0/self.mf_v_0) self.W += self.A * np.random.gamma(self.mf_kappa_1, 1.0/self.mf_v_1) def resample(self, data=[]): ss = np.zeros((2, self.K, self.K)) + \ sum([d.compute_weight_ss() for d in data]) # First resample A from its marginal distribution after integrating out W self._resample_A(ss) # Then resample W given A self._resample_W_given_A(ss) def _resample_A(self, ss): """ Resample A from the marginal distribution after integrating out W :param ss: :return: """ p = self.network.P v = self.network.V kappa0_post = self.kappa_0 + ss[0,:,:] v0_post = self.nu_0 + ss[1,:,:] kappa1_post = self.network.kappa + ss[0,:,:] v1_post = v + ss[1,:,:] # Compute the marginal likelihood of A=1 and of A=0 # The result of the integral is a ratio of gamma distribution normalizing constants lp0 = self.kappa_0 * np.log(self.nu_0) - gammaln(self.kappa_0) lp0 += gammaln(kappa0_post) - kappa0_post * np.log(v0_post) lp1 = self.network.kappa * np.log(v) - gammaln(self.network.kappa) lp1 += gammaln(kappa1_post) - kappa1_post * np.log(v1_post) # Add the prior and normalize lp0 = lp0 + np.log(1.0 - p) lp1 = lp1 + np.log(p) Z = logsumexp(np.concatenate((lp0[:,:,None], lp1[:,:,None]), axis=2), axis=2) # ln p(A=1) = ln (exp(lp1) / (exp(lp0) + exp(lp1))) # = lp1 - ln(exp(lp0) + exp(lp1)) # = lp1 - Z self.A = np.log(np.random.rand(self.K, self.K)) < lp1 - Z def _resample_W_given_A(self, ss): # import pdb; pdb.set_trace() kappa_prior = self.kappa_0 * (1-self.A) + self.network.kappa * self.A kappa_cond = kappa_prior + ss[0,:,:] v_prior = self.nu_0 * (1-self.A) + self.network.V * self.A v_cond = v_prior + ss[1,:,:] # Resample W from its gamma conditional self.W = np.array(np.random.gamma(kappa_cond, 1.0/v_cond)).\ reshape((self.K, self.K)) self.W = np.clip(self.W, 1e-32, np.inf) def initialize_from_gibbs(self, A, W, scale=100): """ Initialize from a Gibbs sample :param A: Given adjacency matrix :param W: Given weight matrix :return: """ # Set mean field probability of connection to conf if A==1 # and (1-conf) if A == 0 conf = 0.95 self.mf_p = conf * A + (1-conf) * (1-A) # Set variational weight distribution self.mf_kappa_0 = self.kappa_0 self.mf_v_0 = self.nu_0 self.mf_kappa_1 = scale * W self.mf_v_1 = scale class SpikeAndSlabContinuousTimeGammaWeights(GibbsSampling): """ Implementation of spike and slab gamma weights from L&A 2014 """ def __init__(self, model, parallel_resampling=True): self.model = model self.network = model.network self.K = self.model.K # Specify whether or not to resample the columns of A in parallel self.parallel_resampling = parallel_resampling # Initialize parameters A and W self.A = np.ones((self.K, self.K)) self.W = np.zeros((self.K, self.K)) self.resample() def log_likelihood(self,x): raise NotImplementedError def log_probability(self): return 0 def rvs(self,size=[]): raise NotImplementedError @property def W_effective(self): return self.A * self.W def _compute_weighted_impulses_at_events_manual(self, data): # Compute the instantaneous rate at the individual events # Sum over potential parents. # TODO: Call cython function to evaluate instantaneous rate N, S, C, Z, dt_max = data.N, data.S, data.C, data.Z, self.model.dt_max W = self.W # Initialize matrix of weighted impulses from each process lmbda = np.zeros((self.K, N)) for n in range(N): # First parent is just the background rate of this process # lmbda[self.K, n] += lambda0[C[n]] # Iterate backward from the most recent to compute probabilities of each parent spike for par in range(n-1, -1, -1): dt = S[n] - S[par] if dt == 0: continue # Since the spikes are sorted, we can stop if we reach a potential # parent that occurred greater than dt_max in the past if dt >= dt_max: break lmbda[C[par], n] += W[C[par], C[n]] * self.model.impulse_model.impulse(dt, C[par], C[n]) return lmbda def _compute_weighted_impulses_at_events(self, data): from pyhawkes.internals.continuous_time_helpers import \ compute_weighted_impulses_at_events N, S, C, Z, dt_max = data.N, data.S, data.C, data.Z, self.model.dt_max W = self.W mu, tau = self.model.impulse_model.mu, self.model.impulse_model.tau lmbda = np.zeros((N, self.K)) compute_weighted_impulses_at_events(S, C, Z, dt_max, W, mu, tau, lmbda) return lmbda def _resample_A_given_W(self, data): """ Resample A given W. This must be immediately followed by an update of z | A, W. :return: """ # Precompute weightedi impulse responses for each event lmbda_irs = [self._compute_weighted_impulses_at_events(d) for d in data] # lmbda_irs_manual = [self._compute_weighted_impulses_at_events_manual(d) for d in data] # for l1,l2 in zip(lmbda_irs_manual, lmbda_irs): # assert np.allclose(l1,l2) lmbda0 = self.model.lambda0 def _log_likelihood_single_process(k): ll = 0 for lmbda_ir, d in zip(lmbda_irs, data): Ns, C, T = d.Ns, d.C, d.T # - \int lambda_k(t) dt ll -= lmbda0[k] * T ll -= self.W_effective[:,k].dot(Ns) # + \sum_n log(lambda(s_n)) ll += np.log(lmbda0[k] + np.sum(self.A[:,k] * lmbda_ir[C==k,:], axis=1)).sum() return ll # TODO: Write a Cython function to sample this more efficiently p = self.network.P for k1 in range(self.K): # sys.stdout.write('.') # sys.stdout.flush() for k2 in range(self.K): # Handle deterministic cases if p[k1,k2] == 0.: self.A[k1,k2] = 0 continue if p[k1,k2] == 1.: self.A[k1,k2] = 1 continue # Compute the log likelihood of the events given W and A=0 self.A[k1,k2] = 0 ll0 = _log_likelihood_single_process(k2) # Compute the log likelihood of the events given W and A=1 self.A[k1,k2] = 1 ll1 = _log_likelihood_single_process(k2) # Sample A given conditional probability lp0 = ll0 + np.log(1.0 - p[k1,k2]) lp1 = ll1 + np.log(p[k1,k2]) Z = logsumexp([lp0, lp1]) self.A[k1,k2] = np.log(np.random.rand()) < lp1 - Z # sys.stdout.write('\n') # sys.stdout.flush() def _joblib_resample_A_given_W(self, data): """ Resample A given W. This must be immediately followed by an update of z | A, W. This version uses joblib to parallelize over columns of A. :return: """ # Use the module trick to avoid copying globals import pyhawkes.internals.parallel_adjacency_resampling as par par.model = self.model par.data = data par.lambda_irs = [par._compute_weighted_impulses_at_events(d) for d in data] if len(data) == 0: self.A = np.random.rand(self.K, self.K) < self.network.P return # We can naively parallelize over receiving neurons, k2 # To avoid serializing and copying the data object, we # manually extract the required arrays Sk, Fk, etc. A_cols = Parallel(n_jobs=-1, backend="multiprocessing")( delayed(par._ct_resample_column_of_A)(k2) for k2 in range(self.K)) self.A = np.array(A_cols).T def resample_W_given_A_and_z(self, N, Zsum): """ Resample the weights given A and z. :return: """ kappa_post = self.network.kappa + Zsum v_post = self.network.V + N[:,None] * self.A self.W = np.array(np.random.gamma(kappa_post, 1.0/v_post)).reshape((self.K, self.K)) def resample(self, data=[]): """ Resample A and W given the parents :param N: A length-K vector specifying how many events occurred on each of the K processes :param Z: A TxKxKxB array of parent assignment counts """ assert isinstance(data, list) # Compute sufficient statistics N = np.zeros((self.K,)) Zsum = np.zeros((self.K, self.K)) for d in data: Zsum += d.weight_ss N += d.Ns # Resample W | A, Z self.resample_W_given_A_and_z(N, Zsum) # Resample A | W if self.parallel_resampling: self._joblib_resample_A_given_W(data) else: self._resample_A_given_W(data)
mit
-8,214,192,277,978,752,000
35.153401
104
0.544872
false
gratefulfrog/ArduGuitar
Ardu2/design/POC-3_MAX395/pyboard/V1_WithHMI/pyboard_no_debug/csv.py
2
5862
# csv.py # my implementation of csv reading and writing """ READING interface: try: with open(self.filePath, 'r') as csvfile: #print "opened file: " + self.filePath reader = csv.Reader(csvfile) self.header = next(reader) for row in reader: self.rowDict2confDict(row) WRITING Interface: with open(self.filePath, 'w') as csvfile: writer = csv.DictWriter(csvfile, fieldnames = self.conf.Vocab.headings, delimiter=',') #quotechar="'", #quoting=csv.QUOTE_MINIMAL) writer.writerow(self.header) for p in self.presets.keys(): writer.writerow(self.confDict2RowDict(p,self.presets[p])) """ class CSV(): class Reader(): """ usage: f=open('aFile.csv', 'r') reader = Reader(f) header = next(reader) lines = [l for l in reader] f.close() or with open('aFile.csv', 'r') as f: reader = Reader(f) header = next(reader) lines = [l for l in reader] """ def __init__(self,openFile,delimeter=',',quote='"'): # read rows, return list of cells, quoting if needed, # all cells are read and returned as strings self.openFile = openFile self.delimeter = delimeter self.quote = quote def __iter__(self): return self def __next__(self): line = self.openFile.readline() if line == '': raise StopIteration return self.parse(line) def parse(self,line): #print(line) return self.parseIter(line,current='',mode=0,res=[]) def parseIter(self,line,current,mode,res): """ mode=0 current = '' 0: looking for any character or eol : if c==delimeter, append current, loop : if c==quote, mode<-1, loop : if eol, append current, return res : else current+=c, mode<-2, loop 1: looking for closing quote : if eol: raise missing closing quote error : if c==quote, mode<-3, loop : else, current+=c, loop 2: reading chars, looking for delimeter or eol : if eol: append current, return : if c==delimeter, append current, current<-'', mode<-0, loop : else: current+=c, loop 3: finished a quoted expr, need delimeter : if c != delimeter: raise missing delimeter error : else, append current, current<-'', mode<-0,loop """ for c in line: if c=='\r': continue if mode==0: if c=='\n': res.append(current) return res if c == self.delimeter: res.append(current) current='' continue elif c==self.quote: mode = 1 continue else: current+=c mode=2 continue elif mode==1: if c=='\n': raise Exception('Missing Closing Quote!') if c==self.quote: mode = 3 continue else: current+=c continue elif mode==2: if c=='\n': res.append(current) return res if c==self.delimeter: res.append(current) current = '' mode=0 continue else: current+=c continue elif mode==3: if c=='\n': res.append(current) return res elif c==self.delimeter: res.append(current) current = '' mode=0 continue else: raise Exception('Found character after quote before delimeter!') return res class Writer(): """ writer = csv.DictWriter(csvfile) writer.writeRow(self.header) for p in self.presets.keys(): writer.writerow(self.confDict2RowDict(p,self.presets[p])) """ def __init__(self,openFile,delimeter=',',quote='"'): self.openFile = openFile self.delimeter = delimeter self.quote = quote def writeRow(self,row): """ row is a list of elements, potentially contaning a delimeter! if the elt has a delimeter, then quote it, """ #import gc #print(gc.mem_free()) #print(row) #print(row[-1]) tooFile = '' for elt in row[:-1]: tooFile += self.fix(elt) + self.delimeter tooFile += self.fix(row[-1]) + '\n' self.openFile.write(tooFile) def fix(self,elt): res = str(elt) if res.find(self.delimeter) >= 0: return '%c%s%c'%(self.quote,res,self.quote) else: return res
gpl-2.0
-5,950,035,282,991,769,000
33.686391
88
0.418287
false
mgit-at/ansible
lib/ansible/modules/network/ios/ios_user.py
9
15497
#!/usr/bin/python # -*- coding: utf-8 -*- # (c) 2017, Ansible by Red Hat, inc # # This file is part of Ansible by Red Hat # # Ansible is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Ansible is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Ansible. If not, see <http://www.gnu.org/licenses/>. # ANSIBLE_METADATA = {'metadata_version': '1.1', 'status': ['preview'], 'supported_by': 'network'} DOCUMENTATION = """ --- module: ios_user version_added: "2.4" author: "Trishna Guha (@trishnaguha)" short_description: Manage the aggregate of local users on Cisco IOS device description: - This module provides declarative management of the local usernames configured on network devices. It allows playbooks to manage either individual usernames or the aggregate of usernames in the current running config. It also supports purging usernames from the configuration that are not explicitly defined. notes: - Tested against IOS 15.6 options: aggregate: description: - The set of username objects to be configured on the remote Cisco IOS device. The list entries can either be the username or a hash of username and properties. This argument is mutually exclusive with the C(name) argument. aliases: ['users', 'collection'] name: description: - The username to be configured on the Cisco IOS device. This argument accepts a string value and is mutually exclusive with the C(aggregate) argument. Please note that this option is not same as C(provider username). configured_password: description: - The password to be configured on the Cisco IOS device. The password needs to be provided in clear and it will be encrypted on the device. Please note that this option is not same as C(provider password). update_password: description: - Since passwords are encrypted in the device running config, this argument will instruct the module when to change the password. When set to C(always), the password will always be updated in the device and when set to C(on_create) the password will be updated only if the username is created. default: always choices: ['on_create', 'always'] password_type: description: - This argument determines whether a 'password' or 'secret' will be configured. default: secret choices: ['secret', 'password'] version_added: "2.8" privilege: description: - The C(privilege) argument configures the privilege level of the user when logged into the system. This argument accepts integer values in the range of 1 to 15. view: description: - Configures the view for the username in the device running configuration. The argument accepts a string value defining the view name. This argument does not check if the view has been configured on the device. aliases: ['role'] sshkey: description: - Specifies the SSH public key to configure for the given username. This argument accepts a valid SSH key value. version_added: "2.7" nopassword: description: - Defines the username without assigning a password. This will allow the user to login to the system without being authenticated by a password. type: bool purge: description: - Instructs the module to consider the resource definition absolute. It will remove any previously configured usernames on the device with the exception of the `admin` user (the current defined set of users). type: bool default: false state: description: - Configures the state of the username definition as it relates to the device operational configuration. When set to I(present), the username(s) should be configured in the device active configuration and when set to I(absent) the username(s) should not be in the device active configuration default: present choices: ['present', 'absent'] extends_documentation_fragment: ios """ EXAMPLES = """ - name: create a new user ios_user: name: ansible nopassword: True sshkey: "{{ lookup('file', '~/.ssh/id_rsa.pub') }}" state: present - name: remove all users except admin ios_user: purge: yes - name: remove all users except admin and these listed users ios_user: aggregate: - name: testuser1 - name: testuser2 - name: testuser3 purge: yes - name: set multiple users to privilege level 15 ios_user: aggregate: - name: netop - name: netend privilege: 15 state: present - name: set user view/role ios_user: name: netop view: network-operator state: present - name: Change Password for User netop ios_user: name: netop configured_password: "{{ new_password }}" update_password: always state: present - name: Aggregate of users ios_user: aggregate: - name: ansibletest2 - name: ansibletest3 view: network-admin - name: Add a user specifying password type ios_user: name: ansibletest4 configured_password: "{{ new_password }}" password_type: password - name: Delete users with aggregate ios_user: aggregate: - name: ansibletest1 - name: ansibletest2 - name: ansibletest3 state: absent """ RETURN = """ commands: description: The list of configuration mode commands to send to the device returned: always type: list sample: - username ansible secret password - username admin secret admin """ from copy import deepcopy import re import base64 import hashlib from functools import partial from ansible.module_utils.basic import AnsibleModule from ansible.module_utils.network.common.utils import remove_default_spec from ansible.module_utils.network.ios.ios import get_config, load_config from ansible.module_utils.six import iteritems from ansible.module_utils.network.ios.ios import ios_argument_spec, check_args def validate_privilege(value, module): if value and not 1 <= value <= 15: module.fail_json(msg='privilege must be between 1 and 15, got %s' % value) def user_del_cmd(username): return { 'command': 'no username %s' % username, 'prompt': 'This operation will remove all username related configurations with same name', 'answer': 'y', 'newline': False, } def sshkey_fingerprint(sshkey): # IOS will accept a MD5 fingerprint of the public key # and is easier to configure in a single line # we calculate this fingerprint here if not sshkey: return None if ' ' in sshkey: # ssh-rsa AAA...== comment keyparts = sshkey.split(' ') keyparts[1] = hashlib.md5(base64.b64decode(keyparts[1])).hexdigest().upper() return ' '.join(keyparts) else: # just the key, assume rsa type return 'ssh-rsa %s' % hashlib.md5(base64.b64decode(sshkey)).hexdigest().upper() def map_obj_to_commands(updates, module): commands = list() state = module.params['state'] update_password = module.params['update_password'] password_type = module.params['password_type'] def needs_update(want, have, x): return want.get(x) and (want.get(x) != have.get(x)) def add(command, want, x): command.append('username %s %s' % (want['name'], x)) def add_ssh(command, want, x=None): command.append('ip ssh pubkey-chain') if x: command.append('username %s' % want['name']) command.append('key-hash %s' % x) command.append('exit') else: command.append('no username %s' % want['name']) command.append('exit') for update in updates: want, have = update if want['state'] == 'absent': if have['sshkey']: add_ssh(commands, want) else: commands.append(user_del_cmd(want['name'])) if needs_update(want, have, 'view'): add(commands, want, 'view %s' % want['view']) if needs_update(want, have, 'privilege'): add(commands, want, 'privilege %s' % want['privilege']) if needs_update(want, have, 'sshkey'): add_ssh(commands, want, want['sshkey']) if needs_update(want, have, 'configured_password'): if update_password == 'always' or not have: if have and password_type != have['password_type']: module.fail_json(msg='Can not have both a user password and a user secret.' + ' Please choose one or the other.') add(commands, want, '%s %s' % (password_type, want['configured_password'])) if needs_update(want, have, 'nopassword'): if want['nopassword']: add(commands, want, 'nopassword') else: add(commands, want, user_del_cmd(want['name'])) return commands def parse_view(data): match = re.search(r'view (\S+)', data, re.M) if match: return match.group(1) def parse_sshkey(data): match = re.search(r'key-hash (\S+ \S+(?: .+)?)$', data, re.M) if match: return match.group(1) def parse_privilege(data): match = re.search(r'privilege (\S+)', data, re.M) if match: return int(match.group(1)) def parse_password_type(data): type = None if data and data.split()[-3] in ['password', 'secret']: type = data.split()[-3] return type def map_config_to_obj(module): data = get_config(module, flags=['| section username']) match = re.findall(r'(?:^(?:u|\s{2}u))sername (\S+)', data, re.M) if not match: return list() instances = list() for user in set(match): regex = r'username %s .+$' % user cfg = re.findall(regex, data, re.M) cfg = '\n'.join(cfg) sshregex = r'username %s\n\s+key-hash .+$' % user sshcfg = re.findall(sshregex, data, re.M) sshcfg = '\n'.join(sshcfg) obj = { 'name': user, 'state': 'present', 'nopassword': 'nopassword' in cfg, 'configured_password': None, 'password_type': parse_password_type(cfg), 'sshkey': parse_sshkey(sshcfg), 'privilege': parse_privilege(cfg), 'view': parse_view(cfg) } instances.append(obj) return instances def get_param_value(key, item, module): # if key doesn't exist in the item, get it from module.params if not item.get(key): value = module.params[key] # if key does exist, do a type check on it to validate it else: value_type = module.argument_spec[key].get('type', 'str') type_checker = module._CHECK_ARGUMENT_TYPES_DISPATCHER[value_type] type_checker(item[key]) value = item[key] # validate the param value (if validator func exists) validator = globals().get('validate_%s' % key) if all((value, validator)): validator(value, module) return value def map_params_to_obj(module): users = module.params['aggregate'] if not users: if not module.params['name'] and module.params['purge']: return list() elif not module.params['name']: module.fail_json(msg='username is required') else: aggregate = [{'name': module.params['name']}] else: aggregate = list() for item in users: if not isinstance(item, dict): aggregate.append({'name': item}) elif 'name' not in item: module.fail_json(msg='name is required') else: aggregate.append(item) objects = list() for item in aggregate: get_value = partial(get_param_value, item=item, module=module) item['configured_password'] = get_value('configured_password') item['nopassword'] = get_value('nopassword') item['privilege'] = get_value('privilege') item['view'] = get_value('view') item['sshkey'] = sshkey_fingerprint(get_value('sshkey')) item['state'] = get_value('state') objects.append(item) return objects def update_objects(want, have): updates = list() for entry in want: item = next((i for i in have if i['name'] == entry['name']), None) if all((item is None, entry['state'] == 'present')): updates.append((entry, {})) elif item: for key, value in iteritems(entry): if value and value != item[key]: updates.append((entry, item)) return updates def main(): """ main entry point for module execution """ element_spec = dict( name=dict(), configured_password=dict(no_log=True), nopassword=dict(type='bool'), update_password=dict(default='always', choices=['on_create', 'always']), password_type=dict(default='secret', choices=['secret', 'password']), privilege=dict(type='int'), view=dict(aliases=['role']), sshkey=dict(), state=dict(default='present', choices=['present', 'absent']) ) aggregate_spec = deepcopy(element_spec) aggregate_spec['name'] = dict(required=True) # remove default in aggregate spec, to handle common arguments remove_default_spec(aggregate_spec) argument_spec = dict( aggregate=dict(type='list', elements='dict', options=aggregate_spec, aliases=['users', 'collection']), purge=dict(type='bool', default=False) ) argument_spec.update(element_spec) argument_spec.update(ios_argument_spec) mutually_exclusive = [('name', 'aggregate')] module = AnsibleModule(argument_spec=argument_spec, mutually_exclusive=mutually_exclusive, supports_check_mode=True) warnings = list() if module.params['password'] and not module.params['configured_password']: warnings.append( 'The "password" argument is used to authenticate the current connection. ' + 'To set a user password use "configured_password" instead.' ) check_args(module, warnings) result = {'changed': False} if warnings: result['warnings'] = warnings want = map_params_to_obj(module) have = map_config_to_obj(module) commands = map_obj_to_commands(update_objects(want, have), module) if module.params['purge']: want_users = [x['name'] for x in want] have_users = [x['name'] for x in have] for item in set(have_users).difference(want_users): if item != 'admin': commands.append(user_del_cmd(item)) result['commands'] = commands if commands: if not module.check_mode: load_config(module, commands) result['changed'] = True module.exit_json(**result) if __name__ == '__main__': main()
gpl-3.0
4,922,159,421,067,481,000
30.691207
110
0.62554
false
arne-cl/discoursegraphs
tests/test_relabel.py
1
7853
#!/usr/bin/env python from networkx import ( convert_node_labels_to_integers, empty_graph, DiGraph, Graph, MultiDiGraph, MultiGraph, nx) import pytest from discoursegraphs.relabel import relabel_nodes """ This module contains tests for the relabel module, which was slightly adapted from the same module in networkx. Tests were 'translated' from nose to py.test. """ def assert_edges_equal(edges1, edges2): # Assumes iterables with u,v nodes as # edge tuples (u,v), or # edge tuples with data dicts (u,v,d), or # edge tuples with keys and data dicts (u,v,k, d) from collections import defaultdict d1 = defaultdict(dict) d2 = defaultdict(dict) c1 = 0 for c1,e in enumerate(edges1): u, v = e[0], e[1] data = e[2:] d1[u][v] = data d1[v][u] = data c2 = 0 for c2, e in enumerate(edges2): u, v = e[0], e[1] data = e[2:] d2[u][v] = data d2[v][u] = data assert c1 == c2 assert d1 == d2 @pytest.mark.xfail def test_convert_node_labels_to_integers(): """test stopped working after converting it from nose -> pytest TypeError: 'int' object is not iterable """ # test that empty graph converts fine for all options G = empty_graph() H = convert_node_labels_to_integers(G, 100) assert H.name == '(empty_graph(0))_with_int_labels' assert list(H.nodes()) == [] assert list(H.edges()) == [] for opt in ["default", "sorted", "increasing degree", "decreasing degree"]: G = empty_graph() H = convert_node_labels_to_integers(G, 100, ordering=opt) assert H.name == '(empty_graph(0))_with_int_labels' assert list(H.nodes()) == [] assert list(H.edges()) == [] G = empty_graph() G.add_edges_from([('A','B'), ('A','C'), ('B','C'), ('C','D')]) G.name="paw" H = convert_node_labels_to_integers(G) degH = (d for n, d in H.degree()) degG = (d for n, d in G.degree()) assert sorted(degH) == sorted(degG) H = convert_node_labels_to_integers(G, 1000) degH = (d for n, d in H.degree()) degG = (d for n, d in G.degree()) assert sorted(degH) == sorted(degG) assert list(H.nodes()) == [1000, 1001, 1002, 1003] H = convert_node_labels_to_integers(G, ordering="increasing degree") degH = (d for n, d in H.degree()) degG = (d for n, d in G.degree()) assert sorted(degH) == sorted(degG) assert degree(H, 0) == 1 assert degree(H, 1) == 2 assert degree(H, 2) == 2 assert degree(H, 3) == 3 H = convert_node_labels_to_integers(G,ordering="decreasing degree") degH = (d for n, d in H.degree()) degG = (d for n, d in G.degree()) assert sorted(degH) == sorted(degG) assert degree(H,0) == 3 assert degree(H,1) == 2 assert degree(H,2) == 2 assert degree(H,3) == 1 H = convert_node_labels_to_integers(G,ordering="increasing degree", label_attribute='label') degH = (d for n, d in H.degree()) degG = (d for n, d in G.degree()) assert sorted(degH) == sorted(degG) assert degree(H,0) == 1 assert degree(H,1) == 2 assert degree(H,2) == 2 assert degree(H,3) == 3 # check mapping assert H.node[3]['label'] == 'C' assert H.node[0]['label'] == 'D' assert (H.node[1]['label'] == 'A' or H.node[2]['label'] == 'A') assert (H.node[1]['label'] == 'B' or H.node[2]['label'] == 'B') @pytest.mark.xfail def test_convert_to_integers2(): """test stopped working after converting it from nose -> pytest TypeError: 'int' object is not iterable """ G = empty_graph() G.add_edges_from([('C','D'),('A','B'),('A','C'),('B','C')]) G.name="paw" H = convert_node_labels_to_integers(G,ordering="sorted") degH = (d for n, d in H.degree()) degG = (d for n, d in G.degree()) assert sorted(degH) == sorted(degG) H = convert_node_labels_to_integers(G,ordering="sorted", label_attribute='label') assert H.node[0]['label'] == 'A' assert H.node[1]['label'] == 'B' assert H.node[2]['label'] == 'C' assert H.node[3]['label'] == 'D' def test_convert_to_integers_raise(): G = nx.Graph() with pytest.raises(nx.NetworkXError) as excinfo: H=convert_node_labels_to_integers(G, ordering="increasing age") @pytest.mark.xfail def test_relabel_nodes_copy(): """failed after switching to dg.relabel_nodes""" G = empty_graph() G.add_edges_from([('A','B'),('A','C'),('B','C'),('C','D')]) mapping={'A':'aardvark','B':'bear','C':'cat','D':'dog'} H = relabel_nodes(G,mapping) assert sorted(H.nodes()) == ['aardvark', 'bear', 'cat', 'dog'] @pytest.mark.xfail def test_relabel_nodes_function(): """failed after switching to dg.relabel_nodes""" G = empty_graph() G.add_edges_from([('A','B'),('A','C'),('B','C'),('C','D')]) # function mapping no longer encouraged but works def mapping(n): return ord(n) H = relabel_nodes(G,mapping) assert sorted(H.nodes()) == [65, 66, 67, 68] @pytest.mark.xfail def test_relabel_nodes_graph(): """failed after switching to dg.relabel_nodes""" G = Graph([('A','B'),('A','C'),('B','C'),('C','D')]) mapping = {'A':'aardvark','B':'bear','C':'cat','D':'dog'} H = relabel_nodes(G,mapping) assert sorted(H.nodes()) == ['aardvark', 'bear', 'cat', 'dog'] @pytest.mark.xfail def test_relabel_nodes_digraph(): """failed after switching to dg.relabel_nodes""" G = DiGraph([('A','B'),('A','C'),('B','C'),('C','D')]) mapping = {'A':'aardvark','B':'bear','C':'cat','D':'dog'} H = relabel_nodes(G,mapping,copy=False) assert sorted(H.nodes()) == ['aardvark', 'bear', 'cat', 'dog'] @pytest.mark.xfail def test_relabel_nodes_multigraph(): """failed after switching to dg.relabel_nodes""" G = MultiGraph([('a','b'),('a','b')]) mapping = {'a':'aardvark','b':'bear'} G = relabel_nodes(G,mapping,copy=False) assert sorted(G.nodes()) == ['aardvark', 'bear'] assert_edges_equal(sorted(G.edges()), [('aardvark', 'bear'), ('aardvark', 'bear')]) @pytest.mark.xfail def test_relabel_nodes_multidigraph(): """failed after switching to dg.relabel_nodes""" G = MultiDiGraph([('a','b'),('a','b')]) mapping = {'a':'aardvark','b':'bear'} G = relabel_nodes(G,mapping,copy=False) assert sorted(G.nodes()) == ['aardvark', 'bear'] assert sorted(G.edges()) == [('aardvark', 'bear'), ('aardvark', 'bear')] @pytest.mark.xfail def test_relabel_isolated_nodes_to_same(): """failed after switching to dg.relabel_nodes""" G = Graph() G.add_nodes_from(range(4)) mapping = {1:1} H = relabel_nodes(G, mapping, copy=False) assert sorted(H.nodes()) == list(range(4)) def test_relabel_nodes_missing(): G = Graph([('A','B'),('A','C'),('B','C'),('C','D')]) mapping = {0:'aardvark'} with pytest.raises(KeyError) as excinfo: G = relabel_nodes(G,mapping,copy=False) def test_relabel_toposort(): K5 = nx.complete_graph(4) G = nx.complete_graph(4) G = nx.relabel_nodes(G, {i: i+1 for i in range(4)}, copy=False) assert nx.is_isomorphic(K5,G) G = nx.complete_graph(4) G = nx.relabel_nodes(G, {i: i-1 for i in range(4)}, copy=False) assert nx.is_isomorphic(K5,G) def test_relabel_selfloop(): G = nx.DiGraph([(1, 1), (1, 2), (2, 3)]) G = nx.relabel_nodes(G, {1: 'One', 2: 'Two', 3: 'Three'}, copy=False) assert sorted(G.nodes()) == ['One','Three','Two'] G = nx.MultiDiGraph([(1, 1), (1, 2), (2, 3)]) G = nx.relabel_nodes(G, {1: 'One', 2: 'Two', 3: 'Three'}, copy=False) assert sorted(G.nodes()) == ['One','Three','Two'] G = nx.MultiDiGraph([(1, 1)]) G = nx.relabel_nodes(G, {1: 0}, copy=False) assert sorted(G.nodes()) == [0]
bsd-3-clause
8,131,633,362,504,863,000
32.135021
79
0.573539
false
mrquim/mrquimrepo
script.module.youtube.dl/lib/youtube_dl/extractor/tinypic.py
64
1896
from __future__ import unicode_literals import re from .common import InfoExtractor from ..utils import ExtractorError class TinyPicIE(InfoExtractor): IE_NAME = 'tinypic' IE_DESC = 'tinypic.com videos' _VALID_URL = r'https?://(?:.+?\.)?tinypic\.com/player\.php\?v=(?P<id>[^&]+)&s=\d+' _TESTS = [ { 'url': 'http://tinypic.com/player.php?v=6xw7tc%3E&s=5#.UtqZmbRFCM8', 'md5': '609b74432465364e72727ebc6203f044', 'info_dict': { 'id': '6xw7tc', 'ext': 'flv', 'title': 'shadow phenomenon weird', }, }, { 'url': 'http://de.tinypic.com/player.php?v=dy90yh&s=8', 'only_matching': True, } ] def _real_extract(self, url): mobj = re.match(self._VALID_URL, url) video_id = mobj.group('id') webpage = self._download_webpage(url, video_id, 'Downloading page') mobj = re.search(r'(?m)fo\.addVariable\("file",\s"(?P<fileid>[\da-z]+)"\);\n' r'\s+fo\.addVariable\("s",\s"(?P<serverid>\d+)"\);', webpage) if mobj is None: raise ExtractorError('Video %s does not exist' % video_id, expected=True) file_id = mobj.group('fileid') server_id = mobj.group('serverid') KEYWORDS_SUFFIX = ', Video, images, photos, videos, myspace, ebay, video hosting, photo hosting' keywords = self._html_search_meta('keywords', webpage, 'title') title = keywords[:-len(KEYWORDS_SUFFIX)] if keywords.endswith(KEYWORDS_SUFFIX) else '' video_url = 'http://v%s.tinypic.com/%s.flv' % (server_id, file_id) thumbnail = 'http://v%s.tinypic.com/%s_th.jpg' % (server_id, file_id) return { 'id': file_id, 'url': video_url, 'thumbnail': thumbnail, 'title': title }
gpl-2.0
-4,597,872,331,539,985,000
32.857143
104
0.53692
false
moyogo/defcon
Lib/defcon/objects/glyph.py
1
51864
from __future__ import absolute_import import weakref from warnings import warn from fontTools.misc.arrayTools import unionRect from defcon.objects.base import BaseObject from defcon.objects.contour import Contour from defcon.objects.point import Point from defcon.objects.component import Component from defcon.objects.anchor import Anchor from defcon.objects.lib import Lib from defcon.objects.guideline import Guideline from defcon.objects.image import Image from defcon.objects.color import Color from defcon.tools.representations import glyphAreaRepresentationFactory from defcon.pens.decomposeComponentPointPen import DecomposeComponentPointPen def addRepresentationFactory(name, factory): warn("addRepresentationFactory is deprecated. Use the functions in defcon.__init__.", DeprecationWarning) Glyph.representationFactories[name] = dict(factory=factory, destructiveNotifications=["Glyph.Changed"]) def removeRepresentationFactory(name): warn("removeRepresentationFactory is deprecated. Use the functions in defcon.__init__.", DeprecationWarning) del Glyph.representationFactories[name] class Glyph(BaseObject): """ This object represents a glyph and it contains contour, component, anchor and other assorted bits data about the glyph. **This object posts the following notifications:** - Glyph.Changed - Glyph.BeginUndo - Glyph.EndUndo - Glyph.BeginRedo - Glyph.EndRedo - Glyph.NameWillChange - Glyph.NameChanged - Glyph.UnicodesChanged - Glyph.WidthChanged - Glyph.HeightChanged - Glyph.LeftMarginWillChange - Glyph.LeftMarginDidChange - Glyph.RightMarginWillChange - Glyph.RightMarginDidChange - Glyph.TopMarginWillChange - Glyph.TopMarginDidChange - Glyph.BottomMarginWillChange - Glyph.BottomMarginDidChange - Glyph.NoteChanged - Glyph.LibChanged - Glyph.ImageChanged - Glyph.ImageWillBeDeleted - Glyph.ContourWillBeAdded - Glyph.ContourWillBeDeleted - Glyph.ContoursChanged - Glyph.ComponentWillBeAdded - Glyph.ComponentWillBeDeleted - Glyph.ComponentsChanged - Glyph.AnchorWillBeAdded - Glyph.AnchorWillBeDeleted - Glyph.AnchorsChanged - Glyph.GuidelineWillBeAdded - Glyph.GuidelineWillBeDeleted - Glyph.GuidelinesChanged - Glyph.MarkColorChanged - Glyph.VerticalOriginChanged The Glyph object has list like behavior. This behavior allows you to interact with contour data directly. For example, to get a particular contour:: contour = glyph[0] To iterate over all contours:: for contour in glyph: To get the number of contours:: contourCount = len(glyph) To interact with components or anchors in a similar way, use the ``components`` and ``anchors`` attributes. """ changeNotificationName = "Glyph.Changed" beginUndoNotificationName = "Glyph.BeginUndo" endUndoNotificationName = "Glyph.EndUndo" beginRedoNotificationName = "Glyph.BeginRedo" endRedoNotificationName = "Glyph.EndRedo" representationFactories = { "defcon.glyph.area" : dict( factory=glyphAreaRepresentationFactory, destructiveNotifications=("Glyph.ContoursChanged", "Glyph.ComponentsChanged", "Glyph.ComponentBaseGlyphDataChanged") ) } def __init__(self, layer=None, contourClass=None, pointClass=None, componentClass=None, anchorClass=None, guidelineClass=None, libClass=None, imageClass=None): layerSet = font = None if layer is not None: layerSet = layer.layerSet if layerSet is not None: font = weakref.ref(layer.layerSet.font) layerSet = weakref.ref(layer.layerSet) layer = weakref.ref(layer) self._font = font self._layerSet = layerSet self._layer = layer super(Glyph, self).__init__() self.beginSelfNotificationObservation() self._isLoading = False self._dirty = False self._name = None self._unicodes = [] self._width = 0 self._height = 0 self._note = None self._image = None self._identifiers = set() self._shallowLoadedContours = None self._contours = [] self._components = [] self._anchors = [] self._guidelines = [] self._lib = None if contourClass is None: contourClass = Contour if pointClass is None: pointClass = Point if componentClass is None: componentClass = Component if anchorClass is None: anchorClass = Anchor if guidelineClass is None: guidelineClass = Guideline if libClass is None: libClass = Lib if imageClass is None: imageClass = Image self._contourClass = contourClass self._pointClass = pointClass self._componentClass = componentClass self._anchorClass = anchorClass self._guidelineClass = guidelineClass self._libClass = libClass self._imageClass = imageClass def __del__(self): super(Glyph, self).__del__() self._contours = None self._components = None self._anchors = None self._guidelines = None self._lib = None self._image = None # -------------- # Parent Objects # -------------- def getParent(self): return self.font def _get_font(self): if self._font is None: return None return self._font() font = property(_get_font, doc="The :class:`Font` that this glyph belongs to.") def _get_layerSet(self): if self._layerSet is None: return None return self._layerSet() layerSet = property(_get_layerSet, doc="The :class:`LayerSet` that this glyph belongs to.") def _get_layer(self): if self._layer is None: return None return self._layer() layer = property(_get_layer, doc="The :class:`Layer` that this glyph belongs to.") # ---------------- # Basic Attributes # ---------------- # identifiers def _get_identifiers(self): return self._identifiers identifiers = property(_get_identifiers, doc="Set of identifiers for the glyph. This is primarily for internal use.") # name def _set_name(self, value): oldName = self._name if oldName != value: self.postNotification(notification="Glyph.NameWillChange", data=dict(oldValue=oldName, newValue=value)) self._name = value self.postNotification(notification="Glyph.NameChanged", data=dict(oldValue=oldName, newValue=value)) self.dirty = True def _get_name(self): return self._name name = property(_get_name, _set_name, doc="The name of the glyph. Setting this posts *GLyph.NameChanged* and *Glyph.NameChanged* notifications.") # unicodes def _get_unicodes(self): return list(self._unicodes) def _set_unicodes(self, value): oldValue = self.unicodes if oldValue != value: self._unicodes = list(value) self.postNotification(notification="Glyph.UnicodesChanged", data=dict(oldValue=oldValue, newValue=value)) self.dirty = True unicodes = property(_get_unicodes, _set_unicodes, doc="The list of unicode values assigned to the glyph. Setting this posts *Glyph.UnicodesChanged* and *Glyph.Changed* notifications.") def _get_unicode(self): if self._unicodes: return self._unicodes[0] return None def _set_unicode(self, value): if value is None: self.unicodes = [] else: self.unicodes = [value] unicode = property(_get_unicode, _set_unicode, doc="The primary unicode value for the glyph. This is the equivalent of ``glyph.unicodes[0]``. This is a convenience attribute that works with the ``unicodes`` attribute.") # ------- # Metrics # ------- # bounds def _getContourComponentBounds(self, attr): bounds = None subObjects = [contour for contour in self] subObjects += [component for component in self.components] for subObject in subObjects: b = getattr(subObject, attr) if b is not None: if bounds is None: bounds = b else: bounds = unionRect(bounds, b) return bounds def _get_bounds(self): return self._getContourComponentBounds("bounds") bounds = property(_get_bounds, doc="The bounds of the glyph's outline expressed as a tuple of form (xMin, yMin, xMax, yMax).") def _get_controlPointBounds(self): return self._getContourComponentBounds("controlPointBounds") controlPointBounds = property(_get_controlPointBounds, doc="The control bounds of all points in the glyph. This only measures the point positions, it does not measure curves. So, curves without points at the extrema will not be properly measured.") # area def _get_area(self): return self.getRepresentation("defcon.glyph.area") area = property(_get_area, doc="The area of the glyph's outline.") # margins def _get_leftMargin(self): bounds = self.bounds if bounds is None: return None xMin, yMin, xMax, yMax = bounds return xMin def _set_leftMargin(self, value): bounds = self.bounds if bounds is None: return xMin, yMin, xMax, yMax = bounds oldValue = xMin diff = value - xMin if value != oldValue: self.postNotification(notification="Glyph.LeftMarginWillChange", data=dict(oldValue=oldValue, newValue=value)) self.move((diff, 0)) self.width += diff self.dirty = True self.postNotification(notification="Glyph.LeftMarginDidChange", data=dict(oldValue=oldValue, newValue=value)) leftMargin = property(_get_leftMargin, _set_leftMargin, doc="The left margin of the glyph. Setting this posts *Glyph.WidthChanged*, *Glyph.LeftMarginWillChange*, *Glyph.LeftMarginDidChange* and *Glyph.Changed* notifications among others.") def _get_rightMargin(self): bounds = self.bounds if bounds is None: return None xMin, yMin, xMax, yMax = bounds return self._width - xMax def _set_rightMargin(self, value): bounds = self.bounds if bounds is None: return xMin, yMin, xMax, yMax = bounds oldValue = self._width - xMax if oldValue != value: self.postNotification(notification="Glyph.RightMarginWillChange", data=dict(oldValue=oldValue, newValue=value)) self.width = xMax + value self.dirty = True self.postNotification(notification="Glyph.RightMarginDidChange", data=dict(oldValue=oldValue, newValue=value)) rightMargin = property(_get_rightMargin, _set_rightMargin, doc="The right margin of the glyph. Setting this posts *Glyph.WidthChanged*, *Glyph.RightMarginWillChange*, *Glyph.RightMarginDidChange* and *Glyph.Changed* notifications among others.") def _get_bottomMargin(self): bounds = self.bounds if bounds is None: return None xMin, yMin, xMax, yMax = bounds if self.verticalOrigin is None: return yMin else: return yMin - (self.verticalOrigin - self.height) def _set_bottomMargin(self, value): bounds = self.bounds if bounds is None: return xMin, yMin, xMax, yMax = bounds if self.verticalOrigin is None: oldValue = yMin self.verticalOrigin = self.height else: oldValue = yMin - (self.verticalOrigin - self.height) diff = value - oldValue if value != oldValue: self.postNotification(notification="Glyph.BottomMarginWillChange", data=dict(oldValue=oldValue, newValue=value)) self.height += diff self.dirty = True self.postNotification(notification="Glyph.BottomMarginDidChange", data=dict(oldValue=oldValue, newValue=value)) bottomMargin = property(_get_bottomMargin, _set_bottomMargin, doc="The bottom margin of the glyph. Setting this posts *Glyph.HeightChanged*, *Glyph.BottomMarginWillChange*, *Glyph.BottomMarginDidChange* and *Glyph.Changed* notifications among others.") def _get_topMargin(self): bounds = self.bounds if bounds is None: return None xMin, yMin, xMax, yMax = bounds if self.verticalOrigin is None: return self._height - yMax else: return self.verticalOrigin - yMax def _set_topMargin(self, value): bounds = self.bounds if bounds is None: return xMin, yMin, xMax, yMax = bounds if self.verticalOrigin is None: oldValue = self._height - yMax else: oldValue = self.verticalOrigin - yMax diff = value - oldValue if oldValue != value: self.postNotification(notification="Glyph.TopMarginWillChange", data=dict(oldValue=oldValue, newValue=value)) self.verticalOrigin = yMax + value self.height += diff self.dirty = True self.postNotification(notification="Glyph.TopMarginWillChange", data=dict(oldValue=oldValue, newValue=value)) topMargin = property(_get_topMargin, _set_topMargin, doc="The top margin of the glyph. Setting this posts *Glyph.HeightChanged*, *Glyph.VerticalOriginChanged*, *Glyph.TopMarginWillChange*, *Glyph.TopMarginDidChange* and *Glyph.Changed* notifications among others.") # width def _get_width(self): return self._width def _set_width(self, value): oldValue = self._width if oldValue != value: self._width = value self.postNotification(notification="Glyph.WidthChanged", data=dict(oldValue=oldValue, newValue=value)) self.dirty = True width = property(_get_width, _set_width, doc="The width of the glyph. Setting this posts *Glyph.WidthChanged* and *Glyph.Changed* notifications.") # height def _get_height(self): return self._height def _set_height(self, value): oldValue = self._height if oldValue != value: self._height = value self.postNotification(notification="Glyph.HeightChanged", data=dict(oldValue=oldValue, newValue=value)) self.dirty = True height = property(_get_height, _set_height, doc="The height of the glyph. Setting this posts *Glyph.HeightChanged* and *Glyph.Changed* notifications.") # ---------------------- # Lib Wrapped Attributes # ---------------------- # mark color def _get_markColor(self): value = self.lib.get("public.markColor") if value is not None: value = Color(value) return value def _set_markColor(self, value): # convert to a color object if value is not None: value = Color(value) # don't write if there is no change oldValue = self.lib.get("public.markColor") if oldValue is not None: oldValue = Color(oldValue) if value == oldValue: return # remove if value is None: if "public.markColor" in self.lib: del self.lib["public.markColor"] # store else: self.lib["public.markColor"] = value self.postNotification(notification="Glyph.MarkColorChanged", data=dict(oldValue=oldValue, newValue=value)) markColor = property(_get_markColor, _set_markColor, doc="The glyph's mark color. When setting, the value can be a UFO color string, a sequence of (r, g, b, a) or a :class:`Color` object. Setting this posts *Glyph.MarkColorChanged* and *Glyph.Changed* notifications.") # vertical origin def _get_verticalOrigin(self): value = self.lib.get("public.verticalOrigin") return value def _set_verticalOrigin(self, value): # don't write if there is no change oldValue = self.lib.get("public.verticalOrigin") if value == oldValue: return # remove if value is None: if "public.verticalOrigin" in self.lib: del self.lib["public.verticalOrigin"] # store else: self.lib["public.verticalOrigin"] = value self.postNotification(notification="Glyph.VerticalOriginChanged", data=dict(oldValue=oldValue, newValue=value)) verticalOrigin = property(_get_verticalOrigin, _set_verticalOrigin, doc="The glyph's vertical origin. Setting this posts *Glyph.VerticalOriginChanged* and *Glyph.Changed* notifications.") # ------- # Pen API # ------- def draw(self, pen): """ Draw the glyph with **pen**. """ from fontTools.pens.pointPen import PointToSegmentPen pointPen = PointToSegmentPen(pen) self.drawPoints(pointPen) def drawPoints(self, pointPen): """ Draw the glyph with **pointPen**. """ if self._shallowLoadedContours: self._drawShallowLoadedContours(pointPen, self._shallowLoadedContours) else: for contour in self._contours: contour.drawPoints(pointPen) for component in self._components: component.drawPoints(pointPen) def _drawShallowLoadedContours(self, pointPen, contours): for contour in contours: try: pointPen.beginPath(identifier=contour.get("identifier")) except TypeError: pointPen.beginPath() warn("The beginPath method needs an identifier kwarg. The contour's identifier value has been discarded.", DeprecationWarning) for args, kwargs in contour["points"]: pointPen.addPoint(*args, **kwargs) pointPen.endPath() def getPen(self): """ Get the pen used to draw into this glyph. """ from fontTools.pens.pointPen import SegmentToPointPen return SegmentToPointPen(self.getPointPen()) def getPointPen(self): """ Get the point pen used to draw into this glyph. """ from defcon.pens.glyphObjectPointPen import GlyphObjectPointPen, GlyphObjectLoadingPointPen if self._isLoading: self._shallowLoadedContours = [] return GlyphObjectLoadingPointPen(self) else: return GlyphObjectPointPen(self) # -------- # Contours # -------- def _get_contourClass(self): return self._contourClass contourClass = property(_get_contourClass, doc="The class used for contours.") def _get_pointClass(self): return self._pointClass pointClass = property(_get_pointClass, doc="The class used for points.") def _fullyLoadShallowLoadedContours(self): if not self._shallowLoadedContours: self._shallowLoadedContours = None return self.disableNotifications() contours = list(self._shallowLoadedContours) self._shallowLoadedContours = None dirty = self.dirty pointPen = self.getPointPen() self._drawShallowLoadedContours(pointPen, contours) self.dirty = dirty self.enableNotifications() def instantiateContour(self, contourDict=None): contour = self._contourClass( glyph=self, pointClass=self.pointClass ) if contourDict is not None: contour.setDataFromSerialization(contourDict) return contour def beginSelfContourNotificationObservation(self, contour): if contour.dispatcher is None: return contour.addObserver(observer=self, methodName="_contourChanged", notification="Contour.Changed") def endSelfContourNotificationObservation(self, contour): if contour.dispatcher is None: return contour.removeObserver(observer=self, notification="Contour.Changed") contour.endSelfNotificationObservation() def appendContour(self, contour): """ Append **contour** to the glyph. The contour must be a defcon :class:`Contour` object or a subclass of that object. An error will be raised if the contour's identifier or a point identifier conflicts with any of the identifiers within the glyph. This will post a *Glyph.Changed* notification. """ self.insertContour(len(self), contour) def insertContour(self, index, contour): """ Insert **contour** into the glyph at index. The contour must be a defcon :class:`Contour` object or a subclass of that object. An error will be raised if the contour's identifier or a point identifier conflicts with any of the identifiers within the glyph. This will post a *Glyph.Changed* notification. """ assert contour not in self assert contour.glyph in (self, None), "This contour belongs to another glyph." self.postNotification(notification="Glyph.ContourWillBeAdded", data=dict(object=contour)) if contour.glyph is None: identifiers = self._identifiers if contour.identifier is not None: assert contour.identifier not in identifiers identifiers.add(contour.identifier) for point in contour: if point.identifier is not None: assert point.identifier not in identifiers identifiers.add(point.identifier) contour.glyph = self contour.beginSelfNotificationObservation() self.beginSelfContourNotificationObservation(contour) self._contours.insert(index, contour) self.postNotification(notification="Glyph.ContoursChanged") self.dirty = True def removeContour(self, contour): """ Remove **contour** from the glyph. This will post a *Glyph.Changed* notification. """ if contour not in self: raise IndexError("contour not in glyph") self.postNotification(notification="Glyph.ContourWillBeDeleted", data=dict(object=contour)) identifiers = self._identifiers if contour.identifier is not None: identifiers.remove(contour.identifier) for point in contour: if point.identifier is not None: identifiers.remove(point.identifier) self._contours.remove(contour) self.endSelfContourNotificationObservation(contour) self.postNotification(notification="Glyph.ContoursChanged") self.dirty = True def contourIndex(self, contour): """ Get the index for **contour**. """ return self._getContourIndex(contour) def clearContours(self): """ Clear all contours from the glyph. This posts a *Glyph.Changed* notification. """ self.holdNotifications(note="Requested by Glyph.clearContours.") for contour in reversed(self): self.removeContour(contour) self.releaseHeldNotifications() def correctContourDirection(self, trueType=False, segmentLength=10): """ Correct the direction of all contours in the glyph. This posts a *Glyph.Changed* notification. """ # set the contours to the same direction for contour in self: contour.clockwise = False # sort the contours by area in reverse (i.e. largest first) contours = sorted(self, key=lambda contour: -contour.area) # build a tree of nested contours tree = {} for largeIndex, largeContour in enumerate(contours): for smallContour in contours[largeIndex + 1:]: if largeContour.contourInside(smallContour, segmentLength=segmentLength): if largeContour not in tree: tree[largeContour] = [] tree[largeContour].append(smallContour) # run through the tree, largest to smallest, flipping # the direction of each contour nested within another contour for largeContour in contours: if largeContour in tree: for smallContour in tree[largeContour]: smallContour.reverse() # set to the opposite if needed if trueType: for contour in self: contour.reverse() # ---------- # Components # ---------- def _get_componentClass(self): return self._componentClass componentClass = property(_get_componentClass, doc="The class used for components.") def _get_components(self): return list(self._components) components = property(_get_components, doc="An ordered list of :class:`Component` objects stored in the glyph.") def instantiateComponent(self, componentDict=None): component = self._componentClass( glyph=self ) if componentDict is not None: component.setDataFromSerialization(componentDict) return component def beginSelfComponentNotificationObservation(self, component): if component.dispatcher is None: return component.addObserver(observer=self, methodName="_componentChanged", notification="Component.Changed") component.addObserver(observer=self, methodName="_componentBaseGlyphDataChanged", notification="Component.BaseGlyphDataChanged") def endSelfComponentNotificationObservation(self, component): if component.dispatcher is None: return component.removeObserver(observer=self, notification="Component.Changed") component.removeObserver(observer=self, notification="Component.BaseGlyphDataChanged") component.endSelfNotificationObservation() def appendComponent(self, component): """ Append **component** to the glyph. The component must be a defcon :class:`Component` object or a subclass of that object. An error will be raised if the component's identifier conflicts with any of the identifiers within the glyph. This will post a *Glyph.Changed* notification. """ self.insertComponent(len(self._components), component) def insertComponent(self, index, component): """ Insert **component** into the glyph at index. The component must be a defcon :class:`Component` object or a subclass of that object. An error will be raised if the component's identifier conflicts with any of the identifiers within the glyph. This will post a *Glyph.Changed* notification. """ assert component not in self._components assert component.glyph in (self, None), "This component belongs to another glyph." self.postNotification(notification="Glyph.ComponentWillBeAdded", data=dict(object=component)) if component.glyph is None: if component.identifier is not None: identifiers = self._identifiers assert component.identifier not in identifiers identifiers.add(component.identifier) component.glyph = self component.beginSelfNotificationObservation() self.beginSelfComponentNotificationObservation(component) self._components.insert(index, component) self.postNotification(notification="Glyph.ComponentsChanged") self.dirty = True def removeComponent(self, component): """ Remove **component** from the glyph. This will post a *Glyph.Changed* notification. """ self.postNotification(notification="Glyph.ComponentWillBeDeleted", data=dict(object=component)) if component.identifier is not None: self._identifiers.remove(component.identifier) self._components.remove(component) self.endSelfComponentNotificationObservation(component) self.postNotification(notification="Glyph.ComponentsChanged") self.dirty = True def componentIndex(self, component): """ Get the index for **component**. """ return self._components.index(component) def clearComponents(self): """ Clear all components from the glyph. This posts a *Glyph.Changed* notification. """ self.holdNotifications(note="Requested by Glyph.clearComponents.") for component in reversed(self._components): self.removeComponent(component) self.releaseHeldNotifications() def decomposeComponent(self, component): """ Decompose **component**. This will preserve the identifiers in the incoming contours and points unless there is a conflict. In that case, the conflicting incoming identifier will be discarded. This posts *Glyph.ComponentsChanged*, *Glyph.ContoursChanged* and *Glyph.Changed* notifications. """ self.holdNotifications(note="Requested by Glyph.decomposeComponent.") layer = self.layer pointPen = DecomposeComponentPointPen(self, layer) self._decomposeComponent(component, layer, pointPen) self.releaseHeldNotifications() self.postNotification(notification="Glyph.ContoursChanged") def decomposeAllComponents(self): """ Decompose all components in this glyph. This will preserve the identifiers in the incoming contours and points unless there is a conflict. In that case, the conflicting incoming identifier will be discarded. This posts *Glyph.ComponentsChanged*, *Glyph.ContoursChanged* and *Glyph.Changed* notifications. """ if not self.components: return self.holdNotifications(note="Requested by Glyph.decomposeAllComponents.") layer = self.layer pointPen = DecomposeComponentPointPen(self, layer) for component in self.components: self._decomposeComponent(component, layer, pointPen) self.releaseHeldNotifications() self.postNotification(notification="Glyph.ContoursChanged") def _decomposeComponent(self, component, layer, pointPen): pointPen.skipConflictingIdentifiers = True component.drawPoints(pointPen) self.removeComponent(component) # ------- # Anchors # ------- def _get_anchorClass(self): return self._anchorClass anchorClass = property(_get_anchorClass, doc="The class used for anchors.") def _get_anchors(self): return list(self._anchors) def _set_anchors(self, value): self.clearAnchors() self.holdNotifications(note="Requested by Glyph._set_anchors.") for anchor in value: self.appendAnchor(anchor) self.releaseHeldNotifications() anchors = property(_get_anchors, _set_anchors, doc="An ordered list of :class:`Anchor` objects stored in the glyph.") def instantiateAnchor(self, anchorDict=None): anchor = self._anchorClass( glyph=self, anchorDict=anchorDict) return anchor def beginSelfAnchorNotificationObservation(self, anchor): if anchor.dispatcher is None: return anchor.addObserver(observer=self, methodName="_anchorChanged", notification="Anchor.Changed") def endSelfAnchorNotificationObservation(self, anchor): if anchor.dispatcher is None: return anchor.removeObserver(observer=self, notification="Anchor.Changed") anchor.endSelfNotificationObservation() def appendAnchor(self, anchor): """ Append **anchor** to the glyph. The anchor must be a defcon :class:`Anchor` object or a subclass of that object. An error will be raised if the anchor's identifier conflicts with any of the identifiers within the glyph. This will post a *Glyph.Changed* notification. """ self.insertAnchor(len(self._anchors), anchor) def insertAnchor(self, index, anchor): """ Insert **anchor** into the glyph at index. The anchor must be a defcon :class:`Anchor` object or a subclass of that object. An error will be raised if the anchor's identifier conflicts with any of the identifiers within the glyph. This will post a *Glyph.Changed* notification. """ if not isinstance(anchor, self._anchorClass): anchor = self.instantiateAnchor(anchorDict=anchor) assert anchor not in self._anchors assert anchor.glyph in (self, None), "This anchor belongs to another glyph." self.postNotification(notification="Glyph.AnchorWillBeAdded", data=dict(object=anchor)) if anchor.glyph is None: if anchor.identifier is not None: identifiers = self._identifiers assert anchor.identifier not in identifiers identifiers.add(anchor.identifier) anchor.glyph = self anchor.beginSelfNotificationObservation() self.beginSelfAnchorNotificationObservation(anchor) self._anchors.insert(index, anchor) self.postNotification(notification="Glyph.AnchorsChanged") self.dirty = True def removeAnchor(self, anchor): """ Remove **anchor** from the glyph. This will post a *Glyph.Changed* notification. """ self.postNotification(notification="Glyph.AnchorWillBeDeleted", data=dict(object=anchor)) if anchor.identifier is not None: self._identifiers.remove(anchor.identifier) self._anchors.remove(anchor) self.endSelfAnchorNotificationObservation(anchor) self.postNotification(notification="Glyph.AnchorsChanged") self.dirty = True def anchorIndex(self, anchor): """ Get the index for **anchor**. """ return self._anchors.index(anchor) def clearAnchors(self): """ Clear all anchors from the glyph. This posts a *Glyph.Changed* notification. """ self.holdNotifications(note="Requested by Glyph.clearAnchors.") for anchor in reversed(self._anchors): self.removeAnchor(anchor) self.releaseHeldNotifications() # ---------- # Guidelines # ---------- def _get_guidelineClass(self): return self._guidelineClass guidelineClass = property(_get_guidelineClass, doc="The class used for guidelines.") def _get_guidelines(self): return list(self._guidelines) def _set_guidelines(self, value): self.clearGuidelines() self.holdNotifications(note="Requested by Glyph._set_guidelines.") for guideline in value: self.appendGuideline(guideline) self.releaseHeldNotifications() guidelines = property(_get_guidelines, _set_guidelines, doc="An ordered list of :class:`Guideline` objects stored in the glyph. Setting this will post a *Glyph.Changed* notification along with any notifications posted by the :py:meth:`Glyph.appendGuideline` and :py:meth:`Glyph.clearGuidelines` methods.") def instantiateGuideline(self, guidelineDict=None): guideline = self._guidelineClass( glyph=self, guidelineDict=guidelineDict ) return guideline def beginSelfGuidelineNotificationObservation(self, guideline): if guideline.dispatcher is None: return guideline.addObserver(observer=self, methodName="_guidelineChanged", notification="Guideline.Changed") def endSelfGuidelineNotificationObservation(self, guideline): if guideline.dispatcher is None: return guideline.removeObserver(observer=self, notification="Guideline.Changed") guideline.endSelfNotificationObservation() def appendGuideline(self, guideline): """ Append **guideline** to the glyph. The guideline must be a defcon :class:`Guideline` object or a subclass of that object. An error will be raised if the guideline's identifier conflicts with any of the identifiers within the glyph. This will post a *Glyph.Changed* notification. """ self.insertGuideline(len(self._guidelines), guideline) def insertGuideline(self, index, guideline): """ Insert **guideline** into the glyph at index. The guideline must be a defcon :class:`Guideline` object or a subclass of that object. An error will be raised if the guideline's identifier conflicts with any of the identifiers within the glyph. This will post a *Glyph.Changed* notification. """ assert guideline not in self.guidelines if not isinstance(guideline, self._guidelineClass): guideline = self.instantiateGuideline(guidelineDict=guideline) assert guideline.glyph in (self, None), "This guideline belongs to another glyph." if guideline.glyph is None: assert guideline.font is None, "This guideline belongs to a font." self.postNotification(notification="Glyph.GuidelineWillBeAdded", data=dict(object=guideline)) if guideline.glyph is None: if guideline.identifier is not None: identifiers = self._identifiers assert guideline.identifier not in identifiers if guideline.identifier is not None: identifiers.add(guideline.identifier) guideline.glyph = self guideline.beginSelfNotificationObservation() self.beginSelfGuidelineNotificationObservation(guideline) self._guidelines.insert(index, guideline) self.postNotification(notification="Glyph.GuidelinesChanged") self.dirty = True def removeGuideline(self, guideline): """ Remove **guideline** from the glyph. This will post a *Glyph.Changed* notification. """ self.postNotification(notification="Glyph.GuidelineWillBeDeleted", data=dict(object=guideline)) if guideline.identifier is not None: self._identifiers.remove(guideline.identifier) self._guidelines.remove(guideline) self.endSelfGuidelineNotificationObservation(guideline) self.postNotification(notification="Glyph.GuidelinesChanged") self.dirty = True def guidelineIndex(self, guideline): """ Get the index for **guideline**. """ return self._guidelines.index(guideline) def clearGuidelines(self): """ Clear all guidelines from the glyph. This posts a *Glyph.Changed* notification. """ self.holdNotifications(note="Requested by Glyph.clearGuidelines.") for guideline in reversed(self._guidelines): self.removeGuideline(guideline) self.releaseHeldNotifications() # ---- # Note # ---- def _get_note(self): return self._note def _set_note(self, value): if value is not None: assert isinstance(value, str) oldValue = self._note if oldValue != value: self._note = value self.postNotification(notification="Glyph.NoteChanged", data=dict(oldValue=oldValue, newValue=value)) self.dirty = True note = property(_get_note, _set_note, doc="An arbitrary note for the glyph. Setting this will post a *Glyph.Changed* notification.") # --- # Lib # --- def _get_libClass(self): return self._libClass libClass = property(_get_libClass, doc="The class used for the lib.") def instantiateLib(self): lib = self._libClass( glyph=self ) return lib def _get_lib(self): if self._lib is None: self._lib = self.instantiateLib() self.beginSelfLibNotificationObservation() return self._lib def _set_lib(self, value): lib = self.lib lib.clear() lib.update(value) self.dirty = True lib = property(_get_lib, _set_lib, doc="The glyph's :class:`Lib` object. Setting this will clear any existing lib data and post a *Glyph.Changed* notification if data was replaced.") def beginSelfLibNotificationObservation(self): if self._lib.dispatcher is None: return self._lib.addObserver(observer=self, methodName="_libContentChanged", notification="Lib.Changed") def endSelfLibNotificationObservation(self): if self._lib is None: return if self._lib.dispatcher is None: return self._lib.removeObserver(observer=self, notification="Lib.Changed") self._lib.endSelfNotificationObservation() # ----- # Image # ----- def _get_imageClass(self): return self._imageClass imageClass = property(_get_imageClass, doc="The class used for the image.") def instantiateImage(self, imageDict=None): image = self._imageClass( glyph=self, imageDict=imageDict ) return image def _get_image(self): if self._image is None: self._image = self.instantiateImage() self.beginSelfImageNotificationObservation() return self._image def _set_image(self, image): # removing image if image is None: if self._image is not None: self.postNotification(notification="Glyph.ImageWillBeDeleted") self.endSelfImageNotificationObservation() self._image = None self.postNotification(notification="Glyph.ImageChanged") self.dirty = True # adding image else: if self._image is None: # create the image object i = self.image if set(self._image.items()) != set(image.items()): self._image.fileName = image["fileName"] self._image.transformation = (image["xScale"], image["xyScale"], image["yxScale"], image["yScale"], image["xOffset"], image["yOffset"]) self._image.color = image.get("color") self.postNotification(notification="Glyph.ImageChanged") self.dirty = True image = property(_get_image, _set_image, doc="The glyph's :class:`Image` object. Setting this posts *Glyph.ImageChanged* and *Glyph.Changed* notifications.") def clearImage(self): self.image = None def beginSelfImageNotificationObservation(self): if self._image.dispatcher is None: return self._image.addObserver(observer=self, methodName="_imageChanged", notification="Image.Changed") self._image.addObserver(observer=self, methodName="_imageDataChanged", notification="Image.ImageDataChanged") def endSelfImageNotificationObservation(self): if self._image is None: return if self._image.dispatcher is None: return self._image.removeObserver(observer=self, notification="Image.Changed") self._image.removeObserver(observer=self, notification="Image.ImageDataChanged") self._image.endSelfNotificationObservation() # ------------- # List Behavior # ------------- def __contains__(self, contour): if self._shallowLoadedContours is not None: self._fullyLoadShallowLoadedContours() return contour in self._contours def __len__(self): if self._shallowLoadedContours is not None: self._fullyLoadShallowLoadedContours() return len(self._contours) def __iter__(self): if self._shallowLoadedContours is not None: self._fullyLoadShallowLoadedContours() return iter(self._contours) def __getitem__(self, index): if self._shallowLoadedContours is not None: self._fullyLoadShallowLoadedContours() return self._contours[index] def _getContourIndex(self, contour): if self._shallowLoadedContours is not None: self._fullyLoadShallowLoadedContours() return self._contours.index(contour) # ---------------- # Glyph Absorption # ---------------- def copyDataFromGlyph(self, glyph): """ Copy data from **glyph**. This copies the following data: ========== width height unicodes note image contours components anchors guidelines lib ========== The name attribute is purposefully omitted. """ from copy import deepcopy self.width = glyph.width self.height = glyph.height self.unicodes = list(glyph.unicodes) self.note = glyph.note self.guidelines = [self.instantiateGuideline(g) for g in glyph.guidelines] self.anchors = [self.instantiateAnchor(a) for a in glyph.anchors] self.image = glyph.image pointPen = self.getPointPen() glyph.drawPoints(pointPen) self.lib = deepcopy(glyph.lib) # ----- # Clear # ----- def clear(self): """ Clear all contours, components, anchors and guidelines from the glyph. This posts a *Glyph.Changed* notification. """ self.holdNotifications(note="Requested by Glyph.clear.") self.clearContours() self.clearComponents() self.clearAnchors() self.clearGuidelines() self.clearImage() self.releaseHeldNotifications() # ---- # Move # ---- def move(self, values): """ Move all contours, components and anchors in the glyph by **(x, y)**. This posts a *Glyph.Changed* notification. """ (x, y) = values for contour in self: contour.move((x, y)) for component in self._components: component.move((x, y)) for anchor in self._anchors: anchor.move((x, y)) # ------------ # Point Inside # ------------ def pointInside(self, coordinates, evenOdd=False): """ Returns a boolean indicating if **(x, y)** is in the "black" area of the glyph. """ (x, y) = coordinates from fontTools.pens.pointInsidePen import PointInsidePen pen = PointInsidePen(glyphSet=None, testPoint=(x, y), evenOdd=evenOdd) self.draw(pen) return pen.getResult() # ---------------------- # Notification Callbacks # ---------------------- def endSelfNotificationObservation(self): if self.dispatcher is None: return if self._contours: for contour in self: self.endSelfContourNotificationObservation(contour) for component in self.components: self.endSelfComponentNotificationObservation(component) for anchor in self.anchors: self.endSelfAnchorNotificationObservation(anchor) for guideline in self.guidelines: self.endSelfGuidelineNotificationObservation(guideline) self.endSelfLibNotificationObservation() self.endSelfImageNotificationObservation() super(Glyph, self).endSelfNotificationObservation() self._font = None self._layerSet = None self._layer = None def _imageDataChanged(self, notification): self.postNotification(notification="Glyph.ImageChanged") self.postNotification(notification=self.changeNotificationName) def _imageChanged(self, notification): self.postNotification(notification="Glyph.ImageChanged") self.dirty = True def _contourChanged(self, notification): self.postNotification(notification="Glyph.ContoursChanged") self.dirty = True def _componentChanged(self, notification): self.postNotification(notification="Glyph.ComponentsChanged") self.dirty = True def _componentBaseGlyphDataChanged(self, notification): self.postNotification(notification="Glyph.ComponentsChanged") self.postNotification(notification=self.changeNotificationName) def _anchorChanged(self, notification): self.postNotification(notification="Glyph.AnchorsChanged") self.dirty = True def _guidelineChanged(self, notification): self.postNotification(notification="Glyph.GuidelinesChanged") self.dirty = True def _libContentChanged(self, notification): self.postNotification(notification="Glyph.LibChanged") self.dirty = True # ----------------------------- # Serialization/Deserialization # ----------------------------- def getDataForSerialization(self, **kwargs): from functools import partial simple_get = partial(getattr, self) serialize = lambda item: item.getDataForSerialization() serialized_get = lambda key: serialize(simple_get(key)) serialized_list_get = lambda key: [serialize(item) for item in simple_get(key)] getters = [ ('name', simple_get), ('unicodes', simple_get), ('width', simple_get), ('height', simple_get), ('note', simple_get), ('components', serialized_list_get), ('anchors', serialized_list_get), ('guidelines', serialized_list_get), ('image', serialized_get), ('lib', serialized_get) ] if self._shallowLoadedContours is not None: getters.append(('_shallowLoadedContours', simple_get)) else: getters.append(('_contours', serialized_list_get)) return self._serialize(getters, **kwargs) def setDataFromSerialization(self, data): from functools import partial set_attr = partial(setattr, self) # key, data def set_each(setter, drop_key=False): _setter = lambda k, v: setter(v) if drop_key else setter def wrapper(key, data): for d in data: _setter(key, d) return wrapper def single_init(factory, data): item = factory(data) return item def list_init(factory, data): return [single_init(factory, childData) for childData in data] def init_set(init, factory, setter): def wrapper(key, data): setter(key, init(factory, data)) return wrapper # Clear all contours, components, anchors and guidelines from the glyph. self.clear() setters = ( ('name', set_attr), ('unicodes', set_attr), ('width', set_attr), ('height', set_attr), ('note', set_attr), ('lib', set_attr), ('_shallowLoadedContours', set_attr), ('_contours', init_set(list_init, self.instantiateContour, set_each(self.appendContour, True))), ('components', init_set(list_init, self.instantiateComponent, set_each(self.appendComponent, True))), ('guidelines', init_set(list_init, self.instantiateGuideline, set_attr)), ('anchors', init_set(list_init, self.instantiateAnchor, set_attr)), ('image', init_set(single_init, self.instantiateImage, set_attr)) ) for key, setter in setters: if key not in data: continue setter(key, data[key]) if __name__ == "__main__": import doctest doctest.testmod()
mit
-3,219,715,125,084,927,000
35.575458
309
0.634563
false
moylop260/odoo-dev
addons/mrp_byproduct/mrp_byproduct.py
30
8808
# -*- coding: utf-8 -*- ############################################################################## # # OpenERP, Open Source Management Solution # Copyright (C) 2004-2010 Tiny SPRL (<http://tiny.be>). # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ############################################################################## from openerp.osv import fields from openerp.osv import osv import openerp.addons.decimal_precision as dp from openerp.tools.translate import _ class mrp_subproduct(osv.osv): _name = 'mrp.subproduct' _description = 'Byproduct' _columns={ 'product_id': fields.many2one('product.product', 'Product', required=True), 'product_qty': fields.float('Product Qty', digits_compute=dp.get_precision('Product Unit of Measure'), required=True), 'product_uom': fields.many2one('product.uom', 'Product Unit of Measure', required=True), 'subproduct_type': fields.selection([('fixed','Fixed'),('variable','Variable')], 'Quantity Type', required=True, help="Define how the quantity of byproducts will be set on the production orders using this BoM.\ 'Fixed' depicts a situation where the quantity of created byproduct is always equal to the quantity set on the BoM, regardless of how many are created in the production order.\ By opposition, 'Variable' means that the quantity will be computed as\ '(quantity of byproduct set on the BoM / quantity of manufactured product set on the BoM * quantity of manufactured product in the production order.)'"), 'bom_id': fields.many2one('mrp.bom', 'BoM'), } _defaults={ 'subproduct_type': 'variable', 'product_qty': lambda *a: 1.0, } def onchange_product_id(self, cr, uid, ids, product_id, context=None): """ Changes UoM if product_id changes. @param product_id: Changed product_id @return: Dictionary of changed values """ if product_id: prod = self.pool.get('product.product').browse(cr, uid, product_id, context=context) v = {'product_uom': prod.uom_id.id} return {'value': v} return {} def onchange_uom(self, cr, uid, ids, product_id, product_uom, context=None): res = {'value':{}} if not product_uom or not product_id: return res product = self.pool.get('product.product').browse(cr, uid, product_id, context=context) uom = self.pool.get('product.uom').browse(cr, uid, product_uom, context=context) if uom.category_id.id != product.uom_id.category_id.id: res['warning'] = {'title': _('Warning'), 'message': _('The Product Unit of Measure you chose has a different category than in the product form.')} res['value'].update({'product_uom': product.uom_id.id}) return res class mrp_bom(osv.osv): _name = 'mrp.bom' _description = 'Bill of Material' _inherit='mrp.bom' _columns={ 'sub_products':fields.one2many('mrp.subproduct', 'bom_id', 'Byproducts'), } class mrp_production(osv.osv): _description = 'Production' _inherit= 'mrp.production' def action_confirm(self, cr, uid, ids, context=None): """ Confirms production order and calculates quantity based on subproduct_type. @return: Newly generated picking Id. """ picking_id = super(mrp_production,self).action_confirm(cr, uid, ids, context=context) product_uom_obj = self.pool.get('product.uom') for production in self.browse(cr, uid, ids): source = production.product_id.property_stock_production.id if not production.bom_id: continue for sub_product in production.bom_id.sub_products: product_uom_factor = product_uom_obj._compute_qty(cr, uid, production.product_uom.id, production.product_qty, production.bom_id.product_uom.id) qty1 = sub_product.product_qty qty2 = production.product_uos and production.product_uos_qty or False product_uos_factor = 0.0 if qty2 and production.bom_id.product_uos.id: product_uos_factor = product_uom_obj._compute_qty(cr, uid, production.product_uos.id, production.product_uos_qty, production.bom_id.product_uos.id) if sub_product.subproduct_type == 'variable': if production.product_qty: qty1 *= product_uom_factor / (production.bom_id.product_qty or 1.0) if production.product_uos_qty: qty2 *= product_uos_factor / (production.bom_id.product_uos_qty or 1.0) data = { 'name': 'PROD:'+production.name, 'date': production.date_planned, 'product_id': sub_product.product_id.id, 'product_uom_qty': qty1, 'product_uom': sub_product.product_uom.id, 'product_uos_qty': qty2, 'product_uos': production.product_uos and production.product_uos.id or False, 'location_id': source, 'location_dest_id': production.location_dest_id.id, 'move_dest_id': production.move_prod_id.id, 'state': 'waiting', 'production_id': production.id } self.pool.get('stock.move').create(cr, uid, data) return picking_id def _get_subproduct_factor(self, cr, uid, production_id, move_id=None, context=None): """Compute the factor to compute the qty of procucts to produce for the given production_id. By default, it's always equal to the quantity encoded in the production order or the production wizard, but with the module mrp_byproduct installed it can differ for byproducts having type 'variable'. :param production_id: ID of the mrp.order :param move_id: ID of the stock move that needs to be produced. Identify the product to produce. :return: The factor to apply to the quantity that we should produce for the given production order and stock move. """ sub_obj = self.pool.get('mrp.subproduct') move_obj = self.pool.get('stock.move') production_obj = self.pool.get('mrp.production') production_browse = production_obj.browse(cr, uid, production_id, context=context) move_browse = move_obj.browse(cr, uid, move_id, context=context) subproduct_factor = 1 sub_id = sub_obj.search(cr, uid,[('product_id', '=', move_browse.product_id.id),('bom_id', '=', production_browse.bom_id.id), ('subproduct_type', '=', 'variable')], context=context) if sub_id: subproduct_record = sub_obj.browse(cr ,uid, sub_id[0], context=context) if subproduct_record.bom_id.product_qty: subproduct_factor = subproduct_record.product_qty / subproduct_record.bom_id.product_qty return subproduct_factor return super(mrp_production, self)._get_subproduct_factor(cr, uid, production_id, move_id, context=context) class change_production_qty(osv.osv_memory): _inherit = 'change.production.qty' def _update_product_to_produce(self, cr, uid, prod, qty, context=None): bom_obj = self.pool.get('mrp.bom') move_lines_obj = self.pool.get('stock.move') prod_obj = self.pool.get('mrp.production') for m in prod.move_created_ids: if m.product_id.id == prod.product_id.id: move_lines_obj.write(cr, uid, [m.id], {'product_uom_qty': qty}) else: for sub_product_line in prod.bom_id.sub_products: if sub_product_line.product_id.id == m.product_id.id: factor = prod_obj._get_subproduct_factor(cr, uid, prod.id, m.id, context=context) subproduct_qty = sub_product_line.subproduct_type == 'variable' and qty * factor or sub_product_line.product_qty move_lines_obj.write(cr, uid, [m.id], {'product_uom_qty': subproduct_qty}) # vim:expandtab:smartindent:tabstop=4:softtabstop=4:shiftwidth=4:
agpl-3.0
4,225,047,293,519,693,000
53.37037
218
0.618756
false
koparasy/gemfi
configs/example/ruby_direct_test.py
6
5375
# Copyright (c) 2006-2007 The Regents of The University of Michigan # Copyright (c) 2009 Advanced Micro Devices, Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer; # redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution; # neither the name of the copyright holders nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # Authors: Ron Dreslinski # Brad Beckmann import m5 from m5.objects import * from m5.defines import buildEnv from m5.util import addToPath import os, optparse, sys addToPath('../common') addToPath('../ruby') addToPath('../topologies') import Options import Ruby # Get paths we might need. It's expected this file is in m5/configs/example. config_path = os.path.dirname(os.path.abspath(__file__)) config_root = os.path.dirname(config_path) m5_root = os.path.dirname(config_root) parser = optparse.OptionParser() Options.addCommonOptions(parser) parser.add_option("-l", "--requests", metavar="N", default=100, help="Stop after N requests") parser.add_option("-f", "--wakeup_freq", metavar="N", default=10, help="Wakeup every N cycles") parser.add_option("--test-type", type="choice", default="SeriesGetx", choices = ["SeriesGetx", "SeriesGets", "SeriesGetMixed", "Invalidate"], help = "Type of test") parser.add_option("--percent-writes", type="int", default=100, help="percentage of accesses that should be writes") # # Add the ruby specific and protocol specific options # Ruby.define_options(parser) (options, args) = parser.parse_args() if args: print "Error: script doesn't take any positional arguments" sys.exit(1) # # Select the direct test generator # if options.test_type == "SeriesGetx": generator = SeriesRequestGenerator(num_cpus = options.num_cpus, percent_writes = 100) elif options.test_type == "SeriesGets": generator = SeriesRequestGenerator(num_cpus = options.num_cpus, percent_writes = 0) elif options.test_type == "SeriesGetMixed": generator = SeriesRequestGenerator(num_cpus = options.num_cpus, percent_writes = options.percent_writes) elif options.test_type == "Invalidate": generator = InvalidateGenerator(num_cpus = options.num_cpus) else: print "Error: unknown direct test generator" sys.exit(1) # # Create the M5 system. Note that the Memory Object isn't # actually used by the rubytester, but is included to support the # M5 memory size == Ruby memory size checks # system = System(physmem = SimpleMemory(), mem_ranges = [AddrRange(options.mem_size)]) # Create a top-level voltage domain and clock domain system.voltage_domain = VoltageDomain(voltage = options.sys_voltage) system.clk_domain = SrcClockDomain(clock = options.sys_clock, voltage_domain = system.voltage_domain) # # Create the ruby random tester # system.tester = RubyDirectedTester(requests_to_complete = \ options.requests, generator = generator) Ruby.create_system(options, system) # Since Ruby runs at an independent frequency, create a seperate clock system.ruby.clk_domain = SrcClockDomain(clock = options.ruby_clock, voltage_domain = system.voltage_domain) assert(options.num_cpus == len(system.ruby._cpu_ports)) for ruby_port in system.ruby._cpu_ports: # # Tie the ruby tester ports to the ruby cpu ports # system.tester.cpuPort = ruby_port.slave # ----------------------- # run simulation # ----------------------- root = Root( full_system = False, system = system ) root.system.mem_mode = 'timing' # Not much point in this being higher than the L1 latency m5.ticks.setGlobalFrequency('1ns') # instantiate configuration m5.instantiate() # simulate until program terminates exit_event = m5.simulate(options.abs_max_tick) print 'Exiting @ tick', m5.curTick(), 'because', exit_event.getCause()
bsd-3-clause
1,973,769,458,501,934,300
36.852113
79
0.692651
false
matthew-tucker/mne-python
mne/minimum_norm/psf_ctf.py
21
18951
# Authors: Olaf Hauk <[email protected]> # Alexandre Gramfort <[email protected]> # # License: BSD (3-clause) from copy import deepcopy import numpy as np from scipy import linalg from ..io.pick import pick_channels from ..utils import logger, verbose from ..forward import convert_forward_solution from ..evoked import EvokedArray from ..source_estimate import SourceEstimate from .inverse import _subject_from_inverse from . import apply_inverse def _prepare_info(inverse_operator): """Helper to get a usable dict""" # in order to convert sub-leadfield matrix to evoked data type (pretending # it's an epoch, see in loop below), uses 'info' from inverse solution # because this has all the correct projector information info = deepcopy(inverse_operator['info']) info['sfreq'] = 1000. # necessary info['projs'] = inverse_operator['projs'] return info def _pick_leadfield(leadfield, forward, ch_names): """Helper to pick out correct lead field components""" # NB must pick from fwd['sol']['row_names'], not ['info']['ch_names'], # because ['sol']['data'] may be ordered differently from functional data picks_fwd = pick_channels(forward['sol']['row_names'], ch_names) return leadfield[picks_fwd] @verbose def point_spread_function(inverse_operator, forward, labels, method='dSPM', lambda2=1 / 9., pick_ori=None, mode='mean', n_svd_comp=1, verbose=None): """Compute point-spread functions (PSFs) for linear estimators Compute point-spread functions (PSF) in labels for a combination of inverse operator and forward solution. PSFs are computed for test sources that are perpendicular to cortical surface. Parameters ---------- inverse_operator : instance of InverseOperator Inverse operator. forward : dict Forward solution. Note: (Bad) channels not included in forward solution will not be used in PSF computation. labels : list of Label Labels for which PSFs shall be computed. method : 'MNE' | 'dSPM' | 'sLORETA' Inverse method for which PSFs shall be computed (for apply_inverse). lambda2 : float The regularization parameter (for apply_inverse). pick_ori : None | "normal" If "normal", rather than pooling the orientations by taking the norm, only the radial component is kept. This is only implemented when working with loose orientations (for apply_inverse). mode : 'mean' | 'sum' | 'svd' | PSFs can be computed for different summary measures with labels: 'sum' or 'mean': sum or means of sub-leadfields for labels This corresponds to situations where labels can be assumed to be homogeneously activated. 'svd': SVD components of sub-leadfields for labels This is better suited for situations where activation patterns are assumed to be more variable. "sub-leadfields" are the parts of the forward solutions that belong to vertices within invidual labels. n_svd_comp : integer Number of SVD components for which PSFs will be computed and output (irrelevant for 'sum' and 'mean'). Explained variances within sub-leadfields are shown in screen output. verbose : bool, str, int, or None If not None, override default verbose level (see mne.verbose). Returns ------- stc_psf : SourceEstimate The PSFs for the specified labels If mode='svd': n_svd_comp components per label are created (i.e. n_svd_comp successive time points in mne_analyze) The last sample is the summed PSF across all labels Scaling of PSFs is arbitrary, and may differ greatly among methods (especially for MNE compared to noise-normalized estimates). evoked_fwd : Evoked Forward solutions corresponding to PSFs in stc_psf If mode='svd': n_svd_comp components per label are created (i.e. n_svd_comp successive time points in mne_analyze) The last sample is the summed forward solution across all labels (sum is taken across summary measures). """ mode = mode.lower() if mode not in ['mean', 'sum', 'svd']: raise ValueError("mode must be 'svd', 'mean' or 'sum'. Got %s." % mode) logger.info("About to process %d labels" % len(labels)) forward = convert_forward_solution(forward, force_fixed=False, surf_ori=True) info = _prepare_info(inverse_operator) leadfield = _pick_leadfield(forward['sol']['data'][:, 2::3], forward, info['ch_names']) # will contain means of subleadfields for all labels label_psf_summary = [] # if mode='svd', this will collect all SVD singular values for labels label_singvals = [] # loop over labels for ll in labels: logger.info(ll) if ll.hemi == 'rh': # for RH labels, add number of LH vertices offset = forward['src'][0]['vertno'].shape[0] # remember whether we are in the LH or RH this_hemi = 1 elif ll.hemi == 'lh': offset = 0 this_hemi = 0 # get vertices on cortical surface inside label idx = np.intersect1d(ll.vertices, forward['src'][this_hemi]['vertno']) # get vertices in source space inside label fwd_idx = np.searchsorted(forward['src'][this_hemi]['vertno'], idx) # get sub-leadfield matrix for label vertices sub_leadfield = leadfield[:, fwd_idx + offset] # compute summary data for labels if mode == 'sum': # sum across forward solutions in label logger.info("Computing sums within labels") this_label_psf_summary = sub_leadfield.sum(axis=1)[np.newaxis, :] elif mode == 'mean': logger.info("Computing means within labels") this_label_psf_summary = sub_leadfield.mean(axis=1)[np.newaxis, :] elif mode == 'svd': # takes svd of forward solutions in label logger.info("Computing SVD within labels, using %d component(s)" % n_svd_comp) # compute SVD of sub-leadfield u_svd, s_svd, _ = linalg.svd(sub_leadfield, full_matrices=False, compute_uv=True) # keep singular values (might be useful to some people) label_singvals.append(s_svd) # get first n_svd_comp components, weighted with their # corresponding singular values logger.info("First 5 singular values: %s" % s_svd[0:5]) logger.info("(This tells you something about variability of " "forward solutions in sub-leadfield for label)") # explained variance by chosen components within sub-leadfield my_comps = s_svd[:n_svd_comp] comp_var = (100. * np.sum(my_comps * my_comps) / np.sum(s_svd * s_svd)) logger.info("Your %d component(s) explain(s) %.1f%% " "variance in label." % (n_svd_comp, comp_var)) this_label_psf_summary = (u_svd[:, :n_svd_comp] * s_svd[:n_svd_comp][np.newaxis, :]) # transpose required for conversion to "evoked" this_label_psf_summary = this_label_psf_summary.T # initialise or append to existing collection label_psf_summary.append(this_label_psf_summary) label_psf_summary = np.concatenate(label_psf_summary, axis=0) # compute sum across forward solutions for labels, append to end label_psf_summary = np.r_[label_psf_summary, label_psf_summary.sum(axis=0)[np.newaxis, :]].T # convert sub-leadfield matrix to evoked data type (a bit of a hack) evoked_fwd = EvokedArray(label_psf_summary, info=info, tmin=0.) # compute PSFs by applying inverse operator to sub-leadfields logger.info("About to apply inverse operator for method='%s' and " "lambda2=%s" % (method, lambda2)) stc_psf = apply_inverse(evoked_fwd, inverse_operator, lambda2, method=method, pick_ori=pick_ori) return stc_psf, evoked_fwd def _get_matrix_from_inverse_operator(inverse_operator, forward, labels=None, method='dSPM', lambda2=1. / 9., mode='mean', n_svd_comp=1): """Get inverse matrix from an inverse operator Currently works only for fixed/loose orientation constraints For loose orientation constraint, the CTFs are computed for the radial component (pick_ori='normal'). Parameters ---------- inverse_operator : instance of InverseOperator The inverse operator. forward : dict The forward operator. method : 'MNE' | 'dSPM' | 'sLORETA' Inverse methods (for apply_inverse). labels : list of Label | None Labels for which CTFs shall be computed. If None, inverse matrix for all vertices will be returned. lambda2 : float The regularization parameter (for apply_inverse). pick_ori : None | "normal" pick_ori : None | "normal" If "normal", rather than pooling the orientations by taking the norm, only the radial component is kept. This is only implemented when working with loose orientations (for apply_inverse). Determines whether whole inverse matrix G will have one or three rows per vertex. This will also affect summary measures for labels. mode : 'mean' | 'sum' | 'svd' CTFs can be computed for different summary measures with labels: 'sum' or 'mean': sum or means of sub-inverse for labels This corresponds to situations where labels can be assumed to be homogeneously activated. 'svd': SVD components of sub-inverse for labels This is better suited for situations where activation patterns are assumed to be more variable. "sub-inverse" is the part of the inverse matrix that belongs to vertices within invidual labels. n_svd_comp : int Number of SVD components for which CTFs will be computed and output (irrelevant for 'sum' and 'mean'). Explained variances within sub-inverses are shown in screen output. Returns ------- invmat : ndarray Inverse matrix associated with inverse operator and specified parameters. label_singvals : list of ndarray Singular values of svd for sub-inverses. Provides information about how well labels are represented by chosen components. Explained variances within sub-inverses are shown in screen output. """ mode = mode.lower() if not forward['surf_ori']: raise RuntimeError('Forward has to be surface oriented and ' 'force_fixed=True.') if not (forward['source_ori'] == 1): raise RuntimeError('Forward has to be surface oriented and ' 'force_fixed=True.') if labels: logger.info("About to process %d labels" % len(labels)) else: logger.info("Computing whole inverse operator.") info = _prepare_info(inverse_operator) # create identity matrix as input for inverse operator id_mat = np.eye(len(info['ch_names'])) # convert identity matrix to evoked data type (pretending it's an epoch) ev_id = EvokedArray(id_mat, info=info, tmin=0.) snr = 3.0 lambda2 = 1.0 / snr ** 2 # apply inverse operator to identity matrix in order to get inverse matrix # free orientation constraint not possible because apply_inverse would # combined components invmat_mat_op = apply_inverse(ev_id, inverse_operator, lambda2=lambda2, method=method, pick_ori='normal') logger.info("Dimension of inverse matrix: %s" % str(invmat_mat_op.shape)) # turn source estimate into numpty array invmat_mat = invmat_mat_op.data invmat_summary = [] # if mode='svd', label_singvals will collect all SVD singular values for # labels label_singvals = [] if labels: for ll in labels: if ll.hemi == 'rh': # for RH labels, add number of LH vertices offset = forward['src'][0]['vertno'].shape[0] # remember whether we are in the LH or RH this_hemi = 1 elif ll.hemi == 'lh': offset = 0 this_hemi = 0 else: raise RuntimeError("Cannot determine hemisphere of label.") # get vertices on cortical surface inside label idx = np.intersect1d(ll.vertices, forward['src'][this_hemi]['vertno']) # get vertices in source space inside label fwd_idx = np.searchsorted(forward['src'][this_hemi]['vertno'], idx) # get sub-inverse for label vertices, one row per vertex invmat_lbl = invmat_mat[fwd_idx + offset, :] # compute summary data for labels if mode == 'sum': # takes sum across estimators in label logger.info("Computing sums within labels") this_invmat_summary = invmat_lbl.sum(axis=0) this_invmat_summary = np.vstack(this_invmat_summary).T elif mode == 'mean': logger.info("Computing means within labels") this_invmat_summary = invmat_lbl.mean(axis=0) this_invmat_summary = np.vstack(this_invmat_summary).T elif mode == 'svd': # takes svd of sub-inverse in label logger.info("Computing SVD within labels, using %d " "component(s)" % n_svd_comp) # compute SVD of sub-inverse u_svd, s_svd, _ = linalg.svd(invmat_lbl.T, full_matrices=False, compute_uv=True) # keep singular values (might be useful to some people) label_singvals.append(s_svd) # get first n_svd_comp components, weighted with their # corresponding singular values logger.info("First 5 singular values: %s" % s_svd[:5]) logger.info("(This tells you something about variability of " "estimators in sub-inverse for label)") # explained variance by chosen components within sub-inverse my_comps = s_svd[:n_svd_comp] comp_var = ((100 * np.sum(my_comps * my_comps)) / np.sum(s_svd * s_svd)) logger.info("Your %d component(s) explain(s) %.1f%% " "variance in label." % (n_svd_comp, comp_var)) this_invmat_summary = (u_svd[:, :n_svd_comp].T * s_svd[:n_svd_comp][:, np.newaxis]) invmat_summary.append(this_invmat_summary) invmat = np.concatenate(invmat_summary, axis=0) else: # no labels provided: return whole matrix invmat = invmat_mat return invmat, label_singvals @verbose def cross_talk_function(inverse_operator, forward, labels, method='dSPM', lambda2=1 / 9., signed=False, mode='mean', n_svd_comp=1, verbose=None): """Compute cross-talk functions (CTFs) for linear estimators Compute cross-talk functions (CTF) in labels for a combination of inverse operator and forward solution. CTFs are computed for test sources that are perpendicular to cortical surface. Parameters ---------- inverse_operator : instance of InverseOperator Inverse operator. forward : dict Forward solution. Note: (Bad) channels not included in forward solution will not be used in CTF computation. labels : list of Label Labels for which CTFs shall be computed. method : 'MNE' | 'dSPM' | 'sLORETA' Inverse method for which CTFs shall be computed. lambda2 : float The regularization parameter. signed : bool If True, CTFs will be written as signed source estimates. If False, absolute (unsigned) values will be written mode : 'mean' | 'sum' | 'svd' CTFs can be computed for different summary measures with labels: 'sum' or 'mean': sum or means of sub-inverses for labels This corresponds to situations where labels can be assumed to be homogeneously activated. 'svd': SVD components of sub-inverses for labels This is better suited for situations where activation patterns are assumed to be more variable. "sub-inverse" is the part of the inverse matrix that belongs to vertices within invidual labels. n_svd_comp : int Number of SVD components for which CTFs will be computed and output (irrelevant for 'sum' and 'mean'). Explained variances within sub-inverses are shown in screen output. verbose : bool, str, int, or None If not None, override default verbose level (see mne.verbose). Returns ------- stc_ctf : SourceEstimate The CTFs for the specified labels. If mode='svd': n_svd_comp components per label are created (i.e. n_svd_comp successive time points in mne_analyze) The last sample is the summed CTF across all labels. """ forward = convert_forward_solution(forward, force_fixed=True, surf_ori=True) # get the inverse matrix corresponding to inverse operator out = _get_matrix_from_inverse_operator(inverse_operator, forward, labels=labels, method=method, lambda2=lambda2, mode=mode, n_svd_comp=n_svd_comp) invmat, label_singvals = out # get the leadfield matrix from forward solution leadfield = _pick_leadfield(forward['sol']['data'], forward, inverse_operator['info']['ch_names']) # compute cross-talk functions (CTFs) ctfs = np.dot(invmat, leadfield) # compute sum across forward solutions for labels, append to end ctfs = np.vstack((ctfs, ctfs.sum(axis=0))) # if unsigned output requested, take absolute values if not signed: ctfs = np.abs(ctfs, out=ctfs) # create source estimate object vertno = [ss['vertno'] for ss in inverse_operator['src']] stc_ctf = SourceEstimate(ctfs.T, vertno, tmin=0., tstep=1.) stc_ctf.subject = _subject_from_inverse(inverse_operator) return stc_ctf
bsd-3-clause
2,768,933,391,410,751,000
42.465596
79
0.61316
false
hkawasaki/kawasaki-aio8-1
lms/djangoapps/courseware/tests/test_access.py
23
6706
import courseware.access as access import datetime from mock import Mock from django.test import TestCase from django.test.utils import override_settings from courseware.tests.factories import UserFactory, CourseEnrollmentAllowedFactory, StaffFactory, InstructorFactory from student.tests.factories import AnonymousUserFactory from xmodule.modulestore import Location from courseware.tests.tests import TEST_DATA_MIXED_MODULESTORE import pytz # pylint: disable=protected-access @override_settings(MODULESTORE=TEST_DATA_MIXED_MODULESTORE) class AccessTestCase(TestCase): """ Tests for the various access controls on the student dashboard """ def setUp(self): self.course = Location('i4x://edX/toy/course/2012_Fall') self.anonymous_user = AnonymousUserFactory() self.student = UserFactory() self.global_staff = UserFactory(is_staff=True) self.course_staff = StaffFactory(course=self.course) self.course_instructor = InstructorFactory(course=self.course) def test__has_access_to_location(self): self.assertFalse(access._has_access_to_location(None, self.course, 'staff', None)) self.assertFalse(access._has_access_to_location(self.anonymous_user, self.course, 'staff', None)) self.assertFalse(access._has_access_to_location(self.anonymous_user, self.course, 'instructor', None)) self.assertTrue(access._has_access_to_location(self.global_staff, self.course, 'staff', None)) self.assertTrue(access._has_access_to_location(self.global_staff, self.course, 'instructor', None)) # A user has staff access if they are in the staff group self.assertTrue(access._has_access_to_location(self.course_staff, self.course, 'staff', None)) self.assertFalse(access._has_access_to_location(self.course_staff, self.course, 'instructor', None)) # A user has staff and instructor access if they are in the instructor group self.assertTrue(access._has_access_to_location(self.course_instructor, self.course, 'staff', None)) self.assertTrue(access._has_access_to_location(self.course_instructor, self.course, 'instructor', None)) # A user does not have staff or instructor access if they are # not in either the staff or the the instructor group self.assertFalse(access._has_access_to_location(self.student, self.course, 'staff', None)) self.assertFalse(access._has_access_to_location(self.student, self.course, 'instructor', None)) def test__has_access_string(self): u = Mock(is_staff=True) self.assertFalse(access._has_access_string(u, 'not_global', 'staff', None)) u._has_global_staff_access.return_value = True self.assertTrue(access._has_access_string(u, 'global', 'staff', None)) self.assertRaises(ValueError, access._has_access_string, u, 'global', 'not_staff', None) def test__has_access_descriptor(self): # TODO: override DISABLE_START_DATES and test the start date branch of the method u = Mock() d = Mock() d.start = datetime.datetime.now(pytz.utc) - datetime.timedelta(days=1) # make sure the start time is in the past # Always returns true because DISABLE_START_DATES is set in test.py self.assertTrue(access._has_access_descriptor(u, d, 'load')) self.assertRaises(ValueError, access._has_access_descriptor, u, d, 'not_load_or_staff') def test__has_access_course_desc_can_enroll(self): u = Mock() yesterday = datetime.datetime.now(pytz.utc) - datetime.timedelta(days=1) tomorrow = datetime.datetime.now(pytz.utc) + datetime.timedelta(days=1) c = Mock(enrollment_start=yesterday, enrollment_end=tomorrow, enrollment_domain='') # User can enroll if it is between the start and end dates self.assertTrue(access._has_access_course_desc(u, c, 'enroll')) # User can enroll if authenticated and specifically allowed for that course # even outside the open enrollment period u = Mock(email='[email protected]', is_staff=False) u.is_authenticated.return_value = True c = Mock(enrollment_start=tomorrow, enrollment_end=tomorrow, id='edX/test/2012_Fall', enrollment_domain='') allowed = CourseEnrollmentAllowedFactory(email=u.email, course_id=c.id) self.assertTrue(access._has_access_course_desc(u, c, 'enroll')) # Staff can always enroll even outside the open enrollment period u = Mock(email='[email protected]', is_staff=True) u.is_authenticated.return_value = True c = Mock(enrollment_start=tomorrow, enrollment_end=tomorrow, id='edX/test/Whenever', enrollment_domain='') self.assertTrue(access._has_access_course_desc(u, c, 'enroll')) # TODO: # Non-staff cannot enroll outside the open enrollment period if not specifically allowed def test__user_passed_as_none(self): """Ensure has_access handles a user being passed as null""" access.has_access(None, 'global', 'staff', None) class UserRoleTestCase(TestCase): """ Tests for user roles. """ def setUp(self): self.course = Location('i4x://edX/toy/course/2012_Fall') self.anonymous_user = AnonymousUserFactory() self.student = UserFactory() self.global_staff = UserFactory(is_staff=True) self.course_staff = StaffFactory(course=self.course) self.course_instructor = InstructorFactory(course=self.course) def test_user_role_staff(self): """Ensure that user role is student for staff masqueraded as student.""" self.assertEqual( 'staff', access.get_user_role(self.course_staff, self.course.course_id) ) # Masquerade staff self.course_staff.masquerade_as_student = True self.assertEqual( 'student', access.get_user_role(self.course_staff, self.course.course_id) ) def test_user_role_instructor(self): """Ensure that user role is student for instructor masqueraded as student.""" self.assertEqual( 'instructor', access.get_user_role(self.course_instructor, self.course.course_id) ) # Masquerade instructor self.course_instructor.masquerade_as_student = True self.assertEqual( 'student', access.get_user_role(self.course_instructor, self.course.course_id) ) def test_user_role_anonymous(self): """Ensure that user role is student for anonymous user.""" self.assertEqual( 'student', access.get_user_role(self.anonymous_user, self.course.course_id) )
agpl-3.0
2,838,229,190,782,936,000
44.006711
121
0.679839
false
adamdoupe/enemy-of-the-state
link.py
1
4653
import re import output from lazyproperty import lazyproperty from collections import namedtuple class Link(object): LinkIdx = namedtuple("LinkIdx", "type path params") xpathsimplifier = re.compile(r"\[[^\]]*\]") def __init__(self, internal, reqresp): assert internal assert reqresp self.internal = internal self.reqresp = reqresp self.to = [] self.skip = False @lazyproperty def dompath(self): return Link.xpathsimplifier.sub("", self.internal.getCanonicalXPath()) @lazyproperty def _str(self): raise NotImplementedError def __str__(self): return self._str def __repr__(self): return str(self) import logging import pdb from constants import Constants from recursive_dict import RecursiveDict from randgen import RandGen class Links(object): Type = Constants("ANCHOR", "FORM", "REDIRECT") rng = RandGen() def __init__(self, anchors=[], forms=[], redirects=[]): self.logger = logging.getLogger(self.__class__.__name__) # leaves in linkstree are counter of how many times that url occurred # therefore use that counter when compuing number of urls with "nleaves" linkstree = RecursiveDict(lambda x: len(x)) for ltype, links in [(Links.Type.ANCHOR, anchors), (Links.Type.FORM, forms), (Links.Type.REDIRECT, redirects)]: for l in links: urlv = [ltype] urlv += [l.dompath] if l.dompath else [] urlv += list(l.linkvector) linkstree.applypath(urlv, lambda x: self.addlink(x, l)) if not linkstree: # all pages with no links will end up in the same special bin linkstree.setapplypathvalue(("<EMPTY>", ), [None], lambda x: x+[None]) self.linkstree = linkstree def addlink(self, v, l): keys = [i for i in v.keys() if isinstance(i, int)] if v else [] if v and keys: nextk = max(keys) + 1 else: nextk = 0 # call setpath to fix the leaves count v.setpath([nextk], [l]) return v def nAnchors(self): if Links.Type.ANCHOR in self.linkstree: return self.linkstree[Links.Type.ANCHOR].nleaves else: return 0 def nForms(self): if Links.Type.FORM in self.linkstree: return self.linkstree[Links.Type.FORM].nleaves else: return 0 def nRedirects(self): if Links.Type.REDIRECT in self.linkstree: return self.linkstree[Links.Type.REDIRECT].nleaves else: return 0 def __len__(self): return self.nAnchors() + self.nForms() + self.nRedirects() def __nonzero__(self): return self.nAnchors() != 0 or self.nForms() != 0 or self.nRedirects() != 0 @lazyproperty def _str(self): return "Links(%s, %s, %s)" % (self.nAnchors(), self.nForms(), self.nRedirects()) def __str__(self): return self._str def __getitem__(self, linkidx): idx = [linkidx.type] + list(linkidx.path) val = self.linkstree.getpath(idx) assert val.nleaves == len(list(val.iterleaves())) if val.nleaves > 1: ret = Links.rng.choice([i for i in val.iterleaves()]) ret = val.iterleaves().next() assert not val.value or val.value == ret assert isinstance(ret, list) return ret[0] def __iter__(self): for l in self.linkstree.iterleaves(): assert isinstance(l, list), l for i in l: yield i def iteritems(self): for p, l in self.linkstree.iteridxleaves(): assert isinstance(l, list), l yield (Link.LinkIdx(p[0], p[1:], None), l[0]) from utils import DebugDict class AbstractLink(object): def __init__(self, links): # map from state to AbstractRequest self.skip = any(i.skip for i in links) self.links = links self.parentpage = links[0].reqresp.response.page.abspage assert all(i.reqresp.response.page.abspage == self.parentpage for i in links) self.targets = DebugDict(self.parentpage.instance) @lazyproperty def _str(self): raise NotImplementedError def __str__(self): return self._str def __repr__(self): return str(self) @lazyproperty def dompath(self): dompaths = set(l.dompath for l in self.links) # XXX multiple dompaths not supported yet assert len(dompaths) == 1 return iter(dompaths).next()
gpl-2.0
-4,311,830,849,712,518,700
28.636943
88
0.585429
false
zstackorg/zstack-woodpecker
zstackwoodpecker/zstackwoodpecker/operations/monitor_operations.py
2
6149
''' All host operations for test. @author: Songtao ''' import apibinding.api_actions as api_actions import zstackwoodpecker.test_util as test_util import account_operations import zstackwoodpecker.operations.account_operations as account_operations import apibinding.inventory as inventory def get_monitor_item(resourceType, session_uuid=None): action = api_actions.GetMonitorItemAction() action.timeout = 3000 action.resourceType = resourceType evt = account_operations.execute_action_with_session(action, session_uuid) test_util.action_logger('Get %s Monitor Item ' % action.resourceType) return evt.inventories def create_monitor_trigger(resource_uuid, duration, expression, session_uuid=None): action = api_actions.CreateMonitorTriggerAction() action.targetResourceUuid = resource_uuid action.duration = duration action.name = resource_uuid action.expression = expression action.timeout = 6000 evt = account_operations.execute_action_with_session(action, session_uuid) return evt.inventory def query_monitor_trigger(uuid=None, session_uuid=None): action = api_actions.QueryMonitorTriggerAction() action.uuid = uuid action.conditions = [] action.timeout = 6000 evt = account_operations.execute_action_with_session(action, session_uuid) return evt.inventory def update_monitor_trigger(uuid, infoType, infoValue, session_uuid=None): action = api_actions.UpdateMonitorTriggerAction() action.uuid = uuid if infoType == 'name': action.name = infoValue elif infoType == 'description': action.description = infoValue elif infoType == 'expression': action.expression = infoValue elif infoType == 'duration': action.duration = infoValue action.timeout = 6000 evt = account_operations.execute_action_with_session(action, session_uuid) return evt.inventory def delete_monitor_trigger(uuid, session_uuid=None): action = api_actions.DeleteMonitorTriggerAction() action.uuid = uuid action.timeout = 6000 evt = account_operations.execute_action_with_session(action, session_uuid) return evt.inventory def change_monitor_trigger_state(uuid, state, session_uuid=None): action = api_actions.ChangeMonitorTriggerStateAction() action.uuid = uuid action.stateEvent = state action.timeout = 6000 test_util.action_logger('Change monitor trigger [uuid:] %s to [state:] %s' % (uuid, state)) evt = account_operations.execute_action_with_session(action, session_uuid) return evt.inventory def create_email_media(name, smtpport, smtpserver, username, password, session_uuid=None): action = api_actions.CreateEmailMediaAction() action.name = name action.smtpPort = smtpport action.smtpServer = smtpserver action.username = username action.password = password action.timeout = 6000 evt = account_operations.execute_action_with_session(action, session_uuid) return evt.inventory def query_email_media(uuid=None, session_uuid=None): action = api_actions.QueryMediaAction() action.uuid = uuid action.timeout = 6000 evt = account_operations.execute_action_with_session(action, session_uuid) return evt.inventory def change_email_media_state(uuid, state, session_uuid=None): action = api_actions.ChangeMediaStateAction() action.uuid = uuid action.stateEvent = state action.timeout = 6000 test_util.action_logger('Change email media [uuid:] %s to [state:] %s' % (uuid, state)) evt = account_operations.execute_action_with_session(action, session_uuid) return evt.inventory def delete_email_media(uuid, session_uuid=None): action = api_actions.DeleteMediaAction() action.uuid = uuid action.timeout = 6000 evt = account_operations.execute_action_with_session(action, session_uuid) return evt.inventory def create_email_monitor_trigger_action(name, mediaUuid, triggerUuids, email,session_uuid=None): action = api_actions.CreateEmailMonitorTriggerActionAction() action.name = name action.mediaUuid = mediaUuid action.triggerUuids = triggerUuids action.email = email action.timeout = 6000 evt = account_operations.execute_action_with_session(action, session_uuid) return evt.inventory def query_monitor_trigger_action(uuid=None, session_uuid=None): action = api_actions.QueryMonitorTriggerAction() action.uuid = uuid action.timeout = 6000 evt = account_operations.execute_action_with_session(action, session_uuid) return evt.inventories def change_monitor_trigger_action_state(uuid, state, session_uuid=None): action = api_actions.ChangeMonitorTriggerActionStateAction() action.uuid = uuid action.stateEvent = state action.timeout = 6000 test_util.action_logger('Change monitor trigger action [uuid:] %s to [state:] %s' % (uuid, state)) evt = account_operations.execute_action_with_session(action, session_uuid) return evt.inventory def delete_monitor_trigger_action(uuid, session_uuid=None): action = api_actions.DeleteMonitorTriggerAction() action.uuid = uuid action.timeout = 6000 evt = account_operations.execute_action_with_session(action, session_uuid) return evt.inventory def attach_monitor_trigger_action_to_trigger(actionUuid, triggerUuid,session_uuid=None): action = api_actions.AttachMonitorTriggerActionToTriggerAction() action.actionUuid = actionUuid action.triggerUuid = triggerUuid action.timeout = 6000 evt = account_operations.execute_action_with_session(action, session_uuid) return evt.inventory def detach_monitor_trigger_action_to_trigger(actionUuid, triggerUuid,session_uuid=None): action = api_actions.DetachMonitorTriggerActionFromTriggerAction() action.actionUuid = actionUuid action.triggerUuid = triggerUuid action.timeout = 6000 evt = account_operations.execute_action_with_session(action, session_uuid) return evt.inventory
apache-2.0
-3,006,976,577,302,114,300
36.917722
102
0.721581
false
sinhrks/scikit-learn
sklearn/metrics/ranking.py
2
27187
"""Metrics to assess performance on classification task given scores Functions named as ``*_score`` return a scalar value to maximize: the higher the better Function named as ``*_error`` or ``*_loss`` return a scalar value to minimize: the lower the better """ # Authors: Alexandre Gramfort <[email protected]> # Mathieu Blondel <[email protected]> # Olivier Grisel <[email protected]> # Arnaud Joly <[email protected]> # Jochen Wersdorfer <[email protected]> # Lars Buitinck <[email protected]> # Joel Nothman <[email protected]> # Noel Dawe <[email protected]> # License: BSD 3 clause from __future__ import division import warnings import numpy as np from scipy.sparse import csr_matrix from ..utils import check_consistent_length from ..utils import column_or_1d, check_array from ..utils.multiclass import type_of_target from ..utils.fixes import isclose from ..utils.fixes import bincount from ..utils.fixes import array_equal from ..utils.stats import rankdata from ..utils.sparsefuncs import count_nonzero from ..exceptions import UndefinedMetricWarning from .base import _average_binary_score def auc(x, y, reorder=False): """Compute Area Under the Curve (AUC) using the trapezoidal rule This is a general function, given points on a curve. For computing the area under the ROC-curve, see :func:`roc_auc_score`. Parameters ---------- x : array, shape = [n] x coordinates. y : array, shape = [n] y coordinates. reorder : boolean, optional (default=False) If True, assume that the curve is ascending in the case of ties, as for an ROC curve. If the curve is non-ascending, the result will be wrong. Returns ------- auc : float Examples -------- >>> import numpy as np >>> from sklearn import metrics >>> y = np.array([1, 1, 2, 2]) >>> pred = np.array([0.1, 0.4, 0.35, 0.8]) >>> fpr, tpr, thresholds = metrics.roc_curve(y, pred, pos_label=2) >>> metrics.auc(fpr, tpr) 0.75 See also -------- roc_auc_score : Computes the area under the ROC curve precision_recall_curve : Compute precision-recall pairs for different probability thresholds """ check_consistent_length(x, y) x = column_or_1d(x) y = column_or_1d(y) if x.shape[0] < 2: raise ValueError('At least 2 points are needed to compute' ' area under curve, but x.shape = %s' % x.shape) direction = 1 if reorder: # reorder the data points according to the x axis and using y to # break ties order = np.lexsort((y, x)) x, y = x[order], y[order] else: dx = np.diff(x) if np.any(dx < 0): if np.all(dx <= 0): direction = -1 else: raise ValueError("Reordering is not turned on, and " "the x array is not increasing: %s" % x) area = direction * np.trapz(y, x) if isinstance(area, np.memmap): # Reductions such as .sum used internally in np.trapz do not return a # scalar by default for numpy.memmap instances contrary to # regular numpy.ndarray instances. area = area.dtype.type(area) return area def average_precision_score(y_true, y_score, average="macro", sample_weight=None): """Compute average precision (AP) from prediction scores This score corresponds to the area under the precision-recall curve. Note: this implementation is restricted to the binary classification task or multilabel classification task. Read more in the :ref:`User Guide <precision_recall_f_measure_metrics>`. Parameters ---------- y_true : array, shape = [n_samples] or [n_samples, n_classes] True binary labels in binary label indicators. y_score : array, shape = [n_samples] or [n_samples, n_classes] Target scores, can either be probability estimates of the positive class, confidence values, or binary decisions. average : string, [None, 'micro', 'macro' (default), 'samples', 'weighted'] If ``None``, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data: ``'micro'``: Calculate metrics globally by considering each element of the label indicator matrix as a label. ``'macro'``: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. ``'weighted'``: Calculate metrics for each label, and find their average, weighted by support (the number of true instances for each label). ``'samples'``: Calculate metrics for each instance, and find their average. sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- average_precision : float References ---------- .. [1] `Wikipedia entry for the Average precision <http://en.wikipedia.org/wiki/Average_precision>`_ See also -------- roc_auc_score : Area under the ROC curve precision_recall_curve : Compute precision-recall pairs for different probability thresholds Examples -------- >>> import numpy as np >>> from sklearn.metrics import average_precision_score >>> y_true = np.array([0, 0, 1, 1]) >>> y_scores = np.array([0.1, 0.4, 0.35, 0.8]) >>> average_precision_score(y_true, y_scores) # doctest: +ELLIPSIS 0.79... """ def _binary_average_precision(y_true, y_score, sample_weight=None): precision, recall, thresholds = precision_recall_curve( y_true, y_score, sample_weight=sample_weight) return auc(recall, precision) return _average_binary_score(_binary_average_precision, y_true, y_score, average, sample_weight=sample_weight) def roc_auc_score(y_true, y_score, average="macro", sample_weight=None): """Compute Area Under the Curve (AUC) from prediction scores Note: this implementation is restricted to the binary classification task or multilabel classification task in label indicator format. Read more in the :ref:`User Guide <roc_metrics>`. Parameters ---------- y_true : array, shape = [n_samples] or [n_samples, n_classes] True binary labels in binary label indicators. y_score : array, shape = [n_samples] or [n_samples, n_classes] Target scores, can either be probability estimates of the positive class, confidence values, or binary decisions. average : string, [None, 'micro', 'macro' (default), 'samples', 'weighted'] If ``None``, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data: ``'micro'``: Calculate metrics globally by considering each element of the label indicator matrix as a label. ``'macro'``: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. ``'weighted'``: Calculate metrics for each label, and find their average, weighted by support (the number of true instances for each label). ``'samples'``: Calculate metrics for each instance, and find their average. sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- auc : float References ---------- .. [1] `Wikipedia entry for the Receiver operating characteristic <http://en.wikipedia.org/wiki/Receiver_operating_characteristic>`_ See also -------- average_precision_score : Area under the precision-recall curve roc_curve : Compute Receiver operating characteristic (ROC) Examples -------- >>> import numpy as np >>> from sklearn.metrics import roc_auc_score >>> y_true = np.array([0, 0, 1, 1]) >>> y_scores = np.array([0.1, 0.4, 0.35, 0.8]) >>> roc_auc_score(y_true, y_scores) 0.75 """ def _binary_roc_auc_score(y_true, y_score, sample_weight=None): if len(np.unique(y_true)) != 2: raise ValueError("Only one class present in y_true. ROC AUC score " "is not defined in that case.") fpr, tpr, tresholds = roc_curve(y_true, y_score, sample_weight=sample_weight) return auc(fpr, tpr, reorder=True) return _average_binary_score( _binary_roc_auc_score, y_true, y_score, average, sample_weight=sample_weight) def _binary_clf_curve(y_true, y_score, pos_label=None, sample_weight=None): """Calculate true and false positives per binary classification threshold. Parameters ---------- y_true : array, shape = [n_samples] True targets of binary classification y_score : array, shape = [n_samples] Estimated probabilities or decision function pos_label : int, optional (default=None) The label of the positive class sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- fps : array, shape = [n_thresholds] A count of false positives, at index i being the number of negative samples assigned a score >= thresholds[i]. The total number of negative samples is equal to fps[-1] (thus true negatives are given by fps[-1] - fps). tps : array, shape = [n_thresholds <= len(np.unique(y_score))] An increasing count of true positives, at index i being the number of positive samples assigned a score >= thresholds[i]. The total number of positive samples is equal to tps[-1] (thus false negatives are given by tps[-1] - tps). thresholds : array, shape = [n_thresholds] Decreasing score values. """ check_consistent_length(y_true, y_score) y_true = column_or_1d(y_true) y_score = column_or_1d(y_score) if sample_weight is not None: sample_weight = column_or_1d(sample_weight) # ensure binary classification if pos_label is not specified classes = np.unique(y_true) if (pos_label is None and not (array_equal(classes, [0, 1]) or array_equal(classes, [-1, 1]) or array_equal(classes, [0]) or array_equal(classes, [-1]) or array_equal(classes, [1]))): raise ValueError("Data is not binary and pos_label is not specified") elif pos_label is None: pos_label = 1. # make y_true a boolean vector y_true = (y_true == pos_label) # sort scores and corresponding truth values desc_score_indices = np.argsort(y_score, kind="mergesort")[::-1] y_score = y_score[desc_score_indices] y_true = y_true[desc_score_indices] if sample_weight is not None: weight = sample_weight[desc_score_indices] else: weight = 1. # y_score typically has many tied values. Here we extract # the indices associated with the distinct values. We also # concatenate a value for the end of the curve. # We need to use isclose to avoid spurious repeated thresholds # stemming from floating point roundoff errors. distinct_value_indices = np.where(np.logical_not(isclose( np.diff(y_score), 0)))[0] threshold_idxs = np.r_[distinct_value_indices, y_true.size - 1] # accumulate the true positives with decreasing threshold tps = (y_true * weight).cumsum()[threshold_idxs] if sample_weight is not None: fps = weight.cumsum()[threshold_idxs] - tps else: fps = 1 + threshold_idxs - tps return fps, tps, y_score[threshold_idxs] def precision_recall_curve(y_true, probas_pred, pos_label=None, sample_weight=None): """Compute precision-recall pairs for different probability thresholds Note: this implementation is restricted to the binary classification task. The precision is the ratio ``tp / (tp + fp)`` where ``tp`` is the number of true positives and ``fp`` the number of false positives. The precision is intuitively the ability of the classifier not to label as positive a sample that is negative. The recall is the ratio ``tp / (tp + fn)`` where ``tp`` is the number of true positives and ``fn`` the number of false negatives. The recall is intuitively the ability of the classifier to find all the positive samples. The last precision and recall values are 1. and 0. respectively and do not have a corresponding threshold. This ensures that the graph starts on the x axis. Read more in the :ref:`User Guide <precision_recall_f_measure_metrics>`. Parameters ---------- y_true : array, shape = [n_samples] True targets of binary classification in range {-1, 1} or {0, 1}. probas_pred : array, shape = [n_samples] Estimated probabilities or decision function. pos_label : int, optional (default=None) The label of the positive class sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- precision : array, shape = [n_thresholds + 1] Precision values such that element i is the precision of predictions with score >= thresholds[i] and the last element is 1. recall : array, shape = [n_thresholds + 1] Decreasing recall values such that element i is the recall of predictions with score >= thresholds[i] and the last element is 0. thresholds : array, shape = [n_thresholds <= len(np.unique(probas_pred))] Increasing thresholds on the decision function used to compute precision and recall. Examples -------- >>> import numpy as np >>> from sklearn.metrics import precision_recall_curve >>> y_true = np.array([0, 0, 1, 1]) >>> y_scores = np.array([0.1, 0.4, 0.35, 0.8]) >>> precision, recall, thresholds = precision_recall_curve( ... y_true, y_scores) >>> precision # doctest: +ELLIPSIS array([ 0.66..., 0.5 , 1. , 1. ]) >>> recall array([ 1. , 0.5, 0.5, 0. ]) >>> thresholds array([ 0.35, 0.4 , 0.8 ]) """ fps, tps, thresholds = _binary_clf_curve(y_true, probas_pred, pos_label=pos_label, sample_weight=sample_weight) precision = tps / (tps + fps) recall = tps / tps[-1] # stop when full recall attained # and reverse the outputs so recall is decreasing last_ind = tps.searchsorted(tps[-1]) sl = slice(last_ind, None, -1) return np.r_[precision[sl], 1], np.r_[recall[sl], 0], thresholds[sl] def roc_curve(y_true, y_score, pos_label=None, sample_weight=None, drop_intermediate=True): """Compute Receiver operating characteristic (ROC) Note: this implementation is restricted to the binary classification task. Read more in the :ref:`User Guide <roc_metrics>`. Parameters ---------- y_true : array, shape = [n_samples] True binary labels in range {0, 1} or {-1, 1}. If labels are not binary, pos_label should be explicitly given. y_score : array, shape = [n_samples] Target scores, can either be probability estimates of the positive class or confidence values. pos_label : int Label considered as positive and others are considered negative. sample_weight : array-like of shape = [n_samples], optional Sample weights. drop_intermediate : boolean, optional (default=True) Whether to drop some suboptimal thresholds which would not appear on a plotted ROC curve. This is useful in order to create lighter ROC curves. .. versionadded:: 0.17 parameter *drop_intermediate*. Returns ------- fpr : array, shape = [>2] Increasing false positive rates such that element i is the false positive rate of predictions with score >= thresholds[i]. tpr : array, shape = [>2] Increasing true positive rates such that element i is the true positive rate of predictions with score >= thresholds[i]. thresholds : array, shape = [n_thresholds] Decreasing thresholds on the decision function used to compute fpr and tpr. `thresholds[0]` represents no instances being predicted and is arbitrarily set to `max(y_score) + 1`. See also -------- roc_auc_score : Compute Area Under the Curve (AUC) from prediction scores Notes ----- Since the thresholds are sorted from low to high values, they are reversed upon returning them to ensure they correspond to both ``fpr`` and ``tpr``, which are sorted in reversed order during their calculation. References ---------- .. [1] `Wikipedia entry for the Receiver operating characteristic <http://en.wikipedia.org/wiki/Receiver_operating_characteristic>`_ Examples -------- >>> import numpy as np >>> from sklearn import metrics >>> y = np.array([1, 1, 2, 2]) >>> scores = np.array([0.1, 0.4, 0.35, 0.8]) >>> fpr, tpr, thresholds = metrics.roc_curve(y, scores, pos_label=2) >>> fpr array([ 0. , 0.5, 0.5, 1. ]) >>> tpr array([ 0.5, 0.5, 1. , 1. ]) >>> thresholds array([ 0.8 , 0.4 , 0.35, 0.1 ]) """ fps, tps, thresholds = _binary_clf_curve( y_true, y_score, pos_label=pos_label, sample_weight=sample_weight) # Attempt to drop thresholds corresponding to points in between and # collinear with other points. These are always suboptimal and do not # appear on a plotted ROC curve (and thus do not affect the AUC). # Here np.diff(_, 2) is used as a "second derivative" to tell if there # is a corner at the point. Both fps and tps must be tested to handle # thresholds with multiple data points (which are combined in # _binary_clf_curve). This keeps all cases where the point should be kept, # but does not drop more complicated cases like fps = [1, 3, 7], # tps = [1, 2, 4]; there is no harm in keeping too many thresholds. if drop_intermediate and len(fps) > 2: optimal_idxs = np.where(np.r_[True, np.logical_or(np.diff(fps, 2), np.diff(tps, 2)), True])[0] fps = fps[optimal_idxs] tps = tps[optimal_idxs] thresholds = thresholds[optimal_idxs] if tps.size == 0 or fps[0] != 0: # Add an extra threshold position if necessary tps = np.r_[0, tps] fps = np.r_[0, fps] thresholds = np.r_[thresholds[0] + 1, thresholds] if fps[-1] <= 0: warnings.warn("No negative samples in y_true, " "false positive value should be meaningless", UndefinedMetricWarning) fpr = np.repeat(np.nan, fps.shape) else: fpr = fps / fps[-1] if tps[-1] <= 0: warnings.warn("No positive samples in y_true, " "true positive value should be meaningless", UndefinedMetricWarning) tpr = np.repeat(np.nan, tps.shape) else: tpr = tps / tps[-1] return fpr, tpr, thresholds def label_ranking_average_precision_score(y_true, y_score): """Compute ranking-based average precision Label ranking average precision (LRAP) is the average over each ground truth label assigned to each sample, of the ratio of true vs. total labels with lower score. This metric is used in multilabel ranking problem, where the goal is to give better rank to the labels associated to each sample. The obtained score is always strictly greater than 0 and the best value is 1. Read more in the :ref:`User Guide <label_ranking_average_precision>`. Parameters ---------- y_true : array or sparse matrix, shape = [n_samples, n_labels] True binary labels in binary indicator format. y_score : array, shape = [n_samples, n_labels] Target scores, can either be probability estimates of the positive class, confidence values, or binary decisions. Returns ------- score : float Examples -------- >>> import numpy as np >>> from sklearn.metrics import label_ranking_average_precision_score >>> y_true = np.array([[1, 0, 0], [0, 0, 1]]) >>> y_score = np.array([[0.75, 0.5, 1], [1, 0.2, 0.1]]) >>> label_ranking_average_precision_score(y_true, y_score) \ # doctest: +ELLIPSIS 0.416... """ check_consistent_length(y_true, y_score) y_true = check_array(y_true, ensure_2d=False) y_score = check_array(y_score, ensure_2d=False) if y_true.shape != y_score.shape: raise ValueError("y_true and y_score have different shape") # Handle badly formated array and the degenerate case with one label y_type = type_of_target(y_true) if (y_type != "multilabel-indicator" and not (y_type == "binary" and y_true.ndim == 2)): raise ValueError("{0} format is not supported".format(y_type)) y_true = csr_matrix(y_true) y_score = -y_score n_samples, n_labels = y_true.shape out = 0. for i, (start, stop) in enumerate(zip(y_true.indptr, y_true.indptr[1:])): relevant = y_true.indices[start:stop] if (relevant.size == 0 or relevant.size == n_labels): # If all labels are relevant or unrelevant, the score is also # equal to 1. The label ranking has no meaning. out += 1. continue scores_i = y_score[i] rank = rankdata(scores_i, 'max')[relevant] L = rankdata(scores_i[relevant], 'max') out += (L / rank).mean() return out / n_samples def coverage_error(y_true, y_score, sample_weight=None): """Coverage error measure Compute how far we need to go through the ranked scores to cover all true labels. The best value is equal to the average number of labels in ``y_true`` per sample. Ties in ``y_scores`` are broken by giving maximal rank that would have been assigned to all tied values. Read more in the :ref:`User Guide <coverage_error>`. Parameters ---------- y_true : array, shape = [n_samples, n_labels] True binary labels in binary indicator format. y_score : array, shape = [n_samples, n_labels] Target scores, can either be probability estimates of the positive class, confidence values, or binary decisions. sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- coverage_error : float References ---------- .. [1] Tsoumakas, G., Katakis, I., & Vlahavas, I. (2010). Mining multi-label data. In Data mining and knowledge discovery handbook (pp. 667-685). Springer US. """ y_true = check_array(y_true, ensure_2d=False) y_score = check_array(y_score, ensure_2d=False) check_consistent_length(y_true, y_score, sample_weight) y_type = type_of_target(y_true) if y_type != "multilabel-indicator": raise ValueError("{0} format is not supported".format(y_type)) if y_true.shape != y_score.shape: raise ValueError("y_true and y_score have different shape") y_score_mask = np.ma.masked_array(y_score, mask=np.logical_not(y_true)) y_min_relevant = y_score_mask.min(axis=1).reshape((-1, 1)) coverage = (y_score >= y_min_relevant).sum(axis=1) coverage = coverage.filled(0) return np.average(coverage, weights=sample_weight) def label_ranking_loss(y_true, y_score, sample_weight=None): """Compute Ranking loss measure Compute the average number of label pairs that are incorrectly ordered given y_score weighted by the size of the label set and the number of labels not in the label set. This is similar to the error set size, but weighted by the number of relevant and irrelevant labels. The best performance is achieved with a ranking loss of zero. Read more in the :ref:`User Guide <label_ranking_loss>`. .. versionadded:: 0.17 A function *label_ranking_loss* Parameters ---------- y_true : array or sparse matrix, shape = [n_samples, n_labels] True binary labels in binary indicator format. y_score : array, shape = [n_samples, n_labels] Target scores, can either be probability estimates of the positive class, confidence values, or binary decisions. sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- loss : float References ---------- .. [1] Tsoumakas, G., Katakis, I., & Vlahavas, I. (2010). Mining multi-label data. In Data mining and knowledge discovery handbook (pp. 667-685). Springer US. """ y_true = check_array(y_true, ensure_2d=False, accept_sparse='csr') y_score = check_array(y_score, ensure_2d=False) check_consistent_length(y_true, y_score, sample_weight) y_type = type_of_target(y_true) if y_type not in ("multilabel-indicator",): raise ValueError("{0} format is not supported".format(y_type)) if y_true.shape != y_score.shape: raise ValueError("y_true and y_score have different shape") n_samples, n_labels = y_true.shape y_true = csr_matrix(y_true) loss = np.zeros(n_samples) for i, (start, stop) in enumerate(zip(y_true.indptr, y_true.indptr[1:])): # Sort and bin the label scores unique_scores, unique_inverse = np.unique(y_score[i], return_inverse=True) true_at_reversed_rank = bincount( unique_inverse[y_true.indices[start:stop]], minlength=len(unique_scores)) all_at_reversed_rank = bincount(unique_inverse, minlength=len(unique_scores)) false_at_reversed_rank = all_at_reversed_rank - true_at_reversed_rank # if the scores are ordered, it's possible to count the number of # incorrectly ordered paires in linear time by cumulatively counting # how many false labels of a given score have a score higher than the # accumulated true labels with lower score. loss[i] = np.dot(true_at_reversed_rank.cumsum(), false_at_reversed_rank) n_positives = count_nonzero(y_true, axis=1) with np.errstate(divide="ignore", invalid="ignore"): loss /= ((n_labels - n_positives) * n_positives) # When there is no positive or no negative labels, those values should # be consider as correct, i.e. the ranking doesn't matter. loss[np.logical_or(n_positives == 0, n_positives == n_labels)] = 0. return np.average(loss, weights=sample_weight)
bsd-3-clause
6,740,976,122,526,023,000
34.96164
79
0.624122
false
isivisi/pybot
pybot/web/uimodules.py
1
1638
import tornado import pybot.globals as globals from pybot.pybotextra import allFilters import json class Raffle(tornado.web.UIModule): def render(self): return self.render_string("templates/rafflemodule.html", data=globals.data) class UserPoints(tornado.web.UIModule): def render(self, top=0): return self.render_string("templates/userpointsmodule.html", data=globals.data, top=top) class Logs(tornado.web.UIModule): def render(self): return self.render_string("templates/logmodule.html", data=globals.data) class Links(tornado.web.UIModule): def render(self, link=False): return self.render_string("templates/linksmodule.html", settings=globals.settings, data=globals.data, link=link) class Filters(tornado.web.UIModule): def render(self): activeFilters = json.loads(globals.settings.config['filters']['activeFilters']) return self.render_string("templates/filtersmodule.html", data=globals.data, activeFilters=activeFilters, allfilters=allFilters()) # Values take in a list of dictionaries with values (value: #, color:"#F7464A", highlight: "#FF5A5E", label: "") # settings is a dictionary with settings for the chart class Chart(tornado.web.UIModule): def render(self, values=[], settings={}): # test values values.append({"value": "25", "color": "#F7464A", "highlight": "#FF5A5E", "label": "test1"}) values.append({"value": "75", "color": "#ffffff", "highlight": "#FF5A5E", "label": "test2"}) return self.render_string("templates/chartmodule.html", values=values, settings=settings)
gpl-3.0
-8,570,704,250,861,037,000
38
120
0.694139
false
adrianschroeter/kiwi
test/unit/tasks_system_build_test.py
1
9818
import sys import mock import os from mock import patch, call import kiwi from .test_helper import argv_kiwi_tests from kiwi.tasks.system_build import SystemBuildTask class TestSystemBuildTask(object): def setup(self): sys.argv = [ sys.argv[0], '--profile', 'vmxFlavour', 'system', 'build', '--description', '../data/description', '--target-dir', 'some-target' ] self.abs_target_dir = os.path.abspath('some-target') kiwi.tasks.system_build.Privileges = mock.Mock() kiwi.tasks.system_build.Path = mock.Mock() kiwi.tasks.system_build.Help = mock.Mock( return_value=mock.Mock() ) self.manager = mock.Mock() self.system_prepare = mock.Mock() self.system_prepare.setup_repositories = mock.Mock( return_value=self.manager ) self.runtime_checker = mock.Mock() kiwi.tasks.base.RuntimeChecker = mock.Mock( return_value=self.runtime_checker ) self.runtime_config = mock.Mock() kiwi.tasks.base.RuntimeConfig = mock.Mock( return_value=self.runtime_config ) kiwi.tasks.system_build.SystemPrepare = mock.Mock( return_value=self.system_prepare ) self.setup = mock.Mock() kiwi.tasks.system_build.SystemSetup = mock.Mock( return_value=self.setup ) self.profile = mock.Mock() self.profile.dot_profile = dict() kiwi.tasks.system_build.Profile = mock.Mock( return_value=self.profile ) self.result = mock.Mock() self.builder = mock.MagicMock() self.builder.create = mock.Mock( return_value=self.result ) kiwi.tasks.system_build.ImageBuilder = mock.Mock( return_value=self.builder ) self.task = SystemBuildTask() def teardown(self): sys.argv = argv_kiwi_tests def _init_command_args(self): self.task.command_args = {} self.task.command_args['help'] = False self.task.command_args['build'] = False self.task.command_args['--allow-existing-root'] = True self.task.command_args['--description'] = '../data/description' self.task.command_args['--target-dir'] = 'some-target' self.task.command_args['--set-repo'] = None self.task.command_args['--add-repo'] = [] self.task.command_args['--add-package'] = [] self.task.command_args['--delete-package'] = [] self.task.command_args['--ignore-repos'] = False self.task.command_args['--ignore-repos-used-for-build'] = False self.task.command_args['--set-container-derived-from'] = None self.task.command_args['--set-container-tag'] = None self.task.command_args['--clear-cache'] = False self.task.command_args['--signing-key'] = None @patch('kiwi.logger.Logger.set_logfile') def test_process_system_build(self, mock_log): self._init_command_args() self.task.command_args['build'] = True self.task.process() self.runtime_checker.check_boot_description_exists.assert_called_once_with() self.runtime_checker.check_consistent_kernel_in_boot_and_system_image.assert_called_once_with() self.runtime_checker.check_docker_tool_chain_installed.assert_called_once_with() self.runtime_checker.check_volume_setup_has_no_root_definition.assert_called_once_with() self.runtime_checker.check_xen_uniquely_setup_as_server_or_guest.assert_called_once_with() self.runtime_checker.check_target_directory_not_in_shared_cache.assert_called_once_with(self.abs_target_dir) self.runtime_checker.check_mediacheck_only_for_x86_arch.assert_called_once_with() self.runtime_checker.check_dracut_module_for_live_iso_in_package_list.assert_called_once_with() self.runtime_checker.check_repositories_configured.assert_called_once_with() self.runtime_checker.check_dracut_module_for_disk_overlay_in_package_list.assert_called_once_with() self.runtime_checker.check_dracut_module_for_disk_oem_in_package_list.assert_called_once_with() self.runtime_checker.check_dracut_module_for_oem_install_in_package_list.assert_called_once_with() self.runtime_checker.check_efi_mode_for_disk_overlay_correctly_setup.assert_called_once_with() self.system_prepare.setup_repositories.assert_called_once_with(False, None) self.system_prepare.install_bootstrap.assert_called_once_with( self.manager ) self.system_prepare.install_system.assert_called_once_with( self.manager ) self.setup.import_shell_environment.assert_called_once_with( self.profile ) self.setup.import_description.assert_called_once_with() self.setup.import_overlay_files.assert_called_once_with() self.setup.import_repositories_marked_as_imageinclude.assert_called_once_with() self.setup.call_config_script.assert_called_once_with() self.setup.import_image_identifier.assert_called_once_with() self.setup.setup_groups.assert_called_once_with() self.setup.setup_users.assert_called_once_with() self.setup.setup_keyboard_map.assert_called_once_with() self.setup.setup_locale.assert_called_once_with() self.setup.setup_plymouth_splash.assert_called_once_with() self.setup.setup_timezone.assert_called_once_with() self.system_prepare.pinch_system.assert_has_calls( [call(force=False), call(force=True)] ) self.setup.call_image_script.assert_called_once_with() self.builder.create.assert_called_once_with() self.result.print_results.assert_called_once_with() self.result.dump.assert_called_once_with( os.sep.join([self.abs_target_dir, 'kiwi.result']) ) @patch('kiwi.logger.Logger.set_logfile') def test_process_system_build_add_package(self, mock_log): self._init_command_args() self.task.command_args['--add-package'] = ['vim'] self.task.process() self.system_prepare.setup_repositories.assert_called_once_with(False, None) self.system_prepare.install_packages.assert_called_once_with( self.manager, ['vim'] ) @patch('kiwi.logger.Logger.set_logfile') def test_process_system_update_delete_package(self, mock_log): self._init_command_args() self.task.command_args['--delete-package'] = ['vim'] self.task.process() self.system_prepare.setup_repositories.assert_called_once_with(False, None) self.system_prepare.delete_packages.assert_called_once_with( self.manager, ['vim'] ) @patch('kiwi.xml_state.XMLState.set_container_config_tag') @patch('kiwi.logger.Logger.set_logfile') def test_process_system_build_prepare_stage_set_container_tag( self, mock_log, mock_set_container_tag ): self._init_command_args() self.task.command_args['--set-container-tag'] = 'new_tag' self.task.process() mock_set_container_tag.assert_called_once_with( 'new_tag' ) @patch('kiwi.xml_state.XMLState.set_derived_from_image_uri') @patch('kiwi.logger.Logger.set_logfile') def test_process_system_build_prepare_stage_set_derived_from_uri( self, mock_log, mock_set_derived_from_uri ): self._init_command_args() self.task.command_args['--set-container-derived-from'] = 'file:///new' self.task.process() mock_set_derived_from_uri.assert_called_once_with( 'file:///new' ) @patch('kiwi.xml_state.XMLState.set_repository') @patch('kiwi.logger.Logger.set_logfile') def test_process_system_build_prepare_stage_set_repo( self, mock_log, mock_set_repo ): self._init_command_args() self.task.command_args['--set-repo'] = 'http://example.com,yast2,alias' self.task.process() mock_set_repo.assert_called_once_with( 'http://example.com', 'yast2', 'alias', None, None, None ) @patch('kiwi.xml_state.XMLState.add_repository') @patch('kiwi.logger.Logger.set_logfile') def test_process_system_build_prepare_stage_add_repo( self, mock_log, mock_add_repo ): self._init_command_args() self.task.command_args['--add-repo'] = [ 'http://example.com,yast2,alias,99,false,true' ] self.task.process() mock_add_repo.assert_called_once_with( 'http://example.com', 'yast2', 'alias', '99', False, True ) def test_process_system_build_help(self): self._init_command_args() self.task.command_args['help'] = True self.task.command_args['build'] = True self.task.process() self.task.manual.show.assert_called_once_with( 'kiwi::system::build' ) @patch('kiwi.xml_state.XMLState.delete_repository_sections') @patch('kiwi.logger.Logger.set_logfile') def test_process_system_prepare_ignore_repos( self, mock_log, mock_delete_repos ): self._init_command_args() self.task.command_args['--ignore-repos'] = True self.task.process() mock_delete_repos.assert_called_once_with() @patch('kiwi.xml_state.XMLState.delete_repository_sections_used_for_build') @patch('kiwi.logger.Logger.set_logfile') def test_process_system_prepare_ignore_repos_used_for_build( self, mock_log, mock_delete_repos ): self._init_command_args() self.task.command_args['--ignore-repos-used-for-build'] = True self.task.process() mock_delete_repos.assert_called_once_with()
gpl-3.0
-5,475,405,908,561,977,000
40.079498
116
0.638928
false
lonnen/socorro
socorro/lib/threaded_task_manager.py
1
14201
# This Source Code Form is subject to the terms of the Mozilla Public # License, v. 2.0. If a copy of the MPL was not distributed with this # file, You can obtain one at http://mozilla.org/MPL/2.0/. """This module defines classes that implements a threaded producer/consumer system. A single iterator thread pushes jobs into an internal queue while a flock of consumer/worker threads do the jobs. A job consists of a function and the data applied to the function.""" import logging import queue import threading import time from configman import Namespace from socorro.lib.task_manager import ( default_task_func, default_iterator, TaskManager ) class ThreadedTaskManager(TaskManager): """Given an iterator over a sequence of job parameters and a function, this class will execute the function in a set of threads.""" required_config = Namespace() required_config.add_option( 'idle_delay', default=7, doc='the delay in seconds if no job is found' ) # how does one choose how many threads to use? Keep the number low if your # application is compute bound. You can raise it if your app is i/o # bound. The best thing to do is to test the through put of your app with # several values. For Socorro, we've found that setting this value to the # number of processor cores in the system gives the best throughput. required_config.add_option( 'number_of_threads', default=4, doc='the number of threads' ) # there is wisdom is setting the maximum queue size to be no more than # twice the number of threads. By keeping the threads starved, the # queing thread will be blocked more more frequently. Once an item # is in the queue, there may be no way to fetch it again if disaster # strikes and this app quits or fails. Potentially anything left in # the queue could be lost. Limiting the queue size insures minimal # damage in a worst case scenario. required_config.add_option( 'maximum_queue_size', default=8, doc='the maximum size of the internal queue' ) def __init__(self, config, job_source_iterator=default_iterator, task_func=default_task_func): """the constructor accepts the function that will serve as the data source iterator and the function that the threads will execute on consuming the data. parameters: job_source_iterator - an iterator to serve as the source of data. it can be of the form of a generator or iterator; a function that returns an iterator; a instance of an iterable object; or a class that when instantiated with a config object can be iterated. The iterator must yield a tuple consisting of a function's tuple of args and, optionally, a mapping of kwargs. Ex: (('a', 17), {'x': 23}) task_func - a function that will accept the args and kwargs yielded by the job_source_iterator""" super().__init__(config, job_source_iterator, task_func) self.thread_list = [] # the thread object storage self.number_of_threads = config.number_of_threads self.task_queue = queue.Queue(config.maximum_queue_size) def start(self): """this function will start the queing thread that executes the iterator and feeds jobs into the queue. It also starts the worker threads that just sit and wait for items to appear on the queue. This is a non blocking call, so the executing thread is free to do other things while the other threads work.""" self.logger.debug('start') # start each of the task threads. for x in range(self.number_of_threads): # each thread is given the config object as well as a reference to # this manager class. The manager class is where the queue lives # and the task threads will refer to it to get their next jobs. new_thread = TaskThread(self.config, self.task_queue) self.thread_list.append(new_thread) new_thread.start() self.queuing_thread = threading.Thread( name="QueuingThread", target=self._queuing_thread_func ) self.queuing_thread.start() def wait_for_completion(self, waiting_func=None): """This is a blocking function call that will wait for the queuing thread to complete. parameters: waiting_func - this function will be called every one second while waiting for the queuing thread to quit. This allows for logging timers, status indicators, etc.""" self.logger.debug("waiting to join queuingThread") self._responsive_join(self.queuing_thread, waiting_func) def stop(self): """This function will tell all threads to quit. All threads periodically look at the value of quit. If they detect quit is True, then they commit ritual suicide. After setting the quit flag, this function will wait for the queuing thread to quit.""" self.quit = True self.wait_for_completion() def blocking_start(self, waiting_func=None): """this function is just a wrapper around the start and wait_for_completion methods. It starts the queuing thread and then waits for it to complete. If run by the main thread, it will detect the KeyboardInterrupt exception (which is what SIGTERM and SIGHUP have been translated to) and will order the threads to die.""" try: self.start() self.wait_for_completion(waiting_func) # it only ends if someone hits ^C or sends SIGHUP or SIGTERM - # any of which will get translated into a KeyboardInterrupt except KeyboardInterrupt: while True: try: self.stop() break except KeyboardInterrupt: self.logger.warning('We heard you the first time. There ' 'is no need for further keyboard or signal ' 'interrupts. We are waiting for the ' 'worker threads to stop. If this app ' 'does not halt soon, you may have to send ' 'SIGKILL (kill -9)') def wait_for_empty_queue(self, wait_log_interval=0, wait_reason=''): """Sit around and wait for the queue to become empty parameters: wait_log_interval - while sleeping, it is helpful if the thread periodically announces itself so that we know that it is still alive. This number is the time in seconds between log entries. wait_reason - the is for the explaination of why the thread is sleeping. This is likely to be a message like: 'there is no work to do'.""" seconds = 0 while True: if self.task_queue.empty(): break self.quit_check() if wait_log_interval and not seconds % wait_log_interval: self.logger.info('%s: %dsec so far', wait_reason, seconds) self.quit_check() seconds += 1 time.sleep(1.0) def _responsive_join(self, thread, waiting_func=None): """similar to the responsive sleep, a join function blocks a thread until some other thread dies. If that takes a long time, we'd like to have some indicaition as to what the waiting thread is doing. This method will wait for another thread while calling the waiting_func once every second. parameters: thread - an instance of the TaskThread class representing the thread to wait for waiting_func - a function to call every second while waiting for the thread to die""" while True: try: thread.join(1.0) if not thread.isAlive(): break if waiting_func: waiting_func() except KeyboardInterrupt: self.logger.debug('quit detected by _responsive_join') self.quit = True def _kill_worker_threads(self): """This function coerces the consumer/worker threads to kill themselves. When called by the queuing thread, one death token will be placed on the queue for each thread. Each worker thread is always looking for the death token. When it encounters it, it immediately runs to completion without drawing anything more off the queue. This is a blocking call. The thread using this function will wait for all the worker threads to die.""" for x in range(self.number_of_threads): self.task_queue.put((None, None)) self.logger.debug("waiting for standard worker threads to stop") for t in self.thread_list: t.join() def _queuing_thread_func(self): """This is the function responsible for reading the iterator and putting contents into the queue. It loops as long as there are items in the iterator. Should something go wrong with this thread, or it detects the quit flag, it will calmly kill its workers and then quit itself.""" self.logger.debug('_queuing_thread_func start') try: # May never exhaust for job_params in self._get_iterator(): self.logger.debug('received %r', job_params) if job_params is None: if self.config.quit_on_empty_queue: self.wait_for_empty_queue( wait_log_interval=10, wait_reason='waiting for queue to drain' ) raise KeyboardInterrupt self.logger.info("there is nothing to do. Sleeping " "for %d seconds" % self.config.idle_delay) self._responsive_sleep(self.config.idle_delay) continue self.quit_check() # self.logger.debug("queuing job %s", job_params) self.task_queue.put((self.task_func, job_params)) except Exception: self.logger.error('queuing jobs has failed', exc_info=True) except KeyboardInterrupt: self.logger.debug('queuingThread gets quit request') finally: self.logger.debug("we're quitting queuingThread") self._kill_worker_threads() self.logger.debug("all worker threads stopped") # now that we've killed all the workers, we can set the quit flag # to True. This will cause any other threads to die and shut down # the application. Originally, the setting of this flag was at the # start of this "finally" block. However, that meant that the # workers would abort their currently running jobs. In the case of # of the natural ending of an application where an iterater ran to # exhaustion, the workers would die before completing their tasks. # Moving the setting of the flag to this location allows the # workers to finish and then the app shuts down. self.quit = True class TaskThread(threading.Thread): """This class represents a worker thread for the TaskManager class""" def __init__(self, config, task_queue): """Initialize a new thread. parameters: config - the configuration from configman task_queue - a reference to the queue from which to fetch jobs """ super().__init__() self.task_queue = task_queue self.config = config self.logger = logging.getLogger(__name__ + '.' + self.__class__.__name__) def _get_name(self): return threading.currentThread().getName() def run(self): """The main routine for a thread's work. The thread pulls tasks from the task queue and executes them until it encounters a death token. The death token is a tuple of two Nones. """ try: quit_request_detected = False while True: function, arguments = self.task_queue.get() if function is None: # this allows us to watch the threads die and identify # threads that may be hanging or deadlocked self.logger.info('quits') break if quit_request_detected: continue try: try: args, kwargs = arguments except ValueError: args = arguments kwargs = {} function(*args, **kwargs) # execute the task except Exception: self.logger.error("Error in processing a job", exc_info=True) except KeyboardInterrupt: # TODO: can probably go away self.logger.info('quit request detected') quit_request_detected = True # Only needed if signal handler is not registered # thread.interrupt_main() except Exception: self.logger.critical("Failure in task_queue", exc_info=True)
mpl-2.0
5,145,759,100,393,674,000
45.867987
84
0.580734
false
cmbclh/vnpy1.7
archive/datayes/api.py
11
43801
#encoding: UTF-8 import os import json import time import requests import pymongo import pandas as pd from datetime import datetime, timedelta from Queue import Queue, Empty from threading import Thread, Timer from pymongo import MongoClient from requests.exceptions import ConnectionError from errors import (VNPAST_ConfigError, VNPAST_RequestError, VNPAST_DataConstructorError) class Config(object): """ Json-like config object. The Config contains all kinds of settings and user info that could be useful in the implementation of Api wrapper. privates -------- * head: string; the name of config file. * token: string; user's token. * body: dictionary; the main content of config. - domain: string, api domain. - ssl: boolean, specifes http or https usage. - version: string, version of the api. Currently 'v1'. - header: dictionary; the request header which contains authorization infomation. """ head = 'my config' toke_ = '44ebc0f058981f85382595f9f15f967' + \ '0c7eaf2695de30dd752e8f33e9022baa0' token = '575593eb7696aec7339224c0fac2313780d8645f68b77369dcb35f8bcb419a0b' body = { 'ssl': False, 'domain': 'api.wmcloud.com/data', 'version': 'v1', 'header': { 'Connection' : 'keep-alive', 'Authorization': 'Bearer ' + token } } def __init__(self, head=None, token=None, body=None): """ Reloaded constructor. parameters ---------- * head: string; the name of config file. Default is None. * token: string; user's token. * body: dictionary; the main content of config """ if head: self.head = head if token: self.token = token if body: self.body = body def view(self): """ Prettify printing method. """ config_view = { 'config_head' : self.head, 'config_body' : self.body, 'user_token' : self.token } print json.dumps(config_view, indent=4, sort_keys=True) #---------------------------------------------------------------------- # Data containers. class BaseDataContainer(object): """ Basic data container. The fundamental of all other data container objects defined within this module. privates -------- * head: string; the head(type) of data container. * body: dictionary; data content. Among all sub-classes that inherit BaseDataContainer, type(body) varies according to the financial meaning that the child data container stands for. - History: - Bar """ head = 'ABSTRACT_DATA' body = dict() pass class History(BaseDataContainer): """ Historical data container. The foundation of all other pandas DataFrame-like two dimensional data containers for this module. privates -------- * head: string; the head(type) of data container. * body: pd.DataFrame object; contains data contents. """ head = 'HISTORY' body = pd.DataFrame() def __init__(self, data): """ Reloaded constructor. parameters ---------- * data: dictionary; usually a Json-like response from web based api. For our purposes, data is exactly resp.json() where resp is the response from datayes developer api. - example: {'data': [ { 'closePrice': 15.88, 'date': 20150701, ... }, { 'closePrice': 15.99, 'date': 20150702, ... }, ...], 'retCode': 1, 'retMsg': 'Success'}. So the body of data is actually in data['data'], which is our target when constructing the container. """ try: assert 'data' in data self.body = pd.DataFrame(data['data']) except AssertionError: msg = '[{}]: Unable to construct history data; '.format( self.head) + 'input is not a dataframe.' raise VNPAST_DataConstructorError(msg) except Exception,e: msg = '[{}]: Unable to construct history data; '.format( self.head) + str(e) raise VNPAST_DataConstructorError(msg) class Bar(History): """ Historical Bar data container. Inherits from History() DataFrame-like two dimensional data containers for Bar data. privates -------- * head: string; the head(type) of data container. * body: pd.DataFrame object; contains data contents. """ head = 'HISTORY_BAR' body = pd.DataFrame() def __init__(self, data): """ Reloaded constructor. parameters ---------- * data: dictionary; usually a Json-like response from web based api. For our purposes, data is exactly resp.json() where resp is the response from datayes developer api. - example: {'data': [{ 'exchangeCD': 'XSHG', 'utcOffset': '+08:00', 'unit': 1, 'currencyCD': 'CNY', 'barBodys': [ { 'closePrice': 15.88, 'date': 20150701, ... }, { 'closePrice': 15.99, 'date': 20150702, ... }, ... ], 'ticker': '000001', 'shortNM': u'\u4e0a\u8bc1\u6307\u6570' }, ...(other tickers) ], 'retCode': 1, 'retMsg': 'Success'}. When requesting 1 ticker, json['data'] layer has only one element; we expect that this is for data collectioning for multiple tickers, which is currently impossible nevertheless. So we want resp.json()['data'][0]['barBodys'] for Bar data contents, and that is what we go into when constructing Bar. """ try: assert 'data' in data assert 'barBodys' in data['data'][0] self.body = pd.DataFrame(data['data'][0]['barBodys']) except AssertionError: msg = '[{}]: Unable to construct history data; '.format( self.head) + 'input is not a dataframe.' raise VNPAST_DataConstructorError(msg) except Exception,e: msg = '[{}]: Unable to construct history data; '.format( self.head) + str(e) raise VNPAST_DataConstructorError(msg) #---------------------------------------------------------------------- # Datayes Api class class PyApi(object): """ Python based Datayes Api object. PyApi should be initialized with a Config json. The config must be complete, in that once constructed, the private variables like request headers, tokens, etc. become constant values (inherited from config), and will be consistantly referred to whenever make requests. privates -------- * _config: Config object; a container of all useful settings when making requests. * _ssl, _domain, _domain_stream, _version, _header, _account_id: boolean, string, string, string, dictionary, integer; just private references to the items in Config. See the docs of Config(). * _session: requests.session object. examples -------- """ _config = Config() # request stuffs _ssl = False _domain = '' _version = 'v1' _header = dict() _token = None _session = requests.session() def __init__(self, config): """ Constructor. parameters ---------- * config: Config object; specifies user and connection configs. """ if config.body: try: self._config = config self._ssl = config.body['ssl'] self._domain = config.body['domain'] self._version = config.body['version'] self._header = config.body['header'] except KeyError: msg = '[API]: Unable to configure api; ' + \ 'config file is incomplete.' raise VNPAST_ConfigError(msg) except Exception,e: msg = '[API]: Unable to configure api; ' + str(e) raise VNPAST_ConfigError(msg) # configure protocol if self._ssl: self._domain = 'https://' + self._domain else: self._domain = 'http://' + self._domain def __access(self, url, params, method='GET'): """ request specific data from given url with parameters. parameters ---------- * url: string. * params: dictionary. * method: string; 'GET' or 'POST', request method. """ try: assert type(url) == str assert type(params) == dict except AssertionError,e: raise e('[API]: Unvalid url or parameter input.') if not self._session: s = requests.session() else: s = self._session # prepare and send the request. try: req = requests.Request(method, url = url, headers = self._header, params = params) prepped = s.prepare_request(req) # prepare the request resp = s.send(prepped, stream=False, verify=True) if method == 'GET': assert resp.status_code == 200 elif method == 'POST': assert resp.status_code == 201 return resp except AssertionError: msg = '[API]: Bad request, unexpected response status: ' + \ str(resp.status_code) raise VNPAST_RequestError(msg) pass except Exception,e: msg = '[API]: Bad request.' + str(e) raise VNPAST_RequestError(msg) #---------------------------------------------------------------------- # directly get methods - Market data def get_equity_M1_one(self, start='', end='', secID='000001.XSHG'): """ Get 1-minute intraday bar data of one security. parameters ---------- * start, end: string; Time mark formatted in 'HH:MM'. Specifies the start/end point of bar. Note that the requested date is the latest trading day (only one day), and the default start/end time is '09:30' and min(now, '15:00'). Effective minute bars range from 09:30 - 11:30 in the morning and 13:01 - 15:00 in the afternoon. * secID: string; the security ID in the form of '000001.XSHG', i.e. ticker.exchange """ url = '{}/{}/api/market/getBarRTIntraDay.json'.format( self._domain, self._version) params = { 'startTime': start, 'endTime': end, 'securityID': secID, } try: resp = self.__access(url=url, params=params) assert len(resp.json()) > 0 print resp.json() data = Bar(resp.json()) return data except AssertionError: return 0 def get_equity_M1(self, field='', start='20130701', end='20130730', secID='000001.XSHG', output='df'): """ 1-minute bar in a month, currently unavailable. parameters ---------- * field: string; variables that are to be requested. * start, end: string; Time mark formatted in 'YYYYMMDD'. * secID: string; the security ID in the form of '000001.XSHG', i.e. ticker.exchange * output: enumeration of strings; the format of output that will be returned. default is 'df', optionals are: - 'df': returns History object, where ret.body is a dataframe. - 'list': returns a list of dictionaries. """ url = '{}/{}/api/market/getBarHistDateRange.json'.format( self._domain, self._version) params = { 'field': field, 'startDate': start, 'endDate': end, 'securityID': secID, } try: resp = self.__access(url=url, params=params) assert len(resp.json()) > 0 if output == 'df': data = Bar(resp.json()) elif output == 'list': data = resp.json()['data'][0]['barBodys'] return data except AssertionError: return 0 def get_equity_D1(self, field='', start='', end='', secID='', ticker='', one=20150513, output='df'): """ Get 1-day interday bar data of one security. parameters ---------- * field: string; variables that are to be requested. Available variables are: (* is unique for securities) - secID string. - tradeDate date(?). - ticker string. - secShortName string. - exchangeCD string. - preClosePrice double. - actPreClosePrice* double. - openPrice double. - highestPrice double. - lowestPrice double. - closePrice double. - turnoverVol double. - turnoverValue double. - dealAmount* integer. - turnoverRate double. - accumAdjFactor* double. - negMarketValue* double. - marketValue* double. - PE* double. - PE1* double. - PB* double. Field is an optional parameter, default setting returns all fields. * start, end: string; Date mark formatted in 'YYYYMMDD'. Specifies the start/end point of bar. Start and end are optional parameters. If start, end and ticker are all specified, default 'one' value will be abandoned. * secID: string; the security ID in the form of '000001.XSHG', i.e. ticker.exchange. * ticker: string; the trading code in the form of '000001'. * one: string; Date mark formatted in 'YYYYMMDD'. Specifies one date on which data of all tickers are to be requested. Note that to get effective json data response, at least one parameter in {secID, ticker, tradeDate} should be entered. * output: enumeration of strings; the format of output that will be returned. default is 'df', optionals are: - 'df': returns History object, where ret.body is a dataframe. - 'list': returns a list of dictionaries. """ if start and end and ticker: one = '' # while user specifies start/end, covers tradeDate. url = '{}/{}/api/market/getMktEqud.json'.format( self._domain, self._version) params = { 'field': field, 'beginDate': start, 'endDate': end, 'secID': secID, 'ticker': ticker, 'tradeDate': one } try: resp = self.__access(url=url, params=params) assert len(resp.json()) > 0 if output == 'df': data = History(resp.json()) elif output == 'list': data = resp.json()['data'] return data #return resp except AssertionError: return 0 def get_block_D1(self, field='', start='', end='', secID='', ticker='', one=20150513): """ """ pass def get_repo_D1(self, field='', start='', end='', secID='', ticker='', one=20150513): """ """ pass def get_bond_D1(self, field='', start='', end='', secID='', ticker='', one=20150513, output='df'): """ Get 1-day interday bar data of one bond instrument. parameters ---------- * field: string; variables that are to be requested. Available variables are: (* is unique for bonds) - secID string. - tradeDate date(?). - ticker string. - secShortName string. - exchangeCD string. - preClosePrice double. - openPrice double. - highestPrice double. - lowestPrice double. - closePrice double. - turnoverVol double. - turnoverValue double. - turnoverRate double. - dealAmount* integer. - accrInterest* double. - YTM(yieldToMaturity)* double. Field is an optional parameter, default setting returns all fields. * start, end, secID, ticker, one, output string, string, string, string, string, string(enum) Same as above, reference: get_equity_D1(). """ if start and end and ticker: one = '' # while user specifies start/end, covers tradeDate. url = '{}/{}/api/market/getMktBondd.json'.format( self._domain, self._version) params = { 'field': field, 'beginDate': start, 'endDate': end, 'secID': secID, 'ticker': ticker, 'tradeDate': one } try: resp = self.__access(url=url, params=params) assert len(resp.json()) > 0 if output == 'df': data = History(resp.json()) elif output == 'list': data = resp.json()['data'] return data except AssertionError: return 0 def get_future_D1(self, field='', start='', end='', secID='', ticker='', one=20150513, output='df'): """ Get 1-day interday bar data of one future contract. parameters ---------- * field: string; variables that are to be requested. Available variables are: (* is unique for future contracts) - secID string. - tradeDate date(?). - ticker string. - secShortName string. - exchangeCD string. - contractObject* string. - contractMark* string. - preSettlePrice* double. - preClosePrice double. - openPrice double. - highestPrice double. - lowestPrice double. - closePrice double. - settlePrice* double. - turnoverVol integer. - turnoverValue integer. - openInt* integer. - CHG* double. - CHG1* double. - CHGPct* double. - mainCon* integer (0/1 flag). - smainCon* integer (0/1 flag). Field is an optional parameter, default setting returns all fields. * start, end, secID, ticker, one, output string, string, string, string, string, string(enum) Same as above, reference: get_equity_D1(). """ if start and end and ticker: one = '' # while user specifies start/end, covers tradeDate. url = '{}/{}/api/market/getMktFutd.json'.format( self._domain, self._version) params = { 'field': field, 'beginDate': start, 'endDate': end, 'secID': secID, 'ticker': ticker, 'tradeDate': one } try: resp = self.__access(url=url, params=params) assert len(resp.json()) > 0 if output == 'df': data = History(resp.json()) elif output == 'list': data = resp.json()['data'] return data except AssertionError: return 0 def get_future_main_D1(self, field='', start='', end='', mark='', obj='', main=1, one=20150513): """ """ pass def get_fund_D1(self, field='', start='', end='', secID='', ticker='', one=20150513, output='df'): """ Get 1-day interday bar data of one mutual fund. parameters ---------- * field: string; variables that are to be requested. Available variables are: (* is unique for funds) - secID string. - tradeDate date(?). - ticker string. - secShortName string. - exchangeCD string. - preClosePrice double. - openPrice double. - highestPrice double. - lowestPrice double. - closePrice double. - turnoverVol double. - turnoverValue double. - CHG* double. - CHGPct* double. - discount* double. - discountRatio* double. - circulationShares* double. Field is an optional parameter, default setting returns all fields. * start, end, secID, ticker, one, output string, string, string, string, string, string(enum) Same as above, reference: get_equity_D1(). """ if start and end and ticker: one = '' # while user specifies start/end, covers tradeDate. url = '{}/{}/api/market/getMktFundd.json'.format( self._domain, self._version) params = { 'field': field, 'beginDate': start, 'endDate': end, 'secID': secID, 'ticker': ticker, 'tradeDate': one } try: resp = self.__access(url=url, params=params) assert len(resp.json()) > 0 if output == 'df': data = History(resp.json()) elif output == 'list': data = resp.json()['data'] return data except AssertionError: return 0 def get_index_D1(self, field='', start='', end='', indexID='', ticker='', one=20150513, output='df'): """ Get 1-day interday bar data of one stock index. parameters ---------- * field: string; variables that are to be requested. Available variables are: (* is unique for indices) - indexID string. - tradeDate date(?). - ticker string. - secShortName string. - porgFullName* string. - exchangeCD string. - preCloseIndex double. - openIndex double. - highestIndex double. - lowestIndex double. - closeIndex double. - turnoverVol double. - turnoverValue double. - CHG* double. - CHGPct* double. Field is an optional parameter, default setting returns all fields. * start, end, secID, ticker, one, output string, string, string, string, string, string(enum) Same as above, reference: get_equity_D1(). """ if start and end and ticker: one = '' # while user specifies start/end, covers tradeDate. url = '{}/{}/api/market/getMktIdxd.json'.format( self._domain, self._version) params = { 'field': field, 'beginDate': start, 'endDate': end, 'indexID': indexID, 'ticker': ticker, 'tradeDate': one } try: resp = self.__access(url=url, params=params) assert len(resp.json()) > 0 if output == 'df': data = History(resp.json()) elif output == 'list': data = resp.json()['data'] return data except AssertionError: return 0 def get_option_D1(self, field='', start='', end='', secID='', optID='' ,ticker='', one=20150513, output='df'): """ Get 1-day interday bar data of one option contact. parameters ---------- * field: string; variables that are to be requested. Available variables are: (* is unique for options) - secID string. - optID* string. - tradeDate date(?). - ticker string. - secShortName string. - exchangeCD string. - preClosePrice double. - openPrice double. - highestPrice double. - lowestPrice double. - closePrice double. - settlePrice* double. - turnoverVol double. - turnoverValue double. - openInt* integer. Field is an optional parameter, default setting returns all fields. * start, end, secID, ticker, one, output string, string, string, string, string, string(enum) Same as above, reference: get_equity_D1(). """ if start and end and ticker: one = '' # while user specifies start/end, covers tradeDate. url = '{}/{}/api/market/getMktOptd.json'.format( self._domain, self._version) params = { 'field': field, 'beginDate': start, 'endDate': end, 'secID': secID, 'optID': optID, 'ticker': ticker, 'tradeDate': one } try: resp = self.__access(url=url, params=params) assert len(resp.json()) > 0 if output == 'df': data = History(resp.json()) elif output == 'list': data = resp.json()['data'] return data except AssertionError: return 0 def get_stockFactor_D1(self, field='', secID='', ticker='000001', start=20130701, end=20130801): """ Get 1-day interday factor data for stocks. parameters ---------- * field: string; variables that are to be requested. Field is an optional parameter, default setting returns all fields. * start, end, secID, ticker, one, output string, string, string, string, string, string(enum) Same as above, reference: get_equity_D1(). """ url = '{}/{}/api/market/getStockFactorsDateRange.json'.format( self._domain, self._version) params = { 'field': field, 'beginDate': start, 'endDate': end, 'secID': secID, 'ticker': ticker } try: resp = self.__access(url=url, params=params) assert len(resp.json()) > 0 data = History(resp.json()) return data except AssertionError: return 0 #---------------------------------------------------------------------- # directly get methods - Fundamental Data def get_balanceSheet(self, field='', secID='', start='', end='', pubStart='', pubEnd='', reportType='', ticker='000001'): """ """ url = '{}/{}/api/fundamental/getFdmtBS.json'.format( self._domain, self._version) params = { 'field': field, 'secID': secID, 'ticker': ticker, 'beginDate': start, 'endDate': end, 'publishDateBegin': pubStart, 'publishDateEnd': pubEnd, 'reportType': reportType } try: resp = self.__access(url=url, params=params) assert len(resp.json()) > 0 data = History(resp.json()) return data except AssertionError: return 0 def get_balanceSheet_bnk(self): """ """ pass def get_balanceSheet_sec(self): """ """ pass def get_balanceSheet_ins(self): """ """ pass def get_balanceSheet_ind(self): """ """ pass def get_cashFlow(self, field='', secID='', start='', end='', pubStart='', pubEnd='', reportType='', ticker='000001'): """ """ url = '{}/{}/api/fundamental/getFdmtCF.json'.format( self._domain, self._version) params = { 'field': field, 'secID': secID, 'ticker': ticker, 'beginDate': start, 'endDate': end, 'publishDateBegin': pubStart, 'publishDateEnd': pubEnd, 'reportType': reportType } try: resp = self.__access(url=url, params=params) assert len(resp.json()) > 0 data = History(resp.json()) return data except AssertionError: return 0 def get_cashFlow_bnk(self): """ """ pass def get_cashFlow_sec(self): """ """ pass def get_cashFlow_ins(self): """ """ pass def get_cashFlow_ind(self): """ """ pass def get_incomeStatement(self, field='', secID='', start='', end='', pubStart='', pubEnd='', reportType='', ticker='000001'): """ """ url = '{}/{}/api/fundamental/getFdmtIS.json'.format( self._domain, self._version) params = { 'field': field, 'secID': secID, 'ticker': ticker, 'beginDate': start, 'endDate': end, 'publishDateBegin': pubStart, 'publishDateEnd': pubEnd, 'reportType': reportType } try: resp = self.__access(url=url, params=params) assert len(resp.json()) > 0 data = History(resp.json()) return data except AssertionError: return 0 def get_incomeStatement_bnk(self): """ """ pass def get_incomeStatement_sec(self): """ """ pass def get_incomeStatement_ins(self): """ """ pass def get_incomeStatement_ind(self): """ """ pass #---------------------------------------------------------------------- # multi-threading download for database storage. def __drudgery(self, id, db, indexType, start, end, tasks, target): """ basic drudgery function. This method loops over a list of tasks(tickers) and get data using target api.get_# method for all those tickers. A new feature 'date' or 'dateTime'(for intraday) will be automatically added into every json-like documents, and specifies the datetime. datetime() formatted date(time) mark. With the setting of MongoDB in this module, this feature should be the unique index for all collections. By programatically assigning creating and assigning tasks to drudgery functions, multi-threading download of data can be achieved. parameters ---------- * id: integer; the ID of Drudgery session. * db: pymongo.db object; the database which collections of bars will go into. * indexType: string(enum): 'date' or 'datetime', specifies what is the collection index formatted. * start, end: string; Date mark formatted in 'YYYYMMDD'. Specifies the start/end point of collections of bars. * tasks: list of strings; the tickers that this drudgery function loops over. * target: method; the api.get_# method that is to be called by drudgery function. """ if len(tasks) == 0: return 0 # str to datetime inline functions. if indexType == 'date': todt = lambda str_dt: datetime.strptime(str_dt,'%Y-%m-%d') update_dt = lambda d: d.update({'date':todt(d['tradeDate'])}) elif indexType == 'datetime': todt = lambda str_d, str_t: datetime.strptime( str_d + ' ' + str_t,'%Y-%m-%d %H:%M') update_dt = lambda d: d.update( {'dateTime':todt(d['dataDate'], d['barTime'])}) else: raise ValueError # loop over all tickers in task list. k, n = 1, len(tasks) for ticker in tasks: try: data = target(start = start, end = end, ticker = ticker, output = 'list') assert len(data) >= 1 map(update_dt, data) # add datetime feature to docs. coll = db[ticker] coll.insert_many(data) print '[API|Session{}]: '.format(id) + \ 'Finished {} in {}.'.format(k, n) k += 1 except AssertionError: msg = '[API|Session{}]: '.format(id) + \ 'Empty dataset in the response.' print msg pass except Exception, e: msg = '[API|Session{}]: '.format(id) + \ 'Exception encountered when ' + \ 'requesting data; ' + str(e) print msg pass def get_equity_D1_drudgery(self, id, db, start, end, tasks=[]): """ call __drudgery targeting at get_equity_D1() """ self.__drudgery(id=id, db=db, indexType = 'date', start = start, end = end, tasks = tasks, target = self.get_equity_D1) def get_future_D1_drudgery(self, id, db, start, end, tasks=[]): """ call __drudgery targeting at get_future_D1() """ self.__drudgery(id=id, db=db, indexType = 'date', start = start, end = end, tasks = tasks, target = self.get_future_D1) def get_index_D1_drudgery(self, id, db, start, end, tasks=[]): """ call __drudgery targeting at get_index_D1() """ self.__drudgery(id=id, db=db, indexType = 'date', start = start, end = end, tasks = tasks, target = self.get_index_D1) def get_bond_D1_drudgery(self, id, db, start, end, tasks=[]): """ call __drudgery targeting at get_bond_D1() """ self.__drudgery(id=id, db=db, indexType = 'date', start = start, end = end, tasks = tasks, target = self.get_bond_D1) def get_fund_D1_drudgery(self, id, db, start, end, tasks=[]): """ call __drudgery targeting at get_fund_D1() """ self.__drudgery(id=id, db=db, indexType = 'date', start = start, end = end, tasks = tasks, target = self.get_fund_D1) def get_option_D1_drudgery(self, id, db, start, end, tasks=[]): """ call __drudgery targeting at get_option_D1() """ self.__drudgery(id=id, db=db, indexType = 'date', start = start, end = end, tasks = tasks, target = self.get_option_D1) #---------------------------------------------------------------------- def __overlord(self, db, start, end, dName, target1, target2, sessionNum): """ Basic controller of multithreading request. Generates a list of all tickers, creates threads and distribute tasks to individual #_drudgery() functions. parameters ---------- * db: pymongo.db object; the database which collections of bars will go into. Note that this database will be transferred to every drudgery functions created by controller. * start, end: string; Date mark formatted in 'YYYYMMDD'. Specifies the start/end point of collections of bars. * dName: string; the path of file where all tickers' infomation are stored in. * target1: method; targetting api method that overlord calls to get tasks list. * target2: method; the corresponding drudgery function. * sessionNum: integer; the number of threads that will be deploied. Concretely, the list of all tickers will be sub-divided into chunks, where chunkSize = len(allTickers)/sessionNum. """ if os.path.isfile(dName): # if directory exists, read from it. jsonFile = open(dName,'r') allTickers = json.loads(jsonFile.read()) jsonFile.close() else: data = target1() allTickers = list(data.body['ticker']) chunkSize = len(allTickers)/sessionNum taskLists = [allTickers[k:k+chunkSize] for k in range( 0, len(allTickers), chunkSize)] k = 0 for tasks in taskLists: thrd = Thread(target = target2, args = (k, db, start, end, tasks)) thrd.start() k += 1 return 1 def get_equity_D1_mongod(self, db, start, end, sessionNum=30): """ Controller of get equity D1 method. """ self.__overlord(db = db, start = start, end = end, dName = 'names/equTicker.json', target1 = self.get_equity_D1, target2 = self.get_equity_D1_drudgery, sessionNum = sessionNum) def get_future_D1_mongod(self, db, start, end, sessionNum=30): """ Controller of get future D1 method. """ self.__overlord(db = db, start = start, end = end, dName = 'names/futTicker.json', target1 = self.get_future_D1, target2 = self.get_future_D1_drudgery, sessionNum = sessionNum) def get_index_D1_mongod(self, db, start, end, sessionNum=30): """ Controller of get index D1 method. """ self.__overlord(db = db, start = start, end = end, dName = 'names/idxTicker.json', target1 = self.get_index_D1, target2 = self.get_index_D1_drudgery, sessionNum = sessionNum) def get_bond_D1_mongod(self, db, start, end, sessionNum=30): """ Controller of get bond D1 method. """ self.__overlord(db = db, start = start, end = end, dName = 'names/bndTicker.json', target1 = self.get_bond_D1, target2 = self.get_bond_D1_drudgery, sessionNum = sessionNum) def get_fund_D1_mongod(self, db, start, end, sessionNum=30): """ Controller of get fund D1 method. """ self.__overlord(db = db, start = start, end = end, dName = 'names/fudTicker.json', target1 = self.get_fund_D1, target2 = self.get_fund_D1_drudgery, sessionNum = sessionNum) def get_option_D1_mongod(self, db, start, end, sessionNum=30): """ Controller of get option D1 method. """ self.__overlord(db = db, start = start, end = end, dName = 'names/optTicker.json', target1 = self.get_option_D1, target2 = self.get_option_D1_drudgery, sessionNum = sessionNum) def get_equity_D1_mongod_(self, db, start, end, sessionNum=30): """ Outer controller of get equity D1 method. Generates a list of all tickers, creates threads and distribute tasks to individual get_equity_D1_drudgery() functions. parameters ---------- * db: pymongo.db object; the database which collections of bars will go into. Note that this database will be transferred to every drudgery functions created by controller. * start, end: string; Date mark formatted in 'YYYYMMDD'. Specifies the start/end point of collections of bars. * sessionNum: integer; the number of threads that will be deploied. Concretely, the list of all tickers will be sub-divided into chunks, where chunkSize = len(allTickers)/sessionNum. """ # initialize task list. dName = 'names/equTicker.json' if os.path.isfile(dName): # if directory exists, read from it. jsonFile = open(dName,'r') allTickers = json.loads(jsonFile.read()) jsonFile.close() else: data = self.get_equity_D1() allTickers = list(data.body['ticker']) chunkSize = len(allTickers)/sessionNum taskLists = [allTickers[k:k+chunkSize] for k in range( 0, len(allTickers), chunkSize)] k = 0 for tasks in taskLists: thrd = Thread(target = self.get_equity_D1_drudgery, args = (k, db, start, end, tasks)) thrd.start() k += 1 return 1 #----------------------------------------------------------------------# # to be deprecated def get_equity_D1_drudgery_(self, id, db, start, end, tasks=[]): """ Drudgery function of getting equity_D1 bars. This method loops over a list of tasks(tickers) and get D1 bar for all these tickers. A new feature 'date' will be automatically added into every json-like documents, and specifies the datetime. datetime() formatted date mark. With the default setting of MongoDB in this module, this feature should be the unique index for all collections. By programatically assigning creating and assigning tasks to drudgery functions, multi-threading download of data can be achieved. parameters ---------- * id: integer; the ID of Drudgery session. * db: pymongo.db object; the database which collections of bars will go into. * start, end: string; Date mark formatted in 'YYYYMMDD'. Specifies the start/end point of collections of bars. * tasks: list of strings; the tickers that this drudgery function loops over. """ if len(tasks) == 0: return 0 # str to datetime inline functions. todt = lambda str_dt: datetime.strptime(str_dt,'%Y-%m-%d') update_dt = lambda d: d.update({'date':todt(d['tradeDate'])}) # loop over all tickers in task list. k, n = 1, len(tasks) for ticker in tasks: try: data = self.get_equity_D1(start = start, end = end, ticker = ticker, output = 'list') assert len(data) >= 1 map(update_dt, data) # add datetime feature to docs. coll = db[ticker] coll.insert_many(data) print '[API|Session{}]: '.format(id) + \ 'Finished {} in {}.'.format(k, n) k += 1 except ConnectionError: # If choke connection, standby for 1sec an invoke again. time.sleep(1) self.get_equity_D1_drudgery( id, db, start, end, tasks) except AssertionError: msg = '[API|Session{}]: '.format(id) + \ 'Empty dataset in the response.' print msg pass except Exception, e: msg = '[API|Session{}]: '.format(id) + \ 'Exception encountered when ' + \ 'requesting data; ' + str(e) print msg pass def get_equity_D1_mongod_(self, db, start, end, sessionNum=30): """ Outer controller of get equity D1 method. Generates a list of all tickers, creates threads and distribute tasks to individual get_equity_D1_drudgery() functions. parameters ---------- * db: pymongo.db object; the database which collections of bars will go into. Note that this database will be transferred to every drudgery functions created by controller. * start, end: string; Date mark formatted in 'YYYYMMDD'. Specifies the start/end point of collections of bars. * sessionNum: integer; the number of threads that will be deploied. Concretely, the list of all tickers will be sub-divided into chunks, where chunkSize = len(allTickers)/sessionNum. """ # initialize task list. dName = 'names/equTicker.json' if os.path.isfile(dName): # if directory exists, read from it. jsonFile = open(dName,'r') allTickers = json.loads(jsonFile.read()) jsonFile.close() else: data = self.get_equity_D1() allTickers = list(data.body['ticker']) chunkSize = len(allTickers)/sessionNum taskLists = [allTickers[k:k+chunkSize] for k in range( 0, len(allTickers), chunkSize)] k = 0 for tasks in taskLists: thrd = Thread(target = self.get_equity_D1_drudgery, args = (k, db, start, end, tasks)) thrd.start() k += 1 return 1 #----------------------------------------------------------------------# def get_equity_M1_drudgery(self, id, db, start, end, tasks=[]): """ Drudgery function of getting equity_D1 bars. This method loops over a list of tasks(tickers) and get D1 bar for all these tickers. A new feature 'dateTime', combined by Y-m-d formatted date part and H:M time part, will be automatically added into every json-like documents. It would be a datetime.datetime() timestamp object. In this module, this feature should be the unique index for all collections. By programatically assigning creating and assigning tasks to drudgery functions, multi-threading download of data can be achieved. parameters ---------- * id: integer; the ID of Drudgery session. * db: pymongo.db object; the database which collections of bars will go into. * start, end: string; Date mark formatted in 'YYYYMMDD'. Specifies the start/end point of collections of bars. Note that to ensure the success of every requests, the range amid start and end had better be no more than one month. * tasks: list of strings; the tickers that this drudgery function loops over. """ if len(tasks) == 0: return 0 # str to datetime inline functions. todt = lambda str_d, str_t: datetime.strptime( str_d + ' ' + str_t,'%Y-%m-%d %H:%M') update_dt = lambda d: d.update( {'dateTime':todt(d['dataDate'], d['barTime'])}) k, n = 1, len(tasks) for secID in tasks: try: data = self.get_equity_M1(start = start, end = end, secID = secID, output = 'list') map(update_dt, data) # add datetime feature to docs. coll = db[secID] coll.insert_many(data) print '[API|Session{}]: '.format(id) + \ 'Finished {} in {}.'.format(k, n) k += 1 except ConnectionError: # If choke connection, standby for 1sec an invoke again. time.sleep(1) self.get_equity_D1_drudgery( id, db, start, end, tasks) except AssertionError: msg = '[API|Session{}]: '.format(id) + \ 'Empty dataset in the response.' print msg pass except Exception, e: msg = '[API|Session{}]: '.format(id) + \ 'Exception encountered when ' + \ 'requesting data; ' + str(e) print msg pass def get_equity_M1_interMonth(self, db, id, startYr=datetime.now().year-2, endYr=datetime.now().year, tasks=[]): """ Mid-level wrapper of get equity M1 method. Get 1-minute bar between specified start year and ending year for more than one tickers in tasks list. parameters ---------- * db: pymongo.db object; the database which collections of bars will go into. Note that this database will be transferred to every drudgery functions created by controller. * id: integer; the ID of wrapper session. * startYr, endYr: integer; the start and ending year amid which the 1-minute bar data is gotten one month by another employing get_equity_M1_drudgery() function. Default values are this year and two years before now. the complete time range will be sub-divided into months. And threads are deployed for each of these months. - example ------- Suppose .now() is Auguest 15th 2015. (20150815) startYr, endYr = 2014, 2015. then two list of strings will be generated: ymdStringStart = ['20140102','20140202', ... '20150802'] ymdStringEnd = ['20140101','20140201', ... '20150801'] the sub-timeRanges passed to drudgeries will be: (start, end): (20140102, 20140201), (20140202, 20140301), ..., (20150702, 20150801). So the actual time range is 20140102 - 20150801. * sessionNum: integer; the number of threads that will be deploied. Concretely, the list of all tickers will be sub-divided into chunks, where chunkSize = len(allTickers)/sessionNum. """ # Construct yyyymmdd strings.(as ymdStrings list) now = datetime.now() years = [str(y) for y in range(startYr, endYr+1)] monthDates = [(2-len(str(k)))*'0'+str(k)+'02' for k in range(1,13)] ymdStringStart = [y+md for y in years for md in monthDates if ( datetime.strptime(y+md,'%Y%m%d')<=now)] monthDates = [(2-len(str(k)))*'0'+str(k)+'01' for k in range(1,13)] ymdStringEnd = [y+md for y in years for md in monthDates if ( datetime.strptime(y+md,'%Y%m%d')<=now)] k = 0 for t in range(len(ymdStringEnd)-1): start = ymdStringStart[t] end = ymdStringEnd[t+1] subID = str(id) + '_' + str(k) thrd = Thread(target = self.get_equity_M1_drudgery, args = (subID, db, start, end, tasks)) thrd.start() k += 1 def get_equity_M1_all(self, db, startYr=datetime.now().year-2, endYr=datetime.now().year, splitNum=10): """ """ """ # initialize task list. data = self.get_equity_D1() allTickers = list(data.body['ticker']) exchangeCDs = list(data.body['exchangeCD']) allSecIds = [allTickers[k]+'.'+exchangeCDs[k] for k in range( len(allTickers))] chunkSize = len(allSecIds)/splitNum taskLists = [allSecIds[k:k+chunkSize] for k in range( 0, len(allSecIds), chunkSize)] # Construct yyyymmdd strings.(as ymdStrings list) now = datetime.now() years = [str(y) for y in range(startYr, endYr+1)] monthDates = [(2-len(str(k)))*'0'+str(k)+'01' for k in range(1,13)] ymdStrings = [y+md for y in years for md in monthDates if ( datetime.strptime(y+md,'%Y%m%d')<=now)] print taskLists[0] print ymdStrings k = 0 for t in range(len(ymdStrings)-1): start = ymdStrings[t] end = ymdStrings[t+1] thrd = Thread(target = self.get_equity_M1_drudgery, args = (k, db, start, end, taskLists[0])) thrd.start() k += 1 return 1 """ pass
mit
9,052,507,582,145,055,000
27.078205
77
0.61679
false
MYaseen208/Calculator
Documentation/source/gui.py
1
3815
# By Geetha, Ali, Yaseen, Majid and Mortaza # import Tkinter as Tk # Python2 import tkinter as Tk # Python3 import subprocess class Calculator: # Constructor for adding buttons def __init__(self, window): window.title('Calculator By Geetha, Ali, Yaseen, Majid and Mortaza') window.geometry() self.text_box = Tk.Entry(window, width=40, font="Noto 20 bold") self.text_box.grid(row=0, column=0, columnspan=6) self.text_box.focus_set() # Buttons Tk.Button(window,text="+",font="Noto 10 bold",width=14,height=6,command=lambda:self.action('+')).grid(row=4, column=3) Tk.Button(window,text="*",font="Noto 10 bold",width=14,height=6,command=lambda:self.action('*')).grid(row=2, column=3) Tk.Button(window,text="-",font="Noto 10 bold",width=14,height=6,command=lambda:self.action('-')).grid(row=3, column=3) Tk.Button(window,text="/",font="Noto 10 bold",width=14,height=6,command=lambda:self.action('/')).grid(row=1, column=3) Tk.Button(window,text="7",font="Noto 10 bold",width=14,height=6,command=lambda:self.action('7')).grid(row=1, column=0) Tk.Button(window,text="8",font="Noto 10 bold",width=14,height=6,command=lambda:self.action(8)).grid(row=1, column=1) Tk.Button(window,text="9",font="Noto 10 bold",width=14,height=6,command=lambda:self.action(9)).grid(row=1, column=2) Tk.Button(window,text="4",font="Noto 10 bold",width=14,height=6,command=lambda:self.action(4)).grid(row=2, column=0) Tk.Button(window,text="5",font="Noto 10 bold",width=14,height=6,command=lambda:self.action(5)).grid(row=2, column=1) Tk.Button(window,text="6",font="Noto 10 bold",width=14,height=6,command=lambda:self.action(6)).grid(row=2, column=2) Tk.Button(window,text="1",font="Noto 10 bold",width=14,height=6,command=lambda:self.action(1)).grid(row=3, column=0) Tk.Button(window,text="2",font="Noto 10 bold",width=14,height=6,command=lambda:self.action(2)).grid(row=3, column=1) Tk.Button(window,text="3",font="Noto 10 bold",width=14,height=6,command=lambda:self.action(3)).grid(row=3, column=2) Tk.Button(window,text="0",font="Noto 10 bold",width=14,height=6,command=lambda:self.action(0)).grid(row=4, column=0) Tk.Button(window,text=".",font="Noto 10 bold",width=14,height=6,command=lambda:self.action('.')).grid(row=4, column=1) Tk.Button(window,text="(",font="Noto 10 bold",width=14,height=6,command=lambda:self.action('(')).grid(row=1, column=4) Tk.Button(window,text=")",font="Noto 10 bold",width=14,height=6,command=lambda:self.action(')')).grid(row=2, column=4) Tk.Button(window,text="=",font="Noto 10 bold",width=14,height=6,command=lambda:self.equals()).grid(row=4, column=2) Tk.Button(window,text="^",font="Noto 10 bold",width=14,height=6,command=lambda:self.action('^')).grid(row=3, column=4) Tk.Button(window,text='Clear',font="Noto 10 bold",width=14,height=6,command=lambda:self.clearall()).grid(row=4, column=4) def action(self, arg): """Attaching button's value to end of the text box""" self.text_box.insert(Tk.END, arg) def get(self): """Getting expression from c++ code""" self.expression = self.text_box.get() def equals(self): self.get() self.expression=self.expression.replace('(','\(') # Because of echo! self.expression=self.expression.replace(')','\)') # Because of echo! self.value= subprocess.check_output("echo {} | ./main.x".format(self.expression), shell=True) self.text_box.delete(0, Tk.END) self.text_box.insert(0, self.value) def clearall(self): """Clearing the text box""" self.text_box.delete(0, Tk.END) window = Tk.Tk() ob = Calculator(window) window.mainloop()
gpl-3.0
-2,637,277,800,477,473,300
62.583333
129
0.658453
false
hfp/tensorflow-xsmm
tensorflow/python/autograph/converters/call_trees.py
5
12529
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Handles function calls, by generating compiled function names and calls. Note: this transformer does not rename the top level object being converted; that is the caller's responsibility. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import gast from tensorflow.python.autograph.core import converter from tensorflow.python.autograph.pyct import anno from tensorflow.python.autograph.pyct import ast_util from tensorflow.python.autograph.pyct import inspect_utils from tensorflow.python.autograph.pyct import parser from tensorflow.python.autograph.pyct import templates from tensorflow.python.util import tf_inspect class FunctionInfo(collections.namedtuple('FunctionInfo', ('dtype',))): pass # TODO(mdan): Move this to a separate transformer. KNOWN_NUMPY_FUNCTIONS = { ('numpy', 'random', 'binomial'): FunctionInfo(dtype='tf.int64'), } # TODO(mdan): Get rid of these interfaces. Can now depend directly on Namer. class FunctionNamer(object): """Describes the interface for CallTreeTransformer's namer.""" def compiled_function_name(self, original_fqn, live_entity=None, owner_type=None): """Generate the name corresponding to the compiled version of a function. Args: original_fqn: string or tuple(string) live_entity: Callable, the actual target function, if known. owner_type: Optional object. If present, it indicates that the function is a member of the given type. Returns: string, bool """ raise NotImplementedError() def compiled_class_name(self, original_fqn, live_entity=None): """Generate the name corresponding to the compiled version of a class. Args: original_fqn: string or tuple(string) live_entity: The actual target class, if known. Returns: string """ raise NotImplementedError() # TODO(mdan): Rename to CallsTransformer. class CallTreeTransformer(converter.Base): """Transforms the call tree by renaming transformed symbols.""" def _resolve_decorator_name(self, node): """Used to resolve decorator info.""" if isinstance(node, gast.Call): return self._resolve_decorator_name(node.func) if isinstance(node, gast.Name): # TODO(mdan): Add test coverage for this branch. return self.ctx.info.namespace.get(node.id) if isinstance(node, gast.Attribute): parent = self._resolve_decorator_name(node.value) if parent is not None: return getattr(parent, node.attr) return None raise ValueError(node) def _try_resolve_target(self, node): """Works for methods of objects of known type.""" if anno.hasanno(node, 'live_val'): return anno.getanno(node, 'live_val') if isinstance(node, gast.Attribute) and anno.hasanno(node, 'type'): owner_type = anno.getanno(node, 'type') if hasattr(owner_type, node.attr): return getattr(owner_type, node.attr) else: # TODO(mdan): We should probably return None here rather than an error. raise ValueError('Type "%s" has no attribute "%s". Is it dynamic?' % (owner_type, node.attr)) return None def _function_is_compilable(self, target_entity): """Determines whether an entity can be compiled at all.""" # TODO(mdan): Expand. if target_entity.__module__ is None: # Functions like builtins and NumPy don't expose a module. # Those in general should not be compiled. return False if inspect_utils.isbuiltin(target_entity): return False if inspect_utils.isnamedtuple(target_entity): # namedtuple doesn't expose its source code, making it uncompilable. return False return True def _should_compile(self, node, fqn): """Determines whether an entity should be compiled in the context.""" # TODO(mdan): Needs cleanup. We should remove the use of fqn altogether. module_name = fqn[0] for mod in self.ctx.program.uncompiled_modules: if module_name.startswith(mod[0] + '.'): return False for i in range(1, len(fqn)): if fqn[:i] in self.ctx.program.uncompiled_modules: return False target_entity = self._try_resolve_target(node.func) if target_entity is not None: # Currently, lambdas are always converted. # TODO(mdan): Allow markers of the kind f = ag.do_not_convert(lambda: ...) if inspect_utils.islambda(target_entity): return True # This may be reached when "calling" a callable attribute of an object. # For example: # # self.fc = tf.keras.layers.Dense() # self.fc() # for mod in self.ctx.program.uncompiled_modules: if target_entity.__module__.startswith(mod[0] + '.'): return False # Inspect the target function decorators. If any include a @convert # or @do_not_convert annotation, then they must be called as they are. # TODO(mdan): This may be quite heavy. Perhaps always dynamically convert? # To parse and re-analyze each function for every call site could be quite # wasteful. Maybe we could cache the parsed AST? try: target_node, _ = parser.parse_entity(target_entity) target_node = target_node.body[0] except TypeError: # Functions whose source we cannot access are compilable (e.g. wrapped # to py_func). return True # This attribute is set when the decorator was applied before the # function was parsed. See api.py. if hasattr(target_entity, '__ag_compiled'): return False for dec in target_node.decorator_list: decorator_fn = self._resolve_decorator_name(dec) if (decorator_fn is not None and self.ctx.program.options.should_strip(decorator_fn)): return False return True def _rename_compilable_function(self, node): assert anno.hasanno(node.func, 'live_val') assert anno.hasanno(node.func, 'fqn') target_entity = anno.getanno(node.func, 'live_val') target_fqn = anno.getanno(node.func, 'fqn') if anno.hasanno(node, 'is_constructor'): new_name = self.ctx.namer.compiled_class_name( target_fqn, live_entity=target_entity) do_rename = True else: if anno.hasanno(node.func, 'parent_type'): owner_type = anno.getanno(node.func, 'parent_type') else: # Fallback - not reliable. owner_type = inspect_utils.getmethodclass(target_entity) new_name, do_rename = self.ctx.namer.compiled_function_name( target_fqn, live_entity=target_entity, owner_type=owner_type) if do_rename: if target_entity is not None: if tf_inspect.ismethod(target_entity): # The renaming process will transform it into a regular function. # TODO(mdan): Is this complete? How does it work with nested members? node.args = [node.func.value] + node.args node.func = templates.replace_as_expression( 'func_name', func_name=new_name) return node def _wrap_to_py_func_single_return(self, node, dtype): # TODO(mdan): Properly handle varargs, etc. template = """ ag__.utils.wrap_py_func(func, dtype, (args,), kwargs, False) """ return templates.replace_as_expression( template, func=node.func, dtype=parser.parse_expression(dtype), args=node.args, kwargs=ast_util.keywords_to_dict(node.keywords)) def _insert_dynamic_conversion(self, node): """Inlines a dynamic conversion for a dynamic function.""" # TODO(mdan): Pass information on the statically compiled functions. # Having access to the statically compiled functions can help avoid # unnecessary compilation. # For example, this would lead to function `a` being compiled twice: # # def a(): # v = b # b() # def b(): # a() # # This is really a problem with recursive calls, which currently can # only be gated by a static condition, and should be rare. # TODO(mdan): It probably makes sense to use dynamic conversion every time. # Before we could convert all the time though, we'd need a reasonable # caching mechanism. template = """ ag__.converted_call(func, owner, options, args) """ if isinstance(node.func, gast.Attribute): func = gast.Str(node.func.attr) owner = node.func.value else: func = node.func owner = parser.parse_expression('None') new_call = templates.replace_as_expression( template, func=func, owner=owner, options=self.ctx.program.options.to_ast( self.ctx, internal_convert_user_code=self.ctx.program.options.recursive), args=node.args) # TODO(mdan): Improve the template mechanism to better support this. new_call.keywords = node.keywords return new_call def _visit_decorators(self, decorator_list): if not self.ctx.program.options.uses(converter.Feature.DECORATORS): # When not processing decorators, strip everything that is encountered. return [] return self.visit_block(decorator_list) def visit_FunctionDef(self, node): node.args = self.visit(node.args) node.body = self.visit_block(node.body) node.decorator_list = self._visit_decorators(node.decorator_list) node.returns = self.visit_block(node.returns) return node def visit_Call(self, node): if anno.hasanno(node.func, 'live_val'): target_entity = anno.getanno(node.func, 'live_val') if anno.hasanno(node.func, 'fqn'): target_fqn = anno.getanno(node.func, 'fqn') else: target_fqn = None if self._function_is_compilable(target_entity): if self._should_compile(node, target_fqn): node = self._rename_compilable_function(node) else: node = self.generic_visit(node) return node elif target_fqn and target_fqn in KNOWN_NUMPY_FUNCTIONS: # TODO(mdan): Should we replace these with equivalent TF ops instead? node = self._wrap_to_py_func_single_return( node, KNOWN_NUMPY_FUNCTIONS[target_fqn].dtype) elif inspect_utils.isbuiltin(target_entity): # Note: Any builtin that passed the builtins converter is assumed to be # safe for graph mode. return node elif inspect_utils.isnamedtuple(target_entity): # Although not compilable, we assume they are safe for graph mode. node = self.generic_visit(node) return node else: # TODO(mdan): Instert dynamic conversion here instead. raise NotImplementedError( 'py_func with return values (unknown function)') else: # Special cases # TODO(mdan): These need a systematic review - there may be more. # 1. super() calls - these are preserved. The class conversion mechanism # will ensure that they return the correct value. if ast_util.matches(node, parser.parse_expression('super(_)')): return node # 2. super().method calls - these are preserved as well, when the # conversion processes the entire class. if (ast_util.matches(node, parser.parse_expression('super(_)._(_)')) and self.ctx.info.owner_type is not None): return node node = self._insert_dynamic_conversion(node) return node def transform(node, ctx): """Transform function call to the compiled counterparts. Args: node: AST ctx: EntityContext Returns: A tuple (node, new_names): node: The transformed AST new_names: set(string), containing any newly-generated names """ return CallTreeTransformer(ctx).visit(node)
apache-2.0
-7,970,651,286,638,464,000
34.797143
80
0.660308
false
brython-dev/brython
scripts/javascript_minifier.py
1
2627
"""Javascript minifier""" import re def minify(src): _res, pos = '', 0 while pos < len(src): if src[pos] in ('"', "'", '`') or \ (src[pos] == '/' and src[pos - 1] == '('): # the end of the string is the next quote if it is not # after an odd number of backslashes start = pos while True: end = src.find(src[pos], start + 1) if end == -1: line = src[:pos].count('\n') raise SyntaxError('string not closed in line %s : %s' % (line, src[pos:pos + 20])) else: # count number of backslashes before the quote nb = 0 while src[end - nb - 1] == '\\': nb += 1 if not nb % 2: break else: start = end _res += src[pos:end + 1] pos = end + 1 elif src[pos] == '\r': pos += 1 elif src[pos] == ' ': if _res and _res[-1] in '({=[)}];:+-*/|\n': pos += 1 continue _res += ' ' while pos < len(src) and src[pos] == ' ': pos += 1 elif src[pos:pos + 2] == '//': end = src.find('\n', pos) if end == -1: break pos = end elif src[pos:pos + 2] == '/*': end = src.find('*/', pos) if end == -1: break pos = end+2 elif src[pos] in '={[(' and _res and _res[-1] == ' ': _res = _res[:-1]+src[pos] pos += 1 elif src[pos] in '{[,': _res += src[pos] while pos < len(src) - 1 and src[pos + 1] in ' \r\n': pos += 1 pos += 1 elif src[pos] in '+-*/': while _res[-1] == " ": _res = _res[:-1] _res += src[pos] pos += 1 elif src[pos] == '}': _res += src[pos] nxt = pos + 1 while nxt < len(src) and src[nxt] in ' \r\n': nxt += 1 if nxt < len(src) and src[nxt] == '}': pos = nxt - 1 pos += 1 else: _res += src[pos] pos += 1 # replace consecutive newlines _res = re.sub('\n+', '\n', _res) # remove newline followed by } _res = re.sub('\n}', '}', _res) return _res if __name__=="__main__": print(minify(open('test.js').read()))
bsd-3-clause
6,306,103,374,661,249,000
31.432099
75
0.347925
false
mjafin/bcbio-nextgen
bcbio/galaxy/api.py
10
2835
"""Access Galaxy NGLIMS functionality via the standard API. """ import urllib import urllib2 import json import time class GalaxyApiAccess: """Simple front end for accessing Galaxy's REST API. """ def __init__(self, galaxy_url, api_key): self._base_url = galaxy_url self._key = api_key self._max_tries = 5 def _make_url(self, rel_url, params=None): if not params: params = dict() params['key'] = self._key vals = urllib.urlencode(params) return ("%s%s" % (self._base_url, rel_url), vals) def _get(self, url, params=None): url, params = self._make_url(url, params) num_tries = 0 while 1: response = urllib2.urlopen("%s?%s" % (url, params)) try: out = json.loads(response.read()) break except ValueError, msg: if num_tries > self._max_tries: raise time.sleep(3) num_tries += 1 return out def _post(self, url, data, params=None, need_return=True): url, params = self._make_url(url, params) request = urllib2.Request("%s?%s" % (url, params), headers = {'Content-Type' : 'application/json'}, data = json.dumps(data)) response = urllib2.urlopen(request) try: data = json.loads(response.read()) except ValueError: if need_return: raise else: data = {} return data def run_details(self, run_bc, run_date=None): """Next Gen LIMS specific API functionality. """ try: details = self._get("/nglims/api_run_details", dict(run=run_bc)) except ValueError: raise ValueError("Could not find information in Galaxy for run: %s" % run_bc) if details.has_key("error") and run_date is not None: try: details = self._get("/nglims/api_run_details", dict(run=run_date)) except ValueError: raise ValueError("Could not find information in Galaxy for run: %s" % run_date) return details def sequencing_projects(self): """Next Gen LIMS: retrieve summary information of sequencing projects. """ return self._get("/nglims/api_projects") def sqn_run_summary(self, run_info): """Next Gen LIMS: Upload sequencing run summary information. """ return self._post("/nglims/api_upload_sqn_run_summary", data=run_info) def sqn_report(self, start_date, end_date): """Next Gen LIMS: report of items sequenced in a time period. """ return self._get("/nglims/api_sqn_report", dict(start=start_date, end=end_date))
mit
-1,893,774,085,017,352,200
33.156627
95
0.549559
false
pytexas/PyTexasBackend
conference/event/migrations/0007_auto_20190315_0221.py
1
1382
# Generated by Django 2.0.10 on 2019-03-15 02:21 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('event', '0006_auto_20190310_2253'), ] operations = [ migrations.CreateModel( name='PrizeWinner', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=255)), ('email', models.CharField(max_length=255)), ('ticket_id', models.CharField(max_length=255, unique=True)), ('prize', models.CharField(blank=True, max_length=255, null=True)), ('claimed', models.BooleanField(default=False)), ('created', models.DateTimeField(auto_now_add=True)), ('conference', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='event.Conference')), ], ), migrations.AlterField( model_name='session', name='stype', field=models.CharField(choices=[('keynote', 'Keynote'), ('lightning', 'Lightning Talk'), ('talk-short', 'Short Talk'), ('talk-long', 'Talk'), ('tutorial', 'Tutorial'), ('non-talk', 'Non Talk')], max_length=25, verbose_name='Session Type'), ), ]
mit
8,712,056,727,591,242,000
42.1875
251
0.583936
false
treeio/treeio
treeio/finance/csvapi.py
2
1449
# encoding: utf-8 # Copyright 2011 Tree.io Limited # This file is part of Treeio. # License www.tree.io/license """ Import/Export Contacts API """ import csv from django.http import HttpResponse import StringIO import datetime class ProcessTransactions(object): "Import/Export Contacts" def export_transactions(self, transactions): "Export transactions into CSV file" response = HttpResponse(content_type='text/csv') response[ 'Content-Disposition'] = 'attachment; filename=Transactions_%s.csv' % datetime.date.today().isoformat() writer = csv.writer(response) headers = ['name', 'source', 'target', 'liability', 'category', 'account', 'datetime', 'value', 'details'] writer.writerow(headers) for transaction in transactions: row = [transaction, transaction.source, transaction.target, transaction.liability, transaction.category, transaction.account, transaction.datetime, transaction.get_relative_value(), transaction.details] writer.writerow(row) return response def import_transactions(self, content): "Import transactions from CSV file" f = StringIO.StringIO(content) transactions = csv.DictReader(f, delimiter=',') self.parse_transactions(transactions) def parse_transactions(self, transactions): "Break down CSV file into transactions"
mit
-5,004,105,069,990,892,000
30.5
116
0.672878
false
freevo/freevo2
src/core/event.py
1
5940
# -*- coding: iso-8859-1 -*- # ----------------------------------------------------------------------------- # event.py - Global events for Freevo # ----------------------------------------------------------------------------- # $Id$ # # ----------------------------------------------------------------------------- # Freevo - A Home Theater PC framework # Copyright (C) 2002 Krister Lagerstrom, 2003-2011 Dirk Meyer, et al. # # First Edition: Dirk Meyer <https://github.com/Dischi> # Maintainer: Dirk Meyer <https://github.com/Dischi> # # Please see the file AUTHORS for a complete list of authors. # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of MER- # CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General # Public License for more details. # # You should have received a copy of the GNU General Public License along # with this program; if not, write to the Free Software Foundation, Inc., # 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA # # ----------------------------------------------------------------------------- import copy import kaa class Event(kaa.Event): """ an event is passed to the different eventhandlers in Freevo to activate some action. """ def __init__(self, name, *args, **kwargs): super(Event, self).__init__(name, *args) self.handler = kwargs.get('handler', None) self.source = 'system' def post(self, *args, **kwargs): """ Post event into the queue. """ event = copy.copy(self) event.source = kwargs.get('event_source', 'system') super(Event, self).post(*args) # # Default actions Freevo knows # MIXER_VOLUP = Event('MIXER_VOLUP', 5) MIXER_VOLDOWN = Event('MIXER_VOLDOWN', 5) MIXER_MUTE = Event('MIXER_MUTE') PLAYLIST_NEXT = Event('PLAYLIST_NEXT') PLAYLIST_PREV = Event('PLAYLIST_PREV') PLAYLIST_TOGGLE_REPEAT = Event('PLAYLIST_TOGGLE_REPEAT') EJECT = Event('EJECT') TOGGLE_APPLICATION = Event('TOGGLE_APPLICATION') # # Menu # MENU_LEFT = Event('MENU_LEFT') MENU_RIGHT = Event('MENU_RIGHT') MENU_UP = Event('MENU_UP') MENU_DOWN = Event('MENU_DOWN') MENU_PAGEUP = Event('MENU_PAGEUP') MENU_PAGEDOWN = Event('MENU_PAGEDOWN') MENU_GOTO_MAINMENU = Event('MENU_GOTO_MAINMENU') MENU_GOTO_MEDIA = Event('MENU_GOTO_MEDIA') MENU_GOTO_MENU = Event('MENU_GOTO_MENU') MENU_BACK_ONE_MENU = Event('MENU_BACK_ONE_MENU') MENU_SELECT = Event('MENU_SELECT') MENU_CHANGE_SELECTION = Event('MENU_CHANGE_SELECTION') MENU_PLAY_ITEM = Event('MENU_PLAY_ITEM') MENU_SUBMENU = Event('MENU_SUBMENU') MENU_CALL_ITEM_ACTION = Event('MENU_CALL_ITEM_ACTION') MENU_CHANGE_STYLE = Event('MENU_CHANGE_STYLE') DIRECTORY_CHANGE_MENU_TYPE = Event('DIRECTORY_CHANGE_MENU_TYPE') DIRECTORY_TOGGLE_HIDE_PLAYED = Event('DIRECTORY_TOGGLE_HIDE_PLAYED') # # TV module # TV_START_RECORDING = Event('TV_START_RECORDING') TV_CHANNEL_UP = Event('TV_CHANNEL_UP') TV_CHANNEL_DOWN = Event('TV_CHANNEL_DOWN') TV_SHOW_CHANNEL = Event('TV_SHOW_CHANNEL') # # Global playing events # SEEK = Event('SEEK') PLAY = Event('PLAY') PAUSE = Event('PAUSE') STOP = Event('STOP') TOGGLE_OSD = Event('TOGGLE_OSD') # # Video module # VIDEO_MANUAL_SEEK = Event('VIDEO_MANUAL_SEEK') VIDEO_NEXT_AUDIOLANG = Event('VIDEO_NEXT_AUDIOLANG') VIDEO_NEXT_SUBTITLE = Event('VIDEO_NEXT_SUBTITLE') VIDEO_TOGGLE_INTERLACE = Event('VIDEO_TOGGLE_INTERLACE') VIDEO_NEXT_ANGLE = Event('VIDEO_NEXT_ANGLE') VIDEO_CHANGE_ASPECT = Event('VIDEO_CHANGE_ASPECT') STORE_BOOKMARK = Event('STORE_BOOKMARK') MENU = Event('MENU') DVDNAV_LEFT = Event('DVDNAV_LEFT') DVDNAV_RIGHT = Event('DVDNAV_RIGHT') DVDNAV_UP = Event('DVDNAV_UP') DVDNAV_DOWN = Event('DVDNAV_DOWN') DVDNAV_SELECT = Event('DVDNAV_SELECT') DVDNAV_TITLEMENU = Event('DVDNAV_TITLEMENU') DVDNAV_MENU = Event('DVDNAV_MENU') NEXT = Event('NEXT') PREV = Event('PREV') # # Image module # ZOOM = Event('ZOOM') ZOOM_IN = Event('ZOOM_IN') ZOOM_OUT = Event('ZOOM_OUT') IMAGE_ROTATE = Event('IMAGE_ROTATE') IMAGE_SAVE = Event('IMAGE_SAVE') IMAGE_MOVE = Event('IMAGE_MOVE') # # Input boxes # INPUT_EXIT = Event('INPUT_EXIT') INPUT_ENTER = Event('INPUT_ENTER') INPUT_LEFT = Event('INPUT_LEFT') INPUT_RIGHT = Event('INPUT_RIGHT') INPUT_UP = Event('INPUT_UP') INPUT_DOWN = Event('INPUT_DOWN') INPUT_1 = Event('INPUT_1', 1) INPUT_2 = Event('INPUT_2', 2) INPUT_3 = Event('INPUT_3', 3) INPUT_4 = Event('INPUT_4', 4) INPUT_5 = Event('INPUT_5', 5) INPUT_6 = Event('INPUT_6', 6) INPUT_7 = Event('INPUT_7', 7) INPUT_8 = Event('INPUT_8', 8) INPUT_9 = Event('INPUT_9', 9) INPUT_0 = Event('INPUT_0', 0) INPUT_ALL_NUMBERS = (INPUT_0, INPUT_1, INPUT_2, INPUT_3, INPUT_4, INPUT_5, INPUT_6, INPUT_7, INPUT_8, INPUT_9, INPUT_0 ) # # Internal events, don't map any button on them # PLAY_END = Event('PLAY_END') PLAY_START = Event('PLAY_START') OSD_MESSAGE = Event('OSD_MESSAGE')
gpl-2.0
4,403,699,767,020,894,000
32
79
0.560269
false
jantman/python-mcollective
tests/unit/connector/test_stomp.py
2
1197
""" Tests for StompConnector """ import pytest from pymco.connector import stomp CONFIGSTR = ''' topicprefix = /topic/ collectives = mcollective main_collective = mcollective libdir = /path/to/plugins logfile = /path/to/mcollective.log loglevel = debug daemonize = 0 identity = mco1 # Plugins securityprovider = none direct_addressing = yes direct_addressing_threshold = 5 connector = stomp plugin.stomp.host = localhost plugin.stomp.password = guest plugin.stomp.port = 61613 plugin.stomp.user = guest factsource = yaml plugin.yaml = /path/to/facts.yaml ''' @pytest.fixture def config(): from pymco import config return config.Config.from_configstr(configstr=CONFIGSTR) @pytest.fixture def connector(config, conn_mock): return stomp.StompConnector(config, connection=conn_mock) def test_get_target(connector, config): assert connector.get_target(collective='collective', agent='agent') == ( '{0}collective.agent.command'.format(config['topicprefix']) ) def test_get_reply_target(connector, config): assert connector.get_reply_target(collective='collective', agent='agent') == ( '{0}collective.agent.reply'.format(config['topicprefix']) )
bsd-3-clause
5,373,397,545,902,347,000
20.763636
82
0.734336
false
StefanoRaggi/Lean
Algorithm.Python/PandasDataFrameHistoryAlgorithm.py
3
7375
# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. # Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from AlgorithmImports import * ### <summary> ### This algorithm demonstrates the various ways to handle History pandas DataFrame ### </summary> ### <meta name="tag" content="using data" /> ### <meta name="tag" content="history and warm up" /> ### <meta name="tag" content="history" /> ### <meta name="tag" content="warm up" /> class PandasDataFrameHistoryAlgorithm(QCAlgorithm): def Initialize(self): self.SetStartDate(2014, 6, 9) # Set Start Date self.SetEndDate(2014, 6, 9) # Set End Date self.spy = self.AddEquity("SPY", Resolution.Daily).Symbol self.eur = self.AddForex("EURUSD", Resolution.Daily).Symbol aapl = self.AddEquity("AAPL", Resolution.Minute).Symbol self.option = Symbol.CreateOption(aapl, Market.USA, OptionStyle.American, OptionRight.Call, 750, datetime(2014, 10, 18)) self.AddOptionContract(self.option) sp1 = self.AddData(QuandlFuture,"CHRIS/CME_SP1", Resolution.Daily) sp1.Exchange = EquityExchange() self.sp1 = sp1.Symbol self.AddUniverse(self.CoarseSelection) def CoarseSelection(self, coarse): if self.Portfolio.Invested: return Universe.Unchanged selected = [x.Symbol for x in coarse if x.Symbol.Value in ["AAA", "AIG", "BAC"]] if len(selected) == 0: return Universe.Unchanged universeHistory = self.History(selected, 10, Resolution.Daily) for symbol in selected: self.AssertHistoryIndex(universeHistory, "close", 10, "", symbol) return selected def OnData(self, data): if self.Portfolio.Invested: return # we can get history in initialize to set up indicators and such self.spyDailySma = SimpleMovingAverage(14) # get the last calendar year's worth of SPY data at the configured resolution (daily) tradeBarHistory = self.History(["SPY"], timedelta(365)) self.AssertHistoryIndex(tradeBarHistory, "close", 251, "SPY", self.spy) # get the last calendar year's worth of EURUSD data at the configured resolution (daily) quoteBarHistory = self.History(["EURUSD"], timedelta(298)) self.AssertHistoryIndex(quoteBarHistory, "bidclose", 251, "EURUSD", self.eur) optionHistory = self.History([self.option], timedelta(3)) optionHistory.index = optionHistory.index.droplevel(level=[0,1,2]) self.AssertHistoryIndex(optionHistory, "bidclose", 390, "", self.option) # get the last calendar year's worth of quandl data at the configured resolution (daily) quandlHistory = self.History(QuandlFuture, "CHRIS/CME_SP1", timedelta(365)) self.AssertHistoryIndex(quandlHistory, "settle", 251, "CHRIS/CME_SP1", self.sp1) # we can loop over the return value from these functions and we get TradeBars # we can use these TradeBars to initialize indicators or perform other math self.spyDailySma.Reset() for index, tradeBar in tradeBarHistory.loc["SPY"].iterrows(): self.spyDailySma.Update(index, tradeBar["close"]) # we can loop over the return values from these functions and we'll get Quandl data # this can be used in much the same way as the tradeBarHistory above self.spyDailySma.Reset() for index, quandl in quandlHistory.loc["CHRIS/CME_SP1"].iterrows(): self.spyDailySma.Update(index, quandl["settle"]) self.SetHoldings(self.eur, 1) def AssertHistoryIndex(self, df, column, expected, ticker, symbol): if df.empty: raise Exception(f"Empty history data frame for {symbol}") if column not in df: raise Exception(f"Could not unstack df. Columns: {', '.join(df.columns)} | {column}") value = df.iat[0,0] df2 = df.xs(df.index.get_level_values('time')[0], level='time') df3 = df[column].unstack(level=0) try: # str(Symbol.ID) self.AssertHistoryCount(f"df.iloc[0]", df.iloc[0], len(df.columns)) self.AssertHistoryCount(f"df.loc[str({symbol.ID})]", df.loc[str(symbol.ID)], expected) self.AssertHistoryCount(f"df.xs(str({symbol.ID}))", df.xs(str(symbol.ID)), expected) self.AssertHistoryCount(f"df.at[(str({symbol.ID}),), '{column}']", list(df.at[(str(symbol.ID),), column]), expected) self.AssertHistoryCount(f"df2.loc[str({symbol.ID})]", df2.loc[str(symbol.ID)], len(df2.columns)) self.AssertHistoryCount(f"df3[str({symbol.ID})]", df3[str(symbol.ID)], expected) self.AssertHistoryCount(f"df3.get(str({symbol.ID}))", df3.get(str(symbol.ID)), expected) # str(Symbol) self.AssertHistoryCount(f"df.loc[str({symbol})]", df.loc[str(symbol)], expected) self.AssertHistoryCount(f"df.xs(str({symbol}))", df.xs(str(symbol)), expected) self.AssertHistoryCount(f"df.at[(str({symbol}),), '{column}']", list(df.at[(str(symbol),), column]), expected) self.AssertHistoryCount(f"df2.loc[str({symbol})]", df2.loc[str(symbol)], len(df2.columns)) self.AssertHistoryCount(f"df3[str({symbol})]", df3[str(symbol)], expected) self.AssertHistoryCount(f"df3.get(str({symbol}))", df3.get(str(symbol)), expected) # str : Symbol.Value if len(ticker) == 0: return self.AssertHistoryCount(f"df.loc[{ticker}]", df.loc[ticker], expected) self.AssertHistoryCount(f"df.xs({ticker})", df.xs(ticker), expected) self.AssertHistoryCount(f"df.at[(ticker,), '{column}']", list(df.at[(ticker,), column]), expected) self.AssertHistoryCount(f"df2.loc[{ticker}]", df2.loc[ticker], len(df2.columns)) self.AssertHistoryCount(f"df3[{ticker}]", df3[ticker], expected) self.AssertHistoryCount(f"df3.get({ticker})", df3.get(ticker), expected) except Exception as e: symbols = set(df.index.get_level_values(level='symbol')) raise Exception(f"{symbols}, {symbol.ID}, {symbol}, {ticker}. {e}") def AssertHistoryCount(self, methodCall, tradeBarHistory, expected): if isinstance(tradeBarHistory, list): count = len(tradeBarHistory) else: count = len(tradeBarHistory.index) if count != expected: raise Exception(f"{methodCall} expected {expected}, but received {count}") class QuandlFuture(PythonQuandl): '''Custom quandl data type for setting customized value column name. Value column is used for the primary trading calculations and charting.''' def __init__(self): self.ValueColumnName = "Settle"
apache-2.0
-252,864,504,842,198,980
47.84106
147
0.654508
false
lindycoder/netman
netman/core/objects/vlan.py
1
1476
# Copyright 2015 Internap. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from netman.core.objects import Model from netman.core.objects.access_groups import OUT, IN class Vlan(Model): def __init__(self, number=None, name=None, ips=None, vrrp_groups=None, vrf_forwarding=None, access_group_in=None, access_group_out=None, dhcp_relay_servers=None, arp_routing=None, icmp_redirects=None, unicast_rpf_mode=None, ntp=None, varp_ips=None): self.number = number self.name = name self.access_groups = {IN: access_group_in, OUT: access_group_out} self.vrf_forwarding = vrf_forwarding self.ips = ips or [] self.vrrp_groups = vrrp_groups or [] self.dhcp_relay_servers = dhcp_relay_servers or [] self.arp_routing = arp_routing self.icmp_redirects = icmp_redirects self.unicast_rpf_mode = unicast_rpf_mode self.ntp = ntp self.varp_ips = varp_ips or []
apache-2.0
5,296,037,036,328,892,000
42.411765
117
0.686992
false
ligovirgo/seismon
p_and_s/test_p_and_s.py
2
2465
import os, sys import numpy as np import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt plt.rcParams['figure.figsize'] = (13, 8) if False else (10, 6) from obspy.taup.taup import getTravelTimes from obspy.core.util.geodetics import gps2DistAzimuth from obspy.taup import TauPyModel from seismon.eqmon import ampRf, shoot degrees = np.linspace(1,180,180) distances = degrees*(np.pi/180)*6370000 model = TauPyModel(model="iasp91") #model = TauPyModel(model="1066a") fwd = 0 back = 0 eqlat, eqlon = 35.6895, 139.6917 GPS = 1000000000 magnitude = 6.0 depth = 20.0 Rf0 = 76.44 Rfs = 1.37 cd = 440.68 rs = 1.57 Rfamp = ampRf(magnitude,distances/1000.0,depth,Rf0,Rfs,cd,rs) lats = [] lons = [] Ptimes = [] Stimes = [] #Rtimes = [] Rtwotimes = [] RthreePointFivetimes = [] Rfivetimes = [] Rfamps = [] parrivals = np.loadtxt('p.dat') sarrivals = np.loadtxt('s.dat') depths = np.linspace(1,100,100) index = np.argmin(np.abs(depths-depth)) parrivals = parrivals[:,index] sarrivals = sarrivals[:,index] for distance, degree, parrival, sarrival in zip(distances, degrees,parrivals,sarrivals): lon, lat, baz = shoot(eqlon, eqlat, fwd, distance/1000) lats.append(lat) lons.append(lon) print "Calculating arrival for %.5f ..."%distance #arrivals = model.get_travel_times(source_depth_in_km=depth,distance_in_degree=degree,phase_list=('P','S')) arrivals = model.get_travel_times(source_depth_in_km=depth,distance_in_degree=degree) Ptime = -1 Stime = -1 Rtime = -1 for phase in arrivals: if Ptime == -1 and phase.name.lower()[0] == "p": Ptime = GPS+phase.time if Stime == -1 and phase.name.lower()[-1] == "s": Stime = GPS+phase.time Ptime = GPS+parrival Stime = GPS+sarrival Rtwotime = GPS+distance/2000.0 RthreePointFivetime = GPS+distance/3500.0 Rfivetime = GPS+distance/5000.0 Ptimes.append(Ptime) Stimes.append(Stime) Rtwotimes.append(Rtwotime) RthreePointFivetimes.append(RthreePointFivetime) Rfivetimes.append(Rfivetime) print Ptime - parrival #print Ptime, Stime, Rtwotime, RthreePointFivetime, Rfivetime plotDir = '.' plt.figure() plt.plot(degrees,Ptimes,'kx') plt.plot(degrees,Stimes,'kx') plotName = os.path.join(plotDir,'times.png') plt.savefig(plotName) plotName = os.path.join(plotDir,'times.eps') plt.savefig(plotName) plotName = os.path.join(plotDir,'times.pdf') plt.savefig(plotName) plt.close()
gpl-3.0
8,292,354,089,427,684,000
23.89899
111
0.691684
false
openstack/manila
manila/share/drivers/netapp/dataontap/cluster_mode/data_motion.py
1
34061
# Copyright (c) 2016 Alex Meade. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ NetApp Data ONTAP data motion library. This library handles transferring data from a source to a destination. Its responsibility is to handle this as efficiently as possible given the location of the data's source and destination. This includes cloning, SnapMirror, and copy-offload as improvements to brute force data transfer. """ from oslo_config import cfg from oslo_log import log from oslo_utils import excutils from manila import exception from manila.i18n import _ from manila.share import configuration from manila.share import driver from manila.share.drivers.netapp.dataontap.client import api as netapp_api from manila.share.drivers.netapp.dataontap.client import client_cmode from manila.share.drivers.netapp import options as na_opts from manila.share.drivers.netapp import utils as na_utils from manila.share import utils as share_utils from manila import utils LOG = log.getLogger(__name__) CONF = cfg.CONF def get_backend_configuration(backend_name): config_stanzas = CONF.list_all_sections() if backend_name not in config_stanzas: msg = _("Could not find backend stanza %(backend_name)s in " "configuration which is required for replication or migration " "workflows with the source backend. Available stanzas are " "%(stanzas)s") params = { "stanzas": config_stanzas, "backend_name": backend_name, } raise exception.BadConfigurationException(reason=msg % params) config = configuration.Configuration(driver.share_opts, config_group=backend_name) if config.driver_handles_share_servers: # NOTE(dviroel): avoid using a pre-create vserver on DHSS == True mode # when retrieving remote backend configuration. config.netapp_vserver = None config.append_config_values(na_opts.netapp_cluster_opts) config.append_config_values(na_opts.netapp_connection_opts) config.append_config_values(na_opts.netapp_basicauth_opts) config.append_config_values(na_opts.netapp_transport_opts) config.append_config_values(na_opts.netapp_support_opts) config.append_config_values(na_opts.netapp_provisioning_opts) config.append_config_values(na_opts.netapp_data_motion_opts) return config def get_client_for_backend(backend_name, vserver_name=None): config = get_backend_configuration(backend_name) client = client_cmode.NetAppCmodeClient( transport_type=config.netapp_transport_type, ssl_cert_path=config.netapp_ssl_cert_path, username=config.netapp_login, password=config.netapp_password, hostname=config.netapp_server_hostname, port=config.netapp_server_port, vserver=vserver_name or config.netapp_vserver, trace=na_utils.TRACE_API) return client class DataMotionSession(object): def _get_backend_volume_name(self, config, share_obj): """Return the calculated backend name of the share. Uses the netapp_volume_name_template configuration value for the backend to calculate the volume name on the array for the share. """ volume_name = config.netapp_volume_name_template % { 'share_id': share_obj['id'].replace('-', '_')} return volume_name def _get_backend_qos_policy_group_name(self, share): """Get QoS policy name according to QoS policy group name template.""" __, config = self.get_backend_name_and_config_obj(share['host']) return config.netapp_qos_policy_group_name_template % { 'share_id': share['id'].replace('-', '_')} def _get_backend_snapmirror_policy_name_svm(self, share_server_id, backend_name): config = get_backend_configuration(backend_name) return (config.netapp_snapmirror_policy_name_svm_template % {'share_server_id': share_server_id.replace('-', '_')}) def get_vserver_from_share_server(self, share_server): backend_details = share_server.get('backend_details') if backend_details: return backend_details.get('vserver_name') def get_vserver_from_share(self, share_obj): share_server = share_obj.get('share_server') if share_server: return self.get_vserver_from_share_server(share_server) def get_backend_name_and_config_obj(self, host): backend_name = share_utils.extract_host(host, level='backend_name') config = get_backend_configuration(backend_name) return backend_name, config def get_backend_info_for_share(self, share_obj): backend_name, config = self.get_backend_name_and_config_obj( share_obj['host']) vserver = (self.get_vserver_from_share(share_obj) or config.netapp_vserver) volume_name = self._get_backend_volume_name(config, share_obj) return volume_name, vserver, backend_name def get_client_and_vserver_name(self, share_server): destination_host = share_server.get('host') vserver = self.get_vserver_from_share_server(share_server) backend, __ = self.get_backend_name_and_config_obj(destination_host) client = get_client_for_backend(backend, vserver_name=vserver) return client, vserver def get_snapmirrors(self, source_share_obj, dest_share_obj): dest_volume_name, dest_vserver, dest_backend = ( self.get_backend_info_for_share(dest_share_obj)) dest_client = get_client_for_backend(dest_backend, vserver_name=dest_vserver) src_volume_name, src_vserver, __ = self.get_backend_info_for_share( source_share_obj) snapmirrors = dest_client.get_snapmirrors( source_vserver=src_vserver, dest_vserver=dest_vserver, source_volume=src_volume_name, dest_volume=dest_volume_name, desired_attributes=['relationship-status', 'mirror-state', 'source-vserver', 'source-volume', 'last-transfer-end-timestamp']) return snapmirrors def create_snapmirror(self, source_share_obj, dest_share_obj): """Sets up a SnapMirror relationship between two volumes. 1. Create SnapMirror relationship 2. Initialize data transfer asynchronously """ dest_volume_name, dest_vserver, dest_backend = ( self.get_backend_info_for_share(dest_share_obj)) dest_client = get_client_for_backend(dest_backend, vserver_name=dest_vserver) src_volume_name, src_vserver, __ = self.get_backend_info_for_share( source_share_obj) # 1. Create SnapMirror relationship # TODO(ameade): Change the schedule from hourly to a config value dest_client.create_snapmirror_vol(src_vserver, src_volume_name, dest_vserver, dest_volume_name, schedule='hourly') # 2. Initialize async transfer of the initial data dest_client.initialize_snapmirror_vol(src_vserver, src_volume_name, dest_vserver, dest_volume_name) def delete_snapmirror(self, source_share_obj, dest_share_obj, release=True): """Ensures all information about a SnapMirror relationship is removed. 1. Abort snapmirror 2. Delete the snapmirror 3. Release snapmirror to cleanup snapmirror metadata and snapshots """ dest_volume_name, dest_vserver, dest_backend = ( self.get_backend_info_for_share(dest_share_obj)) dest_client = get_client_for_backend(dest_backend, vserver_name=dest_vserver) src_volume_name, src_vserver, src_backend = ( self.get_backend_info_for_share(source_share_obj)) # 1. Abort any ongoing transfers try: dest_client.abort_snapmirror_vol(src_vserver, src_volume_name, dest_vserver, dest_volume_name, clear_checkpoint=False) except netapp_api.NaApiError: # Snapmirror is already deleted pass # 2. Delete SnapMirror Relationship and cleanup destination snapshots try: dest_client.delete_snapmirror_vol(src_vserver, src_volume_name, dest_vserver, dest_volume_name) except netapp_api.NaApiError as e: with excutils.save_and_reraise_exception() as exc_context: if (e.code == netapp_api.EOBJECTNOTFOUND or e.code == netapp_api.ESOURCE_IS_DIFFERENT or "(entry doesn't exist)" in e.message): LOG.info('No snapmirror relationship to delete') exc_context.reraise = False if release: # If the source is unreachable, do not perform the release try: src_client = get_client_for_backend(src_backend, vserver_name=src_vserver) except Exception: src_client = None # 3. Cleanup SnapMirror relationship on source try: if src_client: src_client.release_snapmirror_vol(src_vserver, src_volume_name, dest_vserver, dest_volume_name) except netapp_api.NaApiError as e: with excutils.save_and_reraise_exception() as exc_context: if (e.code == netapp_api.EOBJECTNOTFOUND or e.code == netapp_api.ESOURCE_IS_DIFFERENT or "(entry doesn't exist)" in e.message): # Handle the case where the snapmirror is already # cleaned up exc_context.reraise = False def update_snapmirror(self, source_share_obj, dest_share_obj): """Schedule a snapmirror update to happen on the backend.""" dest_volume_name, dest_vserver, dest_backend = ( self.get_backend_info_for_share(dest_share_obj)) dest_client = get_client_for_backend(dest_backend, vserver_name=dest_vserver) src_volume_name, src_vserver, __ = self.get_backend_info_for_share( source_share_obj) # Update SnapMirror dest_client.update_snapmirror_vol(src_vserver, src_volume_name, dest_vserver, dest_volume_name) def quiesce_then_abort_svm(self, source_share_server, dest_share_server): source_client, source_vserver = self.get_client_and_vserver_name( source_share_server) dest_client, dest_vserver = self.get_client_and_vserver_name( dest_share_server) # 1. Attempt to quiesce, then abort dest_client.quiesce_snapmirror_svm(source_vserver, dest_vserver) dest_backend = share_utils.extract_host(dest_share_server['host'], level='backend_name') config = get_backend_configuration(dest_backend) retries = config.netapp_snapmirror_quiesce_timeout / 5 @utils.retry(exception.ReplicationException, interval=5, retries=retries, backoff_rate=1) def wait_for_quiesced(): snapmirror = dest_client.get_snapmirrors_svm( source_vserver=source_vserver, dest_vserver=dest_vserver, desired_attributes=['relationship-status', 'mirror-state'] )[0] if snapmirror.get('relationship-status') != 'quiesced': raise exception.ReplicationException( reason="Snapmirror relationship is not quiesced.") try: wait_for_quiesced() except exception.ReplicationException: dest_client.abort_snapmirror_svm(source_vserver, dest_vserver, clear_checkpoint=False) def quiesce_then_abort(self, source_share_obj, dest_share_obj): dest_volume, dest_vserver, dest_backend = ( self.get_backend_info_for_share(dest_share_obj)) dest_client = get_client_for_backend(dest_backend, vserver_name=dest_vserver) src_volume, src_vserver, __ = self.get_backend_info_for_share( source_share_obj) # 1. Attempt to quiesce, then abort dest_client.quiesce_snapmirror_vol(src_vserver, src_volume, dest_vserver, dest_volume) config = get_backend_configuration(dest_backend) retries = config.netapp_snapmirror_quiesce_timeout / 5 @utils.retry(exception.ReplicationException, interval=5, retries=retries, backoff_rate=1) def wait_for_quiesced(): snapmirror = dest_client.get_snapmirrors( source_vserver=src_vserver, dest_vserver=dest_vserver, source_volume=src_volume, dest_volume=dest_volume, desired_attributes=['relationship-status', 'mirror-state'] )[0] if snapmirror.get('relationship-status') != 'quiesced': raise exception.ReplicationException( reason="Snapmirror relationship is not quiesced.") try: wait_for_quiesced() except exception.ReplicationException: dest_client.abort_snapmirror_vol(src_vserver, src_volume, dest_vserver, dest_volume, clear_checkpoint=False) def break_snapmirror(self, source_share_obj, dest_share_obj, mount=True): """Breaks SnapMirror relationship. 1. Quiesce any ongoing snapmirror transfers 2. Wait until snapmirror finishes transfers and enters quiesced state 3. Break snapmirror 4. Mount the destination volume so it is exported as a share """ dest_volume_name, dest_vserver, dest_backend = ( self.get_backend_info_for_share(dest_share_obj)) dest_client = get_client_for_backend(dest_backend, vserver_name=dest_vserver) src_volume_name, src_vserver, __ = self.get_backend_info_for_share( source_share_obj) # 1. Attempt to quiesce, then abort self.quiesce_then_abort(source_share_obj, dest_share_obj) # 2. Break SnapMirror dest_client.break_snapmirror_vol(src_vserver, src_volume_name, dest_vserver, dest_volume_name) # 3. Mount the destination volume and create a junction path if mount: dest_client.mount_volume(dest_volume_name) def resync_snapmirror(self, source_share_obj, dest_share_obj): """Resync SnapMirror relationship. """ dest_volume_name, dest_vserver, dest_backend = ( self.get_backend_info_for_share(dest_share_obj)) dest_client = get_client_for_backend(dest_backend, vserver_name=dest_vserver) src_volume_name, src_vserver, __ = self.get_backend_info_for_share( source_share_obj) dest_client.resync_snapmirror_vol(src_vserver, src_volume_name, dest_vserver, dest_volume_name) def resume_snapmirror(self, source_share_obj, dest_share_obj): """Resume SnapMirror relationship from a quiesced state.""" dest_volume_name, dest_vserver, dest_backend = ( self.get_backend_info_for_share(dest_share_obj)) dest_client = get_client_for_backend(dest_backend, vserver_name=dest_vserver) src_volume_name, src_vserver, __ = self.get_backend_info_for_share( source_share_obj) dest_client.resume_snapmirror_vol(src_vserver, src_volume_name, dest_vserver, dest_volume_name) def change_snapmirror_source(self, replica, orig_source_replica, new_source_replica, replica_list): """Creates SnapMirror relationship from the new source to destination. 1. Delete all snapmirrors involving the replica, but maintain snapmirror metadata and snapshots for efficiency 2. For DHSS=True scenarios, creates a new vserver peer relationship if it does not exists 3. Ensure a new source -> replica snapmirror exists 4. Resync new source -> replica snapmirror relationship """ replica_volume_name, replica_vserver, replica_backend = ( self.get_backend_info_for_share(replica)) replica_client = get_client_for_backend(replica_backend, vserver_name=replica_vserver) new_src_volume_name, new_src_vserver, new_src_backend = ( self.get_backend_info_for_share(new_source_replica)) # 1. delete for other_replica in replica_list: if other_replica['id'] == replica['id']: continue # We need to delete ALL snapmirror relationships # involving this replica but do not remove snapmirror metadata # so that the new snapmirror relationship is efficient. self.delete_snapmirror(other_replica, replica, release=False) self.delete_snapmirror(replica, other_replica, release=False) # 2. vserver operations when driver handles share servers replica_config = get_backend_configuration(replica_backend) if (replica_config.driver_handles_share_servers and replica_vserver != new_src_vserver): # create vserver peering if does not exists if not replica_client.get_vserver_peers(replica_vserver, new_src_vserver): new_src_client = get_client_for_backend( new_src_backend, vserver_name=new_src_vserver) # Cluster name is needed for setting up the vserver peering new_src_cluster_name = new_src_client.get_cluster_name() replica_cluster_name = replica_client.get_cluster_name() replica_client.create_vserver_peer( replica_vserver, new_src_vserver, peer_cluster_name=new_src_cluster_name) if new_src_cluster_name != replica_cluster_name: new_src_client.accept_vserver_peer(new_src_vserver, replica_vserver) # 3. create # TODO(ameade): Update the schedule if needed. replica_client.create_snapmirror_vol(new_src_vserver, new_src_volume_name, replica_vserver, replica_volume_name, schedule='hourly') # 4. resync replica_client.resync_snapmirror_vol(new_src_vserver, new_src_volume_name, replica_vserver, replica_volume_name) @na_utils.trace def remove_qos_on_old_active_replica(self, orig_active_replica): old_active_replica_qos_policy = ( self._get_backend_qos_policy_group_name(orig_active_replica) ) replica_volume_name, replica_vserver, replica_backend = ( self.get_backend_info_for_share(orig_active_replica)) replica_client = get_client_for_backend( replica_backend, vserver_name=replica_vserver) try: replica_client.set_qos_policy_group_for_volume( replica_volume_name, 'none') replica_client.mark_qos_policy_group_for_deletion( old_active_replica_qos_policy) except exception.StorageCommunicationException: LOG.exception("Could not communicate with the backend " "for replica %s to unset QoS policy and mark " "the QoS policy group for deletion.", orig_active_replica['id']) def create_snapmirror_svm(self, source_share_server, dest_share_server): """Sets up a SnapMirror relationship between two vServers. 1. Create a SnapMirror policy for SVM DR 2. Create SnapMirror relationship 3. Initialize data transfer asynchronously """ dest_client, dest_vserver = self.get_client_and_vserver_name( dest_share_server) src_vserver = self.get_vserver_from_share_server(source_share_server) # 1: Create SnapMirror policy for SVM DR dest_backend_name = share_utils.extract_host(dest_share_server['host'], level='backend_name') policy_name = self._get_backend_snapmirror_policy_name_svm( dest_share_server['id'], dest_backend_name, ) dest_client.create_snapmirror_policy(policy_name) # 2. Create SnapMirror relationship dest_client.create_snapmirror_svm(src_vserver, dest_vserver, policy=policy_name, schedule='hourly') # 2. Initialize async transfer of the initial data dest_client.initialize_snapmirror_svm(src_vserver, dest_vserver) def get_snapmirrors_svm(self, source_share_server, dest_share_server): """Get SnapMirrors between two vServers.""" dest_client, dest_vserver = self.get_client_and_vserver_name( dest_share_server) src_vserver = self.get_vserver_from_share_server(source_share_server) snapmirrors = dest_client.get_snapmirrors_svm( source_vserver=src_vserver, dest_vserver=dest_vserver, desired_attributes=['relationship-status', 'mirror-state', 'last-transfer-end-timestamp']) return snapmirrors def get_snapmirror_destinations_svm(self, source_share_server, dest_share_server): """Get SnapMirrors between two vServers.""" dest_client, dest_vserver = self.get_client_and_vserver_name( dest_share_server) src_vserver = self.get_vserver_from_share_server(source_share_server) snapmirrors = dest_client.get_snapmirror_destinations_svm( source_vserver=src_vserver, dest_vserver=dest_vserver) return snapmirrors def update_snapmirror_svm(self, source_share_server, dest_share_server): """Schedule a SnapMirror update to happen on the backend.""" dest_client, dest_vserver = self.get_client_and_vserver_name( dest_share_server) src_vserver = self.get_vserver_from_share_server(source_share_server) # Update SnapMirror dest_client.update_snapmirror_svm(src_vserver, dest_vserver) def quiesce_and_break_snapmirror_svm(self, source_share_server, dest_share_server): """Abort and break a SnapMirror relationship between vServers. 1. Quiesce SnapMirror 2. Break SnapMirror """ dest_client, dest_vserver = self.get_client_and_vserver_name( dest_share_server) src_vserver = self.get_vserver_from_share_server(source_share_server) # 1. Attempt to quiesce, then abort self.quiesce_then_abort_svm(source_share_server, dest_share_server) # 2. Break SnapMirror dest_client.break_snapmirror_svm(src_vserver, dest_vserver) def cancel_snapmirror_svm(self, source_share_server, dest_share_server): """Cancels SnapMirror relationship between vServers.""" dest_backend = share_utils.extract_host(dest_share_server['host'], level='backend_name') dest_config = get_backend_configuration(dest_backend) server_timeout = ( dest_config.netapp_server_migration_state_change_timeout) dest_client, dest_vserver = self.get_client_and_vserver_name( dest_share_server) snapmirrors = self.get_snapmirrors_svm(source_share_server, dest_share_server) if snapmirrors: # 1. Attempt to quiesce and break snapmirror self.quiesce_and_break_snapmirror_svm(source_share_server, dest_share_server) # NOTE(dviroel): Lets wait until the destination vserver be # promoted to 'default' and state 'running', before starting # shutting down the source self.wait_for_vserver_state(dest_vserver, dest_client, subtype='default', state='running', operational_state='stopped', timeout=server_timeout) # 2. Delete SnapMirror self.delete_snapmirror_svm(source_share_server, dest_share_server) else: dest_info = dest_client.get_vserver_info(dest_vserver) if dest_info is None: # NOTE(dviroel): Nothing to cancel since the destination does # not exist. return if dest_info.get('subtype') == 'dp_destination': # NOTE(dviroel): Can be a corner case where no snapmirror # relationship was found but the destination vserver is stuck # in DP mode. We need to convert it to 'default' to release # its resources later. self.convert_svm_to_default_subtype(dest_vserver, dest_client, timeout=server_timeout) def convert_svm_to_default_subtype(self, vserver_name, client, is_dest_path=True, timeout=300): interval = 10 retries = (timeout / interval or 1) @utils.retry(exception.VserverNotReady, interval=interval, retries=retries, backoff_rate=1) def wait_for_state(): vserver_info = client.get_vserver_info(vserver_name) if vserver_info.get('subtype') != 'default': if is_dest_path: client.break_snapmirror_svm(dest_vserver=vserver_name) else: client.break_snapmirror_svm(source_vserver=vserver_name) raise exception.VserverNotReady(vserver=vserver_name) try: wait_for_state() except exception.VserverNotReady: msg = _("Vserver %s did not reach the expected state. Retries " "exhausted. Aborting.") % vserver_name raise exception.NetAppException(message=msg) def delete_snapmirror_svm(self, src_share_server, dest_share_server, release=True): """Ensures all information about a SnapMirror relationship is removed. 1. Abort SnapMirror 2. Delete the SnapMirror 3. Release SnapMirror to cleanup SnapMirror metadata and snapshots """ src_client, src_vserver = self.get_client_and_vserver_name( src_share_server) dest_client, dest_vserver = self.get_client_and_vserver_name( dest_share_server) # 1. Abort any ongoing transfers try: dest_client.abort_snapmirror_svm(src_vserver, dest_vserver) except netapp_api.NaApiError: # SnapMirror is already deleted pass # 2. Delete SnapMirror Relationship and cleanup destination snapshots try: dest_client.delete_snapmirror_svm(src_vserver, dest_vserver) except netapp_api.NaApiError as e: with excutils.save_and_reraise_exception() as exc_context: if (e.code == netapp_api.EOBJECTNOTFOUND or e.code == netapp_api.ESOURCE_IS_DIFFERENT or "(entry doesn't exist)" in e.message): LOG.info('No snapmirror relationship to delete') exc_context.reraise = False # 3. Release SnapMirror if release: src_backend = share_utils.extract_host(src_share_server['host'], level='backend_name') src_config = get_backend_configuration(src_backend) release_timeout = ( src_config.netapp_snapmirror_release_timeout) self.wait_for_snapmirror_release_svm(src_vserver, dest_vserver, src_client, timeout=release_timeout) def wait_for_vserver_state(self, vserver_name, client, state=None, operational_state=None, subtype=None, timeout=300): interval = 10 retries = (timeout / interval or 1) expected = {} if state: expected['state'] = state if operational_state: expected['operational_state'] = operational_state if subtype: expected['subtype'] = subtype @utils.retry(exception.VserverNotReady, interval=interval, retries=retries, backoff_rate=1) def wait_for_state(): vserver_info = client.get_vserver_info(vserver_name) if not all(item in vserver_info.items() for item in expected.items()): raise exception.VserverNotReady(vserver=vserver_name) try: wait_for_state() except exception.VserverNotReady: msg = _("Vserver %s did not reach the expected state. Retries " "exhausted. Aborting.") % vserver_name raise exception.NetAppException(message=msg) def wait_for_snapmirror_release_svm(self, source_vserver, dest_vserver, src_client, timeout=300): interval = 10 retries = (timeout / interval or 1) @utils.retry(exception.NetAppException, interval=interval, retries=retries, backoff_rate=1) def release_snapmirror(): snapmirrors = src_client.get_snapmirror_destinations_svm( source_vserver=source_vserver, dest_vserver=dest_vserver) if not snapmirrors: LOG.debug("No snapmirrors to be released in source location.") else: try: src_client.release_snapmirror_svm(source_vserver, dest_vserver) except netapp_api.NaApiError as e: if (e.code == netapp_api.EOBJECTNOTFOUND or e.code == netapp_api.ESOURCE_IS_DIFFERENT or "(entry doesn't exist)" in e.message): LOG.debug('Snapmirror relationship does not exists ' 'anymore.') msg = _('Snapmirror release sent to source vserver. We will ' 'wait for it to be released.') raise exception.NetAppException(vserver=msg) try: release_snapmirror() except exception.NetAppException: msg = _("Unable to release the snapmirror from source vserver %s. " "Retries exhausted. Aborting") % source_vserver raise exception.NetAppException(message=msg)
apache-2.0
-8,708,134,808,909,844,000
45.341497
79
0.566836
false
benjello/openfisca-france
openfisca_france/model/prelevements_obligatoires/prelevements_sociaux/cotisations_sociales/contrat_professionnalisation.py
1
5969
# -*- coding: utf-8 -*- from __future__ import division from numpy import datetime64, timedelta64 from openfisca_france.model.base import * # noqa analysis:ignore class professionnalisation(Variable): column = BoolCol entity_class = Individus label = u"L'individu est en contrat de professionnalisation" url = "http://www.apce.com/pid879/contrat-de-professionnalisation.html?espace=1&tp=1" def function(self, simulation, period): period = period.this_month age = simulation.calculate('age', period) ass = simulation.calculate_add('ass', period) rsa = simulation.calculate('rsa', period) aah = simulation.calculate('aah', period) age_condition = (16 <= age) * (age < 25) dummy_ass = ass > 0 dummy_rmi = rsa > 0 dummy_aah = aah > 0 return period, (age_condition + dummy_ass + dummy_aah + dummy_rmi) > 0 class remuneration_professionnalisation(Variable): column = FloatCol entity_class = Individus label = u"Rémunération de l'apprenti" url = "http://www.apce.com/pid927/contrat-d-apprentissage.html?espace=1&tp=1&pagination=2" # La rémunération minimale varie en fonction de l'âge et du niveau de qualification des bénéficiaires des contrats # de professionnalisation : # # Pour les personnes de moins de 21 ans : # au minimum 55 % du Smic, # au minimum 65 % du Smic si le jeune est titulaire d'une qualification au moins égale au baccalauréat # professionnel ou d'un titre ou d'un diplôme à finalité professionnelle de même niveau. # # Pour les personnes ayant entre 21 et 25 ans : # au minimum 70 % du Smic, # au minimum 80 % du Smic si le bénéficiaire est titulaire d'une qualification au moins égale à celle d'un # baccalauréat professionnel ou d'un titre/diplôme à finalité professionnelle de même niveau. # # Pour les personnes âgées de plus de 26 ans : # au minimum le Smic, # au minimum 85 % du salaire minimum prévu par la convention ou l'accord de branche auquel est soumise # l'entreprise. def function(self, simulation, period): period = period.this_month age = simulation.calculate('age', period) smic = simulation.legislation_at(period.start).cotsoc.gen.smic_h_b * 52 * 35 / 12 professionnalisation = simulation.calculate('professionnalisation', period) qualifie = simulation.calculate('qualifie') salaire_en_smic = [ dict( part_de_smic_by_qualification = { 'non_qualifie': .55, 'qualifie': .65 }, age_min = 16, age_max = 21, ), dict( part_de_smic_by_qualification = { 1: .70, }, age_min = 21, age_max = 25, ), dict( part_de_smic_by_qualification = { 1: 1.0, }, age_min = 26, age_max = 99 ) ] taux_smic = age * 0.0 for age_interval in salaire_en_smic: age_condition = (age_interval['age_min'] <= age) * (age <= age_interval['age_max']) taux_smic[age_condition] = sum([ (qualifie[age_condition] == qualification) * part_de_smic for qualification, part_de_smic in age_interval['part_de_smic_by_qualification'].iteritems() ]) return period, taux_smic * smic * professionnalisation class exoneration_cotisations_employeur_professionnalisation(Variable): column = FloatCol entity_class = Individus label = u"Exonération de cotisations patronales pour l'emploi d'un apprenti" url = "http://www.apce.com/pid927/contrat-d-apprentissage.html?espace=1&tp=1&pagination=2" # Exonération de cotisations sociales patronales d'assurance maladie-maternité, de vieillesse de base, # d'invalidité-décès et d'allocations familiales au titre des rémunérations versées aux demandeurs d'emploi de # plus de 45 ans # # Les salariés en contrat de professionnalisation ne sont pas comptabilisés dans l'effectif de l'entreprise pendant # la durée du contrat s'il est à durée déterminée ou pendant l'action de professionnalisation si le contrat est à # durée indéterminée. # Remboursement de certaines dépenses par les organismes collecteurs paritaires agréés (OPCA) # Aide forfaitaire versée par Pôle emploi pour l'embauche d'un demandeur d'emploi de 26 ans et plus # En cas d'embauche d'un demandeur d'emploi de 26 ans et plus, l'employeur peut bénéficier d'une aide forfaitaire # (AFE) d'un montant maximum de 2 000 euros par bénéficiaire. Pour les salariés à temps partiel, le montant de # l'aide est proratisé en fonction du temps de travail effectif. # Aide spécifique de 686 euros par accompagnement et pour une année pleine est attribuée sous certaines conditions # aux groupements d'employeurs qui organisent dans le cadre des contrats de professionnalisation def function(self, simulation, period): period = period.this_month age = simulation.calculate('age', period) mmid_employeur = simulation.calculate('mmid_employeur', period) famille = simulation.calculate('famille', period) vieillesse_plafonnee_employeur = simulation.calculate('vieillesse_plafonnee_employeur', period) # FIXME: correspond bien à vieillesse de base ? cotisations_exonerees = mmid_employeur + famille + vieillesse_plafonnee_employeur return period, cotisations_exonerees * (age > 45) # FIXME: On est bien d'accord qu'il y a les exos uniquement pour les # plus de 45 ans? # TODO: vérifier aucun avantage pour l'employé ??
agpl-3.0
-7,057,880,705,877,680,000
43.742424
120
0.645107
false
kingvuplus/ts-gui-3
lib/python/Components/Pixmap.py
38
3125
from ConditionalWidget import ConditionalWidget from GUIComponent import GUIComponent from enigma import ePixmap, eTimer from Tools.Directories import resolveFilename, SCOPE_CURRENT_SKIN from os import path from skin import loadPixmap class Pixmap(GUIComponent): GUI_WIDGET = ePixmap def getSize(self): s = self.instance.size() return (s.width(), s.height()) class PixmapConditional(ConditionalWidget, Pixmap): def __init__(self, withTimer = True): ConditionalWidget.__init__(self) Pixmap.__init__(self) class MovingPixmap(Pixmap): def __init__(self): Pixmap.__init__(self) self.moving = False # TODO: get real values self.x = 0.0 self.y = 0.0 self.clearPath() self.moveTimer = eTimer() self.moveTimer.callback.append(self.doMove) def clearPath(self, repeated = False): if (self.moving): self.moving = False self.moveTimer.stop() self.path = [] self.currDest = 0 self.repeated = repeated def addMovePoint(self, x, y, time = 20): self.path.append((x, y, time)) def moveTo(self, x, y, time = 20): self.clearPath() self.addMovePoint(x, y, time) def startMoving(self): if not self.moving: self.time = self.path[self.currDest][2] self.stepX = (self.path[self.currDest][0] - self.x) / float(self.time) self.stepY = (self.path[self.currDest][1] - self.y) / float(self.time) self.moving = True self.moveTimer.start(100) def stopMoving(self): self.moving = False self.moveTimer.stop() def doMove(self): self.x += self.stepX self.y += self.stepY self.time -= 1 try: self.move(int(self.x), int(self.y)) except: # moving not possible... widget not there any more... stop moving self.stopMoving() if (self.time == 0): self.currDest += 1 self.moveTimer.stop() self.moving = False if (self.currDest >= len(self.path)): # end of path if (self.repeated): self.currDest = 0 self.moving = False self.startMoving() else: self.moving = False self.startMoving() class MultiPixmap(Pixmap): def __init__(self): Pixmap.__init__(self) self.pixmaps = [] def applySkin(self, desktop, screen): if self.skinAttributes is not None: skin_path_prefix = getattr(screen, "skin_path", path) pixmap = None attribs = [ ] for (attrib, value) in self.skinAttributes: if attrib == "pixmaps": pixmaps = value.split(',') for p in pixmaps: self.pixmaps.append(loadPixmap(resolveFilename(SCOPE_CURRENT_SKIN, p, path_prefix=skin_path_prefix), desktop) ) if not pixmap: pixmap = resolveFilename(SCOPE_CURRENT_SKIN, pixmaps[0], path_prefix=skin_path_prefix) elif attrib == "pixmap": pixmap = resolveFilename(SCOPE_CURRENT_SKIN, value, path_prefix=skin_path_prefix) else: attribs.append((attrib,value)) if pixmap: attribs.append(("pixmap", pixmap)) self.skinAttributes = attribs return GUIComponent.applySkin(self, desktop, screen) def setPixmapNum(self, x): if self.instance: if len(self.pixmaps) > x: self.instance.setPixmap(self.pixmaps[x]) else: print "setPixmapNum(%d) failed! defined pixmaps:" %(x), self.pixmaps
gpl-2.0
-4,067,766,056,966,849,500
25.260504
117
0.6784
false
elgambitero/FreeCAD_sf_master
src/Mod/Ship/shipCapacityCurve/PlotAux.py
16
5190
#*************************************************************************** #* * #* Copyright (c) 2011, 2012 * #* Jose Luis Cercos Pita <[email protected]> * #* * #* This program is free software; you can redistribute it and/or modify * #* it under the terms of the GNU Lesser General Public License (LGPL) * #* as published by the Free Software Foundation; either version 2 of * #* the License, or (at your option) any later version. * #* for detail see the LICENCE text file. * #* * #* This program is distributed in the hope that it will be useful, * #* but WITHOUT ANY WARRANTY; without even the implied warranty of * #* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * #* GNU Library General Public License for more details. * #* * #* You should have received a copy of the GNU Library General Public * #* License along with this program; if not, write to the Free Software * #* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 * #* USA * #* * #*************************************************************************** import os from PySide import QtGui, QtCore import FreeCAD import FreeCADGui from FreeCAD import Base import Spreadsheet class Plot(object): def __init__(self, l, z, v, tank): """ Constructor. performs the plot and shows it. @param l Percentages of filling level. @param z Level z coordinates. @param v Volume of fluid. @param tank Active tank instance. """ self.plot(l, z, v, tank) self.spreadSheet(l, z, v, tank) def plot(self, l, z, v, tank): """ Perform the areas curve plot. @param l Percentages of filling level. @param z Level z coordinates. @param v Volume of fluid. @param tank Active tank instance. @return True if error happens. """ try: import Plot plt = Plot.figure('Capacity curve') except ImportError: msg = QtGui.QApplication.translate( "ship_console", "Plot module is disabled, so I cannot perform the plot", None, QtGui.QApplication.UnicodeUTF8) FreeCAD.Console.PrintWarning(msg + '\n') return True # Plot the volume as a function of the level percentage vols = Plot.plot(l, v, 'Capacity') vols.line.set_linestyle('-') vols.line.set_linewidth(2.0) vols.line.set_color((0.0, 0.0, 0.0)) Plot.xlabel(r'Percentage of filling level') Plot.ylabel(r'$V \; [\mathrm{m}^3]$') plt.axes.xaxis.label.set_fontsize(20) plt.axes.yaxis.label.set_fontsize(20) Plot.grid(True) # Now duplicate the axes ax = Plot.addNewAxes() # Y axis can be placed at right ax.yaxis.tick_right() ax.spines['right'].set_color((0.0, 0.0, 0.0)) ax.spines['left'].set_color('none') ax.yaxis.set_ticks_position('right') ax.yaxis.set_label_position('right') # And X axis can be placed at top ax.xaxis.tick_top() ax.spines['top'].set_color((0.0, 0.0, 0.0)) ax.spines['bottom'].set_color('none') ax.xaxis.set_ticks_position('top') ax.xaxis.set_label_position('top') # Plot the volume as a function of the level z coordinate vols = Plot.plot(z, v, 'Capacity') vols.line.set_linestyle('-') vols.line.set_linewidth(2.0) vols.line.set_color((0.0, 0.0, 0.0)) Plot.xlabel(r'$z \; [\mathrm{m}]$') Plot.ylabel(r'$V \; [\mathrm{m}^3]$') ax.xaxis.label.set_fontsize(20) ax.yaxis.label.set_fontsize(20) Plot.grid(True) # End plt.update() return False def spreadSheet(self, l, z, v, tank): """ Write the output data file. @param l Percentages of filling level. @param z Level z coordinates. @param v Volume of fluid. @param tank Active tank instance. """ s = FreeCAD.activeDocument().addObject('Spreadsheet::Sheet', 'Capacity curve') # Print the header s.set("A1", "Percentage of filling level") s.set("B1", "Level [m]") s.set("C1", "Volume [m^3]") # Print the data for i in range(len(l)): s.set("A{}".format(i + 2), str(l[i])) s.set("B{}".format(i + 2), str(z[i])) s.set("C{}".format(i + 2), str(v[i])) # Recompute FreeCAD.activeDocument().recompute()
lgpl-2.1
160,937,239,777,189,220
40.528
76
0.493256
false
guthemberg/yanoama
yanoama/amen/system/runner.py
1
2476
from yanoama.amen.system.collector import system_info_collector, process_info_collector from yanoama.amen.core import settings from yanoama.amen.utils.dates import unix_utc_now import sys class Runner(object): def __init__(self): self.active_checks = settings.SYSTEM_CHECKS #self.process_checks = settings.PROCESS_CHECKS def system(self): system_info_dict = {} now = unix_utc_now() # unix time ##table (* index) ##node #ts(*),hostname(*),tx,rx,storage_usage,num_obj ##object #oid(*),length,owners ##swarm #ts(*),oid,tx,rx,hostname if 'node' in self.active_checks and sys.platform != 'darwin': node = system_info_collector.get_node_info(settings.STORAGE_PATH) if node != False: node['time'] = now system_info_dict['node'] = node elif 'memory' in self.active_checks: memory = system_info_collector.get_memory_info() if memory != False: memory['time'] = now system_info_dict['memory'] = memory elif 'cpu' in self.active_checks: cpu = system_info_collector.get_cpu_utilization() if cpu != False: cpu['time'] = now system_info_dict['cpu'] = cpu elif 'loadavg' in self.active_checks: loadavg = system_info_collector.get_load_average() if loadavg != False: loadavg['time'] = now system_info_dict['loadavg'] = loadavg elif 'disk' in self.active_checks: disk = system_info_collector.get_disk_usage() if disk != False: disk['time'] = now system_info_dict['disk'] = disk return system_info_dict # empty dictionary, used when stopping the daemon to avoid chart bugs def empty(self): empty_dict = {} now = unix_utc_now() for check in self.active_checks: empty_dict[check] = {'time': now, 'last': 1} return empty_dict #def processes(self): # now = unix_utc_now() # process_info_dict = {} # for process in self.process_checks: # process_info_dict[process] = process_info_collector.check_process(process) # process_info_dict[process]['time'] = now # return process_info_dict runner = Runner()
bsd-3-clause
6,456,345,211,602,889,000
28.129412
88
0.550485
false
citrix-openstack-build/ceilometer
ceilometer/image/notifications.py
3
3971
# -*- encoding: utf-8 -*- # # Copyright © 2012 Red Hat, Inc # # Author: Eoghan Glynn <[email protected]> # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """Handler for producing image metering messages from glance notification events. """ from oslo.config import cfg from ceilometer import sample from ceilometer import plugin OPTS = [ cfg.StrOpt('glance_control_exchange', default='glance', help="Exchange name for Glance notifications"), ] cfg.CONF.register_opts(OPTS) class ImageBase(plugin.NotificationBase): """Base class for image counting.""" @staticmethod def get_exchange_topics(conf): """Return a sequence of ExchangeTopics defining the exchange and topics to be connected for this plugin. """ return [ plugin.ExchangeTopics( exchange=conf.glance_control_exchange, topics=set(topic + ".info" for topic in conf.notification_topics)), ] class ImageCRUDBase(ImageBase): event_types = [ 'image.update', 'image.upload', 'image.delete', ] class ImageCRUD(ImageCRUDBase): def process_notification(self, message): yield sample.Sample.from_notification( name=message['event_type'], type=sample.TYPE_DELTA, unit='image', volume=1, resource_id=message['payload']['id'], user_id=None, project_id=message['payload']['owner'], message=message) class Image(ImageCRUDBase): def process_notification(self, message): yield sample.Sample.from_notification( name='image', type=sample.TYPE_GAUGE, unit='image', volume=1, resource_id=message['payload']['id'], user_id=None, project_id=message['payload']['owner'], message=message) class ImageSize(ImageCRUDBase): def process_notification(self, message): yield sample.Sample.from_notification( name='image.size', type=sample.TYPE_GAUGE, unit='B', volume=message['payload']['size'], resource_id=message['payload']['id'], user_id=None, project_id=message['payload']['owner'], message=message) class ImageDownload(ImageBase): """Emit image_download sample when an image is downloaded.""" event_types = ['image.send'] def process_notification(self, message): yield sample.Sample.from_notification( name='image.download', type=sample.TYPE_DELTA, unit='B', volume=message['payload']['bytes_sent'], resource_id=message['payload']['image_id'], user_id=message['payload']['receiver_user_id'], project_id=message['payload']['receiver_tenant_id'], message=message) class ImageServe(ImageBase): """Emit image_serve sample when an image is served out.""" event_types = ['image.send'] def process_notification(self, message): yield sample.Sample.from_notification( name='image.serve', type=sample.TYPE_DELTA, unit='B', volume=message['payload']['bytes_sent'], resource_id=message['payload']['image_id'], user_id=None, project_id=message['payload']['owner_id'], message=message)
apache-2.0
3,191,904,136,939,929,000
29.775194
75
0.607557
false
JasonHanG/tensor-gallery
cnn-text-classification/text_cnn.py
2
3776
import tensorflow as tf import numpy as np class TextCNN(object): """ A CNN for text classification. Uses an embedding layer, followed by a convolutional, max-pooling and softmax layer. """ def __init__( self, sequence_length, num_classes, vocab_size, embedding_size, filter_sizes, num_filters, l2_reg_lambda=0.0): # Placeholders for input, output and dropout self.input_x = tf.placeholder(tf.int32, [None, sequence_length], name="input_x") self.input_y = tf.placeholder(tf.float32, [None, num_classes], name="input_y") self.dropout_keep_prob = tf.placeholder(tf.float32, name="dropout_keep_prob") # Keeping track of l2 regularization loss (optional) l2_loss = tf.constant(0.0) # Embedding layer with tf.device('/cpu:0'), tf.name_scope("embedding"): self.W = tf.Variable( tf.random_uniform([vocab_size, embedding_size], -1.0, 1.0), name="W") self.embedded_chars = tf.nn.embedding_lookup(self.W, self.input_x) self.embedded_chars_expanded = tf.expand_dims(self.embedded_chars, -1) # Create a convolution + maxpool layer for each filter size pooled_outputs = [] for i, filter_size in enumerate(filter_sizes): with tf.name_scope("conv-maxpool-%s" % filter_size): # Convolution Layer filter_shape = [filter_size, embedding_size, 1, num_filters] W = tf.Variable(tf.truncated_normal(filter_shape, stddev=0.1), name="W") b = tf.Variable(tf.constant(0.1, shape=[num_filters]), name="b") conv = tf.nn.conv2d( self.embedded_chars_expanded, W, strides=[1, 1, 1, 1], padding="VALID", name="conv") # Apply nonlinearity h = tf.nn.relu(tf.nn.bias_add(conv, b), name="relu") # Maxpooling over the outputs pooled = tf.nn.max_pool( h, ksize=[1, sequence_length - filter_size + 1, 1, 1], strides=[1, 1, 1, 1], padding='VALID', name="pool") pooled_outputs.append(pooled) # Combine all the pooled features num_filters_total = num_filters * len(filter_sizes) self.h_pool = tf.concat(pooled_outputs, 3) self.h_pool_flat = tf.reshape(self.h_pool, [-1, num_filters_total]) # Add dropout with tf.name_scope("dropout"): self.h_drop = tf.nn.dropout(self.h_pool_flat, self.dropout_keep_prob) # Final (unnormalized) scores and predictions with tf.name_scope("output"): W = tf.get_variable( "W", shape=[num_filters_total, num_classes], initializer=tf.contrib.layers.xavier_initializer()) b = tf.Variable(tf.constant(0.1, shape=[num_classes]), name="b") l2_loss += tf.nn.l2_loss(W) l2_loss += tf.nn.l2_loss(b) self.scores = tf.nn.xw_plus_b(self.h_drop, W, b, name="scores") self.predictions = tf.argmax(self.scores, 1, name="predictions") # Calculate mean cross-entropy loss with tf.name_scope("loss"): losses = tf.nn.softmax_cross_entropy_with_logits(logits=self.scores, labels=self.input_y) self.loss = tf.reduce_mean(losses) + l2_reg_lambda * l2_loss # Accuracy with tf.name_scope("accuracy"): correct_predictions = tf.equal(self.predictions, tf.argmax(self.input_y, 1)) self.accuracy = tf.reduce_mean(tf.cast(correct_predictions, "float"), name="accuracy")
apache-2.0
6,086,297,899,356,951,000
43.952381
101
0.562765
false
cogeorg/black_rhino
examples/degroot/networkx/algorithms/tests/test_dag.py
20
5729
#!/usr/bin/env python from nose.tools import * import networkx as nx class TestDAG: def setUp(self): pass def test_topological_sort1(self): DG=nx.DiGraph() DG.add_edges_from([(1,2),(1,3),(2,3)]) assert_equal(nx.topological_sort(DG),[1, 2, 3]) assert_equal(nx.topological_sort_recursive(DG),[1, 2, 3]) DG.add_edge(3,2) assert_raises(nx.NetworkXUnfeasible, nx.topological_sort, DG) assert_raises(nx.NetworkXUnfeasible, nx.topological_sort_recursive, DG) DG.remove_edge(2,3) assert_equal(nx.topological_sort(DG),[1, 3, 2]) assert_equal(nx.topological_sort_recursive(DG),[1, 3, 2]) def test_is_directed_acyclic_graph(self): G = nx.generators.complete_graph(2) assert_false(nx.is_directed_acyclic_graph(G)) assert_false(nx.is_directed_acyclic_graph(G.to_directed())) assert_false(nx.is_directed_acyclic_graph(nx.Graph([(3, 4), (4, 5)]))) assert_true(nx.is_directed_acyclic_graph(nx.DiGraph([(3, 4), (4, 5)]))) def test_topological_sort2(self): DG=nx.DiGraph({1:[2],2:[3],3:[4], 4:[5],5:[1],11:[12], 12:[13],13:[14],14:[15]}) assert_raises(nx.NetworkXUnfeasible, nx.topological_sort, DG) assert_raises(nx.NetworkXUnfeasible, nx.topological_sort_recursive, DG) assert_false(nx.is_directed_acyclic_graph(DG)) DG.remove_edge(1,2) assert_equal(nx.topological_sort_recursive(DG), [11, 12, 13, 14, 15, 2, 3, 4, 5, 1]) assert_equal(nx.topological_sort(DG), [11, 12, 13, 14, 15, 2, 3, 4, 5, 1]) assert_true(nx.is_directed_acyclic_graph(DG)) def test_topological_sort3(self): DG=nx.DiGraph() DG.add_edges_from([(1,i) for i in range(2,5)]) DG.add_edges_from([(2,i) for i in range(5,9)]) DG.add_edges_from([(6,i) for i in range(9,12)]) DG.add_edges_from([(4,i) for i in range(12,15)]) assert_equal(nx.topological_sort_recursive(DG), [1, 4, 14, 13, 12, 3, 2, 7, 6, 11, 10, 9, 5, 8]) assert_equal(nx.topological_sort(DG), [1, 2, 8, 5, 6, 9, 10, 11, 7, 3, 4, 12, 13, 14]) DG.add_edge(14,1) assert_raises(nx.NetworkXUnfeasible, nx.topological_sort, DG) assert_raises(nx.NetworkXUnfeasible, nx.topological_sort_recursive, DG) def test_topological_sort4(self): G=nx.Graph() G.add_edge(1,2) assert_raises(nx.NetworkXError, nx.topological_sort, G) assert_raises(nx.NetworkXError, nx.topological_sort_recursive, G) def test_topological_sort5(self): G=nx.DiGraph() G.add_edge(0,1) assert_equal(nx.topological_sort_recursive(G), [0,1]) assert_equal(nx.topological_sort(G), [0,1]) def test_nbunch_argument(self): G=nx.DiGraph() G.add_edges_from([(1,2), (2,3), (1,4), (1,5), (2,6)]) assert_equal(nx.topological_sort(G), [1, 2, 3, 6, 4, 5]) assert_equal(nx.topological_sort_recursive(G), [1, 5, 4, 2, 6, 3]) assert_equal(nx.topological_sort(G,[1]), [1, 2, 3, 6, 4, 5]) assert_equal(nx.topological_sort_recursive(G,[1]), [1, 5, 4, 2, 6, 3]) assert_equal(nx.topological_sort(G,[5]), [5]) assert_equal(nx.topological_sort_recursive(G,[5]), [5]) def test_ancestors(self): G=nx.DiGraph() ancestors = nx.algorithms.dag.ancestors G.add_edges_from([ (1, 2), (1, 3), (4, 2), (4, 3), (4, 5), (2, 6), (5, 6)]) assert_equal(ancestors(G, 6), set([1, 2, 4, 5])) assert_equal(ancestors(G, 3), set([1, 4])) assert_equal(ancestors(G, 1), set()) assert_raises(nx.NetworkXError, ancestors, G, 8) def test_descendants(self): G=nx.DiGraph() descendants = nx.algorithms.dag.descendants G.add_edges_from([ (1, 2), (1, 3), (4, 2), (4, 3), (4, 5), (2, 6), (5, 6)]) assert_equal(descendants(G, 1), set([2, 3, 6])) assert_equal(descendants(G, 4), set([2, 3, 5, 6])) assert_equal(descendants(G, 3), set()) assert_raises(nx.NetworkXError, descendants, G, 8) def test_is_aperiodic_cycle(): G=nx.DiGraph() G.add_cycle([1,2,3,4]) assert_false(nx.is_aperiodic(G)) def test_is_aperiodic_cycle2(): G=nx.DiGraph() G.add_cycle([1,2,3,4]) G.add_cycle([3,4,5,6,7]) assert_true(nx.is_aperiodic(G)) def test_is_aperiodic_cycle3(): G=nx.DiGraph() G.add_cycle([1,2,3,4]) G.add_cycle([3,4,5,6]) assert_false(nx.is_aperiodic(G)) def test_is_aperiodic_cycle4(): G = nx.DiGraph() G.add_cycle([1,2,3,4]) G.add_edge(1,3) assert_true(nx.is_aperiodic(G)) def test_is_aperiodic_selfloop(): G = nx.DiGraph() G.add_cycle([1,2,3,4]) G.add_edge(1,1) assert_true(nx.is_aperiodic(G)) def test_is_aperiodic_raise(): G = nx.Graph() assert_raises(nx.NetworkXError, nx.is_aperiodic, G) def test_is_aperiodic_bipartite(): #Bipartite graph G = nx.DiGraph(nx.davis_southern_women_graph()) assert_false(nx.is_aperiodic(G)) def test_is_aperiodic_rary_tree(): G = nx.full_rary_tree(3,27,create_using=nx.DiGraph()) assert_false(nx.is_aperiodic(G)) def test_is_aperiodic_disconnected(): #disconnected graph G = nx.DiGraph() G.add_cycle([1,2,3,4]) G.add_cycle([5,6,7,8]) assert_false(nx.is_aperiodic(G)) G.add_edge(1,3) G.add_edge(5,7) assert_true(nx.is_aperiodic(G)) def test_is_aperiodic_disconnected2(): G = nx.DiGraph() G.add_cycle([0,1,2]) G.add_edge(3,3) assert_false(nx.is_aperiodic(G))
gpl-3.0
-3,263,586,685,965,317,000
34.147239
79
0.575668
false
CiscoSystems/nova
nova/virt/xenapi/vm_utils.py
1
103690
# Copyright (c) 2010 Citrix Systems, Inc. # Copyright 2011 Piston Cloud Computing, Inc. # Copyright 2012 OpenStack Foundation # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ Helper methods for operations related to the management of VM records and their attributes like VDIs, VIFs, as well as their lookup functions. """ import contextlib import os import time import urllib import uuid from xml.parsers import expat from eventlet import greenthread from oslo.config import cfg import six.moves.urllib.parse as urlparse from nova.api.metadata import base as instance_metadata from nova import block_device from nova.compute import flavors from nova.compute import power_state from nova.compute import task_states from nova.compute import vm_mode from nova import exception from nova.network import model as network_model from nova.openstack.common import excutils from nova.openstack.common.gettextutils import _ from nova.openstack.common import importutils from nova.openstack.common import log as logging from nova.openstack.common import processutils from nova.openstack.common import strutils from nova.openstack.common import timeutils from nova.openstack.common import units from nova.openstack.common import versionutils from nova.openstack.common import xmlutils from nova import utils from nova.virt import configdrive from nova.virt import cpu from nova.virt.disk import api as disk from nova.virt.disk.vfs import localfs as vfsimpl from nova.virt.xenapi import agent from nova.virt.xenapi.image import utils as image_utils from nova.virt.xenapi import volume_utils LOG = logging.getLogger(__name__) xenapi_vm_utils_opts = [ cfg.StrOpt('cache_images', default='all', deprecated_name='cache_images', deprecated_group='DEFAULT', help='Cache glance images locally. `all` will cache all' ' images, `some` will only cache images that have the' ' image_property `cache_in_nova=True`, and `none` turns' ' off caching entirely'), cfg.IntOpt('image_compression_level', deprecated_name='xenapi_image_compression_level', deprecated_group='DEFAULT', help='Compression level for images, e.g., 9 for gzip -9.' ' Range is 1-9, 9 being most compressed but most CPU' ' intensive on dom0.'), cfg.StrOpt('default_os_type', default='linux', deprecated_name='default_os_type', deprecated_group='DEFAULT', help='Default OS type'), cfg.IntOpt('block_device_creation_timeout', default=10, deprecated_name='block_device_creation_timeout', deprecated_group='DEFAULT', help='Time to wait for a block device to be created'), cfg.IntOpt('max_kernel_ramdisk_size', default=16 * units.Mi, deprecated_name='max_kernel_ramdisk_size', deprecated_group='DEFAULT', help='Maximum size in bytes of kernel or ramdisk images'), cfg.StrOpt('sr_matching_filter', default='default-sr:true', deprecated_name='sr_matching_filter', deprecated_group='DEFAULT', help='Filter for finding the SR to be used to install guest ' 'instances on. To use the Local Storage in default ' 'XenServer/XCP installations set this flag to ' 'other-config:i18n-key=local-storage. To select an SR ' 'with a different matching criteria, you could set it to ' 'other-config:my_favorite_sr=true. On the other hand, to ' 'fall back on the Default SR, as displayed by XenCenter, ' 'set this flag to: default-sr:true'), cfg.BoolOpt('sparse_copy', default=True, deprecated_name='xenapi_sparse_copy', deprecated_group='DEFAULT', help='Whether to use sparse_copy for copying data on a ' 'resize down (False will use standard dd). This speeds ' 'up resizes down considerably since large runs of zeros ' 'won\'t have to be rsynced'), cfg.IntOpt('num_vbd_unplug_retries', default=10, deprecated_name='xenapi_num_vbd_unplug_retries', deprecated_group='DEFAULT', help='Maximum number of retries to unplug VBD'), cfg.StrOpt('torrent_images', default='none', deprecated_name='xenapi_torrent_images', deprecated_group='DEFAULT', help='Whether or not to download images via Bit Torrent ' '(all|some|none).'), cfg.StrOpt('ipxe_network_name', deprecated_name='xenapi_ipxe_network_name', deprecated_group='DEFAULT', help='Name of network to use for booting iPXE ISOs'), cfg.StrOpt('ipxe_boot_menu_url', deprecated_name='xenapi_ipxe_boot_menu_url', deprecated_group='DEFAULT', help='URL to the iPXE boot menu'), cfg.StrOpt('ipxe_mkisofs_cmd', default='mkisofs', deprecated_name='xenapi_ipxe_mkisofs_cmd', deprecated_group='DEFAULT', help='Name and optionally path of the tool used for ' 'ISO image creation'), ] CONF = cfg.CONF # xenapi_vm_utils options in the DEFAULT group were deprecated in Icehouse CONF.register_opts(xenapi_vm_utils_opts, 'xenserver') CONF.import_opt('default_ephemeral_format', 'nova.virt.driver') CONF.import_opt('use_cow_images', 'nova.virt.driver') CONF.import_opt('glance_num_retries', 'nova.image.glance') CONF.import_opt('use_ipv6', 'nova.netconf') XENAPI_POWER_STATE = { 'Halted': power_state.SHUTDOWN, 'Running': power_state.RUNNING, 'Paused': power_state.PAUSED, 'Suspended': power_state.SUSPENDED, 'Crashed': power_state.CRASHED} SECTOR_SIZE = 512 MBR_SIZE_SECTORS = 63 MBR_SIZE_BYTES = MBR_SIZE_SECTORS * SECTOR_SIZE KERNEL_DIR = '/boot/guest' MAX_VDI_CHAIN_SIZE = 16 PROGRESS_INTERVAL_SECONDS = 300 # Fudge factor to allow for the VHD chain to be slightly larger than # the partitioned space. Otherwise, legitimate images near their # maximum allowed size can fail on build with FlavorDiskTooSmall. VHD_SIZE_CHECK_FUDGE_FACTOR_GB = 10 class ImageType(object): """Enumeration class for distinguishing different image types | 0 - kernel image (goes on dom0's filesystem) | 1 - ramdisk image (goes on dom0's filesystem) | 2 - disk image (local SR, partitioned by objectstore plugin) | 3 - raw disk image (local SR, NOT partitioned by plugin) | 4 - vhd disk image (local SR, NOT inspected by XS, PV assumed for | linux, HVM assumed for Windows) | 5 - ISO disk image (local SR, NOT partitioned by plugin) | 6 - config drive """ KERNEL = 0 RAMDISK = 1 DISK = 2 DISK_RAW = 3 DISK_VHD = 4 DISK_ISO = 5 DISK_CONFIGDRIVE = 6 _ids = (KERNEL, RAMDISK, DISK, DISK_RAW, DISK_VHD, DISK_ISO, DISK_CONFIGDRIVE) KERNEL_STR = "kernel" RAMDISK_STR = "ramdisk" DISK_STR = "root" DISK_RAW_STR = "os_raw" DISK_VHD_STR = "vhd" DISK_ISO_STR = "iso" DISK_CONFIGDRIVE_STR = "configdrive" _strs = (KERNEL_STR, RAMDISK_STR, DISK_STR, DISK_RAW_STR, DISK_VHD_STR, DISK_ISO_STR, DISK_CONFIGDRIVE_STR) @classmethod def to_string(cls, image_type): return dict(zip(cls._ids, ImageType._strs)).get(image_type) @classmethod def get_role(cls, image_type_id): """Get the role played by the image, based on its type.""" return { cls.KERNEL: 'kernel', cls.RAMDISK: 'ramdisk', cls.DISK: 'root', cls.DISK_RAW: 'root', cls.DISK_VHD: 'root', cls.DISK_ISO: 'iso', cls.DISK_CONFIGDRIVE: 'configdrive' }.get(image_type_id) def get_vm_device_id(session, image_properties): # NOTE: device_id should be 2 for windows VMs which run new xentools # (>=6.1). Refer to http://support.citrix.com/article/CTX135099 for more # information. if image_properties is None: image_properties = {} device_id = image_properties.get('xenapi_device_id') # The device_id is required to be set for hypervisor version 6.1 and above if device_id: hypervisor_version = session.product_version if _hypervisor_supports_device_id(hypervisor_version): return device_id else: msg = _("Device id %(id)s specified is not supported by " "hypervisor version %(version)s") % {'id': device_id, 'version': hypervisor_version} raise exception.NovaException(msg) def _hypervisor_supports_device_id(version): version_as_string = '.'.join(str(v) for v in version) return(versionutils.is_compatible('6.1', version_as_string)) def create_vm(session, instance, name_label, kernel, ramdisk, use_pv_kernel=False, device_id=None): """Create a VM record. Returns new VM reference. the use_pv_kernel flag indicates whether the guest is HVM or PV There are 3 scenarios: 1. Using paravirtualization, kernel passed in 2. Using paravirtualization, kernel within the image 3. Using hardware virtualization """ flavor = flavors.extract_flavor(instance) mem = str(long(flavor['memory_mb']) * units.Mi) vcpus = str(flavor['vcpus']) vcpu_weight = flavor['vcpu_weight'] vcpu_params = {} if vcpu_weight is not None: # NOTE(johngarbutt) bug in XenServer 6.1 and 6.2 means # we need to specify both weight and cap for either to apply vcpu_params = {"weight": str(vcpu_weight), "cap": "0"} cpu_mask_list = cpu.get_cpuset_ids() if cpu_mask_list: cpu_mask = ",".join(str(cpu_id) for cpu_id in cpu_mask_list) vcpu_params["mask"] = cpu_mask viridian = 'true' if instance['os_type'] == 'windows' else 'false' rec = { 'actions_after_crash': 'destroy', 'actions_after_reboot': 'restart', 'actions_after_shutdown': 'destroy', 'affinity': '', 'blocked_operations': {}, 'ha_always_run': False, 'ha_restart_priority': '', 'HVM_boot_params': {}, 'HVM_boot_policy': '', 'is_a_template': False, 'memory_dynamic_min': mem, 'memory_dynamic_max': mem, 'memory_static_min': '0', 'memory_static_max': mem, 'memory_target': mem, 'name_description': '', 'name_label': name_label, 'other_config': {'nova_uuid': str(instance['uuid'])}, 'PCI_bus': '', 'platform': {'acpi': 'true', 'apic': 'true', 'pae': 'true', 'viridian': viridian, 'timeoffset': '0'}, 'PV_args': '', 'PV_bootloader': '', 'PV_bootloader_args': '', 'PV_kernel': '', 'PV_legacy_args': '', 'PV_ramdisk': '', 'recommendations': '', 'tags': [], 'user_version': '0', 'VCPUs_at_startup': vcpus, 'VCPUs_max': vcpus, 'VCPUs_params': vcpu_params, 'xenstore_data': {'vm-data/allowvssprovider': 'false'}} # Complete VM configuration record according to the image type # non-raw/raw with PV kernel/raw in HVM mode if use_pv_kernel: rec['platform']['nx'] = 'false' if instance['kernel_id']: # 1. Kernel explicitly passed in, use that rec['PV_args'] = 'root=/dev/xvda1' rec['PV_kernel'] = kernel rec['PV_ramdisk'] = ramdisk else: # 2. Use kernel within the image rec['PV_bootloader'] = 'pygrub' else: # 3. Using hardware virtualization rec['platform']['nx'] = 'true' rec['HVM_boot_params'] = {'order': 'dc'} rec['HVM_boot_policy'] = 'BIOS order' if device_id: rec['platform']['device_id'] = device_id vm_ref = session.VM.create(rec) LOG.debug(_('Created VM'), instance=instance) return vm_ref def destroy_vm(session, instance, vm_ref): """Destroys a VM record.""" try: session.VM.destroy(vm_ref) except session.XenAPI.Failure as exc: LOG.exception(exc) return LOG.debug(_("VM destroyed"), instance=instance) def clean_shutdown_vm(session, instance, vm_ref): if is_vm_shutdown(session, vm_ref): LOG.warn(_("VM already halted, skipping shutdown..."), instance=instance) return True LOG.debug(_("Shutting down VM (cleanly)"), instance=instance) try: session.call_xenapi('VM.clean_shutdown', vm_ref) except session.XenAPI.Failure as exc: LOG.exception(exc) return False return True def hard_shutdown_vm(session, instance, vm_ref): if is_vm_shutdown(session, vm_ref): LOG.warn(_("VM already halted, skipping shutdown..."), instance=instance) return True LOG.debug(_("Shutting down VM (hard)"), instance=instance) try: session.call_xenapi('VM.hard_shutdown', vm_ref) except session.XenAPI.Failure as exc: LOG.exception(exc) return False return True def is_vm_shutdown(session, vm_ref): state = get_power_state(session, vm_ref) if state == power_state.SHUTDOWN: return True return False def is_enough_free_mem(session, instance): flavor = flavors.extract_flavor(instance) mem = long(flavor['memory_mb']) * units.Mi host_free_mem = long(session.call_xenapi("host.compute_free_memory", session.host_ref)) return host_free_mem >= mem def find_vbd_by_number(session, vm_ref, number): """Get the VBD reference from the device number.""" vbd_refs = session.call_xenapi("VM.get_VBDs", vm_ref) if vbd_refs: for vbd_ref in vbd_refs: try: user_device = session.call_xenapi("VBD.get_userdevice", vbd_ref) if user_device == str(number): return vbd_ref except session.XenAPI.Failure as exc: LOG.exception(exc) raise volume_utils.StorageError( _('VBD not found in instance %s') % vm_ref) def _should_retry_unplug_vbd(err): # Retry if unplug failed with DEVICE_DETACH_REJECTED # For reasons which we don't understand, # we're seeing the device still in use, even when all processes # using the device should be dead. # Since XenServer 6.2, we also need to retry if we get # INTERNAL_ERROR, as that error goes away when you retry. return (err == 'DEVICE_DETACH_REJECTED' or err == 'INTERNAL_ERROR') def unplug_vbd(session, vbd_ref, this_vm_ref): max_attempts = CONF.xenserver.num_vbd_unplug_retries + 1 for num_attempt in xrange(1, max_attempts + 1): try: if num_attempt > 1: greenthread.sleep(1) session.VBD.unplug(vbd_ref, this_vm_ref) return except session.XenAPI.Failure as exc: err = len(exc.details) > 0 and exc.details[0] if err == 'DEVICE_ALREADY_DETACHED': LOG.info(_('VBD %s already detached'), vbd_ref) return elif _should_retry_unplug_vbd(err): LOG.info(_('VBD %(vbd_ref)s uplug failed with "%(err)s", ' 'attempt %(num_attempt)d/%(max_attempts)d'), {'vbd_ref': vbd_ref, 'num_attempt': num_attempt, 'max_attempts': max_attempts, 'err': err}) else: LOG.exception(exc) raise volume_utils.StorageError( _('Unable to unplug VBD %s') % vbd_ref) raise volume_utils.StorageError( _('Reached maximum number of retries trying to unplug VBD %s') % vbd_ref) def destroy_vbd(session, vbd_ref): """Destroy VBD from host database.""" try: session.call_xenapi('VBD.destroy', vbd_ref) except session.XenAPI.Failure as exc: LOG.exception(exc) raise volume_utils.StorageError( _('Unable to destroy VBD %s') % vbd_ref) def create_vbd(session, vm_ref, vdi_ref, userdevice, vbd_type='disk', read_only=False, bootable=False, osvol=False, empty=False, unpluggable=True): """Create a VBD record and returns its reference.""" vbd_rec = {} vbd_rec['VM'] = vm_ref if vdi_ref == None: vdi_ref = 'OpaqueRef:NULL' vbd_rec['VDI'] = vdi_ref vbd_rec['userdevice'] = str(userdevice) vbd_rec['bootable'] = bootable vbd_rec['mode'] = read_only and 'RO' or 'RW' vbd_rec['type'] = vbd_type vbd_rec['unpluggable'] = unpluggable vbd_rec['empty'] = empty vbd_rec['other_config'] = {} vbd_rec['qos_algorithm_type'] = '' vbd_rec['qos_algorithm_params'] = {} vbd_rec['qos_supported_algorithms'] = [] LOG.debug(_('Creating %(vbd_type)s-type VBD for VM %(vm_ref)s,' ' VDI %(vdi_ref)s ... '), {'vbd_type': vbd_type, 'vm_ref': vm_ref, 'vdi_ref': vdi_ref}) vbd_ref = session.call_xenapi('VBD.create', vbd_rec) LOG.debug(_('Created VBD %(vbd_ref)s for VM %(vm_ref)s,' ' VDI %(vdi_ref)s.'), {'vbd_ref': vbd_ref, 'vm_ref': vm_ref, 'vdi_ref': vdi_ref}) if osvol: # set osvol=True in other-config to indicate this is an # attached nova (or cinder) volume session.call_xenapi('VBD.add_to_other_config', vbd_ref, 'osvol', 'True') return vbd_ref def attach_cd(session, vm_ref, vdi_ref, userdevice): """Create an empty VBD, then insert the CD.""" vbd_ref = create_vbd(session, vm_ref, None, userdevice, vbd_type='cd', read_only=True, bootable=True, empty=True, unpluggable=False) session.call_xenapi('VBD.insert', vbd_ref, vdi_ref) return vbd_ref def destroy_vdi(session, vdi_ref): try: session.call_xenapi('VDI.destroy', vdi_ref) except session.XenAPI.Failure: msg = _("Unable to destroy VDI %s") % vdi_ref LOG.debug(msg, exc_info=True) LOG.error(msg) raise volume_utils.StorageError(msg) def safe_destroy_vdis(session, vdi_refs): """Tries to destroy the requested VDIs, but ignores any errors.""" for vdi_ref in vdi_refs: try: destroy_vdi(session, vdi_ref) except volume_utils.StorageError: msg = _("Ignoring error while destroying VDI: %s") % vdi_ref LOG.debug(msg) def create_vdi(session, sr_ref, instance, name_label, disk_type, virtual_size, read_only=False): """Create a VDI record and returns its reference.""" vdi_ref = session.call_xenapi("VDI.create", {'name_label': name_label, 'name_description': disk_type, 'SR': sr_ref, 'virtual_size': str(virtual_size), 'type': 'User', 'sharable': False, 'read_only': read_only, 'xenstore_data': {}, 'other_config': _get_vdi_other_config(disk_type, instance=instance), 'sm_config': {}, 'tags': []}) LOG.debug(_('Created VDI %(vdi_ref)s (%(name_label)s,' ' %(virtual_size)s, %(read_only)s) on %(sr_ref)s.'), {'vdi_ref': vdi_ref, 'name_label': name_label, 'virtual_size': virtual_size, 'read_only': read_only, 'sr_ref': sr_ref}) return vdi_ref def get_vdi_uuid_for_volume(session, connection_data): sr_uuid, label, sr_params = volume_utils.parse_sr_info(connection_data) sr_ref = volume_utils.find_sr_by_uuid(session, sr_uuid) if not sr_ref: sr_ref = volume_utils.introduce_sr(session, sr_uuid, label, sr_params) if sr_ref is None: raise exception.NovaException(_('SR not present and could not be ' 'introduced')) vdi_uuid = None if 'vdi_uuid' in connection_data: _scan_sr(session, sr_ref) vdi_uuid = connection_data['vdi_uuid'] else: try: vdi_ref = volume_utils.introduce_vdi(session, sr_ref) vdi_uuid = session.call_xenapi("VDI.get_uuid", vdi_ref) except volume_utils.StorageError as exc: LOG.exception(exc) volume_utils.forget_sr(session, sr_ref) return vdi_uuid def get_vdis_for_instance(context, session, instance, name_label, image, image_type, block_device_info=None): vdis = {} if block_device_info: LOG.debug(_("block device info: %s"), block_device_info) root_device_name = block_device_info['root_device_name'] for bdm in block_device_info['block_device_mapping']: if (block_device.strip_prefix(bdm['mount_device']) == block_device.strip_prefix(root_device_name)): # If we're a root-device, record that fact so we don't download # a root image via Glance type_ = 'root' else: # Otherwise, use mount_device as `type_` so that we have easy # access to it in _attach_disks to create the VBD type_ = bdm['mount_device'] connection_data = bdm['connection_info']['data'] vdi_uuid = get_vdi_uuid_for_volume(session, connection_data) if vdi_uuid: vdis[type_] = dict(uuid=vdi_uuid, file=None, osvol=True) # If we didn't get a root VDI from volumes, then use the Glance image as # the root device if 'root' not in vdis: create_image_vdis = _create_image( context, session, instance, name_label, image, image_type) vdis.update(create_image_vdis) # Just get the VDI ref once for vdi in vdis.itervalues(): vdi['ref'] = session.call_xenapi('VDI.get_by_uuid', vdi['uuid']) return vdis @contextlib.contextmanager def _dummy_vm(session, instance, vdi_ref): """This creates a temporary VM so that we can snapshot a VDI. VDI's can't be snapshotted directly since the API expects a `vm_ref`. To work around this, we need to create a temporary VM and then map the VDI to the VM using a temporary VBD. """ name_label = "dummy" vm_ref = create_vm(session, instance, name_label, None, None) try: vbd_ref = create_vbd(session, vm_ref, vdi_ref, 'autodetect', read_only=True) try: yield vm_ref finally: try: destroy_vbd(session, vbd_ref) except volume_utils.StorageError: # destroy_vbd() will log error pass finally: destroy_vm(session, instance, vm_ref) def _safe_copy_vdi(session, sr_ref, instance, vdi_to_copy_ref): """Copy a VDI and return the new VDIs reference. This function differs from the XenAPI `VDI.copy` call in that the copy is atomic and isolated, meaning we don't see half-downloaded images. It accomplishes this by copying the VDI's into a temporary directory and then atomically renaming them into the SR when the copy is completed. The correct long term solution is to fix `VDI.copy` so that it is atomic and isolated. """ with _dummy_vm(session, instance, vdi_to_copy_ref) as vm_ref: label = "snapshot" with snapshot_attached_here( session, instance, vm_ref, label) as vdi_uuids: imported_vhds = session.call_plugin_serialized( 'workarounds', 'safe_copy_vdis', sr_path=get_sr_path(session, sr_ref=sr_ref), vdi_uuids=vdi_uuids, uuid_stack=_make_uuid_stack()) root_uuid = imported_vhds['root']['uuid'] # rescan to discover new VHDs scan_default_sr(session) vdi_ref = session.call_xenapi('VDI.get_by_uuid', root_uuid) return vdi_ref def _clone_vdi(session, vdi_to_clone_ref): """Clones a VDI and return the new VDIs reference.""" vdi_ref = session.call_xenapi('VDI.clone', vdi_to_clone_ref) LOG.debug(_('Cloned VDI %(vdi_ref)s from VDI ' '%(vdi_to_clone_ref)s'), {'vdi_ref': vdi_ref, 'vdi_to_clone_ref': vdi_to_clone_ref}) return vdi_ref def _get_vdi_other_config(disk_type, instance=None): """Return metadata to store in VDI's other_config attribute. `nova_instance_uuid` is used to associate a VDI with a particular instance so that, if it becomes orphaned from an unclean shutdown of a compute-worker, we can safely detach it. """ other_config = {'nova_disk_type': disk_type} # create_vdi may be called simply while creating a volume # hence information about instance may or may not be present if instance: other_config['nova_instance_uuid'] = instance['uuid'] return other_config def _set_vdi_info(session, vdi_ref, vdi_type, name_label, description, instance): existing_other_config = session.call_xenapi('VDI.get_other_config', vdi_ref) session.call_xenapi('VDI.set_name_label', vdi_ref, name_label) session.call_xenapi('VDI.set_name_description', vdi_ref, description) other_config = _get_vdi_other_config(vdi_type, instance=instance) for key, value in other_config.iteritems(): if key not in existing_other_config: session.call_xenapi( "VDI.add_to_other_config", vdi_ref, key, value) def _vm_get_vbd_refs(session, vm_ref): return session.call_xenapi("VM.get_VBDs", vm_ref) def _vbd_get_rec(session, vbd_ref): return session.call_xenapi("VBD.get_record", vbd_ref) def _vdi_get_rec(session, vdi_ref): return session.call_xenapi("VDI.get_record", vdi_ref) def _vdi_get_uuid(session, vdi_ref): return session.call_xenapi("VDI.get_uuid", vdi_ref) def _vdi_snapshot(session, vdi_ref): return session.call_xenapi("VDI.snapshot", vdi_ref, {}) def get_vdi_for_vm_safely(session, vm_ref, userdevice='0'): """Retrieves the primary VDI for a VM.""" vbd_refs = _vm_get_vbd_refs(session, vm_ref) for vbd_ref in vbd_refs: vbd_rec = _vbd_get_rec(session, vbd_ref) # Convention dictates the primary VDI will be userdevice 0 if vbd_rec['userdevice'] == userdevice: vdi_ref = vbd_rec['VDI'] vdi_rec = _vdi_get_rec(session, vdi_ref) return vdi_ref, vdi_rec raise exception.NovaException(_("No primary VDI found for %s") % vm_ref) def get_all_vdi_uuids_for_vm(session, vm_ref, min_userdevice=0): vbd_refs = _vm_get_vbd_refs(session, vm_ref) for vbd_ref in vbd_refs: vbd_rec = _vbd_get_rec(session, vbd_ref) if int(vbd_rec['userdevice']) >= min_userdevice: vdi_ref = vbd_rec['VDI'] yield _vdi_get_uuid(session, vdi_ref) def _try_strip_base_mirror_from_vdi(session, vdi_ref): try: session.call_xenapi("VDI.remove_from_sm_config", vdi_ref, "base_mirror") except session.XenAPI.Failure: LOG.debug(_("Error while removing sm_config"), exc_info=True) def strip_base_mirror_from_vdis(session, vm_ref): # NOTE(johngarbutt) part of workaround for XenServer bug CA-98606 vbd_refs = session.call_xenapi("VM.get_VBDs", vm_ref) for vbd_ref in vbd_refs: vdi_ref = session.call_xenapi("VBD.get_VDI", vbd_ref) _try_strip_base_mirror_from_vdi(session, vdi_ref) @contextlib.contextmanager def snapshot_attached_here(session, instance, vm_ref, label, userdevice='0', post_snapshot_callback=None): # impl method allow easier patching for tests return _snapshot_attached_here_impl(session, instance, vm_ref, label, userdevice, post_snapshot_callback) def _snapshot_attached_here_impl(session, instance, vm_ref, label, userdevice, post_snapshot_callback): """Snapshot the root disk only. Return a list of uuids for the vhds in the chain. """ LOG.debug(_("Starting snapshot for VM"), instance=instance) # Memorize the original_parent_uuid so we can poll for coalesce vm_vdi_ref, vm_vdi_rec = get_vdi_for_vm_safely(session, vm_ref, userdevice) original_parent_uuid = _get_vhd_parent_uuid(session, vm_vdi_ref) sr_ref = vm_vdi_rec["SR"] snapshot_ref = _vdi_snapshot(session, vm_vdi_ref) if post_snapshot_callback is not None: post_snapshot_callback(task_state=task_states.IMAGE_PENDING_UPLOAD) try: # Ensure no VHDs will vanish while we migrate them _wait_for_vhd_coalesce(session, instance, sr_ref, vm_vdi_ref, original_parent_uuid) snapshot_uuid = _vdi_get_uuid(session, snapshot_ref) chain = _walk_vdi_chain(session, snapshot_uuid) vdi_uuids = [vdi_rec['uuid'] for vdi_rec in chain] yield vdi_uuids finally: safe_destroy_vdis(session, [snapshot_ref]) # TODO(johngarbut) we need to check the snapshot has been coalesced # now its associated VDI has been deleted. def get_sr_path(session, sr_ref=None): """Return the path to our storage repository This is used when we're dealing with VHDs directly, either by taking snapshots or by restoring an image in the DISK_VHD format. """ if sr_ref is None: sr_ref = safe_find_sr(session) pbd_rec = session.call_xenapi("PBD.get_all_records_where", 'field "host"="%s" and ' 'field "SR"="%s"' % (session.host_ref, sr_ref)) # NOTE(bobball): There can only be one PBD for a host/SR pair, but path is # not always present - older versions of XS do not set it. pbd_ref = pbd_rec.keys()[0] device_config = pbd_rec[pbd_ref]['device_config'] if 'path' in device_config: return device_config['path'] sr_rec = session.call_xenapi("SR.get_record", sr_ref) sr_uuid = sr_rec["uuid"] if sr_rec["type"] not in ["ext", "nfs"]: raise exception.NovaException( _("Only file-based SRs (ext/NFS) are supported by this feature." " SR %(uuid)s is of type %(type)s") % {"uuid": sr_uuid, "type": sr_rec["type"]}) return os.path.join(CONF.xenserver.sr_base_path, sr_uuid) def destroy_cached_images(session, sr_ref, all_cached=False, dry_run=False): """Destroy used or unused cached images. A cached image that is being used by at least one VM is said to be 'used'. In the case of an 'unused' image, the cached image will be the only descendent of the base-copy. So when we delete the cached-image, the refcount will drop to zero and XenServer will automatically destroy the base-copy for us. The default behavior of this function is to destroy only 'unused' cached images. To destroy all cached images, use the `all_cached=True` kwarg. """ cached_images = _find_cached_images(session, sr_ref) destroyed = set() def destroy_cached_vdi(vdi_uuid, vdi_ref): LOG.debug(_("Destroying cached VDI '%(vdi_uuid)s'")) if not dry_run: destroy_vdi(session, vdi_ref) destroyed.add(vdi_uuid) for vdi_ref in cached_images.values(): vdi_uuid = session.call_xenapi('VDI.get_uuid', vdi_ref) if all_cached: destroy_cached_vdi(vdi_uuid, vdi_ref) continue # Unused-Only: Search for siblings # Chain length greater than two implies a VM must be holding a ref to # the base-copy (otherwise it would have coalesced), so consider this # cached image used. chain = list(_walk_vdi_chain(session, vdi_uuid)) if len(chain) > 2: continue elif len(chain) == 2: # Siblings imply cached image is used root_vdi_rec = chain[-1] children = _child_vhds(session, sr_ref, root_vdi_rec['uuid']) if len(children) > 1: continue destroy_cached_vdi(vdi_uuid, vdi_ref) return destroyed def _find_cached_images(session, sr_ref): """Return a dict(uuid=vdi_ref) representing all cached images.""" cached_images = {} for vdi_ref, vdi_rec in _get_all_vdis_in_sr(session, sr_ref): try: image_id = vdi_rec['other_config']['image-id'] except KeyError: continue cached_images[image_id] = vdi_ref return cached_images def _find_cached_image(session, image_id, sr_ref): """Returns the vdi-ref of the cached image.""" name_label = _get_image_vdi_label(image_id) recs = session.call_xenapi("VDI.get_all_records_where", 'field "name__label"="%s"' % name_label) number_found = len(recs) if number_found > 0: if number_found > 1: LOG.warn(_("Multiple base images for image: %s") % image_id) return recs.keys()[0] def _get_resize_func_name(session): brand = session.product_brand version = session.product_version # To maintain backwards compatibility. All recent versions # should use VDI.resize if version and brand: xcp = brand == 'XCP' r1_2_or_above = (version[0] == 1 and version[1] > 1) or version[0] > 1 xenserver = brand == 'XenServer' r6_or_above = version[0] > 5 if (xcp and not r1_2_or_above) or (xenserver and not r6_or_above): return 'VDI.resize_online' return 'VDI.resize' def _vdi_get_virtual_size(session, vdi_ref): size = session.call_xenapi('VDI.get_virtual_size', vdi_ref) return int(size) def _vdi_resize(session, vdi_ref, new_size): resize_func_name = _get_resize_func_name(session) session.call_xenapi(resize_func_name, vdi_ref, str(new_size)) def update_vdi_virtual_size(session, instance, vdi_ref, new_gb): virtual_size = _vdi_get_virtual_size(session, vdi_ref) new_disk_size = new_gb * units.Gi msg = _("Resizing up VDI %(vdi_ref)s from %(virtual_size)d " "to %(new_disk_size)d") LOG.debug(msg, {'vdi_ref': vdi_ref, 'virtual_size': virtual_size, 'new_disk_size': new_disk_size}, instance=instance) if virtual_size < new_disk_size: # For resize up. Simple VDI resize will do the trick _vdi_resize(session, vdi_ref, new_disk_size) elif virtual_size == new_disk_size: LOG.debug(_("No need to change vdi virtual size."), instance=instance) else: # NOTE(johngarbutt): we should never get here # but if we don't raise an exception, a user might be able to use # more storage than allowed by their chosen instance flavor msg = _("VDI %(vdi_ref)s is %(virtual_size)d bytes which is larger " "than flavor size of %(new_disk_size)d bytes.") msg = msg % {'vdi_ref': vdi_ref, 'virtual_size': virtual_size, 'new_disk_size': new_disk_size} LOG.debug(msg, instance=instance) raise exception.ResizeError(reason=msg) def resize_disk(session, instance, vdi_ref, flavor): size_gb = flavor['root_gb'] if size_gb == 0: reason = _("Can't resize a disk to 0 GB.") raise exception.ResizeError(reason=reason) sr_ref = safe_find_sr(session) clone_ref = _clone_vdi(session, vdi_ref) try: # Resize partition and filesystem down _auto_configure_disk(session, clone_ref, size_gb) # Create new VDI vdi_size = size_gb * units.Gi # NOTE(johannes): No resizing allowed for rescue instances, so # using instance['name'] is safe here new_ref = create_vdi(session, sr_ref, instance, instance['name'], 'root', vdi_size) new_uuid = session.call_xenapi('VDI.get_uuid', new_ref) # Manually copy contents over virtual_size = size_gb * units.Gi _copy_partition(session, clone_ref, new_ref, 1, virtual_size) return new_ref, new_uuid finally: destroy_vdi(session, clone_ref) def _auto_configure_disk(session, vdi_ref, new_gb): """Partition and resize FS to match the size specified by flavors.root_gb. This is a fail-safe to prevent accidentally destroying data on a disk erroneously marked as auto_disk_config=True. The criteria for allowing resize are: 1. 'auto_disk_config' must be true for the instance (and image). (If we've made it here, then auto_disk_config=True.) 2. The disk must have only one partition. 3. The file-system on the one partition must be ext3 or ext4. """ if new_gb == 0: LOG.debug(_("Skipping auto_config_disk as destination size is 0GB")) return with vdi_attached_here(session, vdi_ref, read_only=False) as dev: partitions = _get_partitions(dev) if len(partitions) != 1: reason = _('Disk must have only one partition.') raise exception.CannotResizeDisk(reason=reason) num, start, old_sectors, fstype, name, flags = partitions[0] if fstype not in ('ext3', 'ext4'): reason = _('Disk contains a filesystem ' 'we are unable to resize: %s') raise exception.CannotResizeDisk(reason=(reason % fstype)) if num != 1: reason = _('The only partition should be partition 1.') raise exception.CannotResizeDisk(reason=reason) new_sectors = new_gb * units.Gi / SECTOR_SIZE _resize_part_and_fs(dev, start, old_sectors, new_sectors, flags) def try_auto_configure_disk(session, vdi_ref, new_gb): try: _auto_configure_disk(session, vdi_ref, new_gb) except exception.CannotResizeDisk as e: msg = _('Attempted auto_configure_disk failed because: %s') LOG.warn(msg % e) def _make_partition(session, dev, partition_start, partition_end): dev_path = utils.make_dev_path(dev) # NOTE(bobball) If this runs in Dom0, parted will error trying # to re-read the partition table and return a generic error utils.execute('parted', '--script', dev_path, 'mklabel', 'msdos', run_as_root=True, check_exit_code=not session.is_local_connection) utils.execute('parted', '--script', dev_path, '--', 'mkpart', 'primary', partition_start, partition_end, run_as_root=True, check_exit_code=not session.is_local_connection) partition_path = utils.make_dev_path(dev, partition=1) if session.is_local_connection: # Need to refresh the partitions utils.trycmd('kpartx', '-a', dev_path, run_as_root=True, discard_warnings=True) # Sometimes the partition gets created under /dev/mapper, depending # on the setup in dom0. mapper_path = '/dev/mapper/%s' % os.path.basename(partition_path) if os.path.exists(mapper_path): return mapper_path return partition_path def _generate_disk(session, instance, vm_ref, userdevice, name_label, disk_type, size_mb, fs_type): """Steps to programmatically generate a disk: 1. Create VDI of desired size 2. Attach VDI to compute worker 3. Create partition 4. Create VBD between instance VM and VDI """ # 1. Create VDI sr_ref = safe_find_sr(session) ONE_MEG = units.Mi virtual_size = size_mb * ONE_MEG vdi_ref = create_vdi(session, sr_ref, instance, name_label, disk_type, virtual_size) try: # 2. Attach VDI to compute worker (VBD hotplug) with vdi_attached_here(session, vdi_ref, read_only=False) as dev: # 3. Create partition partition_start = "0" partition_end = "-0" partition_path = _make_partition(session, dev, partition_start, partition_end) if fs_type == 'linux-swap': utils.execute('mkswap', partition_path, run_as_root=True) elif fs_type is not None: utils.execute('mkfs', '-t', fs_type, partition_path, run_as_root=True) # 4. Create VBD between instance VM and VDI if vm_ref: create_vbd(session, vm_ref, vdi_ref, userdevice, bootable=False) except Exception: with excutils.save_and_reraise_exception(): msg = _("Error while generating disk number: %s") % userdevice LOG.debug(msg, instance=instance, exc_info=True) safe_destroy_vdis(session, [vdi_ref]) return vdi_ref def generate_swap(session, instance, vm_ref, userdevice, name_label, swap_mb): # NOTE(jk0): We use a FAT32 filesystem for the Windows swap # partition because that is what parted supports. is_windows = instance['os_type'] == "windows" fs_type = "vfat" if is_windows else "linux-swap" _generate_disk(session, instance, vm_ref, userdevice, name_label, 'swap', swap_mb, fs_type) def get_ephemeral_disk_sizes(total_size_gb): if not total_size_gb: return max_size_gb = 2000 if total_size_gb % 1024 == 0: max_size_gb = 1024 left_to_allocate = total_size_gb while left_to_allocate > 0: size_gb = min(max_size_gb, left_to_allocate) yield size_gb left_to_allocate -= size_gb def generate_single_ephemeral(session, instance, vm_ref, userdevice, size_gb, instance_name_label=None): if instance_name_label is None: instance_name_label = instance["name"] name_label = "%s ephemeral" % instance_name_label #TODO(johngarbutt) need to move DEVICE_EPHEMERAL from vmops to use it here label_number = int(userdevice) - 4 if label_number > 0: name_label = "%s (%d)" % (name_label, label_number) return _generate_disk(session, instance, vm_ref, str(userdevice), name_label, 'ephemeral', size_gb * 1024, CONF.default_ephemeral_format) def generate_ephemeral(session, instance, vm_ref, first_userdevice, instance_name_label, total_size_gb): # NOTE(johngarbutt): max possible size of a VHD disk is 2043GB sizes = get_ephemeral_disk_sizes(total_size_gb) first_userdevice = int(first_userdevice) vdi_refs = [] try: for userdevice, size_gb in enumerate(sizes, start=first_userdevice): ref = generate_single_ephemeral(session, instance, vm_ref, userdevice, size_gb, instance_name_label) vdi_refs.append(ref) except Exception as exc: with excutils.save_and_reraise_exception(): LOG.debug(_("Error when generating ephemeral disk. " "Device: %(userdevice)s Size GB: %(size_gb)s " "Error: %(exc)s"), { 'userdevice': userdevice, 'size_gb': size_gb, 'exc': exc}) safe_destroy_vdis(session, vdi_refs) def generate_iso_blank_root_disk(session, instance, vm_ref, userdevice, name_label, size_gb): _generate_disk(session, instance, vm_ref, userdevice, name_label, 'user', size_gb * 1024, CONF.default_ephemeral_format) def generate_configdrive(session, instance, vm_ref, userdevice, network_info, admin_password=None, files=None): sr_ref = safe_find_sr(session) vdi_ref = create_vdi(session, sr_ref, instance, 'config-2', 'configdrive', configdrive.CONFIGDRIVESIZE_BYTES) try: with vdi_attached_here(session, vdi_ref, read_only=False) as dev: extra_md = {} if admin_password: extra_md['admin_pass'] = admin_password inst_md = instance_metadata.InstanceMetadata(instance, content=files, extra_md=extra_md, network_info=network_info) with configdrive.ConfigDriveBuilder(instance_md=inst_md) as cdb: with utils.tempdir() as tmp_path: tmp_file = os.path.join(tmp_path, 'configdrive') cdb.make_drive(tmp_file) dev_path = utils.make_dev_path(dev) utils.execute('dd', 'if=%s' % tmp_file, 'of=%s' % dev_path, 'oflag=direct,sync', run_as_root=True) create_vbd(session, vm_ref, vdi_ref, userdevice, bootable=False, read_only=True) except Exception: with excutils.save_and_reraise_exception(): msg = _("Error while generating config drive") LOG.debug(msg, instance=instance, exc_info=True) safe_destroy_vdis(session, [vdi_ref]) def _create_kernel_image(context, session, instance, name_label, image_id, image_type): """Creates kernel/ramdisk file from the image stored in the cache. If the image is not present in the cache, it streams it from glance. Returns: A list of dictionaries that describe VDIs """ filename = "" if CONF.xenserver.cache_images: args = {} args['cached-image'] = image_id args['new-image-uuid'] = str(uuid.uuid4()) filename = session.call_plugin('kernel', 'create_kernel_ramdisk', args) if filename == "": return _fetch_disk_image(context, session, instance, name_label, image_id, image_type) else: vdi_type = ImageType.to_string(image_type) return {vdi_type: dict(uuid=None, file=filename)} def create_kernel_and_ramdisk(context, session, instance, name_label): kernel_file = None ramdisk_file = None if instance['kernel_id']: vdis = _create_kernel_image(context, session, instance, name_label, instance['kernel_id'], ImageType.KERNEL) kernel_file = vdis['kernel'].get('file') if instance['ramdisk_id']: vdis = _create_kernel_image(context, session, instance, name_label, instance['ramdisk_id'], ImageType.RAMDISK) ramdisk_file = vdis['ramdisk'].get('file') return kernel_file, ramdisk_file def destroy_kernel_ramdisk(session, instance, kernel, ramdisk): args = {} if kernel: args['kernel-file'] = kernel if ramdisk: args['ramdisk-file'] = ramdisk if args: LOG.debug(_("Removing kernel/ramdisk files from dom0"), instance=instance) session.call_plugin('kernel', 'remove_kernel_ramdisk', args) def _get_image_vdi_label(image_id): return 'Glance Image %s' % image_id def _create_cached_image(context, session, instance, name_label, image_id, image_type): sr_ref = safe_find_sr(session) sr_type = session.call_xenapi('SR.get_type', sr_ref) if CONF.use_cow_images and sr_type != "ext": LOG.warning(_("Fast cloning is only supported on default local SR " "of type ext. SR on this system was found to be of " "type %s. Ignoring the cow flag."), sr_type) @utils.synchronized('xenapi-image-cache' + image_id) def _create_cached_image_impl(context, session, instance, name_label, image_id, image_type, sr_ref): cache_vdi_ref = _find_cached_image(session, image_id, sr_ref) if cache_vdi_ref is None: vdis = _fetch_image(context, session, instance, name_label, image_id, image_type) cache_vdi_ref = session.call_xenapi( 'VDI.get_by_uuid', vdis['root']['uuid']) session.call_xenapi('VDI.set_name_label', cache_vdi_ref, _get_image_vdi_label(image_id)) session.call_xenapi('VDI.set_name_description', cache_vdi_ref, 'root') session.call_xenapi('VDI.add_to_other_config', cache_vdi_ref, 'image-id', str(image_id)) if CONF.use_cow_images: new_vdi_ref = _clone_vdi(session, cache_vdi_ref) elif sr_type == 'ext': new_vdi_ref = _safe_copy_vdi(session, sr_ref, instance, cache_vdi_ref) else: new_vdi_ref = session.call_xenapi("VDI.copy", cache_vdi_ref, sr_ref) session.call_xenapi('VDI.set_name_label', new_vdi_ref, '') session.call_xenapi('VDI.set_name_description', new_vdi_ref, '') session.call_xenapi('VDI.remove_from_other_config', new_vdi_ref, 'image-id') vdi_uuid = session.call_xenapi('VDI.get_uuid', new_vdi_ref) return vdi_uuid vdi_uuid = _create_cached_image_impl(context, session, instance, name_label, image_id, image_type, sr_ref) vdis = {} vdi_type = ImageType.get_role(image_type) vdis[vdi_type] = dict(uuid=vdi_uuid, file=None) return vdis def _create_image(context, session, instance, name_label, image_id, image_type): """Creates VDI from the image stored in the local cache. If the image is not present in the cache, it streams it from glance. Returns: A list of dictionaries that describe VDIs """ cache_images = CONF.xenserver.cache_images.lower() # Determine if the image is cacheable if image_type == ImageType.DISK_ISO: cache = False elif cache_images == 'all': cache = True elif cache_images == 'some': sys_meta = utils.instance_sys_meta(instance) try: cache = strutils.bool_from_string(sys_meta['image_cache_in_nova']) except KeyError: cache = False elif cache_images == 'none': cache = False else: LOG.warning(_("Unrecognized cache_images value '%s', defaulting to" " True"), CONF.xenserver.cache_images) cache = True # Fetch (and cache) the image if cache: vdis = _create_cached_image(context, session, instance, name_label, image_id, image_type) else: vdis = _fetch_image(context, session, instance, name_label, image_id, image_type) for vdi_type, vdi in vdis.iteritems(): vdi_ref = session.call_xenapi('VDI.get_by_uuid', vdi['uuid']) _set_vdi_info(session, vdi_ref, vdi_type, name_label, vdi_type, instance) return vdis def _fetch_image(context, session, instance, name_label, image_id, image_type): """Fetch image from glance based on image type. Returns: A single filename if image_type is KERNEL or RAMDISK A list of dictionaries that describe VDIs, otherwise """ if image_type == ImageType.DISK_VHD: vdis = _fetch_vhd_image(context, session, instance, image_id) else: vdis = _fetch_disk_image(context, session, instance, name_label, image_id, image_type) for vdi_type, vdi in vdis.iteritems(): vdi_uuid = vdi['uuid'] LOG.debug(_("Fetched VDIs of type '%(vdi_type)s' with UUID" " '%(vdi_uuid)s'"), {'vdi_type': vdi_type, 'vdi_uuid': vdi_uuid}, instance=instance) return vdis def _make_uuid_stack(): # NOTE(sirp): The XenAPI plugins run under Python 2.4 # which does not have the `uuid` module. To work around this, # we generate the uuids here (under Python 2.6+) and # pass them as arguments return [str(uuid.uuid4()) for i in xrange(MAX_VDI_CHAIN_SIZE)] def _image_uses_bittorrent(context, instance): bittorrent = False torrent_images = CONF.xenserver.torrent_images.lower() if torrent_images == 'all': bittorrent = True elif torrent_images == 'some': sys_meta = utils.instance_sys_meta(instance) try: bittorrent = strutils.bool_from_string( sys_meta['image_bittorrent']) except KeyError: pass elif torrent_images == 'none': pass else: LOG.warning(_("Invalid value '%s' for torrent_images"), torrent_images) return bittorrent def _default_download_handler(): # TODO(sirp): This should be configurable like upload_handler return importutils.import_object( 'nova.virt.xenapi.image.glance.GlanceStore') def _choose_download_handler(context, instance): if _image_uses_bittorrent(context, instance): return importutils.import_object( 'nova.virt.xenapi.image.bittorrent.BittorrentStore') else: return _default_download_handler() def get_compression_level(): level = CONF.xenserver.image_compression_level if level is not None and (level < 1 or level > 9): LOG.warn(_("Invalid value '%d' for image_compression_level"), level) return None return level def _fetch_vhd_image(context, session, instance, image_id): """Tell glance to download an image and put the VHDs into the SR Returns: A list of dictionaries that describe VDIs """ LOG.debug(_("Asking xapi to fetch vhd image %s"), image_id, instance=instance) handler = _choose_download_handler(context, instance) try: vdis = handler.download_image(context, session, instance, image_id) except Exception as e: default_handler = _default_download_handler() # Using type() instead of isinstance() so instance of subclass doesn't # test as equivalent if type(handler) == type(default_handler): raise LOG.exception(_("Download handler '%(handler)s' raised an" " exception, falling back to default handler" " '%(default_handler)s'") % {'handler': handler, 'default_handler': default_handler}) vdis = default_handler.download_image( context, session, instance, image_id) # Ensure we can see the import VHDs as VDIs scan_default_sr(session) vdi_uuid = vdis['root']['uuid'] try: _check_vdi_size(context, session, instance, vdi_uuid) except Exception: with excutils.save_and_reraise_exception(): msg = _("Error while checking vdi size") LOG.debug(msg, instance=instance, exc_info=True) for vdi in vdis.values(): vdi_uuid = vdi['uuid'] vdi_ref = session.call_xenapi('VDI.get_by_uuid', vdi_uuid) safe_destroy_vdis(session, [vdi_ref]) return vdis def _get_vdi_chain_size(session, vdi_uuid): """Compute the total size of a VDI chain, starting with the specified VDI UUID. This will walk the VDI chain to the root, add the size of each VDI into the total. """ size_bytes = 0 for vdi_rec in _walk_vdi_chain(session, vdi_uuid): cur_vdi_uuid = vdi_rec['uuid'] vdi_size_bytes = int(vdi_rec['physical_utilisation']) LOG.debug(_('vdi_uuid=%(cur_vdi_uuid)s vdi_size_bytes=' '%(vdi_size_bytes)d'), {'cur_vdi_uuid': cur_vdi_uuid, 'vdi_size_bytes': vdi_size_bytes}) size_bytes += vdi_size_bytes return size_bytes def _check_vdi_size(context, session, instance, vdi_uuid): flavor = flavors.extract_flavor(instance) allowed_size = (flavor['root_gb'] + VHD_SIZE_CHECK_FUDGE_FACTOR_GB) * units.Gi if not flavor['root_gb']: # root_gb=0 indicates that we're disabling size checks return size = _get_vdi_chain_size(session, vdi_uuid) if size > allowed_size: LOG.error(_("Image size %(size)d exceeded flavor " "allowed size %(allowed_size)d"), {'size': size, 'allowed_size': allowed_size}, instance=instance) raise exception.FlavorDiskTooSmall() def _fetch_disk_image(context, session, instance, name_label, image_id, image_type): """Fetch the image from Glance NOTE: Unlike _fetch_vhd_image, this method does not use the Glance plugin; instead, it streams the disks through domU to the VDI directly. Returns: A single filename if image_type is KERNEL_RAMDISK A list of dictionaries that describe VDIs, otherwise """ # FIXME(sirp): Since the Glance plugin seems to be required for the # VHD disk, it may be worth using the plugin for both VHD and RAW and # DISK restores image_type_str = ImageType.to_string(image_type) LOG.debug(_("Fetching image %(image_id)s, type %(image_type_str)s"), {'image_id': image_id, 'image_type_str': image_type_str}, instance=instance) if image_type == ImageType.DISK_ISO: sr_ref = _safe_find_iso_sr(session) else: sr_ref = safe_find_sr(session) glance_image = image_utils.GlanceImage(context, image_id) if glance_image.is_raw_tgz(): image = image_utils.RawTGZImage(glance_image) else: image = image_utils.RawImage(glance_image) virtual_size = image.get_size() vdi_size = virtual_size LOG.debug(_("Size for image %(image_id)s: %(virtual_size)d"), {'image_id': image_id, 'virtual_size': virtual_size}, instance=instance) if image_type == ImageType.DISK: # Make room for MBR. vdi_size += MBR_SIZE_BYTES elif (image_type in (ImageType.KERNEL, ImageType.RAMDISK) and vdi_size > CONF.xenserver.max_kernel_ramdisk_size): max_size = CONF.xenserver.max_kernel_ramdisk_size raise exception.NovaException( _("Kernel/Ramdisk image is too large: %(vdi_size)d bytes, " "max %(max_size)d bytes") % {'vdi_size': vdi_size, 'max_size': max_size}) vdi_ref = create_vdi(session, sr_ref, instance, name_label, image_type_str, vdi_size) # From this point we have a VDI on Xen host; # If anything goes wrong, we need to remember its uuid. try: filename = None vdi_uuid = session.call_xenapi("VDI.get_uuid", vdi_ref) with vdi_attached_here(session, vdi_ref, read_only=False) as dev: _stream_disk( session, image.stream_to, image_type, virtual_size, dev) if image_type in (ImageType.KERNEL, ImageType.RAMDISK): # We need to invoke a plugin for copying the # content of the VDI into the proper path. LOG.debug(_("Copying VDI %s to /boot/guest on dom0"), vdi_ref, instance=instance) args = {} args['vdi-ref'] = vdi_ref # Let the plugin copy the correct number of bytes. args['image-size'] = str(vdi_size) if CONF.xenserver.cache_images: args['cached-image'] = image_id filename = session.call_plugin('kernel', 'copy_vdi', args) # Remove the VDI as it is not needed anymore. destroy_vdi(session, vdi_ref) LOG.debug(_("Kernel/Ramdisk VDI %s destroyed"), vdi_ref, instance=instance) vdi_role = ImageType.get_role(image_type) return {vdi_role: dict(uuid=None, file=filename)} else: vdi_role = ImageType.get_role(image_type) return {vdi_role: dict(uuid=vdi_uuid, file=None)} except (session.XenAPI.Failure, IOError, OSError) as e: # We look for XenAPI and OS failures. LOG.exception(_("Failed to fetch glance image"), instance=instance) e.args = e.args + ([dict(type=ImageType.to_string(image_type), uuid=vdi_uuid, file=filename)],) raise def determine_disk_image_type(image_meta): """Disk Image Types are used to determine where the kernel will reside within an image. To figure out which type we're dealing with, we use the following rules: 1. If we're using Glance, we can use the image_type field to determine the image_type 2. If we're not using Glance, then we need to deduce this based on whether a kernel_id is specified. """ if not image_meta or 'disk_format' not in image_meta: return None disk_format = image_meta['disk_format'] disk_format_map = { 'ami': ImageType.DISK, 'aki': ImageType.KERNEL, 'ari': ImageType.RAMDISK, 'raw': ImageType.DISK_RAW, 'vhd': ImageType.DISK_VHD, 'iso': ImageType.DISK_ISO, } try: image_type = disk_format_map[disk_format] except KeyError: raise exception.InvalidDiskFormat(disk_format=disk_format) image_ref = image_meta.get('id') params = { 'image_type_str': ImageType.to_string(image_type), 'image_ref': image_ref } LOG.debug(_("Detected %(image_type_str)s format for image %(image_ref)s"), params) return image_type def determine_vm_mode(instance, disk_image_type): current_mode = vm_mode.get_from_instance(instance) if current_mode == vm_mode.XEN or current_mode == vm_mode.HVM: return current_mode os_type = instance['os_type'] if os_type == "linux": return vm_mode.XEN if os_type == "windows": return vm_mode.HVM # disk_image_type specific default for backwards compatibility if disk_image_type == ImageType.DISK_VHD or \ disk_image_type == ImageType.DISK: return vm_mode.XEN # most images run OK as HVM return vm_mode.HVM def set_vm_name_label(session, vm_ref, name_label): session.call_xenapi("VM.set_name_label", vm_ref, name_label) def list_vms(session): vms = session.call_xenapi("VM.get_all_records_where", 'field "is_control_domain"="false" and ' 'field "is_a_template"="false" and ' 'field "resident_on"="%s"' % session.host_ref) for vm_ref in vms.keys(): yield vm_ref, vms[vm_ref] def lookup_vm_vdis(session, vm_ref): """Look for the VDIs that are attached to the VM.""" # Firstly we get the VBDs, then the VDIs. # TODO(Armando): do we leave the read-only devices? vbd_refs = session.call_xenapi("VM.get_VBDs", vm_ref) vdi_refs = [] if vbd_refs: for vbd_ref in vbd_refs: try: vdi_ref = session.call_xenapi("VBD.get_VDI", vbd_ref) # Test valid VDI vdi_uuid = session.call_xenapi("VDI.get_uuid", vdi_ref) LOG.debug(_('VDI %s is still available'), vdi_uuid) vbd_other_config = session.call_xenapi("VBD.get_other_config", vbd_ref) if not vbd_other_config.get('osvol'): # This is not an attached volume vdi_refs.append(vdi_ref) except session.XenAPI.Failure as exc: LOG.exception(exc) return vdi_refs def lookup(session, name_label, check_rescue=False): """Look the instance up and return it if available. :param check_rescue: if True will return the 'name'-rescue vm if it exists, instead of just 'name' """ if check_rescue: result = lookup(session, name_label + '-rescue', False) if result: return result vm_refs = session.call_xenapi("VM.get_by_name_label", name_label) n = len(vm_refs) if n == 0: return None elif n > 1: raise exception.InstanceExists(name=name_label) else: return vm_refs[0] def preconfigure_instance(session, instance, vdi_ref, network_info): """Makes alterations to the image before launching as part of spawn. """ # As mounting the image VDI is expensive, we only want do it once, # if at all, so determine whether it's required first, and then do # everything mount_required = False key, net, metadata = _prepare_injectables(instance, network_info) mount_required = key or net or metadata if not mount_required: return with vdi_attached_here(session, vdi_ref, read_only=False) as dev: _mounted_processing(dev, key, net, metadata) def lookup_kernel_ramdisk(session, vm): vm_rec = session.call_xenapi("VM.get_record", vm) if 'PV_kernel' in vm_rec and 'PV_ramdisk' in vm_rec: return (vm_rec['PV_kernel'], vm_rec['PV_ramdisk']) else: return (None, None) def is_snapshot(session, vm): vm_rec = session.call_xenapi("VM.get_record", vm) if 'is_a_template' in vm_rec and 'is_a_snapshot' in vm_rec: return vm_rec['is_a_template'] and vm_rec['is_a_snapshot'] else: return False def get_power_state(session, vm_ref): xapi_state = session.call_xenapi("VM.get_power_state", vm_ref) return XENAPI_POWER_STATE[xapi_state] def compile_info(session, vm_ref): """Fill record with VM status information.""" power_state = get_power_state(session, vm_ref) max_mem = session.call_xenapi("VM.get_memory_static_max", vm_ref) mem = session.call_xenapi("VM.get_memory_dynamic_max", vm_ref) num_cpu = session.call_xenapi("VM.get_VCPUs_max", vm_ref) return {'state': power_state, 'max_mem': long(max_mem) >> 10, 'mem': long(mem) >> 10, 'num_cpu': num_cpu, 'cpu_time': 0} def compile_diagnostics(record): """Compile VM diagnostics data.""" try: keys = [] diags = {} vm_uuid = record["uuid"] xml = _get_rrd(_get_rrd_server(), vm_uuid) if xml: rrd = xmlutils.safe_minidom_parse_string(xml) for i, node in enumerate(rrd.firstChild.childNodes): # Provide the last update of the information if node.localName == 'lastupdate': diags['last_update'] = node.firstChild.data # Create a list of the diagnostic keys (in their order) if node.localName == 'ds': ref = node.childNodes # Name and Value if len(ref) > 6: keys.append(ref[0].firstChild.data) # Read the last row of the first RRA to get the latest info if node.localName == 'rra': rows = node.childNodes[4].childNodes last_row = rows[rows.length - 1].childNodes for j, value in enumerate(last_row): diags[keys[j]] = value.firstChild.data break return diags except expat.ExpatError as e: LOG.exception(_('Unable to parse rrd of %s'), e) return {"Unable to retrieve diagnostics": e} def fetch_bandwidth(session): bw = session.call_plugin_serialized('bandwidth', 'fetch_all_bandwidth') return bw def _scan_sr(session, sr_ref=None, max_attempts=4): if sr_ref: # NOTE(johngarbutt) xenapi will collapse any duplicate requests # for SR.scan if there is already a scan in progress. # However, we don't want that, because the scan may have started # before we modified the underlying VHDs on disk through a plugin. # Using our own mutex will reduce cases where our periodic SR scan # in host.update_status starts racing the sr.scan after a plugin call. @utils.synchronized('sr-scan-' + sr_ref) def do_scan(sr_ref): LOG.debug(_("Scanning SR %s"), sr_ref) attempt = 1 while True: try: return session.call_xenapi('SR.scan', sr_ref) except session.XenAPI.Failure as exc: with excutils.save_and_reraise_exception() as ctxt: if exc.details[0] == 'SR_BACKEND_FAILURE_40': if attempt < max_attempts: ctxt.reraise = False LOG.warn(_("Retry SR scan due to error: %s") % exc) greenthread.sleep(2 ** attempt) attempt += 1 do_scan(sr_ref) def scan_default_sr(session): """Looks for the system default SR and triggers a re-scan.""" sr_ref = safe_find_sr(session) _scan_sr(session, sr_ref) return sr_ref def safe_find_sr(session): """Same as _find_sr except raises a NotFound exception if SR cannot be determined """ sr_ref = _find_sr(session) if sr_ref is None: raise exception.StorageRepositoryNotFound() return sr_ref def _find_sr(session): """Return the storage repository to hold VM images.""" host = session.host_ref try: tokens = CONF.xenserver.sr_matching_filter.split(':') filter_criteria = tokens[0] filter_pattern = tokens[1] except IndexError: # oops, flag is invalid LOG.warning(_("Flag sr_matching_filter '%s' does not respect " "formatting convention"), CONF.xenserver.sr_matching_filter) return None if filter_criteria == 'other-config': key, value = filter_pattern.split('=', 1) for sr_ref, sr_rec in session.get_all_refs_and_recs('SR'): if not (key in sr_rec['other_config'] and sr_rec['other_config'][key] == value): continue for pbd_ref in sr_rec['PBDs']: pbd_rec = session.get_rec('PBD', pbd_ref) if pbd_rec and pbd_rec['host'] == host: return sr_ref elif filter_criteria == 'default-sr' and filter_pattern == 'true': pool_ref = session.call_xenapi('pool.get_all')[0] sr_ref = session.call_xenapi('pool.get_default_SR', pool_ref) if sr_ref: return sr_ref # No SR found! LOG.error(_("XenAPI is unable to find a Storage Repository to " "install guest instances on. Please check your " "configuration (e.g. set a default SR for the pool) " "and/or configure the flag 'sr_matching_filter'.")) return None def _safe_find_iso_sr(session): """Same as _find_iso_sr except raises a NotFound exception if SR cannot be determined """ sr_ref = _find_iso_sr(session) if sr_ref is None: raise exception.NotFound(_('Cannot find SR of content-type ISO')) return sr_ref def _find_iso_sr(session): """Return the storage repository to hold ISO images.""" host = session.host_ref for sr_ref, sr_rec in session.get_all_refs_and_recs('SR'): LOG.debug(_("ISO: looking at SR %s"), sr_rec) if not sr_rec['content_type'] == 'iso': LOG.debug(_("ISO: not iso content")) continue if 'i18n-key' not in sr_rec['other_config']: LOG.debug(_("ISO: iso content_type, no 'i18n-key' key")) continue if not sr_rec['other_config']['i18n-key'] == 'local-storage-iso': LOG.debug(_("ISO: iso content_type, i18n-key value not " "'local-storage-iso'")) continue LOG.debug(_("ISO: SR MATCHing our criteria")) for pbd_ref in sr_rec['PBDs']: LOG.debug(_("ISO: ISO, looking to see if it is host local")) pbd_rec = session.get_rec('PBD', pbd_ref) if not pbd_rec: LOG.debug(_("ISO: PBD %s disappeared"), pbd_ref) continue pbd_rec_host = pbd_rec['host'] LOG.debug(_("ISO: PBD matching, want %(pbd_rec)s, have %(host)s"), {'pbd_rec': pbd_rec, 'host': host}) if pbd_rec_host == host: LOG.debug(_("ISO: SR with local PBD")) return sr_ref return None def _get_rrd_server(): """Return server's scheme and address to use for retrieving RRD XMLs.""" xs_url = urlparse.urlparse(CONF.xenserver.connection_url) return [xs_url.scheme, xs_url.netloc] def _get_rrd(server, vm_uuid): """Return the VM RRD XML as a string.""" try: xml = urllib.urlopen("%s://%s:%s@%s/vm_rrd?uuid=%s" % ( server[0], CONF.xenserver.connection_username, CONF.xenserver.connection_password, server[1], vm_uuid)) return xml.read() except IOError: LOG.exception(_('Unable to obtain RRD XML for VM %(vm_uuid)s with ' 'server details: %(server)s.'), {'vm_uuid': vm_uuid, 'server': server}) return None def _get_all_vdis_in_sr(session, sr_ref): for vdi_ref in session.call_xenapi('SR.get_VDIs', sr_ref): vdi_rec = session.get_rec('VDI', vdi_ref) # Check to make sure the record still exists. It may have # been deleted between the get_all call and get_rec call if vdi_rec: yield vdi_ref, vdi_rec def get_instance_vdis_for_sr(session, vm_ref, sr_ref): """Return opaqueRef for all the vdis which live on sr.""" for vbd_ref in session.call_xenapi('VM.get_VBDs', vm_ref): try: vdi_ref = session.call_xenapi('VBD.get_VDI', vbd_ref) if sr_ref == session.call_xenapi('VDI.get_SR', vdi_ref): yield vdi_ref except session.XenAPI.Failure: continue def _get_vhd_parent_uuid(session, vdi_ref, vdi_rec=None): if vdi_rec is None: vdi_rec = session.call_xenapi("VDI.get_record", vdi_ref) if 'vhd-parent' not in vdi_rec['sm_config']: return None parent_uuid = vdi_rec['sm_config']['vhd-parent'] vdi_uuid = vdi_rec['uuid'] LOG.debug(_('VHD %(vdi_uuid)s has parent %(parent_uuid)s'), {'vdi_uuid': vdi_uuid, 'parent_uuid': parent_uuid}) return parent_uuid def _walk_vdi_chain(session, vdi_uuid): """Yield vdi_recs for each element in a VDI chain.""" scan_default_sr(session) while True: vdi_ref = session.call_xenapi("VDI.get_by_uuid", vdi_uuid) vdi_rec = session.call_xenapi("VDI.get_record", vdi_ref) yield vdi_rec parent_uuid = _get_vhd_parent_uuid(session, vdi_ref, vdi_rec) if not parent_uuid: break vdi_uuid = parent_uuid def _child_vhds(session, sr_ref, vdi_uuid): """Return the immediate children of a given VHD. This is not recursive, only the immediate children are returned. """ children = set() for ref, rec in _get_all_vdis_in_sr(session, sr_ref): rec_uuid = rec['uuid'] if rec_uuid == vdi_uuid: continue parent_uuid = _get_vhd_parent_uuid(session, ref, rec) if parent_uuid != vdi_uuid: continue children.add(rec_uuid) return children def _another_child_vhd(session, vdi_ref, sr_ref, original_parent_uuid): # Search for any other vdi which parents to original parent and is not # in the active vm/instance vdi chain. vdi_rec = session.call_xenapi('VDI.get_record', vdi_ref) vdi_uuid = vdi_rec['uuid'] parent_vdi_uuid = _get_vhd_parent_uuid(session, vdi_ref, vdi_rec) for _ref, rec in _get_all_vdis_in_sr(session, sr_ref): if ((rec['uuid'] != vdi_uuid) and (rec['uuid'] != parent_vdi_uuid) and (rec['sm_config'].get('vhd-parent') == original_parent_uuid)): # Found another vhd which too parents to original parent. return True # Found no other vdi with the same parent. return False def _wait_for_vhd_coalesce(session, instance, sr_ref, vdi_ref, original_parent_uuid): """Spin until the parent VHD is coalesced into its parent VHD Before coalesce: * original_parent_vhd * parent_vhd snapshot After coalesce: * parent_vhd snapshot """ # NOTE(sirp): If we don't have an original_parent_uuid, then the snapshot # doesn't have a grandparent to coalesce into, so we can skip waiting if not original_parent_uuid: return # Check if original parent has any other child. If so, coalesce will # not take place. if _another_child_vhd(session, vdi_ref, sr_ref, original_parent_uuid): parent_uuid = _get_vhd_parent_uuid(session, vdi_ref) parent_ref = session.call_xenapi("VDI.get_by_uuid", parent_uuid) base_uuid = _get_vhd_parent_uuid(session, parent_ref) return parent_uuid, base_uuid max_attempts = CONF.xenserver.vhd_coalesce_max_attempts for i in xrange(max_attempts): # NOTE(sirp): This rescan is necessary to ensure the VM's `sm_config` # matches the underlying VHDs. _scan_sr(session, sr_ref) parent_uuid = _get_vhd_parent_uuid(session, vdi_ref) if parent_uuid and (parent_uuid != original_parent_uuid): LOG.debug(_("Parent %(parent_uuid)s doesn't match original parent" " %(original_parent_uuid)s, waiting for coalesce..."), {'parent_uuid': parent_uuid, 'original_parent_uuid': original_parent_uuid}, instance=instance) else: parent_ref = session.call_xenapi("VDI.get_by_uuid", parent_uuid) base_uuid = _get_vhd_parent_uuid(session, parent_ref) return parent_uuid, base_uuid greenthread.sleep(CONF.xenserver.vhd_coalesce_poll_interval) msg = (_("VHD coalesce attempts exceeded (%d)" ", giving up...") % max_attempts) raise exception.NovaException(msg) def _remap_vbd_dev(dev): """Return the appropriate location for a plugged-in VBD device Ubuntu Maverick moved xvd? -> sd?. This is considered a bug and will be fixed in future versions: https://bugs.launchpad.net/ubuntu/+source/linux/+bug/684875 For now, we work around it by just doing a string replace. """ # NOTE(sirp): This hack can go away when we pull support for Maverick should_remap = CONF.xenserver.remap_vbd_dev if not should_remap: return dev old_prefix = 'xvd' new_prefix = CONF.xenserver.remap_vbd_dev_prefix remapped_dev = dev.replace(old_prefix, new_prefix) return remapped_dev def _wait_for_device(dev): """Wait for device node to appear.""" for i in xrange(0, CONF.xenserver.block_device_creation_timeout): dev_path = utils.make_dev_path(dev) if os.path.exists(dev_path): return time.sleep(1) raise volume_utils.StorageError( _('Timeout waiting for device %s to be created') % dev) def cleanup_attached_vdis(session): """Unplug any instance VDIs left after an unclean restart.""" this_vm_ref = _get_this_vm_ref(session) vbd_refs = session.call_xenapi('VM.get_VBDs', this_vm_ref) for vbd_ref in vbd_refs: try: vdi_ref = session.call_xenapi('VBD.get_VDI', vbd_ref) vdi_rec = session.call_xenapi('VDI.get_record', vdi_ref) except session.XenAPI.Failure as e: if e.details[0] != 'HANDLE_INVALID': raise continue if 'nova_instance_uuid' in vdi_rec['other_config']: # Belongs to an instance and probably left over after an # unclean restart LOG.info(_('Disconnecting stale VDI %s from compute domU'), vdi_rec['uuid']) unplug_vbd(session, vbd_ref, this_vm_ref) destroy_vbd(session, vbd_ref) @contextlib.contextmanager def vdi_attached_here(session, vdi_ref, read_only=False): this_vm_ref = _get_this_vm_ref(session) vbd_ref = create_vbd(session, this_vm_ref, vdi_ref, 'autodetect', read_only=read_only, bootable=False) try: LOG.debug(_('Plugging VBD %s ... '), vbd_ref) session.VBD.plug(vbd_ref, this_vm_ref) try: LOG.debug(_('Plugging VBD %s done.'), vbd_ref) orig_dev = session.call_xenapi("VBD.get_device", vbd_ref) LOG.debug(_('VBD %(vbd_ref)s plugged as %(orig_dev)s'), {'vbd_ref': vbd_ref, 'orig_dev': orig_dev}) dev = _remap_vbd_dev(orig_dev) if dev != orig_dev: LOG.debug(_('VBD %(vbd_ref)s plugged into wrong dev, ' 'remapping to %(dev)s'), {'vbd_ref': vbd_ref, 'dev': dev}) _wait_for_device(dev) yield dev finally: utils.execute('sync', run_as_root=True) LOG.debug(_('Destroying VBD for VDI %s ... '), vdi_ref) unplug_vbd(session, vbd_ref, this_vm_ref) finally: try: destroy_vbd(session, vbd_ref) except volume_utils.StorageError: # destroy_vbd() will log error pass LOG.debug(_('Destroying VBD for VDI %s done.'), vdi_ref) def _get_sys_hypervisor_uuid(): with file('/sys/hypervisor/uuid') as f: return f.readline().strip() def get_this_vm_uuid(session): if session and session.is_local_connection: # UUID is the control domain running on this host vms = session.call_xenapi("VM.get_all_records_where", 'field "is_control_domain"="true" and ' 'field "resident_on"="%s"' % session.host_ref) return vms[vms.keys()[0]]['uuid'] try: return _get_sys_hypervisor_uuid() except IOError: # Some guest kernels (without 5c13f8067745efc15f6ad0158b58d57c44104c25) # cannot read from uuid after a reboot. Fall back to trying xenstore. # See https://bugs.launchpad.net/ubuntu/+source/xen-api/+bug/1081182 domid, _ = utils.execute('xenstore-read', 'domid', run_as_root=True) vm_key, _ = utils.execute('xenstore-read', '/local/domain/%s/vm' % domid.strip(), run_as_root=True) return vm_key.strip()[4:] def _get_this_vm_ref(session): return session.call_xenapi("VM.get_by_uuid", get_this_vm_uuid(session)) def _get_partitions(dev): """Return partition information (num, size, type) for a device.""" dev_path = utils.make_dev_path(dev) out, _err = utils.execute('parted', '--script', '--machine', dev_path, 'unit s', 'print', run_as_root=True) lines = [line for line in out.split('\n') if line] partitions = [] LOG.debug(_("Partitions:")) for line in lines[2:]: line = line.rstrip(';') num, start, end, size, fstype, name, flags = line.split(':') num = int(num) start = int(start.rstrip('s')) end = int(end.rstrip('s')) size = int(size.rstrip('s')) LOG.debug(_(" %(num)s: %(fstype)s %(size)d sectors"), {'num': num, 'fstype': fstype, 'size': size}) partitions.append((num, start, size, fstype, name, flags)) return partitions def _stream_disk(session, image_service_func, image_type, virtual_size, dev): offset = 0 if image_type == ImageType.DISK: offset = MBR_SIZE_BYTES _write_partition(session, virtual_size, dev) dev_path = utils.make_dev_path(dev) with utils.temporary_chown(dev_path): with open(dev_path, 'wb') as f: f.seek(offset) image_service_func(f) def _write_partition(session, virtual_size, dev): dev_path = utils.make_dev_path(dev) primary_first = MBR_SIZE_SECTORS primary_last = MBR_SIZE_SECTORS + (virtual_size / SECTOR_SIZE) - 1 LOG.debug(_('Writing partition table %(primary_first)d %(primary_last)d' ' to %(dev_path)s...'), {'primary_first': primary_first, 'primary_last': primary_last, 'dev_path': dev_path}) def execute(*cmd, **kwargs): return utils.execute(*cmd, **kwargs) _make_partition(session, dev, "%ds" % primary_first, "%ds" % primary_last) LOG.debug(_('Writing partition table %s done.'), dev_path) def _repair_filesystem(partition_path): # Exit Code 1 = File system errors corrected # 2 = File system errors corrected, system needs a reboot utils.execute('e2fsck', '-f', '-y', partition_path, run_as_root=True, check_exit_code=[0, 1, 2]) def _resize_part_and_fs(dev, start, old_sectors, new_sectors, flags): """Resize partition and fileystem. This assumes we are dealing with a single primary partition and using ext3 or ext4. """ size = new_sectors - start end = new_sectors - 1 dev_path = utils.make_dev_path(dev) partition_path = utils.make_dev_path(dev, partition=1) # Replay journal if FS wasn't cleanly unmounted _repair_filesystem(partition_path) # Remove ext3 journal (making it ext2) utils.execute('tune2fs', '-O ^has_journal', partition_path, run_as_root=True) if new_sectors < old_sectors: # Resizing down, resize filesystem before partition resize try: utils.execute('resize2fs', partition_path, '%ds' % size, run_as_root=True) except processutils.ProcessExecutionError as exc: LOG.error(str(exc)) reason = _("Shrinking the filesystem down with resize2fs " "has failed, please check if you have " "enough free space on your disk.") raise exception.ResizeError(reason=reason) utils.execute('parted', '--script', dev_path, 'rm', '1', run_as_root=True) utils.execute('parted', '--script', dev_path, 'mkpart', 'primary', '%ds' % start, '%ds' % end, run_as_root=True) if "boot" in flags.lower(): utils.execute('parted', '--script', dev_path, 'set', '1', 'boot', 'on', run_as_root=True) if new_sectors > old_sectors: # Resizing up, resize filesystem after partition resize utils.execute('resize2fs', partition_path, run_as_root=True) # Add back journal utils.execute('tune2fs', '-j', partition_path, run_as_root=True) def _log_progress_if_required(left, last_log_time, virtual_size): if timeutils.is_older_than(last_log_time, PROGRESS_INTERVAL_SECONDS): last_log_time = timeutils.utcnow() complete_pct = float(virtual_size - left) / virtual_size * 100 LOG.debug(_("Sparse copy in progress, " "%(complete_pct).2f%% complete. " "%(left)s bytes left to copy"), {"complete_pct": complete_pct, "left": left}) return last_log_time def _sparse_copy(src_path, dst_path, virtual_size, block_size=4096): """Copy data, skipping long runs of zeros to create a sparse file.""" start_time = last_log_time = timeutils.utcnow() EMPTY_BLOCK = '\0' * block_size bytes_read = 0 skipped_bytes = 0 left = virtual_size LOG.debug(_("Starting sparse_copy src=%(src_path)s dst=%(dst_path)s " "virtual_size=%(virtual_size)d block_size=%(block_size)d"), {'src_path': src_path, 'dst_path': dst_path, 'virtual_size': virtual_size, 'block_size': block_size}) # NOTE(sirp): we need read/write access to the devices; since we don't have # the luxury of shelling out to a sudo'd command, we temporarily take # ownership of the devices. with utils.temporary_chown(src_path): with utils.temporary_chown(dst_path): with open(src_path, "r") as src: with open(dst_path, "w") as dst: data = src.read(min(block_size, left)) while data: if data == EMPTY_BLOCK: dst.seek(block_size, os.SEEK_CUR) left -= block_size bytes_read += block_size skipped_bytes += block_size else: dst.write(data) data_len = len(data) left -= data_len bytes_read += data_len if left <= 0: break data = src.read(min(block_size, left)) greenthread.sleep(0) last_log_time = _log_progress_if_required( left, last_log_time, virtual_size) duration = timeutils.delta_seconds(start_time, timeutils.utcnow()) compression_pct = float(skipped_bytes) / bytes_read * 100 LOG.debug(_("Finished sparse_copy in %(duration).2f secs, " "%(compression_pct).2f%% reduction in size"), {'duration': duration, 'compression_pct': compression_pct}) def _copy_partition(session, src_ref, dst_ref, partition, virtual_size): # Part of disk taken up by MBR virtual_size -= MBR_SIZE_BYTES with vdi_attached_here(session, src_ref, read_only=True) as src: src_path = utils.make_dev_path(src, partition=partition) with vdi_attached_here(session, dst_ref, read_only=False) as dst: dst_path = utils.make_dev_path(dst, partition=partition) _write_partition(session, virtual_size, dst) if CONF.xenserver.sparse_copy: _sparse_copy(src_path, dst_path, virtual_size) else: num_blocks = virtual_size / SECTOR_SIZE utils.execute('dd', 'if=%s' % src_path, 'of=%s' % dst_path, 'count=%d' % num_blocks, 'iflag=direct,sync', 'oflag=direct,sync', run_as_root=True) def _mount_filesystem(dev_path, dir): """mounts the device specified by dev_path in dir.""" try: _out, err = utils.execute('mount', '-t', 'ext2,ext3,ext4,reiserfs', dev_path, dir, run_as_root=True) except processutils.ProcessExecutionError as e: err = str(e) return err def _mounted_processing(device, key, net, metadata): """Callback which runs with the image VDI attached.""" # NB: Partition 1 hardcoded dev_path = utils.make_dev_path(device, partition=1) with utils.tempdir() as tmpdir: # Mount only Linux filesystems, to avoid disturbing NTFS images err = _mount_filesystem(dev_path, tmpdir) if not err: try: # This try block ensures that the umount occurs if not agent.find_guest_agent(tmpdir): vfs = vfsimpl.VFSLocalFS(imgfile=None, imgfmt=None, imgdir=tmpdir) LOG.info(_('Manipulating interface files directly')) # for xenapi, we don't 'inject' admin_password here, # it's handled at instance startup time, nor do we # support injecting arbitrary files here. disk.inject_data_into_fs(vfs, key, net, metadata, None, None) finally: utils.execute('umount', dev_path, run_as_root=True) else: LOG.info(_('Failed to mount filesystem (expected for ' 'non-linux instances): %s') % err) def _prepare_injectables(inst, network_info): """prepares the ssh key and the network configuration file to be injected into the disk image """ #do the import here - Jinja2 will be loaded only if injection is performed import jinja2 tmpl_path, tmpl_file = os.path.split(CONF.injected_network_template) env = jinja2.Environment(loader=jinja2.FileSystemLoader(tmpl_path)) template = env.get_template(tmpl_file) metadata = inst['metadata'] key = str(inst['key_data']) net = None if network_info: ifc_num = -1 interfaces_info = [] for vif in network_info: ifc_num += 1 try: if not vif['network'].get_meta('injected'): # network is not specified injected continue except KeyError: # vif network is None continue # NOTE(tr3buchet): using all subnets in case dns is stored in a # subnet that isn't chosen as first v4 or v6 # subnet in the case where there is more than one # dns = list of address of each dns entry from each vif subnet dns = [ip['address'] for subnet in vif['network']['subnets'] for ip in subnet['dns']] dns = ' '.join(dns).strip() interface_info = {'name': 'eth%d' % ifc_num, 'address': '', 'netmask': '', 'gateway': '', 'broadcast': '', 'dns': dns or '', 'address_v6': '', 'netmask_v6': '', 'gateway_v6': '', 'use_ipv6': CONF.use_ipv6} # NOTE(tr3buchet): the original code used the old network_info # which only supported a single ipv4 subnet # (and optionally, a single ipv6 subnet). # I modified it to use the new network info model, # which adds support for multiple v4 or v6 # subnets. I chose to ignore any additional # subnets, just as the original code ignored # additional IP information # populate v4 info if v4 subnet and ip exist try: # grab the first v4 subnet (or it raises) subnet = [s for s in vif['network']['subnets'] if s['version'] == 4][0] # get the subnet's first ip (or it raises) ip = subnet['ips'][0] # populate interface_info subnet_netaddr = subnet.as_netaddr() interface_info['address'] = ip['address'] interface_info['netmask'] = subnet_netaddr.netmask interface_info['gateway'] = subnet['gateway']['address'] interface_info['broadcast'] = subnet_netaddr.broadcast except IndexError: # there isn't a v4 subnet or there are no ips pass # populate v6 info if v6 subnet and ip exist try: # grab the first v6 subnet (or it raises) subnet = [s for s in vif['network']['subnets'] if s['version'] == 6][0] # get the subnet's first ip (or it raises) ip = subnet['ips'][0] # populate interface_info interface_info['address_v6'] = ip['address'] interface_info['netmask_v6'] = subnet.as_netaddr().netmask interface_info['gateway_v6'] = subnet['gateway']['address'] except IndexError: # there isn't a v6 subnet or there are no ips pass interfaces_info.append(interface_info) if interfaces_info: net = template.render({'interfaces': interfaces_info, 'use_ipv6': CONF.use_ipv6}) return key, net, metadata def ensure_correct_host(session): """Ensure we're connected to the host we're running on. This is the required configuration for anything that uses vdi_attached_here. """ this_vm_uuid = get_this_vm_uuid(session) try: session.call_xenapi('VM.get_by_uuid', this_vm_uuid) except session.XenAPI.Failure as exc: if exc.details[0] != 'UUID_INVALID': raise raise Exception(_('This domU must be running on the host ' 'specified by connection_url')) def import_all_migrated_disks(session, instance): root_vdi = _import_migrated_root_disk(session, instance) eph_vdis = _import_migrate_ephemeral_disks(session, instance) return {'root': root_vdi, 'ephemerals': eph_vdis} def _import_migrated_root_disk(session, instance): chain_label = instance['uuid'] vdi_label = instance['name'] return _import_migrated_vhds(session, instance, chain_label, "root", vdi_label) def _import_migrate_ephemeral_disks(session, instance): ephemeral_vdis = {} instance_uuid = instance['uuid'] ephemeral_gb = instance["ephemeral_gb"] disk_sizes = get_ephemeral_disk_sizes(ephemeral_gb) for chain_number, _size in enumerate(disk_sizes, start=1): chain_label = instance_uuid + "_ephemeral_%d" % chain_number vdi_label = "%(name)s ephemeral (%(number)d)" % dict( name=instance['name'], number=chain_number) ephemeral_vdi = _import_migrated_vhds(session, instance, chain_label, "ephemeral", vdi_label) userdevice = 3 + chain_number ephemeral_vdis[str(userdevice)] = ephemeral_vdi return ephemeral_vdis def _import_migrated_vhds(session, instance, chain_label, disk_type, vdi_label): """Move and possibly link VHDs via the XAPI plugin.""" # TODO(johngarbutt) tidy up plugin params imported_vhds = session.call_plugin_serialized( 'migration', 'move_vhds_into_sr', instance_uuid=chain_label, sr_path=get_sr_path(session), uuid_stack=_make_uuid_stack()) # Now we rescan the SR so we find the VHDs scan_default_sr(session) vdi_uuid = imported_vhds['root']['uuid'] vdi_ref = session.call_xenapi('VDI.get_by_uuid', vdi_uuid) # Set name-label so we can find if we need to clean up a failed migration _set_vdi_info(session, vdi_ref, disk_type, vdi_label, disk_type, instance) return {'uuid': vdi_uuid, 'ref': vdi_ref} def migrate_vhd(session, instance, vdi_uuid, dest, sr_path, seq_num, ephemeral_number=0): LOG.debug(_("Migrating VHD '%(vdi_uuid)s' with seq_num %(seq_num)d"), {'vdi_uuid': vdi_uuid, 'seq_num': seq_num}, instance=instance) chain_label = instance['uuid'] if ephemeral_number: chain_label = instance['uuid'] + "_ephemeral_%d" % ephemeral_number try: # TODO(johngarbutt) tidy up plugin params session.call_plugin_serialized('migration', 'transfer_vhd', instance_uuid=chain_label, host=dest, vdi_uuid=vdi_uuid, sr_path=sr_path, seq_num=seq_num) except session.XenAPI.Failure: msg = _("Failed to transfer vhd to new host") LOG.debug(msg, instance=instance, exc_info=True) raise exception.MigrationError(reason=msg) def vm_ref_or_raise(session, instance_name): vm_ref = lookup(session, instance_name) if vm_ref is None: raise exception.InstanceNotFound(instance_id=instance_name) return vm_ref def handle_ipxe_iso(session, instance, cd_vdi, network_info): """iPXE ISOs are a mechanism to allow the customer to roll their own image. To use this feature, a service provider needs to configure the appropriate Nova flags, roll an iPXE ISO, then distribute that image to customers via Glance. NOTE: `mkisofs` is not present by default in the Dom0, so the service provider can either add that package manually to Dom0 or include the `mkisofs` binary in the image itself. """ boot_menu_url = CONF.xenserver.ipxe_boot_menu_url if not boot_menu_url: LOG.warn(_('ipxe_boot_menu_url not set, user will have to' ' enter URL manually...'), instance=instance) return network_name = CONF.xenserver.ipxe_network_name if not network_name: LOG.warn(_('ipxe_network_name not set, user will have to' ' enter IP manually...'), instance=instance) return network = None for vif in network_info: if vif['network']['label'] == network_name: network = vif['network'] break if not network: LOG.warn(_("Unable to find network matching '%(network_name)s', user" " will have to enter IP manually...") % {'network_name': network_name}, instance=instance) return sr_path = get_sr_path(session) # Unpack IPv4 network info subnet = [sn for sn in network['subnets'] if sn['version'] == 4][0] ip = subnet['ips'][0] ip_address = ip['address'] netmask = network_model.get_netmask(ip, subnet) gateway = subnet['gateway']['address'] dns = subnet['dns'][0]['address'] try: session.call_plugin_serialized("ipxe", "inject", sr_path, cd_vdi['uuid'], boot_menu_url, ip_address, netmask, gateway, dns, CONF.xenserver.ipxe_mkisofs_cmd) except session.XenAPI.Failure as exc: _type, _method, error = exc.details[:3] if error == 'CommandNotFound': LOG.warn(_("ISO creation tool '%s' does not exist.") % CONF.xenserver.ipxe_mkisofs_cmd, instance=instance) else: raise def set_other_config_pci(session, vm_ref, params): """Set the pci key of other-config parameter to params.""" other_config = session.call_xenapi("VM.get_other_config", vm_ref) other_config['pci'] = params session.call_xenapi("VM.set_other_config", vm_ref, other_config)
apache-2.0
2,891,476,081,493,106,700
36.829259
79
0.583615
false
taotie12010/bigfour
lms/djangoapps/discussion_api/tests/utils.py
21
12908
""" Discussion API test utilities """ import json import re import httpretty def _get_thread_callback(thread_data): """ Get a callback function that will return POST/PUT data overridden by response_overrides. """ def callback(request, _uri, headers): """ Simulate the thread creation or update endpoint by returning the provided data along with the data from response_overrides and dummy values for any additional required fields. """ response_data = make_minimal_cs_thread(thread_data) for key, val_list in request.parsed_body.items(): val = val_list[0] if key in ["anonymous", "anonymous_to_peers", "closed", "pinned"]: response_data[key] = val == "True" else: response_data[key] = val return (200, headers, json.dumps(response_data)) return callback def _get_comment_callback(comment_data, thread_id, parent_id): """ Get a callback function that will return a comment containing the given data plus necessary dummy data, overridden by the content of the POST/PUT request. """ def callback(request, _uri, headers): """ Simulate the comment creation or update endpoint as described above. """ response_data = make_minimal_cs_comment(comment_data) # thread_id and parent_id are not included in request payload but # are returned by the comments service response_data["thread_id"] = thread_id response_data["parent_id"] = parent_id for key, val_list in request.parsed_body.items(): val = val_list[0] if key in ["anonymous", "anonymous_to_peers", "endorsed"]: response_data[key] = val == "True" else: response_data[key] = val return (200, headers, json.dumps(response_data)) return callback class CommentsServiceMockMixin(object): """Mixin with utility methods for mocking the comments service""" def register_get_threads_response(self, threads, page, num_pages): """Register a mock response for GET on the CS thread list endpoint""" httpretty.register_uri( httpretty.GET, "http://localhost:4567/api/v1/threads", body=json.dumps({ "collection": threads, "page": page, "num_pages": num_pages, }), status=200 ) def register_get_threads_search_response(self, threads, rewrite): """Register a mock response for GET on the CS thread search endpoint""" httpretty.register_uri( httpretty.GET, "http://localhost:4567/api/v1/search/threads", body=json.dumps({ "collection": threads, "page": 1, "num_pages": 1, "corrected_text": rewrite, }), status=200 ) def register_post_thread_response(self, thread_data): """Register a mock response for POST on the CS commentable endpoint""" httpretty.register_uri( httpretty.POST, re.compile(r"http://localhost:4567/api/v1/(\w+)/threads"), body=_get_thread_callback(thread_data) ) def register_put_thread_response(self, thread_data): """ Register a mock response for PUT on the CS endpoint for the given thread_id. """ httpretty.register_uri( httpretty.PUT, "http://localhost:4567/api/v1/threads/{}".format(thread_data["id"]), body=_get_thread_callback(thread_data) ) def register_get_thread_error_response(self, thread_id, status_code): """Register a mock error response for GET on the CS thread endpoint.""" httpretty.register_uri( httpretty.GET, "http://localhost:4567/api/v1/threads/{id}".format(id=thread_id), body="", status=status_code ) def register_get_thread_response(self, thread): """ Register a mock response for GET on the CS thread instance endpoint. """ httpretty.register_uri( httpretty.GET, "http://localhost:4567/api/v1/threads/{id}".format(id=thread["id"]), body=json.dumps(thread), status=200 ) def register_post_comment_response(self, comment_data, thread_id, parent_id=None): """ Register a mock response for POST on the CS comments endpoint for the given thread or parent; exactly one of thread_id and parent_id must be specified. """ if parent_id: url = "http://localhost:4567/api/v1/comments/{}".format(parent_id) else: url = "http://localhost:4567/api/v1/threads/{}/comments".format(thread_id) httpretty.register_uri( httpretty.POST, url, body=_get_comment_callback(comment_data, thread_id, parent_id) ) def register_put_comment_response(self, comment_data): """ Register a mock response for PUT on the CS endpoint for the given comment data (which must include the key "id"). """ thread_id = comment_data["thread_id"] parent_id = comment_data.get("parent_id") httpretty.register_uri( httpretty.PUT, "http://localhost:4567/api/v1/comments/{}".format(comment_data["id"]), body=_get_comment_callback(comment_data, thread_id, parent_id) ) def register_get_comment_error_response(self, comment_id, status_code): """ Register a mock error response for GET on the CS comment instance endpoint. """ httpretty.register_uri( httpretty.GET, "http://localhost:4567/api/v1/comments/{id}".format(id=comment_id), body="", status=status_code ) def register_get_comment_response(self, response_overrides): """ Register a mock response for GET on the CS comment instance endpoint. """ comment = make_minimal_cs_comment(response_overrides) httpretty.register_uri( httpretty.GET, "http://localhost:4567/api/v1/comments/{id}".format(id=comment["id"]), body=json.dumps(comment), status=200 ) def register_get_user_response(self, user, subscribed_thread_ids=None, upvoted_ids=None): """Register a mock response for GET on the CS user instance endpoint""" httpretty.register_uri( httpretty.GET, "http://localhost:4567/api/v1/users/{id}".format(id=user.id), body=json.dumps({ "id": str(user.id), "subscribed_thread_ids": subscribed_thread_ids or [], "upvoted_ids": upvoted_ids or [], }), status=200 ) def register_subscribed_threads_response(self, user, threads, page, num_pages): """Register a mock response for GET on the CS user instance endpoint""" httpretty.register_uri( httpretty.GET, "http://localhost:4567/api/v1/users/{}/subscribed_threads".format(user.id), body=json.dumps({ "collection": threads, "page": page, "num_pages": num_pages, }), status=200 ) def register_subscription_response(self, user): """ Register a mock response for POST and DELETE on the CS user subscription endpoint """ for method in [httpretty.POST, httpretty.DELETE]: httpretty.register_uri( method, "http://localhost:4567/api/v1/users/{id}/subscriptions".format(id=user.id), body=json.dumps({}), # body is unused status=200 ) def register_thread_votes_response(self, thread_id): """ Register a mock response for PUT and DELETE on the CS thread votes endpoint """ for method in [httpretty.PUT, httpretty.DELETE]: httpretty.register_uri( method, "http://localhost:4567/api/v1/threads/{}/votes".format(thread_id), body=json.dumps({}), # body is unused status=200 ) def register_comment_votes_response(self, comment_id): """ Register a mock response for PUT and DELETE on the CS comment votes endpoint """ for method in [httpretty.PUT, httpretty.DELETE]: httpretty.register_uri( method, "http://localhost:4567/api/v1/comments/{}/votes".format(comment_id), body=json.dumps({}), # body is unused status=200 ) def register_flag_response(self, content_type, content_id): """Register a mock response for PUT on the CS flag endpoints""" for path in ["abuse_flag", "abuse_unflag"]: httpretty.register_uri( "PUT", "http://localhost:4567/api/v1/{content_type}s/{content_id}/{path}".format( content_type=content_type, content_id=content_id, path=path ), body=json.dumps({}), # body is unused status=200 ) def register_thread_flag_response(self, thread_id): """Register a mock response for PUT on the CS thread flag endpoints""" self.register_flag_response("thread", thread_id) def register_comment_flag_response(self, comment_id): """Register a mock response for PUT on the CS comment flag endpoints""" self.register_flag_response("comment", comment_id) def register_delete_thread_response(self, thread_id): """ Register a mock response for DELETE on the CS thread instance endpoint """ httpretty.register_uri( httpretty.DELETE, "http://localhost:4567/api/v1/threads/{id}".format(id=thread_id), body=json.dumps({}), # body is unused status=200 ) def register_delete_comment_response(self, comment_id): """ Register a mock response for DELETE on the CS comment instance endpoint """ httpretty.register_uri( httpretty.DELETE, "http://localhost:4567/api/v1/comments/{id}".format(id=comment_id), body=json.dumps({}), # body is unused status=200 ) def assert_query_params_equal(self, httpretty_request, expected_params): """ Assert that the given mock request had the expected query parameters """ actual_params = dict(httpretty_request.querystring) actual_params.pop("request_id") # request_id is random self.assertEqual(actual_params, expected_params) def assert_last_query_params(self, expected_params): """ Assert that the last mock request had the expected query parameters """ self.assert_query_params_equal(httpretty.last_request(), expected_params) def make_minimal_cs_thread(overrides=None): """ Create a dictionary containing all needed thread fields as returned by the comments service with dummy data and optional overrides """ ret = { "type": "thread", "id": "dummy", "course_id": "dummy/dummy/dummy", "commentable_id": "dummy", "group_id": None, "user_id": "0", "username": "dummy", "anonymous": False, "anonymous_to_peers": False, "created_at": "1970-01-01T00:00:00Z", "updated_at": "1970-01-01T00:00:00Z", "thread_type": "discussion", "title": "dummy", "body": "dummy", "pinned": False, "closed": False, "abuse_flaggers": [], "votes": {"up_count": 0}, "comments_count": 0, "unread_comments_count": 0, "children": [], "resp_total": 0, } ret.update(overrides or {}) return ret def make_minimal_cs_comment(overrides=None): """ Create a dictionary containing all needed comment fields as returned by the comments service with dummy data and optional overrides """ ret = { "type": "comment", "id": "dummy", "thread_id": "dummy", "parent_id": None, "user_id": "0", "username": "dummy", "anonymous": False, "anonymous_to_peers": False, "created_at": "1970-01-01T00:00:00Z", "updated_at": "1970-01-01T00:00:00Z", "body": "dummy", "abuse_flaggers": [], "votes": {"up_count": 0}, "endorsed": False, "children": [], } ret.update(overrides or {}) return ret
agpl-3.0
2,143,241,298,417,913,000
34.756233
93
0.570189
false
crashtack/code-katas
src/distance.py
1
1134
def calculate_distance(point1, point2): """ Calculate the distance (in miles) between point1 and point2. point1 and point2 must have the format [latitude, longitude]. The return value is a float. Modified and converted to Python from: http://www.movable-type.co.uk/scripts/latlong.html """ import math def convert_to_radians(degrees): return degrees * math.pi / 180 radius_earth = 6.371E3 # km phi1 = convert_to_radians(point1[0]) phi2 = convert_to_radians(point2[0]) delta_phi = convert_to_radians(point1[0] - point2[0]) delta_lam = convert_to_radians(point1[1] - point2[1]) a = math.sin(0.5 * delta_phi)**2 + math.cos(phi1) * math.cos(phi2) * math.sin(0.5 * delta_lam)**2 c = 2 * math.atan2(math.sqrt(a), math.sqrt(1 - a)) return radius_earth * c / 1.60934 # convert km to miles if __name__ == "__main__": print(calculate_distance([59.35444, 17.93972], [19.39667, -102.03917])) print(calculate_distance([19.39667, -102.03917], [59.35444, 17.93972])) print(calculate_distance([1, 1], [20, 20])) print(calculate_distance([20, 20], [1, 1]))
mit
-6,536,165,982,946,111,000
38.103448
101
0.641975
false
stefan-caraiman/cloudbase-init
cloudbaseinit/utils/debiface.py
3
4325
# Copyright 2014 Cloudbase Solutions Srl # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import re from oslo_log import log as oslo_logging import six from cloudbaseinit.metadata.services import base as service_base LOG = oslo_logging.getLogger(__name__) NAME = "name" MAC = "mac" ADDRESS = "address" ADDRESS6 = "address6" NETMASK = "netmask" NETMASK6 = "netmask6" BROADCAST = "broadcast" GATEWAY = "gateway" GATEWAY6 = "gateway6" DNSNS = "dnsnameservers" # Fields of interest by regexps. FIELDS = { NAME: re.compile(r"iface\s+(?P<{}>\S+)" r"\s+inet6?\s+static".format(NAME)), MAC: re.compile(r"hwaddress\s+ether\s+" r"(?P<{}>\S+)".format(MAC)), ADDRESS: re.compile(r"address\s+" r"(?P<{}>\S+)".format(ADDRESS)), ADDRESS6: re.compile(r"post-up ip -6 addr add (?P<{}>[^/]+)/" r"(\d+) dev".format(ADDRESS6)), NETMASK: re.compile(r"netmask\s+" r"(?P<{}>\S+)".format(NETMASK)), NETMASK6: re.compile(r"post-up ip -6 addr add ([^/]+)/" r"(?P<{}>\d+) dev".format(NETMASK6)), BROADCAST: re.compile(r"broadcast\s+" r"(?P<{}>\S+)".format(BROADCAST)), GATEWAY: re.compile(r"gateway\s+" r"(?P<{}>\S+)".format(GATEWAY)), GATEWAY6: re.compile(r"post-up ip -6 route add default via " r"(?P<{}>.+) dev".format(GATEWAY6)), DNSNS: re.compile(r"dns-nameservers\s+(?P<{}>.+)".format(DNSNS)) } IFACE_TEMPLATE = dict.fromkeys(FIELDS.keys()) # Map IPv6 availability by value index under `NetworkDetails`. V6_PROXY = { ADDRESS: ADDRESS6, NETMASK: NETMASK6, GATEWAY: GATEWAY6 } DETAIL_PREPROCESS = { MAC: lambda value: value.upper(), DNSNS: lambda value: value.strip().split() } def _get_iface_blocks(data): """"Yield interface blocks as pairs of v4 and v6 halves.""" lines, lines6 = [], [] crt_lines = lines for line in data.splitlines(): line = line.strip() if not line or line.startswith("#"): continue if "iface" in line: if "inet6" in line: crt_lines = lines6 continue if lines: yield lines, lines6 lines[:] = [] lines6[:] = [] crt_lines = lines crt_lines.append(line) if lines: yield lines, lines6 def _get_field(line): for field, regex in FIELDS.items(): match = regex.match(line) if match: yield field, match.group(field) def _add_nic(iface, nics): if not iface or iface == IFACE_TEMPLATE: return # no information gathered LOG.debug("Found new interface: %s", iface) # Each missing detail is marked as None. nic = service_base.NetworkDetails(**iface) nics.append(nic) def parse(data): """Parse the received content and obtain network details.""" if not data or not isinstance(data, six.string_types): LOG.error("Invalid Debian config to parse:\n%s", data) return LOG.info("Parsing Debian config...\n%s", data) nics = [] # list of NetworkDetails objects for lines_pair in _get_iface_blocks(data): iface = IFACE_TEMPLATE.copy() for lines, use_proxy in zip(lines_pair, (False, True)): for line in lines: for field, value in _get_field(line): if use_proxy: field = V6_PROXY.get(field) if not field: continue func = DETAIL_PREPROCESS.get(field, lambda value: value) iface[field] = func(value) if value != "None" else None _add_nic(iface, nics) return nics
apache-2.0
5,532,225,192,987,332,000
32.269231
78
0.577803
false
Dhivyap/ansible
lib/ansible/modules/cloud/amazon/aws_codepipeline.py
5
11145
#!/usr/bin/python # Copyright: Ansible Project # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import absolute_import, division, print_function __metaclass__ = type ANSIBLE_METADATA = {'metadata_version': '1.1', 'status': ['preview'], 'supported_by': 'community'} DOCUMENTATION = ''' --- module: aws_codepipeline short_description: Create or delete AWS CodePipelines notes: - for details of the parameters and returns see U(http://boto3.readthedocs.io/en/latest/reference/services/codepipeline.html) description: - Create or delete a CodePipeline on AWS. version_added: "2.9" author: - Stefan Horning (@stefanhorning) <[email protected]> requirements: [ botocore, boto3 ] options: name: description: - Name of the pipeline required: true role_arn: description: - ARN of the IAM role to use when executing the pipeline required: true artifact_store: description: - Location information where artifacts are stored (on S3). Dictionary with fields type and location. required: true suboptions: type: description: - Type of the artifacts storage (only 'S3' is currently supported). location: description: - Bucket name for artifacts. stages: description: - List of stages to perform in the CodePipeline. List of dictionaries containing name and actions for each stage. required: true suboptions: name: description: - Name of the stage (step) in the codepipeline actions: description: - List of action configurations for that stage. version: description: - Version number of the pipeline. This number is automatically incremented when a pipeline is updated. required: false state: description: - Create or remove code pipeline default: 'present' choices: ['present', 'absent'] extends_documentation_fragment: - aws - ec2 ''' EXAMPLES = ''' # Note: These examples do not set authentication details, see the AWS Guide for details. # Example for creating a pipeline for continuous deploy of Github code to an ECS cluster (container) - aws_codepipeline: name: my_deploy_pipeline role_arn: arn:aws:iam::123456:role/AWS-CodePipeline-Service artifact_store: type: S3 location: my_s3_codepipline_bucket stages: - name: Get_source actions: - name: Git_pull actionTypeId: category: Source owner: ThirdParty provider: GitHub version: '1' outputArtifacts: - { name: my-app-source } configuration: Owner: mediapeers Repo: my_gh_repo PollForSourceChanges: 'true' Branch: master # Generate token like this: # https://docs.aws.amazon.com/codepipeline/latest/userguide/GitHub-rotate-personal-token-CLI.html # GH Link: https://github.com/settings/tokens OAuthToken: 'abc123def456' runOrder: 1 - name: Build actions: - name: CodeBuild actionTypeId: category: Build owner: AWS provider: CodeBuild version: '1' inputArtifacts: - { name: my-app-source } outputArtifacts: - { name: my-app-build } configuration: # A project with that name needs to be setup on AWS CodeBuild already (use code_build module). ProjectName: codebuild-project-name runOrder: 1 - name: ECS_deploy actions: - name: ECS_deploy actionTypeId: category: Deploy owner: AWS provider: ECS version: '1' inputArtifacts: - { name: vod-api-app-build } configuration: # an ECS cluster with that name needs to be setup on AWS ECS already (use ecs_cluster and ecs_service module) ClusterName: ecs-cluster-name ServiceName: ecs-cluster-service-name FileName: imagedefinitions.json region: us-east-1 state: present ''' RETURN = ''' pipeline: description: Returns the dictionary describing the code pipeline configuration. returned: success type: complex contains: name: description: Name of the CodePipeline returned: always type: string sample: my_deploy_pipeline role_arn: description: ARN of the IAM role attached to the code pipeline returned: always type: string sample: arn:aws:iam::123123123:role/codepipeline-service-role artifact_store: description: Information about where the build artifacts are stored returned: always type: complex contains: type: description: The type of the artifacts store, such as S3 returned: always type: string sample: S3 location: description: The location of the artifacts storage (s3 bucket name) returned: always type: string sample: my_s3_codepipline_bucket encryption_key: description: The encryption key used to encrypt the artifacts store, such as an AWS KMS key. returned: when configured type: string stages: description: List of stages configured for this pipeline returned: always type: list version: description: The version number of the pipeline. This number is auto incremented when pipeline params are changed. returned: always type: int ''' import copy import traceback from ansible.module_utils._text import to_native from ansible.module_utils.aws.core import AnsibleAWSModule, is_boto3_error_code from ansible.module_utils.ec2 import camel_dict_to_snake_dict, compare_policies try: import botocore except ImportError: pass # will be detected by imported HAS_BOTO3 def create_pipeline(client, name, role_arn, artifact_store, stages, version, module): pipeline_dict = {'name': name, 'roleArn': role_arn, 'artifactStore': artifact_store, 'stages': stages} if version: pipeline_dict['version'] = version try: resp = client.create_pipeline(pipeline=pipeline_dict) return resp except botocore.exceptions.ClientError as e: module.fail_json(msg="Unable create pipeline {0}: {1}".format(name, to_native(e)), exception=traceback.format_exc(), **camel_dict_to_snake_dict(e.response)) except botocore.exceptions.BotoCoreError as e: module.fail_json(msg="Unable to create pipeline {0}: {1}".format(name, to_native(e)), exception=traceback.format_exc()) def update_pipeline(client, pipeline_dict, module): try: resp = client.update_pipeline(pipeline=pipeline_dict) return resp except botocore.exceptions.ClientError as e: module.fail_json(msg="Unable update pipeline {0}: {1}".format(pipeline_dict['name'], to_native(e)), exception=traceback.format_exc(), **camel_dict_to_snake_dict(e.response)) except botocore.exceptions.BotoCoreError as e: module.fail_json(msg="Unable to update pipeline {0}: {1}".format(pipeline_dict['name'], to_native(e)), exception=traceback.format_exc()) def delete_pipeline(client, name, module): try: resp = client.delete_pipeline(name=name) return resp except botocore.exceptions.ClientError as e: module.fail_json(msg="Unable delete pipeline {0}: {1}".format(name, to_native(e)), exception=traceback.format_exc(), **camel_dict_to_snake_dict(e.response)) except botocore.exceptions.BotoCoreError as e: module.fail_json(msg="Unable to delete pipeline {0}: {1}".format(name, to_native(e)), exception=traceback.format_exc()) def describe_pipeline(client, name, version, module): pipeline = {} try: if version is not None: pipeline = client.get_pipeline(name=name, version=version) return pipeline else: pipeline = client.get_pipeline(name=name) return pipeline except is_boto3_error_code('PipelineNotFoundException'): return pipeline except (botocore.exceptions.BotoCoreError, botocore.exceptions.ClientError) as e: # pylint: disable=duplicate-except module.fail_json_aws(e) def main(): argument_spec = dict( name=dict(required=True, type='str'), role_arn=dict(required=True, type='str'), artifact_store=dict(required=True, type='dict'), stages=dict(required=True, type='list'), version=dict(type='int'), state=dict(choices=['present', 'absent'], default='present') ) module = AnsibleAWSModule(argument_spec=argument_spec) client_conn = module.client('codepipeline') state = module.params.get('state') changed = False # Determine if the CodePipeline exists found_code_pipeline = describe_pipeline(client=client_conn, name=module.params['name'], version=module.params['version'], module=module) pipeline_result = {} if state == 'present': if 'pipeline' in found_code_pipeline: pipeline_dict = copy.deepcopy(found_code_pipeline['pipeline']) # Update dictionary with provided module params: pipeline_dict['roleArn'] = module.params['role_arn'] pipeline_dict['artifactStore'] = module.params['artifact_store'] pipeline_dict['stages'] = module.params['stages'] if module.params['version'] is not None: pipeline_dict['version'] = module.params['version'] pipeline_result = update_pipeline(client=client_conn, pipeline_dict=pipeline_dict, module=module) if compare_policies(found_code_pipeline['pipeline'], pipeline_result['pipeline']): changed = True else: pipeline_result = create_pipeline( client=client_conn, name=module.params['name'], role_arn=module.params['role_arn'], artifact_store=module.params['artifact_store'], stages=module.params['stages'], version=module.params['version'], module=module) changed = True elif state == 'absent': if found_code_pipeline: pipeline_result = delete_pipeline(client=client_conn, name=module.params['name'], module=module) changed = True module.exit_json(changed=changed, **camel_dict_to_snake_dict(pipeline_result)) if __name__ == '__main__': main()
gpl-3.0
-3,009,924,253,532,782,000
35.421569
140
0.613279
false
ainafp/nilearn
nilearn/decoding/tests/test_searchlight.py
1
2253
""" Test the searchlight module """ # Author: Alexandre Abraham # License: simplified BSD from nose.tools import assert_equal import numpy as np import nibabel from .. import searchlight def test_searchlight(): # Create a toy dataset to run searchlight on # Initialize with 4x4x4 scans of random values on 30 frames rand = np.random.RandomState(0) frames = 30 data = rand.rand(5, 5, 5, frames) mask = np.ones((5, 5, 5), np.bool) mask_img = nibabel.Nifti1Image(mask.astype(np.int), np.eye(4)) # Create a condition array cond = np.arange(frames, dtype=int) > frames / 2 # Create an activation pixel. data[2, 2, 2, :] = 0 data[2, 2, 2][cond.astype(np.bool)] = 2 data_img = nibabel.Nifti1Image(data, np.eye(4)) # Define cross validation from sklearn.cross_validation import check_cv # avoid using KFold for compatibility with sklearn 0.10-0.13 cv = check_cv(4, cond) n_jobs = 1 # Run Searchlight with different radii # Small radius : only one pixel is selected sl = searchlight.SearchLight(mask_img, process_mask_img=mask_img, radius=0.5, n_jobs=n_jobs, scoring='accuracy', cv=cv) sl.fit(data_img, cond) assert_equal(np.where(sl.scores_ == 1)[0].size, 1) assert_equal(sl.scores_[2, 2, 2], 1.) # Medium radius : little ball selected sl = searchlight.SearchLight(mask_img, process_mask_img=mask_img, radius=1, n_jobs=n_jobs, scoring='accuracy', cv=cv) sl.fit(data_img, cond) assert_equal(np.where(sl.scores_ == 1)[0].size, 7) assert_equal(sl.scores_[2, 2, 2], 1.) assert_equal(sl.scores_[1, 2, 2], 1.) assert_equal(sl.scores_[2, 1, 2], 1.) assert_equal(sl.scores_[2, 2, 1], 1.) assert_equal(sl.scores_[3, 2, 2], 1.) assert_equal(sl.scores_[2, 3, 2], 1.) assert_equal(sl.scores_[2, 2, 3], 1.) # Big radius : big ball selected sl = searchlight.SearchLight(mask_img, process_mask_img=mask_img, radius=2, n_jobs=n_jobs, scoring='accuracy', cv=cv) sl.fit(data_img, cond) assert_equal(np.where(sl.scores_ == 1)[0].size, 33) assert_equal(sl.scores_[2, 2, 2], 1.)
bsd-3-clause
-3,541,917,900,307,912,000
33.661538
79
0.610297
false
ashishb/python_based_web_frontend_test
samples/flask_sample_code_test.py
1
1177
"""An example of using frontend_testing_helper with flask as a sample framework. The code will work with any framework, just modify the _GetEndpointsList accordingly. """ import unittest import flask_sample_code import sys import os sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), '..')) from frontend_testing_helper import FrontendTestBase class FlaskSampleCodeTest(FrontendTestBase): @classmethod def setUpClass(cls): FrontendTestBase.setUpClass() def setUp(self): super(FlaskSampleCodeTest, self).setUp() pass @classmethod def _GetEndpointsList(cls): """This must be over-ridden with framework specific code for extracting list of all url endpoints.""" endpoint_list = list() for rule in flask_sample_code.app.url_map.iter_rules(): if rule.endpoint != 'static': endpoint_list.append(rule.rule) return endpoint_list """ Remove one or more of the tests listed below, to see failures. """ @FrontendTestBase.Tests('/path1/') def test_path2(self): pass @FrontendTestBase.Tests('/path2/<ip>') def test_path1(self): pass if __name__ == '__main__': unittest.main()
mit
-2,917,197,306,074,032,000
23.020408
80
0.703483
false
SVoxel/R7800
git_home/samba.git/third_party/waf/wafadmin/Tools/gas.py
32
1108
#!/usr/bin/env python # encoding: utf-8 # Thomas Nagy, 2008 (ita) "as and gas" import os, sys import Task from TaskGen import extension, taskgen, after, before EXT_ASM = ['.s', '.S', '.asm', '.ASM', '.spp', '.SPP'] as_str = '${AS} ${ASFLAGS} ${_ASINCFLAGS} ${SRC} -o ${TGT}' Task.simple_task_type('asm', as_str, 'PINK', ext_out='.o', shell=False) @extension(EXT_ASM) def asm_hook(self, node): # create the compilation task: cpp or cc try: obj_ext = self.obj_ext except AttributeError: obj_ext = '_%d.o' % self.idx task = self.create_task('asm', node, node.change_ext(obj_ext)) self.compiled_tasks.append(task) self.meths.append('asm_incflags') @after('apply_obj_vars_cc') @after('apply_obj_vars_cxx') @before('apply_link') def asm_incflags(self): self.env.append_value('_ASINCFLAGS', self.env.ASINCFLAGS) var = ('cxx' in self.features) and 'CXX' or 'CC' self.env.append_value('_ASINCFLAGS', self.env['_%sINCFLAGS' % var]) def detect(conf): conf.find_program(['gas', 'as'], var='AS') if not conf.env.AS: conf.env.AS = conf.env.CC #conf.env.ASFLAGS = ['-c'] <- may be necesary for .S files
gpl-2.0
1,019,404,871,725,606,500
28.945946
71
0.659747
false
mozilla-metrics/fhr-toolbox
mrjob/plugin-collection.py
2
5996
""" Collect plugin stats. """ import healthreportutils from datetime import date, datetime, timedelta import os, shutil, csv import sys, codecs import traceback import mrjob from mrjob.job import MRJob import tempfile try: import simplejson as json except ImportError: import json # How many days must a user be gone to be considered "lost"? LOSS_DAYS = 7 * 6 # 42 days/one release cycle TOTAL_DAYS = 180 def intorstr(v): try: return int(v) except ValueError: return v def compareversions(v1, v2): v1 = map(intorstr, v1.split('.')) v2 = map(intorstr, v2.split('.')) return cmp(v1, v2) main_channels = ( 'nightly', 'aurora', 'beta', 'release' ) def last_saturday(d): """Return the Saturday on or before the date.""" # .weekday in python starts on 0=Monday return d - timedelta(days=(d.weekday() + 2) % 7) def start_date(dstr): """ Start measuring a few days before the snapshot was taken to give clients time to upload. """ snapshot = datetime.strptime(dstr, "%Y-%m-%d").date() startdate = last_saturday(snapshot) - timedelta(days=7) return startdate def date_back(start, days): """iter backwards from start for N days""" date = start for n in xrange(0, days): yield date - timedelta(days=n) def active_day(day): if day is None: return False return any(k != "org.mozilla.crashes.crashes" for k in day) def logexceptions(func): def wrapper(job, k, v): try: for k1, v1 in func(job, k, v): yield (k1, v1) except: exc = traceback.format_exc() print >>sys.stderr, "Script exception: ", exc yield ("exception", exc) return wrapper @logexceptions @healthreportutils.FHRMapper() def mapjob(job, key, payload): channel = payload.channel.split("-")[0] if channel not in main_channels: return days = payload.get('data', {}).get('days', {}) def get_day(d): dstr = d.strftime("%Y-%m-%d") return days.get(dstr, None) sd = start_date(job.options.start_date) week_end = sd # sd is always a Saturday active_user = False for d in date_back(sd, LOSS_DAYS): day = get_day(d) if active_day(day): active_user = True break if not active_user: return # require the v1 plugin data plugins = payload.last.get("org.mozilla.addons.plugins", {}) os = payload.last.get("org.mozilla.appInfo.appinfo", {}).get("os", "?") yield (("totals", channel, os), 1) # Sometimes multiple versions of the same plugin are present. Don't double- # count. pluginmap = {} # name for pluginid, data in plugins.items(): if pluginid == "_v": continue name = data.get("name", "?") if name in pluginmap: if compareversions(data.get("version", "?"), pluginmap[name].get("version", "?")) > 0: pluginmap[name] = data else: pluginmap[name] = data for data in pluginmap.values(): yield (("plugins", channel, os, data.get("name", "?"), data.get("version", "?"), data.get("blocklisted", "?"), data.get("disabled", "?"), data.get("clicktoplay", "?")), 1) def reduce(job, k, vlist): if k == "exception": print >> sys.stderr, "FOUND exception", vlist for v in vlist: yield (k, v) else: yield (k, sum(vlist)) class AggJob(MRJob): HADOOP_INPUT_FORMAT="org.apache.hadoop.mapred.SequenceFileAsTextInputFormat" INPUT_PROTOCOL = mrjob.protocol.RawProtocol def run_job(self): self.stdout = tempfile.TemporaryFile() if self.options.start_date is None: raise Exception("--start-date is required") # validate the start date here start_date(self.options.start_date) # Do the big work super(AggJob, self).run_job() # Produce the separated output files outpath = self.options.output_path if outpath is None: outpath = os.path.expanduser("~/fhr-plugindata-" + self.options.start_date) output(self.stdout, outpath) def configure_options(self): super(AggJob, self).configure_options() self.add_passthrough_option('--output-path', help="Specify output path", default=None) self.add_passthrough_option('--start-date', help="Specify start date", default=None) def mapper(self, key, value): return mapjob(self, key, value) def reducer(self, key, vlist): return reduce(self, key, vlist) combiner = reducer def getresults(fd): fd.seek(0) for line in fd: k, v = line.split("\t") yield json.loads(k), json.loads(v) def unwrap(l, v): """ Unwrap a value into a list. Dicts are added in their repr form. """ if isinstance(v, (tuple, list)): for e in v: unwrap(l, e) elif isinstance(v, dict): l.append(repr(v)) elif isinstance(v, unicode): l.append(v.encode("utf-8")) else: l.append(v) def output(fd, path): try: shutil.rmtree(path) except OSError: pass os.mkdir(path) writers = {} errs = codecs.getwriter("utf-8")(open(os.path.join(path, "exceptions.txt"), "w")) for k, v in getresults(fd): if k == "exception": print >>errs, "==ERR==" print >>errs, v continue l = [] unwrap(l, k) unwrap(l, v) fname = l.pop(0) if fname in writers: w = writers[fname] else: fd = open(os.path.join(path, fname + ".csv"), "w") w = csv.writer(fd) writers[fname] = w w.writerow(l) if __name__ == '__main__': AggJob.run()
apache-2.0
7,737,720,010,921,893,000
25.530973
87
0.564543
false
timvandermeij/drone-tomography
core/Import_Manager.py
3
6502
import importlib import sys import types class Import_Manager(object): """ A manager for dynamically importing modules. """ def __init__(self): """ Initialize the import manager. """ self._package = __package__.split('.')[0] self._unloaded_modules = {} @property def package(self): """ Retrieve the base package of the import manager. """ return self._package def load(self, module, relative=True, relative_module=None): """ Import the given `module` and return the module object. If `relative` is `True`, then the module is assumed to be relative to the base package. If `relative_module` is given, then it is relative to this submodule instead. Otherwise, if `relative` is `False`, then the module is a global or core module. """ if relative_module is not None: module = "{}.{}.{}".format(self._package, relative_module, module) elif relative: module = "{}.{}".format(self._package, module) try: return importlib.import_module(module) except ImportError as e: raise ImportError("Cannot import module '{}': {}".format(module, e.message)) def load_class(self, class_name, module=None, relative_module=None): """ Import the class with the given `class_name` from a certain module relative to the base package. If `module` is not given, then the module has the same name as the class name, relative to the base package. If `relative_module` is given, then the module is actually relative to this submodule, which in turn is relative to the package. If the module and class can be imported, then the class object is returned. Otherwise, an `ImportError` is raised. """ if module is None: module = class_name import_module = self.load(module, relative_module=relative_module) try: return import_module.__dict__[class_name] except KeyError: raise ImportError("Cannot import class name '{}' from module '{}'".format(class_name, import_module.__name__)) def unload(self, module, relative=True, store=True): """ Unload the given `module` from Python. This removes the module from the module cache, meaning that a future import reimports the module. If `relative` is `True`, then the module is assumed to be relative to the base package. Otherwise, if `False` is given, then the module is a global or core module. Only use this when there are no other active modules that directly or indirectly reference the given module. Otherwise, their references may become corrupt. The module is stored in the import manager, unless `store` is `False`, until the import manager itself is dereferenced. However, this is no guarantee that the module will continue to function while it is unloaded. The stored module can be reloaded with `reload` using its `unloaded` argument. Returns `True` if the module was unloaded, or `False` if it was not loaded to begin with. """ if relative: module = "{}.{}".format(self._package, module) if module not in sys.modules: return False if store: self._unloaded_modules[module] = sys.modules[module] del sys.modules[module] return True def reload(self, module, relative=True): """ Reload a new version of the given `module` into Python. This method has two functions. The first and default option works similar to the `reload` builtin (or `importlib.reload` in Python 3), which replaces a previously imported module with an updated one. The difference with the core function is that the global module variables are discarded by this method, and the new module is completely fresh. The `module` to this function can a module name or module object. If `relative` is `True`, then the module name is assumed to be relative to the base package. Otherwise, if `False` is given, then the module is a global or core module. It is not recommended to reload a core module. The `relative` argument is ignored if `module` is a module object. Only use this `reload` method when there are no other active modules that directly or indirectly reference the given module. Otherwise, their references may become corrupt. If the module was not previously loaded via `load` or a normal import, then this method raises an `ImportError` to signal the import failure. """ if isinstance(module, types.ModuleType): module = module.__name__ relative = False if not self.unload(module, relative=relative, store=False): raise ImportError("Module '{}' was not previously loaded".format(module)) return self.load(module, relative=relative) def reload_unloaded(self, module, relative=True): """ Reregister the given `module` that was unloaded with `unload`. When a module is unloaded, then it is in a corrupt state where it may not have access to its own variables, nor do references to anything from that unloaded module. One way that could fix this is to register the module again, which this method does. If the module was imported normally in between `unload` and `reload`, then this version of the module is in fact dereferenced, and may also become corrupt if it is still referenced elsewhere. The "old" version of the module takes its place in the registry, and should become usable again. If the module was not previously unloaded via `unload`, then this method raises an `ImportError` to signal the import failure. Otherwise, this method returns the reloaded module object. """ if relative: module = "{}.{}".format(self._package, module) if module not in self._unloaded_modules: raise ImportError("Module '{}' was not previously unloaded".format(module)) sys.modules[module] = self._unloaded_modules[module] del self._unloaded_modules[module] return sys.modules[module]
gpl-3.0
955,164,929,699,004,200
38.168675
122
0.642264
false
maxfoow/MalmoExperience
Malmo-0.16.0-Windows-64bit/Python_Examples/tutorial_4_solved.py
3
6528
# ------------------------------------------------------------------------------------------------ # Copyright (c) 2016 Microsoft Corporation # # Permission is hereby granted, free of charge, to any person obtaining a copy of this software and # associated documentation files (the "Software"), to deal in the Software without restriction, # including without limitation the rights to use, copy, modify, merge, publish, distribute, # sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all copies or # substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT # NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, # DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # ------------------------------------------------------------------------------------------------ # Tutorial sample #4: Challenge - get to the centre of the sponge (with solution) import MalmoPython import os import sys import time sys.stdout = os.fdopen(sys.stdout.fileno(), 'w', 0) # flush print output immediately def Menger(xorg, yorg, zorg, size, blocktype, variant, holetype): #draw solid chunk genstring = GenCuboidWithVariant(xorg,yorg,zorg,xorg+size-1,yorg+size-1,zorg+size-1,blocktype,variant) + "\n" #now remove holes unit = size while (unit >= 3): w=unit/3 for i in xrange(0, size, unit): for j in xrange(0, size, unit): x=xorg+i y=yorg+j genstring += GenCuboid(x+w,y+w,zorg,(x+2*w)-1,(y+2*w)-1,zorg+size-1,holetype) + "\n" y=yorg+i z=zorg+j genstring += GenCuboid(xorg,y+w,z+w,xorg+size-1, (y+2*w)-1,(z+2*w)-1,holetype) + "\n" genstring += GenCuboid(x+w,yorg,z+w,(x+2*w)-1,yorg+size-1,(z+2*w)-1,holetype) + "\n" unit/=3 return genstring def GenCuboid(x1, y1, z1, x2, y2, z2, blocktype): return '<DrawCuboid x1="' + str(x1) + '" y1="' + str(y1) + '" z1="' + str(z1) + '" x2="' + str(x2) + '" y2="' + str(y2) + '" z2="' + str(z2) + '" type="' + blocktype + '"/>' def GenCuboidWithVariant(x1, y1, z1, x2, y2, z2, blocktype, variant): return '<DrawCuboid x1="' + str(x1) + '" y1="' + str(y1) + '" z1="' + str(z1) + '" x2="' + str(x2) + '" y2="' + str(y2) + '" z2="' + str(z2) + '" type="' + blocktype + '" variant="' + variant + '"/>' missionXML='''<?xml version="1.0" encoding="UTF-8" standalone="no" ?> <Mission xmlns="http://ProjectMalmo.microsoft.com" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <About> <Summary>Hello world!</Summary> </About> <ServerSection> <ServerInitialConditions> <Time> <StartTime>1000</StartTime> <AllowPassageOfTime>false</AllowPassageOfTime> </Time> <Weather>clear</Weather> </ServerInitialConditions> <ServerHandlers> <FlatWorldGenerator generatorString="3;7,44*49,73,35:1,159:4,95:13,35:13,159:11,95:10,159:14,159:6,35:6,95:6;12;"/> <DrawingDecorator> <DrawSphere x="-27" y="70" z="0" radius="30" type="air"/>''' + Menger(-40, 40, -13, 27, "stone", "smooth_granite", "air") + ''' <DrawBlock x="-27" y="39" z="0" type="diamond_block"/> </DrawingDecorator> <ServerQuitFromTimeUp timeLimitMs="30000"/> <ServerQuitWhenAnyAgentFinishes/> </ServerHandlers> </ServerSection> <AgentSection mode="Survival"> <Name>MalmoTutorialBot</Name> <AgentStart> <Placement x="0.5" y="56.0" z="0.5" yaw="90"/> <Inventory> <InventoryItem slot="8" type="diamond_pickaxe"/> </Inventory> </AgentStart> <AgentHandlers> <ObservationFromFullStats/> <ContinuousMovementCommands turnSpeedDegs="180"/> <InventoryCommands/> <AgentQuitFromReachingPosition> <Marker x="-26.5" y="40.0" z="0.5" tolerance="0.5" description="Goal_found"/> </AgentQuitFromReachingPosition> </AgentHandlers> </AgentSection> </Mission>''' # Create default Malmo objects: agent_host = MalmoPython.AgentHost() try: agent_host.parse( sys.argv ) except RuntimeError as e: print 'ERROR:',e print agent_host.getUsage() exit(1) if agent_host.receivedArgument("help"): print agent_host.getUsage() exit(0) my_mission = MalmoPython.MissionSpec(missionXML, True) my_mission_record = MalmoPython.MissionRecordSpec() # Attempt to start a mission: max_retries = 3 for retry in range(max_retries): try: agent_host.startMission( my_mission, my_mission_record ) break except RuntimeError as e: if retry == max_retries - 1: print "Error starting mission:",e exit(1) else: time.sleep(2) # Loop until mission starts: print "Waiting for the mission to start ", world_state = agent_host.getWorldState() while not world_state.is_mission_running: sys.stdout.write(".") time.sleep(0.1) world_state = agent_host.getWorldState() for error in world_state.errors: print "Error:",error.text print print "Mission running ", agent_host.sendCommand("hotbar.9 1") agent_host.sendCommand("hotbar.9 0") agent_host.sendCommand("pitch 0.2") time.sleep(1) agent_host.sendCommand("pitch 0") agent_host.sendCommand("move 1") agent_host.sendCommand("attack 1") # Loop until mission ends: while world_state.is_mission_running: sys.stdout.write(".") time.sleep(0.1) world_state = agent_host.getWorldState() for error in world_state.errors: print "Error:",error.text print print "Mission ended" # Mission has ended.
gpl-3.0
-343,366,979,993,780,500
39.80625
203
0.580729
false
cedricp/ddt4all
crcmod/_crcfunpy.py
1
2995
#----------------------------------------------------------------------------- # Low level CRC functions for use by crcmod. This version is implemented in # Python for a couple of reasons. 1) Provide a reference implememtation. # 2) Provide a version that can be used on systems where a C compiler is not # available for building extension modules. # # Copyright (c) 2009 Raymond L. Buvel # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. #----------------------------------------------------------------------------- def _crc8(data, crc, table): crc = crc & 0xFF for x in data: crc = table[x ^ crc] return crc def _crc8r(data, crc, table): crc = crc & 0xFF for x in data: crc = table[x ^ crc] return crc def _crc16(data, crc, table): crc = crc & 0xFFFF for x in data: crc = table[x ^ ((crc>>8) & 0xFF)] ^ ((crc << 8) & 0xFF00) return crc def _crc16r(data, crc, table): crc = crc & 0xFFFF for x in data: crc = table[x ^ (crc & 0xFF)] ^ (crc >> 8) return crc def _crc24(data, crc, table): crc = crc & 0xFFFFFF for x in data: crc = table[x ^ (crc>>16 & 0xFF)] ^ ((crc << 8) & 0xFFFF00) return crc def _crc24r(data, crc, table): crc = crc & 0xFFFFFF for x in data: crc = table[x ^ (crc & 0xFF)] ^ (crc >> 8) return crc def _crc32(data, crc, table): crc = crc & 0xFFFFFFFF for x in data: crc = table[x ^ ((crc>>24) & 0xFF)] ^ ((crc << 8) & 0xFFFFFF00) return crc def _crc32r(data, crc, table): crc = crc & 0xFFFFFFFF for x in data: crc = table[x ^ (crc & 0xFF)] ^ (crc >> 8) return crc def _crc64(data, crc, table): crc = crc & 0xFFFFFFFFFFFFFFFF for x in data: crc = table[x ^ ((crc>>56) & 0xFF)] ^ ((crc << 8) & 0xFFFFFFFFFFFFFF00) return crc def _crc64r(data, crc, table): crc = crc & 0xFFFFFFFFFFFFFFFF for x in data: crc = table[x ^ (crc & 0xFF)] ^ (crc >> 8) return crc
gpl-3.0
1,332,846,799,121,102,800
33.425287
79
0.615025
false
albatrossandco/brubeck_cms
brubeck/core/emailing/recaptcha.py
1
4463
# CREDIT: http://smileychris.tactful.co.nz/ramblings/recaptcha/ from django.forms import * from django.conf import settings import httplib, urllib class RecaptchaWidget(Widget): def __init__(self, theme=None, tabindex=None): ''' From http://recaptcha.net/apidocs/captcha/#look-n-feel: theme: 'red' | 'white' | 'blackglass' Defines which theme to use for reCAPTCHA. tabindex: any integer Sets a tabindex for the reCAPTCHA text box. If other elements in the form use a tabindex, this should be set so that navigation is easier for the user. ''' options = {} if theme: options['theme'] = theme if tabindex: options['tabindex'] = tabindex self.options = options super(RecaptchaWidget, self).__init__() def render(self, name, value, attrs=None): args = dict(public_key=settings.RECAPTCHA_PUBLIC_KEY) if self.options: args['options'] = '''<script type="text/javascript"> var RecaptchaOptions = %r; </script> ''' % self.options return '''%(options)s<script type="text/javascript" src="http://api.recaptcha.net/challenge?k=%(public_key)s"> </script> <noscript> <iframe src="http://api.recaptcha.net/noscript?k=%(public_key)s" height="300" width="500" frameborder="0"></iframe><br> <textarea name="recaptcha_challenge_field" rows="3" cols="40"> </textarea> <input type="hidden" name="recaptcha_response_field" value="manual_challenge"> </noscript>''' % args def value_from_datadict(self, data, files, name): challenge = data.get('recaptcha_challenge_field') response = data.get('recaptcha_response_field') return (challenge, response) def id_for_label(self, id_): return None class RecaptchaField(Field): widget = RecaptchaWidget def __init__(self, remote_ip, *args, **kwargs): self.remote_ip = remote_ip super(RecaptchaField, self).__init__(*args, **kwargs) def clean(self, value): value = super(RecaptchaField, self).clean(value) challenge, response = value if not challenge: raise ValidationError(u'An error occured with the CAPTCHA service. Please try again.') if not response: raise ValidationError(u'Please enter the CAPTCHA solution.') value = validate_recaptcha(self.remote_ip, challenge, response) if not value.get('result'): raise ValidationError(u'An incorrect CAPTCHA solution was entered.') return value class RecaptchaFieldPlaceholder(Field): ''' Placeholder field for use with RecaptchaBaseForm which gets replaced with RecaptchaField (which is passed the remote_ip) when RecaptchaBaseForm is initialised. ''' def __init__(self, *args, **kwargs): self.args = args self.kwargs = kwargs class RecaptchaBaseForm(BaseForm): def __init__(self, remote_ip, *args, **kwargs): for key, field in self.base_fields.items(): if isinstance(field, RecaptchaFieldPlaceholder): self.base_fields[key] = RecaptchaField(remote_ip, *field.args, **field.kwargs) super(RecaptchaBaseForm, self).__init__(*args, **kwargs) class RecaptchaForm(RecaptchaBaseForm, Form): pass def validate_recaptcha(remote_ip, challenge, response): # Request validation from recaptcha.net if challenge: params = urllib.urlencode(dict(privatekey=settings.RECAPTCHA_PRIVATE_KEY, remoteip=remote_ip, challenge=challenge, response=response)) headers = {"Content-type": "application/x-www-form-urlencoded", "Accept": "text/plain"} conn = httplib.HTTPConnection("api-verify.recaptcha.net") conn.request("POST", "/verify", params, headers) response = conn.getresponse() if response.status == 200: data = response.read() else: data = '' conn.close() # Validate based on response data result = data.startswith('true') error_code = '' if not result: bits = data.split('\n', 2) if len(bits) > 1: error_code = bits[1] # Return dictionary return dict(result=result, error_code=error_code)
bsd-3-clause
-1,978,053,276,252,926,500
34.141732
98
0.610576
false
leiferikb/bitpop
src/build/android/pylib/gtest/gtest_config.py
9
1624
# Copyright (c) 2013 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Configuration file for android gtest suites.""" # Add new suites here before upgrading them to the stable list below. EXPERIMENTAL_TEST_SUITES = [ 'content_gl_tests', ] # Do not modify this list without approval of an android owner. # This list determines which suites are run by default, both for local # testing and on android trybots running on commit-queue. STABLE_TEST_SUITES = [ 'android_webview_unittests', 'base_unittests', 'breakpad_unittests', 'cc_unittests', 'components_unittests', 'content_browsertests', 'content_unittests', 'events_unittests', 'gl_tests', 'gpu_unittests', 'ipc_tests', 'media_unittests', 'net_unittests', 'sandbox_linux_unittests', 'sql_unittests', 'sync_unit_tests', 'ui_unittests', 'unit_tests', 'webkit_compositor_bindings_unittests', 'webkit_unit_tests', ] # Tests fail in component=shared_library build, which is required for ASan. # http://crbug.com/344868 ASAN_EXCLUDED_TEST_SUITES = [ 'breakpad_unittests', 'sandbox_linux_unittests' ] WEBRTC_CHROMIUM_TEST_SUITES = [ 'content_browsertests', ] WEBRTC_NATIVE_TEST_SUITES = [ 'audio_decoder_unittests', 'common_audio_unittests', 'common_video_unittests', 'modules_tests', 'modules_unittests', 'system_wrappers_unittests', 'test_support_unittests', 'tools_unittests', 'video_engine_core_unittests', 'voice_engine_unittests', ]
gpl-3.0
-335,279,971,260,037,060
26.066667
75
0.687192
false
muennich/mupdf
scripts/cmapflatten.py
1
3109
# Parse a Uni* CMap file and flatten it. # # The Uni* CMap files only have 'cidchar' and 'cidrange' sections, never # 'bfchar' or 'bfrange'. import sys def flattencmap(filename): codespacerange = [] usecmap = "" cmapname = "" cmapversion = "1.0" csi_registry = "(Adobe)" csi_ordering = "(Unknown)" csi_supplement = 1 wmode = 0 map = {} def tocode(s): if s[0] == '<' and s[-1] == '>': return int(s[1:-1], 16) return int(s, 10) def map_cidchar(lo, v): map[lo] = v def map_cidrange(lo, hi, v): while lo <= hi: map[lo] = v lo = lo + 1 v = v + 1 current = None for line in open(filename, "r").readlines(): if line[0] == '%': continue line = line.strip().split() if len(line) == 0: continue if line[0] == '/CMapVersion': cmapversion = line[1] elif line[0] == '/CMapName': cmapname = line[1][1:] elif line[0] == '/WMode': wmode = int(line[1]) elif line[0] == '/Registry': csi_registry = line[1] elif line[0] == '/Ordering': csi_ordering = line[1] elif line[0] == '/Supplement': csi_supplement = line[1] elif len(line) > 1 and line[1] == 'usecmap': usecmap = line[0][1:] elif len(line) > 1 and line[1] == 'begincodespacerange': current = 'codespacerange' elif len(line) > 1 and line[1] == 'begincidrange': current = 'cidrange' elif len(line) > 1 and line[1] == 'begincidchar': current = 'cidchar' elif line[0].startswith("end"): current = None elif current == 'codespacerange' and len(line) == 2: n, a, b = (len(line[0])-2)/2, tocode(line[0]), tocode(line[1]) codespacerange.append((n, a, b)) elif current == 'cidrange' and len(line) == 3: a, b, c = tocode(line[0]), tocode(line[1]), tocode(line[2]) map_cidrange(a, b, c) elif current == 'cidchar' and len(line) == 2: a, b = tocode(line[0]), tocode(line[1]) map_cidchar(a, b) # Print flattened CMap file print "%!PS-Adobe-3.0 Resource-CMap" print "%%DocumentNeededResources: procset (CIDInit)" print "%%IncludeResource: procset (CIDInit)" print "%%%%BeginResource: CMap (%s)" % cmapname print "%%%%Version: %s" % cmapversion print "%%EndComments" print "/CIDInit /ProcSet findresource begin" print "12 dict begin" print "begincmap" if usecmap: print "/%s usecmap" % usecmap print "/CIDSystemInfo 3 dict dup begin" print " /Registry %s def" % csi_registry print " /Ordering %s def" % csi_ordering print " /Supplement %s def" % csi_supplement print "end def" print "/CMapName /%s def" % cmapname print "/CMapVersion %s def" % cmapversion print "/CMapType 1 def" print "/WMode %d def" % wmode if len(codespacerange): print "%d begincodespacerange" % len(codespacerange) for r in codespacerange: fmt = "<%%0%dx> <%%0%dx>" % (r[0]*2, r[0]*2) print fmt % (r[1], r[2]) print "endcodespacerange" keys = map.keys() keys.sort() print "%d begincidchar" % len(keys) for code in keys: v = map[code] print "<%04x> %d" % (code, v) print "endcidchar" print "endcmap" print "CMapName currentdict /CMap defineresource pop" print "end" print "end" print "%%EndResource" print "%%EOF" for arg in sys.argv[1:]: flattencmap(arg)
agpl-3.0
1,733,319,341,587,167,200
27.787037
85
0.628498
false
AlexanderFabisch/scikit-learn
sklearn/preprocessing/imputation.py
29
14119
# Authors: Nicolas Tresegnie <[email protected]> # License: BSD 3 clause import warnings import numpy as np import numpy.ma as ma from scipy import sparse from scipy import stats from ..base import BaseEstimator, TransformerMixin from ..utils import check_array from ..utils.fixes import astype from ..utils.sparsefuncs import _get_median from ..utils.validation import check_is_fitted from ..utils.validation import FLOAT_DTYPES from ..externals import six zip = six.moves.zip map = six.moves.map __all__ = [ 'Imputer', ] def _get_mask(X, value_to_mask): """Compute the boolean mask X == missing_values.""" if value_to_mask == "NaN" or np.isnan(value_to_mask): return np.isnan(X) else: return X == value_to_mask def _most_frequent(array, extra_value, n_repeat): """Compute the most frequent value in a 1d array extended with [extra_value] * n_repeat, where extra_value is assumed to be not part of the array.""" # Compute the most frequent value in array only if array.size > 0: mode = stats.mode(array) most_frequent_value = mode[0][0] most_frequent_count = mode[1][0] else: most_frequent_value = 0 most_frequent_count = 0 # Compare to array + [extra_value] * n_repeat if most_frequent_count == 0 and n_repeat == 0: return np.nan elif most_frequent_count < n_repeat: return extra_value elif most_frequent_count > n_repeat: return most_frequent_value elif most_frequent_count == n_repeat: # Ties the breaks. Copy the behaviour of scipy.stats.mode if most_frequent_value < extra_value: return most_frequent_value else: return extra_value class Imputer(BaseEstimator, TransformerMixin): """Imputation transformer for completing missing values. Read more in the :ref:`User Guide <imputation>`. Parameters ---------- missing_values : integer or "NaN", optional (default="NaN") The placeholder for the missing values. All occurrences of `missing_values` will be imputed. For missing values encoded as np.nan, use the string value "NaN". strategy : string, optional (default="mean") The imputation strategy. - If "mean", then replace missing values using the mean along the axis. - If "median", then replace missing values using the median along the axis. - If "most_frequent", then replace missing using the most frequent value along the axis. axis : integer, optional (default=0) The axis along which to impute. - If `axis=0`, then impute along columns. - If `axis=1`, then impute along rows. verbose : integer, optional (default=0) Controls the verbosity of the imputer. copy : boolean, optional (default=True) If True, a copy of X will be created. If False, imputation will be done in-place whenever possible. Note that, in the following cases, a new copy will always be made, even if `copy=False`: - If X is not an array of floating values; - If X is sparse and `missing_values=0`; - If `axis=0` and X is encoded as a CSR matrix; - If `axis=1` and X is encoded as a CSC matrix. Attributes ---------- statistics_ : array of shape (n_features,) The imputation fill value for each feature if axis == 0. Notes ----- - When ``axis=0``, columns which only contained missing values at `fit` are discarded upon `transform`. - When ``axis=1``, an exception is raised if there are rows for which it is not possible to fill in the missing values (e.g., because they only contain missing values). """ def __init__(self, missing_values="NaN", strategy="mean", axis=0, verbose=0, copy=True): self.missing_values = missing_values self.strategy = strategy self.axis = axis self.verbose = verbose self.copy = copy def fit(self, X, y=None): """Fit the imputer on X. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Input data, where ``n_samples`` is the number of samples and ``n_features`` is the number of features. Returns ------- self : object Returns self. """ # Check parameters allowed_strategies = ["mean", "median", "most_frequent"] if self.strategy not in allowed_strategies: raise ValueError("Can only use these strategies: {0} " " got strategy={1}".format(allowed_strategies, self.strategy)) if self.axis not in [0, 1]: raise ValueError("Can only impute missing values on axis 0 and 1, " " got axis={0}".format(self.axis)) # Since two different arrays can be provided in fit(X) and # transform(X), the imputation data will be computed in transform() # when the imputation is done per sample (i.e., when axis=1). if self.axis == 0: X = check_array(X, accept_sparse='csc', dtype=np.float64, force_all_finite=False) if sparse.issparse(X): self.statistics_ = self._sparse_fit(X, self.strategy, self.missing_values, self.axis) else: self.statistics_ = self._dense_fit(X, self.strategy, self.missing_values, self.axis) return self def _sparse_fit(self, X, strategy, missing_values, axis): """Fit the transformer on sparse data.""" # Imputation is done "by column", so if we want to do it # by row we only need to convert the matrix to csr format. if axis == 1: X = X.tocsr() else: X = X.tocsc() # Count the zeros if missing_values == 0: n_zeros_axis = np.zeros(X.shape[not axis], dtype=int) else: n_zeros_axis = X.shape[axis] - np.diff(X.indptr) # Mean if strategy == "mean": if missing_values != 0: n_non_missing = n_zeros_axis # Mask the missing elements mask_missing_values = _get_mask(X.data, missing_values) mask_valids = np.logical_not(mask_missing_values) # Sum only the valid elements new_data = X.data.copy() new_data[mask_missing_values] = 0 X = sparse.csc_matrix((new_data, X.indices, X.indptr), copy=False) sums = X.sum(axis=0) # Count the elements != 0 mask_non_zeros = sparse.csc_matrix( (mask_valids.astype(np.float64), X.indices, X.indptr), copy=False) s = mask_non_zeros.sum(axis=0) n_non_missing = np.add(n_non_missing, s) else: sums = X.sum(axis=axis) n_non_missing = np.diff(X.indptr) # Ignore the error, columns with a np.nan statistics_ # are not an error at this point. These columns will # be removed in transform with np.errstate(all="ignore"): return np.ravel(sums) / np.ravel(n_non_missing) # Median + Most frequent else: # Remove the missing values, for each column columns_all = np.hsplit(X.data, X.indptr[1:-1]) mask_missing_values = _get_mask(X.data, missing_values) mask_valids = np.hsplit(np.logical_not(mask_missing_values), X.indptr[1:-1]) # astype necessary for bug in numpy.hsplit before v1.9 columns = [col[astype(mask, bool, copy=False)] for col, mask in zip(columns_all, mask_valids)] # Median if strategy == "median": median = np.empty(len(columns)) for i, column in enumerate(columns): median[i] = _get_median(column, n_zeros_axis[i]) return median # Most frequent elif strategy == "most_frequent": most_frequent = np.empty(len(columns)) for i, column in enumerate(columns): most_frequent[i] = _most_frequent(column, 0, n_zeros_axis[i]) return most_frequent def _dense_fit(self, X, strategy, missing_values, axis): """Fit the transformer on dense data.""" X = check_array(X, force_all_finite=False) mask = _get_mask(X, missing_values) masked_X = ma.masked_array(X, mask=mask) # Mean if strategy == "mean": mean_masked = np.ma.mean(masked_X, axis=axis) # Avoid the warning "Warning: converting a masked element to nan." mean = np.ma.getdata(mean_masked) mean[np.ma.getmask(mean_masked)] = np.nan return mean # Median elif strategy == "median": if tuple(int(v) for v in np.__version__.split('.')[:2]) < (1, 5): # In old versions of numpy, calling a median on an array # containing nans returns nan. This is different is # recent versions of numpy, which we want to mimic masked_X.mask = np.logical_or(masked_X.mask, np.isnan(X)) median_masked = np.ma.median(masked_X, axis=axis) # Avoid the warning "Warning: converting a masked element to nan." median = np.ma.getdata(median_masked) median[np.ma.getmaskarray(median_masked)] = np.nan return median # Most frequent elif strategy == "most_frequent": # scipy.stats.mstats.mode cannot be used because it will no work # properly if the first element is masked and if it's frequency # is equal to the frequency of the most frequent valid element # See https://github.com/scipy/scipy/issues/2636 # To be able access the elements by columns if axis == 0: X = X.transpose() mask = mask.transpose() most_frequent = np.empty(X.shape[0]) for i, (row, row_mask) in enumerate(zip(X[:], mask[:])): row_mask = np.logical_not(row_mask).astype(np.bool) row = row[row_mask] most_frequent[i] = _most_frequent(row, np.nan, 0) return most_frequent def transform(self, X): """Impute all missing values in X. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] The input data to complete. """ if self.axis == 0: check_is_fitted(self, 'statistics_') # Since two different arrays can be provided in fit(X) and # transform(X), the imputation data need to be recomputed # when the imputation is done per sample if self.axis == 1: X = check_array(X, accept_sparse='csr', dtype=FLOAT_DTYPES, force_all_finite=False, copy=self.copy) if sparse.issparse(X): statistics = self._sparse_fit(X, self.strategy, self.missing_values, self.axis) else: statistics = self._dense_fit(X, self.strategy, self.missing_values, self.axis) else: X = check_array(X, accept_sparse='csc', dtype=FLOAT_DTYPES, force_all_finite=False, copy=self.copy) statistics = self.statistics_ # Delete the invalid rows/columns invalid_mask = np.isnan(statistics) valid_mask = np.logical_not(invalid_mask) valid_statistics = statistics[valid_mask] valid_statistics_indexes = np.where(valid_mask)[0] missing = np.arange(X.shape[not self.axis])[invalid_mask] if self.axis == 0 and invalid_mask.any(): if self.verbose: warnings.warn("Deleting features without " "observed values: %s" % missing) X = X[:, valid_statistics_indexes] elif self.axis == 1 and invalid_mask.any(): raise ValueError("Some rows only contain " "missing values: %s" % missing) # Do actual imputation if sparse.issparse(X) and self.missing_values != 0: mask = _get_mask(X.data, self.missing_values) indexes = np.repeat(np.arange(len(X.indptr) - 1, dtype=np.int), np.diff(X.indptr))[mask] X.data[mask] = astype(valid_statistics[indexes], X.dtype, copy=False) else: if sparse.issparse(X): X = X.toarray() mask = _get_mask(X, self.missing_values) n_missing = np.sum(mask, axis=self.axis) values = np.repeat(valid_statistics, n_missing) if self.axis == 0: coordinates = np.where(mask.transpose())[::-1] else: coordinates = mask X[coordinates] = values return X
bsd-3-clause
8,555,956,253,983,739,000
36.650667
79
0.531907
false
OSEHRA-Sandbox/VistA
Scripts/SplitZWR.py
1
3389
#!/usr/bin/env python # Split a .zwr files into pieces of maximum size: # # python SplitZWR.py --size <MiB> *.zwr # # or # # ls *.zwr | python SplitZWR.py --size <MiB> --stdin # #--------------------------------------------------------------------------- # Copyright 2011 The Open Source Electronic Health Record Agent # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #--------------------------------------------------------------------------- import argparse import os import sys class SplitZWR: def __init__(self, filepath, maxSize): self.maxSize = maxSize self.dir = os.path.dirname(filepath) nameSplit = os.path.basename(filepath).split('+',1) if len(nameSplit) > 1: self.num, self.name = nameSplit else: self.num=0 self.name=nameSplit[0] self.input = open(filepath, 'r') self.headers = [] while len(self.headers) < 2: self.headers.append(self.input.readline()) self.hdrSize = sum([len(l) for l in self.headers]) self.outSize = self.maxSize self.outFile = None self.index = 0 def new_file(self): self.index += 1 outName = '%s-%d+%s' % (self.num, self.index, self.name) outPath = os.path.join(self.dir, outName) self.outFile = open(outPath, 'w') self.outFile.writelines(self.headers) self.outSize = self.hdrSize sys.stdout.write(' %s\n' % outPath) def do_line(self, line): if self.outSize + len(line) > self.maxSize: self.new_file() self.outSize += len(line) self.outFile.write(line) def run(self): for line in self.input: self.do_line(line) def splitZWR(f, maxSize): sys.stdout.write('Splitting "%s":\n' % f) SplitZWR(f, maxSize).run() os.remove(f) def main(): parser = argparse.ArgumentParser() parser.add_argument('--size', dest='size', action='store', type = int, required=True, metavar='<MiB>', help='max output file size in MiB') parser.add_argument('--stdin', dest='stdin', action='store_const', const=True, default=False, help='read files to split from standard input lines') parser.add_argument('files', action='append', nargs='*', metavar='<files>', help='files to split') config = parser.parse_args() maxSize = int(config.size) << 20 files = config.files[0] if config.stdin: files.extend([a.rstrip() for a in sys.stdin]) for f in files: if "DD.zwr" in f: continue if f[-4:].lower() != '.zwr': sys.stderr.write('Skipping non-.zwr file: %s\n' % f) continue if os.stat(f).st_size > maxSize: splitZWR(f, maxSize) if __name__ == '__main__': main()
apache-2.0
-6,671,641,364,911,628,000
33.232323
79
0.567129
false
RealTimeWeb/wikisite
MoinMoin/script/old/migration/12_to_13_mig02.py
1
6493
#!/usr/bin/env python """ migration from moin 1.3 < patch-78 to moin 1.3 >= patch-78 * switch quoting mechanism from (xx)(xx) to (xxxx) * charset isn't changed, it was utf-8 before and will be utf-8 after Steps for a successful migration: 1. stop your wiki and make a backup 2. make a copy of the wiki's "data" directory to your working dir 3. run this script from your working dir 4. if there was no error, you will find: data.pre-mig2 (the script renames your data directory copy to that name) data (result, converted) 5. verify conversion results (number of pages, size of logs, attachments, number of backup copies) - everything should be reasonable before you proceed. 6. copy additional files from data.pre-mig2 to data (maybe intermaps, logs, etc.). Be aware that the file contents AND file names of wiki content may have changed, so DO NOT copy the cache/ directory, but let the wiki recreate it. 7. replace the data directory your wiki uses with the data directory you created by previous steps. DO NOT simply copy the converted stuff into the original or you will duplicate pages and create chaos! 8. test it. if something has gone wrong, you still have your backup. 9. if you use dictionaries for spellchecking, you have to convert them to config.charset, too. Remove your dict.cache before re-starting your wiki. @copyright: 2004 Thomas Waldmann @license: GPL, see COPYING for details """ from_encoding = 'utf-8' to_encoding = 'utf-8' import os.path, sys, shutil, urllib sys.path.insert(0, '../../../..') from MoinMoin import wikiutil from MoinMoin.script.migration.migutil import opj, listdir, copy_file, copy_dir # this is a copy of the wikiutil.unquoteWikiname of moin--main--1.3--patch-77 def unquoteWikinameOld(filename, charsets=[from_encoding, ]): """ Return decoded original filename when given an encoded filename. @param filename: encoded filename @rtype: string @return: decoded, original filename """ if isinstance(filename, type(u'')): # from some places we get called with unicode filename = filename.encode(from_encoding) fn = '' i = 0 while i < len(filename): c = filename[i] if c == '(': c1 = filename[i+1] c2 = filename[i+2] close = filename[i+3] if close != ')': raise Exception('filename encoding invalid') i += 4 fn = fn + chr(16 * int(c1, 16) + int(c2, 16)) else: fn = fn + c i += 1 return wikiutil.decodeUserInput(fn, charsets) def convert_string(str, enc_from, enc_to): return str.decode(enc_from).encode(enc_to) def qf_convert_string(str, enc_from, enc_to): """ Convert filename from pre patch 78 quoting to new quoting The old quoting function from patch 77 can convert name ONLY from the old way to the new, so if you have a partially converted directory, as it the situation as of moin--main--1.3--patch-86, it does not work. The new unquoting function is backward compatible, and can unquote both post and pre patch 78 file names. """ str = wikiutil.unquoteWikiname(str, [enc_from]) str = wikiutil.quoteWikinameFS(str, enc_to) return str def convert_file(fname_from, fname_to, enc_from, enc_to): print "%s -> %s" % (fname_from, fname_to) file_from = open(fname_from) file_to = open(fname_to, "w") for line in file_from: file_to.write(convert_string(line, enc_from, enc_to)) file_to.close() file_from.close() st = os.stat(fname_from) os.utime(fname_to, (st.st_atime, st.st_mtime)) def convert_textdir(dir_from, dir_to, enc_from, enc_to, is_backupdir=0): os.mkdir(dir_to) for fname_from in listdir(dir_from): if is_backupdir: fname, timestamp = fname_from.split('.') else: fname = fname_from fname = qf_convert_string(fname, enc_from, enc_to) if is_backupdir: fname_to = '.'.join([fname, timestamp]) else: fname_to = fname convert_file(opj(dir_from, fname_from), opj(dir_to, fname_to), enc_from, enc_to) def convert_pagedir(dir_from, dir_to, enc_from, enc_to): os.mkdir(dir_to) for dname_from in listdir(dir_from): dname_to = qf_convert_string(dname_from, enc_from, enc_to) print "%s -> %s" % (dname_from, dname_to) shutil.copytree(opj(dir_from, dname_from), opj(dir_to, dname_to), 1) try: convert_editlog(opj(dir_from, dname_from, 'last-edited'), opj(dir_to, dname_to, 'last-edited'), enc_from, enc_to) except IOError: pass # we ignore if it doesnt exist def convert_userdir(dir_from, dir_to, enc_from, enc_to): os.mkdir(dir_to) for fname in listdir(dir_from): convert_file(opj(dir_from, fname), opj(dir_to, fname), enc_from, enc_to) def convert_editlog(log_from, log_to, enc_from, enc_to): file_from = open(log_from) file_to = open(log_to, "w") for line in file_from: fields = line.split('\t') fields[0] = qf_convert_string(fields[0], enc_from, enc_to) fields[5] = convert_string(fields[5], enc_from, enc_to) line = '\t'.join(fields) file_to.write(line) origdir = 'data.pre-mig2' # Backup original dir and create new empty dir try: os.rename('data', origdir) os.mkdir('data') except OSError: print "You need to be in the directory where your copy of the 'data' directory is located." sys.exit(1) convert_textdir(opj(origdir, 'text'), opj('data', 'text'), from_encoding, to_encoding) convert_textdir(opj(origdir, 'backup'), opj('data', 'backup'), from_encoding, to_encoding, 1) convert_pagedir(opj(origdir, 'pages'), opj('data', 'pages'), from_encoding, to_encoding) convert_userdir(opj(origdir, 'user'), opj('data', 'user'), from_encoding, to_encoding) convert_editlog(opj(origdir, 'editlog'), opj('data', 'editlog'), from_encoding, to_encoding) copy_file(opj(origdir, 'event.log'), opj('data', 'event.log')) copy_dir(opj(origdir, 'plugin'), opj('data', 'plugin')) copy_file(opj(origdir, 'intermap.txt'), opj('data', 'intermap.txt'))
apache-2.0
-4,561,852,729,684,848,000
36.316092
95
0.623287
false
jjmiranda/edx-platform
cms/envs/devstack_optimized.py
23
1642
""" Settings to run Studio in devstack using optimized static assets. This configuration changes Studio to use the optimized static assets generated for testing, rather than picking up the files directly from the source tree. The following Paver command can be used to run Studio in optimized mode: paver devstack studio --optimized You can also generate the assets explicitly and then run Studio: paver update_assets cms --settings=test_static_optimized paver devstack studio --settings=devstack_optimized --fast Note that changes to JavaScript assets will not be picked up automatically as they are for non-optimized devstack. Instead, update_assets must be invoked each time that changes have been made. """ ########################## Devstack settings ################################### from .devstack import * # pylint: disable=wildcard-import, unused-wildcard-import TEST_ROOT = REPO_ROOT / "test_root" ############################ STATIC FILES ############################# # Enable debug so that static assets are served by Django DEBUG = True # Set REQUIRE_DEBUG to false so that it behaves like production REQUIRE_DEBUG = False # Fetch static files out of the pipeline's static root STATICFILES_STORAGE = 'pipeline.storage.PipelineCachedStorage' # Serve static files at /static directly from the staticfiles directory under test root. # Note: optimized files for testing are generated with settings from test_static_optimized STATIC_URL = "/static/" STATICFILES_FINDERS = ( 'django.contrib.staticfiles.finders.FileSystemFinder', ) STATICFILES_DIRS = [ (TEST_ROOT / "staticfiles" / "cms").abspath(), ]
agpl-3.0
6,952,518,904,967,960,000
34.695652
91
0.721681
false
ahamilton55/ansible
lib/ansible/modules/system/ping.py
29
2109
#!/usr/bin/python # -*- coding: utf-8 -*- # (c) 2012, Michael DeHaan <[email protected]> # (c) 2016, Toshio Kuratomi <[email protected]> # # This file is part of Ansible # # Ansible is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Ansible is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Ansible. If not, see <http://www.gnu.org/licenses/>. ANSIBLE_METADATA = {'metadata_version': '1.0', 'status': ['stableinterface'], 'supported_by': 'core'} DOCUMENTATION = ''' --- module: ping version_added: historical short_description: Try to connect to host, verify a usable python and return C(pong) on success. description: - A trivial test module, this module always returns C(pong) on successful contact. It does not make sense in playbooks, but it is useful from C(/usr/bin/ansible) to verify the ability to login and that a usable python is configured. - This is NOT ICMP ping, this is just a trivial test module. options: {} author: - "Ansible Core Team" - "Michael DeHaan" ''' EXAMPLES = ''' # Test we can logon to 'webservers' and execute python with json lib. ansible webservers -m ping ''' from ansible.module_utils.basic import AnsibleModule def main(): module = AnsibleModule( argument_spec=dict( data=dict(required=False, default=None), ), supports_check_mode=True ) result = dict(ping='pong') if module.params['data']: if module.params['data'] == 'crash': raise Exception("boom") result['ping'] = module.params['data'] module.exit_json(**result) if __name__ == '__main__': main()
gpl-3.0
-8,821,988,215,486,247,000
30.014706
96
0.675676
false
CanonicalLtd/subiquity
subiquitycore/models/network.py
1
16975
# Copyright 2015 Canonical, Ltd. # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. import enum import ipaddress import logging import yaml from socket import AF_INET, AF_INET6 import attr from typing import List, Optional from subiquitycore.gettext38 import pgettext from subiquitycore import netplan NETDEV_IGNORED_IFACE_TYPES = [ 'lo', 'bridge', 'tun', 'tap', 'dummy', 'sit', 'can', '???' ] NETDEV_ALLOWED_VIRTUAL_IFACE_TYPES = ['vlan', 'bond'] log = logging.getLogger('subiquitycore.models.network') def addr_version(ip): return ipaddress.ip_interface(ip).version class NetDevAction(enum.Enum): # Information about a network interface INFO = pgettext("NetDevAction", "Info") EDIT_WLAN = pgettext("NetDevAction", "Edit Wifi") EDIT_IPV4 = pgettext("NetDevAction", "Edit IPv4") EDIT_IPV6 = pgettext("NetDevAction", "Edit IPv6") EDIT_BOND = pgettext("NetDevAction", "Edit bond") ADD_VLAN = pgettext("NetDevAction", "Add a VLAN tag") DELETE = pgettext("NetDevAction", "Delete") def str(self): return pgettext(type(self).__name__, self.value) class DHCPState(enum.Enum): PENDING = enum.auto() TIMED_OUT = enum.auto() RECONFIGURE = enum.auto() CONFIGURED = enum.auto() @attr.s(auto_attribs=True) class DHCPStatus: enabled: bool state: Optional[DHCPState] addresses: List[str] @attr.s(auto_attribs=True) class StaticConfig: addresses: List[str] = attr.Factory(list) gateway: Optional[str] = None nameservers: List[str] = attr.Factory(list) searchdomains: List[str] = attr.Factory(list) @attr.s(auto_attribs=True) class VLANConfig: id: int link: str @attr.s(auto_attribs=True) class WLANConfig: ssid: str psk: str @attr.s(auto_attribs=True) class WLANStatus: config: WLANConfig scan_state: Optional[str] visible_ssids: List[str] @attr.s(auto_attribs=True) class BondConfig: interfaces: List[str] mode: str xmit_hash_policy: Optional[str] = None lacp_rate: Optional[str] = None def to_config(self): mode = self.mode params = { 'mode': self.mode, } if mode in BondParameters.supports_xmit_hash_policy: params['transmit-hash-policy'] = self.xmit_hash_policy if mode in BondParameters.supports_lacp_rate: params['lacp-rate'] = self.lacp_rate return { 'interfaces': self.interfaces, 'parameters': params, } @attr.s(auto_attribs=True) class NetDevInfo: """All the information about a NetworkDev that the view code needs.""" name: str type: str is_connected: bool bond_master: Optional[str] is_used: bool disabled_reason: Optional[str] hwaddr: Optional[str] vendor: Optional[str] model: Optional[str] is_virtual: bool has_config: bool vlan: Optional[VLANConfig] bond: Optional[BondConfig] wlan: Optional[WLANConfig] dhcp4: DHCPStatus dhcp6: DHCPStatus static4: StaticConfig static6: StaticConfig enabled_actions: List[NetDevAction] class BondParameters: # Just a place to hang various data about how bonds can be # configured. modes = [ 'balance-rr', 'active-backup', 'balance-xor', 'broadcast', '802.3ad', 'balance-tlb', 'balance-alb', ] supports_xmit_hash_policy = { 'balance-xor', '802.3ad', 'balance-tlb', } xmit_hash_policies = [ 'layer2', 'layer2+3', 'layer3+4', 'encap2+3', 'encap3+4', ] supports_lacp_rate = { '802.3ad', } lacp_rates = [ 'slow', 'fast', ] class NetworkDev(object): def __init__(self, model, name, typ): self._model = model self._name = name self.type = typ self.config = {} self.info = None self.disabled_reason = None self.dhcp_events = {} self._dhcp_state = { 4: None, 6: None, } def netdev_info(self) -> NetDevInfo: if self.type == 'eth': is_connected = bool(self.info.is_connected) else: is_connected = True bond_master = None for dev2 in self._model.get_all_netdevs(): if dev2.type != "bond": continue if self.name in dev2.config.get('interfaces', []): bond_master = dev2.name break if self.type == 'bond' and self.config is not None: params = self.config['parameters'] bond = BondConfig( interfaces=self.config['interfaces'], mode=params['mode'], xmit_hash_policy=params.get('xmit-hash-policy'), lacp_rate=params.get('lacp-rate')) else: bond = None if self.type == 'vlan' and self.config is not None: vlan = VLANConfig(id=self.config['id'], link=self.config['link']) else: vlan = None if self.type == 'wlan': ssid, psk = self.configured_ssid wlan = WLANStatus( config=WLANConfig(ssid=ssid, psk=psk), scan_state=self.info.wlan['scan_state'], visible_ssids=self.info.wlan['visible_ssids']) else: wlan = None dhcp_addresses = self.dhcp_addresses() configured_addresseses = {4: [], 6: []} if self.config is not None: for addr in self.config.get('addresses', []): configured_addresseses[addr_version(addr)].append(addr) ns = self.config.get('nameservers', {}) else: ns = {} dhcp_statuses = {} static_configs = {} for v in 4, 6: dhcp_statuses[v] = DHCPStatus( enabled=self.dhcp_enabled(v), state=self._dhcp_state[v], addresses=dhcp_addresses[v]) if self.config is not None: gateway = self.config.get('gateway' + str(v)) else: gateway = None static_configs[v] = StaticConfig( addresses=configured_addresseses[v], gateway=gateway, nameservers=ns.get('nameservers', []), searchdomains=ns.get('search', [])) return NetDevInfo( name=self.name, type=self.type, is_connected=is_connected, vlan=vlan, bond_master=bond_master, bond=bond, wlan=wlan, dhcp4=dhcp_statuses[4], dhcp6=dhcp_statuses[6], static4=static_configs[4], static6=static_configs[6], is_used=self.is_used, disabled_reason=self.disabled_reason, enabled_actions=[ action for action in NetDevAction if self.supports_action(action) ], hwaddr=getattr(self.info, 'hwaddr', None), vendor=getattr(self.info, 'vendor', None), model=getattr(self.info, 'model', None), is_virtual=self.is_virtual, has_config=self.config is not None) def dhcp_addresses(self): r = {4: [], 6: []} if self.info is not None: for a in self.info.addresses.values(): if a.family == AF_INET: v = 4 elif a.family == AF_INET6: v = 6 else: continue if a.source == 'dhcp': r[v].append(str(a.address)) return r def dhcp_enabled(self, version): if self.config is None: return False else: return self.config.get('dhcp{v}'.format(v=version), False) def dhcp_state(self, version): if not self.config.get('dhcp{v}'.format(v=version), False): return None return self._dhcp_state[version] def set_dhcp_state(self, version, state): self._dhcp_state[version] = state @property def name(self): return self._name @name.setter def name(self, new_name): # If a virtual device that already exists is renamed, we need # to create a dummy NetworkDev so that the existing virtual # device is actually deleted when the config is applied. if new_name != self.name and self.is_virtual: if new_name in self._model.devices_by_name: raise RuntimeError( "renaming {old_name} over {new_name}".format( old_name=self.name, new_name=new_name)) self._model.devices_by_name[new_name] = self if self.info is not None: dead_device = NetworkDev(self._model, self.name, self.type) self._model.devices_by_name[self.name] = dead_device dead_device.config = None dead_device.info = self.info self.info = None self._name = new_name def supports_action(self, action): return getattr(self, "_supports_" + action.name) @property def configured_ssid(self): for ssid, settings in self.config.get('access-points', {}).items(): psk = settings.get('password') return ssid, psk return None, None def set_ssid_psk(self, ssid, psk): aps = self.config.setdefault('access-points', {}) aps.clear() if ssid is not None: aps[ssid] = {} if psk is not None: aps[ssid]['password'] = psk @property def ifindex(self): if self.info is not None: return self.info.ifindex else: return None @property def is_virtual(self): return self.type in NETDEV_ALLOWED_VIRTUAL_IFACE_TYPES @property def is_bond_slave(self): for dev in self._model.get_all_netdevs(): if dev.type == "bond": if self.name in dev.config.get('interfaces', []): return True return False @property def is_used(self): for dev in self._model.get_all_netdevs(): if dev.type == "bond": if self.name in dev.config.get('interfaces', []): return True if dev.type == "vlan": if self.name == dev.config.get('link'): return True return False @property def actual_global_ip_addresses(self): return [addr.ip for _, addr in sorted(self.info.addresses.items()) if addr.scope == "global"] _supports_INFO = True _supports_EDIT_WLAN = property(lambda self: self.type == "wlan") _supports_EDIT_IPV4 = True _supports_EDIT_IPV6 = True _supports_EDIT_BOND = property(lambda self: self.type == "bond") _supports_ADD_VLAN = property( lambda self: self.type != "vlan" and not self.is_bond_slave) _supports_DELETE = property( lambda self: self.is_virtual and not self.is_used) def remove_ip_networks_for_version(self, version): self.config.pop('dhcp{v}'.format(v=version), None) self.config.pop('gateway{v}'.format(v=version), None) addrs = [] for ip in self.config.get('addresses', []): if addr_version(ip) != version: addrs.append(ip) if addrs: self.config['addresses'] = addrs else: self.config.pop('addresses', None) class NetworkModel(object): """ """ def __init__(self, project, support_wlan=True): self.support_wlan = support_wlan self.devices_by_name = {} # Maps interface names to NetworkDev self.has_network = False self.project = project def parse_netplan_configs(self, netplan_root): self.config = netplan.Config() self.config.load_from_root(netplan_root) def new_link(self, ifindex, link): log.debug("new_link %s %s %s", ifindex, link.name, link.type) if link.type in NETDEV_IGNORED_IFACE_TYPES: return if not self.support_wlan and link.type == "wlan": return if link.is_virtual and ( link.type not in NETDEV_ALLOWED_VIRTUAL_IFACE_TYPES): return dev = self.devices_by_name.get(link.name) if dev is not None: # XXX What to do if types don't match?? if dev.info is not None: # This shouldn't happen! No sense getting too upset # about if it does though. pass else: dev.info = link else: config = self.config.config_for_device(link) if link.is_virtual and not config: # If we see a virtual device without there already # being a config for it, we just ignore it. return dev = NetworkDev(self, link.name, link.type) dev.info = link dev.config = config log.debug("new_link %s %s with config %s", ifindex, link.name, netplan.sanitize_interface_config(dev.config)) self.devices_by_name[link.name] = dev return dev def update_link(self, ifindex): for name, dev in self.devices_by_name.items(): if dev.ifindex == ifindex: return dev def del_link(self, ifindex): for name, dev in self.devices_by_name.items(): if dev.ifindex == ifindex: dev.info = None if dev.is_virtual: # We delete all virtual devices before running netplan # apply. If a device has been deleted in the UI, we set # dev.config to None. Now it's actually gone, forget we # ever knew it existed. if dev.config is None: del self.devices_by_name[name] else: # If a physical interface disappears on us, it's gone. del self.devices_by_name[name] return dev def new_vlan(self, device_name, tag): name = "{name}.{tag}".format(name=device_name, tag=tag) dev = self.devices_by_name[name] = NetworkDev(self, name, 'vlan') dev.config = { 'link': device_name, 'id': tag, } return dev def new_bond(self, name, bond_config): dev = self.devices_by_name[name] = NetworkDev(self, name, 'bond') dev.config = bond_config.to_config() return dev def get_all_netdevs(self, include_deleted=False): devs = [v for k, v in sorted(self.devices_by_name.items())] if not include_deleted: devs = [v for v in devs if v.config is not None] return devs def get_netdev_by_name(self, name): return self.devices_by_name[name] def stringify_config(self, config): return '\n'.join([ "# This is the network config written by '{}'".format( self.project), yaml.dump(config, default_flow_style=False), ]) def render_config(self): config = { 'network': { 'version': 2, }, } type_to_key = { 'eth': 'ethernets', 'bond': 'bonds', 'wlan': 'wifis', 'vlan': 'vlans', } for dev in self.get_all_netdevs(): key = type_to_key[dev.type] configs = config['network'].setdefault(key, {}) if dev.config or dev.is_used: configs[dev.name] = dev.config return config def render(self): return { 'write_files': { 'etc_netplan_installer': { 'path': 'etc/netplan/00-installer-config.yaml', 'content': self.stringify_config(self.render_config()), }, 'nonet': { 'path': ('etc/cloud/cloud.cfg.d/' 'subiquity-disable-cloudinit-networking.cfg'), 'content': 'network: {config: disabled}\n', }, }, }
agpl-3.0
-9,217,052,195,006,354,000
30.552045
77
0.549691
false
YzPaul3/h2o-3
h2o-py/h2o/estimators/deeplearning.py
1
27113
from .estimator_base import H2OEstimator class H2ODeepLearningEstimator(H2OEstimator): """Build a supervised Deep Neural Network model Builds a feed-forward multilayer artificial neural network on an H2OFrame Parameters ---------- model_id : str, optional The unique id assigned to the resulting model. If none is given, an id will automatically be generated. overwrite_with_best_model : bool If True, overwrite the final model with the best model found during training. Defaults to True. checkpoint : H2ODeepLearningModel, optional Model checkpoint (either key or H2ODeepLearningModel) to resume training with. use_all_factor_levels : bool Use all factor levels of categorical variance. Otherwise the first factor level is omitted (without loss of accuracy). Useful for variable importances and auto-enabled for autoencoder.. standardize : bool If enabled, automatically standardize the data. If disabled, the user must provide properly scaled input data. activation : str A string indicating the activation function to use. Must be either "Tanh", "TanhWithDropout", "Rectifier", "RectifierWithDropout", "Maxout", or "MaxoutWithDropout" hidden : list Hidden layer sizes (e.g. [100,100]) epochs : float How many times the dataset should be iterated (streamed), can be fractional train_samples_per_iteration : int Number of training samples (globally) per MapReduce iteration. Special values are: 0 one epoch; -1 all available data (e.g., replicated training data); or -2 auto-tuning (default) seed : int Seed for random numbers (affects sampling) - Note: only reproducible when running single threaded adaptive_rate : bool Adaptive learning rate (ADAELTA) rho : float Adaptive learning rate time decay factor (similarity to prior updates) epsilon : float Adaptive learning rate parameter, similar to learn rate annealing during initial training phase. Typical values are between 1.0e-10 and 1.0e-4 rate : float Learning rate (higher => less stable, lower => slower convergence) rate_annealing : float Learning rate annealing: \eqn{(rate)/(1 + rate_annealing*samples) rate_decay : float Learning rate decay factor between layers (N-th layer: \eqn{rate*\alpha^(N-1)) momentum_start : float Initial momentum at the beginning of training (try 0.5) momentum_ramp : float Number of training samples for which momentum increases momentum_stable : float Final momentum after the amp is over (try 0.99) nesterov_accelerated_gradient : bool Logical. Use Nesterov accelerated gradient (recommended) input_dropout_ratio : float A fraction of the features for each training row to be omitted from training in order to improve generalization (dimension sampling). hidden_dropout_ratios : float Input layer dropout ratio (can improve generalization) specify one value per hidden layer, defaults to 0.5 l1 : float L1 regularization (can add stability and improve generalization, causes many weights to become 0) l2 : float L2 regularization (can add stability and improve generalization, causes many weights to be small) max_w2 : float Constraint for squared sum of incoming weights per unit (e.g. Rectifier) initial_weight_distribution : str Can be "Uniform", "UniformAdaptive", or "Normal" initial_weight_scale : str Uniform: -value ... value, Normal: stddev loss : str Loss function: "Automatic", "CrossEntropy" (for classification only), "Quadratic", "Absolute" (experimental) or "Huber" (experimental) distribution : str A character string. The distribution function of the response. Must be "AUTO", "bernoulli", "multinomial", "poisson", "gamma", "tweedie", "laplace", "huber", "quantile" or "gaussian" quantile_alpha : float Quantile (only for Quantile regression, must be between 0 and 1) tweedie_power : float Tweedie power (only for Tweedie distribution, must be between 1 and 2) score_interval : int Shortest time interval (in secs) between model scoring score_training_samples : int Number of training set samples for scoring (0 for all) score_validation_samples : int Number of validation set samples for scoring (0 for all) score_duty_cycle : float Maximum duty cycle fraction for scoring (lower: more training, higher: more scoring) classification_stop : float Stopping criterion for classification error fraction on training data (-1 to disable) regression_stop : float Stopping criterion for regression error (MSE) on training data (-1 to disable) stopping_rounds : int Early stopping based on convergence of stopping_metric. Stop if simple moving average of length k of the stopping_metric does not improve (by stopping_tolerance) for k=stopping_rounds scoring events. Can only trigger after at least 2k scoring events. Use 0 to disable. stopping_metric : str Metric to use for convergence checking, only for _stopping_rounds > 0 Can be one of "AUTO", "deviance", "logloss", "MSE", "AUC", "r2", "misclassification". stopping_tolerance : float Relative tolerance for metric-based stopping criterion (stop if relative improvement is not at least this much) quiet_mode : bool Enable quiet mode for less output to standard output max_confusion_matrix_size : int Max. size (number of classes) for confusion matrices to be shown max_hit_ratio_k : float Max number (top K) of predictions to use for hit ratio computation (for multi-class only, 0 to disable) balance_classes : bool Balance training data class counts via over/under-sampling (for imbalanced data) class_sampling_factors : list Desired over/under-sampling ratios per class (in lexicographic order). If not specified, sampling factors will be automatically computed to obtain class balance during training. Requires balance_classes. max_after_balance_size : float Maximum relative size of the training data after balancing class counts (can be less than 1.0) score_validation_sampling : Method used to sample validation dataset for scoring diagnostics : bool Enable diagnostics for hidden layers variable_importances : bool Compute variable importances for input features (Gedeon method) - can be slow for large networks) fast_mode : bool Enable fast mode (minor approximations in back-propagation) ignore_const_cols : bool Ignore constant columns (no information can be gained anyway) force_load_balance : bool Force extra load balancing to increase training speed for small datasets (to keep all cores busy) replicate_training_data : bool Replicate the entire training dataset onto every node for faster training single_node_mode : bool Run on a single node for fine-tuning of model parameters shuffle_training_data : bool Enable shuffling of training data (recommended if training data is replicated and train_samples_per_iteration is close to \eqn{numRows*numNodes sparse : bool Sparse data handling (Experimental) col_major : bool Use a column major weight matrix for input layer. Can speed up forward propagation, but might slow down back propagation (Experimental) average_activation : float Average activation for sparse auto-encoder (Experimental) sparsity_beta : bool Sparsity regularization (Experimental) max_categorical_features : int Max. number of categorical features, enforced via hashing Experimental) reproducible : bool Force reproducibility on small data (will be slow - only uses 1 thread) missing_values_handling : str Handling of missing values. Either "Skip" or "MeanImputation". export_weights_and_biases : bool Whether to export Neural Network weights and biases to H2O Frames" nfolds : int, optional Number of folds for cross-validation. If nfolds >= 2, then validation must remain empty. fold_assignment : str Cross-validation fold assignment scheme, if fold_column is not specified Must be "AUTO", "Random" or "Modulo" keep_cross_validation_predictions : bool Whether to keep the predictions of the cross-validation models keep_cross_validation_fold_assignment : bool Whether to keep the cross-validation fold assignment. Examples -------- >>> import h2o as ml >>> from h2o.estimators.deeplearning import H2ODeepLearningEstimator >>> ml.init() >>> rows=[[1,2,3,4,0],[2,1,2,4,1],[2,1,4,2,1],[0,1,2,34,1],[2,3,4,1,0]]*50 >>> fr = ml.H2OFrame(rows) >>> fr[4] = fr[4].asfactor() >>> model = H2ODeepLearningEstimator() >>> model.train(x=range(4), y=4, training_frame=fr) """ def __init__(self, model_id=None, overwrite_with_best_model=None, checkpoint=None, pretrained_autoencoder=None, use_all_factor_levels=None, standardize=None, activation=None, hidden=None, epochs=None, train_samples_per_iteration=None, seed=None, adaptive_rate=None, rho=None, epsilon=None, rate=None, rate_annealing=None, rate_decay=None, momentum_start=None, momentum_ramp=None, momentum_stable=None, nesterov_accelerated_gradient=None, input_dropout_ratio=None, hidden_dropout_ratios=None, l1=None, l2=None, max_w2=None, initial_weight_distribution=None, initial_weight_scale=None, loss=None, distribution=None, quantile_alpha=None, tweedie_power=None, score_interval=None, score_training_samples=None, score_validation_samples=None, score_duty_cycle=None, classification_stop=None, regression_stop=None, quiet_mode=None, max_confusion_matrix_size=None, max_hit_ratio_k=None, balance_classes=None, class_sampling_factors=None, max_after_balance_size=None, score_validation_sampling=None, diagnostics=None, variable_importances=None, fast_mode=None, ignore_const_cols=None, force_load_balance=None, replicate_training_data=None, single_node_mode=None, shuffle_training_data=None, sparse=None, col_major=None, average_activation=None, sparsity_beta=None, max_categorical_features=None, missing_values_handling=None, reproducible=None, export_weights_and_biases=None, nfolds=None, fold_assignment=None, keep_cross_validation_predictions=None, keep_cross_validation_fold_assignment=None, stopping_rounds=None, stopping_metric=None, stopping_tolerance=None, initial_weights=None, initial_biases=None): super(H2ODeepLearningEstimator, self).__init__() self._parms = locals() self._parms = {k:v for k,v in self._parms.items() if k!="self"} self._parms["autoencoder"] = isinstance(self, H2OAutoEncoderEstimator) @property def overwrite_with_best_model(self): return self._parms["overwrite_with_best_model"] @overwrite_with_best_model.setter def overwrite_with_best_model(self, value): self._parms["overwrite_with_best_model"] = value @property def checkpoint(self): return self._parms["checkpoint"] @checkpoint.setter def checkpoint(self, value): self._parms["checkpoint"] = value @property def pretrained_autoencoder(self): return self._parms["pretrained_autoencoder"] @pretrained_autoencoder.setter def pretrained_autoencoder(self, value): self._parms["pretrained_autoencoder"] = value @property def use_all_factor_levels(self): return self._parms["use_all_factor_levels"] @use_all_factor_levels.setter def use_all_factor_levels(self, value): self._parms["use_all_factor_levels"] = value @property def standardize(self): return self._parms["standardize"] @standardize.setter def standardize(self, value): self._parms["standardize"] = value @property def activation(self): return self._parms["activation"] @activation.setter def activation(self, value): self._parms["activation"] = value @property def hidden(self): return self._parms["hidden"] @hidden.setter def hidden(self, value): self._parms["hidden"] = value @property def epochs(self): return self._parms["epochs"] @epochs.setter def epochs(self, value): self._parms["epochs"] = value @property def train_samples_per_iteration(self): return self._parms["train_samples_per_iteration"] @train_samples_per_iteration.setter def train_samples_per_iteration(self, value): self._parms["train_samples_per_iteration"] = value @property def seed(self): return self._parms["seed"] @seed.setter def seed(self, value): self._parms["seed"] = value @property def adaptive_rate(self): return self._parms["adaptive_rate"] @adaptive_rate.setter def adaptive_rate(self, value): self._parms["adaptive_rate"] = value @property def rho(self): return self._parms["rho"] @rho.setter def rho(self, value): self._parms["rho"] = value @property def epsilon(self): return self._parms["epsilon"] @epsilon.setter def epsilon(self, value): self._parms["epsilon"] = value @property def rate(self): return self._parms["rate"] @rate.setter def rate(self, value): self._parms["rate"] = value @property def rate_annealing(self): return self._parms["rate_annealing"] @rate_annealing.setter def rate_annealing(self, value): self._parms["rate_annealing"] = value @property def rate_decay(self): return self._parms["rate_decay"] @rate_decay.setter def rate_decay(self, value): self._parms["rate_decay"] = value @property def momentum_start(self): return self._parms["momentum_start"] @momentum_start.setter def momentum_start(self, value): self._parms["momentum_start"] = value @property def momentum_ramp(self): return self._parms["momentum_ramp"] @momentum_ramp.setter def momentum_ramp(self, value): self._parms["momentum_ramp"] = value @property def momentum_stable(self): return self._parms["momentum_stable"] @momentum_stable.setter def momentum_stable(self, value): self._parms["momentum_stable"] = value @property def nesterov_accelerated_gradient(self): return self._parms["nesterov_accelerated_gradient"] @nesterov_accelerated_gradient.setter def nesterov_accelerated_gradient(self, value): self._parms["nesterov_accelerated_gradient"] = value @property def input_dropout_ratio(self): return self._parms["input_dropout_ratio"] @input_dropout_ratio.setter def input_dropout_ratio(self, value): self._parms["input_dropout_ratio"] = value @property def hidden_dropout_ratios(self): return self._parms["hidden_dropout_ratios"] @hidden_dropout_ratios.setter def hidden_dropout_ratios(self, value): self._parms["hidden_dropout_ratios"] = value @property def l1(self): return self._parms["l1"] @l1.setter def l1(self, value): self._parms["l1"] = value @property def l2(self): return self._parms["l2"] @l2.setter def l2(self, value): self._parms["l2"] = value @property def max_w2(self): return self._parms["max_w2"] @max_w2.setter def max_w2(self, value): self._parms["max_w2"] = value @property def initial_weight_distribution(self): return self._parms["initial_weight_distribution"] @initial_weight_distribution.setter def initial_weight_distribution(self, value): self._parms["initial_weight_distribution"] = value @property def initial_weight_scale(self): return self._parms["initial_weight_scale"] @initial_weight_scale.setter def initial_weight_scale(self, value): self._parms["initial_weight_scale"] = value @property def loss(self): return self._parms["loss"] @loss.setter def loss(self, value): self._parms["loss"] = value @property def distribution(self): return self._parms["distribution"] @distribution.setter def distribution(self, value): self._parms["distribution"] = value @property def quantile_alpha(self): return self._parms["quantile_alpha"] @quantile_alpha.setter def quantile_alpha(self, value): self._parms["quantile_alpha"] = value @property def tweedie_power(self): return self._parms["tweedie_power"] @tweedie_power.setter def tweedie_power(self, value): self._parms["tweedie_power"] = value @property def score_interval(self): return self._parms["score_interval"] @score_interval.setter def score_interval(self, value): self._parms["score_interval"] = value @property def score_training_samples(self): return self._parms["score_training_samples"] @score_training_samples.setter def score_training_samples(self, value): self._parms["score_training_samples"] = value @property def score_validation_samples(self): return self._parms["score_validation_samples"] @score_validation_samples.setter def score_validation_samples(self, value): self._parms["score_validation_samples"] = value @property def score_duty_cycle(self): return self._parms["score_duty_cycle"] @score_duty_cycle.setter def score_duty_cycle(self, value): self._parms["score_duty_cycle"] = value @property def classification_stop(self): return self._parms["classification_stop"] @classification_stop.setter def classification_stop(self, value): self._parms["classification_stop"] = value @property def regression_stop(self): return self._parms["regression_stop"] @regression_stop.setter def regression_stop(self, value): self._parms["regression_stop"] = value @property def stopping_rounds(self): return self._parms["stopping_rounds"] @stopping_rounds.setter def stopping_rounds(self, value): self._parms["stopping_rounds"] = value @property def stopping_metric(self): return self._parms["stopping_metric"] @stopping_metric.setter def stopping_metric(self, value): self._parms["stopping_metric"] = value @property def stopping_tolerance(self): return self._parms["stopping_tolerance"] @stopping_tolerance.setter def stopping_tolerance(self, value): self._parms["stopping_tolerance"] = value @property def quiet_mode(self): return self._parms["quiet_mode"] @quiet_mode.setter def quiet_mode(self, value): self._parms["quiet_mode"] = value @property def max_confusion_matrix_size(self): return self._parms["max_confusion_matrix_size"] @max_confusion_matrix_size.setter def max_confusion_matrix_size(self, value): self._parms["max_confusion_matrix_size"] = value @property def max_hit_ratio_k(self): return self._parms["max_hit_ratio_k"] @max_hit_ratio_k.setter def max_hit_ratio_k(self, value): self._parms["max_hit_ratio_k"] = value @property def balance_classes(self): return self._parms["balance_classes"] @balance_classes.setter def balance_classes(self, value): self._parms["balance_classes"] = value @property def class_sampling_factors(self): return self._parms["class_sampling_factors"] @class_sampling_factors.setter def class_sampling_factors(self, value): self._parms["class_sampling_factors"] = value @property def max_after_balance_size(self): return self._parms["max_after_balance_size"] @max_after_balance_size.setter def max_after_balance_size(self, value): self._parms["max_after_balance_size"] = value @property def score_validation_sampling(self): return self._parms["score_validation_sampling"] @score_validation_sampling.setter def score_validation_sampling(self, value): self._parms["score_validation_sampling"] = value @property def diagnostics(self): return self._parms["diagnostics"] @diagnostics.setter def diagnostics(self, value): self._parms["diagnostics"] = value @property def variable_importances(self): return self._parms["variable_importances"] @variable_importances.setter def variable_importances(self, value): self._parms["variable_importances"] = value @property def fast_mode(self): return self._parms["fast_mode"] @fast_mode.setter def fast_mode(self, value): self._parms["fast_mode"] = value @property def ignore_const_cols(self): return self._parms["ignore_const_cols"] @ignore_const_cols.setter def ignore_const_cols(self, value): self._parms["ignore_const_cols"] = value @property def force_load_balance(self): return self._parms["force_load_balance"] @force_load_balance.setter def force_load_balance(self, value): self._parms["force_load_balance"] = value @property def replicate_training_data(self): return self._parms["replicate_training_data"] @replicate_training_data.setter def replicate_training_data(self, value): self._parms["replicate_training_data"] = value @property def single_node_mode(self): return self._parms["single_node_mode"] @single_node_mode.setter def single_node_mode(self, value): self._parms["single_node_mode"] = value @property def shuffle_training_data(self): return self._parms["shuffle_training_data"] @shuffle_training_data.setter def shuffle_training_data(self, value): self._parms["shuffle_training_data"] = value @property def sparse(self): return self._parms["sparse"] @sparse.setter def sparse(self, value): self._parms["sparse"] = value @property def col_major(self): return self._parms["col_major"] @col_major.setter def col_major(self, value): self._parms["col_major"] = value @property def average_activation(self): return self._parms["average_activation"] @average_activation.setter def average_activation(self, value): self._parms["average_activation"] = value @property def sparsity_beta(self): return self._parms["sparsity_beta"] @sparsity_beta.setter def sparsity_beta(self, value): self._parms["sparsity_beta"] = value @property def max_categorical_features(self): return self._parms["max_categorical_features"] @max_categorical_features.setter def max_categorical_features(self, value): self._parms["max_categorical_features"] = value @property def missing_values_handling(self): return self._parms["missing_values_handling"] @missing_values_handling.setter def missing_values_handling(self, value): self._parms["missing_values_handling"] = value @property def reproducible(self): return self._parms["reproducible"] @reproducible.setter def reproducible(self, value): self._parms["reproducible"] = value @property def export_weights_and_biases(self): return self._parms["export_weights_and_biases"] @export_weights_and_biases.setter def export_weights_and_biases(self, value): self._parms["export_weights_and_biases"] = value @property def nfolds(self): return self._parms["nfolds"] @nfolds.setter def nfolds(self, value): self._parms["nfolds"] = value @property def fold_assignment(self): return self._parms["fold_assignment"] @fold_assignment.setter def fold_assignment(self, value): self._parms["fold_assignment"] = value @property def keep_cross_validation_predictions(self): return self._parms["keep_cross_validation_predictions"] @keep_cross_validation_predictions.setter def keep_cross_validation_predictions(self, value): self._parms["keep_cross_validation_predictions"] = value @property def keep_cross_validation_fold_assignment(self): return self._parms["keep_cross_validation_fold_assignment"] @keep_cross_validation_fold_assignment.setter def keep_cross_validation_fold_assignment(self, value): self._parms["keep_cross_validation_fold_assignment"] = value @property def initial_weights(self): return self._parms["initial_weights"] @initial_weights.setter def initial_weights(self, value): self._parms["initial_weights"] = value @property def initial_biases(self): return self._parms["initial_biases"] @initial_biases.setter def initial_biases(self, value): self._parms["initial_biases"] = value class H2OAutoEncoderEstimator(H2ODeepLearningEstimator): """ Examples -------- >>> import h2o as ml >>> from h2o.estimators.deeplearning import H2OAutoEncoderEstimator >>> ml.init() >>> rows=[[1,2,3,4,0]*50,[2,1,2,4,1]*50,[2,1,4,2,1]*50,[0,1,2,34,1]*50,[2,3,4,1,0]*50] >>> fr = ml.H2OFrame(rows) >>> fr[4] = fr[4].asfactor() >>> model = H2OAutoEncoderEstimator() >>> model.train(x=range(4), training_frame=fr) """ pass
apache-2.0
-5,524,750,572,744,844,000
30.749415
94
0.6408
false
yiheng/BigDL
spark/dl/src/test/resources/tf/models/temporal_convolution.py
9
1651
# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import tensorflow as tf from sys import argv from util import run_model def main(): """ You can also run these commands manually to generate the pb file 1. git clone https://github.com/tensorflow/models.git 2. export PYTHONPATH=Path_to_your_model_folder 3. python temporal_convolution.py """ tf.set_random_seed(1024) input_width = 32 input_channel = 3 inputs = tf.Variable(tf.random_uniform((1, input_width, input_channel)), name='input') inputs = tf.identity(inputs, "input_node") filter_width = 4 output_channels = 6 filters = tf.Variable(tf.random_uniform((filter_width, input_channel, output_channels))) conv_out = tf.nn.conv1d(inputs, filters, stride=1, padding="VALID") bias = tf.Variable(tf.zeros([output_channels])) output = tf.nn.tanh(tf.nn.bias_add(conv_out, bias), name="output") net_outputs = map(lambda x: tf.get_default_graph().get_tensor_by_name(x), argv[2].split(',')) run_model(net_outputs, argv[1], backward=(argv[3] == 'True')) if __name__ == "__main__": main()
apache-2.0
-6,083,195,665,722,011,000
35.711111
97
0.697759
false
mspark93/VTK
Rendering/Core/Testing/Python/TestOutOfRangeDiscretizableColorTransferFunction.py
9
1421
#!/usr/bin/env python import sys import vtk from vtk.test import Testing useBelowRangeColor = 0 if sys.argv.count("--useBelowRangeColor") > 0: useBelowRangeColor = 1 useAboveRangeColor = 0 if sys.argv.count("--useAboveRangeColor") > 0: useAboveRangeColor = 1 cmap = vtk.vtkDiscretizableColorTransferFunction() cmap.AddRGBPoint(-.4, 0.8, 0.8, 0.8) cmap.AddRGBPoint(0.4, 1, 0, 0) cmap.SetUseBelowRangeColor(useBelowRangeColor) cmap.SetBelowRangeColor(0.0, 1.0, 0.0) cmap.SetUseAboveRangeColor(useAboveRangeColor) cmap.SetAboveRangeColor(1.0, 1.0, 0.0) sphere = vtk.vtkSphereSource() sphere.SetPhiResolution(32) sphere.SetThetaResolution(32) sphere.Update() pd = sphere.GetOutput().GetPointData() for i in range(pd.GetNumberOfArrays()): print(pd.GetArray(i).GetName()) mapper = vtk.vtkPolyDataMapper() mapper.SetInputConnection(sphere.GetOutputPort()) mapper.SetScalarModeToUsePointFieldData() mapper.SelectColorArray("Normals") mapper.ColorByArrayComponent("Normals", 0) mapper.SetLookupTable(cmap) mapper.UseLookupTableScalarRangeOn() mapper.InterpolateScalarsBeforeMappingOn() actor = vtk.vtkActor() actor.SetMapper(mapper) renderer = vtk.vtkRenderer() renderer.AddActor(actor) renderer.ResetCamera() renderer.ResetCameraClippingRange() renWin = vtk.vtkRenderWindow() renWin.AddRenderer(renderer) iren = vtk.vtkRenderWindowInteractor() iren.SetRenderWindow(renWin) iren.Initialize() renWin.Render()
bsd-3-clause
-3,426,403,097,778,588,000
25.314815
50
0.790992
false
pyrocko/pyrocko
src/scenario/targets/gnss_campaign.py
1
3991
# http://pyrocko.org - GPLv3 # # The Pyrocko Developers, 21st Century # ---|P------/S----------~Lg---------- from __future__ import absolute_import, division, print_function import logging import os.path as op import numpy as num from pyrocko import gf, util from pyrocko.guts import Float from .base import TargetGenerator, NoiseGenerator from ..station import RandomStationGenerator, StationGenerator DEFAULT_STORE_ID = 'ak135_static' logger = logging.getLogger('pyrocko.scenario.targets.gnss_campaign') guts_prefix = 'pf.scenario' class GPSNoiseGenerator(NoiseGenerator): measurement_duarion_days = Float.T( default=2., help='Measurement duration in days') def add_noise(self, campaign): # https://www.nat-hazards-earth-syst-sci.net/15/875/2015/nhess-15-875-2015.pdf waterlevel = 1. - (.99 + .0015 * self.measurement_duarion_days) # noqa logger.warning('GNSSNoiseGenerator is a work-in-progress!') for ista, sta in enumerate(campaign.stations): pass # rstate = self.get_rstate(ista) # sta.north.sigma = 8e-3 # sta.east.sigma = 8e-3 # sta.north.shift += rstate.normal(0., sta.north.sigma) # sta.east.shift += rstate.normal(0., sta.east.sigma) class GNSSCampaignGenerator(TargetGenerator): station_generator = StationGenerator.T( default=RandomStationGenerator( network_name='GN', channels=None), help='The StationGenerator for creating the stations.') noise_generator = NoiseGenerator.T( default=GPSNoiseGenerator.D(), optional=True, help='Add Synthetic noise to the GNSS displacements.') store_id = gf.StringID.T( default=DEFAULT_STORE_ID, help='The GF store to use for forward-calculations.') def get_stations(self): return self.station_generator.get_stations() def get_targets(self): stations = self.get_stations() lats = num.array([s.lat for s in stations]) lons = num.array([s.lon for s in stations]) target = gf.GNSSCampaignTarget( lats=lats, lons=lons, store_id=self.store_id) return [target] def get_gnss_campaigns(self, engine, sources, tmin=None, tmax=None): try: resp = engine.process( sources, self.get_targets(), nthreads=0) except gf.meta.OutOfBounds: logger.warning('Could not calculate GNSS displacements' ' - the GF store\'s extend is too small!') return [] campaigns = [r.campaign for r in resp.static_results()] stacked_campaign = campaigns[0] stacked_campaign.name = 'Scenario Campaign' for camp in campaigns[1:]: for ista, sta in enumerate(camp.stations): stacked_campaign.stations[ista].north.shift += sta.north.shift stacked_campaign.stations[ista].east.shift += sta.east.shift stacked_campaign.stations[ista].up.shift += sta.up.shift for ista, sta in enumerate(stacked_campaign.stations): sta.code = 'SY%02d' % (ista + 1) if self.noise_generator is not None: self.noise_generator.add_noise(stacked_campaign) return [stacked_campaign] def ensure_data(self, engine, sources, path, tmin=None, tmax=None): path_gnss = op.join(path, 'gnss') util.ensuredir(path_gnss) fn = op.join(path_gnss, 'campaign-%s.yml' % self.station_generator.network_name) if op.exists(fn): return campaigns = self.get_gnss_campaigns(engine, sources, tmin, tmax) with open(fn, 'w') as f: for camp in campaigns: camp.dump(stream=f) def add_map_artists(self, engine, sources, automap): automap.add_gnss_campaign(self.get_gnss_campaigns(engine, sources)[0])
gpl-3.0
6,038,908,862,209,002,000
31.983471
86
0.614132
false
wxs/keras
tests/auto/test_loss_weighting.py
31
5537
from __future__ import absolute_import from __future__ import print_function import numpy as np np.random.seed(1336) # for reproducibility from keras.datasets import mnist from keras.models import Sequential, Graph from keras.layers.core import Dense, Activation from keras.utils import np_utils import unittest nb_classes = 10 batch_size = 128 nb_epoch = 5 weighted_class = 9 standard_weight = 1 high_weight = 5 max_train_samples = 5000 max_test_samples = 1000 # the data, shuffled and split between tran and test sets (X_train, y_train), (X_test, y_test) = mnist.load_data() X_train = X_train.reshape(60000, 784)[:max_train_samples] X_test = X_test.reshape(10000, 784)[:max_test_samples] X_train = X_train.astype("float32") / 255 X_test = X_test.astype("float32") / 255 # convert class vectors to binary class matrices y_train = y_train[:max_train_samples] y_test = y_test[:max_test_samples] Y_train = np_utils.to_categorical(y_train, nb_classes) Y_test = np_utils.to_categorical(y_test, nb_classes) test_ids = np.where(y_test == np.array(weighted_class))[0] class_weight = dict([(i, standard_weight) for i in range(nb_classes)]) class_weight[weighted_class] = high_weight sample_weight = np.ones((y_train.shape[0])) * standard_weight sample_weight[y_train == weighted_class] = high_weight def create_sequential_model(): model = Sequential() model.add(Dense(784, 50)) model.add(Activation('relu')) model.add(Dense(50, 10)) model.add(Activation('softmax')) return model def create_graph_model(): model = Graph() model.add_input(name='input') model.add_node(Dense(784, 50, activation='relu'), name='d1', input='input') model.add_node(Dense(50, 10, activation='softmax'), name='d2', input='d1') model.add_output(name='output', input='d2') return model def _test_weights_sequential(model, class_weight=None, sample_weight=None): model.fit(X_train, Y_train, batch_size=batch_size, nb_epoch=nb_epoch, verbose=0, class_weight=class_weight, sample_weight=sample_weight) model.train_on_batch(X_train[:32], Y_train[:32], class_weight=class_weight, sample_weight=sample_weight[:32] if sample_weight is not None else None) model.test_on_batch(X_train[:32], Y_train[:32], sample_weight=sample_weight[:32] if sample_weight is not None else None) score = model.evaluate(X_test[test_ids, :], Y_test[test_ids, :], verbose=0) return score def _test_weights_graph(model, class_weight=None, sample_weight=None): model.fit({'input': X_train, 'output': Y_train}, batch_size=batch_size, nb_epoch=nb_epoch, verbose=0, class_weight={'output': class_weight}, sample_weight={'output': sample_weight}) model.train_on_batch({'input': X_train[:32], 'output': Y_train[:32]}, class_weight={'output': class_weight}, sample_weight={'output': sample_weight[:32] if sample_weight is not None else None}) model.test_on_batch({'input': X_train[:32], 'output': Y_train[:32]}, sample_weight={'output': sample_weight[:32] if sample_weight is not None else None}) score = model.evaluate({'input': X_test[test_ids, :], 'output': Y_test[test_ids, :]}, verbose=0) return score class TestLossWeighting(unittest.TestCase): def test_sequential(self): for loss in ['mae', 'mse', 'categorical_crossentropy']: print('loss:', loss) print('sequential') # no weights: reference point model = create_sequential_model() model.compile(loss='categorical_crossentropy', optimizer='rmsprop') standard_score = _test_weights_sequential(model) # test class_weight model = create_sequential_model() model.compile(loss=loss, optimizer='rmsprop') score = _test_weights_sequential(model, class_weight=class_weight) print('score:', score, ' vs.', standard_score) self.assertTrue(score < standard_score) # test sample_weight model = create_sequential_model() model.compile(loss=loss, optimizer='rmsprop') score = _test_weights_sequential(model, sample_weight=sample_weight) print('score:', score, ' vs.', standard_score) self.assertTrue(score < standard_score) def test_graph(self): for loss in ['mae', 'mse', 'categorical_crossentropy']: print('loss:', loss) print('graph') # no weights: reference point model = create_graph_model() model.compile(loss={'output': 'categorical_crossentropy'}, optimizer='rmsprop') standard_score = _test_weights_graph(model) # test class_weight model = create_graph_model() model.compile(loss={'output': 'categorical_crossentropy'}, optimizer='rmsprop') score = _test_weights_graph(model, class_weight=class_weight) print('score:', score, ' vs.', standard_score) self.assertTrue(score < standard_score) # test sample_weight model = create_graph_model() model.compile(loss={'output': 'categorical_crossentropy'}, optimizer='rmsprop') score = _test_weights_graph(model, sample_weight=sample_weight) print('score:', score, ' vs.', standard_score) self.assertTrue(score < standard_score) if __name__ == '__main__': print('Test class_weight and sample_weight') unittest.main()
mit
4,567,960,397,381,501,000
41.922481
148
0.641864
false
Azure/azure-sdk-for-python
sdk/resources/azure-mgmt-resource/azure/mgmt/resource/resources/v2019_08_01/models/__init__.py
1
9184
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- try: from ._models_py3 import AliasPathType from ._models_py3 import AliasType from ._models_py3 import BasicDependency from ._models_py3 import ComponentsSgqdofSchemasIdentityPropertiesUserassignedidentitiesAdditionalproperties from ._models_py3 import DebugSetting from ._models_py3 import Dependency from ._models_py3 import Deployment from ._models_py3 import DeploymentExportResult from ._models_py3 import DeploymentExtended from ._models_py3 import DeploymentExtendedFilter from ._models_py3 import DeploymentListResult from ._models_py3 import DeploymentOperation from ._models_py3 import DeploymentOperationProperties from ._models_py3 import DeploymentOperationsListResult from ._models_py3 import DeploymentProperties from ._models_py3 import DeploymentPropertiesExtended from ._models_py3 import DeploymentValidateResult from ._models_py3 import DeploymentWhatIf from ._models_py3 import DeploymentWhatIfProperties from ._models_py3 import DeploymentWhatIfSettings from ._models_py3 import ErrorAdditionalInfo from ._models_py3 import ErrorResponse from ._models_py3 import ExportTemplateRequest from ._models_py3 import GenericResource from ._models_py3 import GenericResourceExpanded from ._models_py3 import GenericResourceFilter from ._models_py3 import HttpMessage from ._models_py3 import Identity from ._models_py3 import OnErrorDeployment from ._models_py3 import OnErrorDeploymentExtended from ._models_py3 import Operation from ._models_py3 import OperationDisplay from ._models_py3 import OperationListResult from ._models_py3 import ParametersLink from ._models_py3 import Plan from ._models_py3 import Provider from ._models_py3 import ProviderListResult from ._models_py3 import ProviderResourceType from ._models_py3 import Resource from ._models_py3 import ResourceGroup from ._models_py3 import ResourceGroupExportResult from ._models_py3 import ResourceGroupFilter from ._models_py3 import ResourceGroupListResult from ._models_py3 import ResourceGroupPatchable from ._models_py3 import ResourceGroupProperties from ._models_py3 import ResourceListResult from ._models_py3 import ResourceProviderOperationDisplayProperties from ._models_py3 import ResourcesMoveInfo from ._models_py3 import ScopedDeployment from ._models_py3 import Sku from ._models_py3 import SubResource from ._models_py3 import TagCount from ._models_py3 import TagDetails from ._models_py3 import TagValue from ._models_py3 import TagsListResult from ._models_py3 import TargetResource from ._models_py3 import TemplateHashResult from ._models_py3 import TemplateLink from ._models_py3 import WhatIfChange from ._models_py3 import WhatIfOperationResult from ._models_py3 import WhatIfPropertyChange from ._models_py3 import ZoneMapping except (SyntaxError, ImportError): from ._models import AliasPathType # type: ignore from ._models import AliasType # type: ignore from ._models import BasicDependency # type: ignore from ._models import ComponentsSgqdofSchemasIdentityPropertiesUserassignedidentitiesAdditionalproperties # type: ignore from ._models import DebugSetting # type: ignore from ._models import Dependency # type: ignore from ._models import Deployment # type: ignore from ._models import DeploymentExportResult # type: ignore from ._models import DeploymentExtended # type: ignore from ._models import DeploymentExtendedFilter # type: ignore from ._models import DeploymentListResult # type: ignore from ._models import DeploymentOperation # type: ignore from ._models import DeploymentOperationProperties # type: ignore from ._models import DeploymentOperationsListResult # type: ignore from ._models import DeploymentProperties # type: ignore from ._models import DeploymentPropertiesExtended # type: ignore from ._models import DeploymentValidateResult # type: ignore from ._models import DeploymentWhatIf # type: ignore from ._models import DeploymentWhatIfProperties # type: ignore from ._models import DeploymentWhatIfSettings # type: ignore from ._models import ErrorAdditionalInfo # type: ignore from ._models import ErrorResponse # type: ignore from ._models import ExportTemplateRequest # type: ignore from ._models import GenericResource # type: ignore from ._models import GenericResourceExpanded # type: ignore from ._models import GenericResourceFilter # type: ignore from ._models import HttpMessage # type: ignore from ._models import Identity # type: ignore from ._models import OnErrorDeployment # type: ignore from ._models import OnErrorDeploymentExtended # type: ignore from ._models import Operation # type: ignore from ._models import OperationDisplay # type: ignore from ._models import OperationListResult # type: ignore from ._models import ParametersLink # type: ignore from ._models import Plan # type: ignore from ._models import Provider # type: ignore from ._models import ProviderListResult # type: ignore from ._models import ProviderResourceType # type: ignore from ._models import Resource # type: ignore from ._models import ResourceGroup # type: ignore from ._models import ResourceGroupExportResult # type: ignore from ._models import ResourceGroupFilter # type: ignore from ._models import ResourceGroupListResult # type: ignore from ._models import ResourceGroupPatchable # type: ignore from ._models import ResourceGroupProperties # type: ignore from ._models import ResourceListResult # type: ignore from ._models import ResourceProviderOperationDisplayProperties # type: ignore from ._models import ResourcesMoveInfo # type: ignore from ._models import ScopedDeployment # type: ignore from ._models import Sku # type: ignore from ._models import SubResource # type: ignore from ._models import TagCount # type: ignore from ._models import TagDetails # type: ignore from ._models import TagValue # type: ignore from ._models import TagsListResult # type: ignore from ._models import TargetResource # type: ignore from ._models import TemplateHashResult # type: ignore from ._models import TemplateLink # type: ignore from ._models import WhatIfChange # type: ignore from ._models import WhatIfOperationResult # type: ignore from ._models import WhatIfPropertyChange # type: ignore from ._models import ZoneMapping # type: ignore from ._resource_management_client_enums import ( ChangeType, DeploymentMode, OnErrorDeploymentType, PropertyChangeType, ResourceIdentityType, WhatIfResultFormat, ) __all__ = [ 'AliasPathType', 'AliasType', 'BasicDependency', 'ComponentsSgqdofSchemasIdentityPropertiesUserassignedidentitiesAdditionalproperties', 'DebugSetting', 'Dependency', 'Deployment', 'DeploymentExportResult', 'DeploymentExtended', 'DeploymentExtendedFilter', 'DeploymentListResult', 'DeploymentOperation', 'DeploymentOperationProperties', 'DeploymentOperationsListResult', 'DeploymentProperties', 'DeploymentPropertiesExtended', 'DeploymentValidateResult', 'DeploymentWhatIf', 'DeploymentWhatIfProperties', 'DeploymentWhatIfSettings', 'ErrorAdditionalInfo', 'ErrorResponse', 'ExportTemplateRequest', 'GenericResource', 'GenericResourceExpanded', 'GenericResourceFilter', 'HttpMessage', 'Identity', 'OnErrorDeployment', 'OnErrorDeploymentExtended', 'Operation', 'OperationDisplay', 'OperationListResult', 'ParametersLink', 'Plan', 'Provider', 'ProviderListResult', 'ProviderResourceType', 'Resource', 'ResourceGroup', 'ResourceGroupExportResult', 'ResourceGroupFilter', 'ResourceGroupListResult', 'ResourceGroupPatchable', 'ResourceGroupProperties', 'ResourceListResult', 'ResourceProviderOperationDisplayProperties', 'ResourcesMoveInfo', 'ScopedDeployment', 'Sku', 'SubResource', 'TagCount', 'TagDetails', 'TagValue', 'TagsListResult', 'TargetResource', 'TemplateHashResult', 'TemplateLink', 'WhatIfChange', 'WhatIfOperationResult', 'WhatIfPropertyChange', 'ZoneMapping', 'ChangeType', 'DeploymentMode', 'OnErrorDeploymentType', 'PropertyChangeType', 'ResourceIdentityType', 'WhatIfResultFormat', ]
mit
8,691,949,672,866,523,000
41.915888
124
0.726699
false
spotify/luigi
luigi/retcodes.py
8
4658
# -*- coding: utf-8 -*- # # Copyright 2015-2015 Spotify AB # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ Module containing the logic for exit codes for the luigi binary. It's useful when you in a programmatic way need to know if luigi actually finished the given task, and if not why. """ import luigi import sys import logging from luigi import IntParameter from luigi.setup_logging import InterfaceLogging class retcode(luigi.Config): """ See the :ref:`return codes configuration section <retcode-config>`. """ # default value inconsistent with doc/configuration.rst for backwards compatibility reasons unhandled_exception = IntParameter(default=4, description='For internal luigi errors.', ) # default value inconsistent with doc/configuration.rst for backwards compatibility reasons missing_data = IntParameter(default=0, description="For when there are incomplete ExternalTask dependencies.", ) # default value inconsistent with doc/configuration.rst for backwards compatibility reasons task_failed = IntParameter(default=0, description='''For when a task's run() method fails.''', ) # default value inconsistent with doc/configuration.rst for backwards compatibility reasons already_running = IntParameter(default=0, description='For both local --lock and luigid "lock"', ) # default value inconsistent with doc/configuration.rst for backwards compatibility reasons scheduling_error = IntParameter(default=0, description='''For when a task's complete() or requires() fails, or task-limit reached''' ) # default value inconsistent with doc/configuration.rst for backwards compatibility reasons not_run = IntParameter(default=0, description="For when a task is not granted run permission by the scheduler." ) def run_with_retcodes(argv): """ Run luigi with command line parsing, but raise ``SystemExit`` with the configured exit code. Note: Usually you use the luigi binary directly and don't call this function yourself. :param argv: Should (conceptually) be ``sys.argv[1:]`` """ logger = logging.getLogger('luigi-interface') with luigi.cmdline_parser.CmdlineParser.global_instance(argv): retcodes = retcode() worker = None try: worker = luigi.interface._run(argv).worker except luigi.interface.PidLockAlreadyTakenExit: sys.exit(retcodes.already_running) except Exception: # Some errors occur before logging is set up, we set it up now env_params = luigi.interface.core() InterfaceLogging.setup(env_params) logger.exception("Uncaught exception in luigi") sys.exit(retcodes.unhandled_exception) with luigi.cmdline_parser.CmdlineParser.global_instance(argv): task_sets = luigi.execution_summary._summary_dict(worker) root_task = luigi.execution_summary._root_task(worker) non_empty_categories = {k: v for k, v in task_sets.items() if v}.keys() def has(status): assert status in luigi.execution_summary._ORDERED_STATUSES return status in non_empty_categories codes_and_conds = ( (retcodes.missing_data, has('still_pending_ext')), (retcodes.task_failed, has('failed')), (retcodes.already_running, has('run_by_other_worker')), (retcodes.scheduling_error, has('scheduling_error')), (retcodes.not_run, has('not_run')), ) expected_ret_code = max(code * (1 if cond else 0) for code, cond in codes_and_conds) if expected_ret_code == 0 and \ root_task not in task_sets["completed"] and \ root_task not in task_sets["already_done"]: sys.exit(retcodes.not_run) else: sys.exit(expected_ret_code)
apache-2.0
23,745,922,212,479,748
42.12963
104
0.646844
false
KennethNielsen/SoCo
setup.py
1
2580
#!/usr/bin/env python import io import re import sys from setuptools import setup from setuptools.command.test import test as TestCommand class PyTest(TestCommand): # Code from here: https://pytest.org/latest/goodpractises.html def finalize_options(self): TestCommand.finalize_options(self) # we don't run integration tests which need an actual Sonos device self.test_args = ['-m', 'not integration'] self.test_suite = True def run_tests(self): # import here, cause outside the eggs aren't loaded import pytest errno = pytest.main(self.test_args) sys.exit(errno) src = io.open('soco/__init__.py', encoding='utf-8').read() metadata = dict(re.findall("__([a-z]+)__ = \"([^\"]+)\"", src)) docstrings = re.findall('"""(.*?)"""', src, re.MULTILINE | re.DOTALL) NAME = 'soco' PACKAGES = ( 'soco', 'soco.plugins', 'soco.music_services', ) TEST_REQUIREMENTS = list(open('requirements-dev.txt')) AUTHOR_EMAIL = metadata['author'] VERSION = metadata['version'] WEBSITE = metadata['website'] LICENSE = metadata['license'] DESCRIPTION = docstrings[0] CLASSIFIERS = [ 'Development Status :: 3 - Alpha', 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Operating System :: OS Independent', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: Implementation :: CPython', 'Programming Language :: Python :: Implementation :: PyPy', 'Topic :: Home Automation', 'Topic :: Multimedia :: Sound/Audio', 'Topic :: Multimedia :: Sound/Audio :: Players', 'Topic :: Software Development :: Libraries :: Python Modules', ] with io.open('README.rst', encoding='utf-8') as file: LONG_DESCRIPTION = file.read() # Extract name and e-mail ("Firstname Lastname <[email protected]>") AUTHOR, EMAIL = re.match(r'(.*) <(.*)>', AUTHOR_EMAIL).groups() REQUIREMENTS = list(open('requirements.txt')) setup( name=NAME, version=VERSION, description=DESCRIPTION, author=AUTHOR, author_email=EMAIL, license=LICENSE, url=WEBSITE, packages=PACKAGES, install_requires=REQUIREMENTS, tests_require=TEST_REQUIREMENTS, long_description=LONG_DESCRIPTION, cmdclass={'test': PyTest}, classifiers=CLASSIFIERS, )
mit
3,196,205,863,717,753,000
28.318182
74
0.65155
false
mariusbaumann/pyload
module/plugins/internal/MultiHoster.py
1
2415
# -*- coding: utf-8 -*- import re from module.plugins.internal.SimpleHoster import SimpleHoster, create_getInfo, replace_patterns, set_cookies class MultiHoster(SimpleHoster): __name__ = "MultiHoster" __type__ = "hoster" __version__ = "0.28" __pattern__ = r'^unmatchable$' __description__ = """Multi hoster plugin""" __license__ = "GPLv3" __authors__ = [("Walter Purcaro", "[email protected]")] LOGIN_ACCOUNT = True def setup(self): self.chunkLimit = 1 self.multiDL = self.premium def prepare(self): self.info = {} self.link = "" #@TODO: Move to hoster class in 0.4.10 self.directDL = False #@TODO: Move to hoster class in 0.4.10 if self.LOGIN_ACCOUNT and not self.account: self.fail(_("Required account not found")) self.req.setOption("timeout", 120) if isinstance(self.COOKIES, list): set_cookies(self.req.cj, self.COOKIES) if self.DIRECT_LINK is None: self.directDL = self.__pattern__ != r'^unmatchable$' else: self.directDL = self.DIRECT_LINK self.pyfile.url = replace_patterns(self.pyfile.url, self.FILE_URL_REPLACEMENTS if hasattr(self, "FILE_URL_REPLACEMENTS") else self.URL_REPLACEMENTS) #@TODO: Remove FILE_URL_REPLACEMENTS check in 0.4.10 def process(self, pyfile): self.prepare() if self.directDL: self.logDebug("Looking for direct download link...") self.handleDirect(pyfile) if self.link: self.pyfile.url = self.link self.checkNameSize() elif not self.lastDownload: self.preload() self.checkInfo() if self.premium and (not self.CHECK_TRAFFIC or self.checkTrafficLeft()): self.logDebug("Handled as premium download") self.handlePremium() else: self.logDebug("Handled as free download") self.handleFree() self.downloadLink(self.link) self.checkFile() def handlePremium(self, pyfile=None): return self.handleFree(pyfile) def handleFree(self, pyfile=None): if self.premium: raise NotImplementedError else: self.fail(_("Required premium account not found"))
gpl-3.0
-5,986,857,389,860,580,000
27.75
193
0.575983
false
denisff/python-for-android
python3-alpha/python3-src/Lib/idlelib/Debugger.py
55
16368
import os import bdb import types from tkinter import * from idlelib.WindowList import ListedToplevel from idlelib.ScrolledList import ScrolledList from idlelib import macosxSupport class Idb(bdb.Bdb): def __init__(self, gui): self.gui = gui bdb.Bdb.__init__(self) def user_line(self, frame): if self.in_rpc_code(frame): self.set_step() return message = self.__frame2message(frame) self.gui.interaction(message, frame) def user_exception(self, frame, info): if self.in_rpc_code(frame): self.set_step() return message = self.__frame2message(frame) self.gui.interaction(message, frame, info) def in_rpc_code(self, frame): if frame.f_code.co_filename.count('rpc.py'): return True else: prev_frame = frame.f_back if prev_frame.f_code.co_filename.count('Debugger.py'): # (that test will catch both Debugger.py and RemoteDebugger.py) return False return self.in_rpc_code(prev_frame) def __frame2message(self, frame): code = frame.f_code filename = code.co_filename lineno = frame.f_lineno basename = os.path.basename(filename) message = "%s:%s" % (basename, lineno) if code.co_name != "?": message = "%s: %s()" % (message, code.co_name) return message class Debugger: vstack = vsource = vlocals = vglobals = None def __init__(self, pyshell, idb=None): if idb is None: idb = Idb(self) self.pyshell = pyshell self.idb = idb self.frame = None self.make_gui() self.interacting = 0 def run(self, *args): try: self.interacting = 1 return self.idb.run(*args) finally: self.interacting = 0 def close(self, event=None): if self.interacting: self.top.bell() return if self.stackviewer: self.stackviewer.close(); self.stackviewer = None # Clean up pyshell if user clicked debugger control close widget. # (Causes a harmless extra cycle through close_debugger() if user # toggled debugger from pyshell Debug menu) self.pyshell.close_debugger() # Now close the debugger control window.... self.top.destroy() def make_gui(self): pyshell = self.pyshell self.flist = pyshell.flist self.root = root = pyshell.root self.top = top = ListedToplevel(root) self.top.wm_title("Debug Control") self.top.wm_iconname("Debug") top.wm_protocol("WM_DELETE_WINDOW", self.close) self.top.bind("<Escape>", self.close) # self.bframe = bframe = Frame(top) self.bframe.pack(anchor="w") self.buttons = bl = [] # self.bcont = b = Button(bframe, text="Go", command=self.cont) bl.append(b) self.bstep = b = Button(bframe, text="Step", command=self.step) bl.append(b) self.bnext = b = Button(bframe, text="Over", command=self.next) bl.append(b) self.bret = b = Button(bframe, text="Out", command=self.ret) bl.append(b) self.bret = b = Button(bframe, text="Quit", command=self.quit) bl.append(b) # for b in bl: b.configure(state="disabled") b.pack(side="left") # self.cframe = cframe = Frame(bframe) self.cframe.pack(side="left") # if not self.vstack: self.__class__.vstack = BooleanVar(top) self.vstack.set(1) self.bstack = Checkbutton(cframe, text="Stack", command=self.show_stack, variable=self.vstack) self.bstack.grid(row=0, column=0) if not self.vsource: self.__class__.vsource = BooleanVar(top) self.bsource = Checkbutton(cframe, text="Source", command=self.show_source, variable=self.vsource) self.bsource.grid(row=0, column=1) if not self.vlocals: self.__class__.vlocals = BooleanVar(top) self.vlocals.set(1) self.blocals = Checkbutton(cframe, text="Locals", command=self.show_locals, variable=self.vlocals) self.blocals.grid(row=1, column=0) if not self.vglobals: self.__class__.vglobals = BooleanVar(top) self.bglobals = Checkbutton(cframe, text="Globals", command=self.show_globals, variable=self.vglobals) self.bglobals.grid(row=1, column=1) # self.status = Label(top, anchor="w") self.status.pack(anchor="w") self.error = Label(top, anchor="w") self.error.pack(anchor="w", fill="x") self.errorbg = self.error.cget("background") # self.fstack = Frame(top, height=1) self.fstack.pack(expand=1, fill="both") self.flocals = Frame(top) self.flocals.pack(expand=1, fill="both") self.fglobals = Frame(top, height=1) self.fglobals.pack(expand=1, fill="both") # if self.vstack.get(): self.show_stack() if self.vlocals.get(): self.show_locals() if self.vglobals.get(): self.show_globals() def interaction(self, message, frame, info=None): self.frame = frame self.status.configure(text=message) # if info: type, value, tb = info try: m1 = type.__name__ except AttributeError: m1 = "%s" % str(type) if value is not None: try: m1 = "%s: %s" % (m1, str(value)) except: pass bg = "yellow" else: m1 = "" tb = None bg = self.errorbg self.error.configure(text=m1, background=bg) # sv = self.stackviewer if sv: stack, i = self.idb.get_stack(self.frame, tb) sv.load_stack(stack, i) # self.show_variables(1) # if self.vsource.get(): self.sync_source_line() # for b in self.buttons: b.configure(state="normal") # self.top.wakeup() self.root.mainloop() # for b in self.buttons: b.configure(state="disabled") self.status.configure(text="") self.error.configure(text="", background=self.errorbg) self.frame = None def sync_source_line(self): frame = self.frame if not frame: return filename, lineno = self.__frame2fileline(frame) if filename[:1] + filename[-1:] != "<>" and os.path.exists(filename): self.flist.gotofileline(filename, lineno) def __frame2fileline(self, frame): code = frame.f_code filename = code.co_filename lineno = frame.f_lineno return filename, lineno def cont(self): self.idb.set_continue() self.root.quit() def step(self): self.idb.set_step() self.root.quit() def next(self): self.idb.set_next(self.frame) self.root.quit() def ret(self): self.idb.set_return(self.frame) self.root.quit() def quit(self): self.idb.set_quit() self.root.quit() stackviewer = None def show_stack(self): if not self.stackviewer and self.vstack.get(): self.stackviewer = sv = StackViewer(self.fstack, self.flist, self) if self.frame: stack, i = self.idb.get_stack(self.frame, None) sv.load_stack(stack, i) else: sv = self.stackviewer if sv and not self.vstack.get(): self.stackviewer = None sv.close() self.fstack['height'] = 1 def show_source(self): if self.vsource.get(): self.sync_source_line() def show_frame(self, stackitem): frame, lineno = stackitem self.frame = frame self.show_variables() localsviewer = None globalsviewer = None def show_locals(self): lv = self.localsviewer if self.vlocals.get(): if not lv: self.localsviewer = NamespaceViewer(self.flocals, "Locals") else: if lv: self.localsviewer = None lv.close() self.flocals['height'] = 1 self.show_variables() def show_globals(self): gv = self.globalsviewer if self.vglobals.get(): if not gv: self.globalsviewer = NamespaceViewer(self.fglobals, "Globals") else: if gv: self.globalsviewer = None gv.close() self.fglobals['height'] = 1 self.show_variables() def show_variables(self, force=0): lv = self.localsviewer gv = self.globalsviewer frame = self.frame if not frame: ldict = gdict = None else: ldict = frame.f_locals gdict = frame.f_globals if lv and gv and ldict is gdict: ldict = None if lv: lv.load_dict(ldict, force, self.pyshell.interp.rpcclt) if gv: gv.load_dict(gdict, force, self.pyshell.interp.rpcclt) def set_breakpoint_here(self, filename, lineno): self.idb.set_break(filename, lineno) def clear_breakpoint_here(self, filename, lineno): self.idb.clear_break(filename, lineno) def clear_file_breaks(self, filename): self.idb.clear_all_file_breaks(filename) def load_breakpoints(self): "Load PyShellEditorWindow breakpoints into subprocess debugger" for editwin in self.pyshell.flist.inversedict: filename = editwin.io.filename try: for lineno in editwin.breakpoints: self.set_breakpoint_here(filename, lineno) except AttributeError: continue class StackViewer(ScrolledList): def __init__(self, master, flist, gui): if macosxSupport.runningAsOSXApp(): # At least on with the stock AquaTk version on OSX 10.4 you'll # get an shaking GUI that eventually kills IDLE if the width # argument is specified. ScrolledList.__init__(self, master) else: ScrolledList.__init__(self, master, width=80) self.flist = flist self.gui = gui self.stack = [] def load_stack(self, stack, index=None): self.stack = stack self.clear() for i in range(len(stack)): frame, lineno = stack[i] try: modname = frame.f_globals["__name__"] except: modname = "?" code = frame.f_code filename = code.co_filename funcname = code.co_name import linecache sourceline = linecache.getline(filename, lineno) sourceline = sourceline.strip() if funcname in ("?", "", None): item = "%s, line %d: %s" % (modname, lineno, sourceline) else: item = "%s.%s(), line %d: %s" % (modname, funcname, lineno, sourceline) if i == index: item = "> " + item self.append(item) if index is not None: self.select(index) def popup_event(self, event): "override base method" if self.stack: return ScrolledList.popup_event(self, event) def fill_menu(self): "override base method" menu = self.menu menu.add_command(label="Go to source line", command=self.goto_source_line) menu.add_command(label="Show stack frame", command=self.show_stack_frame) def on_select(self, index): "override base method" if 0 <= index < len(self.stack): self.gui.show_frame(self.stack[index]) def on_double(self, index): "override base method" self.show_source(index) def goto_source_line(self): index = self.listbox.index("active") self.show_source(index) def show_stack_frame(self): index = self.listbox.index("active") if 0 <= index < len(self.stack): self.gui.show_frame(self.stack[index]) def show_source(self, index): if not (0 <= index < len(self.stack)): return frame, lineno = self.stack[index] code = frame.f_code filename = code.co_filename if os.path.isfile(filename): edit = self.flist.open(filename) if edit: edit.gotoline(lineno) class NamespaceViewer: def __init__(self, master, title, dict=None): width = 0 height = 40 if dict: height = 20*len(dict) # XXX 20 == observed height of Entry widget self.master = master self.title = title import reprlib self.repr = reprlib.Repr() self.repr.maxstring = 60 self.repr.maxother = 60 self.frame = frame = Frame(master) self.frame.pack(expand=1, fill="both") self.label = Label(frame, text=title, borderwidth=2, relief="groove") self.label.pack(fill="x") self.vbar = vbar = Scrollbar(frame, name="vbar") vbar.pack(side="right", fill="y") self.canvas = canvas = Canvas(frame, height=min(300, max(40, height)), scrollregion=(0, 0, width, height)) canvas.pack(side="left", fill="both", expand=1) vbar["command"] = canvas.yview canvas["yscrollcommand"] = vbar.set self.subframe = subframe = Frame(canvas) self.sfid = canvas.create_window(0, 0, window=subframe, anchor="nw") self.load_dict(dict) dict = -1 def load_dict(self, dict, force=0, rpc_client=None): if dict is self.dict and not force: return subframe = self.subframe frame = self.frame for c in list(subframe.children.values()): c.destroy() self.dict = None if not dict: l = Label(subframe, text="None") l.grid(row=0, column=0) else: #names = sorted(dict) ### # Because of (temporary) limitations on the dict_keys type (not yet # public or pickleable), have the subprocess to send a list of # keys, not a dict_keys object. sorted() will take a dict_keys # (no subprocess) or a list. # # There is also an obscure bug in sorted(dict) where the # interpreter gets into a loop requesting non-existing dict[0], # dict[1], dict[2], etc from the RemoteDebugger.DictProxy. ### keys_list = dict.keys() names = sorted(keys_list) ### row = 0 for name in names: value = dict[name] svalue = self.repr.repr(value) # repr(value) # Strip extra quotes caused by calling repr on the (already) # repr'd value sent across the RPC interface: if rpc_client: svalue = svalue[1:-1] l = Label(subframe, text=name) l.grid(row=row, column=0, sticky="nw") l = Entry(subframe, width=0, borderwidth=0) l.insert(0, svalue) l.grid(row=row, column=1, sticky="nw") row = row+1 self.dict = dict # XXX Could we use a <Configure> callback for the following? subframe.update_idletasks() # Alas! width = subframe.winfo_reqwidth() height = subframe.winfo_reqheight() canvas = self.canvas self.canvas["scrollregion"] = (0, 0, width, height) if height > 300: canvas["height"] = 300 frame.pack(expand=1) else: canvas["height"] = height frame.pack(expand=0) def close(self): self.frame.destroy()
apache-2.0
5,973,071,751,481,614,000
32.268293
79
0.539895
false
neumerance/cloudloon2
openstack_dashboard/openstack/common/rpc/matchmaker_ring.py
19
3692
# vim: tabstop=4 shiftwidth=4 softtabstop=4 # Copyright 2011-2013 Cloudscaling Group, Inc # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ The MatchMaker classes should except a Topic or Fanout exchange key and return keys for direct exchanges, per (approximate) AMQP parlance. """ import itertools import json from oslo.config import cfg from openstack_dashboard.openstack.common.gettextutils import _ from openstack_dashboard.openstack.common import log as logging from openstack_dashboard.openstack.common.rpc import matchmaker as mm matchmaker_opts = [ # Matchmaker ring file cfg.StrOpt('ringfile', deprecated_name='matchmaker_ringfile', deprecated_group='DEFAULT', default='/etc/oslo/matchmaker_ring.json', help='Matchmaker ring file (JSON)'), ] CONF = cfg.CONF CONF.register_opts(matchmaker_opts, 'matchmaker_ring') LOG = logging.getLogger(__name__) class RingExchange(mm.Exchange): """ Match Maker where hosts are loaded from a static file containing a hashmap (JSON formatted). __init__ takes optional ring dictionary argument, otherwise loads the ringfile from CONF.mathcmaker_ringfile. """ def __init__(self, ring=None): super(RingExchange, self).__init__() if ring: self.ring = ring else: fh = open(CONF.matchmaker_ring.ringfile, 'r') self.ring = json.load(fh) fh.close() self.ring0 = {} for k in self.ring.keys(): self.ring0[k] = itertools.cycle(self.ring[k]) def _ring_has(self, key): if key in self.ring0: return True return False class RoundRobinRingExchange(RingExchange): """A Topic Exchange based on a hashmap.""" def __init__(self, ring=None): super(RoundRobinRingExchange, self).__init__(ring) def run(self, key): if not self._ring_has(key): LOG.warn( _("No key defining hosts for topic '%s', " "see ringfile") % (key, ) ) return [] host = next(self.ring0[key]) return [(key + '.' + host, host)] class FanoutRingExchange(RingExchange): """Fanout Exchange based on a hashmap.""" def __init__(self, ring=None): super(FanoutRingExchange, self).__init__(ring) def run(self, key): # Assume starts with "fanout~", strip it for lookup. nkey = key.split('fanout~')[1:][0] if not self._ring_has(nkey): LOG.warn( _("No key defining hosts for topic '%s', " "see ringfile") % (nkey, ) ) return [] return map(lambda x: (key + '.' + x, x), self.ring[nkey]) class MatchMakerRing(mm.MatchMakerBase): """ Match Maker where hosts are loaded from a static hashmap. """ def __init__(self, ring=None): super(MatchMakerRing, self).__init__() self.add_binding(mm.FanoutBinding(), FanoutRingExchange(ring)) self.add_binding(mm.DirectBinding(), mm.DirectExchange()) self.add_binding(mm.TopicBinding(), RoundRobinRingExchange(ring))
apache-2.0
1,185,011,274,033,428,700
31.385965
78
0.626219
false
migue/voltdb
lib/python/voltcli/voltadmin.d/save.py
1
3812
# This file is part of VoltDB. # Copyright (C) 2008-2017 VoltDB Inc. # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with VoltDB. If not, see <http://www.gnu.org/licenses/>. import os import urllib @VOLT.Command( bundles = VOLT.AdminBundle(), description = 'Save a VoltDB database snapshot.', options = ( VOLT.BooleanOption('-b', '--blocking', 'blocking', 'block transactions and wait until the snapshot completes', default = False), VOLT.EnumOption('-f', '--format', 'format', 'snapshot format', 'native', 'csv', default = 'native'), VOLT.StringListOption(None, '--tables', 'tables', 'tables to include in the snapshot', default = None), VOLT.StringListOption(None, '--skiptables', 'skip_tables', 'tables to skip in the snapshot', default = None) ), arguments=( VOLT.PathArgument('directory', 'the snapshot server directory', absolute=True, optional=True), VOLT.StringArgument('nonce', 'the unique snapshot identifier (nonce)', optional=True) ) ) def save(runner): uri = None dir_specified = False if runner.opts.directory is not None: uri = 'file://%s' % urllib.quote(runner.opts.directory) dir_specified = True nonce = None if runner.opts.nonce is not None: nonce = runner.opts.nonce.replace('"', '\\"') elif dir_specified: runner.abort('When a DIRECTORY is given a NONCE must be specified as well.') else: runner.opts.format = 'native' runner.opts.tables = None runner.opts.skip_tables = None if runner.opts.blocking: blocking = 'true' else: blocking = 'false' if uri is not None: if nonce is not None: raw_json_opts = ['uripath:"%s"' % (uri), 'nonce:"%s"' % (nonce), 'block:%s' % (blocking), 'format:"%s"' % (runner.opts.format)] else: raw_json_opts = ['uripath:"%s"' % (uri), 'block:%s' % (blocking), 'format:"%s"' % (runner.opts.format)] else: if nonce is not None: raw_json_opts = ['uripath:"%s"' % (uri), 'nonce:"%s"' % (nonce), 'block:%s' % (blocking), 'format:"%s"' % (runner.opts.format)] else: raw_json_opts = ['block:%s' % (blocking), 'format:"%s"' % (runner.opts.format)] if runner.opts.tables: raw_json_opts.append('tables:%s' % (runner.opts.tables)) if runner.opts.skip_tables: raw_json_opts.append('skiptables:%s' % (runner.opts.skip_tables)) runner.verbose_info('@SnapshotSave "%s"' % raw_json_opts) columns = [VOLT.FastSerializer.VOLTTYPE_STRING] response = runner.call_proc('@SnapshotSave', columns, ['{%s}' % (','.join(raw_json_opts))]) print response.table(0).format_table(caption = 'Snapshot Save Results')
agpl-3.0
7,709,832,698,870,177,000
41.355556
106
0.554302
false
weese/seqan
misc/seqan_instrumentation/py2exe/dist/classes/requests/packages/urllib3/util.py
41
3789
# urllib3/util.py # Copyright 2008-2012 Andrey Petrov and contributors (see CONTRIBUTORS.txt) # # This module is part of urllib3 and is released under # the MIT License: http://www.opensource.org/licenses/mit-license.php from base64 import b64encode try: from select import poll, POLLIN except ImportError: # `poll` doesn't exist on OSX and other platforms poll = False try: from select import select except ImportError: # `select` doesn't exist on AppEngine. select = False from .packages import six from .exceptions import LocationParseError def make_headers(keep_alive=None, accept_encoding=None, user_agent=None, basic_auth=None): """ Shortcuts for generating request headers. :param keep_alive: If ``True``, adds 'connection: keep-alive' header. :param accept_encoding: Can be a boolean, list, or string. ``True`` translates to 'gzip,deflate'. List will get joined by comma. String will be used as provided. :param user_agent: String representing the user-agent you want, such as "python-urllib3/0.6" :param basic_auth: Colon-separated username:password string for 'authorization: basic ...' auth header. Example: :: >>> make_headers(keep_alive=True, user_agent="Batman/1.0") {'connection': 'keep-alive', 'user-agent': 'Batman/1.0'} >>> make_headers(accept_encoding=True) {'accept-encoding': 'gzip,deflate'} """ headers = {} if accept_encoding: if isinstance(accept_encoding, str): pass elif isinstance(accept_encoding, list): accept_encoding = ','.join(accept_encoding) else: accept_encoding = 'gzip,deflate' headers['accept-encoding'] = accept_encoding if user_agent: headers['user-agent'] = user_agent if keep_alive: headers['connection'] = 'keep-alive' if basic_auth: headers['authorization'] = 'Basic ' + \ b64encode(six.b(basic_auth)).decode('utf-8') return headers def get_host(url): """ Given a url, return its scheme, host and port (None if it's not there). For example: :: >>> get_host('http://google.com/mail/') ('http', 'google.com', None) >>> get_host('google.com:80') ('http', 'google.com', 80) """ # This code is actually similar to urlparse.urlsplit, but much # simplified for our needs. port = None scheme = 'http' if '://' in url: scheme, url = url.split('://', 1) if '/' in url: url, _path = url.split('/', 1) if '@' in url: _auth, url = url.split('@', 1) if ':' in url: url, port = url.split(':', 1) if not port.isdigit(): raise LocationParseError("Failed to parse: %s" % url) port = int(port) return scheme, url, port def is_connection_dropped(conn): """ Returns True if the connection is dropped and should be closed. :param conn: ``HTTPConnection`` object. Note: For platforms like AppEngine, this will always return ``False`` to let the platform handle connection recycling transparently for us. """ sock = getattr(conn, 'sock', False) if not sock: #Platform-specific: AppEngine return False if not poll: # Platform-specific if not select: #Platform-specific: AppEngine return False return select([sock], [], [], 0.0)[0] # This version is better on platforms that support it. p = poll() p.register(sock, POLLIN) for (fno, ev) in p.poll(0.0): if fno == sock.fileno(): # Either data is buffered (bad), or the connection is dropped. return True
bsd-3-clause
3,920,647,605,950,137,300
26.860294
79
0.604117
false
lemonade512/BluebonnetsPointsApp
bluebonnetspointsapp/lib/pbr/builddoc.py
18
9083
# Copyright 2011 OpenStack LLC. # Copyright 2012-2013 Hewlett-Packard Development Company, L.P. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from distutils import log import fnmatch import os import pkg_resources import sys import warnings try: import cStringIO except ImportError: import io as cStringIO try: from sphinx import apidoc from sphinx import application from sphinx import config from sphinx import setup_command except Exception as e: # NOTE(dhellmann): During the installation of docutils, setuptools # tries to import pbr code to find the egg_info.writer hooks. That # imports this module, which imports sphinx, which imports # docutils, which is being installed. Because docutils uses 2to3 # to convert its code during installation under python 3, the # import fails, but it fails with an error other than ImportError # (today it's a NameError on StandardError, an exception base # class). Convert the exception type here so it can be caught in # packaging.py where we try to determine if we can import and use # sphinx by importing this module. See bug #1403510 for details. raise ImportError(str(e)) from pbr import git from pbr import options _rst_template = """%(heading)s %(underline)s .. automodule:: %(module)s :members: :undoc-members: :show-inheritance: """ def _find_modules(arg, dirname, files): for filename in files: if filename.endswith('.py') and filename != '__init__.py': arg["%s.%s" % (dirname.replace('/', '.'), filename[:-3])] = True class LocalBuildDoc(setup_command.BuildDoc): command_name = 'build_sphinx' builders = ['html', 'man'] def _get_source_dir(self): option_dict = self.distribution.get_option_dict('build_sphinx') if 'source_dir' in option_dict: source_dir = os.path.join(option_dict['source_dir'][1], 'api') else: source_dir = 'doc/source/api' if not os.path.exists(source_dir): os.makedirs(source_dir) return source_dir def generate_autoindex(self, excluded_modules=None): log.info("[pbr] Autodocumenting from %s" % os.path.abspath(os.curdir)) modules = {} source_dir = self._get_source_dir() for pkg in self.distribution.packages: if '.' not in pkg: for dirpath, dirnames, files in os.walk(pkg): _find_modules(modules, dirpath, files) def include(module): return not any(fnmatch.fnmatch(module, pat) for pat in excluded_modules) module_list = sorted(mod for mod in modules.keys() if include(mod)) autoindex_filename = os.path.join(source_dir, 'autoindex.rst') with open(autoindex_filename, 'w') as autoindex: autoindex.write(""".. toctree:: :maxdepth: 1 """) for module in module_list: output_filename = os.path.join(source_dir, "%s.rst" % module) heading = "The :mod:`%s` Module" % module underline = "=" * len(heading) values = dict(module=module, heading=heading, underline=underline) log.info("[pbr] Generating %s" % output_filename) with open(output_filename, 'w') as output_file: output_file.write(_rst_template % values) autoindex.write(" %s.rst\n" % module) def _sphinx_tree(self): source_dir = self._get_source_dir() cmd = ['apidoc', '.', '-H', 'Modules', '-o', source_dir] apidoc.main(cmd + self.autodoc_tree_excludes) def _sphinx_run(self): if not self.verbose: status_stream = cStringIO.StringIO() else: status_stream = sys.stdout confoverrides = {} if self.version: confoverrides['version'] = self.version if self.release: confoverrides['release'] = self.release if self.today: confoverrides['today'] = self.today sphinx_config = config.Config(self.config_dir, 'conf.py', {}, []) sphinx_ver = pkg_resources.get_distribution("sphinx").version if pkg_resources.parse_version(sphinx_ver) > \ pkg_resources.parse_version('1.2.3'): sphinx_config.init_values(warnings.warn) else: sphinx_config.init_values() if self.builder == 'man' and len(sphinx_config.man_pages) == 0: return app = application.Sphinx( self.source_dir, self.config_dir, self.builder_target_dir, self.doctree_dir, self.builder, confoverrides, status_stream, freshenv=self.fresh_env, warningiserror=False) try: app.build(force_all=self.all_files) except Exception as err: from docutils import utils if isinstance(err, utils.SystemMessage): sys.stder.write('reST markup error:\n') sys.stderr.write(err.args[0].encode('ascii', 'backslashreplace')) sys.stderr.write('\n') else: raise if self.link_index: src = app.config.master_doc + app.builder.out_suffix dst = app.builder.get_outfilename('index') os.symlink(src, dst) def run(self): option_dict = self.distribution.get_option_dict('pbr') if git._git_is_installed(): git.write_git_changelog(option_dict=option_dict) git.generate_authors(option_dict=option_dict) tree_index = options.get_boolean_option(option_dict, 'autodoc_tree_index_modules', 'AUTODOC_TREE_INDEX_MODULES') auto_index = options.get_boolean_option(option_dict, 'autodoc_index_modules', 'AUTODOC_INDEX_MODULES') if not os.getenv('SPHINX_DEBUG'): # NOTE(afazekas): These options can be used together, # but they do a very similar thing in a different way if tree_index: self._sphinx_tree() if auto_index: self.generate_autoindex( set(option_dict.get( "autodoc_exclude_modules", [None, ""])[1].split())) for builder in self.builders: self.builder = builder self.finalize_options() self.project = self.distribution.get_name() self.version = self.distribution.get_version() self.release = self.distribution.get_version() if options.get_boolean_option(option_dict, 'warnerrors', 'WARNERRORS'): self._sphinx_run() else: setup_command.BuildDoc.run(self) def initialize_options(self): # Not a new style class, super keyword does not work. setup_command.BuildDoc.initialize_options(self) # NOTE(dstanek): exclude setup.py from the autodoc tree index # builds because all projects will have an issue with it self.autodoc_tree_excludes = ['setup.py'] def finalize_options(self): # Not a new style class, super keyword does not work. setup_command.BuildDoc.finalize_options(self) # Handle builder option from command line - override cfg option_dict = self.distribution.get_option_dict('build_sphinx') if 'command line' in option_dict.get('builder', [[]])[0]: self.builders = option_dict['builder'][1] # Allow builders to be configurable - as a comma separated list. if not isinstance(self.builders, list) and self.builders: self.builders = self.builders.split(',') # NOTE(dstanek): check for autodoc tree exclusion overrides # in the setup.cfg opt = 'autodoc_tree_excludes' option_dict = self.distribution.get_option_dict('pbr') if opt in option_dict: self.autodoc_tree_excludes = option_dict[opt][1] self.ensure_string_list(opt) class LocalBuildLatex(LocalBuildDoc): builders = ['latex'] command_name = 'build_sphinx_latex'
gpl-3.0
-130,640,983,658,371,090
38.491304
78
0.58582
false
marcusmueller/gnuradio
grc/core/generator/cpp_top_block.py
3
14845
import codecs import yaml import operator import os import tempfile import textwrap import re from mako.template import Template from .. import Messages, blocks from ..Constants import TOP_BLOCK_FILE_MODE from .FlowGraphProxy import FlowGraphProxy from ..utils import expr_utils from .top_block import TopBlockGenerator DATA_DIR = os.path.dirname(__file__) HEADER_TEMPLATE = os.path.join(DATA_DIR, 'cpp_templates/flow_graph.hpp.mako') SOURCE_TEMPLATE = os.path.join(DATA_DIR, 'cpp_templates/flow_graph.cpp.mako') CMAKE_TEMPLATE = os.path.join(DATA_DIR, 'cpp_templates/CMakeLists.txt.mako') header_template = Template(filename=HEADER_TEMPLATE) source_template = Template(filename=SOURCE_TEMPLATE) cmake_template = Template(filename=CMAKE_TEMPLATE) class CppTopBlockGenerator(TopBlockGenerator): def __init__(self, flow_graph, file_path): """ Initialize the C++ top block generator object. Args: flow_graph: the flow graph object file_path: the path where we want to create a new directory with C++ files """ self._flow_graph = FlowGraphProxy(flow_graph) self._generate_options = self._flow_graph.get_option('generate_options') self._mode = TOP_BLOCK_FILE_MODE # Handle the case where the directory is read-only # In this case, use the system's temp directory if not os.access(file_path, os.W_OK): file_path = tempfile.gettempdir() # When generating C++ code, we create a new directory # (file_path) and generate the files inside that directory filename = self._flow_graph.get_option('id') self.file_path = os.path.join(file_path, filename) self._dirname = file_path def write(self): """create directory, generate output and write it to files""" self._warnings() fg = self._flow_graph platform = fg.parent self.title = fg.get_option('title') or fg.get_option('id').replace('_', ' ').title() variables = fg.get_cpp_variables() parameters = fg.get_parameters() monitors = fg.get_monitors() self._variable_types() self._parameter_types() self.namespace = { 'flow_graph': fg, 'variables': variables, 'parameters': parameters, 'monitors': monitors, 'generate_options': self._generate_options, 'version': platform.config.version } if not os.path.exists(self.file_path): os.makedirs(self.file_path) for filename, data in self._build_cpp_header_code_from_template(): with codecs.open(filename, 'w', encoding='utf-8') as fp: fp.write(data) if not self._generate_options.startswith('hb'): if not os.path.exists(os.path.join(self.file_path, 'build')): os.makedirs(os.path.join(self.file_path, 'build')) for filename, data in self._build_cpp_source_code_from_template(): with codecs.open(filename, 'w', encoding='utf-8') as fp: fp.write(data) if fg.get_option('gen_cmake') == 'On': for filename, data in self._build_cmake_code_from_template(): with codecs.open(filename, 'w', encoding='utf-8') as fp: fp.write(data) def _build_cpp_source_code_from_template(self): """ Convert the flow graph to a C++ source file. Returns: a string of C++ code """ file_path = self.file_path + '/' + self._flow_graph.get_option('id') + '.cpp' output = [] flow_graph_code = source_template.render( title=self.title, includes=self._includes(), blocks=self._blocks(), callbacks=self._callbacks(), connections=self._connections(), **self.namespace ) # strip trailing white-space flow_graph_code = "\n".join(line.rstrip() for line in flow_graph_code.split("\n")) output.append((file_path, flow_graph_code)) return output def _build_cpp_header_code_from_template(self): """ Convert the flow graph to a C++ header file. Returns: a string of C++ code """ file_path = self.file_path + '/' + self._flow_graph.get_option('id') + '.hpp' output = [] flow_graph_code = header_template.render( title=self.title, includes=self._includes(), blocks=self._blocks(), callbacks=self._callbacks(), connections=self._connections(), **self.namespace ) # strip trailing white-space flow_graph_code = "\n".join(line.rstrip() for line in flow_graph_code.split("\n")) output.append((file_path, flow_graph_code)) return output def _build_cmake_code_from_template(self): """ Convert the flow graph to a CMakeLists.txt file. Returns: a string of CMake code """ filename = 'CMakeLists.txt' file_path = os.path.join(self.file_path, filename) cmake_tuples = [] cmake_opt = self._flow_graph.get_option("cmake_opt") cmake_opt = " " + cmake_opt # To make sure we get rid of the "-D"s when splitting for opt_string in cmake_opt.split(" -D"): opt_string = opt_string.strip() if opt_string: cmake_tuples.append(tuple(opt_string.split("="))) output = [] flow_graph_code = cmake_template.render( title=self.title, includes=self._includes(), blocks=self._blocks(), callbacks=self._callbacks(), connections=self._connections(), links=self._links(), cmake_tuples=cmake_tuples, **self.namespace ) # strip trailing white-space flow_graph_code = "\n".join(line.rstrip() for line in flow_graph_code.split("\n")) output.append((file_path, flow_graph_code)) return output def _links(self): fg = self._flow_graph links = fg.links() seen = set() output = [] for link_list in links: if link_list: for link in link_list: seen.add(link) return list(seen) def _includes(self): fg = self._flow_graph includes = fg.includes() seen = set() output = [] def is_duplicate(l): if l.startswith('#include') and l in seen: return True seen.add(line) return False for block_ in includes: for include_ in block_: if not include_: continue line = include_.rstrip() if not is_duplicate(line): output.append(line) return output def _blocks(self): fg = self._flow_graph parameters = fg.get_parameters() # List of blocks not including variables and imports and parameters and disabled def _get_block_sort_text(block): code = block.cpp_templates.render('make').replace(block.name, ' ') try: code += block.params['gui_hint'].get_value() # Newer gui markup w/ qtgui except: pass return code blocks = [ b for b in fg.blocks if b.enabled and not (b.get_bypassed() or b.is_import or b in parameters or b.key == 'options') ] blocks = expr_utils.sort_objects(blocks, operator.attrgetter('name'), _get_block_sort_text) blocks_make = [] for block in blocks: translations = block.cpp_templates.render('translations') make = block.cpp_templates.render('make') declarations = block.cpp_templates.render('declarations') if translations: translations = yaml.safe_load(translations) else: translations = {} translations.update( {r"gr\.sizeof_([\w_]+)": r"sizeof(\1)"} ) for key in translations: make = re.sub(key.replace("\\\\", "\\"), translations[key],make) declarations = declarations.replace(key, translations[key]) if make: blocks_make.append((block, make, declarations)) elif 'qt' in block.key: # The QT Widget blocks are technically variables, # but they contain some code we don't want to miss blocks_make.append(('', make, declarations)) return blocks_make def _variable_types(self): fg = self._flow_graph variables = fg.get_cpp_variables() for var in variables: var.decide_type() def _parameter_types(self): fg = self._flow_graph parameters = fg.get_parameters() for param in parameters: type_translation = {'eng_float' : 'double', 'intx' : 'int', 'std' : 'std::string'}; param.vtype = type_translation[param.params['type'].value] def _callbacks(self): fg = self._flow_graph variables = fg.get_cpp_variables() parameters = fg.get_parameters() # List of variable names var_ids = [var.name for var in parameters + variables] replace_dict = dict((var_id, 'this->' + var_id) for var_id in var_ids) callbacks_all = [] for block in fg.iter_enabled_blocks(): callbacks_all.extend(expr_utils.expr_replace(cb, replace_dict) for cb in block.get_cpp_callbacks()) # Map var id to callbacks def uses_var_id(callback): used = expr_utils.get_variable_dependencies(callback, [var_id]) return used and ('this->' + var_id in callback) # callback might contain var_id itself callbacks = {} for var_id in var_ids: callbacks[var_id] = [callback for callback in callbacks_all if uses_var_id(callback)] return callbacks def _connections(self): fg = self._flow_graph templates = {key: Template(text) for key, text in fg.parent_platform.cpp_connection_templates.items()} def make_port_sig(port): if port.parent.key in ('pad_source', 'pad_sink'): block = 'self()' key = fg.get_pad_port_global_key(port) else: block = 'this->' + port.parent_block.name key = port.key if not key.isdigit(): key = re.findall(r'\d+', key)[0] return '{block}, {key}'.format(block=block, key=key) connections = fg.get_enabled_connections() # Get the virtual blocks and resolve their connections connection_factory = fg.parent_platform.Connection virtual = [c for c in connections if isinstance(c.source_block, blocks.VirtualSource)] for connection in virtual: sink = connection.sink_port for source in connection.source_port.resolve_virtual_source(): resolved = connection_factory(fg.orignal_flowgraph, source, sink) connections.append(resolved) # Remove the virtual connection connections.remove(connection) # Bypassing blocks: Need to find all the enabled connections for the block using # the *connections* object rather than get_connections(). Create new connections # that bypass the selected block and remove the existing ones. This allows adjacent # bypassed blocks to see the newly created connections to downstream blocks, # allowing them to correctly construct bypass connections. bypassed_blocks = fg.get_bypassed_blocks() for block in bypassed_blocks: # Get the upstream connection (off of the sink ports) # Use *connections* not get_connections() source_connection = [c for c in connections if c.sink_port == block.sinks[0]] # The source connection should never have more than one element. assert (len(source_connection) == 1) # Get the source of the connection. source_port = source_connection[0].source_port # Loop through all the downstream connections for sink in (c for c in connections if c.source_port == block.sources[0]): if not sink.enabled: # Ignore disabled connections continue connection = connection_factory(fg.orignal_flowgraph, source_port, sink.sink_port) connections.append(connection) # Remove this sink connection connections.remove(sink) # Remove the source connection connections.remove(source_connection[0]) # List of connections where each endpoint is enabled (sorted by domains, block names) def by_domain_and_blocks(c): return c.type, c.source_block.name, c.sink_block.name rendered = [] for con in sorted(connections, key=by_domain_and_blocks): template = templates[con.type] if con.source_port.dtype != 'bus': code = template.render(make_port_sig=make_port_sig, source=con.source_port, sink=con.sink_port) if not self._generate_options.startswith('hb'): code = 'this->tb->' + code rendered.append(code) else: # Bus ports need to iterate over the underlying connections and then render # the code for each subconnection porta = con.source_port portb = con.sink_port fg = self._flow_graph if porta.dtype == 'bus' and portb.dtype == 'bus': # which bus port is this relative to the bus structure if len(porta.bus_structure) == len(portb.bus_structure): for port_num in porta.bus_structure: hidden_porta = porta.parent.sources[port_num] hidden_portb = portb.parent.sinks[port_num] connection = fg.parent_platform.Connection( parent=self, source=hidden_porta, sink=hidden_portb) code = template.render(make_port_sig=make_port_sig, source=hidden_porta, sink=hidden_portb) if not self._generate_options.startswith('hb'): code = 'this->tb->' + code rendered.append(code) return rendered
gpl-3.0
4,455,088,950,805,332,000
36.677665
119
0.567666
false
arante/pyloc
py2/cool-things/gvr_towers.py
2
5500
# hanoi.py # Animated Towers of Hanoi using Tk with optional bitmap file in # background. # # Usage: tkhanoi [n [bitmapfile]] # # n is the number of pieces to animate; default is 4, maximum 15. # # The bitmap file can be any X11 bitmap file (look in # /usr/include/X11/bitmaps for samples); it is displayed as the # background of the animation. Default is no bitmap. # This uses Steen Lumholt's Tk interface from Tkinter import * # Basic Towers-of-Hanoi algorithm: move n pieces from a to b, using c # as temporary. For each move, call report() def hanoi(n, a, b, c, report): if n <= 0: return hanoi(n-1, a, c, b, report) report(n, a, b) hanoi(n-1, c, b, a, report) # The graphical interface class Tkhanoi: # Create our objects def __init__(self, n, bitmap = None): self.n = n self.tk = tk = Tk() self.canvas = c = Canvas(tk) c.pack() width, height = tk.getint(c['width']), tk.getint(c['height']) # Add background bitmap if bitmap: self.bitmap = c.create_bitmap(width/2, height/2, {'bitmap': bitmap, 'foreground': 'blue'}) # Generate pegs pegwidth = 10 pegheight = height/2 pegdist = width/3 x1, y1 = (pegdist-pegwidth)/2, height*1/3 x2, y2 = x1+pegwidth, y1+pegheight self.pegs = [] p = c.create_rectangle(x1, y1, x2, y2, {'fill': 'black'}) self.pegs.append(p) x1, x2 = x1+pegdist, x2+pegdist p = c.create_rectangle(x1, y1, x2, y2, {'fill': 'black'}) self.pegs.append(p) x1, x2 = x1+pegdist, x2+pegdist p = c.create_rectangle(x1, y1, x2, y2, {'fill': 'black'}) self.pegs.append(p) self.tk.update() # Generate pieces pieceheight = pegheight/16 maxpiecewidth = pegdist*2/3 minpiecewidth = 2*pegwidth self.pegstate = [[], [], []] self.pieces = {} x1, y1 = (pegdist-maxpiecewidth)/2, y2-pieceheight-2 x2, y2 = x1+maxpiecewidth, y1+pieceheight dx = (maxpiecewidth-minpiecewidth) / (2*max(1, n-1)) for i in range(n, 0, -1): p = c.create_rectangle(x1, y1, x2, y2, {'fill': 'red'}) self.pieces[i] = p self.pegstate[0].append(i) x1, x2 = x1 + dx, x2-dx y1, y2 = y1 - pieceheight-2, y2-pieceheight-2 self.tk.update() self.tk.after(25) # Run -- never returns def run(self): hanoi(self.n, 0, 1, 2, self.report) self.tk.mainloop() # Hang around... # Reporting callback for the actual hanoi function def report(self, i, a, b): if self.pegstate[a][-1] != i: raise RuntimeError # Assertion del self.pegstate[a][-1] p = self.pieces[i] c = self.canvas # Lift the piece above peg a ax1, ay1, ax2, ay2 = c.bbox(self.pegs[a]) while 1: x1, y1, x2, y2 = c.bbox(p) if y2 < ay1: break c.move(p, 0, -1) self.tk.update() # Move it towards peg b bx1, by1, bx2, by2 = c.bbox(self.pegs[b]) newcenter = (bx1+bx2)/2 while 1: x1, y1, x2, y2 = c.bbox(p) center = (x1+x2)/2 if center == newcenter: break if center > newcenter: c.move(p, -1, 0) else: c.move(p, 1, 0) self.tk.update() # Move it down on top of the previous piece pieceheight = y2-y1-2 newbottom = by2 - pieceheight*len(self.pegstate[b]) - 2 while 1: x1, y1, x2, y2 = c.bbox(p) if y2 >= newbottom: break c.move(p, 0, 1) self.tk.update() # Update peg state self.pegstate[b].append(i) # Main program def main(): import sys, string # First argument is number of pegs, default 4 if sys.argv[1:]: n = string.atoi(sys.argv[1]) else: n = 4 # Second argument is bitmap file, default none if sys.argv[2:]: bitmap = sys.argv[2] # Reverse meaning of leading '@' compared to Tk if bitmap[0] == '@': bitmap = bitmap[1:] else: bitmap = '@' + bitmap else: bitmap = None # Create the graphical objects... h = Tkhanoi(n, bitmap) # ...and run! h.run() # Call main when run as script if __name__ == '__main__': main()
gpl-3.0
-3,750,815,699,398,943,000
35.414966
77
0.431455
false
sindhus/hasjob
alembic/versions/c55612fb52a_organization.py
4
3065
"""Organization Revision ID: c55612fb52a Revises: 1fce9db567a5 Create Date: 2015-01-27 02:02:42.510116 """ # revision identifiers, used by Alembic. revision = 'c55612fb52a' down_revision = '1fce9db567a5' from alembic import op import sqlalchemy as sa def upgrade(): op.create_table('organization', sa.Column('id', sa.Integer(), nullable=False), sa.Column('created_at', sa.DateTime(), nullable=False), sa.Column('updated_at', sa.DateTime(), nullable=False), sa.Column('domain', sa.Unicode(length=253), nullable=True), sa.Column('logo_image', sa.Unicode(length=250), nullable=True), sa.Column('cover_image', sa.Unicode(length=250), nullable=True), sa.Column('description', sa.UnicodeText(), nullable=False), sa.Column('status', sa.Integer(), nullable=False), sa.Column('userid', sa.Unicode(length=22), nullable=False), sa.Column('name', sa.Unicode(length=250), nullable=False), sa.Column('title', sa.Unicode(length=250), nullable=False), sa.PrimaryKeyConstraint('id'), sa.UniqueConstraint('name'), sa.UniqueConstraint('userid') ) op.create_index(op.f('ix_organization_domain'), 'organization', ['domain'], unique=False) op.create_table('org_location', sa.Column('id', sa.Integer(), nullable=False), sa.Column('created_at', sa.DateTime(), nullable=False), sa.Column('updated_at', sa.DateTime(), nullable=False), sa.Column('latitude', sa.Numeric(), nullable=True), sa.Column('longitude', sa.Numeric(), nullable=True), sa.Column('org_id', sa.Integer(), nullable=False), sa.Column('title', sa.Unicode(length=80), nullable=True), sa.Column('address1', sa.Unicode(length=80), nullable=True), sa.Column('address2', sa.Unicode(length=80), nullable=True), sa.Column('city', sa.Unicode(length=80), nullable=True), sa.Column('state', sa.Unicode(length=80), nullable=True), sa.Column('postcode', sa.Unicode(length=16), nullable=True), sa.Column('country', sa.Unicode(length=80), nullable=True), sa.Column('geonameid', sa.Integer(), nullable=True), sa.Column('url_id', sa.Integer(), nullable=False), sa.ForeignKeyConstraint(['org_id'], ['organization.id'], ), sa.PrimaryKeyConstraint('id'), sa.UniqueConstraint('org_id', 'url_id') ) op.create_index(op.f('ix_org_location_geonameid'), 'org_location', ['geonameid'], unique=False) op.add_column('jobpost', sa.Column('org_id', sa.Integer(), nullable=True)) op.create_foreign_key('jobpost_org_id_fkey', 'jobpost', 'organization', ['org_id'], ['id'], ondelete='SET NULL') def downgrade(): op.drop_constraint('jobpost_org_id_fkey', 'jobpost', type_='foreignkey') op.drop_column('jobpost', 'org_id') op.drop_index(op.f('ix_org_location_geonameid'), table_name='org_location') op.drop_table('org_location') op.drop_index(op.f('ix_organization_domain'), table_name='organization') op.drop_table('organization')
agpl-3.0
6,588,068,108,834,663,000
45.439394
116
0.647961
false
mjun/lightdm-gtk-greeter-settings
lightdm_gtk_greeter_settings/IconChooserDialog.py
1
15171
#!/usr/bin/env python # -*- Mode: Python; coding: utf-8; indent-tabs-mode: nil; tab-width: 4 -*- # LightDM GTK Greeter Settings # Copyright (C) 2014 Andrew P. <[email protected]>, Matko Jun <[email protected]> # # This program is free software: you can redistribute it and/or modify it # under the terms of the GNU General Public License version 3, as published # by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranties of # MERCHANTABILITY, SATISFACTORY QUALITY, or FITNESS FOR A PARTICULAR # PURPOSE. See the GNU General Public License for more details. # # You should have received a copy of the GNU General Public License along # with this program. If not, see <http://www.gnu.org/licenses/>. from collections import namedtuple from gi.repository import Gtk, GObject from lightdm_gtk_greeter_settings.helpers import get_data_path, NC_, C_ __all__ = ['IconChooserDialog'] class IconChooserDialog(Gtk.Dialog): __gtype_name__ = 'IconChooserDialog' ContextsModelRow = namedtuple('ContextsModelRow', ('name', 'standard', 'title')) IconsModelRow = namedtuple('IconsModelRow', ('name', 'standard', 'context')) IconsFilterArgs = namedtuple('IconsFilterArgs', ('standard', 'context')) BUILDER_WIDGETS = ('name', 'preview', 'standard_toggle', 'spinner', 'contexts_view', 'contexts_selection', 'contexts_model', 'contexts_filter', 'icons_view', 'icons_selection', 'icons_model', 'icons_sorted', 'icons_filter') def __new__(cls): builder = Gtk.Builder() builder.add_from_file(get_data_path('%s.ui' % cls.__name__)) window = builder.get_object('icon_chooser_dialog') window._builder = builder window.__dict__.update(('_' + w, builder.get_object(w)) for w in cls.BUILDER_WIDGETS) builder.connect_signals(window) window._init_window() return window def _init_window(self): # Map ContextsModelRow fields to self._CONTEXT_{FIELD} = {field-index} for i, field in enumerate(IconChooserDialog.ContextsModelRow._fields): setattr(self, '_CONTEXT_' + field.upper(), i) # Map IconsModelRow fields to self._ICON_{FIELD} = {field-index} for i, field in enumerate(IconChooserDialog.IconsModelRow._fields): setattr(self, '_ICON_' + field.upper(), i) self._icons_loaded = False self._icon_to_select = None self._icons_filter_args = None self._contexts_view.set_row_separator_func( self._contexts_row_separator_callback, None) self._contexts_filter.set_visible_func( self._contexts_filter_visible_callback) self._icons_filter.set_visible_func( self._icons_filter_visible_callback) self._icons_sorted.set_sort_column_id(0, Gtk.SortType.ASCENDING) self._reload() def _read_icons(self): theme = Gtk.IconTheme.get_default() standard_contexts = set(name for name, title in STANDARD_CONTEXTS) self._contexts_model.clear() for name, title in STANDARD_CONTEXTS: translated_title = title and C_('icon-dialog', title) self._contexts_model.append(self.ContextsModelRow(name=name, standard=True, title= translated_title) ) for name in theme.list_contexts(): if name not in standard_contexts: self._contexts_model.append(self.ContextsModelRow(name=name, standard= False, title=name)) self._icons_model.clear() for context in theme.list_contexts(): for icon in theme.list_icons(context): row = self.IconsModelRow(name=icon, standard=icon in STANDARD_ICON_NAMES, context=context) self._icons_model.append(row) self._icons_loaded = True if self._icon_to_select: self.select_icon(self._icon_to_select) self._icon_to_select = None return False def _reload(self): GObject.idle_add(self._read_icons) def _update_contexts_filter(self): selected_iter = self._contexts_selection.get_selected()[1] selected_path = self._contexts_filter.get_path( selected_iter) if selected_iter else None self._contexts_filter.refilter() if selected_path and \ self._contexts_selection.path_is_selected(selected_path): self._update_icons_filter() def _update_icons_filter(self): model, rowiter = self._contexts_selection.get_selected() if rowiter: self._icons_filter_args = self.IconsFilterArgs( self._standard_toggle.props.active, model[rowiter][self._CONTEXT_NAME]) else: self._icons_filter_args = None self._icons_view.props.model = None self._icons_filter.refilter() self._icons_view.props.model = self._icons_sorted def _contexts_filter_visible_callback(self, model, rowiter, data): if not self._standard_toggle.props.active: return True return model[rowiter][self._CONTEXT_STANDARD] def _contexts_row_separator_callback(self, model, rowiter, data): return not model[rowiter][self._CONTEXT_NAME] and \ not model[rowiter][self._CONTEXT_TITLE] def _icons_filter_visible_callback(self, model, rowiter, data): if not self._icons_filter_args: return False if self._icons_filter_args.standard and \ not model[rowiter][self._ICON_STANDARD]: return False if not self._icons_filter_args.context: return True return model[rowiter][self._ICON_CONTEXT] == \ self._icons_filter_args.context def run(self): return super(IconChooserDialog, self).run() def get_iconname(self): return self._name.props.text def select_icon(self, name): if not self._icons_loaded: self._icon_to_select = name return if not self._icons_filter_args or \ self._icons_filter_args.context is not None: if name not in STANDARD_ICON_NAMES: self._standard_toggle.props.active = False self._contexts_selection.select_path(0) for row in self._icons_sorted: if row[self._ICON_NAME] == name: self._icons_view.set_cursor(row.path) self._icons_selection.select_path(row.path) break else: self._name.props.text = name def on_icons_selection_changed(self, selection): model, rowiter = self._icons_selection.get_selected() if rowiter: name = model[rowiter][self._ICON_NAME] self._name.props.text = name def on_contexts_selection_changed(self, selection): self._icons_selection.unselect_all() self._update_icons_filter() def on_standard_toggled(self, toggle): self._update_contexts_filter() def on_name_changed(self, entry): name = entry.props.text if not Gtk.IconTheme.get_default().has_icon(name): name = '' self._preview.props.icon_name = name #http://standards.freedesktop.org/icon-naming-spec/icon-naming-spec-latest.html STANDARD_CONTEXTS =\ ( (None, NC_('icon-dialog', 'All contexts')), (None, ''), # separator ('Actions', NC_('icon-dialog', 'Actions')), ('Applications', NC_('icon-dialog', 'Applications')), ('Categories', NC_('icon-dialog', 'Categories')), ('Devices', NC_('icon-dialog', 'Devices')), ('Emblems', NC_('icon-dialog', 'Emblems')), ('Emotes', NC_('icon-dialog', 'Emoticons')), ('International', NC_('icon-dialog', 'International')), ('MimeTypes', NC_('icon-dialog', 'MIME Types')), ('Places', NC_('icon-dialog', 'Places')), ('Status', NC_('icon-dialog', 'Status')) ) STANDARD_ICON_NAMES = \ { # Actions 'address-book-new', 'application-exit', 'appointment-new', 'call-start', 'call-stop', 'contact-new', 'document-new', 'document-open', 'document-open-recent', 'document-page-setup', 'document-print', 'document-print-preview', 'document-properties', 'document-revert', 'document-save', 'document-save-as', 'document-send', 'edit-clear', 'edit-copy', 'edit-cut', 'edit-delete', 'edit-find', 'edit-find-replace', 'edit-paste', 'edit-redo', 'edit-select-all', 'edit-undo', 'folder-new', 'format-indent-less', 'format-indent-more', 'format-justify-center', 'format-justify-fill', 'format-justify-left', 'format-justify-right', 'format-text-direction-ltr', 'format-text-direction-rtl', 'format-text-bold', 'format-text-italic', 'format-text-underline', 'format-text-strikethrough', 'go-bottom', 'go-down', 'go-first', 'go-home', 'go-jump', 'go-last', 'go-next', 'go-previous', 'go-top', 'go-up', 'help-about', 'help-contents', 'help-faq', 'insert-image', 'insert-link', 'insert-object', 'insert-text', 'list-add', 'list-remove', 'mail-forward', 'mail-mark-important', 'mail-mark-junk', 'mail-mark-notjunk', 'mail-mark-read', 'mail-mark-unread', 'mail-message-new', 'mail-reply-all', 'mail-reply-sender', 'mail-send', 'mail-send-receive', 'media-eject', 'media-playback-pause', 'media-playback-start', 'media-playback-stop', 'media-record', 'media-seek-backward', 'media-seek-forward', 'media-skip-backward', 'media-skip-forward', 'object-flip-horizontal', 'object-flip-vertical', 'object-rotate-left', 'object-rotate-right', 'process-stop', 'system-lock-screen', 'system-log-out', 'system-run', 'system-search', 'system-reboot', 'system-shutdown', 'tools-check-spelling', 'view-fullscreen', 'view-refresh', 'view-restore', 'view-sort-ascending', 'view-sort-descending', 'window-close', 'window-new', 'zoom-fit-best', 'zoom-in', 'zoom-original', 'zoom-out', # StandardApplicationIcons 'accessories-calculator', 'accessories-character-map', 'accessories-dictionary', 'accessories-text-editor', 'help-browser', 'multimedia-volume-control', 'preferences-desktop-accessibility', 'preferences-desktop-font', 'preferences-desktop-keyboard', 'preferences-desktop-locale', 'preferences-desktop-multimedia', 'preferences-desktop-screensaver', 'preferences-desktop-theme', 'preferences-desktop-wallpaper', 'system-file-manager', 'system-software-install', 'system-software-update', 'utilities-system-monitor', 'utilities-terminal', # StandardCategoryIcons 'applications-accessories', 'applications-development', 'applications-engineering', 'applications-games', 'applications-graphics', 'applications-internet', 'applications-multimedia', 'applications-office', 'applications-other', 'applications-science', 'applications-system', 'applications-utilities', 'preferences-desktop', 'preferences-desktop-peripherals', 'preferences-desktop-personal', 'preferences-other', 'preferences-system', 'preferences-system-network', 'system-help', # StandardDeviceIcons 'audio-card', 'audio-input-microphone', 'battery', 'camera-photo', 'camera-video', 'camera-web', 'computer', 'drive-harddisk', 'drive-optical', 'drive-removable-media', 'input-gaming', 'input-keyboard', 'input-mouse', 'input-tablet', 'media-flash', 'media-floppy', 'media-optical', 'media-tape', 'modem', 'multimedia-player', 'network-wired', 'network-wireless', 'pda', 'phone', 'printer', 'scanner', 'video-display', # StandardEmblemIcons 'emblem-default', 'emblem-documents', 'emblem-downloads', 'emblem-favorite', 'emblem-important', 'emblem-mail', 'emblem-photos', 'emblem-readonly', 'emblem-shared', 'emblem-symbolic-link', 'emblem-synchronized', 'emblem-system', 'emblem-unreadable', # StandardEmotionIcons 'face-angel', 'face-angry', 'face-cool', 'face-crying', 'face-devilish', 'face-embarrassed', 'face-kiss', 'face-laugh', 'face-monkey', 'face-plain', 'face-raspberry', 'face-sad', 'face-sick', 'face-smile', 'face-smile-big', 'face-smirk', 'face-surprise', 'face-tired', 'face-uncertain', 'face-wink', 'face-worried', # StandardInternationalIcons 'flag-aa', # StandardMIMETypeIcons 'application-x-executable', 'audio-x-generic', 'font-x-generic', 'image-x-generic', 'package-x-generic', 'text-html', 'text-x-generic', 'text-x-generic-template', 'text-x-script', 'video-x-generic', 'x-office-address-book', 'x-office-calendar', 'x-office-document', 'x-office-presentation', 'x-office-spreadsheet', # StandardPlaceIcons 'folder', 'folder-remote', 'network-server', 'network-workgroup', 'start-here', 'user-bookmarks', 'user-desktop', 'user-home', 'user-trash', # StandardStatusIcons 'appointment-missed', 'appointment-soon', 'audio-volume-high', 'audio-volume-low', 'audio-volume-medium', 'audio-volume-muted', 'battery-caution', 'battery-low', 'dialog-error', 'dialog-information', 'dialog-password', 'dialog-question', 'dialog-warning', 'folder-drag-accept', 'folder-open', 'folder-visiting', 'image-loading', 'image-missing', 'mail-attachment', 'mail-unread', 'mail-read', 'mail-replied', 'mail-signed', 'mail-signed-verified', 'media-playlist-repeat', 'media-playlist-shuffle', 'network-error', 'network-idle', 'network-offline', 'network-receive', 'network-transmit', 'network-transmit-receive', 'printer-error', 'printer-printing', 'security-high', 'security-medium', 'security-low', 'software-update-available', 'software-update-urgent', 'sync-error', 'sync-synchronizing', 'task-due', 'task-past-due', 'user-available', 'user-away', 'user-idle', 'user-offline', 'user-trash-full', 'weather-clear', 'weather-clear-night', 'weather-few-clouds', 'weather-few-clouds-night', 'weather-fog', 'weather-overcast', 'weather-severe-alert', 'weather-showers', 'weather-showers-scattered', 'weather-snow', 'weather-storm' }
gpl-3.0
5,935,098,429,966,021,000
46.707547
89
0.601674
false
correl/Transmission-XBMC
resources/lib/basictypes/debug.py
2
1615
"""Logging facilities for basictypes If the logging package (from Python 2.3) is available, we use it for our logging needs, otherwise we use a simplistic locally-defined class for logging. """ import traceback, cStringIO def getException(error): """Get formatted exception""" exception = str(error) file = cStringIO.StringIO() try: traceback.print_exc( limit=10, file = file ) exception = file.getvalue() finally: file.close() return exception try: import logging Log = logging.getLogger logging.basicConfig() WARN = logging.WARN ERROR = logging.ERROR INFO = logging.INFO DEBUG = logging.DEBUG logging.Logger.getException = staticmethod( getException ) logging.Logger.err = logging.Logger.error except ImportError: # does not have the logging package installed import sys DEBUG = 10 INFO = 20 WARN = 30 ERROR = 40 class Log( object ): """Stand-in logging facility""" level = WARN def __init__( self, name ): self.name = name def debug(self, message, *arguments): if self.level <= DEBUG: sys.stderr.write( 'DEBUG:%s:%s\n'%(self.name, message%arguments)) def warn( self, message, *arguments ): if self.level <= WARN: sys.stderr.write( 'WARN:%s:%s\n'%(self.name, message%arguments)) def error( self, message, *arguments ): if self.level <= ERROR: sys.stderr.write( 'ERR :%s:%s\n'%(self.name, message%arguments)) def info( self, message, *arguments ): if self.level <= INFO: sys.stderr.write( 'INFO:%s:%s\n'%(self.name, message%arguments)) def setLevel( self, level ): self.level = level getException = staticmethod( getException )
mit
-3,817,802,577,678,520,300
27.333333
69
0.695975
false
brianmckinneyrocks/django-social-auth
social_auth/context_processors.py
2
2963
from social_auth.backends import BACKENDS from social_auth.utils import group_backend_by_type from social_auth.models import User # Note: social_auth_backends and social_auth_by_type_backends don't play nice # together def social_auth_backends(request): """Load Social Auth current user data to context. Will add a output from backends_data to context under social_auth key. """ return {'social_auth': backends_data(request.user)} def social_auth_by_type_backends(request): """Load Social Auth current user data to context. Will add a output from backends_data to context under social_auth key where each entry will be grouped by backend type (openid, oauth, oauth2). """ data = backends_data(request.user) data['backends'] = group_backend_by_type(data['backends']) data['not_associated'] = group_backend_by_type(data['not_associated']) data['associated'] = group_backend_by_type(data['associated'], key=lambda assoc: assoc.provider) return {'social_auth': data} def social_auth_by_name_backends(request): """Load Social Auth current user data to context. Will add a social_auth object whose attribute names are the names of each provider, e.g. social_auth.facebook would be the facebook association or None, depending on the logged in user's current associations. Providers with a hyphen have the hyphen replaced with an underscore, e.g. google-oauth2 becomes google_oauth2 when referenced in templates. """ keys = BACKENDS.keys() accounts = dict(zip(keys, [None] * len(keys))) if isinstance(request.user, User) and request.user.is_authenticated(): for associated in request.user.social_auth.all(): accounts[associated.provider.replace('-', '_')] = associated return {'social_auth': accounts} def backends_data(user): """Return backends data for given user. Will return a dict with values: associated: UserSocialAuth model instances for currently associated accounts not_associated: Not associated (yet) backend names. backends: All backend names. If user is not authenticated, then first list is empty, and there's no difference between the second and third lists. """ available = BACKENDS.keys() values = {'associated': [], 'not_associated': available, 'backends': available} # user comes from request.user usually, on /admin/ it will be an instance # of auth.User and this code will fail if a custom User model was defined if isinstance(user, User) and user.is_authenticated(): associated = user.social_auth.all() not_associated = list(set(available) - set(assoc.provider for assoc in associated)) values['associated'] = associated values['not_associated'] = not_associated return values
bsd-3-clause
4,949,616,726,671,713,000
40.152778
80
0.673979
false
dededong/goblin-core
llvm/3.4.2/llvm-3.4.2.src/test/CodeGen/SystemZ/Large/branch-range-06.py
10
3534
# Test 64-bit COMPARE IMMEDIATE AND BRANCH in cases where the sheer number of # instructions causes some branches to be out of range. # RUN: python %s | llc -mtriple=s390x-linux-gnu | FileCheck %s # Construct: # # before0: # conditional branch to after0 # ... # beforeN: # conditional branch to after0 # main: # 0xffcc bytes, from MVIY instructions # conditional branch to main # after0: # ... # conditional branch to main # afterN: # # Each conditional branch sequence occupies 12 bytes if it uses a short # branch and 16 if it uses a long one. The ones before "main:" have to # take the branch length into account, which is 6 for short branches, # so the final (0x34 - 6) / 12 == 3 blocks can use short branches. # The ones after "main:" do not, so the first 0x34 / 12 == 4 blocks # can use short branches. The conservative algorithm we use makes # one of the forward branches unnecessarily long, as noted in the # check output below. # # CHECK: lgb [[REG:%r[0-5]]], 0(%r3) # CHECK: cghi [[REG]], 50 # CHECK: jgl [[LABEL:\.L[^ ]*]] # CHECK: lgb [[REG:%r[0-5]]], 0(%r3) # CHECK: cghi [[REG]], 51 # CHECK: jgl [[LABEL]] # CHECK: lgb [[REG:%r[0-5]]], 0(%r3) # CHECK: cghi [[REG]], 52 # CHECK: jgl [[LABEL]] # CHECK: lgb [[REG:%r[0-5]]], 0(%r3) # CHECK: cghi [[REG]], 53 # CHECK: jgl [[LABEL]] # CHECK: lgb [[REG:%r[0-5]]], 0(%r3) # CHECK: cghi [[REG]], 54 # CHECK: jgl [[LABEL]] # ...as mentioned above, the next one could be a CGIJL instead... # CHECK: lgb [[REG:%r[0-5]]], 0(%r3) # CHECK: cghi [[REG]], 55 # CHECK: jgl [[LABEL]] # CHECK: lgb [[REG:%r[0-5]]], 0(%r3) # CHECK: cgijl [[REG]], 56, [[LABEL]] # CHECK: lgb [[REG:%r[0-5]]], 0(%r3) # CHECK: cgijl [[REG]], 57, [[LABEL]] # ...main goes here... # CHECK: lgb [[REG:%r[0-5]]], 0(%r3) # CHECK: cgijl [[REG]], 100, [[LABEL:\.L[^ ]*]] # CHECK: lgb [[REG:%r[0-5]]], 0(%r3) # CHECK: cgijl [[REG]], 101, [[LABEL]] # CHECK: lgb [[REG:%r[0-5]]], 0(%r3) # CHECK: cgijl [[REG]], 102, [[LABEL]] # CHECK: lgb [[REG:%r[0-5]]], 0(%r3) # CHECK: cgijl [[REG]], 103, [[LABEL]] # CHECK: lgb [[REG:%r[0-5]]], 0(%r3) # CHECK: cghi [[REG]], 104 # CHECK: jgl [[LABEL]] # CHECK: lgb [[REG:%r[0-5]]], 0(%r3) # CHECK: cghi [[REG]], 105 # CHECK: jgl [[LABEL]] # CHECK: lgb [[REG:%r[0-5]]], 0(%r3) # CHECK: cghi [[REG]], 106 # CHECK: jgl [[LABEL]] # CHECK: lgb [[REG:%r[0-5]]], 0(%r3) # CHECK: cghi [[REG]], 107 # CHECK: jgl [[LABEL]] branch_blocks = 8 main_size = 0xffcc print 'define void @f1(i8 *%base, i8 *%stop) {' print 'entry:' print ' br label %before0' print '' for i in xrange(branch_blocks): next = 'before%d' % (i + 1) if i + 1 < branch_blocks else 'main' print 'before%d:' % i print ' %%bcur%d = load volatile i8 *%%stop' % i print ' %%bext%d = sext i8 %%bcur%d to i64' % (i, i) print ' %%btest%d = icmp slt i64 %%bext%d, %d' % (i, i, i + 50) print ' br i1 %%btest%d, label %%after0, label %%%s' % (i, next) print '' print '%s:' % next a, b = 1, 1 for i in xrange(0, main_size, 6): a, b = b, a + b offset = 4096 + b % 500000 value = a % 256 print ' %%ptr%d = getelementptr i8 *%%base, i64 %d' % (i, offset) print ' store volatile i8 %d, i8 *%%ptr%d' % (value, i) for i in xrange(branch_blocks): print ' %%acur%d = load volatile i8 *%%stop' % i print ' %%aext%d = sext i8 %%acur%d to i64' % (i, i) print ' %%atest%d = icmp slt i64 %%aext%d, %d' % (i, i, i + 100) print ' br i1 %%atest%d, label %%main, label %%after%d' % (i, i) print '' print 'after%d:' % i print ' ret void' print '}'
bsd-3-clause
-6,939,034,083,382,276,000
31.422018
77
0.575552
false
daherk2/authomatic
tests/functional_tests/expected_values/tumblr.py
12
2365
import re import fixtures import constants from authomatic.providers import oauth1 conf = fixtures.get_configuration('tumblr') CONFIG = { 'logout_url': 'https://www.tumblr.com/logout', 'login_xpath': '//*[@id="signup_email"]', 'password_xpath': '//*[@id="signup_password"]', 'consent_xpaths': [ '//*[@id="api_v1_oauth_authorize"]' '/div[2]/div/div[1]/div/div/div[2]/form/button[2]', ], 'consent_wait_seconds': 3, 'class_': oauth1.Tumblr, 'user': { 'birth_date': None, 'city': None, 'country': None, 'email': None, 'gender': None, 'id': conf.user_id, 'first_name': None, 'last_name': None, 'link': None, 'locale': None, 'location': None, 'name': conf.user_name, 'nickname': None, 'phone': None, 'picture': None, 'postal_code': None, 'timezone': None, 'username': conf.user_username, }, 'content_should_contain': [ conf.user_id, conf.user_name, conf.user_username, # User info JSON keys 'admin', 'ask', 'ask_anon', 'ask_page_title', 'blogs', 'can_send_fan_mail', 'default_post_format', 'description', 'drafts', 'facebook', 'facebook_opengraph_enabled', 'followed', 'followers', 'following', 'is_nsfw', 'likes', 'messages', 'meta', 'msg', 'name', 'posts', 'primary', 'queue', 'response', 'share_likes', 'status', 'title', 'tweet', 'twitter_enabled', 'twitter_send', 'type', 'updated', 'url', 'user' ], # Case insensitive 'content_should_not_contain': conf.no_birth_date + conf.no_gender + conf.no_nickname + conf.no_phone + conf.no_postal_code + conf.no_timezone, # True means that any thruthy value is expected 'credentials': { '_expiration_time': None, '_expire_in': True, 'consumer_key': True, 'consumer_secret': True, 'provider_id': None, 'provider_name': 'tumblr', 'provider_type': 'authomatic.providers.oauth1.OAuth1', 'provider_type_id': '1-6', 'refresh_status': constants.CREDENTIALS_REFRESH_NOT_SUPPORTED, 'refresh_token': None, 'token': True, 'token_secret': True, 'token_type': None, }, }
mit
-5,752,121,557,341,079,000
29.333333
79
0.542072
false
foxscotch/advent-of-code
2015/07/p1.py
1
3009
# god, this is so overkill class Board: def __init__(self, file): self.instructions = [] self.wires = WireManager() for line in file: tokens = [int(i) if i.isdigit() else i.strip() for i in line.split(' ')] self.instructions.append(Instruction(self, tokens)) for instr in self.instructions: for op in instr.operands: if type(op) is str: self.wires.add_wire(op) self.wires.add_wire(instr.dest) def run(self): skipped = False for instr in self.instructions: if instr.is_runnable(): instr.run() else: skipped = True if skipped: self.run() class WireManager: def __init__(self): self._wires = {} def add_wire(self, wire): wire = Wire(wire) self._wires[wire.name] = wire wire.manager = self def get_wire(self, wire): return self._wires[wire].value def set_wire(self, wire, value): self._wires[wire].value = value def check_runnable(self, *wires): for wire in wires: if type(wire) is not int and self.get_wire(wire) is None: return False return True class Wire: def __init__(self, name): self.name = name self.value = None self.manager = None def __str__(self): return '{}={}'.format(self.name, self.value) class Instruction: def __init__(self, board, tokens): if len(tokens) == 4: self.operator = 'NOT' self.operands = [tokens[1]] elif len(tokens) == 5: self.operator = tokens[1] self.operands = [tokens[0], tokens[2]] else: self.operator = 'ASSIGN' self.operands = [tokens[0]] self.dest = tokens[-1] self.board = board def is_runnable(self): return self.board.wires.check_runnable(*self.operands) def run(self): operands = [] for op in self.operands: if type(op) != int: operands.append(self.board.wires.get_wire(op)) else: operands.append(op) if self.operator == 'NOT': self.board.wires.set_wire(self.dest, ~operands[0]) elif self.operator == 'LSHIFT': self.board.wires.set_wire(self.dest, operands[0] << operands[1]) elif self.operator == 'RSHIFT': self.board.wires.set_wire(self.dest, operands[0] >> operands[1]) elif self.operator == 'AND': self.board.wires.set_wire(self.dest, operands[0] & operands[1]) elif self.operator == 'OR': self.board.wires.set_wire(self.dest, operands[0] | operands[1]) else: # ASSIGN self.board.wires.set_wire(self.dest, operands[0]) with open('input.txt', 'r') as file: board = Board(file) board.run() print(board.wires.get_wire('a'))
mit
-3,724,423,761,786,651,000
26.605505
84
0.532403
false
anisku11/sublimeku
Packages/pygments/all/pygments/formatters/img.py
25
18002
# -*- coding: utf-8 -*- """ pygments.formatters.img ~~~~~~~~~~~~~~~~~~~~~~~ Formatter for Pixmap output. :copyright: Copyright 2006-2015 by the Pygments team, see AUTHORS. :license: BSD, see LICENSE for details. """ import sys from pygments.formatter import Formatter from pygments.util import get_bool_opt, get_int_opt, get_list_opt, \ get_choice_opt, xrange # Import this carefully try: from PIL import Image, ImageDraw, ImageFont pil_available = True except ImportError: pil_available = False try: import _winreg except ImportError: try: import winreg as _winreg except ImportError: _winreg = None __all__ = ['ImageFormatter', 'GifImageFormatter', 'JpgImageFormatter', 'BmpImageFormatter'] # For some unknown reason every font calls it something different STYLES = { 'NORMAL': ['', 'Roman', 'Book', 'Normal', 'Regular', 'Medium'], 'ITALIC': ['Oblique', 'Italic'], 'BOLD': ['Bold'], 'BOLDITALIC': ['Bold Oblique', 'Bold Italic'], } # A sane default for modern systems DEFAULT_FONT_NAME_NIX = 'Bitstream Vera Sans Mono' DEFAULT_FONT_NAME_WIN = 'Courier New' class PilNotAvailable(ImportError): """When Python imaging library is not available""" class FontNotFound(Exception): """When there are no usable fonts specified""" class FontManager(object): """ Manages a set of fonts: normal, italic, bold, etc... """ def __init__(self, font_name, font_size=14): self.font_name = font_name self.font_size = font_size self.fonts = {} self.encoding = None if sys.platform.startswith('win'): if not font_name: self.font_name = DEFAULT_FONT_NAME_WIN self._create_win() else: if not font_name: self.font_name = DEFAULT_FONT_NAME_NIX self._create_nix() def _get_nix_font_path(self, name, style): try: from commands import getstatusoutput except ImportError: from subprocess import getstatusoutput exit, out = getstatusoutput('fc-list "%s:style=%s" file' % (name, style)) if not exit: lines = out.splitlines() if lines: path = lines[0].strip().strip(':') return path def _create_nix(self): for name in STYLES['NORMAL']: path = self._get_nix_font_path(self.font_name, name) if path is not None: self.fonts['NORMAL'] = ImageFont.truetype(path, self.font_size) break else: raise FontNotFound('No usable fonts named: "%s"' % self.font_name) for style in ('ITALIC', 'BOLD', 'BOLDITALIC'): for stylename in STYLES[style]: path = self._get_nix_font_path(self.font_name, stylename) if path is not None: self.fonts[style] = ImageFont.truetype(path, self.font_size) break else: if style == 'BOLDITALIC': self.fonts[style] = self.fonts['BOLD'] else: self.fonts[style] = self.fonts['NORMAL'] def _lookup_win(self, key, basename, styles, fail=False): for suffix in ('', ' (TrueType)'): for style in styles: try: valname = '%s%s%s' % (basename, style and ' '+style, suffix) val, _ = _winreg.QueryValueEx(key, valname) return val except EnvironmentError: continue else: if fail: raise FontNotFound('Font %s (%s) not found in registry' % (basename, styles[0])) return None def _create_win(self): try: key = _winreg.OpenKey( _winreg.HKEY_LOCAL_MACHINE, r'Software\Microsoft\Windows NT\CurrentVersion\Fonts') except EnvironmentError: try: key = _winreg.OpenKey( _winreg.HKEY_LOCAL_MACHINE, r'Software\Microsoft\Windows\CurrentVersion\Fonts') except EnvironmentError: raise FontNotFound('Can\'t open Windows font registry key') try: path = self._lookup_win(key, self.font_name, STYLES['NORMAL'], True) self.fonts['NORMAL'] = ImageFont.truetype(path, self.font_size) for style in ('ITALIC', 'BOLD', 'BOLDITALIC'): path = self._lookup_win(key, self.font_name, STYLES[style]) if path: self.fonts[style] = ImageFont.truetype(path, self.font_size) else: if style == 'BOLDITALIC': self.fonts[style] = self.fonts['BOLD'] else: self.fonts[style] = self.fonts['NORMAL'] finally: _winreg.CloseKey(key) def get_char_size(self): """ Get the character size. """ return self.fonts['NORMAL'].getsize('M') def get_font(self, bold, oblique): """ Get the font based on bold and italic flags. """ if bold and oblique: return self.fonts['BOLDITALIC'] elif bold: return self.fonts['BOLD'] elif oblique: return self.fonts['ITALIC'] else: return self.fonts['NORMAL'] class ImageFormatter(Formatter): """ Create a PNG image from source code. This uses the Python Imaging Library to generate a pixmap from the source code. .. versionadded:: 0.10 Additional options accepted: `image_format` An image format to output to that is recognised by PIL, these include: * "PNG" (default) * "JPEG" * "BMP" * "GIF" `line_pad` The extra spacing (in pixels) between each line of text. Default: 2 `font_name` The font name to be used as the base font from which others, such as bold and italic fonts will be generated. This really should be a monospace font to look sane. Default: "Bitstream Vera Sans Mono" `font_size` The font size in points to be used. Default: 14 `image_pad` The padding, in pixels to be used at each edge of the resulting image. Default: 10 `line_numbers` Whether line numbers should be shown: True/False Default: True `line_number_start` The line number of the first line. Default: 1 `line_number_step` The step used when printing line numbers. Default: 1 `line_number_bg` The background colour (in "#123456" format) of the line number bar, or None to use the style background color. Default: "#eed" `line_number_fg` The text color of the line numbers (in "#123456"-like format). Default: "#886" `line_number_chars` The number of columns of line numbers allowable in the line number margin. Default: 2 `line_number_bold` Whether line numbers will be bold: True/False Default: False `line_number_italic` Whether line numbers will be italicized: True/False Default: False `line_number_separator` Whether a line will be drawn between the line number area and the source code area: True/False Default: True `line_number_pad` The horizontal padding (in pixels) between the line number margin, and the source code area. Default: 6 `hl_lines` Specify a list of lines to be highlighted. .. versionadded:: 1.2 Default: empty list `hl_color` Specify the color for highlighting lines. .. versionadded:: 1.2 Default: highlight color of the selected style """ # Required by the pygments mapper name = 'img' aliases = ['img', 'IMG', 'png'] filenames = ['*.png'] unicodeoutput = False default_image_format = 'png' def __init__(self, **options): """ See the class docstring for explanation of options. """ if not pil_available: raise PilNotAvailable( 'Python Imaging Library is required for this formatter') Formatter.__init__(self, **options) self.encoding = 'latin1' # let pygments.format() do the right thing # Read the style self.styles = dict(self.style) if self.style.background_color is None: self.background_color = '#fff' else: self.background_color = self.style.background_color # Image options self.image_format = get_choice_opt( options, 'image_format', ['png', 'jpeg', 'gif', 'bmp'], self.default_image_format, normcase=True) self.image_pad = get_int_opt(options, 'image_pad', 10) self.line_pad = get_int_opt(options, 'line_pad', 2) # The fonts fontsize = get_int_opt(options, 'font_size', 14) self.fonts = FontManager(options.get('font_name', ''), fontsize) self.fontw, self.fonth = self.fonts.get_char_size() # Line number options self.line_number_fg = options.get('line_number_fg', '#886') self.line_number_bg = options.get('line_number_bg', '#eed') self.line_number_chars = get_int_opt(options, 'line_number_chars', 2) self.line_number_bold = get_bool_opt(options, 'line_number_bold', False) self.line_number_italic = get_bool_opt(options, 'line_number_italic', False) self.line_number_pad = get_int_opt(options, 'line_number_pad', 6) self.line_numbers = get_bool_opt(options, 'line_numbers', True) self.line_number_separator = get_bool_opt(options, 'line_number_separator', True) self.line_number_step = get_int_opt(options, 'line_number_step', 1) self.line_number_start = get_int_opt(options, 'line_number_start', 1) if self.line_numbers: self.line_number_width = (self.fontw * self.line_number_chars + self.line_number_pad * 2) else: self.line_number_width = 0 self.hl_lines = [] hl_lines_str = get_list_opt(options, 'hl_lines', []) for line in hl_lines_str: try: self.hl_lines.append(int(line)) except ValueError: pass self.hl_color = options.get('hl_color', self.style.highlight_color) or '#f90' self.drawables = [] def get_style_defs(self, arg=''): raise NotImplementedError('The -S option is meaningless for the image ' 'formatter. Use -O style=<stylename> instead.') def _get_line_height(self): """ Get the height of a line. """ return self.fonth + self.line_pad def _get_line_y(self, lineno): """ Get the Y coordinate of a line number. """ return lineno * self._get_line_height() + self.image_pad def _get_char_width(self): """ Get the width of a character. """ return self.fontw def _get_char_x(self, charno): """ Get the X coordinate of a character position. """ return charno * self.fontw + self.image_pad + self.line_number_width def _get_text_pos(self, charno, lineno): """ Get the actual position for a character and line position. """ return self._get_char_x(charno), self._get_line_y(lineno) def _get_linenumber_pos(self, lineno): """ Get the actual position for the start of a line number. """ return (self.image_pad, self._get_line_y(lineno)) def _get_text_color(self, style): """ Get the correct color for the token from the style. """ if style['color'] is not None: fill = '#' + style['color'] else: fill = '#000' return fill def _get_style_font(self, style): """ Get the correct font for the style. """ return self.fonts.get_font(style['bold'], style['italic']) def _get_image_size(self, maxcharno, maxlineno): """ Get the required image size. """ return (self._get_char_x(maxcharno) + self.image_pad, self._get_line_y(maxlineno + 0) + self.image_pad) def _draw_linenumber(self, posno, lineno): """ Remember a line number drawable to paint later. """ self._draw_text( self._get_linenumber_pos(posno), str(lineno).rjust(self.line_number_chars), font=self.fonts.get_font(self.line_number_bold, self.line_number_italic), fill=self.line_number_fg, ) def _draw_text(self, pos, text, font, **kw): """ Remember a single drawable tuple to paint later. """ self.drawables.append((pos, text, font, kw)) def _create_drawables(self, tokensource): """ Create drawables for the token content. """ lineno = charno = maxcharno = 0 for ttype, value in tokensource: while ttype not in self.styles: ttype = ttype.parent style = self.styles[ttype] # TODO: make sure tab expansion happens earlier in the chain. It # really ought to be done on the input, as to do it right here is # quite complex. value = value.expandtabs(4) lines = value.splitlines(True) # print lines for i, line in enumerate(lines): temp = line.rstrip('\n') if temp: self._draw_text( self._get_text_pos(charno, lineno), temp, font = self._get_style_font(style), fill = self._get_text_color(style) ) charno += len(temp) maxcharno = max(maxcharno, charno) if line.endswith('\n'): # add a line for each extra line in the value charno = 0 lineno += 1 self.maxcharno = maxcharno self.maxlineno = lineno def _draw_line_numbers(self): """ Create drawables for the line numbers. """ if not self.line_numbers: return for p in xrange(self.maxlineno): n = p + self.line_number_start if (n % self.line_number_step) == 0: self._draw_linenumber(p, n) def _paint_line_number_bg(self, im): """ Paint the line number background on the image. """ if not self.line_numbers: return if self.line_number_fg is None: return draw = ImageDraw.Draw(im) recth = im.size[-1] rectw = self.image_pad + self.line_number_width - self.line_number_pad draw.rectangle([(0, 0), (rectw, recth)], fill=self.line_number_bg) draw.line([(rectw, 0), (rectw, recth)], fill=self.line_number_fg) del draw def format(self, tokensource, outfile): """ Format ``tokensource``, an iterable of ``(tokentype, tokenstring)`` tuples and write it into ``outfile``. This implementation calculates where it should draw each token on the pixmap, then calculates the required pixmap size and draws the items. """ self._create_drawables(tokensource) self._draw_line_numbers() im = Image.new( 'RGB', self._get_image_size(self.maxcharno, self.maxlineno), self.background_color ) self._paint_line_number_bg(im) draw = ImageDraw.Draw(im) # Highlight if self.hl_lines: x = self.image_pad + self.line_number_width - self.line_number_pad + 1 recth = self._get_line_height() rectw = im.size[0] - x for linenumber in self.hl_lines: y = self._get_line_y(linenumber - 1) draw.rectangle([(x, y), (x + rectw, y + recth)], fill=self.hl_color) for pos, value, font, kw in self.drawables: draw.text(pos, value, font=font, **kw) im.save(outfile, self.image_format.upper()) # Add one formatter per format, so that the "-f gif" option gives the correct result # when used in pygmentize. class GifImageFormatter(ImageFormatter): """ Create a GIF image from source code. This uses the Python Imaging Library to generate a pixmap from the source code. .. versionadded:: 1.0 """ name = 'img_gif' aliases = ['gif'] filenames = ['*.gif'] default_image_format = 'gif' class JpgImageFormatter(ImageFormatter): """ Create a JPEG image from source code. This uses the Python Imaging Library to generate a pixmap from the source code. .. versionadded:: 1.0 """ name = 'img_jpg' aliases = ['jpg', 'jpeg'] filenames = ['*.jpg'] default_image_format = 'jpeg' class BmpImageFormatter(ImageFormatter): """ Create a bitmap image from source code. This uses the Python Imaging Library to generate a pixmap from the source code. .. versionadded:: 1.0 """ name = 'img_bmp' aliases = ['bmp', 'bitmap'] filenames = ['*.bmp'] default_image_format = 'bmp'
mit
-1,553,359,144,998,655,000
31.146429
84
0.546828
false
stickypants/asset_manager
pygal/graph/dot.py
1
4294
# -*- coding: utf-8 -*- # This file is part of pygal # # A python svg graph plotting library # Copyright © 2012-2016 Kozea # # This library is free software: you can redistribute it and/or modify it under # the terms of the GNU Lesser General Public License as published by the Free # Software Foundation, either version 3 of the License, or (at your option) any # later version. # # This library is distributed in the hope that it will be useful, but WITHOUT # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS # FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more # details. # # You should have received a copy of the GNU Lesser General Public License # along with pygal. If not, see <http://www.gnu.org/licenses/>. """ Dot chart displaying values as a grid of dots, the bigger the value the bigger the dot """ from __future__ import division from math import log10 from pygal._compat import to_str from pygal.graph.graph import Graph from pygal.util import alter, cached_property, decorate, safe_enumerate from pygal.view import ReverseView, View class Dot(Graph): """Dot graph class""" def dot(self, serie, r_max): """Draw a dot line""" serie_node = self.svg.serie(serie) view_values = list(map(self.view, serie.points)) for i, value in safe_enumerate(serie.values): x, y = view_values[i] if self.logarithmic: log10min = log10(self._min) - 1 log10max = log10(self._max or 1) if value != 0: size = r_max * ( (log10(abs(value)) - log10min) / (log10max - log10min) ) else: size = 0 else: size = r_max * (abs(value) / (self._max or 1)) metadata = serie.metadata.get(i) dots = decorate( self.svg, self.svg.node(serie_node['plot'], class_="dots"), metadata) alter(self.svg.node( dots, 'circle', cx=x, cy=y, r=size, class_='dot reactive tooltip-trigger' + ( ' negative' if value < 0 else '')), metadata) val = self._format(serie, i) self._tooltip_data( dots, val, x, y, 'centered', self._get_x_label(i)) self._static_value(serie_node, val, x, y, metadata) def _compute(self): """Compute y min and max and y scale and set labels""" x_len = self._len y_len = self._order self._box.xmax = x_len self._box.ymax = y_len self._x_pos = [n / 2 for n in range(1, 2 * x_len, 2)] self._y_pos = [n / 2 for n in reversed(range(1, 2 * y_len, 2))] for j, serie in enumerate(self.series): serie.points = [ (self._x_pos[i], self._y_pos[j]) for i in range(x_len)] def _compute_y_labels(self): self._y_labels = list(zip( self.y_labels and map(to_str, self.y_labels) or [ serie.title['title'] if isinstance(serie.title, dict) else serie.title or '' for serie in self.series], self._y_pos)) def _set_view(self): """Assign a view to current graph""" view_class = ReverseView if self.inverse_y_axis else View self.view = view_class( self.width - self.margin_box.x, self.height - self.margin_box.y, self._box) @cached_property def _values(self): """Getter for series values (flattened)""" return [abs(val) for val in super(Dot, self)._values if val != 0] @cached_property def _max(self): """Getter for the maximum series value""" return (self.range[1] if (self.range and self.range[1] is not None) else (max(map(abs, self._values)) if self._values else None)) def _plot(self): """Plot all dots for series""" r_max = min( self.view.x(1) - self.view.x(0), (self.view.y(0) or 0) - self.view.y(1)) / ( 2 * 1.05) for serie in self.series: self.dot(serie, r_max)
gpl-3.0
8,052,539,895,964,645,000
32.80315
79
0.552294
false
blueburningcoder/nupic
src/nupic/regions/CLAClassifierRegion.py
3
16974
#!/usr/bin/env python # ---------------------------------------------------------------------- # Numenta Platform for Intelligent Computing (NuPIC) # Copyright (C) 2013-15, Numenta, Inc. Unless you have an agreement # with Numenta, Inc., for a separate license for this software code, the # following terms and conditions apply: # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero Public License version 3 as # published by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # See the GNU Affero Public License for more details. # # You should have received a copy of the GNU Affero Public License # along with this program. If not, see http://www.gnu.org/licenses. # # http://numenta.org/licenses/ # ---------------------------------------------------------------------- """ This file implements the CLA Classifier region. See the comments in the class definition of CLAClassifierRegion for a description. """ import warnings from nupic.bindings.regions.PyRegion import PyRegion from nupic.bindings.algorithms import FastCLAClassifier from nupic.algorithms.cla_classifier_factory import CLAClassifierFactory from nupic.support.configuration import Configuration try: import capnp except ImportError: capnp = None if capnp: from nupic.regions.CLAClassifierRegion_capnp import CLAClassifierRegionProto class CLAClassifierRegion(PyRegion): """ CLAClassifierRegion implements a CLA specific classifier that accepts a binary input from the level below (the "activationPattern") and information from the sensor and encoders (the "classification") describing the input to the system at that time step. When learning, for every bit in activation pattern, it records a history of the classification each time that bit was active. The history is bounded by a maximum allowed age so that old entries are thrown away. For inference, it takes an ensemble approach. For every active bit in the activationPattern, it looks up the most likely classification(s) from the history stored for that bit and then votes across these to get the resulting classification(s). The caller can choose to tell the region that the classifications for iteration N+K should be aligned with the activationPattern for iteration N. This results in the classifier producing predictions for K steps in advance. Any number of different K's can be specified, allowing the classifier to learn and infer multi-step predictions for a number of steps in advance. """ @classmethod def getSpec(cls): ns = dict( description=CLAClassifierRegion.__doc__, singleNodeOnly=True, inputs=dict( categoryIn=dict( description='Vector of categories of the input sample', dataType='Real32', count=0, required=True, regionLevel=True, isDefaultInput=False, requireSplitterMap=False), bottomUpIn=dict( description='Belief values over children\'s groups', dataType='Real32', count=0, required=True, regionLevel=False, isDefaultInput=True, requireSplitterMap=False), predictedActiveCells=dict( description="The cells that are active and predicted", dataType='Real32', count=0, required=True, regionLevel=True, isDefaultInput=False, requireSplitterMap=False), sequenceIdIn=dict( description="Sequence ID", dataType='UInt64', count=1, required=False, regionLevel=True, isDefaultInput=False, requireSplitterMap=False), ), outputs=dict( categoriesOut=dict( description='Classification results', dataType='Real32', count=0, regionLevel=True, isDefaultOutput=False, requireSplitterMap=False), actualValues=dict( description='Classification results', dataType='Real32', count=0, regionLevel=True, isDefaultOutput=False, requireSplitterMap=False), probabilities=dict( description='Classification results', dataType='Real32', count=0, regionLevel=True, isDefaultOutput=False, requireSplitterMap=False), ), parameters=dict( learningMode=dict( description='Boolean (0/1) indicating whether or not a region ' 'is in learning mode.', dataType='UInt32', count=1, constraints='bool', defaultValue=1, accessMode='ReadWrite'), inferenceMode=dict( description='Boolean (0/1) indicating whether or not a region ' 'is in inference mode.', dataType='UInt32', count=1, constraints='bool', defaultValue=0, accessMode='ReadWrite'), maxCategoryCount=dict( description='The maximal number of categories the ' 'classifier will distinguish between.', dataType='UInt32', required=True, count=1, constraints='', # arbitrarily large value for backward compatibility defaultValue=1000, accessMode='Create'), steps=dict( description='Comma separated list of the desired steps of ' 'prediction that the classifier should learn', dataType="Byte", count=0, constraints='', defaultValue='0', accessMode='Create'), alpha=dict( description='The alpha used to compute running averages of the ' 'bucket duty cycles for each activation pattern bit. A ' 'lower alpha results in longer term memory', dataType="Real32", count=1, constraints='', defaultValue=0.001, accessMode='Create'), implementation=dict( description='The classifier implementation to use.', accessMode='ReadWrite', dataType='Byte', count=0, constraints='enum: py, cpp'), verbosity=dict( description='An integer that controls the verbosity level, ' '0 means no verbose output, increasing integers ' 'provide more verbosity.', dataType='UInt32', count=1, constraints='', defaultValue=0, accessMode='ReadWrite'), ), commands=dict() ) return ns def __init__(self, steps='1', alpha=0.001, verbosity=0, implementation=None, maxCategoryCount=None ): # Set default implementation if implementation is None: implementation = Configuration.get('nupic.opf.claClassifier.implementation') # Convert the steps designation to a list self.classifierImp = implementation self.steps = steps self.stepsList = eval("[%s]" % (steps)) self.alpha = alpha self.verbosity = verbosity # Initialize internal structures self._claClassifier = CLAClassifierFactory.create( steps=self.stepsList, alpha=self.alpha, verbosity=self.verbosity, implementation=implementation, ) self.learningMode = True self.inferenceMode = False self.maxCategoryCount = maxCategoryCount self.recordNum = 0 self._initEphemerals() # Flag to know if the compute() function is ever called. This is to # prevent backward compatibilities issues with the customCompute() method # being called at the same time as the compute() method. Only compute() # should be called via network.run(). This flag will be removed once we # get to cleaning up the clamodel.py file. self._computeFlag = False def _initEphemerals(self): pass def initialize(self, dims, splitterMaps): pass def clear(self): self._claClassifier.clear() def getAlgorithmInstance(self): """Returns instance of the underlying CLAClassifier algorithm object.""" return self._claClassifier def getParameter(self, name, index=-1): """ Get the value of the parameter. @param name -- the name of the parameter to retrieve, as defined by the Node Spec. """ # If any spec parameter name is the same as an attribute, this call # will get it automatically, e.g. self.learningMode return PyRegion.getParameter(self, name, index) def setParameter(self, name, index, value): """ Set the value of the parameter. @param name -- the name of the parameter to update, as defined by the Node Spec. @param value -- the value to which the parameter is to be set. """ if name == "learningMode": self.learningMode = bool(int(value)) elif name == "inferenceMode": self.inferenceMode = bool(int(value)) else: return PyRegion.setParameter(self, name, index, value) @staticmethod def getProtoType(): """Return the pycapnp proto type that the class uses for serialization.""" return CLAClassifierRegionProto def writeToProto(self, proto): """Write state to proto object. proto: CLAClassifierRegionProto capnproto object """ proto.classifierImp = self.classifierImp proto.steps = self.steps proto.alpha = self.alpha proto.verbosity = self.verbosity proto.maxCategoryCount = self.maxCategoryCount self._claClassifier.write(proto.claClassifier) @classmethod def readFromProto(cls, proto): """Read state from proto object. proto: CLAClassifierRegionProto capnproto object """ instance = cls() instance.classifierImp = proto.classifierImp instance.steps = proto.steps instance.alpha = proto.alpha instance.verbosity = proto.verbosity instance.maxCategoryCount = proto.maxCategoryCount instance._claClassifier = CLAClassifierFactory.read(proto) return instance def reset(self): pass def compute(self, inputs, outputs): """ Process one input sample. This method is called by the runtime engine. @param inputs -- inputs of the classifier region @param outputs -- outputs of the classifier region """ # This flag helps to prevent double-computation, in case the deprecated # customCompute() method is being called in addition to compute() called # when network.run() is called self._computeFlag = True # An input can potentially belong to multiple categories. # If a category value is < 0, it means that the input does not belong to # that category. categories = [category for category in inputs["categoryIn"] if category >= 0] activeCells = inputs["bottomUpIn"] patternNZ = activeCells.nonzero()[0] # ========================================================================== # Allow to train on multiple input categories. # Do inference first, and then train on all input categories. # -------------------------------------------------------------------------- # 1. Call classifier. Don't train. Just inference. Train after. # Dummy classification input, because this param is required. Learning is # off, so the classifier is not learning this input. Inference only here. classificationIn = {"actValue": 0, "bucketIdx": 0} clResults = self._claClassifier.compute(recordNum=self.recordNum, patternNZ=patternNZ, classification=classificationIn, learn=False, infer=self.inferenceMode) for category in categories: classificationIn = {"bucketIdx": int(category), "actValue": int(category)} # ------------------------------------------------------------------------ # 2. Train classifier, no inference self._claClassifier.compute(recordNum=self.recordNum, patternNZ=patternNZ, classification=classificationIn, learn=self.learningMode, infer=False) actualValues = clResults["actualValues"] outputs['actualValues'][:len(actualValues)] = actualValues for step in self.stepsList: stepIndex = self.stepsList.index(step) categoryOut = actualValues[clResults[step].argmax()] outputs['categoriesOut'][stepIndex] = categoryOut # Flatten the rest of the output. For example: # Original dict {1 : [0.1, 0.3, 0.2, 0.7] # 4 : [0.2, 0.4, 0.3, 0.5]} # becomes: [0.1, 0.3, 0.2, 0.7, 0.2, 0.4, 0.3, 0.5] stepProbabilities = clResults[step] for categoryIndex in xrange(self.maxCategoryCount): flatIndex = categoryIndex + stepIndex * self.maxCategoryCount if categoryIndex < len(stepProbabilities): outputs['probabilities'][flatIndex] = stepProbabilities[categoryIndex] else: outputs['probabilities'][flatIndex] = 0.0 self.recordNum += 1 def customCompute(self, recordNum, patternNZ, classification): """ Just return the inference value from one input sample. The actual learning happens in compute() -- if, and only if learning is enabled -- which is called when you run the network. WARNING: The method customCompute() is here to maintain backward compatibility. This method is deprecated, and will be removed. Use network.run() instead, which will call the compute() method. Parameters: -------------------------------------------------------------------- recordNum: Record number of the input sample. patternNZ: List of the active indices from the output below classification: Dict of the classification information: bucketIdx: index of the encoder bucket actValue: actual value going into the encoder retval: dict containing inference results, one entry for each step in self.steps. The key is the number of steps, the value is an array containing the relative likelihood for each bucketIdx starting from bucketIdx 0. for example: {'actualValues': [0.0, 1.0, 2.0, 3.0] 1 : [0.1, 0.3, 0.2, 0.7] 4 : [0.2, 0.4, 0.3, 0.5]} """ # If the compute flag has not been initialized (for example if we # restored a model from an old checkpoint) initialize it to False. if not hasattr(self, "_computeFlag"): self._computeFlag = False if self._computeFlag: # Will raise an exception if the deprecated method customCompute() is # being used at the same time as the compute function. warnings.simplefilter('error', DeprecationWarning) warnings.warn("The customCompute() method should not be " "called at the same time as the compute() " "method. The compute() method is called " "whenever network.run() is called.", DeprecationWarning) return self._claClassifier.compute(recordNum, patternNZ, classification, self.learningMode, self.inferenceMode) def getOutputValues(self, outputName): """ Return the dictionary of output values. Note that these are normal Python lists, rather than numpy arrays. This is to support lists with mixed scalars and strings, as in the case of records with categorical variables """ return self._outputValues[outputName] def getOutputElementCount(self, outputName): """Returns the width of dataOut.""" # Check if classifier has a 'maxCategoryCount' attribute if not hasattr(self, "maxCategoryCount"): # Large default value for backward compatibility self.maxCategoryCount = 1000 if outputName == "categoriesOut": return len(self.stepsList) elif outputName == "probabilities": return len(self.stepsList) * self.maxCategoryCount elif outputName == "actualValues": return self.maxCategoryCount else: raise ValueError("Unknown output {}.".format(outputName)) if __name__ == "__main__": from nupic.engine import Network n = Network() classifier = n.addRegion( 'classifier', 'py.CLAClassifierRegion', '{ steps: "1,2", maxAge: 1000}' )
agpl-3.0
-7,845,002,573,289,658,000
33.016032
82
0.619006
false
tachang/python-saml
tests/src/OneLogin/saml2_tests/authn_request_test.py
3
10526
# -*- coding: utf-8 -*- # Copyright (c) 2014, OneLogin, Inc. # All rights reserved. from base64 import b64decode import json from os.path import dirname, join, exists import unittest from urlparse import urlparse, parse_qs from zlib import decompress from onelogin.saml2.authn_request import OneLogin_Saml2_Authn_Request from onelogin.saml2.constants import OneLogin_Saml2_Constants from onelogin.saml2.settings import OneLogin_Saml2_Settings from onelogin.saml2.utils import OneLogin_Saml2_Utils class OneLogin_Saml2_Authn_Request_Test(unittest.TestCase): def loadSettingsJSON(self): filename = join(dirname(__file__), '..', '..', '..', 'settings', 'settings1.json') if exists(filename): stream = open(filename, 'r') settings = json.load(stream) stream.close() return settings else: raise Exception('Settings json file does not exist') def setUp(self): self.__settings = OneLogin_Saml2_Settings(self.loadSettingsJSON()) def testCreateRequest(self): """ Tests the OneLogin_Saml2_Authn_Request Constructor. The creation of a deflated SAML Request """ saml_settings = self.loadSettingsJSON() settings = OneLogin_Saml2_Settings(saml_settings) settings._OneLogin_Saml2_Settings__organization = { u'en-US': { u'url': u'http://sp.example.com', u'name': u'sp_test' } } authn_request = OneLogin_Saml2_Authn_Request(settings) authn_request_encoded = authn_request.get_request() decoded = b64decode(authn_request_encoded) inflated = decompress(decoded, -15) self.assertRegexpMatches(inflated, '^<samlp:AuthnRequest') self.assertNotIn('ProviderName="SP test"', inflated) saml_settings['organization'] = {} settings = OneLogin_Saml2_Settings(saml_settings) authn_request = OneLogin_Saml2_Authn_Request(settings) authn_request_encoded = authn_request.get_request() decoded = b64decode(authn_request_encoded) inflated = decompress(decoded, -15) self.assertRegexpMatches(inflated, '^<samlp:AuthnRequest') self.assertNotIn('ProviderName="SP test"', inflated) def testCreateRequestAuthContext(self): """ Tests the OneLogin_Saml2_Authn_Request Constructor. The creation of a deflated SAML Request with defined AuthContext """ saml_settings = self.loadSettingsJSON() settings = OneLogin_Saml2_Settings(saml_settings) authn_request = OneLogin_Saml2_Authn_Request(settings) authn_request_encoded = authn_request.get_request() decoded = b64decode(authn_request_encoded) inflated = decompress(decoded, -15) self.assertRegexpMatches(inflated, '^<samlp:AuthnRequest') self.assertIn(OneLogin_Saml2_Constants.AC_PASSWORD, inflated) self.assertNotIn(OneLogin_Saml2_Constants.AC_X509, inflated) saml_settings['security']['requestedAuthnContext'] = True settings = OneLogin_Saml2_Settings(saml_settings) authn_request = OneLogin_Saml2_Authn_Request(settings) authn_request_encoded = authn_request.get_request() decoded = b64decode(authn_request_encoded) inflated = decompress(decoded, -15) self.assertRegexpMatches(inflated, '^<samlp:AuthnRequest') self.assertIn(OneLogin_Saml2_Constants.AC_PASSWORD_PROTECTED, inflated) self.assertNotIn(OneLogin_Saml2_Constants.AC_X509, inflated) del saml_settings['security']['requestedAuthnContext'] settings = OneLogin_Saml2_Settings(saml_settings) authn_request = OneLogin_Saml2_Authn_Request(settings) authn_request_encoded = authn_request.get_request() decoded = b64decode(authn_request_encoded) inflated = decompress(decoded, -15) self.assertRegexpMatches(inflated, '^<samlp:AuthnRequest') self.assertIn(OneLogin_Saml2_Constants.AC_PASSWORD_PROTECTED, inflated) self.assertNotIn(OneLogin_Saml2_Constants.AC_X509, inflated) saml_settings['security']['requestedAuthnContext'] = False settings = OneLogin_Saml2_Settings(saml_settings) authn_request = OneLogin_Saml2_Authn_Request(settings) authn_request_encoded = authn_request.get_request() decoded = b64decode(authn_request_encoded) inflated = decompress(decoded, -15) self.assertRegexpMatches(inflated, '^<samlp:AuthnRequest') self.assertNotIn(OneLogin_Saml2_Constants.AC_PASSWORD_PROTECTED, inflated) self.assertNotIn(OneLogin_Saml2_Constants.AC_X509, inflated) saml_settings['security']['requestedAuthnContext'] = (OneLogin_Saml2_Constants.AC_PASSWORD_PROTECTED, OneLogin_Saml2_Constants.AC_X509) settings = OneLogin_Saml2_Settings(saml_settings) authn_request = OneLogin_Saml2_Authn_Request(settings) authn_request_encoded = authn_request.get_request() decoded = b64decode(authn_request_encoded) inflated = decompress(decoded, -15) self.assertRegexpMatches(inflated, '^<samlp:AuthnRequest') self.assertIn(OneLogin_Saml2_Constants.AC_PASSWORD_PROTECTED, inflated) self.assertIn(OneLogin_Saml2_Constants.AC_X509, inflated) def testCreateRequestForceAuthN(self): """ Tests the OneLogin_Saml2_Authn_Request Constructor. The creation of a deflated SAML Request with ForceAuthn="true" """ saml_settings = self.loadSettingsJSON() settings = OneLogin_Saml2_Settings(saml_settings) authn_request = OneLogin_Saml2_Authn_Request(settings) authn_request_encoded = authn_request.get_request() decoded = b64decode(authn_request_encoded) inflated = decompress(decoded, -15) self.assertRegexpMatches(inflated, '^<samlp:AuthnRequest') self.assertNotIn('ForceAuthn="true"', inflated) authn_request_2 = OneLogin_Saml2_Authn_Request(settings, False, False) authn_request_encoded_2 = authn_request_2.get_request() decoded_2 = b64decode(authn_request_encoded_2) inflated_2 = decompress(decoded_2, -15) self.assertRegexpMatches(inflated_2, '^<samlp:AuthnRequest') self.assertNotIn('ForceAuthn="true"', inflated_2) authn_request_3 = OneLogin_Saml2_Authn_Request(settings, True, False) authn_request_encoded_3 = authn_request_3.get_request() decoded_3 = b64decode(authn_request_encoded_3) inflated_3 = decompress(decoded_3, -15) self.assertRegexpMatches(inflated_3, '^<samlp:AuthnRequest') self.assertIn('ForceAuthn="true"', inflated_3) def testCreateRequestIsPassive(self): """ Tests the OneLogin_Saml2_Authn_Request Constructor. The creation of a deflated SAML Request with IsPassive="true" """ saml_settings = self.loadSettingsJSON() settings = OneLogin_Saml2_Settings(saml_settings) authn_request = OneLogin_Saml2_Authn_Request(settings) authn_request_encoded = authn_request.get_request() decoded = b64decode(authn_request_encoded) inflated = decompress(decoded, -15) self.assertRegexpMatches(inflated, '^<samlp:AuthnRequest') self.assertNotIn('IsPassive="true"', inflated) authn_request_2 = OneLogin_Saml2_Authn_Request(settings, False, False) authn_request_encoded_2 = authn_request_2.get_request() decoded_2 = b64decode(authn_request_encoded_2) inflated_2 = decompress(decoded_2, -15) self.assertRegexpMatches(inflated_2, '^<samlp:AuthnRequest') self.assertNotIn('IsPassive="true"', inflated_2) authn_request_3 = OneLogin_Saml2_Authn_Request(settings, False, True) authn_request_encoded_3 = authn_request_3.get_request() decoded_3 = b64decode(authn_request_encoded_3) inflated_3 = decompress(decoded_3, -15) self.assertRegexpMatches(inflated_3, '^<samlp:AuthnRequest') self.assertIn('IsPassive="true"', inflated_3) def testCreateDeflatedSAMLRequestURLParameter(self): """ Tests the OneLogin_Saml2_Authn_Request Constructor. The creation of a deflated SAML Request """ authn_request = OneLogin_Saml2_Authn_Request(self.__settings) parameters = { 'SAMLRequest': authn_request.get_request() } auth_url = OneLogin_Saml2_Utils.redirect('http://idp.example.com/SSOService.php', parameters, True) self.assertRegexpMatches(auth_url, '^http://idp\.example\.com\/SSOService\.php\?SAMLRequest=') exploded = urlparse(auth_url) exploded = parse_qs(exploded[4]) payload = exploded['SAMLRequest'][0] decoded = b64decode(payload) inflated = decompress(decoded, -15) self.assertRegexpMatches(inflated, '^<samlp:AuthnRequest') def testCreateEncSAMLRequest(self): """ Tests the OneLogin_Saml2_Authn_Request Constructor. The creation of a deflated SAML Request """ settings = self.loadSettingsJSON() settings['organization'] = { 'es': { 'name': 'sp_prueba', 'displayname': 'SP prueba', 'url': 'http://sp.example.com' } } settings['security']['wantNameIdEncrypted'] = True settings = OneLogin_Saml2_Settings(settings) authn_request = OneLogin_Saml2_Authn_Request(settings) parameters = { 'SAMLRequest': authn_request.get_request() } auth_url = OneLogin_Saml2_Utils.redirect('http://idp.example.com/SSOService.php', parameters, True) self.assertRegexpMatches(auth_url, '^http://idp\.example\.com\/SSOService\.php\?SAMLRequest=') exploded = urlparse(auth_url) exploded = parse_qs(exploded[4]) payload = exploded['SAMLRequest'][0] decoded = b64decode(payload) inflated = decompress(decoded, -15) self.assertRegexpMatches(inflated, '^<samlp:AuthnRequest') self.assertRegexpMatches(inflated, 'AssertionConsumerServiceURL="http://stuff.com/endpoints/endpoints/acs.php">') self.assertRegexpMatches(inflated, '<saml:Issuer>http://stuff.com/endpoints/metadata.php</saml:Issuer>') self.assertRegexpMatches(inflated, 'Format="urn:oasis:names:tc:SAML:2.0:nameid-format:encrypted"') self.assertRegexpMatches(inflated, 'ProviderName="SP prueba"')
bsd-3-clause
-3,479,289,380,598,456,000
45.575221
143
0.670055
false
marmyshev/transitions
openlp/plugins/songs/lib/xml.py
1
34187
# -*- coding: utf-8 -*- # vim: autoindent shiftwidth=4 expandtab textwidth=120 tabstop=4 softtabstop=4 ############################################################################### # OpenLP - Open Source Lyrics Projection # # --------------------------------------------------------------------------- # # Copyright (c) 2008-2013 Raoul Snyman # # Portions copyright (c) 2008-2013 Tim Bentley, Gerald Britton, Jonathan # # Corwin, Samuel Findlay, Michael Gorven, Scott Guerrieri, Matthias Hub, # # Meinert Jordan, Armin Köhler, Erik Lundin, Edwin Lunando, Brian T. Meyer. # # Joshua Miller, Stevan Pettit, Andreas Preikschat, Mattias Põldaru, # # Christian Richter, Philip Ridout, Simon Scudder, Jeffrey Smith, # # Maikel Stuivenberg, Martin Thompson, Jon Tibble, Dave Warnock, # # Frode Woldsund, Martin Zibricky, Patrick Zimmermann # # --------------------------------------------------------------------------- # # This program is free software; you can redistribute it and/or modify it # # under the terms of the GNU General Public License as published by the Free # # Software Foundation; version 2 of the License. # # # # This program is distributed in the hope that it will be useful, but WITHOUT # # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or # # FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for # # more details. # # # # You should have received a copy of the GNU General Public License along # # with this program; if not, write to the Free Software Foundation, Inc., 59 # # Temple Place, Suite 330, Boston, MA 02111-1307 USA # ############################################################################### """ The :mod:`xml` module provides the XML functionality. The basic XML for storing the lyrics in the song database looks like this:: <?xml version="1.0" encoding="UTF-8"?> <song version="1.0"> <lyrics> <verse type="c" label="1" lang="en"> <![CDATA[Chorus optional split 1[---]Chorus optional split 2]]> </verse> </lyrics> </song> The XML of an `OpenLyrics <http://openlyrics.info/>`_ song looks like this:: <song xmlns="http://openlyrics.info/namespace/2009/song" version="0.7" createdIn="OpenLP 1.9.0" modifiedIn="ChangingSong 0.0.1" modifiedDate="2010-01-28T13:15:30+01:00"> <properties> <titles> <title>Amazing Grace</title> </titles> </properties> <lyrics> <verse name="v1"> <lines> <line>Amazing grace how sweet the sound</line> </lines> </verse> </lyrics> </song> """ import cgi import logging import re from lxml import etree, objectify from openlp.core.lib import FormattingTags, translate from openlp.plugins.songs.lib import VerseType, clean_song from openlp.plugins.songs.lib.db import Author, Book, Song, Topic from openlp.core.utils import get_application_version log = logging.getLogger(__name__) NAMESPACE = u'http://openlyrics.info/namespace/2009/song' NSMAP = '{' + NAMESPACE + '}' + '%s' class SongXML(object): """ This class builds and parses the XML used to describe songs. """ log.info(u'SongXML Loaded') def __init__(self): """ Set up the default variables. """ self.song_xml = objectify.fromstring(u'<song version="1.0" />') self.lyrics = etree.SubElement(self.song_xml, u'lyrics') def add_verse_to_lyrics(self, type, number, content, lang=None): """ Add a verse to the ``<lyrics>`` tag. ``type`` A string denoting the type of verse. Possible values are *v*, *c*, *b*, *p*, *i*, *e* and *o*. Any other type is **not** allowed, this also includes translated types. ``number`` An integer denoting the number of the item, for example: verse 1. ``content`` The actual text of the verse to be stored. ``lang`` The verse's language code (ISO-639). This is not required, but should be added if available. """ verse = etree.Element(u'verse', type=unicode(type), label=unicode(number)) if lang: verse.set(u'lang', lang) verse.text = etree.CDATA(content) self.lyrics.append(verse) def extract_xml(self): """ Extract our newly created XML song. """ return etree.tostring(self.song_xml, encoding=u'UTF-8', xml_declaration=True) def get_verses(self, xml): """ Iterates through the verses in the XML and returns a list of verses and their attributes. ``xml`` The XML of the song to be parsed. The returned list has the following format:: [[{'type': 'v', 'label': '1'}, u"optional slide split 1[---]optional slide split 2"], [{'lang': 'en', 'type': 'c', 'label': '1'}, u"English chorus"]] """ self.song_xml = None verse_list = [] if not xml.startswith(u'<?xml') and not xml.startswith(u'<song'): # This is an old style song, without XML. Let's handle it correctly # by iterating through the verses, and then recreating the internal # xml object as well. self.song_xml = objectify.fromstring(u'<song version="1.0" />') self.lyrics = etree.SubElement(self.song_xml, u'lyrics') verses = xml.split(u'\n\n') for count, verse in enumerate(verses): verse_list.append([{u'type': u'v', u'label': unicode(count)}, unicode(verse)]) self.add_verse_to_lyrics(u'v', unicode(count), verse) return verse_list elif xml.startswith(u'<?xml'): xml = xml[38:] try: self.song_xml = objectify.fromstring(xml) except etree.XMLSyntaxError: log.exception(u'Invalid xml %s', xml) xml_iter = self.song_xml.getiterator() for element in xml_iter: if element.tag == u'verse': if element.text is None: element.text = u'' verse_list.append([element.attrib, unicode(element.text)]) return verse_list def dump_xml(self): """ Debugging aid to dump XML so that we can see what we have. """ return etree.dump(self.song_xml) class OpenLyrics(object): """ This class represents the converter for OpenLyrics XML (version 0.8) to/from a song. As OpenLyrics has a rich set of different features, we cannot support them all. The following features are supported by the :class:`OpenLyrics` class: ``<authors>`` OpenLP does not support the attribute *type* and *lang*. ``<chord>`` This property is not supported. ``<comments>`` The ``<comments>`` property is fully supported. But comments in lyrics are not supported. ``<copyright>`` This property is fully supported. ``<customVersion>`` This property is not supported. ``<key>`` This property is not supported. ``<format>`` The custom formatting tags are fully supported. ``<keywords>`` This property is not supported. ``<lines>`` The attribute *part* is not supported. The *break* attribute is supported. ``<publisher>`` This property is not supported. ``<songbooks>`` As OpenLP does only support one songbook, we cannot consider more than one songbook. ``<tempo>`` This property is not supported. ``<themes>`` Topics, as they are called in OpenLP, are fully supported, whereby only the topic text (e. g. Grace) is considered, but neither the *id* nor *lang*. ``<transposition>`` This property is not supported. ``<variant>`` This property is not supported. ``<verse name="v1a" lang="he" translit="en">`` The attribute *translit* is not supported. Note, the attribute *lang* is considered, but there is not further functionality implemented yet. The following verse "types" are supported by OpenLP: * v * c * b * p * i * e * o The verse "types" stand for *Verse*, *Chorus*, *Bridge*, *Pre-Chorus*, *Intro*, *Ending* and *Other*. Any numeric value is allowed after the verse type. The complete verse name in OpenLP always consists of the verse type and the verse number. If not number is present *1* is assumed. OpenLP will merge verses which are split up by appending a letter to the verse name, such as *v1a*. ``<verseOrder>`` OpenLP supports this property. """ IMPLEMENTED_VERSION = u'0.8' START_TAGS_REGEX = re.compile(r'\{(\w+)\}') END_TAGS_REGEX = re.compile(r'\{\/(\w+)\}') VERSE_TAG_SPLITTER = re.compile(u'([a-zA-Z]+)([0-9]*)([a-zA-Z]?)') def __init__(self, manager): self.manager = manager def song_to_xml(self, song): """ Convert the song to OpenLyrics Format. """ sxml = SongXML() song_xml = objectify.fromstring(u'<song/>') # Append the necessary meta data to the song. song_xml.set(u'xmlns', NAMESPACE) song_xml.set(u'version', OpenLyrics.IMPLEMENTED_VERSION) application_name = u'OpenLP ' + get_application_version()[u'version'] song_xml.set(u'createdIn', application_name) song_xml.set(u'modifiedIn', application_name) # "Convert" 2012-08-27 11:49:15 to 2012-08-27T11:49:15. song_xml.set(u'modifiedDate', unicode(song.last_modified).replace(u' ', u'T')) properties = etree.SubElement(song_xml, u'properties') titles = etree.SubElement(properties, u'titles') self._add_text_to_element(u'title', titles, song.title) if song.alternate_title: self._add_text_to_element(u'title', titles, song.alternate_title) if song.comments: comments = etree.SubElement(properties, u'comments') self._add_text_to_element(u'comment', comments, song.comments) if song.copyright: self._add_text_to_element(u'copyright', properties, song.copyright) if song.verse_order: self._add_text_to_element( u'verseOrder', properties, song.verse_order.lower()) if song.ccli_number: self._add_text_to_element(u'ccliNo', properties, song.ccli_number) if song.authors: authors = etree.SubElement(properties, u'authors') for author in song.authors: self._add_text_to_element(u'author', authors, author.display_name) book = self.manager.get_object_filtered(Book, Book.id == song.song_book_id) if book is not None: book = book.name songbooks = etree.SubElement(properties, u'songbooks') element = self._add_text_to_element(u'songbook', songbooks, None, book) if song.song_number: element.set(u'entry', song.song_number) if song.topics: themes = etree.SubElement(properties, u'themes') for topic in song.topics: self._add_text_to_element(u'theme', themes, topic.name) # Process the formatting tags. # Have we any tags in song lyrics? tags_element = None match = re.search(u'\{/?\w+\}', song.lyrics, re.UNICODE) if match: # Named 'format_' - 'format' is built-in fuction in Python. format_ = etree.SubElement(song_xml, u'format') tags_element = etree.SubElement(format_, u'tags') tags_element.set(u'application', u'OpenLP') # Process the song's lyrics. lyrics = etree.SubElement(song_xml, u'lyrics') verse_list = sxml.get_verses(song.lyrics) # Add a suffix letter to each verse verse_tags = [] for verse in verse_list: verse_tag = verse[0][u'type'][0].lower() verse_number = verse[0][u'label'] verse_def = verse_tag + verse_number verse_tags.append(verse_def) # Create the letter from the number of duplicates verse[0][u'suffix'] = chr(96 + verse_tags.count(verse_def)) # If the verse tag is a duplicate use the suffix letter for verse in verse_list: verse_tag = verse[0][u'type'][0].lower() verse_number = verse[0][u'label'] verse_def = verse_tag + verse_number if verse_tags.count(verse_def) > 1: verse_def += verse[0][u'suffix'] verse_element = self._add_text_to_element(u'verse', lyrics, None, verse_def) if u'lang' in verse[0]: verse_element.set(u'lang', verse[0][u'lang']) # Create a list with all "optional" verses. optional_verses = cgi.escape(verse[1]) optional_verses = optional_verses.split(u'\n[---]\n') start_tags = u'' end_tags = u'' for index, optional_verse in enumerate(optional_verses): # Fix up missing end and start tags such as {r} or {/r}. optional_verse = start_tags + optional_verse start_tags, end_tags = self._get_missing_tags(optional_verse) optional_verse += end_tags # Add formatting tags to text lines_element = self._add_text_with_tags_to_lines(verse_element, optional_verse, tags_element) # Do not add the break attribute to the last lines element. if index < len(optional_verses) - 1: lines_element.set(u'break', u'optional') return self._extract_xml(song_xml) def _get_missing_tags(self, text): """ Tests the given text for not closed formatting tags and returns a tuple consisting of two unicode strings:: (u'{st}{r}', u'{/r}{/st}') The first unicode string are the start tags (for the next slide). The second unicode string are the end tags. ``text`` The text to test. The text must **not** contain html tags, only OpenLP formatting tags are allowed:: {st}{r}Text text text """ tags = [] for tag in FormattingTags.get_html_tags(): if tag[u'start tag'] == u'{br}': continue if text.count(tag[u'start tag']) != text.count(tag[u'end tag']): tags.append((text.find(tag[u'start tag']), tag[u'start tag'], tag[u'end tag'])) # Sort the lists, so that the tags which were opened first on the first # slide (the text we are checking) will be opened first on the next # slide as well. tags.sort(key=lambda tag: tag[0]) end_tags = [] start_tags = [] for tag in tags: start_tags.append(tag[1]) end_tags.append(tag[2]) end_tags.reverse() return u''.join(start_tags), u''.join(end_tags) def xml_to_song(self, xml, parse_and_temporary_save=False): """ Create and save a song from OpenLyrics format xml to the database. Since we also export XML from external sources (e. g. OpenLyrics import), we cannot ensure, that it completely conforms to the OpenLyrics standard. ``xml`` The XML to parse (unicode). ``parse_and_temporary_save`` Switch to skip processing the whole song and storing the songs in the database with a temporary flag. Defaults to ``False``. """ # No xml get out of here. if not xml: return None if xml[:5] == u'<?xml': xml = xml[38:] song_xml = objectify.fromstring(xml) if hasattr(song_xml, u'properties'): properties = song_xml.properties else: return None # Formatting tags are new in OpenLyrics 0.8 if float(song_xml.get(u'version')) > 0.7: self._process_formatting_tags(song_xml, parse_and_temporary_save) song = Song() # Values will be set when cleaning the song. song.search_lyrics = u'' song.verse_order = u'' song.search_title = u'' song.temporary = parse_and_temporary_save self._process_copyright(properties, song) self._process_cclinumber(properties, song) self._process_titles(properties, song) # The verse order is processed with the lyrics! self._process_lyrics(properties, song_xml, song) self._process_comments(properties, song) self._process_authors(properties, song) self._process_songbooks(properties, song) self._process_topics(properties, song) clean_song(self.manager, song) self.manager.save_object(song) return song def _add_text_to_element(self, tag, parent, text=None, label=None): if label: element = etree.Element(tag, name=unicode(label)) else: element = etree.Element(tag) if text: element.text = unicode(text) parent.append(element) return element def _add_tag_to_formatting(self, tag_name, tags_element): """ Add new formatting tag to the element ``<format>`` if the tag is not present yet. """ available_tags = FormattingTags.get_html_tags() start_tag = '{%s}' % tag_name for tag in available_tags: if tag[u'start tag'] == start_tag: # Create new formatting tag in openlyrics xml. element = self._add_text_to_element(u'tag', tags_element) element.set(u'name', tag_name) element_open = self._add_text_to_element(u'open', element) element_open.text = etree.CDATA(tag[u'start html']) # Check if formatting tag contains end tag. Some formatting # tags e.g. {br} has only start tag. If no end tag is present # <close> element has not to be in OpenLyrics xml. if tag['end tag']: element_close = self._add_text_to_element(u'close', element) element_close.text = etree.CDATA(tag[u'end html']) def _add_text_with_tags_to_lines(self, verse_element, text, tags_element): """ Convert text with formatting tags from OpenLP format to OpenLyrics format and append it to element ``<lines>``. """ start_tags = OpenLyrics.START_TAGS_REGEX.findall(text) end_tags = OpenLyrics.END_TAGS_REGEX.findall(text) # Replace start tags with xml syntax. for tag in start_tags: # Tags already converted to xml structure. xml_tags = tags_element.xpath(u'tag/attribute::name') # Some formatting tag has only starting part e.g. <br>. # Handle this case. if tag in end_tags: text = text.replace(u'{%s}' % tag, u'<tag name="%s">' % tag) else: text = text.replace(u'{%s}' % tag, u'<tag name="%s"/>' % tag) # Add tag to <format> element if tag not present. if tag not in xml_tags: self._add_tag_to_formatting(tag, tags_element) # Replace end tags. for tag in end_tags: text = text.replace(u'{/%s}' % tag, u'</tag>') # Replace \n with <br/>. text = text.replace(u'\n', u'<br/>') element = etree.XML(u'<lines>%s</lines>' % text) verse_element.append(element) return element def _extract_xml(self, xml): """ Extract our newly created XML song. """ return etree.tostring(xml, encoding=u'UTF-8', xml_declaration=True) def _text(self, element): """ This returns the text of an element as unicode string. ``element`` The element. """ if element.text is not None: return unicode(element.text) return u'' def _process_authors(self, properties, song): """ Adds the authors specified in the XML to the song. ``properties`` The property object (lxml.objectify.ObjectifiedElement). ``song`` The song object. """ authors = [] if hasattr(properties, u'authors'): for author in properties.authors.author: display_name = self._text(author) if display_name: authors.append(display_name) for display_name in authors: author = self.manager.get_object_filtered(Author, Author.display_name == display_name) if author is None: # We need to create a new author, as the author does not exist. author = Author.populate(display_name=display_name, last_name=display_name.split(u' ')[-1], first_name=u' '.join(display_name.split(u' ')[:-1])) song.authors.append(author) def _process_cclinumber(self, properties, song): """ Adds the CCLI number to the song. ``properties`` The property object (lxml.objectify.ObjectifiedElement). ``song`` The song object. """ if hasattr(properties, u'ccliNo'): song.ccli_number = self._text(properties.ccliNo) def _process_comments(self, properties, song): """ Joins the comments specified in the XML and add it to the song. ``properties`` The property object (lxml.objectify.ObjectifiedElement). ``song`` The song object. """ if hasattr(properties, u'comments'): comments_list = [] for comment in properties.comments.comment: comment_text = self._text(comment) if comment_text: comments_list.append(comment_text) song.comments = u'\n'.join(comments_list) def _process_copyright(self, properties, song): """ Adds the copyright to the song. ``properties`` The property object (lxml.objectify.ObjectifiedElement). ``song`` The song object. """ if hasattr(properties, u'copyright'): song.copyright = self._text(properties.copyright) def _process_formatting_tags(self, song_xml, temporary): """ Process the formatting tags from the song and either add missing tags temporary or permanently to the formatting tag list. """ if not hasattr(song_xml, u'format'): return found_tags = [] for tag in song_xml.format.tags.getchildren(): name = tag.get(u'name') if name is None: continue start_tag = u'{%s}' % name[:5] # Some tags have only start tag e.g. {br} end_tag = u'{/' + name[:5] + u'}' if hasattr(tag, 'close') else u'' openlp_tag = { u'desc': name, u'start tag': start_tag, u'end tag': end_tag, u'start html': tag.open.text, # Some tags have only start html e.g. {br} u'end html': tag.close.text if hasattr(tag, 'close') else u'', u'protected': False, } # Add 'temporary' key in case the formatting tag should not be # saved otherwise it is supposed that formatting tag is permanent. if temporary: openlp_tag[u'temporary'] = temporary found_tags.append(openlp_tag) existing_tag_ids = [tag[u'start tag'] for tag in FormattingTags.get_html_tags()] new_tags = [tag for tag in found_tags if tag[u'start tag'] not in existing_tag_ids] FormattingTags.add_html_tags(new_tags) FormattingTags.save_html_tags() def _process_lines_mixed_content(self, element, newlines=True): """ Converts the xml text with mixed content to OpenLP representation. Chords are skipped and formatting tags are converted. ``element`` The property object (lxml.etree.Element). ``newlines`` The switch to enable/disable processing of line breaks <br/>. The <br/> is used since OpenLyrics 0.8. """ text = u'' use_endtag = True # Skip <comment> elements - not yet supported. if element.tag == NSMAP % u'comment': if element.tail: # Append tail text at chord element. text += element.tail return text # Skip <chord> element - not yet supported. elif element.tag == NSMAP % u'chord': if element.tail: # Append tail text at chord element. text += element.tail return text # Convert line breaks <br/> to \n. elif newlines and element.tag == NSMAP % u'br': text += u'\n' if element.tail: text += element.tail return text # Start formatting tag. if element.tag == NSMAP % u'tag': text += u'{%s}' % element.get(u'name') # Some formattings may have only start tag. # Handle this case if element has no children and contains no text. if not element and not element.text: use_endtag = False # Append text from element. if element.text: text += element.text # Process nested formatting tags. for child in element: # Use recursion since nested formatting tags are allowed. text += self._process_lines_mixed_content(child, newlines) # Append text from tail and add formatting end tag. if element.tag == NSMAP % 'tag' and use_endtag: text += u'{/%s}' % element.get(u'name') # Append text from tail. if element.tail: text += element.tail return text def _process_verse_lines(self, lines, version): """ Converts lyrics lines to OpenLP representation. ``lines`` The lines object (lxml.objectify.ObjectifiedElement). """ text = u'' # Convert lxml.objectify to lxml.etree representation. lines = etree.tostring(lines) element = etree.XML(lines) # OpenLyrics 0.8 uses <br/> for new lines. # Append text from "lines" element to verse text. if version > '0.7': text = self._process_lines_mixed_content(element) # OpenLyrics version <= 0.7 contais <line> elements to represent lines. # First child element is tested. else: # Loop over the "line" elements removing comments and chords. for line in element: # Skip comment lines. if line.tag == NSMAP % u'comment': continue if text: text += u'\n' text += self._process_lines_mixed_content(line, newlines=False) return text def _process_lyrics(self, properties, song_xml, song_obj): """ Processes the verses and search_lyrics for the song. ``properties`` The properties object (lxml.objectify.ObjectifiedElement). ``song_xml`` The objectified song (lxml.objectify.ObjectifiedElement). ``song_obj`` The song object. """ sxml = SongXML() verses = {} verse_def_list = [] try: lyrics = song_xml.lyrics except AttributeError: raise OpenLyricsError(OpenLyricsError.LyricsError, '<lyrics> tag is missing.', translate('OpenLP.OpenLyricsImportError', '<lyrics> tag is missing.')) try: verse_list = lyrics.verse except AttributeError: raise OpenLyricsError(OpenLyricsError.VerseError, '<verse> tag is missing.', translate('OpenLP.OpenLyricsImportError', '<verse> tag is missing.')) # Loop over the "verse" elements. for verse in verse_list: text = u'' # Loop over the "lines" elements. for lines in verse.lines: if text: text += u'\n' # Append text from "lines" element to verse text. text += self._process_verse_lines(lines, version=song_xml.get(u'version')) # Add an optional split to the verse text. if lines.get(u'break') is not None: text += u'\n[---]' verse_def = verse.get(u'name', u' ').lower() verse_tag, verse_number, verse_part = OpenLyrics.VERSE_TAG_SPLITTER.search(verse_def).groups() if verse_tag not in VerseType.Tags: verse_tag = VerseType.Tags[VerseType.Other] # OpenLyrics allows e. g. "c", but we need "c1". However, this does # not correct the verse order. if not verse_number: verse_number = u'1' lang = verse.get(u'lang') translit = verse.get(u'translit') # In OpenLP 1.9.6 we used v1a, v1b ... to represent visual slide # breaks. In OpenLyrics 0.7 an attribute has been added. if song_xml.get(u'modifiedIn') in (u'1.9.6', u'OpenLP 1.9.6') and \ song_xml.get(u'version') == u'0.7' and (verse_tag, verse_number, lang, translit) in verses: verses[(verse_tag, verse_number, lang, translit, None)] += u'\n[---]\n' + text # Merge v1a, v1b, .... to v1. elif (verse_tag, verse_number, lang, translit, verse_part) in verses: verses[(verse_tag, verse_number, lang, translit, verse_part)] += u'\n' + text else: verses[(verse_tag, verse_number, lang, translit, verse_part)] = text verse_def_list.append((verse_tag, verse_number, lang, translit, verse_part)) # We have to use a list to keep the order, as dicts are not sorted. for verse in verse_def_list: sxml.add_verse_to_lyrics(verse[0], verse[1], verses[verse], verse[2]) song_obj.lyrics = unicode(sxml.extract_xml(), u'utf-8') # Process verse order if hasattr(properties, u'verseOrder'): song_obj.verse_order = self._text(properties.verseOrder) def _process_songbooks(self, properties, song): """ Adds the song book and song number specified in the XML to the song. ``properties`` The property object (lxml.objectify.ObjectifiedElement). ``song`` The song object. """ song.song_book_id = None song.song_number = u'' if hasattr(properties, u'songbooks'): for songbook in properties.songbooks.songbook: book_name = songbook.get(u'name', u'') if book_name: book = self.manager.get_object_filtered(Book, Book.name == book_name) if book is None: # We need to create a book, because it does not exist. book = Book.populate(name=book_name, publisher=u'') self.manager.save_object(book) song.song_book_id = book.id song.song_number = songbook.get(u'entry', u'') # We only support one song book, so take the first one. break def _process_titles(self, properties, song): """ Processes the titles specified in the song's XML. ``properties`` The property object (lxml.objectify.ObjectifiedElement). ``song`` The song object. """ for title in properties.titles.title: if not song.title: song.title = self._text(title) song.alternate_title = u'' else: song.alternate_title = self._text(title) def _process_topics(self, properties, song): """ Adds the topics to the song. ``properties`` The property object (lxml.objectify.ObjectifiedElement). ``song`` The song object. """ if hasattr(properties, u'themes'): for topic_text in properties.themes.theme: topic_text = self._text(topic_text) if topic_text: topic = self.manager.get_object_filtered(Topic, Topic.name == topic_text) if topic is None: # We need to create a topic, because it does not exist. topic = Topic.populate(name=topic_text) self.manager.save_object(topic) song.topics.append(topic) def _dump_xml(self, xml): """ Debugging aid to dump XML so that we can see what we have. """ return etree.tostring(xml, encoding=u'UTF-8', xml_declaration=True, pretty_print=True) class OpenLyricsError(Exception): # XML tree is missing the lyrics tag LyricsError = 1 # XML tree has no verse tags VerseError = 2 def __init__(self, type, log_message, display_message): Exception.__init__(self) self.type = type self.log_message = log_message self.display_message = display_message
gpl-2.0
-371,223,998,917,800,600
39.076202
111
0.556121
false
nubark/odoo
addons/payment_paypal/models/paypal.py
12
19220
# -*- coding: utf-'8' "-*-" import base64 import json import logging import urlparse import werkzeug.urls import urllib2 from openerp.addons.payment.models.payment_acquirer import ValidationError from openerp.addons.payment_paypal.controllers.main import PaypalController from openerp.osv import osv, fields from openerp.tools.float_utils import float_compare from openerp import SUPERUSER_ID from openerp.tools.translate import _ _logger = logging.getLogger(__name__) class AcquirerPaypal(osv.Model): _inherit = 'payment.acquirer' def _get_paypal_urls(self, cr, uid, environment, context=None): """ Paypal URLS """ if environment == 'prod': return { 'paypal_form_url': 'https://www.paypal.com/cgi-bin/webscr', 'paypal_rest_url': 'https://api.paypal.com/v1/oauth2/token', } else: return { 'paypal_form_url': 'https://www.sandbox.paypal.com/cgi-bin/webscr', 'paypal_rest_url': 'https://api.sandbox.paypal.com/v1/oauth2/token', } def _get_providers(self, cr, uid, context=None): providers = super(AcquirerPaypal, self)._get_providers(cr, uid, context=context) providers.append(['paypal', 'Paypal']) return providers _columns = { 'paypal_email_account': fields.char('Paypal Email ID', required_if_provider='paypal', groups='base.group_user'), 'paypal_seller_account': fields.char( 'Paypal Merchant ID', groups='base.group_user', help='The Merchant ID is used to ensure communications coming from Paypal are valid and secured.'), 'paypal_use_ipn': fields.boolean('Use IPN', help='Paypal Instant Payment Notification', groups='base.group_user'), # Server 2 server 'paypal_api_enabled': fields.boolean('Use Rest API'), 'paypal_api_username': fields.char('Rest API Username', groups='base.group_user'), 'paypal_api_password': fields.char('Rest API Password', groups='base.group_user'), 'paypal_api_access_token': fields.char('Access Token', groups='base.group_user'), 'paypal_api_access_token_validity': fields.datetime('Access Token Validity', groups='base.group_user'), } _defaults = { 'paypal_use_ipn': True, 'fees_active': False, 'fees_dom_fixed': 0.35, 'fees_dom_var': 3.4, 'fees_int_fixed': 0.35, 'fees_int_var': 3.9, 'paypal_api_enabled': False, } def _migrate_paypal_account(self, cr, uid, context=None): """ COMPLETE ME """ cr.execute('SELECT id, paypal_account FROM res_company') res = cr.fetchall() for (company_id, company_paypal_account) in res: if company_paypal_account: company_paypal_ids = self.search(cr, uid, [('company_id', '=', company_id), ('provider', '=', 'paypal')], limit=1, context=context) if company_paypal_ids: self.write(cr, uid, company_paypal_ids, {'paypal_email_account': company_paypal_account}, context=context) else: paypal_view = self.pool['ir.model.data'].get_object(cr, uid, 'payment_paypal', 'paypal_acquirer_button') self.create(cr, uid, { 'name': 'Paypal', 'provider': 'paypal', 'paypal_email_account': company_paypal_account, 'view_template_id': paypal_view.id, }, context=context) return True def paypal_compute_fees(self, cr, uid, id, amount, currency_id, country_id, context=None): """ Compute paypal fees. :param float amount: the amount to pay :param integer country_id: an ID of a res.country, or None. This is the customer's country, to be compared to the acquirer company country. :return float fees: computed fees """ acquirer = self.browse(cr, uid, id, context=context) if not acquirer.fees_active: return 0.0 country = self.pool['res.country'].browse(cr, uid, country_id, context=context) if country and acquirer.company_id.country_id.id == country.id: percentage = acquirer.fees_dom_var fixed = acquirer.fees_dom_fixed else: percentage = acquirer.fees_int_var fixed = acquirer.fees_int_fixed fees = (percentage / 100.0 * amount + fixed ) / (1 - percentage / 100.0) return fees def paypal_form_generate_values(self, cr, uid, id, values, context=None): base_url = self.pool['ir.config_parameter'].get_param(cr, SUPERUSER_ID, 'web.base.url') acquirer = self.browse(cr, uid, id, context=context) paypal_tx_values = dict(values) paypal_tx_values.update({ 'cmd': '_xclick', 'business': acquirer.paypal_email_account, 'item_name': '%s: %s' % (acquirer.company_id.name, values['reference']), 'item_number': values['reference'], 'amount': values['amount'], 'currency_code': values['currency'] and values['currency'].name or '', 'address1': values.get('partner_address'), 'city': values.get('partner_city'), 'country': values.get('partner_country') and values.get('partner_country').code or '', 'state': values.get('partner_state') and (values.get('partner_state').code or values.get('partner_state').name) or '', 'email': values.get('partner_email'), 'zip_code': values.get('partner_zip'), 'first_name': values.get('partner_first_name'), 'last_name': values.get('partner_last_name'), 'paypal_return': '%s' % urlparse.urljoin(base_url, PaypalController._return_url), 'notify_url': '%s' % urlparse.urljoin(base_url, PaypalController._notify_url), 'cancel_return': '%s' % urlparse.urljoin(base_url, PaypalController._cancel_url), 'handling': '%.2f' % paypal_tx_values.pop('fees', 0.0) if acquirer.fees_active else False, 'custom': json.dumps({'return_url': '%s' % paypal_tx_values.pop('return_url')}) if paypal_tx_values.get('return_url') else False, }) return paypal_tx_values def paypal_get_form_action_url(self, cr, uid, id, context=None): acquirer = self.browse(cr, uid, id, context=context) return self._get_paypal_urls(cr, uid, acquirer.environment, context=context)['paypal_form_url'] def _paypal_s2s_get_access_token(self, cr, uid, ids, context=None): """ Note: see # see http://stackoverflow.com/questions/2407126/python-urllib2-basic-auth-problem for explanation why we use Authorization header instead of urllib2 password manager """ res = dict.fromkeys(ids, False) parameters = werkzeug.url_encode({'grant_type': 'client_credentials'}) for acquirer in self.browse(cr, uid, ids, context=context): tx_url = self._get_paypal_urls(cr, uid, acquirer.environment)['paypal_rest_url'] request = urllib2.Request(tx_url, parameters) # add other headers (https://developer.paypal.com/webapps/developer/docs/integration/direct/make-your-first-call/) request.add_header('Accept', 'application/json') request.add_header('Accept-Language', 'en_US') # add authorization header base64string = base64.encodestring('%s:%s' % ( acquirer.paypal_api_username, acquirer.paypal_api_password) ).replace('\n', '') request.add_header("Authorization", "Basic %s" % base64string) request = urllib2.urlopen(request) result = request.read() res[acquirer.id] = json.loads(result).get('access_token') request.close() return res class TxPaypal(osv.Model): _inherit = 'payment.transaction' _columns = { 'paypal_txn_type': fields.char('Transaction type'), } # -------------------------------------------------- # FORM RELATED METHODS # -------------------------------------------------- def _paypal_form_get_tx_from_data(self, cr, uid, data, context=None): reference, txn_id = data.get('item_number'), data.get('txn_id') if not reference or not txn_id: error_msg = _('Paypal: received data with missing reference (%s) or txn_id (%s)') % (reference, txn_id) _logger.info(error_msg) raise ValidationError(error_msg) # find tx -> @TDENOTE use txn_id ? tx_ids = self.pool['payment.transaction'].search(cr, uid, [('reference', '=', reference)], context=context) if not tx_ids or len(tx_ids) > 1: error_msg = 'Paypal: received data for reference %s' % (reference) if not tx_ids: error_msg += '; no order found' else: error_msg += '; multiple order found' _logger.info(error_msg) raise ValidationError(error_msg) return self.browse(cr, uid, tx_ids[0], context=context) def _paypal_form_get_invalid_parameters(self, cr, uid, tx, data, context=None): invalid_parameters = [] _logger.info('Received a notification from Paypal with IPN version %s', data.get('notify_version')) if data.get('test_ipn'): _logger.warning( 'Received a notification from Paypal using sandbox' ), # TODO: txn_id: shoudl be false at draft, set afterwards, and verified with txn details if tx.acquirer_reference and data.get('txn_id') != tx.acquirer_reference: invalid_parameters.append(('txn_id', data.get('txn_id'), tx.acquirer_reference)) # check what is buyed if float_compare(float(data.get('mc_gross', '0.0')), (tx.amount + tx.fees), 2) != 0: invalid_parameters.append(('mc_gross', data.get('mc_gross'), '%.2f' % tx.amount)) # mc_gross is amount + fees if data.get('mc_currency') != tx.currency_id.name: invalid_parameters.append(('mc_currency', data.get('mc_currency'), tx.currency_id.name)) if 'handling_amount' in data and float_compare(float(data.get('handling_amount')), tx.fees, 2) != 0: invalid_parameters.append(('handling_amount', data.get('handling_amount'), tx.fees)) # check buyer if tx.payment_method_id and data.get('payer_id') != tx.payment_method_id.acquirer_ref: invalid_parameters.append(('payer_id', data.get('payer_id'), tx.payment_method_id.acquirer_ref)) # check seller if data.get('receiver_id') and tx.acquirer_id.paypal_seller_account and data['receiver_id'] != tx.acquirer_id.paypal_seller_account: invalid_parameters.append(('receiver_id', data.get('receiver_id'), tx.acquirer_id.paypal_seller_account)) if not data.get('receiver_id') or not tx.acquirer_id.paypal_seller_account: # Check receiver_email only if receiver_id was not checked. # In Paypal, this is possible to configure as receiver_email a different email than the business email (the login email) # In Odoo, there is only one field for the Paypal email: the business email. This isn't possible to set a receiver_email # different than the business email. Therefore, if you want such a configuration in your Paypal, you are then obliged to fill # the Merchant ID in the Paypal payment acquirer in Odoo, so the check is performed on this variable instead of the receiver_email. # At least one of the two checks must be done, to avoid fraudsters. if data.get('receiver_email') != tx.acquirer_id.paypal_email_account: invalid_parameters.append(('receiver_email', data.get('receiver_email'), tx.acquirer_id.paypal_email_account)) return invalid_parameters def _paypal_form_validate(self, cr, uid, tx, data, context=None): status = data.get('payment_status') res = { 'acquirer_reference': data.get('txn_id'), 'paypal_txn_type': data.get('payment_type'), } if status in ['Completed', 'Processed']: _logger.info('Validated Paypal payment for tx %s: set as done' % (tx.reference)) res.update(state='done', date_validate=data.get('payment_date', fields.datetime.now())) return tx.write(res) elif status in ['Pending', 'Expired']: _logger.info('Received notification for Paypal payment %s: set as pending' % (tx.reference)) res.update(state='pending', state_message=data.get('pending_reason', '')) return tx.write(res) else: error = 'Received unrecognized status for Paypal payment %s: %s, set as error' % (tx.reference, status) _logger.info(error) res.update(state='error', state_message=error) return tx.write(res) # -------------------------------------------------- # SERVER2SERVER RELATED METHODS # -------------------------------------------------- def _paypal_try_url(self, request, tries=3, context=None): """ Try to contact Paypal. Due to some issues, internal service errors seem to be quite frequent. Several tries are done before considering the communication as failed. .. versionadded:: pre-v8 saas-3 .. warning:: Experimental code. You should not use it before OpenERP v8 official release. """ done, res = False, None while (not done and tries): try: res = urllib2.urlopen(request) done = True except urllib2.HTTPError as e: res = e.read() e.close() if tries and res and json.loads(res)['name'] == 'INTERNAL_SERVICE_ERROR': _logger.warning('Failed contacting Paypal, retrying (%s remaining)' % tries) tries = tries - 1 if not res: pass # raise openerp.exceptions. result = res.read() res.close() return result def _paypal_s2s_send(self, cr, uid, values, cc_values, context=None): """ .. versionadded:: pre-v8 saas-3 .. warning:: Experimental code. You should not use it before OpenERP v8 official release. """ tx_id = self.create(cr, uid, values, context=context) tx = self.browse(cr, uid, tx_id, context=context) headers = { 'Content-Type': 'application/json', 'Authorization': 'Bearer %s' % tx.acquirer_id._paypal_s2s_get_access_token()[tx.acquirer_id.id], } data = { 'intent': 'sale', 'transactions': [{ 'amount': { 'total': '%.2f' % tx.amount, 'currency': tx.currency_id.name, }, 'description': tx.reference, }] } if cc_values: data['payer'] = { 'payment_method': 'credit_card', 'funding_instruments': [{ 'credit_card': { 'number': cc_values['number'], 'type': cc_values['brand'], 'expire_month': cc_values['expiry_mm'], 'expire_year': cc_values['expiry_yy'], 'cvv2': cc_values['cvc'], 'first_name': tx.partner_name, 'last_name': tx.partner_name, 'billing_address': { 'line1': tx.partner_address, 'city': tx.partner_city, 'country_code': tx.partner_country_id.code, 'postal_code': tx.partner_zip, } } }] } else: # TODO: complete redirect URLs data['redirect_urls'] = { # 'return_url': 'http://example.com/your_redirect_url/', # 'cancel_url': 'http://example.com/your_cancel_url/', }, data['payer'] = { 'payment_method': 'paypal', } data = json.dumps(data) request = urllib2.Request('https://api.sandbox.paypal.com/v1/payments/payment', data, headers) result = self._paypal_try_url(request, tries=3, context=context) return (tx_id, result) def _paypal_s2s_get_invalid_parameters(self, cr, uid, tx, data, context=None): """ .. versionadded:: pre-v8 saas-3 .. warning:: Experimental code. You should not use it before OpenERP v8 official release. """ invalid_parameters = [] return invalid_parameters def _paypal_s2s_validate(self, cr, uid, tx, data, context=None): """ .. versionadded:: pre-v8 saas-3 .. warning:: Experimental code. You should not use it before OpenERP v8 official release. """ values = json.loads(data) status = values.get('state') if status in ['approved']: _logger.info('Validated Paypal s2s payment for tx %s: set as done' % (tx.reference)) tx.write({ 'state': 'done', 'date_validate': values.get('udpate_time', fields.datetime.now()), 'paypal_txn_id': values['id'], }) return True elif status in ['pending', 'expired']: _logger.info('Received notification for Paypal s2s payment %s: set as pending' % (tx.reference)) tx.write({ 'state': 'pending', # 'state_message': data.get('pending_reason', ''), 'paypal_txn_id': values['id'], }) return True else: error = 'Received unrecognized status for Paypal s2s payment %s: %s, set as error' % (tx.reference, status) _logger.info(error) tx.write({ 'state': 'error', # 'state_message': error, 'paypal_txn_id': values['id'], }) return False def _paypal_s2s_get_tx_status(self, cr, uid, tx, context=None): """ .. versionadded:: pre-v8 saas-3 .. warning:: Experimental code. You should not use it before OpenERP v8 official release. """ # TDETODO: check tx.paypal_txn_id is set headers = { 'Content-Type': 'application/json', 'Authorization': 'Bearer %s' % tx.acquirer_id._paypal_s2s_get_access_token()[tx.acquirer_id.id], } url = 'https://api.sandbox.paypal.com/v1/payments/payment/%s' % (tx.paypal_txn_id) request = urllib2.Request(url, headers=headers) data = self._paypal_try_url(request, tries=3, context=context) return self.s2s_feedback(cr, uid, tx.id, data, context=context)
gpl-3.0
-5,452,991,303,755,321,000
45.650485
147
0.565088
false
pakit/recipes_bot
tests/conftest.py
3
1284
""" Used for pytest plugins & session scoped fixtures. """ from __future__ import absolute_import import sys import mock import pytest import tests.common as tc @pytest.fixture(scope='session', autouse=True) def setup_test_bed(request): """ Fixture sets up the testing environment for pakit as a whole. Session scope, executes before all tests. """ request.addfinalizer(tc.env_teardown) tc.env_setup() @pytest.yield_fixture() def mock_print(): """ A fixture that mocks python's print function during test. """ if sys.version_info < (3, 0): print_mod = '__builtin__.print' else: print_mod = 'builtins.print' with mock.patch(print_mod) as mock_obj: yield mock_obj @pytest.yield_fixture() def mock_input(): """ A fixture that mocks python's print function during test. """ if sys.version_info < (3, 0): input_mod = '__builtin__.raw_input' else: input_mod = 'builtins.input' with mock.patch(input_mod) as mock_obj: yield mock_obj @pytest.yield_fixture(scope='function', autouse=True) def around_all_tests(): """ Executes before and after EVERY test. Can be helpful for tracking bugs impacting test bed. """ # before yield # after
bsd-3-clause
199,374,408,169,850,370
21.526316
65
0.640966
false
Donkyhotay/MoonPy
zope/app/publication/tests/test_zopepublication.py
1
20095
############################################################################## # # Copyright (c) 2001, 2002 Zope Corporation and Contributors. # All Rights Reserved. # # This software is subject to the provisions of the Zope Public License, # Version 2.1 (ZPL). A copy of the ZPL should accompany this distribution. # THIS SOFTWARE IS PROVIDED "AS IS" AND ANY AND ALL EXPRESS OR IMPLIED # WARRANTIES ARE DISCLAIMED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF TITLE, MERCHANTABILITY, AGAINST INFRINGEMENT, AND FITNESS # FOR A PARTICULAR PURPOSE. # ############################################################################## """Zope Publication Tests $Id$ """ import unittest import sys from cStringIO import StringIO from persistent import Persistent from ZODB.DB import DB from ZODB.DemoStorage import DemoStorage import transaction import zope.component from zope.interface.verify import verifyClass from zope.interface import implements, classImplements, implementedBy from zope.i18n.interfaces import IUserPreferredCharsets from zope.component.interfaces import ComponentLookupError from zope.publisher.base import TestPublication, TestRequest from zope.publisher.http import IHTTPRequest, HTTPCharsets from zope.publisher.interfaces import IRequest, IPublishTraverse from zope.security import simplepolicies from zope.security.management import setSecurityPolicy, queryInteraction from zope.security.management import endInteraction from zope.traversing.interfaces import IPhysicallyLocatable from zope.location.interfaces import ILocation from zope.app.testing.placelesssetup import PlacelessSetup from zope.app.testing import setup, ztapi from zope.app.error.interfaces import IErrorReportingUtility from zope.app.security.principalregistry import principalRegistry from zope.app.security.interfaces import IUnauthenticatedPrincipal, IPrincipal from zope.app.publication.zopepublication import ZopePublication from zope.app.folder import Folder, rootFolder from zope.location import Location from zope.app.security.interfaces import IAuthenticationUtility class Principal(object): implements(IPrincipal) def __init__(self, id): self.id = id self.title = '' self.description = '' class UnauthenticatedPrincipal(Principal): implements(IUnauthenticatedPrincipal) class AuthUtility1(object): def authenticate(self, request): return None def unauthenticatedPrincipal(self): return UnauthenticatedPrincipal('test.anonymous') def unauthorized(self, id, request): pass def getPrincipal(self, id): return UnauthenticatedPrincipal(id) class AuthUtility2(AuthUtility1): def authenticate(self, request): return Principal('test.bob') def getPrincipal(self, id): return Principal(id) class ErrorReportingUtility(object): implements(IErrorReportingUtility) def __init__(self): self.exceptions = [] def raising(self, info, request=None): self.exceptions.append([info, request]) class LocatableObject(Location): def foo(self): pass class TestRequest(TestRequest): URL='http://test.url' class BasePublicationTests(PlacelessSetup, unittest.TestCase): def setUp(self): super(BasePublicationTests, self).setUp() from zope.security.management import endInteraction endInteraction() ztapi.provideAdapter(IHTTPRequest, IUserPreferredCharsets, HTTPCharsets) self.policy = setSecurityPolicy( simplepolicies.PermissiveSecurityPolicy ) self.storage = DemoStorage('test_storage') self.db = db = DB(self.storage) connection = db.open() root = connection.root() app = getattr(root, ZopePublication.root_name, None) if app is None: from zope.app.folder import rootFolder app = rootFolder() root[ZopePublication.root_name] = app transaction.commit() connection.close() self.app = app from zope.traversing.namespace import view, resource, etc ztapi.provideNamespaceHandler('view', view) ztapi.provideNamespaceHandler('resource', resource) ztapi.provideNamespaceHandler('etc', etc) self.request = TestRequest('/f1/f2') self.user = Principal('test.principal') self.request.setPrincipal(self.user) from zope.interface import Interface self.presentation_type = Interface self.request._presentation_type = self.presentation_type self.object = object() self.publication = ZopePublication(self.db) def tearDown(self): super(BasePublicationTests, self).tearDown() def testInterfacesVerify(self): for interface in implementedBy(ZopePublication): verifyClass(interface, TestPublication) class ZopePublicationErrorHandling(BasePublicationTests): def testRetryAllowed(self): from ZODB.POSException import ConflictError from zope.publisher.interfaces import Retry try: raise ConflictError except: self.assertRaises(Retry, self.publication.handleException, self.object, self.request, sys.exc_info(), retry_allowed=True) try: raise Retry(sys.exc_info()) except: self.assertRaises(Retry, self.publication.handleException, self.object, self.request, sys.exc_info(), retry_allowed=True) def testRetryNotAllowed(self): from ZODB.POSException import ConflictError from zope.publisher.interfaces import Retry try: raise ConflictError except: self.publication.handleException( self.object, self.request, sys.exc_info(), retry_allowed=False) value = ''.join(self.request.response._result).split() self.assertEqual(' '.join(value[:6]), 'Traceback (most recent call last): File') self.assertEqual(' '.join(value[-8:]), 'in testRetryNotAllowed raise ConflictError' ' ConflictError: database conflict error') try: raise Retry(sys.exc_info()) except: self.publication.handleException( self.object, self.request, sys.exc_info(), retry_allowed=False) value = ''.join(self.request.response._result).split() self.assertEqual(' '.join(value[:6]), 'Traceback (most recent call last): File') self.assertEqual(' '.join(value[-8:]), 'in testRetryNotAllowed raise Retry(sys.exc_info())' ' Retry: database conflict error') try: raise Retry except: self.publication.handleException( self.object, self.request, sys.exc_info(), retry_allowed=False) value = ''.join(self.request.response._result).split() self.assertEqual(' '.join(value[:6]), 'Traceback (most recent call last): File') self.assertEqual(' '.join(value[-6:]), 'in testRetryNotAllowed raise Retry' ' Retry: None') def testViewOnException(self): from zope.interface import Interface class E1(Exception): pass ztapi.setDefaultViewName(E1, 'name', layer=None, type=self.presentation_type) view_text = 'You had a conflict error' ztapi.provideView(E1, self.presentation_type, Interface, 'name', lambda obj, request: lambda: view_text) try: raise E1 except: pass self.publication.handleException( self.object, self.request, sys.exc_info(), retry_allowed=False) self.assertEqual(self.request.response._result, view_text) def testHandlingSystemErrors(self): # Generally, when there is a view for an excepton, we assume # it is a user error, not a system error and we don't log it. from zope.testing import loggingsupport handler = loggingsupport.InstalledHandler('SiteError') self.testViewOnException() self.assertEqual( str(handler), 'SiteError ERROR\n' ' Error while reporting an error to the Error Reporting utility') # Here we got a single log record, because we havdn't # installed an error reporting utility. That's OK. handler.uninstall() handler = loggingsupport.InstalledHandler('SiteError') # Now, we'll register an exception view that indicates that we # have a system error. from zope.interface import Interface, implements class E2(Exception): pass ztapi.setDefaultViewName(E2, 'name', layer=self.presentation_type, type=self.presentation_type) view_text = 'You had a conflict error' from zope.app.exception.interfaces import ISystemErrorView class MyView: implements(ISystemErrorView) def __init__(self, context, request): pass def isSystemError(self): return True def __call__(self): return view_text ztapi.provideView(E2, self.presentation_type, Interface, 'name', MyView) try: raise E2 except: self.publication.handleException( self.object, self.request, sys.exc_info(), retry_allowed=False) # Now, since the view was a system error view, we should have # a log entry for the E2 error (as well as the missing # error reporting utility). self.assertEqual( str(handler), 'SiteError ERROR\n' ' Error while reporting an error to the Error Reporting utility\n' 'SiteError ERROR\n' ' http://test.url' ) handler.uninstall() def testNoViewOnClassicClassException(self): from zope.interface import Interface from types import ClassType class ClassicError: __metaclass__ = ClassType class IClassicError(Interface): pass classImplements(ClassicError, IClassicError) ztapi.setDefaultViewName(IClassicError, 'name', self.presentation_type) view_text = 'You made a classic error ;-)' ztapi.provideView(IClassicError, self.presentation_type, Interface, 'name', lambda obj,request: lambda: view_text) try: raise ClassicError except: pass self.publication.handleException( self.object, self.request, sys.exc_info(), retry_allowed=False) # check we don't get the view we registered self.failIf(''.join(self.request.response._result) == view_text) # check we do actually get something self.failIf(''.join(self.request.response._result) == '') def testExceptionSideEffects(self): from zope.publisher.interfaces import IExceptionSideEffects class SideEffects(object): implements(IExceptionSideEffects) def __init__(self, exception): self.exception = exception def __call__(self, obj, request, exc_info): self.obj = obj self.request = request self.exception_type = exc_info[0] self.exception_from_info = exc_info[1] class SideEffectsFactory: def __call__(self, exception): self.adapter = SideEffects(exception) return self.adapter factory = SideEffectsFactory() from ZODB.POSException import ConflictError from zope.interface import Interface class IConflictError(Interface): pass classImplements(ConflictError, IConflictError) ztapi.provideAdapter(IConflictError, IExceptionSideEffects, factory) exception = ConflictError() try: raise exception except: pass self.publication.handleException( self.object, self.request, sys.exc_info(), retry_allowed=False) adapter = factory.adapter self.assertEqual(exception, adapter.exception) self.assertEqual(exception, adapter.exception_from_info) self.assertEqual(ConflictError, adapter.exception_type) self.assertEqual(self.object, adapter.obj) self.assertEqual(self.request, adapter.request) def testExceptionResetsResponse(self): from zope.publisher.browser import TestRequest request = TestRequest() request.response.setHeader('Content-Type', 'application/pdf') request.response.setCookie('spam', 'eggs') from ZODB.POSException import ConflictError try: raise ConflictError except: pass self.publication.handleException( self.object, request, sys.exc_info(), retry_allowed=False) self.assertEqual(request.response.getHeader('Content-Type'), 'text/html;charset=utf-8') self.assertEqual(request.response._cookies, {}) def testAbortOrCommitTransaction(self): txn = transaction.get() try: raise Exception except: pass self.publication.handleException( self.object, self.request, sys.exc_info(), retry_allowed=False) # assert that we get a new transaction self.assert_(txn is not transaction.get()) def testAbortTransactionWithErrorReportingUtility(self): # provide our fake error reporting utility zope.component.provideUtility(ErrorReportingUtility()) class FooError(Exception): pass last_txn_info = self.db.undoInfo()[0] try: raise FooError except FooError: pass self.publication.handleException( self.object, self.request, sys.exc_info(), retry_allowed=False) # assert that the last transaction is NOT our transaction new_txn_info = self.db.undoInfo()[0] self.assertEqual(last_txn_info, new_txn_info) # instead, we expect a message in our logging utility error_log = zope.component.getUtility(IErrorReportingUtility) self.assertEqual(len(error_log.exceptions), 1) error_info, request = error_log.exceptions[0] self.assertEqual(error_info[0], FooError) self.assert_(isinstance(error_info[1], FooError)) self.assert_(request is self.request) class ZopePublicationTests(BasePublicationTests): def testPlacefulAuth(self): setup.setUpTraversal() setup.setUpSiteManagerLookup() principalRegistry.defineDefaultPrincipal('anonymous', '') root = self.db.open().root() app = root[ZopePublication.root_name] app['f1'] = rootFolder() f1 = app['f1'] f1['f2'] = Folder() sm1 = setup.createSiteManager(f1) setup.addUtility(sm1, '', IAuthenticationUtility, AuthUtility1()) f2 = f1['f2'] sm2 = setup.createSiteManager(f2) setup.addUtility(sm2, '', IAuthenticationUtility, AuthUtility2()) transaction.commit() from zope.app.container.interfaces import ISimpleReadContainer from zope.app.container.traversal import ContainerTraverser ztapi.provideView(ISimpleReadContainer, IRequest, IPublishTraverse, '', ContainerTraverser) from zope.app.folder.interfaces import IFolder from zope.security.checker import defineChecker, InterfaceChecker defineChecker(Folder, InterfaceChecker(IFolder)) self.publication.beforeTraversal(self.request) self.assertEqual(list(queryInteraction().participations), [self.request]) self.assertEqual(self.request.principal.id, 'anonymous') root = self.publication.getApplication(self.request) self.publication.callTraversalHooks(self.request, root) self.assertEqual(self.request.principal.id, 'anonymous') ob = self.publication.traverseName(self.request, root, 'f1') self.publication.callTraversalHooks(self.request, ob) self.assertEqual(self.request.principal.id, 'test.anonymous') ob = self.publication.traverseName(self.request, ob, 'f2') self.publication.afterTraversal(self.request, ob) self.assertEqual(self.request.principal.id, 'test.bob') self.assertEqual(list(queryInteraction().participations), [self.request]) self.publication.endRequest(self.request, ob) self.assertEqual(queryInteraction(), None) def testTransactionCommitAfterCall(self): root = self.db.open().root() txn = transaction.get() # we just need a change in the database to make the # transaction notable in the undo log root['foo'] = object() last_txn_info = self.db.undoInfo()[0] self.publication.afterCall(self.request, self.object) self.assert_(txn is not transaction.get()) new_txn_info = self.db.undoInfo()[0] self.failIfEqual(last_txn_info, new_txn_info) def testTransactionAnnotation(self): from zope.interface import directlyProvides from zope.location.traversing import LocationPhysicallyLocatable from zope.location.interfaces import ILocation from zope.traversing.interfaces import IPhysicallyLocatable from zope.traversing.interfaces import IContainmentRoot ztapi.provideAdapter(ILocation, IPhysicallyLocatable, LocationPhysicallyLocatable) root = self.db.open().root() root['foo'] = foo = LocatableObject() root['bar'] = bar = LocatableObject() bar.__name__ = 'bar' foo.__name__ = 'foo' bar.__parent__ = foo foo.__parent__ = root directlyProvides(root, IContainmentRoot) from zope.publisher.interfaces import IRequest expected_path = "/foo/bar" expected_user = "/ " + self.user.id expected_request = IRequest.__module__ + '.' + IRequest.getName() self.publication.afterCall(self.request, bar) txn_info = self.db.undoInfo()[0] self.assertEqual(txn_info['location'], expected_path) self.assertEqual(txn_info['user_name'], expected_user) self.assertEqual(txn_info['request_type'], expected_request) # also, assert that we still get the right location when # passing an instance method as object. self.publication.afterCall(self.request, bar.foo) self.assertEqual(txn_info['location'], expected_path) def testSiteEvents(self): from zope.app.publication.interfaces import IBeforeTraverseEvent from zope.app.publication.interfaces import IEndRequestEvent set = [] clear = [] ztapi.subscribe([IBeforeTraverseEvent], None, set.append) ztapi.subscribe([IEndRequestEvent], None, clear.append) ob = object() # This should fire the BeforeTraverseEvent self.publication.callTraversalHooks(self.request, ob) self.assertEqual(len(set), 1) self.assertEqual(len(clear), 0) self.assertEqual(set[0].object, ob) ob2 = object() # This should fire the EndRequestEvent self.publication.endRequest(self.request, ob2) self.assertEqual(len(set), 1) self.assertEqual(len(clear), 1) self.assertEqual(clear[0].object, ob2) def test_suite(): return unittest.TestSuite(( unittest.makeSuite(ZopePublicationTests), unittest.makeSuite(ZopePublicationErrorHandling), )) if __name__ == '__main__': unittest.TextTestRunner().run(test_suite())
gpl-3.0
-3,034,679,002,042,648,600
36.490672
79
0.639015
false