text
stringlengths
4
1.02M
meta
dict
""" Onshape REST API The Onshape REST API consumed by all clients. # noqa: E501 The version of the OpenAPI document: 1.113 Contact: [email protected] Generated by: https://openapi-generator.tech """ from __future__ import absolute_import import re # noqa: F401 import sys # noqa: F401 import six # noqa: F401 import nulltype # noqa: F401 from onshape_client.oas.model_utils import ( # noqa: F401 ModelComposed, ModelNormal, ModelSimple, date, datetime, file_type, int, none_type, str, validate_get_composed_info, ) try: from onshape_client.oas.models import btm_individual_co_edge_query1332_all_of except ImportError: btm_individual_co_edge_query1332_all_of = sys.modules[ "onshape_client.oas.models.btm_individual_co_edge_query1332_all_of" ] try: from onshape_client.oas.models import btm_individual_query138 except ImportError: btm_individual_query138 = sys.modules[ "onshape_client.oas.models.btm_individual_query138" ] try: from onshape_client.oas.models import btm_individual_query_base139 except ImportError: btm_individual_query_base139 = sys.modules[ "onshape_client.oas.models.btm_individual_query_base139" ] try: from onshape_client.oas.models import btp_statement269 except ImportError: btp_statement269 = sys.modules["onshape_client.oas.models.btp_statement269"] class BTMIndividualCoEdgeQuery1332(ModelComposed): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. Attributes: allowed_values (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict with a capitalized key describing the allowed value and an allowed value. These dicts store the allowed enum values. attribute_map (dict): The key is attribute name and the value is json key in definition. discriminator_value_class_map (dict): A dict to go from the discriminator variable value to the discriminator class name. validations (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict that stores validations for max_length, min_length, max_items, min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum, inclusive_minimum, and regex. additional_properties_type (tuple): A tuple of classes accepted as additional properties values. """ allowed_values = {} validations = {} additional_properties_type = None @staticmethod def openapi_types(): """ This must be a class method so a model may have properties that are of type self, this ensures that we don't create a cyclic import Returns openapi_types (dict): The key is attribute name and the value is attribute type. """ return { "bt_type": (str,), # noqa: E501 "edge_query": ( btm_individual_query138.BTMIndividualQuery138, ), # noqa: E501 "face_query": ( btm_individual_query138.BTMIndividualQuery138, ), # noqa: E501 "deterministic_id_list": ( btm_individual_query_base139.BTMIndividualQueryBase139, ), # noqa: E501 "deterministic_ids": ([str],), # noqa: E501 "import_microversion": (str,), # noqa: E501 "node_id": (str,), # noqa: E501 "query": ( btm_individual_query_base139.BTMIndividualQueryBase139, ), # noqa: E501 "query_string": (str,), # noqa: E501 "persistent_query": (btp_statement269.BTPStatement269,), # noqa: E501 "query_statement": (btp_statement269.BTPStatement269,), # noqa: E501 "variable_name": ( btm_individual_query138.BTMIndividualQuery138, ), # noqa: E501 } @staticmethod def discriminator(): return None attribute_map = { "bt_type": "btType", # noqa: E501 "edge_query": "edgeQuery", # noqa: E501 "face_query": "faceQuery", # noqa: E501 "deterministic_id_list": "deterministicIdList", # noqa: E501 "deterministic_ids": "deterministicIds", # noqa: E501 "import_microversion": "importMicroversion", # noqa: E501 "node_id": "nodeId", # noqa: E501 "query": "query", # noqa: E501 "query_string": "queryString", # noqa: E501 "persistent_query": "persistentQuery", # noqa: E501 "query_statement": "queryStatement", # noqa: E501 "variable_name": "variableName", # noqa: E501 } required_properties = set( [ "_data_store", "_check_type", "_from_server", "_path_to_item", "_configuration", "_composed_instances", "_var_name_to_model_instances", "_additional_properties_model_instances", ] ) def __init__( self, _check_type=True, _from_server=False, _path_to_item=(), _configuration=None, **kwargs ): # noqa: E501 """btm_individual_co_edge_query1332.BTMIndividualCoEdgeQuery1332 - a model defined in OpenAPI Keyword Args: _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _from_server (bool): True if the data is from the server False if the data is from the client (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. bt_type (str): [optional] # noqa: E501 edge_query (btm_individual_query138.BTMIndividualQuery138): [optional] # noqa: E501 face_query (btm_individual_query138.BTMIndividualQuery138): [optional] # noqa: E501 deterministic_id_list (btm_individual_query_base139.BTMIndividualQueryBase139): [optional] # noqa: E501 deterministic_ids ([str]): [optional] # noqa: E501 import_microversion (str): [optional] # noqa: E501 node_id (str): [optional] # noqa: E501 query (btm_individual_query_base139.BTMIndividualQueryBase139): [optional] # noqa: E501 query_string (str): [optional] # noqa: E501 persistent_query (btp_statement269.BTPStatement269): [optional] # noqa: E501 query_statement (btp_statement269.BTPStatement269): [optional] # noqa: E501 variable_name (btm_individual_query138.BTMIndividualQuery138): [optional] # noqa: E501 """ self._data_store = {} self._check_type = _check_type self._from_server = _from_server self._path_to_item = _path_to_item self._configuration = _configuration constant_args = { "_check_type": _check_type, "_path_to_item": _path_to_item, "_from_server": _from_server, "_configuration": _configuration, } required_args = {} # remove args whose value is Null because they are unset required_arg_names = list(required_args.keys()) for required_arg_name in required_arg_names: if required_args[required_arg_name] is nulltype.Null: del required_args[required_arg_name] model_args = {} model_args.update(required_args) model_args.update(kwargs) composed_info = validate_get_composed_info(constant_args, model_args, self) self._composed_instances = composed_info[0] self._var_name_to_model_instances = composed_info[1] self._additional_properties_model_instances = composed_info[2] unused_args = composed_info[3] for var_name, var_value in required_args.items(): setattr(self, var_name, var_value) for var_name, var_value in six.iteritems(kwargs): if ( var_name in unused_args and self._configuration is not None and self._configuration.discard_unknown_keys and not self._additional_properties_model_instances ): # discard variable. continue setattr(self, var_name, var_value) @staticmethod def _composed_schemas(): # we need this here to make our import statements work # we must store _composed_schemas in here so the code is only run # when we invoke this method. If we kept this at the class # level we would get an error beause the class level # code would be run when this module is imported, and these composed # classes don't exist yet because their module has not finished # loading return { "anyOf": [], "allOf": [ btm_individual_co_edge_query1332_all_of.BTMIndividualCoEdgeQuery1332AllOf, btm_individual_query138.BTMIndividualQuery138, ], "oneOf": [], }
{ "content_hash": "d872a6585be9baa526d7e8e0e687b314", "timestamp": "", "source": "github", "line_count": 247, "max_line_length": 116, "avg_line_length": 39.73279352226721, "alnum_prop": 0.5977175463623395, "repo_name": "onshape-public/onshape-clients", "id": "dbadfd62975d5c160bfaf6bd702bef9ed4bcf1a1", "size": "9831", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "python/onshape_client/oas/models/btm_individual_co_edge_query1332.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "4873" }, { "name": "Go", "bytes": "59674" }, { "name": "HTML", "bytes": "3851790" }, { "name": "JavaScript", "bytes": "2217" }, { "name": "Makefile", "bytes": "559" }, { "name": "Python", "bytes": "7560009" }, { "name": "Shell", "bytes": "3475" }, { "name": "TypeScript", "bytes": "1412661" } ], "symlink_target": "" }
from __future__ import absolute_import from __future__ import print_function from __future__ import unicode_literals import textwrap import xml.etree.ElementTree as ET from six.moves import range from unidecode import unidecode import escpos.barcode import escpos.feature from satcomum import br from satcomum import constantes from .config import padrao as config_padrao class ExtratoCFe(object): """Classe base para os extratos do CF-e de venda e cancelamento, fornecendo uma implementação comum para o cabeçalho dos CF-e de venda e cancelamento, além da infraestrutura que simplifica a interface para impressoras ESC/POS. As implementações que realmente emitem os extratos estão nas classes :class:`~satextrato.venda.ExtratoCFeVenda` e :class:`~satextrato.cancelamento.ExtratoCFeCancelamento`. """ def __init__(self, fp, impressora, config=None): """Inicia uma instância de :class:`ExtratoCFe`. :param fp: Um *file object* para o documento XML que contém o CF-e. :param impressora: Um instância (ou subclasse, especialização) de :class:`escpos.impl.epson.GenericESCPOS` usado para efetivamente imprimir o extrato. :param config: Opcional. Uma instância de :class:`satextrato.config.Configuracoes`. Se não informado, serão usados valores padrão. """ super(ExtratoCFe, self).__init__() self._config = config or config_padrao() self._tree = ET.parse(fp) self.root = self._tree.getroot() self.impressora = impressora self._flag_negrito = False self._flag_italico = False self._flag_expandido = False self._flag_condensado = False @property def _colunas(self): if self._flag_condensado: num_colunas = self.impressora.feature.columns.condensed elif self._flag_expandido: num_colunas = self.impressora.feature.columns.expanded else: num_colunas = self.impressora.feature.columns.normal return num_colunas @property def is_ambiente_testes(self): """Indica se o CF-e-SAT foi emitido em "ambiente de testes". Considera como emitido em ambiente de testes quando: * Elemento B10 ``tpAmb`` for ``2`` (ambiente de testes) ou * Elemento B12 ``signAC`` possuir a assinatura de teste, indicada pela constante :attr:`satcomum.constantes.ASSINATURA_AC_TESTE`. .. note:: O CF-e de cancelamento não possui o elemento ``tpAmb``, conforme descrito na ER SAT, item 4.2.3 **Layout do CF-e de cancelamento**. :raises ValueError: Se o documento XML não for identificado como um CF-e-SAT de venda ou cancelamento. """ signAC = self.root.findtext('./infCFe/ide/signAC') if self.root.tag == constantes.ROOT_TAG_VENDA: tpAmb = self.root.findtext('./infCFe/ide/tpAmb') return (tpAmb == constantes.B10_TESTES or signAC == constantes.ASSINATURA_AC_TESTE) elif self.root.tag == constantes.ROOT_TAG_CANCELAMENTO: # CF-e-SAT de cancelamento não possui `tpAmb` return signAC == constantes.ASSINATURA_AC_TESTE raise ValueError( ( 'Documento nao parece ser um CF-e-SAT; root tag: {!r}' ).format(self.root.tag) ) def imprimir(self): self.cabecalho() self.corpo() self.rodape() self.fim_documento() def centro(self): self.impressora.justify_center() return self def esquerda(self): self.impressora.justify_left() return self def normal(self): if self._flag_negrito: self.negrito() if self._flag_italico: self.italico() if self._flag_expandido: self.expandido() if self._flag_condensado: self.condensado() def negrito(self): self._flag_negrito = not self._flag_negrito self.impressora.set_emphasized(self._flag_negrito) return self def italico(self): self._flag_italico = not self._flag_italico return self def expandido(self): self._flag_expandido = not self._flag_expandido self.impressora.set_expanded(self._flag_expandido) return self def condensado(self): self._flag_condensado = not self._flag_condensado self.impressora.set_condensed(self._flag_condensado) return self def bordas( self, texto_esquerda, texto_direita, colunas=None, espacamento_minimo=4 ): largura = colunas or self._colunas texto = _bordas( texto_esquerda, texto_direita, largura=largura, espacamento_minimo=espacamento_minimo ) self.texto(texto) return self def quebrar(self, texto, colunas=None): largura = colunas or self._colunas # considera hard-breaks linhas_fixas = texto.replace('\r', '').split('\n') for linha_fixa in linhas_fixas: linhas = textwrap.wrap(linha_fixa, largura) for linha in linhas: self.texto(linha) return self def avanco(self, linhas=1): self.impressora.lf(lines=linhas) return self def texto(self, texto): self.impressora.text(unidecode(texto)) return self def separador(self, caracter='-', colunas=None): largura = colunas or self._colunas self.texto('-' * largura) return self def indicacao_de_teste(self): """Imprime indicação de teste se o CF-e estiver em "condição de teste". Caso contrário, não faz nada. A indicação de teste, conforme o Manual de Orientação deverá ser impressa em itálico (note a linha em branco acima e abaixo da inscrição "TESTE"): .. sourcecode:: text 10 20 30 40 48 : ....:....|....:....|....:....|....:....|....:..! : : = T E S T E = : : <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< : <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< : <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< : .. note:: O correto são linhas com sinais de ``>``, mas isso faz com que o framework de teste interprete como um bloco de teste (doctest). Os sinais de ``<`` dão uma boa ideia do resultado final. """ if self.is_ambiente_testes: self.italico() self.avanco() self.texto('= T E S T E =') self.avanco() for i in range(3): self.texto('>' * self._colunas) self.italico() def numero_extrato(self): """ Obtém o número do extrato, elemento ``nCFe`` (B06). Se o CF-e estiver em condição de teste retornará ``000000``. Veja :meth:`is_ambiente_testes` para outros detalhes. """ if self.is_ambiente_testes: return '0' * 6 return self.root.findtext('./infCFe/ide/nCFe') def chave_cfe_code128(self, chave): """Imprime o código de barras padrão Code128 para a chave do CF-e. :param chave: Instância de :class:`satcomum.ersat.ChaveCFeSAT`. """ self.centro() self.condensado() self.texto(' '.join(chave.partes())) self.condensado() if self._config.code128.ignorar: return code128_params = dict( barcode_height=self._config.code128.altura, barcode_width=escpos.barcode.BARCODE_NORMAL_WIDTH, barcode_hri=escpos.barcode.BARCODE_HRI_NONE ) if self._config.code128.truncar: tamanho = self._config.code128.truncar_tamanho digitos = ''.join(chave.partes())[:tamanho] self.centro() self.impressora.code128(digitos, **code128_params) elif self._config.code128.quebrar: partes = _quebrar_chave(chave, self._config.code128.quebrar_partes) for n_parte, parte in enumerate(partes, 1): self.centro() self.impressora.code128(parte, **code128_params) if self._config.code128.pular_linha_entre_partes: if n_parte < len(partes): self.avanco() else: partes = chave.partes(1) self.centro() self.impressora.code128(partes[0], **code128_params) def qrcode_mensagem(self): mensagem = self._config.qrcode.mensagem.strip() if not mensagem: return if self._config.qrcode.mensagem_modo_condensado: self.condensado() self.centro() for linha in textwrap.wrap(mensagem, self._colunas): self.texto(linha) self.esquerda() if self._config.qrcode.mensagem_modo_condensado: self.condensado() def fim_documento(self): """Encerra o documento, imprimindo o rodapé (se houver) e avançando ou guilhotinando o documento, conforme as configurações. """ self.normal() self.avanco() self.separador() conf_cupom = self._config.cupom conf_rodape = self._config.rodape if conf_rodape.esquerda or conf_rodape.direita: self.condensado() self.bordas(conf_rodape.esquerda, conf_rodape.direita) self.condensado() if self.impressora.feature.cutter and conf_cupom.cortar_documento: if conf_cupom.avancar_linhas > 0: self.avanco(conf_cupom.avancar_linhas) self.impressora.cut( partial=conf_cupom.cortar_parcialmente, feed=conf_cupom.cortar_avanco ) else: # impressora não possui guilhotina ou não é para cortar o documento if conf_cupom.avancar_linhas > 0: self.avanco(conf_cupom.avancar_linhas) def cabecalho(self): self.normal() emit = self.root.find('./infCFe/emit') enderEmit = emit.find('enderEmit') nome_fantasia = emit.findtext('xFant') razao_social = emit.findtext('xNome') logradouro = enderEmit.findtext('xLgr') numero = enderEmit.findtext('nro') complemento = enderEmit.findtext('xCpl') bairro = enderEmit.findtext('xBairro') if numero: # número não é obrigatório logradouro = u'{}, {}'.format(logradouro, numero) if complemento: # complemento não é obrigatório # faz um esforço para manter o complemento na mesma linha que o # logradouro/número se couber, senão o complemento irá usar uma # linha exclusiva... if len(logradouro) + len(complemento) < self._colunas: # ok, mantém o complemento na mesma linha que o logradouro logradouro = u'{}, {}'.format(logradouro, complemento) complemento = '' # ignora a linha que deveria conter o xCpl cidade = u'{}/{} CEP: {}'.format( enderEmit.findtext('xMun'), br.uf_pelo_codigo(int(self.root.findtext('./infCFe/ide/cUF'))), br.as_cep(enderEmit.findtext('CEP'))) partes_endereco = [logradouro, complemento, bairro, cidade] endereco = u'\r\n'.join([e for e in partes_endereco if e]) cnpj = 'CNPJ: {}'.format(br.as_cnpj(emit.findtext('CNPJ'))) im = 'IM: {}'.format(emit.findtext('IM') or '') ie = 'IE: {}'.format(emit.findtext('IE')) self.centro() self.negrito() if nome_fantasia: self.quebrar(nome_fantasia) self.quebrar(razao_social) self.negrito() self.quebrar(endereco) self.avanco() self.esquerda() self.texto(cnpj) self.texto(ie) if im: self.texto(im) self.separador() def rodape(self): raise NotImplementedError() def corpo(self): raise NotImplementedError() def _bordas( esquerda, direita, largura=48, espacamento_minimo=4, favorecer_direita=True ): """Prepara duas strings para serem impressas alinhadas às bordas opostas da mídia, os textos da esquerda (borda esquerda) e da direita (borda direita), respeitando uma largura e espaçamento mínimo determinados. .. sourcecode:: python >>> _bordas('a', 'b') 'a b' >>> esquerda = 'a' * 30 >>> direita = 'b' * 30 >>> _bordas(esquerda, direita) 'aaaaaaaaaaaaaaaaaaaaaa bbbbbbbbbbbbbbbbbbbbbb' >>> esquerda = 'Gazeta publica hoje breve nota de faxina na quermesse' >>> direita = 'Um pequeno jabuti xereta viu dez cegonhas felizes' >>> _bordas(esquerda, direita, espacamento_minimo=1) 'Gazeta publica hoje bre viu dez cegonhas felizes' :param str esquerda: O texto a ser exibido à esquerda. Se o texto não couber (em relação à largura e ao espaçamento mínimo) será exibida apenas a porção mais à esquerda desse texto, sendo cortados (não impressos) os caracteres do final do texto. :param str direita: O texto à ser exibido à direita. Se o texto da direita não couber (em relação à largura e ao espaçamento mínimo) será exibida apenas porção mais à direita desse texto, sendo cortados (não impressos) os caracteres do início do texto. :param int largura: Largura em caracteres a considerar ao calcular o vão entre os textos da esquerda e direita. O padrão é 48, já que é a largura mais comum entre as impressoras térmicas de bobina quando imprimindo com a fonte normal. :param int espacamento_minimo: Opcional. Determina o número de espaços mínimo a ser deixado entre os textos da esquerda e direita. O padrão são quatro espaços. :param bool favorecer_direita: Opcional. Determina se o texto da direita deverá ser favorecido com um espaço maior quando houver diferença (sobra) entre os textos da esquerda e direita em relação ao espaçamento mínimo determinado. O padrão é favorecer o texto da direita, já que é normalmente o dado relevante, como um valor ou percentual. :returns: Uma string contendo os textos da esquerda e direita encaixados na largura determinada, respeitando um espaçamento mínimo entre eles. Se necessário os textos serão truncados para respeitar a largura (o texto da esquerda será truncado no final e o texto da direita será truncado no início). :rtype: str """ espacamento = largura - (len(esquerda) + len(direita)) if espacamento < espacamento_minimo: espacamento = espacamento_minimo cpmax = int((largura - espacamento) // 2) cpmax_esq, cpmax_dir = cpmax, cpmax diferenca = largura - (espacamento + cpmax * 2) if diferenca > 0: if favorecer_direita: cpmax_dir += diferenca else: cpmax_esq += diferenca esquerda = esquerda[:cpmax_esq] direita = direita[-cpmax_dir:] return '%s%s%s' % (esquerda, ' ' * espacamento, direita) def _quebrar_chave(chave, quebrar_partes): # chave: satcomum.ersat.ChaveCFeSAT # quebrar_partes: list[int] # Lista <quebrar_partes> deve possuir apenas números pares digitos = ''.join(chave.partes()) partes = [] a = 0 for n in quebrar_partes: partes.append(digitos[a:a+n]) a += n return partes
{ "content_hash": "e817addca8d62d867b6ca60a0ed4d36a", "timestamp": "", "source": "github", "line_count": 462, "max_line_length": 79, "avg_line_length": 34.73809523809524, "alnum_prop": 0.5846470185058259, "repo_name": "base4sistemas/satextrato", "id": "6830e447e76445bacd4eb41d92baba41afeefd81", "size": "16809", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "satextrato/base.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Makefile", "bytes": "1126" }, { "name": "Python", "bytes": "76099" } ], "symlink_target": "" }
from collections import OrderedDict import logging import scipy import numpy as np from theano import tensor from theano.tensor.signal.downsample import max_pool_2d, DownsampleFactorMax from blocks.extensions import SimpleExtension from blocks.extensions.monitoring import (DataStreamMonitoring, MonitoringExtension) from blocks.filter import VariableFilter from blocks.graph import ComputationGraph from blocks.monitoring.evaluators import DatasetEvaluator from blocks.roles import AuxiliaryRole logger = logging.getLogger('main.nn') class BnParamRole(AuxiliaryRole): pass # Batch normalization parameters that have to be replaced when testing BNPARAM = BnParamRole() class ZCA(object): def __init__(self, n_components=None, data=None, filter_bias=0.1): self.filter_bias = np.float32(filter_bias) self.P = None self.P_inv = None self.n_components = 0 self.is_fit = False if n_components and data: self.fit(n_components, data) def fit(self, n_components, data): if len(data.shape) == 2: self.reshape = None else: assert n_components == np.product(data.shape[1:]), \ 'ZCA whitening components should be %d for convolutional data'\ % np.product(data.shape[1:]) self.reshape = data.shape[1:] data = self._flatten_data(data) assert len(data.shape) == 2 n, m = data.shape self.mean = np.mean(data, axis=0) bias = self.filter_bias * scipy.sparse.identity(m, 'float32') cov = np.cov(data, rowvar=0, bias=1) + bias eigs, eigv = scipy.linalg.eigh(cov) assert not np.isnan(eigs).any() assert not np.isnan(eigv).any() assert eigs.min() > 0 if self.n_components: eigs = eigs[-self.n_components:] eigv = eigv[:, -self.n_components:] sqrt_eigs = np.sqrt(eigs) self.P = np.dot(eigv * (1.0 / sqrt_eigs), eigv.T) assert not np.isnan(self.P).any() self.P_inv = np.dot(eigv * sqrt_eigs, eigv.T) self.P = np.float32(self.P) self.P_inv = np.float32(self.P_inv) self.is_fit = True def apply(self, data, remove_mean=True): data = self._flatten_data(data) d = data - self.mean if remove_mean else data return self._reshape_data(np.dot(d, self.P)) def inv(self, data, add_mean=True): d = np.dot(self._flatten_data(data), self.P_inv) d += self.mean if add_mean else 0. return self._reshape_data(d) def _flatten_data(self, data): if self.reshape is None: return data assert data.shape[1:] == self.reshape return data.reshape(data.shape[0], np.product(data.shape[1:])) def _reshape_data(self, data): assert len(data.shape) == 2 if self.reshape is None: return data return np.reshape(data, (data.shape[0],) + self.reshape) class ContrastNorm(object): def __init__(self, scale=55, epsilon=1e-8): # 对比归一化 self.scale = np.float32(scale) self.epsilon = np.float32(epsilon) def apply(self, data, copy=False): # 复制保留一份data if copy: data = np.copy(data) data_shape = data.shape print(data_shape) if len(data.shape) > 2: data = data.reshape(data.shape[0], np.product(data.shape[1:])) assert len(data.shape) == 2, 'Contrast norm on flattened data' data -= data.mean(axis=1)[:, np.newaxis] norms = np.sqrt(np.sum(data ** 2, axis=1)) / self.scale norms[norms < self.epsilon] = np.float32(1.) data /= norms[:, np.newaxis] if data_shape != data.shape: data = data.reshape(data_shape) return data class TestMonitoring(object): def _get_bn_params(self, output_vars): # Pick out the nodes with batch normalization vars cg = ComputationGraph(output_vars) var_filter = VariableFilter(roles=[BNPARAM]) bn_ps = var_filter(cg.variables) if len(bn_ps) == 0: logger.warn('No batch normalization parameters found - is' + ' batch normalization turned off?') self._bn = False self._counter = None self._counter_max = None bn_share = [] output_vars_replaced = output_vars else: self._bn = True assert len(set([p.name for p in bn_ps])) == len(bn_ps), \ 'Some batch norm params have the same name' logger.info('Batch norm parameters: %s' % ', '.join([p.name for p in bn_ps])) # Filter out the shared variables from the model updates def filter_share(par): lst = [up for up in cg.updates if up.name == 'shared_%s' % par.name] assert len(lst) == 1 return lst[0] bn_share = map(filter_share, bn_ps) # Replace the BN coefficients in the test data model - Replace the # theano variables in the test graph with the shareds output_vars_replaced = cg.replace(zip(bn_ps, bn_share)).outputs # Pick out the counter self._counter = self._param_from_updates(cg.updates, 'counter') self._counter_max = self._param_from_updates(cg.updates, 'counter_max') return bn_ps, bn_share, output_vars_replaced def _param_from_updates(self, updates, p_name): var_filter = VariableFilter(roles=[BNPARAM]) bn_ps = var_filter(updates.keys()) p = [p for p in bn_ps if p.name == p_name] assert len(p) == 1, 'No %s of more than one %s' % (p_name, p_name) return p[0] def reset_counter(self): if self._bn: self._counter.set_value(np.float32(1)) def replicate_vars(self, output_vars): # Problem in Blocks with multiple monitors monitoring the # same value in a graph. Therefore, they are all "replicated" to a new # Theano variable if isinstance(output_vars, (list, tuple)): return map(self.replicate_vars, output_vars) assert not hasattr(output_vars.tag, 'aggregation_scheme'), \ 'The variable %s already has an aggregator ' % output_vars.name + \ 'assigned to it - are you using a datasetmonitor with the same' + \ ' variable as output? This might cause trouble in Blocks' new_var = 1 * output_vars new_var.name = output_vars.name return new_var class ApproxTestMonitoring(DataStreamMonitoring, TestMonitoring): def __init__(self, output_vars, *args, **kwargs): output_vars = self.replicate_vars(output_vars) _, _, replaced_vars = self._get_bn_params(output_vars) super(ApproxTestMonitoring, self).__init__(replaced_vars, *args, **kwargs) def do(self, which_callback, *args, **kwargs): assert not which_callback == "after_batch", "Do not monitor each mb" self.reset_counter() super(ApproxTestMonitoring, self).do(which_callback, *args, **kwargs) class FinalTestMonitoring(SimpleExtension, MonitoringExtension, TestMonitoring): """Monitors validation and test set data with batch norm Calculates the training set statistics for batch normalization and adds them to the model before calculating the validation and test set values. This is done in two steps: First the training set is iterated and the statistics are saved in shared variables, then the model iterates through the test/validation set using the saved shared variables. When the training set is iterated, it is done for the full set, layer by layer so that the statistics are correct. This is expensive for very deep models, in which case some approximation could be in order """ def __init__(self, output_vars, train_data_stream, test_data_stream, **kwargs): output_vars = self.replicate_vars(output_vars) super(FinalTestMonitoring, self).__init__(**kwargs) self.trn_stream = train_data_stream self.tst_stream = test_data_stream bn_ps, bn_share, output_vars_replaced = self._get_bn_params(output_vars) if self._bn: updates = self._get_updates(bn_ps, bn_share) trn_evaluator = DatasetEvaluator(bn_ps, updates=updates) else: trn_evaluator = None self._trn_evaluator = trn_evaluator self._tst_evaluator = DatasetEvaluator(output_vars_replaced) def _get_updates(self, bn_ps, bn_share): cg = ComputationGraph(bn_ps) # Only store updates that relate to params or the counter updates = OrderedDict([(up, cg.updates[up]) for up in cg.updates if up.name == 'counter' or up in bn_share]) assert self._counter == self._param_from_updates(cg.updates, 'counter') assert self._counter_max == self._param_from_updates(cg.updates, 'counter_max') assert len(updates) == len(bn_ps) + 1, \ 'Counter or var missing from update' return updates def do(self, which_callback, *args): """Write the values of monitored variables to the log.""" assert not which_callback == "after_batch", "Do not monitor each mb" # Run on train data and get the statistics if self._bn: self._counter_max.set_value(np.float32(np.inf)) self.reset_counter() self._trn_evaluator.evaluate(self.trn_stream) self.reset_counter() value_dict = self._tst_evaluator.evaluate(self.tst_stream) self.add_records(self.main_loop.log, value_dict.items()) class LRDecay(SimpleExtension): def __init__(self, lr, decay_first, decay_last, **kwargs): super(LRDecay, self).__init__(**kwargs) self.iter = 0 self.decay_first = decay_first self.decay_last = decay_last self.lr = lr self.lr_init = lr.get_value() def do(self, which_callback, *args): self.iter += 1 if self.iter > self.decay_first: ratio = 1.0 * (self.decay_last - self.iter) ratio = np.maximum(0, ratio / (self.decay_last - self.decay_first)) self.lr.set_value(np.float32(ratio * self.lr_init)) logger.info("Iter %d, lr %f" % (self.iter, self.lr.get_value())) def global_meanpool_2d(x, num_filters): mean = tensor.mean(x.flatten(3), axis=2) mean = mean.dimshuffle(0, 1, 'x', 'x') return mean, (num_filters, 1, 1) def pool_2d(x, mode="average", ws=(2, 2), stride=(2, 2)): import theano.sandbox.cuda as cuda assert cuda.dnn.dnn_available() return cuda.dnn.dnn_pool(x, ws=ws, stride=stride, mode=mode) def maxpool_2d(z, in_dim, poolsize, poolstride): z = max_pool_2d(z, ds=poolsize, st=poolstride) output_size = tuple(DownsampleFactorMax.out_shape(in_dim, poolsize, st=poolstride)) return z, output_size
{ "content_hash": "622a753db75a5574f95ea6675fa4e6bd", "timestamp": "", "source": "github", "line_count": 294, "max_line_length": 89, "avg_line_length": 38.166666666666664, "alnum_prop": 0.6016397825505748, "repo_name": "ryukinkou/ladder_customized", "id": "b1430c418985c3290e9f8658a95e3f8b832968d2", "size": "11268", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "ladder_theano_customized/nn.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "241895" } ], "symlink_target": "" }
from typing import TYPE_CHECKING import warnings from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.paging import ItemPaged from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import HttpRequest, HttpResponse from azure.core.polling import LROPoller, NoPolling, PollingMethod from azure.mgmt.core.exceptions import ARMErrorFormat from azure.mgmt.core.polling.arm_polling import ARMPolling from .. import models as _models if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from typing import Any, Callable, Dict, Generic, Iterable, Optional, TypeVar, Union T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] class JobsOperations(object): """JobsOperations operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.databox.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = _models def __init__(self, client, config, serializer, deserializer): self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config def list( self, skip_token=None, # type: Optional[str] **kwargs # type: Any ): # type: (...) -> Iterable["_models.JobResourceList"] """Lists all the jobs available under the subscription. :param skip_token: $skipToken is supported on Get list of jobs, which provides the next page in the list of jobs. :type skip_token: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either JobResourceList or the result of cls(response) :rtype: ~azure.core.paging.ItemPaged[~azure.mgmt.databox.models.JobResourceList] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.JobResourceList"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-11-01" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') if skip_token is not None: query_parameters['$skipToken'] = self._serialize.query("skip_token", skip_token, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request def extract_data(pipeline_response): deserialized = self._deserialize('JobResourceList', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, iter(list_of_elem) def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: error = self._deserialize(_models.ApiError, response) map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) return pipeline_response return ItemPaged( get_next, extract_data ) list.metadata = {'url': '/subscriptions/{subscriptionId}/providers/Microsoft.DataBox/jobs'} # type: ignore def list_by_resource_group( self, resource_group_name, # type: str skip_token=None, # type: Optional[str] **kwargs # type: Any ): # type: (...) -> Iterable["_models.JobResourceList"] """Lists all the jobs available under the given resource group. :param resource_group_name: The Resource Group Name. :type resource_group_name: str :param skip_token: $skipToken is supported on Get list of jobs, which provides the next page in the list of jobs. :type skip_token: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either JobResourceList or the result of cls(response) :rtype: ~azure.core.paging.ItemPaged[~azure.mgmt.databox.models.JobResourceList] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.JobResourceList"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-11-01" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list_by_resource_group.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') if skip_token is not None: query_parameters['$skipToken'] = self._serialize.query("skip_token", skip_token, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request def extract_data(pipeline_response): deserialized = self._deserialize('JobResourceList', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, iter(list_of_elem) def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: error = self._deserialize(_models.ApiError, response) map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) return pipeline_response return ItemPaged( get_next, extract_data ) list_by_resource_group.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.DataBox/jobs'} # type: ignore def get( self, resource_group_name, # type: str job_name, # type: str expand=None, # type: Optional[str] **kwargs # type: Any ): # type: (...) -> "_models.JobResource" """Gets information about the specified job. :param resource_group_name: The Resource Group Name. :type resource_group_name: str :param job_name: The name of the job Resource within the specified resource group. job names must be between 3 and 24 characters in length and use any alphanumeric and underscore only. :type job_name: str :param expand: $expand is supported on details parameter for job, which provides details on the job stages. :type expand: str :keyword callable cls: A custom type or function that will be passed the direct response :return: JobResource, or the result of cls(response) :rtype: ~azure.mgmt.databox.models.JobResource :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.JobResource"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-11-01" accept = "application/json" # Construct URL url = self.get.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'jobName': self._serialize.url("job_name", job_name, 'str', max_length=24, min_length=3, pattern=r'^[-\w\.]+$'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') if expand is not None: query_parameters['$expand'] = self._serialize.query("expand", expand, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(_models.ApiError, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = self._deserialize('JobResource', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.DataBox/jobs/{jobName}'} # type: ignore def _create_initial( self, resource_group_name, # type: str job_name, # type: str job_resource, # type: "_models.JobResource" **kwargs # type: Any ): # type: (...) -> Optional["_models.JobResource"] cls = kwargs.pop('cls', None) # type: ClsType[Optional["_models.JobResource"]] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-11-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._create_initial.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'jobName': self._serialize.url("job_name", job_name, 'str', max_length=24, min_length=3, pattern=r'^[-\w\.]+$'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(job_resource, 'JobResource') body_content_kwargs['content'] = body_content request = self._client.put(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(_models.ApiError, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = None if response.status_code == 200: deserialized = self._deserialize('JobResource', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _create_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.DataBox/jobs/{jobName}'} # type: ignore def begin_create( self, resource_group_name, # type: str job_name, # type: str job_resource, # type: "_models.JobResource" **kwargs # type: Any ): # type: (...) -> LROPoller["_models.JobResource"] """Creates a new job with the specified parameters. Existing job cannot be updated with this API and should instead be updated with the Update job API. :param resource_group_name: The Resource Group Name. :type resource_group_name: str :param job_name: The name of the job Resource within the specified resource group. job names must be between 3 and 24 characters in length and use any alphanumeric and underscore only. :type job_name: str :param job_resource: Job details from request body. :type job_resource: ~azure.mgmt.databox.models.JobResource :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either JobResource or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[~azure.mgmt.databox.models.JobResource] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, PollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["_models.JobResource"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = self._create_initial( resource_group_name=resource_group_name, job_name=job_name, job_resource=job_resource, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('JobResource', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'jobName': self._serialize.url("job_name", job_name, 'str', max_length=24, min_length=3, pattern=r'^[-\w\.]+$'), } if polling is True: polling_method = ARMPolling(lro_delay, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = NoPolling() else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_create.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.DataBox/jobs/{jobName}'} # type: ignore def _delete_initial( self, resource_group_name, # type: str job_name, # type: str **kwargs # type: Any ): # type: (...) -> None cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-11-01" accept = "application/json" # Construct URL url = self._delete_initial.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'jobName': self._serialize.url("job_name", job_name, 'str', max_length=24, min_length=3, pattern=r'^[-\w\.]+$'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.delete(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202, 204]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(_models.ApiError, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) _delete_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.DataBox/jobs/{jobName}'} # type: ignore def begin_delete( self, resource_group_name, # type: str job_name, # type: str **kwargs # type: Any ): # type: (...) -> LROPoller[None] """Deletes a job. :param resource_group_name: The Resource Group Name. :type resource_group_name: str :param job_name: The name of the job Resource within the specified resource group. job names must be between 3 and 24 characters in length and use any alphanumeric and underscore only. :type job_name: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, PollingMethod] cls = kwargs.pop('cls', None) # type: ClsType[None] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = self._delete_initial( resource_group_name=resource_group_name, job_name=job_name, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): if cls: return cls(pipeline_response, None, {}) path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'jobName': self._serialize.url("job_name", job_name, 'str', max_length=24, min_length=3, pattern=r'^[-\w\.]+$'), } if polling is True: polling_method = ARMPolling(lro_delay, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = NoPolling() else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_delete.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.DataBox/jobs/{jobName}'} # type: ignore def _update_initial( self, resource_group_name, # type: str job_name, # type: str job_resource_update_parameter, # type: "_models.JobResourceUpdateParameter" if_match=None, # type: Optional[str] **kwargs # type: Any ): # type: (...) -> Optional["_models.JobResource"] cls = kwargs.pop('cls', None) # type: ClsType[Optional["_models.JobResource"]] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-11-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._update_initial.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'jobName': self._serialize.url("job_name", job_name, 'str', max_length=24, min_length=3, pattern=r'^[-\w\.]+$'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] if if_match is not None: header_parameters['If-Match'] = self._serialize.header("if_match", if_match, 'str') header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(job_resource_update_parameter, 'JobResourceUpdateParameter') body_content_kwargs['content'] = body_content request = self._client.patch(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(_models.ApiError, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = None if response.status_code == 200: deserialized = self._deserialize('JobResource', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _update_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.DataBox/jobs/{jobName}'} # type: ignore def begin_update( self, resource_group_name, # type: str job_name, # type: str job_resource_update_parameter, # type: "_models.JobResourceUpdateParameter" if_match=None, # type: Optional[str] **kwargs # type: Any ): # type: (...) -> LROPoller["_models.JobResource"] """Updates the properties of an existing job. :param resource_group_name: The Resource Group Name. :type resource_group_name: str :param job_name: The name of the job Resource within the specified resource group. job names must be between 3 and 24 characters in length and use any alphanumeric and underscore only. :type job_name: str :param job_resource_update_parameter: Job update parameters from request body. :type job_resource_update_parameter: ~azure.mgmt.databox.models.JobResourceUpdateParameter :param if_match: Defines the If-Match condition. The patch will be performed only if the ETag of the job on the server matches this value. :type if_match: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either JobResource or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[~azure.mgmt.databox.models.JobResource] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, PollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["_models.JobResource"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = self._update_initial( resource_group_name=resource_group_name, job_name=job_name, job_resource_update_parameter=job_resource_update_parameter, if_match=if_match, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('JobResource', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'jobName': self._serialize.url("job_name", job_name, 'str', max_length=24, min_length=3, pattern=r'^[-\w\.]+$'), } if polling is True: polling_method = ARMPolling(lro_delay, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = NoPolling() else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_update.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.DataBox/jobs/{jobName}'} # type: ignore def book_shipment_pick_up( self, resource_group_name, # type: str job_name, # type: str shipment_pick_up_request, # type: "_models.ShipmentPickUpRequest" **kwargs # type: Any ): # type: (...) -> "_models.ShipmentPickUpResponse" """Book shipment pick up. :param resource_group_name: The Resource Group Name. :type resource_group_name: str :param job_name: The name of the job Resource within the specified resource group. job names must be between 3 and 24 characters in length and use any alphanumeric and underscore only. :type job_name: str :param shipment_pick_up_request: Details of shipment pick up request. :type shipment_pick_up_request: ~azure.mgmt.databox.models.ShipmentPickUpRequest :keyword callable cls: A custom type or function that will be passed the direct response :return: ShipmentPickUpResponse, or the result of cls(response) :rtype: ~azure.mgmt.databox.models.ShipmentPickUpResponse :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.ShipmentPickUpResponse"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-11-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self.book_shipment_pick_up.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'jobName': self._serialize.url("job_name", job_name, 'str', max_length=24, min_length=3, pattern=r'^[-\w\.]+$'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(shipment_pick_up_request, 'ShipmentPickUpRequest') body_content_kwargs['content'] = body_content request = self._client.post(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(_models.ApiError, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = self._deserialize('ShipmentPickUpResponse', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized book_shipment_pick_up.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.DataBox/jobs/{jobName}/bookShipmentPickUp'} # type: ignore def cancel( self, resource_group_name, # type: str job_name, # type: str cancellation_reason, # type: "_models.CancellationReason" **kwargs # type: Any ): # type: (...) -> None """CancelJob. :param resource_group_name: The Resource Group Name. :type resource_group_name: str :param job_name: The name of the job Resource within the specified resource group. job names must be between 3 and 24 characters in length and use any alphanumeric and underscore only. :type job_name: str :param cancellation_reason: Reason for cancellation. :type cancellation_reason: ~azure.mgmt.databox.models.CancellationReason :keyword callable cls: A custom type or function that will be passed the direct response :return: None, or the result of cls(response) :rtype: None :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-11-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self.cancel.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'jobName': self._serialize.url("job_name", job_name, 'str', max_length=24, min_length=3, pattern=r'^[-\w\.]+$'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(cancellation_reason, 'CancellationReason') body_content_kwargs['content'] = body_content request = self._client.post(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [204]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(_models.ApiError, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) cancel.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.DataBox/jobs/{jobName}/cancel'} # type: ignore def list_credentials( self, resource_group_name, # type: str job_name, # type: str **kwargs # type: Any ): # type: (...) -> Iterable["_models.UnencryptedCredentialsList"] """This method gets the unencrypted secrets related to the job. :param resource_group_name: The Resource Group Name. :type resource_group_name: str :param job_name: The name of the job Resource within the specified resource group. job names must be between 3 and 24 characters in length and use any alphanumeric and underscore only. :type job_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either UnencryptedCredentialsList or the result of cls(response) :rtype: ~azure.core.paging.ItemPaged[~azure.mgmt.databox.models.UnencryptedCredentialsList] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.UnencryptedCredentialsList"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-11-01" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list_credentials.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'jobName': self._serialize.url("job_name", job_name, 'str', max_length=24, min_length=3, pattern=r'^[-\w\.]+$'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.post(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request def extract_data(pipeline_response): deserialized = self._deserialize('UnencryptedCredentialsList', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return None, iter(list_of_elem) def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: error = self._deserialize(_models.ApiError, response) map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) return pipeline_response return ItemPaged( get_next, extract_data ) list_credentials.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.DataBox/jobs/{jobName}/listCredentials'} # type: ignore
{ "content_hash": "724269bc42073268c8aaa89ecc6458a6", "timestamp": "", "source": "github", "line_count": 853, "max_line_length": 192, "avg_line_length": 49.772567409144195, "alnum_prop": 0.6319483700772565, "repo_name": "Azure/azure-sdk-for-python", "id": "5f8d902f7a40375c86fb7bf558bbe5092ff52ac7", "size": "42923", "binary": false, "copies": "1", "ref": "refs/heads/main", "path": "sdk/databox/azure-mgmt-databox/azure/mgmt/databox/v2020_11_01/operations/_jobs_operations.py", "mode": "33188", "license": "mit", "language": [ { "name": "Batchfile", "bytes": "1224" }, { "name": "Bicep", "bytes": "24196" }, { "name": "CSS", "bytes": "6089" }, { "name": "Dockerfile", "bytes": "4892" }, { "name": "HTML", "bytes": "12058" }, { "name": "JavaScript", "bytes": "8137" }, { "name": "Jinja", "bytes": "10377" }, { "name": "Jupyter Notebook", "bytes": "272022" }, { "name": "PowerShell", "bytes": "518535" }, { "name": "Python", "bytes": "715484989" }, { "name": "Shell", "bytes": "3631" } ], "symlink_target": "" }
import vtk from vtk.test import Testing from vtk.util.misc import vtkGetDataRoot VTK_DATA_ROOT = vtkGetDataRoot() math = vtk.vtkMath() math.RandomSeed(22) sphere = vtk.vtkSphereSource() sphere.SetPhiResolution(32) sphere.SetThetaResolution(32) extract = vtk.vtkExtractPolyDataPiece() extract.SetInputConnection(sphere.GetOutputPort()) normals = vtk.vtkPolyDataNormals() normals.SetInputConnection(extract.GetOutputPort()) ps = vtk.vtkPieceScalars() ps.SetInputConnection(normals.GetOutputPort()) mapper = vtk.vtkPolyDataMapper() mapper.SetInputConnection(ps.GetOutputPort()) mapper.SetNumberOfPieces(2) actor = vtk.vtkActor() actor.SetMapper(mapper) sphere2 = vtk.vtkSphereSource() sphere2.SetPhiResolution(32) sphere2.SetThetaResolution(32) extract2 = vtk.vtkExtractPolyDataPiece() extract2.SetInputConnection(sphere2.GetOutputPort()) mapper2 = vtk.vtkPolyDataMapper() mapper2.SetInputConnection(extract2.GetOutputPort()) mapper2.SetNumberOfPieces(2) mapper2.SetPiece(1) mapper2.SetScalarRange(0, 4) mapper2.SetScalarModeToUseCellFieldData() mapper2.SetColorModeToMapScalars() mapper2.ColorByArrayComponent("vtkGhostLevels", 0) mapper2.SetGhostLevel(4) # check the pipeline size extract2.UpdateInformation() psize = vtk.vtkPipelineSize() if (psize.GetEstimatedSize(extract2, 0, 0) > 100): print ("ERROR: Pipeline Size increased") pass if (psize.GetNumberOfSubPieces(10, mapper2) != 2): print ("ERROR: Number of sub pieces changed") pass actor2 = vtk.vtkActor() actor2.SetMapper(mapper2) actor2.SetPosition(1.5, 0, 0) sphere3 = vtk.vtkSphereSource() sphere3.SetPhiResolution(32) sphere3.SetThetaResolution(32) extract3 = vtk.vtkExtractPolyDataPiece() extract3.SetInputConnection(sphere3.GetOutputPort()) ps3 = vtk.vtkPieceScalars() ps3.SetInputConnection(extract3.GetOutputPort()) mapper3 = vtk.vtkPolyDataMapper() mapper3.SetInputConnection(ps3.GetOutputPort()) mapper3.SetNumberOfSubPieces(8) mapper3.SetScalarRange(0, 8) actor3 = vtk.vtkActor() actor3.SetMapper(mapper3) actor3.SetPosition(0, -1.5, 0) sphere4 = vtk.vtkSphereSource() sphere4.SetPhiResolution(32) sphere4.SetThetaResolution(32) extract4 = vtk.vtkExtractPolyDataPiece() extract4.SetInputConnection(sphere4.GetOutputPort()) ps4 = vtk.vtkPieceScalars() ps4.RandomModeOn() ps4.SetScalarModeToCellData() ps4.SetInputConnection(extract4.GetOutputPort()) mapper4 = vtk.vtkPolyDataMapper() mapper4.SetInputConnection(ps4.GetOutputPort()) mapper4.SetNumberOfSubPieces(8) mapper4.SetScalarRange(0, 8) actor4 = vtk.vtkActor() actor4.SetMapper(mapper4) actor4.SetPosition(1.5, -1.5, 0) ren = vtk.vtkRenderer() ren.AddActor(actor) ren.AddActor(actor2) ren.AddActor(actor3) ren.AddActor(actor4) renWin = vtk.vtkRenderWindow() renWin.AddRenderer(ren) iren = vtk.vtkRenderWindowInteractor() iren.SetRenderWindow(renWin) iren.Initialize() #iren.Start()
{ "content_hash": "8c0ad42934fb44cae179776fdad5ae71", "timestamp": "", "source": "github", "line_count": 112, "max_line_length": 52, "avg_line_length": 26.410714285714285, "alnum_prop": 0.7711291413116971, "repo_name": "timkrentz/SunTracker", "id": "1d38c5ed05c8b6e1818c9dd6f274e032e6db7da6", "size": "2981", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "IMU/VTK-6.2.0/Parallel/Core/Testing/Python/TestPolyDataPieces.py", "mode": "33261", "license": "mit", "language": [ { "name": "Arduino", "bytes": "185699" }, { "name": "Assembly", "bytes": "38582" }, { "name": "Batchfile", "bytes": "110" }, { "name": "C", "bytes": "48362836" }, { "name": "C++", "bytes": "70478135" }, { "name": "CMake", "bytes": "1755036" }, { "name": "CSS", "bytes": "147795" }, { "name": "Cuda", "bytes": "30026" }, { "name": "D", "bytes": "2152" }, { "name": "GAP", "bytes": "14495" }, { "name": "GLSL", "bytes": "190912" }, { "name": "Groff", "bytes": "66799" }, { "name": "HTML", "bytes": "295090" }, { "name": "Java", "bytes": "203238" }, { "name": "JavaScript", "bytes": "1146098" }, { "name": "Lex", "bytes": "47145" }, { "name": "Makefile", "bytes": "5461" }, { "name": "Objective-C", "bytes": "74727" }, { "name": "Objective-C++", "bytes": "265817" }, { "name": "Pascal", "bytes": "3407" }, { "name": "Perl", "bytes": "178176" }, { "name": "Prolog", "bytes": "4556" }, { "name": "Python", "bytes": "16497901" }, { "name": "Shell", "bytes": "48835" }, { "name": "Smarty", "bytes": "1368" }, { "name": "Tcl", "bytes": "1955829" }, { "name": "Yacc", "bytes": "180651" } ], "symlink_target": "" }
""" MoinMoin - MoinMoin.macro.FootNote Tests @copyright: 2008 MoinMoin:ReimarBauer @license: GNU GPL, see COPYING for details. """ import os from MoinMoin import macro from MoinMoin.macro import FootNote from MoinMoin.Page import Page from MoinMoin.PageEditor import PageEditor from MoinMoin._tests import become_trusted, create_page, make_macro, nuke_page class TestFootNote: """ testing macro Action calling action raw """ pagename = u'AutoCreatedMoinMoinTemporaryTestPageForFootNote' def setup_class(self): become_trusted(self.request) self.page = create_page(self.request, self.pagename, u"Foo!") def teardown_class(self): nuke_page(self.request, self.pagename) def test_enumbering(self): """ module_tested: enumbering of Footnotes""" m = make_macro(self.request, self.page) text = 'a' FootNote.execute(m, text) text = 'b' FootNote.execute(m, text) result = FootNote.emit_footnotes(m.request, m.request.formatter) assert result.endswith('2</a>)</li></ol></div>') coverage_modules = ['MoinMoin.macro.FootNote']
{ "content_hash": "e1f73a9e074f6f1653fa7379f869fe45", "timestamp": "", "source": "github", "line_count": 36, "max_line_length": 78, "avg_line_length": 32.69444444444444, "alnum_prop": 0.6644010195412065, "repo_name": "Glottotopia/aagd", "id": "c901fe981993c230d9a0e4084c9ac1fb6edcd9c9", "size": "1202", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "moin/local/moin/MoinMoin/macro/_tests/test_FootNote.py", "mode": "33188", "license": "mit", "language": [ { "name": "ASP", "bytes": "152885" }, { "name": "CSS", "bytes": "454208" }, { "name": "ColdFusion", "bytes": "438820" }, { "name": "HTML", "bytes": "1998354" }, { "name": "Java", "bytes": "510468" }, { "name": "JavaScript", "bytes": "6505329" }, { "name": "Lasso", "bytes": "72399" }, { "name": "Makefile", "bytes": "10216" }, { "name": "PHP", "bytes": "259528" }, { "name": "Perl", "bytes": "137186" }, { "name": "Python", "bytes": "13713475" }, { "name": "Shell", "bytes": "346" }, { "name": "XSLT", "bytes": "15970" } ], "symlink_target": "" }
""" Django settings for cmdb project. For more information on this file, see https://docs.djangoproject.com/en/1.7/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.7/ref/settings/ """ # Build paths inside the project like this: os.path.join(BASE_DIR, ...) import os BASE_DIR = os.path.dirname(os.path.dirname(__file__)) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.7/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '*f)1h7v-ed7bajus^ykj0fe5n*#ld57m@4ca=a3!%v%3@o_7p#' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True TEMPLATE_DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = ( #'bootstrap_admin', #'grappelli', 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'device_manage', 'idcroom_manage', 'operation', #'bootstrap3', ) MIDDLEWARE_CLASSES = ( 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.auth.middleware.SessionAuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ) ROOT_URLCONF = 'cmdb.urls' WSGI_APPLICATION = 'cmdb.wsgi.application' # Database # https://docs.djangoproject.com/en/1.7/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.mysql', 'NAME': 'cmdb', 'USER': 'cmdb', 'PASSWORD': 'cmdb', 'HOST': 'localhost', 'PORT': '3306', } } # Internationalization # https://docs.djangoproject.com/en/1.7/topics/i18n/ LANGUAGE_CODE = 'zh-cn' TIME_ZONE = 'Asia/Shanghai' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.7/howto/static-files/ STATIC_URL = '/static/' try: from local_settings import * except ImportError: pass
{ "content_hash": "78cc59df1c4ef15795ae489191913714", "timestamp": "", "source": "github", "line_count": 99, "max_line_length": 71, "avg_line_length": 23.31313131313131, "alnum_prop": 0.699740034662045, "repo_name": "hilarry/cmdb", "id": "c6a0c39550100d1b7cb21c43ee4a06e01215fc5d", "size": "2308", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "cmdb/settings.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Python", "bytes": "18469" } ], "symlink_target": "" }
"""Collection of tensorflow extention methods Keep all the tensorflow extention methods in one place """ import tensorflow as tf def conv(inputs, num_filters=32, name='conv'): """Convolutional layer # Args: inputs: input layer num_filters: number of kernels/filters to use name: tf name_scope name """ with tf.name_scope(name): return tf.layers.conv2d( inputs=inputs, filters=num_filters, kernel_size=[3, 3], padding="same", activation=tf.nn.relu) def maxpool(inputs, name='maxpool'): """Max pool layer # Args: inputs: input layer name: tf name_scope name """ with tf.name_scope(name): return tf.nn.max_pool(inputs, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="VALID")
{ "content_hash": "eba55af1c6501165e9b37ae86829a5f1", "timestamp": "", "source": "github", "line_count": 35, "max_line_length": 96, "avg_line_length": 23.942857142857143, "alnum_prop": 0.5871121718377088, "repo_name": "chasingbob/transfer-learning", "id": "d500569104d629453035e70a48b324cad3d2b444", "size": "838", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "tf_extensions.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "23997" } ], "symlink_target": "" }
import scrapy class MoviespiderItem(scrapy.Item): # define the fields for your item here like: # name = scrapy.Field() pass class Cili006Item(scrapy.Item): magnet = scrapy.Field() ed2k = scrapy.Field() topic_id = scrapy.Field() filename = scrapy.Field()
{ "content_hash": "68f5d55abcf30b17c03c73dae45d121e", "timestamp": "", "source": "github", "line_count": 13, "max_line_length": 48, "avg_line_length": 21.846153846153847, "alnum_prop": 0.6690140845070423, "repo_name": "zhs007/movieSpider", "id": "deef2da049b0e9a87d1e94de5667653a43a8e955", "size": "436", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "moviespider/moviespider/items.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "1668" }, { "name": "HTML", "bytes": "5333" }, { "name": "JavaScript", "bytes": "76650" }, { "name": "Python", "bytes": "47739" } ], "symlink_target": "" }
#!/usr/bin/env python # # Copyright 2016 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """This script creates a "jumbo" file which merges all incoming files for compiling. """ from __future__ import print_function import argparse import cStringIO import os def write_jumbo_files(inputs, outputs, written_input_set, written_output_set): output_count = len(outputs) input_count = len(inputs) written_inputs = 0 for output_index, output_file in enumerate(outputs): written_output_set.add(output_file) if os.path.isfile(output_file): with open(output_file, "r") as current: current_jumbo_file = current.read() else: current_jumbo_file = None out = cStringIO.StringIO() out.write("/* This is a Jumbo file. Don't edit. */\n\n") out.write("/* Generated with merge_for_jumbo.py. */\n\n") input_limit = (output_index + 1) * input_count / output_count while written_inputs < input_limit: filename = inputs[written_inputs] written_inputs += 1 out.write("#include \"%s\"\n" % filename) written_input_set.add(filename) new_jumbo_file = out.getvalue() out.close() if new_jumbo_file != current_jumbo_file: with open(output_file, "w") as out: out.write(new_jumbo_file) def main(): parser = argparse.ArgumentParser() parser.add_argument("--outputs", nargs="+", required=True, help='List of output files to split input into') parser.add_argument("--file-list", required=True) parser.add_argument("--verbose", action="store_true") args = parser.parse_args() lines = [] # If written with gn |write_file| each file is on its own line. with open(args.file_list) as file_list_file: lines = [line.strip() for line in file_list_file if line.strip()] # If written with gn |response_file_contents| the files are space separated. all_inputs = [] for line in lines: all_inputs.extend(line.split()) written_output_set = set() # Just for double checking written_input_set = set() # Just for double checking for language_ext in (".cc", ".c", ".mm"): if language_ext == ".cc": ext_pattern = (".cc", ".cpp") else: ext_pattern = tuple([language_ext]) outputs = [x for x in args.outputs if x.endswith(ext_pattern)] inputs = [x for x in all_inputs if x.endswith(ext_pattern)] if not outputs: assert not inputs continue write_jumbo_files(inputs, outputs, written_input_set, written_output_set) header_files = set([x for x in all_inputs if x.endswith(".h")]) assert set(args.outputs) == written_output_set, "Did not fill all outputs" files_not_included = set(all_inputs) - written_input_set - header_files assert not files_not_included, ("Jumbo build left out files: %s" % files_not_included) if args.verbose: print("Generated %s (%d files) based on %s" % ( str(args.outputs), len(written_input_set), args.file_list)) if __name__ == "__main__": main()
{ "content_hash": "172b15be029c72e927be3ad83d237cca", "timestamp": "", "source": "github", "line_count": 93, "max_line_length": 78, "avg_line_length": 33.376344086021504, "alnum_prop": 0.6530283505154639, "repo_name": "chrisdickinson/nojs", "id": "ae435d059c72a525df38af9908fa8d4355449cf5", "size": "3104", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "build/config/merge_for_jumbo.py", "mode": "33261", "license": "bsd-3-clause", "language": [ { "name": "C++", "bytes": "52243" }, { "name": "JavaScript", "bytes": "55472" }, { "name": "Python", "bytes": "16760" } ], "symlink_target": "" }
import sympy as sp from sympy.physics.mechanics import dynamicsymbols from sympy.physics.mechanics.functions import find_dynamicsymbols from simupy.utils.symbolic import (lambdify_with_vector_args, grad, DEFAULT_LAMBDIFY_MODULES) from simupy.array import Array, empty_array from simupy.systems import DynamicalSystem as DynamicalSystemBase DEFAULT_CODE_GENERATOR = lambdify_with_vector_args DEFAULT_CODE_GENERATOR_ARGS = { 'modules': DEFAULT_LAMBDIFY_MODULES } class DynamicalSystem(DynamicalSystemBase): def __init__(self, state_equation=None, state=None, input_=None, output_equation=None, constants_values={}, dt=0, initial_condition=None, code_generator=None, code_generator_args={}): """ DynamicalSystem constructor, used to create systems from symbolic expressions. Parameters ---------- state_equation : array_like of sympy Expressions, optional Vector valued expression for the derivative of the state. state : array_like of sympy symbols, optional Vector of symbols representing the components of the state, in the desired order, matching state_equation. input_ : array_like of sympy symbols, optional Vector of symbols representing the components of the input, in the desired order. state_equation may depend on the system input. If the system has no state, the output_equation may depend on the system input. output_equation : array_like of sympy Expressions Vector valued expression for the output of the system. constants_values : dict Dictionary of constants substitutions. dt : float Sampling rate of system. Use 0 for continuous time systems. initial_condition : array_like of numerical values, optional Array or Matrix used as the initial condition of the system. Defaults to zeros of the same dimension as the state. code_generator : callable, optional Function to be used as code generator. code_generator_args : dict, optional Dictionary of keyword args to pass to the code generator. By default, the code generator uses a wrapper for ``sympy.lambdify``. You can change it by passing the system initialization arguments ``code_generator`` (the function) and additional keyword arguments to the generator in a dictionary ``code_generator_args``. You can change the defaults for future systems by changing the module values. See the readme or docs for an example. """ self.constants_values = constants_values self.state = state self.input = input_ self.code_generator = code_generator or DEFAULT_CODE_GENERATOR code_gen_args_to_set = DEFAULT_CODE_GENERATOR_ARGS.copy() code_gen_args_to_set.update(code_generator_args) self.code_generator_args = code_gen_args_to_set self.state_equation = state_equation self.output_equation = output_equation self.initial_condition = initial_condition self.dt = dt self.validate() @property def state(self): return self._state @state.setter def state(self, state): if state is None: # or other checks? state = empty_array() if isinstance(state, sp.Expr): state = Array([state]) self.dim_state = len(state) self._state = state @property def input(self): return self._inputs @input.setter def input(self, input_): if input_ is None: # or other checks? input_ = empty_array() if isinstance(input_, sp.Expr): # check it's a single dynamicsymbol? input_ = Array([input_]) self.dim_input = len(input_) self._inputs = input_ @property def state_equation(self): return self._state_equation @state_equation.setter def state_equation(self, state_equation): if state_equation is None: # or other checks? state_equation = empty_array() else: assert len(state_equation) == len(self.state) assert find_dynamicsymbols(state_equation) <= ( set(self.state) | set(self.input) ) assert state_equation.atoms(sp.Symbol) <= ( set(self.constants_values.keys()) | set([dynamicsymbols._t]) ) self._state_equation = state_equation self.update_state_equation_function() self.state_jacobian_equation = grad(self.state_equation, self.state) self.update_state_jacobian_function() self.input_jacobian_equation = grad(self.state_equation, self.input) self.update_input_jacobian_function() @property def output_equation(self): return self._output_equation @output_equation.setter def output_equation(self, output_equation): if isinstance(output_equation, sp.Expr): output_equation = Array([output_equation]) if output_equation is None and self.dim_state == 0: output_equation = empty_array() else: if output_equation is None: output_equation = self.state assert output_equation.atoms(sp.Symbol) <= ( set(self.constants_values.keys()) | set([dynamicsymbols._t]) ) if self.dim_state: assert find_dynamicsymbols(output_equation) <= set(self.state) else: assert find_dynamicsymbols(output_equation) <= set(self.input) self.dim_output = len(output_equation) self._output_equation = output_equation self.update_output_equation_function() def update_state_equation_function(self): if not self.dim_state or self.state_equation == empty_array(): return self.state_equation_function = self.code_generator( [dynamicsymbols._t] + sp.flatten(self.state) + sp.flatten(self.input), self.state_equation.subs(self.constants_values), **self.code_generator_args ) def update_state_jacobian_function(self): if not self.dim_state or self.state_equation == empty_array(): return self.state_jacobian_equation_function = self.code_generator( [dynamicsymbols._t] + sp.flatten(self.state) + sp.flatten(self.input), self.state_jacobian_equation.subs(self.constants_values), **self.code_generator_args ) def update_input_jacobian_function(self): # TODO: state-less systems should have an input/output jacobian if not self.dim_state or self.state_equation == empty_array(): return self.input_jacobian_equation_function = self.code_generator( [dynamicsymbols._t] + sp.flatten(self.state) + sp.flatten(self.input), self.input_jacobian_equation.subs(self.constants_values), **self.code_generator_args ) def update_output_equation_function(self): if not self.dim_output or self.output_equation == empty_array(): return if self.dim_state: self.output_equation_function = self.code_generator( [dynamicsymbols._t] + sp.flatten(self.state), self.output_equation.subs(self.constants_values), **self.code_generator_args ) else: self.output_equation_function = self.code_generator( [dynamicsymbols._t] + sp.flatten(self.input), self.output_equation.subs(self.constants_values), **self.code_generator_args ) def prepare_to_integrate(self, t0, state_or_input=None): self.update_output_equation_function() self.update_state_equation_function() if not self.dim_state and self.num_events: self.update_equation_function(t0, state_or_input) if self.dim_state or self.dim_input: return self.output_equation_function(t0, state_or_input) else: return self.output_equation_function(t0) def copy(self): copy = self.__class__( state_equation=self.state_equation, state=self.state, input_=self.input, output_equation=self.output_equation, constants_values=self.constants_values, dt=self.dt ) copy.output_equation_function = self.output_equation_function copy.state_equation_function = self.state_equation_function return copy def equilibrium_points(self, input_=None): return sp.solve(self.state_equation, self.state, dict=True) class MemorylessSystem(DynamicalSystem): """ A system with no state. With no input, can represent a signal (function of time only). For example, a stochastic signal could interpolate points and use prepare_to_integrate to re-seed the data. """ def __init__(self, input_=None, output_equation=None, **kwargs): """ DynamicalSystem constructor Parameters ---------- input_ : array_like of sympy symbols Vector of symbols representing the components of the input, in the desired order. The output may depend on the system input. output_equation : array_like of sympy Expressions Vector valued expression for the output of the system. """ super().__init__( input_=input_, output_equation=output_equation, **kwargs) @property def state(self): return self._state @state.setter def state(self, state): if state is None: # or other checks? state = empty_array() else: raise ValueError("Memoryless system should not have state or " + "state_equation") self.dim_state = len(state) self._state = state
{ "content_hash": "b23992493df4ac8790679a71ccff0442", "timestamp": "", "source": "github", "line_count": 269, "max_line_length": 79, "avg_line_length": 37.84014869888476, "alnum_prop": 0.616661754592789, "repo_name": "simupy/simupy", "id": "2d55180406899a6954621988f3956024817accbb", "size": "10179", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "simupy/systems/symbolic.py", "mode": "33188", "license": "bsd-2-clause", "language": [ { "name": "Python", "bytes": "140544" }, { "name": "TeX", "bytes": "1003" } ], "symlink_target": "" }
''' WikiLinks Extension for Python-Markdown ====================================== Converts [[WikiLinks]] to relative links. Requires Python-Markdown 2.0+ Basic usage: >>> import markdown >>> text = "Some text with a [[WikiLink]]." >>> html = markdown.markdown(text, ['wikilinks']) >>> html u'<p>Some text with a <a class="wikilink" href="/WikiLink/">WikiLink</a>.</p>' Whitespace behavior: >>> markdown.markdown('[[ foo bar_baz ]]', ['wikilinks']) u'<p><a class="wikilink" href="/foo_bar_baz/">foo bar_baz</a></p>' >>> markdown.markdown('foo [[ ]] bar', ['wikilinks']) u'<p>foo bar</p>' To define custom settings the simple way: >>> markdown.markdown(text, ... ['wikilinks(base_url=/wiki/,end_url=.html,html_class=foo)'] ... ) u'<p>Some text with a <a class="foo" href="/wiki/WikiLink.html">WikiLink</a>.</p>' Custom settings the complex way: >>> md = markdown.Markdown( ... extensions = ['wikilinks'], ... extension_configs = {'wikilinks': [ ... ('base_url', 'http://example.com/'), ... ('end_url', '.html'), ... ('html_class', '') ]}, ... safe_mode = True) >>> md.convert(text) u'<p>Some text with a <a href="http://example.com/WikiLink.html">WikiLink</a>.</p>' Use MetaData with mdx_meta.py (Note the blank html_class in MetaData): >>> text = """wiki_base_url: http://example.com/ ... wiki_end_url: .html ... wiki_html_class: ... ... Some text with a [[WikiLink]].""" >>> md = markdown.Markdown(extensions=['meta', 'wikilinks']) >>> md.convert(text) u'<p>Some text with a <a href="http://example.com/WikiLink.html">WikiLink</a>.</p>' MetaData should not carry over to next document: >>> md.convert("No [[MetaData]] here.") u'<p>No <a class="wikilink" href="/MetaData/">MetaData</a> here.</p>' Define a custom URL builder: >>> def my_url_builder(label, base, end): ... return '/bar/' >>> md = markdown.Markdown(extensions=['wikilinks'], ... extension_configs={'wikilinks' : [('build_url', my_url_builder)]}) >>> md.convert('[[foo]]') u'<p><a class="wikilink" href="/bar/">foo</a></p>' From the command line: python markdown.py -x wikilinks(base_url=http://example.com/,end_url=.html,html_class=foo) src.txt By [Waylan Limberg](http://achinghead.com/). License: [BSD](http://www.opensource.org/licenses/bsd-license.php) Dependencies: * [Python 2.3+](http://python.org) * [Markdown 2.0+](http://www.freewisdom.org/projects/python-markdown/) ''' import markdown import re def build_url(label, base, end): """ Build a url from the label, a base, and an end. """ clean_label = re.sub(r'([ ]+_)|(_[ ]+)|([ ]+)', '_', label) return '%s%s%s'% (base, clean_label, end) class WikiLinkExtension(markdown.Extension): def __init__(self, configs): # set extension defaults self.config = { 'base_url' : ['/', 'String to append to beginning or URL.'], 'end_url' : ['/', 'String to append to end of URL.'], 'html_class' : ['wikilink', 'CSS hook. Leave blank for none.'], 'build_url' : [build_url, 'Callable formats URL from label.'], } # Override defaults with user settings for key, value in configs : self.setConfig(key, value) def extendMarkdown(self, md, md_globals): self.md = md # append to end of inline patterns WIKILINK_RE = r'\[\[([A-Za-z0-9_ -]+)\]\]' wikilinkPattern = WikiLinks(WIKILINK_RE, self.config) wikilinkPattern.md = md md.inlinePatterns.add('wikilink', wikilinkPattern, "<not_strong") class WikiLinks(markdown.inlinepatterns.Pattern): def __init__(self, pattern, config): markdown.inlinepatterns.Pattern.__init__(self, pattern) self.config = config def handleMatch(self, m): if m.group(2).strip(): base_url, end_url, html_class = self._getMeta() label = m.group(2).strip() url = self.config['build_url'][0](label, base_url, end_url) a = markdown.etree.Element('a') a.text = label a.set('href', url) if html_class: a.set('class', html_class) else: a = '' return a def _getMeta(self): """ Return meta data or config data. """ base_url = self.config['base_url'][0] end_url = self.config['end_url'][0] html_class = self.config['html_class'][0] if hasattr(self.md, 'Meta'): if 'wiki_base_url' in self.md.Meta: base_url = self.md.Meta['wiki_base_url'][0] if 'wiki_end_url' in self.md.Meta: end_url = self.md.Meta['wiki_end_url'][0] if 'wiki_html_class' in self.md.Meta: html_class = self.md.Meta['wiki_html_class'][0] return base_url, end_url, html_class def makeExtension(configs=None) : return WikiLinkExtension(configs=configs) if __name__ == "__main__": import doctest doctest.testmod()
{ "content_hash": "004208010f201484a18a40c8ae48a828", "timestamp": "", "source": "github", "line_count": 153, "max_line_length": 102, "avg_line_length": 34.4640522875817, "alnum_prop": 0.551868006827233, "repo_name": "ronreiter/interactive-tutorials", "id": "95a4a95e43d22344e1f72b60b918e4e98eded455", "size": "5296", "binary": false, "copies": "3", "ref": "refs/heads/master", "path": "markdown/extensions/wikilinks.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "CSS", "bytes": "58440" }, { "name": "Dockerfile", "bytes": "304" }, { "name": "HTML", "bytes": "38066" }, { "name": "JavaScript", "bytes": "263446" }, { "name": "Makefile", "bytes": "225" }, { "name": "Python", "bytes": "634473" } ], "symlink_target": "" }
import os import pickle import os from image_processing import batch_preprocess __author__ = "Ronny Restrepo" __copyright__ = "Copyright 2017, Ronny Restrepo" __credits__ = ["Ronny Restrepo"] __license__ = "Apache License" __version__ = "2.0" # MAP LABELS AND IDS id2label = ['class_0', 'class_1', 'class_2', 'class_3', 'class_4', 'class_5', 'class_6', 'class_7', 'class_8', 'class_9'] label2id = {val:id for id,val in enumerate(id2label)} # ============================================================================== # MAYBE_MAKE_DIR # ============================================================================== def maybe_make_dir(path): """ Checks if a directory path exists on the system, if it does not, then it creates that directory (and any parent directories needed to create that directory) """ if not os.path.exists(path): os.makedirs(path) # ============================================================================== # GET_PARDIR # ============================================================================== def get_pardir(file): """ Given a file path, it returns the parent directory of that file. """ return os.path.dirname(file) # ============================================================================== # MAYBE_MAKE_PARDIR # ============================================================================== def maybe_make_pardir(file): """ Takes a path to a file, and creates the necessary directory structure on the system to ensure that the parent directory exists (if it does not already exist) """ pardir = os.path.dirname(file) if pardir.strip() != "": # ensure pardir is not an empty string if not os.path.exists(pardir): os.makedirs(pardir) # ============================================================================== # FILE2STR # ============================================================================== def file2str(file): """ Takes a file path and returns the contents of that file as a string.""" with open(file, "r") as textFile: return textFile.read() # ============================================================================== # STR2FILE # ============================================================================== def str2file(s, file, mode="w"): """ Writes a string to a file""" # Ensure parent directory and necesary file structure exists pardir = os.path.dirname(file) if pardir.strip() != "": # ensure pardir is not an empty string if not os.path.exists(pardir): os.makedirs(pardir) with open(file, mode=mode) as textFile: textFile.write(s) # ============================================================================== # OBJ2PICKLE # ============================================================================== def obj2pickle(obj, file, protocol=2): """ Saves an object as a binary pickle file to the desired file path. """ # Ensure parent directory and necesary file structure exists pardir = os.path.dirname(file) if pardir.strip() != "": # ensure pardir is not an empty string if not os.path.exists(pardir): os.makedirs(pardir) with open(file, mode="wb") as fileObj: pickle.dump(obj, fileObj, protocol=protocol) # ============================================================================== # PICKLE2OBJ # ============================================================================== def pickle2obj(file): """ Loads the contents of a pickle as a python object. """ with open(file, mode = "rb") as fileObj: obj = pickle.load(fileObj) return obj # ============================================================================== # CREATE_DATA_DICT # ============================================================================== def create_data_dict(datadir): assert False, "NOT IMPLEMENTED: create_data_dict not yet created" # ============================================================================== # PREPARE_DATA # ============================================================================== def prepare_data(data_file, valid_from_train=False, n_valid=1024, max_data=None, verbose=True): data = pickle2obj(data_file) # Create validation from train data if valid_from_train: data["X_valid"] = data["X_train"][:n_valid] data["Y_valid"] = data["Y_train"][:n_valid] data["X_train"] = data["X_train"][n_valid:] data["Y_train"] = data["Y_train"][n_valid:] if max_data: data["X_train"] = data["X_train"][:max_data] data["Y_train"] = data["Y_train"][:max_data] if verbose: # Print information about data print("DATA SHAPES") print("- X_valid: ", (data["X_valid"]).shape) print("- Y_valid: ", (data["Y_valid"]).shape) print("- X_train: ", (data["X_train"]).shape) print("- Y_train: ", (data["Y_train"]).shape) if "X_test" in data: print("- X_test: ", (data["X_test"]).shape) if "Y_test" in data: print("- Y_test: ", (data["Y_test"]).shape) return data # ============================================================================== # LOAD_BATCH_OF_IMAGES # ============================================================================== def load_batch_of_images(X_batch, img_shape=[299, 299]): batch = batch_preprocess(X_batch, shape=img_shape, mode="RGB") return batch # ============================================================================== # CALCULATE_CLASS_WEIGHTS # ============================================================================== def calculate_class_weights(Y, n_classes, method="paszke", c=1.02): """ Given the training data labels Calculates the class weights. Args: Y: (numpy array) The training labels as class id integers. The shape does not matter, as long as each element represents a class id (ie, NOT one-hot-vectors). n_classes: (int) Number of possible classes. method: (str) The type of class weighting to use. - "paszke" = use the method from from Paszke et al 2016 `1/ln(c + class_probability)` - "eigen" = use the method from Eigen & Fergus 2014. `median_freq/class_freq` where `class_freq` is based only on images that actually contain that class. - "eigen2" = Similar to `eigen`, except that class_freq is based on the frequency of the class in the entire dataset, not just images where it occurs. -"logeigen2" = takes the log of "eigen2" method, so that incredibly rare classes do not completely overpower other values. c: (float) Coefficient to use, when using paszke method. Returns: weights: (numpy array) Array of shape [n_classes] assigning a weight value to each class. References: Eigen & Fergus 2014: https://arxiv.org/abs/1411.4734 Paszke et al 2016: https://arxiv.org/abs/1606.02147 """ # CLASS PROBABILITIES - based on empirical observation of data ids, counts = np.unique(Y, return_counts=True) n_pixels = Y.size p_class = np.zeros(n_classes) p_class[ids] = counts/n_pixels # CLASS WEIGHTS if method == "paszke": weights = 1/np.log(c+p_class) elif method == "eigen": assert False, "TODO: Implement eigen method" # TODO: Implement eigen method # where class_freq is the number of pixels of class c divided by # the total number of pixels in images where c is actually present, # and median freq is the median of these frequencies. elif method in {"eigen2", "logeigen2"}: epsilon = 1e-8 # to prevent division by 0 median = np.median(p_class) weights = median/(p_class+epsilon) if method == "logeigen2": weights = np.log(weights+1) else: assert False, "Incorrect choice for method" return weights
{ "content_hash": "f3e6abfb1613172ae406496102428aa5", "timestamp": "", "source": "github", "line_count": 204, "max_line_length": 121, "avg_line_length": 43.88235294117647, "alnum_prop": 0.43789097408400357, "repo_name": "ronrest/convenience_py", "id": "7c534627e53851519b924a01c2a1630866ccb85f", "size": "8952", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "ml/tf/workflow_image_classifier/data_processing.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Python", "bytes": "395197" }, { "name": "Shell", "bytes": "22274" } ], "symlink_target": "" }
from ScalarTransport import * from ScalarTransportTests import * from LevelSetTests import * """ test RKDG via ScalarTransport interface with quadrature for simple advection problems """ def buildProblems(testFlag=0, verbose=0): """ build data structures necessary for specifying test problems: testFlag says which one to run? 0 --- LinearAD_DiracIC (1d) 1 --- rotating Cone (2d) """ testProblems = [] nd = {} T = {} coefficients = {} getInitialConditions = {} getDirichletConditions = {} analyticalSolution = {} if testFlag == 1: test = 'RotatingCone2D' testProblems.append(test) nd[test]=2 getDirichletConditions[test]=getHomogeneousDBC2D N=3.0 analyticalSolution[test] = RotatingCone2D(1.0/8.0) #mwf correct one, but DG has problems for some reason #coefficients[test]=UnitSquareRotation() #mwf works better with this, still have no diffusion coefficients[test]=UnitSquareRotationWithDiffusion(A0=0.0) T[test]=0.5 getInitialConditions[test] = analyticalSolution[test] coefficients[test].mass = 'linear' coefficients[test].advection = 'linear' #mwf correct coefficients[test].diffusion = None #mwf correct coefficients[test].potential = None #mwf worked better coefficients[test].diffusion = 'constant' #mwf worked better coefficients[test].potential = 'linear' coefficients[test].reaction = None else: #1d linear advection-diffusion with dirac initial condition: # #u_t + (bu - a u_x)_x = 0; u(0) = 1; u(1) = 0 # test='LinearAD_DiracIC' testProblems.append(test) nd[test]=1 getDirichletConditions[test]=getDBC_hom #a0=1.0e-4 a0=1.0e-2 #a0=1.0 #a0=0.0 A0=Numeric.array([[a0]]) b0=1.0 #b0=0.0 B0=Numeric.array([b0]) C0=1.0 M0=0.0 coefficients[test] = LinearADR_ConstantCoefficients(M=1.0,A=A0,B=B0,C=0.0) analyticalSolution[test] = LinearAD_DiracIC(b=B0,a=a0,tStart=0.25) T[test]=0.1 #0.5 getInitialConditions[test] = analyticalSolution[test] coefficients[test].mass = 'linear' coefficients[test].advection = 'linear' coefficients[test].diffusion = 'constant' coefficients[test].potential = 'linear' coefficients[test].reaction = None #end else on testFlag #just put these in one dictionary so I know what all #has to be specified problems = {} problems['testProblems'] =testProblems problems['nd'] =nd problems['T'] =T problems['coefficients'] =coefficients problems['initialConditions'] =getInitialConditions problems['dirichletConditions']=getDirichletConditions problems['analyticalSolution'] =analyticalSolution return problems #end buildProblems def buildSimParams(test,TimeIntegrationClass,verbose=0): """ define the necessary flags and tolerances for performing test problems """ #mwf debug print 'building simulation details for ',test computeEigenvalues = False if computeEigenvalues: #set flags for eigenvalue computation linearSolverType= levelLinearSolverType = 'DenseLU' levelNonlinearSolverType = 'Newton' nonlinearSolverType = 'NLNI' else: linearSolverType = levelLinearSolverType = 'SparseLU' levelNonlinearSolverType = 'Newton' nonlinearSolverType = 'Newton' #end else on evalues #tolerances tolFac = 1.0e-4 linTolFac= 1.0e-2 #time stepping control runCFL = 0.1 #order of approximation (1 unless doing SSPRK) tOrder = 2 #pick finite element spaces DG = True #False if DG: FemSpace = DG_AffineLinearOnSimplexWithNodalBasis conservativeFlux = False numericalFlux = True stabilization= None shockCapturing=None #mwf added shockCapturingDiffusion = None quadratureOrder=3 preSmooths = None postSmooths = None cycles = None nLevels=1 if test == 'RotatingCone2D': nn =31 else: nn = 51 else: FemSpace = C0_AffineLinearOnSimplexWithNodalBasis conservativeFlux = None#'pwc' numericalFlux = None stabilization='2' shockCapturing= None#'1' shockCapturingDiffusion = 0.15 quadratureOrder=3 preSmooths = 2 postSmooths = 2 cycles = 2 if test == 'RotatingCone2D': nLevels = 3 else: nLevels=6 #1d problem nn=3 #number of nodes on the coarsest mesh #end if on DG #collect run parameters par = {} par['computeEigenvalues'] =computeEigenvalues par['linearSolverType'] =linearSolverType par['levelLinearSolverType'] =levelLinearSolverType par['levelNonlinearSolverType']=levelNonlinearSolverType par['nonlinearSolverType'] =nonlinearSolverType par['tolFac'] =tolFac par['linTolFac'] =linTolFac par['runCFL'] =runCFL par['DG'] =DG par['FemSpace'] =FemSpace par['conservativeFlux'] =conservativeFlux par['numericalFlux'] =numericalFlux par['stabilization'] =stabilization par['shockCapturing'] =shockCapturing par['shockCapturingDiffusion'] =shockCapturingDiffusion par['quadratureOrder'] =quadratureOrder par['preSmooths'] =preSmooths par['postSmooths'] =postSmooths par['cycles'] =cycles par['nLevels'] =nLevels par['nn'] =nn par['timeIntegration'] =TimeIntegrationClass par['fullNewtonFlag'] =False par['timeIntOrder'] =tOrder #par[''] = # return par #end buildSimParams def buildQuadrature(test,tpars,problems): """ setup numerical quadrature data structures """ quadrature = {} gq = SimplexGaussQuadrature(problems['nd'][test]) gq.setOrder(tpars['quadratureOrder']) for integral in OneLevelScalarTransport.integralKeys: quadrature[integral] = gq #end for if tpars['stabilization'] is not None: quadrature['stab'] = gq if tpars['shockCapturing'] is not None: quadrature['numDiff'] = gq elementBoundaryQuadrature={} ebgq = SimplexGaussQuadrature(problems['nd'][test]-1) ebgq.setOrder(tpars['quadratureOrder']) for elementBoundaryIntegral in OneLevelScalarTransport.elementBoundaryIntegralKeys: elementBoundaryQuadrature[elementBoundaryIntegral] = ebgq #end boundary quad integral tpars['quadrature']= quadrature tpars['elementBoundaryQuadrature']=elementBoundaryQuadrature return tpars #end build quadrature def buildMultilevelMesh(test,tpars,problems): mlMesh = [] nn = tpars['nn'] nLevels = tpars['nLevels'] if problems['nd'][test]==1: mlMesh = MultiLevelEdgeMesh(nn,1,1,refinementLevels=nLevels) elif problems['nd'][test]==2: mlMesh = MultiLevelTriangularMesh(nn,nn,1, refinementLevels=nLevels) elif problems['nd'][test]==3: mlMesh = MultiLevelTetrahedralMesh(nn,nn,nn, refinementLevels=nLevels) #end if on dim return mlMesh #end buildMultilevelMesh def buildMultiLevelScalarTransport(test,tpars,problems,mlMesh): """ """ tolList=[] linTolList=[] for l in range(tpars['nLevels']): mlMesh.meshList[l].computeGeometricInfo() tolList.append(tpars['tolFac']*(mlMesh.meshList[l].h**2)) linTolList.append(tpars['linTolFac']*(mlMesh.meshList[l].h**2)) #end l atol = min(tolList) lin_atol = min(linTolList) if (tpars['computeEigenvalues'] or tpars['linearSolverType'] == 'DenseLU'): MatType = Mat matType = 'dense' else: MatType = SparseMat matType = 'csr' #end if mlScalarTransport = MultiLevelScalarTransport( problems['nd'][test], mlMesh, tpars['FemSpace'], tpars['FemSpace'], matType, problems['dirichletConditions'][test], problems['coefficients'][test], tpars['quadrature'], tpars['elementBoundaryQuadrature'], tpars['stabilization'], tpars['shockCapturing'], tpars['shockCapturingDiffusion'], tpars['conservativeFlux'], tpars['numericalFlux'], tpars['timeIntegration'], tpars['timeIntOrder']) tpars['MatType'] =MatType tpars['atol'] = atol tpars['lin_atol']= lin_atol tpars['tolList'] = tolList tpars['linTolList']= linTolList return mlScalarTransport,tpars #end build mlScalarTransport def buildSolvers(test,tpars,problems,mlScalarTransport,verbose=0): """ create linear and nonlinear solvers """ #how loud should nonlinear solver be printNLinfo=False if verbose > 3: printNLinfo=True levelLinearSolver = None #force linearSolver to be SparseLU if tpars['linearSolverType'] != 'SparseLU': print 'WARNING setting linearSolverType to SparseLU' print 'you need to check MatType to make sure SparseMat' tpars['linearSolverType'] = 'SparseLU' #end if levelLinearSolverList=[] for l in range(tpars['nLevels']): levelLinearSolverList.append( SparseLU(mlScalarTransport.jacobianList[l])) #end l levelLinearSolver = levelLinearSolverList linearSolver = None #do just plain Newton linearSolver = levelLinearSolver for l in range(tpars['nLevels']): linearSolver[l].printInfo=False #end l directSolverFlag=True #print "Setting up NonlinearSolver" #for levelnonlinear solver to be Newton if tpars['levelNonlinearSolverType'] != 'Newton': print 'WARNING setting levelNonlinearSolverType to Newton' tpars['levelNonlinearSolverType'] = 'Newton' #end if levelNonlinearSolverList=[] for l in range(tpars['nLevels']): levelNonlinearSolverList.append( Newton(linearSolver=linearSolver[l], F=mlScalarTransport.modelList[l], J=mlScalarTransport.jacobianList[l], rtol_r=tpars['tolList'][l], atol_r=tpars['atol'], maxIts=500, convergenceTest = 'r', printInfo=printNLinfo, fullNewton=tpars['fullNewtonFlag'], directSolver=directSolverFlag)) #end for l #for nonlinear solver to be Newton if tpars['nonlinearSolverType'] != 'Newton': print 'WARNING setting nonlinearSolverType to Newton!' tpars['nonlinearSolverType'] = 'Newton' #end if nonlinearSolver = levelNonlinearSolverList return linearSolver,nonlinearSolver,levelLinearSolver #end buildSolvers def computeErrors(eSpace,eSpaceTime,eSpaceLast, tn,mlScalarTransport,mlMesh, test,pars,problems,verbose): """ go through and calculate errors on mesh hierarchy """ eCoarse=1.0 eFine=1.0 hCoarse=1.0 hFine=1.0 analyticalSolution = problems['analyticalSolution'] for m,jac,mesh in zip(mlScalarTransport.modelList, mlScalarTransport.jacobianList, mlMesh.meshList): if analyticalSolution[test] is not None: eCoarse=eFine hCoarse=hFine hFine = mesh.h eFine = L2errorSFEMvsAF(analyticalSolution[test], m.q['x'], m.q['dx_m'], m.q['u'],tn) if eSpace.has_key(hFine): eSpaceLast[hFine] = eSpace[hFine] if eSpaceTime.has_key(hFine): eSpaceTime[hFine] +=\ mlScalarTransport.DT*0.5*(eSpaceLast[hFine]**2 + eFine**2) else: eSpaceTime[hFine] =\ mlScalarTransport.DT*0.5*(eSpaceLast[hFine]**2 + eFine**2) #end else on spaceTime #end if on eSpace eSpace[hFine] = eFine #end analytical solution not none #end for if analyticalSolution[test] is not None: hFine = 0 errors='||e||_{2}' errorsSpaceTime='' orders='|| ||e||_2 ||_2' for mesh in mlMesh.meshList: hCoarse=hFine hFine = mesh.h if hCoarse != 0: if eSpace[hFine] != 0.0 and eSpace[hCoarse] != 0.0: p = (log(eSpace[hFine]) - log(eSpace[hCoarse]))/(log(hFine) - log(hCoarse)) else: p=0 else: p = 0 #end if on hCoarse != 0 errors+="& %4.2e" % eSpace[hFine] orders+="& %4.2e" % p if eSpaceTime.has_key(hFine): #mwf added if errorsSpaceTime+="& %4.2e" % sqrt(eSpaceTime[hFine]) #end for print errors print orders print errorsSpaceTime #end if analytical solution return eSpace,eSpaceTime,eSpaceLast def plotInitial(tn,test,tpars,problems, mlMesh,mlScalarTransport): """ plot initial conditions and analytical solutions """ solPlot = None aSolPlot= None if tpars['DG'] == False: solPlot = Gnuplot.Gnuplot() solPlot("set terminal x11") aSolPlot = Gnuplot.Gnuplot() aSolPlot("set terminal x11") if problems['nd'][test] == 1: if problems['analyticalSolution'][test] is not None: solPlot.title(test) nap=101 dxap=Numeric.array([1.0/(nap - 1.0),0.0,0.0]) P = [(i*dxap) for i in range(nap)] Px = [x[0] for x in P] solPlot.plot(Gnuplot.Data(mlMesh.meshList[-1].nodeArray[:,0], mlScalarTransport.modelList[-1].u.dof, with='linespoints', title='numerical solution'), Gnuplot.Data(Px, [problems['analyticalSolution'][test].uOfXT(x,tn) for x in P], with='lines', title='analytical solution')) aSolPlot.plot(Gnuplot.Data(Px, [problems['analyticalSolution'][test].uOfXT(x,tn) for x in P], with='lines')) #end if on analytical solution elif problems['nd'][test]==2: nx = (tpars['nn']-1)*(2**(tpars['nLevels']-1))+1 ny = nx x = Numeric.arange(nx)/float(nx-1) y = Numeric.arange(nx)/float(nx-1) nSol = Numeric.reshape(mlScalarTransport.modelList[-1].u.dof, (nx,ny)) solPlot('set parametric') solPlot('set data style lines') solPlot('set hidden') solPlot('set contour base') solPlot('set cntrparam levels incremental 0.1,0.1,1.0') solPlot.xlabel('x') solPlot.ylabel('y') solPlot.splot(Gnuplot.GridData(nSol, x, y, binary=0, inline=0)) if problems['analyticalSolution'][test] is not None: aSol = Numeric.zeros((nx,ny),Numeric.Float) for i in range(nx): for j in range(ny): aSol[i,j]=problems['analyticalSolution'][test].uOfXT(Numeric.array([x[i],y[j],0.0]),tn) aSolPlot('set parametric') aSolPlot('set data style lines') aSolPlot('set hidden') aSolPlot('set contour base') aSolPlot('set cntrparam levels incremental 0.1,0.1,1.0') aSolPlot.xlabel('x') aSolPlot.ylabel('y') aSolPlot.splot(Gnuplot.GridData(aSol, x, y, binary=0, inline=0)) #end if on analytical solution #end if on nd ==2 #end if on not DG return solPlot,aSolPlot def plotTimeStep(solPlot,aSolPlot,tn,test,tpars,problems, mlMesh,mlScalarTransport,testOut): """ plot initial conditions and analytical solutions """ if solPlot is None or aSolPlot is None: return solPlot,aSolPlot #end nothing to plot with if tpars['DG'] == False: if problems['nd'][test] == 1: if problems['analyticalSolution'][test] is not None: solPlot.title(testOut) nap=101 dxap=Numeric.array([1.0/(nap - 1.0),0.0,0.0]) P = [(i*dxap) for i in range(nap)] Px = [x[0] for x in P] solPlot.plot(Gnuplot.Data(mlMesh.meshList[-1].nodeArray[:,0], mlScalarTransport.modelList[-1].u.dof, with='linespoints', title='numerical solution'), Gnuplot.Data(Px, [problems['analyticalSolution'][test].uOfXT(x,tn) for x in P], with='lines', title='analytical solution')) else: solPlot.title(testOut) solPlot.plot(Gnuplot.Data(mlMesh.meshList[-1].nodeArray[:,0], mlScalarTransport.modelList[-1].u.dof, with='linespoints', title='numerical solution')) #end if on analytical solution elif problems['nd'][test]==2: nx = (tpars['nn']-1)*(2**(tpars['nLevels']-1))+1 ny = nx x = Numeric.arange(nx)/float(nx-1) y = Numeric.arange(nx)/float(nx-1) nSol = Numeric.reshape(mlScalarTransport.modelList[-1].u.dof, (nx,ny)) solPlot('set parametric') solPlot('set data style lines') solPlot('set hidden') solPlot('set contour base') solPlot('set cntrparam levels incremental 0.1,0.1,1.0') solPlot.xlabel('x') solPlot.ylabel('y') solPlot.splot(Gnuplot.GridData(nSol, x, y, binary=0, inline=0)) if problems['analyticalSolution'][test] is not None: aSol = Numeric.zeros((nx,ny),Numeric.Float) for i in range(nx): for j in range(ny): aSol[i,j]=problems['analyticalSolution'][test].uOfXT(Numeric.array([x[i],y[j],0.0]),tn) #end j #end i aSolPlot('set parametric') aSolPlot('set data style lines') aSolPlot('set hidden') aSolPlot('set contour base') aSolPlot('set cntrparam levels incremental 0.1,0.1,1.0') aSolPlot.xlabel('x') aSolPlot.ylabel('y') aSolPlot.splot(Gnuplot.GridData(aSol, x, y, binary=0, inline=0)) #end if on analytical solution #end if on nd ==2 #end if on not DG return solPlot,aSolPlot def plotFinal(solPlot,aSolPlot,tn,test,tpars,problems, mlMesh,mlScalarTransport,testOut): """ plot out solution and mesh at last step in a couple of formats """ if tpars['DG'] == False: solPlot.hardcopy(testOut+'_sol.eps', eps=1,enhanced=1,color=1) aSolPlot.hardcopy(testOut+'_asol.eps', eps=1,enhanced=1,color=1) #end if mlMesh.meshList[-1].writeMeshEnsight(test,test) mlScalarTransport.modelList[-1].u.name='u' #mlScalarTransport.modelList[-1].writeBoundaryTermsEnsight(test) mlScalarTransport.modelList[-1].u.writeFunctionEnsight(test,append=False) return solPlot,aSolPlot if __name__ == '__main__': import sys import numpy from ScalarTransport import * from LinearSolvers import * from TimeIntegrationTools import * verbose = 5 #testFlag = 0 # LinearAD_Dirac_IC testFlag = 1 # rotating clone problems = buildProblems(testFlag,verbose) test = problems['testProblems'][0] #first test I hope #pars = buildSimParams(test,BackwardEuler) #pars = buildSimParams(test,ForwardEuler) pars = buildSimParams(test,SSPRKintegration) pars = buildQuadrature(test,pars,problems) mlMesh = buildMultilevelMesh(test,pars,problems) mlScalarTransport,pars = buildMultiLevelScalarTransport(test,pars, problems, mlMesh) linearSolver,nonlinearSolver,levelLinearSolver = \ buildSolvers(test,pars,problems,mlScalarTransport,verbose=verbose) #start time loop? nstages= pars['timeIntOrder'] tn = 0.0 nSteps = 0 maxSteps= 1000 eSpace={} eSpaceTime={} eSpaceLast={} mlScalarTransport.setInitialConditions(problems['initialConditions'][test], tn) #end ic set solPlot,aSolPlot = plotInitial(tn,test,pars,problems, mlMesh,mlScalarTransport) mlScalarTransport.modelList[-1].timeIntegration.runCFL= pars['runCFL'] done = False while not done: mlScalarTransport.chooseDT() dtMin = min(problems['T'][test]-tn,mlScalarTransport.DT) mlScalarTransport.chooseDT(DTSET=dtMin) if nSteps == 0: mlScalarTransport.initializeTimeIntegration() mlScalarTransport.initializeTimeIntegration() #end if tn += mlScalarTransport.DT print 'taking step to t= ',tn nSteps += 1 testOut = test + ('%4.4i' % nSteps) #only Newton iteration for now if pars['nonlinearSolverType'] != 'Newton': print 'nonlinearSolverType must be Newton' sys.exit(1) #end if #loop through stages for s in range(nstages): for l in range(pars['nLevels']): mlScalarTransport.modelList[l].getResidual(u = mlScalarTransport.uList[l], r = mlScalarTransport.rList[l]) nonlinearSolver[l].solve(u = mlScalarTransport.uList[l], r = mlScalarTransport.rList[l]) #end l loop mlScalarTransport.updateStage() #end s loop print 'max u on fine= ',max(mlScalarTransport.modelList[-1].u.dof.flat) print 'min u on fine= ',min(mlScalarTransport.modelList[-1].u.dof.flat) mlScalarTransport.modelList[-1].u.name = test mlScalarTransport.modelList[-1].u.writeFunctionGnuplot(test, append=False) if pars['conservativeFlux'] == 'pwc': mlScalarTransport.modelList[-1].getConservationFluxPWC() elif pars['conservativeFlux'] == 'pwl': mlScalarTransport.modelList[-1].getConservationFluxPWL() elif pars['numericalFlux'] is not None: mlScalarTransport.modelList[-1].e['conservationResidual'].flat[:]=0.0 for eN in range(mlScalarTransport.modelList[-1].mesh.nElements_global): for i in range(mlScalarTransport.modelList[-1].nDOF_element): mlScalarTransport.modelList[-1].e['conservationResidual'][eN]+=mlScalarTransport.modelList[-1].elementResidual[eN,i] #end for eN #print 'consRes=',mlScalarTransport.modelList[-1].e['conservationResidual'] print "Max mass cons error "+`max(abs(mlScalarTransport.modelList[-1].e['conservationResidual']))` #end numerical flux is not None mlScalarTransport.updateTimeHistory() solPlot,aSolPlot = plotTimeStep(solPlot,aSolPlot,tn,test,pars,problems, mlMesh,mlScalarTransport,testOut) #compute error eSpace,eSpaceTime,eSpaceLast = computeErrors( eSpace,eSpaceTime,eSpaceLast, tn,mlScalarTransport,mlMesh,test,pars,problems,verbose) #figure out if done or not done = (abs(tn - problems['T'][test]) < 1.0e-10 or nSteps >= maxSteps) #end while solPlot,aSolPlot = plotFinal(solPlot,aSolPlot,tn,test,pars,problems, mlMesh,mlScalarTransport,testOut)
{ "content_hash": "81316e2018b1e422c85b3ae10355d7e2", "timestamp": "", "source": "github", "line_count": 700, "max_line_length": 136, "avg_line_length": 36.78, "alnum_prop": 0.5539112871902432, "repo_name": "erdc/proteus", "id": "1cb9da2f0bfc740d9dae79053fa5088ff56431b4", "size": "25769", "binary": false, "copies": "1", "ref": "refs/heads/main", "path": "proteus/tests/sandbox/testRKDG.py", "mode": "33188", "license": "mit", "language": [ { "name": "Assembly", "bytes": "2790" }, { "name": "Asymptote", "bytes": "1569" }, { "name": "C", "bytes": "2827957" }, { "name": "C++", "bytes": "7262408" }, { "name": "Cython", "bytes": "154607" }, { "name": "Dockerfile", "bytes": "2738" }, { "name": "Fortran", "bytes": "51671" }, { "name": "Jupyter Notebook", "bytes": "33357" }, { "name": "Makefile", "bytes": "19043" }, { "name": "Python", "bytes": "12534530" }, { "name": "Roff", "bytes": "322" }, { "name": "Shell", "bytes": "14084" } ], "symlink_target": "" }
from requests import HTTPError # noqa
{ "content_hash": "328d1fcdebb64d6621359a04659a593e", "timestamp": "", "source": "github", "line_count": 1, "max_line_length": 38, "avg_line_length": 39, "alnum_prop": 0.7948717948717948, "repo_name": "globocom/pluct", "id": "8cb440ee6a78578a550a4bacd17f504226ccacb0", "size": "64", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "pluct/exceptions.py", "mode": "33188", "license": "mit", "language": [ { "name": "Makefile", "bytes": "675" }, { "name": "Python", "bytes": "44441" } ], "symlink_target": "" }
import logging from dplace_app.models import Language, ISOCode, LanguageFamily, Society def load_languages(repos): languoids = { l.id: l for l in repos.read_csv('csv', 'glottolog.csv', namedtuples=True)} families, languages, isocodes = {}, {}, {} societies = {s.ext_id: s for s in Society.objects.all()} count = 0 for ds in repos.datasets: for soc in ds.societies: ldata = languoids.get(soc.glottocode) if not ldata: # pragma: no cover logging.warning("No language found for %s, skipping" % soc.glottocode) continue soc = societies[soc.id] soc.language = load_language(ldata, languages, families, isocodes) soc.save() count += 1 return count def load_language(ldata, languages, families, isocodes): # get or create the language family: # Note: If the related languoid is an isolate or a top-level family, we create a # LanguageFamily object with the data of the languoid. family_id = ldata.family_id or ldata.id family = families.get(family_id) if not family: family_name = ldata.family_name or ldata.name family = LanguageFamily.objects.create(name=family_name) family.save() families[family_id] = family # get or create the language: language = languages.get(ldata.id) if not language: language = Language.objects.create(name=ldata.name, glotto_code=ldata.id) language.family = family if ldata.iso_code: isocode = isocodes.get(ldata.iso_code) if not isocode: isocode = ISOCode.objects.create(iso_code=ldata.iso_code) isocodes[ldata.iso_code] = isocode language.iso_code = isocode language.save() languages[ldata.id] = language return language
{ "content_hash": "c8373bbecf069eed61e486fc96007953", "timestamp": "", "source": "github", "line_count": 53, "max_line_length": 86, "avg_line_length": 35.45283018867924, "alnum_prop": 0.6253326237360298, "repo_name": "stefelisabeth/dplace", "id": "23ca68370f8dd666767cdad9f43696ff08c5e397", "size": "1903", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "dplace_app/loader/glottocode.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "10863" }, { "name": "HTML", "bytes": "149761" }, { "name": "JavaScript", "bytes": "156539" }, { "name": "Makefile", "bytes": "189" }, { "name": "Python", "bytes": "124392" }, { "name": "Shell", "bytes": "826" } ], "symlink_target": "" }
""" Validate ODC dataset documents """ import collections import enum import math import multiprocessing import os import sys from datetime import datetime from functools import partial from pathlib import Path from textwrap import indent from typing import ( Counter, Dict, Generator, Iterable, List, Optional, Sequence, Set, Tuple, Union, ) from urllib.parse import urljoin, urlparse from urllib.request import urlopen import attr import ciso8601 import click import numpy as np import rasterio import toolz from boltons.iterutils import get_path from click import echo, secho, style from datacube import Datacube from datacube.index.eo3 import prep_eo3 from datacube.utils import InvalidDocException, changes, is_url, read_documents from datacube.utils.documents import load_documents from rasterio import DatasetReader from rasterio.crs import CRS from rasterio.errors import CRSError from shapely.validation import explain_validity from eodatasets3 import model, serialise, utils from eodatasets3.model import DatasetDoc from eodatasets3.ui import bool_style, is_absolute, uri_resolve from eodatasets3.utils import EO3_SCHEMA, default_utc class Level(enum.Enum): info = 1 warning = 2 error = 3 class DocKind(enum.Enum): # EO3 datacube dataset. dataset = 1 # Datacube product product = 2 # Datacube Metadata Type metadata_type = 3 # Stac Item stac_item = 4 # Legacy datacube ("eo1") dataset legacy_dataset = 5 # Legacy product config for ingester ingestion_config = 6 # What kind of document each suffix represents. # (full suffix will also have a doc type: .yaml, .json, .yaml.gz etc) # Example: "my-test-dataset.odc-metadata.yaml" SUFFIX_KINDS = { ".odc-metadata": DocKind.dataset, ".odc-product": DocKind.product, ".odc-type": DocKind.metadata_type, } # Inverse of above DOC_TYPE_SUFFIXES = {v: k for k, v in SUFFIX_KINDS.items()} def filename_doc_kind(path: Union[str, Path]) -> Optional["DocKind"]: """ Get the expected file type for the given filename. Returns None if it does not follow any naming conventions. >>> filename_doc_kind('LC8_2014.odc-metadata.yaml').name 'dataset' >>> filename_doc_kind('/tmp/something/water_bodies.odc-metadata.yaml.gz').name 'dataset' >>> filename_doc_kind(Path('/tmp/something/ls8_fc.odc-product.yaml')).name 'product' >>> filename_doc_kind(Path('/tmp/something/ls8_wo.odc-product.json.gz')).name 'product' >>> filename_doc_kind(Path('/tmp/something/eo3_gqa.odc-type.yaml')).name 'metadata_type' >>> filename_doc_kind(Path('/tmp/something/some_other_file.yaml')) """ for suffix in reversed(Path(path).suffixes): suffix = suffix.lower() if suffix in SUFFIX_KINDS: return SUFFIX_KINDS[suffix] return None def guess_kind_from_contents(doc: Dict): """ What sort of document do the contents look like? """ if "$schema" in doc and doc["$schema"] == EO3_SCHEMA: return DocKind.dataset if "metadata_type" in doc: if "source_type" in doc: return DocKind.ingestion_config return DocKind.product if ("dataset" in doc) and ("search_fields" in doc["dataset"]): return DocKind.metadata_type if "id" in doc: if ("lineage" in doc) and ("platform" in doc): return DocKind.legacy_dataset if ("properties" in doc) and ("datetime" in doc["properties"]): return DocKind.stac_item return None @attr.s(auto_attribs=True, frozen=True) class ValidationMessage: level: Level code: str reason: str hint: str = None def __str__(self) -> str: hint = "" if self.hint: hint = f" (Hint: {self.hint})" return f"{self.code}: {self.reason}{hint}" def _info(code: str, reason: str, hint: str = None): return ValidationMessage(Level.info, code, reason, hint=hint) def _warning(code: str, reason: str, hint: str = None): return ValidationMessage(Level.warning, code, reason, hint=hint) def _error(code: str, reason: str, hint: str = None): return ValidationMessage(Level.error, code, reason, hint=hint) ValidationMessages = Generator[ValidationMessage, None, None] def validate_dataset( doc: Dict, product_definition: Optional[Dict] = None, metadata_type_definition: Optional[Dict] = None, thorough: bool = False, readable_location: Union[str, Path] = None, expect_extra_measurements: bool = False, expect_geometry: bool = True, nullable_fields: Iterable[str] = ("label",), ) -> ValidationMessages: """ Validate a a dataset document, optionally against the given product. By default this will only look at the metadata, run with thorough=True to open the data files too. :param product_definition: Optionally check that the dataset matches this product definition. :param thorough: Open the imagery too, to check that data types etc match. :param readable_location: Dataset location to use, if not the metadata path. :param expect_extra_measurements: Allow some dataset measurements to be missing from the product definition. This is (deliberately) allowed by ODC, but often a mistake. This flag disables the warning. """ schema = doc.get("$schema") if schema is None: yield _error( "no_schema", f"No $schema field. " f"You probably want an ODC dataset schema {model.ODC_DATASET_SCHEMA_URL!r}", ) return if schema != model.ODC_DATASET_SCHEMA_URL: yield _error( "unknown_doc_type", f"Unknown doc schema {schema!r}. Only ODC datasets are supported ({model.ODC_DATASET_SCHEMA_URL!r})", ) return has_doc_errors = False for error in serialise.DATASET_SCHEMA.iter_errors(doc): has_doc_errors = True displayable_path = ".".join(error.absolute_path) hint = None if displayable_path == "crs" and "not of type" in error.message: hint = "epsg codes should be prefixed with 'epsg:1234'" context = f"({displayable_path}) " if displayable_path else "" yield _error("structure", f"{context}{error.message} ", hint=hint) if has_doc_errors: return dataset = serialise.from_doc(doc, skip_validation=True) if not dataset.product.href: _info("product_href", "A url (href) is recommended for products") yield from _validate_geo(dataset, expect_geometry=expect_geometry) # Note that a dataset may have no measurements (eg. telemetry data). # (TODO: a stricter mode for when we know we should have geo and measurement info) if dataset.measurements: for name, measurement in dataset.measurements.items(): grid_name = measurement.grid if grid_name != "default" or dataset.grids: if grid_name not in dataset.grids: yield _error( "invalid_grid_ref", f"Measurement {name!r} refers to unknown grid {grid_name!r}", ) if is_absolute(measurement.path): yield _warning( "absolute_path", f"measurement {name!r} has an absolute path: {measurement.path!r}", ) yield from _validate_stac_properties(dataset) required_measurements: Dict[str, ExpectedMeasurement] = {} if product_definition is not None: required_measurements.update( { m.name: m for m in map( ExpectedMeasurement.from_definition, product_definition.get("measurements") or (), ) } ) product_name = product_definition.get("name") if product_name != dataset.product.name: # This is only informational as it's possible products may be indexed with finer-grained # categories than the original datasets: eg. a separate "nrt" product, or test product. yield _info( "product_mismatch", f"Dataset product name {dataset.product.name!r} " f"does not match the given product ({product_name!r}", ) for name in required_measurements: if name not in dataset.measurements.keys(): yield _error( "missing_measurement", f"Product {product_name} expects a measurement {name!r})", ) measurements_not_in_product = set(dataset.measurements.keys()).difference( {m["name"] for m in product_definition.get("measurements") or ()} ) if (not expect_extra_measurements) and measurements_not_in_product: things = ", ".join(sorted(measurements_not_in_product)) yield _warning( "extra_measurements", f"Dataset has measurements not present in product definition for {product_name!r}: {things}", hint="This may be valid, as it's allowed by ODC. Set `expect_extra_measurements` to mute this.", ) if metadata_type_definition: # Datacube does certain transforms on an eo3 doc before storage. # We need to do the same, as the fields will be read from the storage. prepared_doc = prep_eo3(doc) for field_name, offsets in _get_field_offsets( metadata_type=metadata_type_definition ): if not any(_has_offset(prepared_doc, offset) for offset in offsets): readable_offsets = " or ".join("->".join(offset) for offset in offsets) yield _warning( "missing_field", f"Dataset is missing field {field_name!r}", hint=f"Expected at {readable_offsets}", ) continue if field_name not in nullable_fields: value = None for offset in offsets: value = toolz.get_in(offset, prepared_doc) if value is None: yield _info( "null_field", f"Value is null for configured field {field_name!r}", ) dataset_location = dataset.locations[0] if dataset.locations else readable_location # If we have a location: # For each measurement, try to load it. # If loadable: if thorough: for name, measurement in dataset.measurements.items(): full_path = uri_resolve(dataset_location, measurement.path) expected_measurement = required_measurements.get(name) band = measurement.band or 1 with rasterio.open(full_path) as ds: ds: DatasetReader if band not in ds.indexes: yield _error( "incorrect_band", f"Measurement {name!r} file contains no rio index {band!r}.", hint=f"contains indexes {ds.indexes!r}", ) continue if not expected_measurement: # The measurement is not in the product definition # # This is only informational because a product doesn't have to define all # measurements that the datasets contain. # # This is historically because dataset documents reflect the measurements that # are stored on disk, which can differ. But products define the set of measurments # that are mandatory in every dataset. # # (datasets differ when, for example, sensors go offline, or when there's on-disk # measurements like panchromatic that GA doesn't want in their product definitions) if required_measurements: yield _info( "unspecified_measurement", f"Measurement {name} is not in the product", ) else: expected_dtype = expected_measurement.dtype band_dtype = ds.dtypes[band - 1] # TODO: NaN handling if expected_dtype != band_dtype: yield _error( "different_dtype", f"{name} dtype: " f"product {expected_dtype!r} != dataset {band_dtype!r}", ) ds_nodata = ds.nodatavals[band - 1] # If the dataset is missing 'nodata', we can allow anything in product 'nodata'. # (In ODC, nodata might be a fill value for loading data.) if ds_nodata is None: continue # Otherwise check that nodata matches. expected_nodata = expected_measurement.nodata if expected_nodata != ds_nodata and not ( _is_nan(expected_nodata) and _is_nan(ds_nodata) ): yield _error( "different_nodata", f"{name} nodata: " f"product {expected_nodata !r} != dataset {ds_nodata !r}", ) def _has_offset(doc: Dict, offset: List[str]) -> bool: """ Is the given offset present in the document? """ for key in offset: if key not in doc: return False doc = doc[key] return True def validate_product(doc: Dict) -> ValidationMessages: """ Check for common product mistakes """ # Validate it against ODC's product schema. has_doc_errors = False for error in serialise.PRODUCT_SCHEMA.iter_errors(doc): has_doc_errors = True displayable_path = ".".join(map(str, error.absolute_path)) context = f"({displayable_path}) " if displayable_path else "" yield _error("document_schema", f"{context}{error.message} ") # The jsonschema error message for this (common error) is garbage. Make it clearer. measurements = doc.get("measurements") if (measurements is not None) and not isinstance(measurements, Sequence): yield _error( "measurements_list", f"Product measurements should be a list/sequence " f"(Found a {type(measurements).__name__!r}).", ) # There's no point checking further if the core doc structure is wrong. if has_doc_errors: return if not doc.get("license", "").strip(): yield _warning( "no_license", f"Product {doc['name']!r} has no license field", hint='Eg. "CC-BY-4.0" (SPDX format), "various" or "proprietary"', ) # Check measurement name clashes etc. if measurements is None: # Products don't have to have measurements. (eg. provenance-only products) ... else: seen_names_and_aliases = collections.defaultdict(list) for measurement in measurements: measurement_name = measurement.get("name") dtype = measurement.get("dtype") nodata = measurement.get("nodata") if not numpy_value_fits_dtype(nodata, dtype): yield _error( "unsuitable_nodata", f"Measurement {measurement_name!r} nodata {nodata!r} does not fit a {dtype!r}", ) # Were any of the names seen in other measurements? these_names = measurement_name, *measurement.get("aliases", ()) for new_field_name in these_names: measurements_with_this_name = seen_names_and_aliases[new_field_name] if measurements_with_this_name: seen_in = " and ".join( repr(s) for s in ([measurement_name] + measurements_with_this_name) ) # If the same name is used by different measurements, its a hard error. yield _error( "duplicate_measurement_name", f"Name {new_field_name!r} is used by multiple measurements", hint=f"It's duplicated in an alias. " f"Seen in measurement(s) {seen_in}", ) # Are any names duplicated within the one measurement? (not an error, but info) for duplicate_name in _find_duplicates(these_names): yield _info( "duplicate_alias_name", f"Measurement {measurement_name!r} has a duplicate alias named {duplicate_name!r}", ) for field in these_names: seen_names_and_aliases[field].append(measurement_name) def validate_metadata_type(doc: Dict) -> ValidationMessages: """ Check for common metadata-type mistakes """ # Validate it against ODC's schema (there will be refused by ODC otherwise) for error in serialise.METADATA_TYPE_SCHEMA.iter_errors(doc): displayable_path = ".".join(map(str, error.absolute_path)) context = f"({displayable_path}) " if displayable_path else "" yield _error("document_schema", f"{context}{error.message} ") def _find_duplicates(values: Iterable[str]) -> Generator[str, None, None]: """Return any duplicate values in the given sequence >>> list(_find_duplicates(('a', 'b', 'c'))) [] >>> list(_find_duplicates(('a', 'b', 'b'))) ['b'] >>> list(_find_duplicates(('a', 'b', 'b', 'a'))) ['a', 'b'] """ previous = None for v in sorted(values): if v == previous: yield v previous = v def numpy_value_fits_dtype(value, dtype): """ Can the value be exactly represented by the given numpy dtype? >>> numpy_value_fits_dtype(3, 'uint8') True >>> numpy_value_fits_dtype(3, np.dtype('uint8')) True >>> numpy_value_fits_dtype(-3, 'uint8') False >>> numpy_value_fits_dtype(3.5, 'float32') True >>> numpy_value_fits_dtype(3.5, 'int16') False >>> numpy_value_fits_dtype(float('NaN'), 'float32') True >>> numpy_value_fits_dtype(float('NaN'), 'int32') False """ dtype = np.dtype(dtype) if value is None: value = 0 if _is_nan(value): return np.issubdtype(dtype, np.floating) else: return np.all(np.array([value], dtype=dtype) == [value]) @attr.s(auto_attribs=True) class ExpectedMeasurement: name: str dtype: str nodata: int @classmethod def from_definition(cls, doc: Dict): return ExpectedMeasurement(doc["name"], doc.get("dtype"), doc.get("nodata")) # Name of a field and its possible offsets in the document. FieldNameOffsetS = Tuple[str, Set[List[str]]] def validate_paths( paths: List[str], thorough: bool = False, expect_extra_measurements: bool = False, product_definitions: Dict[str, Dict] = None, metadata_type_definitions: Dict[str, Dict] = None, ) -> Generator[Tuple[str, List[ValidationMessage]], None, None]: """Validate the list of paths. Product documents can be specified before their datasets.""" products = dict(product_definitions or {}) metadata_types = dict(metadata_type_definitions or {}) for url, doc, was_specified_by_user in read_paths(paths): messages = [] kind = filename_doc_kind(url) if kind is None: kind = guess_kind_from_contents(doc) if kind and (kind in DOC_TYPE_SUFFIXES): # It looks like an ODC doc but doesn't have the standard suffix. messages.append( _warning( "missing_suffix", f"Document looks like a {kind.name} but does not have " f'filename extension "{DOC_TYPE_SUFFIXES[kind]}{_readable_doc_extension(url)}"', ) ) if kind == DocKind.product: messages.extend(validate_product(doc)) if "name" in doc: products[doc["name"]] = doc elif kind == DocKind.dataset: messages.extend( validate_eo3_doc( doc, url, products, metadata_types, thorough, expect_extra_measurements, ) ) elif kind == DocKind.metadata_type: messages.extend(validate_metadata_type(doc)) if "name" in doc: metadata_types[doc["name"]] = doc # Otherwise it's a file we don't support. # If the user gave us the path explicitly, it seems to be an error. # (if they didn't -- it was found via scanning directories -- we don't care.) elif was_specified_by_user: if kind is None: raise ValueError(f"Unknown document type for {url}") else: raise NotImplementedError( f"Cannot currently validate {kind.name} files" ) else: # Not a doc type we recognise, and the user didn't specify it. Skip it. continue yield url, messages def _get_field_offsets(metadata_type: Dict) -> Iterable[FieldNameOffsetS]: """ Yield all fields and their possible document-offsets that are expected for this metadata type. Eg, if the metadata type has a region_code field expected properties->region_code, this will yield ('region_code', {['properties', 'region_code']}) (Properties can have multiple offsets, where ODC will choose the first non-null one, hence the return of multiple offsets for each field.) """ dataset_section = metadata_type["dataset"] search_fields = dataset_section["search_fields"] # The fixed fields of ODC. 'id', 'label', etc. for field in dataset_section: if field == "search_fields": continue offset = dataset_section[field] if offset is not None: yield field, [offset] # The configurable search fields. for field, spec in search_fields.items(): offsets = [] if "offset" in spec: offsets.append(spec["offset"]) offsets.extend(spec.get("min_offset", [])) offsets.extend(spec.get("max_offset", [])) yield field, offsets def _readable_doc_extension(uri: str): """ >>> _readable_doc_extension('something.json.gz') '.json.gz' >>> _readable_doc_extension('something.yaml') '.yaml' >>> _readable_doc_extension('apple.odc-metadata.yaml.gz') '.yaml.gz' >>> _readable_doc_extension('products/tmad/tmad_product.yaml#part=1') '.yaml' >>> _readable_doc_extension('/tmp/human.06.tall.yml') '.yml' >>> # Not a doc, even though it's compressed. >>> _readable_doc_extension('db_dump.gz') >>> _readable_doc_extension('/tmp/nothing') """ path = urlparse(uri).path compression_formats = (".gz",) doc_formats = ( ".yaml", ".yml", ".json", ) suffix = "".join( s.lower() for s in Path(path).suffixes if s.lower() in doc_formats + compression_formats ) # If it's only compression, no doc format, it's not valid. if suffix in compression_formats: return None return suffix or None def read_paths( input_paths: Iterable[str], ) -> Generator[Tuple[str, Union[Dict, str], bool], None, None]: """ Read the given input paths, returning a URL, document, and whether it was explicitly given by the user. When a local directory is specified, inner readable docs are returned, but will be marked as not explicitly specified. """ for input_ in input_paths: for uri, was_specified in expand_paths_as_uris([input_]): try: for full_uri, doc in read_documents(uri, uri=True): yield full_uri, doc, was_specified except InvalidDocException as e: if was_specified: raise else: echo(e, err=True) def expand_paths_as_uris( input_paths: Iterable[str], ) -> Generator[Tuple[Path, bool], None, None]: """ For any paths that are directories, find inner documents that are known. Returns Tuples: path as a URL, and whether it was specified explicitly by user. """ for input_ in input_paths: if is_url(input_): yield input_, True else: path = Path(input_).resolve() if path.is_dir(): for found_path in path.rglob("*"): if _readable_doc_extension(found_path.as_uri()) is not None: yield found_path.as_uri(), False else: yield path.as_uri(), True def validate_eo3_doc( doc: Dict, location: Union[str, Path], products: Dict[str, Dict], metadata_types: Dict[str, Dict], thorough: bool = False, expect_extra_measurements=False, ) -> List[ValidationMessage]: messages = [] # TODO: follow ODC's match rules? matched_product = None if products: matched_product, messages = _match_product(doc, products) else: messages.append( ValidationMessage( Level.error if thorough else Level.info, "no_product", "No product provided: validating dataset information alone", ) ) metadata_type = None if metadata_types and matched_product: metadata_type = matched_product["metadata_type"] if metadata_type not in metadata_types: messages.append( ValidationMessage( Level.error if thorough else Level.info, "no_metadata_type", f"Metadata type not provided {metadata_type}: not validating fields", ) ) messages.extend( validate_dataset( doc, product_definition=matched_product, readable_location=location, thorough=thorough, metadata_type_definition=metadata_types.get(metadata_type), expect_extra_measurements=expect_extra_measurements, ) ) return messages def _get_printable_differences(dict1: Dict, dict2: Dict): """ Get a series of lines to print that show the reason that dict1 is not a superset of dict2 """ dict1 = dict(utils.flatten_dict(dict1)) dict2 = dict(utils.flatten_dict(dict2)) for path in dict2.keys(): v1, v2 = dict1.get(path), dict2.get(path) if v1 != v2: yield f"{path}: {v1!r} != {v2!r}" def _get_product_mismatch_reasons(dataset_doc: Dict, product_definition: Dict): """ Which fields don't match the given dataset doc to a product definition? Gives human-readable lines of text. """ yield from _get_printable_differences(dataset_doc, product_definition["metadata"]) def _match_product( dataset_doc: Dict, product_definitions: Dict[str, Dict] ) -> Tuple[Optional[Dict], List[ValidationMessage]]: """Match the given dataset to a product definition""" product = None # EO3 datasets often put the product name directly inside. specified_product_name = get_path(dataset_doc, ("product", "name"), default=None) specified_product_name = specified_product_name or get_path( dataset_doc, ("properties", "odc:product"), default=None ) if specified_product_name and (specified_product_name in product_definitions): product = product_definitions[specified_product_name] matching_products = { name: definition for name, definition in product_definitions.items() if changes.contains(dataset_doc, definition["metadata"]) } # We we have nothing, give up! if (not matching_products) and (not product): # Find the product that most closely matches it, to helpfully show the differences! closest_product_name = None closest_differences = None for name, definition in product_definitions.items(): diffs = tuple(_get_product_mismatch_reasons(dataset_doc, definition)) if (closest_differences is None) or len(diffs) < len(closest_differences): closest_product_name = name closest_differences = diffs difference_hint = _differences_as_hint(closest_differences) return None, [ _error( "unknown_product", "Dataset does not match the given products", hint=f"Closest match is {closest_product_name}, with differences:" f"\n{difference_hint}", ) ] messages = [] if specified_product_name not in matching_products: if product: difference_hint = _differences_as_hint( _get_product_mismatch_reasons(dataset_doc, product) ) messages.append( _info( "strange_product_claim", f"Dataset claims to be product {specified_product_name!r}, but doesn't match its fields", hint=f"{difference_hint}", ) ) else: messages.append( _info( "unknown_product_claim", f"Dataset claims to be product {specified_product_name!r}, but it wasn't supplied.", ) ) if len(matching_products) > 1: matching_names = ", ".join(matching_products.keys()) messages.append( _error( "product_match_clash", "Multiple products match the given dataset", hint=f"Maybe you need more fields in the 'metadata' section?\n" f"Claims to be a {specified_product_name!r}, and matches {matching_names!r}" if specified_product_name else f"Maybe you need more fields in the 'metadata' section?\n" f"Matches {matching_names!r}", ) ) # (We wont pick one from the bunch here. Maybe they already matched one above to use in continuing validation.) # Just like ODC, match rules will rule all. Even if their metadata has a "product_name" field. if len(matching_products) == 1: [product] = matching_products.values() return product, messages def _differences_as_hint(product_diffs): return indent("\n".join(product_diffs), prefix="\t") def _validate_stac_properties(dataset: DatasetDoc): for name, value in dataset.properties.items(): if name not in dataset.properties.KNOWN_PROPERTIES: yield _warning("unknown_property", f"Unknown stac property {name!r}") else: normaliser = dataset.properties.KNOWN_PROPERTIES.get(name) if normaliser and value is not None: try: normalised_value = normaliser(value) # A normaliser can return two values, the latter adding extra extracted fields. if isinstance(normalised_value, tuple): normalised_value = normalised_value[0] # It's okay for datetimes to be strings # .. since ODC's own loader does that. if isinstance(normalised_value, datetime) and isinstance( value, str ): value = ciso8601.parse_datetime(value) # Special case for dates, as "no timezone" and "utc timezone" are treated identical. if isinstance(value, datetime): value = default_utc(value) if not isinstance(value, type(normalised_value)): yield _warning( "property_type", f"Value {value} expected to be " f"{type(normalised_value).__name__!r} (got {type(value).__name__!r})", ) elif normalised_value != value: if _is_nan(normalised_value) and _is_nan(value): # Both are NaNs, ignore. pass else: yield _warning( "property_formatting", f"Property {value!r} expected to be {normalised_value!r}", ) except ValueError as e: yield _error("invalid_property", f"{name!r}: {e.args[0]}") if "odc:producer" in dataset.properties: producer = dataset.properties["odc:producer"] # We use domain name to avoid arguing about naming conventions ('ga' vs 'geoscience-australia' vs ...) if "." not in producer: yield _warning( "producer_domain", "Property 'odc:producer' should be the organisation's domain name. Eg. 'ga.gov.au'", ) # This field is a little odd, but is expected by the current version of ODC. # (from discussion with Kirill) if not dataset.properties.get("odc:file_format"): yield _warning( "global_file_format", "Property 'odc:file_format' is empty", hint="Usually 'GeoTIFF'", ) def _is_nan(v): # Due to JSON serialisation, nan can also be represented as a string 'NaN' if isinstance(v, str): return v == "NaN" return isinstance(v, float) and math.isnan(v) def _validate_geo(dataset: DatasetDoc, expect_geometry: bool = True): has_some_geo = _has_some_geo(dataset) if not has_some_geo and expect_geometry: yield _info("non_geo", "No geo information in dataset") return if dataset.geometry is None: if expect_geometry: yield _info("incomplete_geo", "Dataset has some geo fields but no geometry") elif not dataset.geometry.is_valid: yield _error( "invalid_geometry", f"Geometry is not a valid shape: {explain_validity(dataset.geometry)!r}", ) # TODO: maybe we'll allow no grids: backwards compat with old metadata. if not dataset.grids: yield _error("incomplete_grids", "Dataset has some geo fields but no grids") if not dataset.crs: yield _error("incomplete_crs", "Dataset has some geo fields but no crs") else: # We only officially support epsg code (recommended) or wkt. if dataset.crs.lower().startswith("epsg:"): try: CRS.from_string(dataset.crs) except CRSError as e: yield _error("invalid_crs_epsg", e.args[0]) if dataset.crs.lower() != dataset.crs: yield _warning("mixed_crs_case", "Recommend lowercase 'epsg:' prefix") else: wkt_crs = None try: wkt_crs = CRS.from_wkt(dataset.crs) except CRSError as e: yield _error( "invalid_crs", f"Expect either an epsg code or a WKT string: {e.args[0]}", ) if wkt_crs and wkt_crs.is_epsg_code: yield _warning( "non_epsg", f"Prefer an EPSG code to a WKT when possible. (Can change CRS to 'epsg:{wkt_crs.to_epsg()}')", ) def _has_some_geo(dataset): return dataset.geometry is not None or dataset.grids or dataset.crs def display_result_console( url: str, is_valid: bool, messages: List[ValidationMessage], quiet=False ): """ Print validation messages to the Console (using colour if available). """ # Otherwise console output, with color if possible. if messages or not quiet: echo(f"{bool_style(is_valid)} {url}") for message in messages: hint = "" if message.hint: # Indent the hint if it's multi-line. if "\n" in message.hint: hint = "\t\tHint:\n" hint += indent(message.hint, "\t\t" + (" " * 5)) else: hint = f"\t\t(Hint: {message.hint})" s = { Level.info: dict(), Level.warning: dict(fg="yellow"), Level.error: dict(fg="red"), } displayable_code = style(f"{message.code}", **s[message.level], bold=True) echo(f"\t{message.level.name[0].upper()} {displayable_code} {message.reason}") if hint: echo(hint) def display_result_github(url: str, is_valid: bool, messages: List[ValidationMessage]): """ Print validation messages using Github Action's command language for warnings/errors. """ echo(f"{bool_style(is_valid)} {url}") for message in messages: hint = "" if message.hint: # Indent the hint if it's multi-line. if "\n" in message.hint: hint = "\n\nHint:\n" hint += indent(message.hint, (" " * 5)) else: hint = f"\n\n(Hint: {message.hint})" if message.level == Level.error: code = "::error" else: code = "::warning" text = f"{message.reason}{hint}" # URL-Encode any newlines text = text.replace("\n", "%0A") # TODO: Get the real line numbers? echo(f"{code} file={url},line=1::{text}") _OUTPUT_WRITERS = dict( plain=display_result_console, quiet=partial(display_result_console, quiet=True), github=display_result_github, ) @click.command( help=__doc__ + """ Paths can be products, dataset documents, or directories to scan (for files matching names '*.odc-metadata.yaml' etc), either local or URLs. Datasets are validated against matching products that have been scanned already, so specify products first, and datasets later, to ensure they can be matched. """ ) @click.version_option() @click.argument("paths", nargs=-1) @click.option( "--warnings-as-errors", "-W", "strict_warnings", is_flag=True, help="Fail if any warnings are produced", ) @click.option( "-f", "--output-format", help="Output format", type=click.Choice(list(_OUTPUT_WRITERS)), # Are we in Github Actions? # Send any warnings/errors in its custom format default="github" if "GITHUB_ACTIONS" in os.environ else "plain", show_default=True, ) @click.option( "--thorough", is_flag=True, help="Attempt to read the data/measurements, and check their properties match", ) @click.option( "--expect-extra-measurements/--warn-extra-measurements", is_flag=True, default=False, help="Allow some dataset measurements to be missing from the product definition. " "This is (deliberately) allowed by ODC, but often a mistake. This flag disables the warning.", ) @click.option( "--explorer-url", "explorer_url", help="Use product definitions from the given Explorer URL to validate datasets. " 'Eg: "https://explorer.dea.ga.gov.au/"', ) @click.option( "--odc", "use_datacube", is_flag=True, help="Use product definitions from datacube to validate datasets", ) @click.option( "-q", "--quiet", is_flag=True, default=False, help="Only print problems, one per line", ) def run( paths: List[str], strict_warnings, quiet, thorough: bool, expect_extra_measurements: bool, explorer_url: str, use_datacube: bool, output_format: str, ): validation_counts: Counter[Level] = collections.Counter() invalid_paths = 0 current_location = Path(".").resolve().as_uri() + "/" product_definitions = _load_remote_product_definitions(use_datacube, explorer_url) if output_format == "plain" and quiet: output_format = "quiet" write_file_report = _OUTPUT_WRITERS[output_format] for url, messages in validate_paths( paths, thorough=thorough, expect_extra_measurements=expect_extra_measurements, product_definitions=product_definitions, ): if url.startswith(current_location): url = url[len(current_location) :] levels = collections.Counter(m.level for m in messages) is_invalid = levels[Level.error] > 0 if strict_warnings: is_invalid |= levels[Level.warning] > 0 if quiet: # Errors/Warnings only. Remove info-level. messages = [m for m in messages if m.level != Level.info] if is_invalid: invalid_paths += 1 for message in messages: validation_counts[message.level] += 1 write_file_report( url=url, is_valid=not is_invalid, messages=messages, ) # Print a summary on stderr for humans. if not quiet: result = ( style("failure", fg="red", bold=True) if invalid_paths > 0 else style("valid", fg="green", bold=True) ) secho(f"\n{result}: ", nl=False, err=True) if validation_counts: echo( ", ".join( f"{v} {k.name}{'s' if v > 1 else ''}" for k, v in validation_counts.items() ), err=True, ) else: secho(f"{len(paths)} paths", err=True) sys.exit(invalid_paths) def _load_remote_product_definitions( from_datacube: bool = False, from_explorer_url: Optional[str] = None, ) -> Dict[str, Dict]: product_definitions = {} # Load any remote products that were asked for. if from_explorer_url: for definition in _load_explorer_product_definitions(from_explorer_url): product_definitions[definition["name"]] = definition secho(f"{len(product_definitions)} Explorer products", err=True) if from_datacube: # The normal datacube environment variables can be used to choose alternative configs. with Datacube(app="eo3-validate") as dc: for product in dc.index.products.get_all(): product_definitions[product.name] = product.definition secho(f"{len(product_definitions)} ODC products", err=True) return product_definitions def _load_doc(url): return list(load_documents(url)) def _load_explorer_product_definitions( explorer_url: str, workers: int = 6, ) -> Generator[Dict, None, None]: """ Read all product yamls from the given Explorer instance, eg: https://explorer.dea.ga.gov.au/products/ls5_fc_albers.odc-product.yaml """ product_urls = [ urljoin(explorer_url, f"/products/{name.strip()}.odc-product.yaml") for name in urlopen(urljoin(explorer_url, "products.txt")) # nosec .read() .decode("utf-8") .split("\n") ] count = 0 with multiprocessing.Pool(workers) as pool: for product_definitions in pool.imap_unordered(_load_doc, product_urls): count += 1 echo(f"\r{count} Explorer products", nl=False) yield from product_definitions pool.close() pool.join() echo()
{ "content_hash": "49e116187edd907c8ae7c31b92d13158", "timestamp": "", "source": "github", "line_count": 1248, "max_line_length": 119, "avg_line_length": 34.97275641025641, "alnum_prop": 0.5797323924300051, "repo_name": "jeremyh/eo-datasets", "id": "c8d491d1c9d54c7d9d40e888c0d4decdd916cde5", "size": "43646", "binary": false, "copies": "1", "ref": "refs/heads/develop", "path": "eodatasets3/validate.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Dockerfile", "bytes": "2134" }, { "name": "Makefile", "bytes": "2035" }, { "name": "Python", "bytes": "731651" }, { "name": "Shell", "bytes": "788" } ], "symlink_target": "" }
""" PySpark supports custom serializers for transferring data; this can improve performance. By default, PySpark uses L{PickleSerializer} to serialize objects using Python's C{cPickle} serializer, which can serialize nearly any Python object. Other serializers, like L{MarshalSerializer}, support fewer datatypes but can be faster. The serializer is chosen when creating L{SparkContext}: >>> from pyspark.context import SparkContext >>> from pyspark.serializers import MarshalSerializer >>> sc = SparkContext('local', 'test', serializer=MarshalSerializer()) >>> sc.parallelize(list(range(1000))).map(lambda x: 2 * x).take(10) [0, 2, 4, 6, 8, 10, 12, 14, 16, 18] >>> sc.stop() PySpark serialize objects in batches; By default, the batch size is chosen based on the size of objects, also configurable by SparkContext's C{batchSize} parameter: >>> sc = SparkContext('local', 'test', batchSize=2) >>> rdd = sc.parallelize(range(16), 4).map(lambda x: x) Behind the scenes, this creates a JavaRDD with four partitions, each of which contains two batches of two objects: >>> rdd.glom().collect() [[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11], [12, 13, 14, 15]] >>> int(rdd._jrdd.count()) 8 >>> sc.stop() """ import sys from itertools import chain, product import marshal import struct import types import collections import zlib import itertools if sys.version < '3': import cPickle as pickle protocol = 2 from itertools import izip as zip, imap as map else: import pickle protocol = 3 xrange = range from pyspark import cloudpickle __all__ = ["PickleSerializer", "MarshalSerializer", "UTF8Deserializer"] class SpecialLengths(object): END_OF_DATA_SECTION = -1 PYTHON_EXCEPTION_THROWN = -2 TIMING_DATA = -3 END_OF_STREAM = -4 NULL = -5 class Serializer(object): def dump_stream(self, iterator, stream): """ Serialize an iterator of objects to the output stream. """ raise NotImplementedError def load_stream(self, stream): """ Return an iterator of deserialized objects from the input stream. """ raise NotImplementedError def _load_stream_without_unbatching(self, stream): """ Return an iterator of deserialized batches (lists) of objects from the input stream. if the serializer does not operate on batches the default implementation returns an iterator of single element lists. """ return map(lambda x: [x], self.load_stream(stream)) # Note: our notion of "equality" is that output generated by # equal serializers can be deserialized using the same serializer. # This default implementation handles the simple cases; # subclasses should override __eq__ as appropriate. def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not self.__eq__(other) def __repr__(self): return "%s()" % self.__class__.__name__ def __hash__(self): return hash(str(self)) class FramedSerializer(Serializer): """ Serializer that writes objects as a stream of (length, data) pairs, where C{length} is a 32-bit integer and data is C{length} bytes. """ def __init__(self): # On Python 2.6, we can't write bytearrays to streams, so we need to convert them # to strings first. Check if the version number is that old. self._only_write_strings = sys.version_info[0:2] <= (2, 6) def dump_stream(self, iterator, stream): for obj in iterator: self._write_with_length(obj, stream) def load_stream(self, stream): while True: try: yield self._read_with_length(stream) except EOFError: return def _write_with_length(self, obj, stream): serialized = self.dumps(obj) if serialized is None: raise ValueError("serialized value should not be None") if len(serialized) > (1 << 31): raise ValueError("can not serialize object larger than 2G") write_int(len(serialized), stream) if self._only_write_strings: stream.write(str(serialized)) else: stream.write(serialized) def _read_with_length(self, stream): length = read_int(stream) if length == SpecialLengths.END_OF_DATA_SECTION: raise EOFError elif length == SpecialLengths.NULL: return None obj = stream.read(length) if len(obj) < length: raise EOFError return self.loads(obj) def dumps(self, obj): """ Serialize an object into a byte array. When batching is used, this will be called with an array of objects. """ raise NotImplementedError def loads(self, obj): """ Deserialize an object from a byte array. """ raise NotImplementedError class BatchedSerializer(Serializer): """ Serializes a stream of objects in batches by calling its wrapped Serializer with streams of objects. """ UNLIMITED_BATCH_SIZE = -1 UNKNOWN_BATCH_SIZE = 0 def __init__(self, serializer, batchSize=UNLIMITED_BATCH_SIZE): self.serializer = serializer self.batchSize = batchSize def _batched(self, iterator): if self.batchSize == self.UNLIMITED_BATCH_SIZE: yield list(iterator) elif hasattr(iterator, "__len__") and hasattr(iterator, "__getslice__"): n = len(iterator) for i in xrange(0, n, self.batchSize): yield iterator[i: i + self.batchSize] else: items = [] count = 0 for item in iterator: items.append(item) count += 1 if count == self.batchSize: yield items items = [] count = 0 if items: yield items def dump_stream(self, iterator, stream): self.serializer.dump_stream(self._batched(iterator), stream) def load_stream(self, stream): return chain.from_iterable(self._load_stream_without_unbatching(stream)) def _load_stream_without_unbatching(self, stream): return self.serializer.load_stream(stream) def __repr__(self): return "BatchedSerializer(%s, %d)" % (str(self.serializer), self.batchSize) class FlattenedValuesSerializer(BatchedSerializer): """ Serializes a stream of list of pairs, split the list of values which contain more than a certain number of objects to make them have similar sizes. """ def __init__(self, serializer, batchSize=10): BatchedSerializer.__init__(self, serializer, batchSize) def _batched(self, iterator): n = self.batchSize for key, values in iterator: for i in range(0, len(values), n): yield key, values[i:i + n] def load_stream(self, stream): return self.serializer.load_stream(stream) def __repr__(self): return "FlattenedValuesSerializer(%s, %d)" % (self.serializer, self.batchSize) class AutoBatchedSerializer(BatchedSerializer): """ Choose the size of batch automatically based on the size of object """ def __init__(self, serializer, bestSize=1 << 16): BatchedSerializer.__init__(self, serializer, self.UNKNOWN_BATCH_SIZE) self.bestSize = bestSize def dump_stream(self, iterator, stream): batch, best = 1, self.bestSize iterator = iter(iterator) while True: vs = list(itertools.islice(iterator, batch)) if not vs: break bytes = self.serializer.dumps(vs) write_int(len(bytes), stream) stream.write(bytes) size = len(bytes) if size < best: batch *= 2 elif size > best * 10 and batch > 1: batch //= 2 def __repr__(self): return "AutoBatchedSerializer(%s)" % self.serializer class CartesianDeserializer(Serializer): """ Deserializes the JavaRDD cartesian() of two PythonRDDs. Due to pyspark batching we cannot simply use the result of the Java RDD cartesian, we additionally need to do the cartesian within each pair of batches. """ def __init__(self, key_ser, val_ser): self.key_ser = key_ser self.val_ser = val_ser def _load_stream_without_unbatching(self, stream): key_batch_stream = self.key_ser._load_stream_without_unbatching(stream) val_batch_stream = self.val_ser._load_stream_without_unbatching(stream) for (key_batch, val_batch) in zip(key_batch_stream, val_batch_stream): # for correctness with repeated cartesian/zip this must be returned as one batch yield product(key_batch, val_batch) def load_stream(self, stream): return chain.from_iterable(self._load_stream_without_unbatching(stream)) def __repr__(self): return "CartesianDeserializer(%s, %s)" % \ (str(self.key_ser), str(self.val_ser)) class PairDeserializer(Serializer): """ Deserializes the JavaRDD zip() of two PythonRDDs. Due to pyspark batching we cannot simply use the result of the Java RDD zip, we additionally need to do the zip within each pair of batches. """ def __init__(self, key_ser, val_ser): self.key_ser = key_ser self.val_ser = val_ser def _load_stream_without_unbatching(self, stream): key_batch_stream = self.key_ser._load_stream_without_unbatching(stream) val_batch_stream = self.val_ser._load_stream_without_unbatching(stream) for (key_batch, val_batch) in zip(key_batch_stream, val_batch_stream): if len(key_batch) != len(val_batch): raise ValueError("Can not deserialize PairRDD with different number of items" " in batches: (%d, %d)" % (len(key_batch), len(val_batch))) # for correctness with repeated cartesian/zip this must be returned as one batch yield zip(key_batch, val_batch) def load_stream(self, stream): return chain.from_iterable(self._load_stream_without_unbatching(stream)) def __repr__(self): return "PairDeserializer(%s, %s)" % (str(self.key_ser), str(self.val_ser)) class NoOpSerializer(FramedSerializer): def loads(self, obj): return obj def dumps(self, obj): return obj # Hook namedtuple, make it picklable __cls = {} def _restore(name, fields, value): """ Restore an object of namedtuple""" k = (name, fields) cls = __cls.get(k) if cls is None: cls = collections.namedtuple(name, fields) __cls[k] = cls return cls(*value) def _hack_namedtuple(cls): """ Make class generated by namedtuple picklable """ name = cls.__name__ fields = cls._fields def __reduce__(self): return (_restore, (name, fields, tuple(self))) cls.__reduce__ = __reduce__ cls._is_namedtuple_ = True return cls def _hijack_namedtuple(): """ Hack namedtuple() to make it picklable """ # hijack only one time if hasattr(collections.namedtuple, "__hijack"): return global _old_namedtuple # or it will put in closure global _old_namedtuple_kwdefaults # or it will put in closure too def _copy_func(f): return types.FunctionType(f.__code__, f.__globals__, f.__name__, f.__defaults__, f.__closure__) def _kwdefaults(f): # __kwdefaults__ contains the default values of keyword-only arguments which are # introduced from Python 3. The possible cases for __kwdefaults__ in namedtuple # are as below: # # - Does not exist in Python 2. # - Returns None in <= Python 3.5.x. # - Returns a dictionary containing the default values to the keys from Python 3.6.x # (See https://bugs.python.org/issue25628). kargs = getattr(f, "__kwdefaults__", None) if kargs is None: return {} else: return kargs _old_namedtuple = _copy_func(collections.namedtuple) _old_namedtuple_kwdefaults = _kwdefaults(collections.namedtuple) def namedtuple(*args, **kwargs): for k, v in _old_namedtuple_kwdefaults.items(): kwargs[k] = kwargs.get(k, v) cls = _old_namedtuple(*args, **kwargs) return _hack_namedtuple(cls) # replace namedtuple with new one collections.namedtuple.__globals__["_old_namedtuple_kwdefaults"] = _old_namedtuple_kwdefaults collections.namedtuple.__globals__["_old_namedtuple"] = _old_namedtuple collections.namedtuple.__globals__["_hack_namedtuple"] = _hack_namedtuple collections.namedtuple.__code__ = namedtuple.__code__ collections.namedtuple.__hijack = 1 # hack the cls already generated by namedtuple # those created in other module can be pickled as normal, # so only hack those in __main__ module for n, o in sys.modules["__main__"].__dict__.items(): if (type(o) is type and o.__base__ is tuple and hasattr(o, "_fields") and "__reduce__" not in o.__dict__): _hack_namedtuple(o) # hack inplace _hijack_namedtuple() class PickleSerializer(FramedSerializer): """ Serializes objects using Python's pickle serializer: http://docs.python.org/2/library/pickle.html This serializer supports nearly any Python object, but may not be as fast as more specialized serializers. """ def dumps(self, obj): return pickle.dumps(obj, protocol) if sys.version >= '3': def loads(self, obj, encoding="bytes"): return pickle.loads(obj, encoding=encoding) else: def loads(self, obj, encoding=None): return pickle.loads(obj) class CloudPickleSerializer(PickleSerializer): def dumps(self, obj): return cloudpickle.dumps(obj, 2) class MarshalSerializer(FramedSerializer): """ Serializes objects using Python's Marshal serializer: http://docs.python.org/2/library/marshal.html This serializer is faster than PickleSerializer but supports fewer datatypes. """ def dumps(self, obj): return marshal.dumps(obj) def loads(self, obj): return marshal.loads(obj) class AutoSerializer(FramedSerializer): """ Choose marshal or pickle as serialization protocol automatically """ def __init__(self): FramedSerializer.__init__(self) self._type = None def dumps(self, obj): if self._type is not None: return b'P' + pickle.dumps(obj, -1) try: return b'M' + marshal.dumps(obj) except Exception: self._type = b'P' return b'P' + pickle.dumps(obj, -1) def loads(self, obj): _type = obj[0] if _type == b'M': return marshal.loads(obj[1:]) elif _type == b'P': return pickle.loads(obj[1:]) else: raise ValueError("invalid sevialization type: %s" % _type) class CompressedSerializer(FramedSerializer): """ Compress the serialized data """ def __init__(self, serializer): FramedSerializer.__init__(self) assert isinstance(serializer, FramedSerializer), "serializer must be a FramedSerializer" self.serializer = serializer def dumps(self, obj): return zlib.compress(self.serializer.dumps(obj), 1) def loads(self, obj): return self.serializer.loads(zlib.decompress(obj)) def __repr__(self): return "CompressedSerializer(%s)" % self.serializer class UTF8Deserializer(Serializer): """ Deserializes streams written by String.getBytes. """ def __init__(self, use_unicode=True): self.use_unicode = use_unicode def loads(self, stream): length = read_int(stream) if length == SpecialLengths.END_OF_DATA_SECTION: raise EOFError elif length == SpecialLengths.NULL: return None s = stream.read(length) return s.decode("utf-8") if self.use_unicode else s def load_stream(self, stream): try: while True: yield self.loads(stream) except struct.error: return except EOFError: return def __repr__(self): return "UTF8Deserializer(%s)" % self.use_unicode def read_long(stream): length = stream.read(8) if not length: raise EOFError return struct.unpack("!q", length)[0] def write_long(value, stream): stream.write(struct.pack("!q", value)) def pack_long(value): return struct.pack("!q", value) def read_int(stream): length = stream.read(4) if not length: raise EOFError return struct.unpack("!i", length)[0] def write_int(value, stream): stream.write(struct.pack("!i", value)) def write_with_length(obj, stream): write_int(len(obj), stream) stream.write(obj) if __name__ == '__main__': import doctest (failure_count, test_count) = doctest.testmod() if failure_count: exit(-1)
{ "content_hash": "fbb099c229119f2b3af7ba62b4ace5bc", "timestamp": "", "source": "github", "line_count": 578, "max_line_length": 97, "avg_line_length": 30.97923875432526, "alnum_prop": 0.5989053948397185, "repo_name": "wangyixiaohuihui/spark2-annotation", "id": "664e59eb30af525ddb445fb6e2b20ef796cdcff4", "size": "18706", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "python/pyspark/serializers.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "ANTLR", "bytes": "33815" }, { "name": "Batchfile", "bytes": "24294" }, { "name": "C", "bytes": "1542" }, { "name": "CSS", "bytes": "23957" }, { "name": "HTML", "bytes": "10012" }, { "name": "HiveQL", "bytes": "1828674" }, { "name": "Java", "bytes": "3737029" }, { "name": "JavaScript", "bytes": "143063" }, { "name": "Makefile", "bytes": "7980" }, { "name": "PLpgSQL", "bytes": "9666" }, { "name": "PowerShell", "bytes": "3751" }, { "name": "Python", "bytes": "2248750" }, { "name": "R", "bytes": "1027534" }, { "name": "Roff", "bytes": "14420" }, { "name": "SQLPL", "bytes": "3603" }, { "name": "Scala", "bytes": "22897473" }, { "name": "Shell", "bytes": "156941" }, { "name": "Thrift", "bytes": "33665" }, { "name": "q", "bytes": "147332" } ], "symlink_target": "" }
import time from ..utils.log import log, INFO, ERROR, PASS from ..utils.isaac import answer_numeric_q, open_accordion_section from ..utils.i_selenium import assert_tab, image_div from ..utils.i_selenium import wait_for_xpath_element from ..tests import TestWithDependency from selenium.common.exceptions import TimeoutException, NoSuchElementException __all__ = ["numeric_q_known_wrong_sf_tagged"] ##### # Test : Numeric Questions Known Wrong Answer, Wrong Sig Figs ##### @TestWithDependency("NUMERIC_Q_KNOWN_WRONG_SF_TAGGED", ["NUMERIC_Q_ANSWER_CHANGE"]) def numeric_q_known_wrong_sf_tagged(driver, ISAAC_WEB, WAIT_DUR, **kwargs): """Test numeric question behaviour on content editor entered wrong answer with significant figures tag added to explanation. - 'driver' should be a Selenium WebDriver. - 'ISAAC_WEB' is the string URL of the Isaac website to be tested. - 'WAIT_DUR' is the time in seconds to wait for JavaScript to run/load. """ assert_tab(driver, ISAAC_WEB + "/questions/_regression_test_") time.sleep(WAIT_DUR) try: open_accordion_section(driver, 3) num_question = driver.find_element_by_xpath("//div[@ng-switch-when='isaacNumericQuestion']") except NoSuchElementException: log(ERROR, "Can't find the numeric question; can't continue!") return False log(INFO, "Attempt to enter known (content-editor specified) wrong answer, tagged as 'sig_figs'.") if not answer_numeric_q(num_question, "12345", "None", wait_dur=WAIT_DUR): log(ERROR, "Couldn't answer Numeric Question; can't continue!") return False time.sleep(WAIT_DUR) try: wait_for_xpath_element(driver, "//div[@ng-switch-when='isaacNumericQuestion']//h2[text()='Significant Figures']") log(INFO, "A 'Sig Figs' banner was displayed instead of 'Incorrect'.") wait_for_xpath_element(driver, "(//div[@ng-switch-when='isaacNumericQuestion']//p[text()='This should say \"Significant Figures\" above!'])[1]") log(INFO, "The content editor entered message was correctly shown.") wait_for_xpath_element(driver, "//div[@ng-switch-when='isaacNumericQuestion']//h5[text()='Please try again.']") log(INFO, "The 'Please try again.' message was correctly shown.") bg_colour1 = num_question.find_element_by_xpath("(.//div[@class='ru-answer-block-panel'])[1]").value_of_css_property('background-color') assert bg_colour1 in ['#be4c4c', 'rgba(190, 76, 76, 1)', 'rgb(190, 76, 76)'] log(INFO, "Red highlighting shown around value box.") log(INFO, "Avoid rate limiting: wait 1 minute.") time.sleep(60) log(PASS, "Numeric Question 'correct value, correct unit, incorrect sig fig' behavior as expected.") return True except TimeoutException: image_div(driver, "ERROR_numeric_q_known_wrong_sf") log(INFO, "The sig fig warning should not have been shown. if it was, this is likely the error.") log(ERROR, "The messages shown for a known incorrect answer were not all displayed; see 'ERROR_numeric_q_known_wrong_sf.png'!") return False except AssertionError: image_div(driver, "ERROR_numeric_q_known_wrong_sf") log(ERROR, "The value box was not highlighted red correctly; see 'ERROR_numeric_q_known_wrong_sf.png'!") return False
{ "content_hash": "43fd153c5283bde9739f8fecd9eb56ee", "timestamp": "", "source": "github", "line_count": 61, "max_line_length": 152, "avg_line_length": 55.19672131147541, "alnum_prop": 0.6836946836946837, "repo_name": "jsharkey13/isaac-selenium-testing", "id": "f3e610d6b81833748a50babda121903e61d5b983", "size": "3367", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "isaactest/tests/numeric_q_known_wrong_sf_tagged.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "341129" }, { "name": "Shell", "bytes": "1439" } ], "symlink_target": "" }
"""Runner for workflow jobs """ # built-in import os import time # 3rd party import yaml class JobContext(object): """Represents the context under which a job is executed """ image = None volumes = {} working_dir = None build_dir = None def __init__(self, **kwargs): """Initialize defaults and customization of a context """ for k, v in kwargs.iteritems(): if hasattr(self, k): setattr(self, k, v) class Job(object): image = None context = {} name = None description = None output = None checks = [] pre_steps = [] steps = [] post_steps = [] build_dir = None requires = [] def __init__(self, **kwargs): """Represents a job """ for k, v in kwargs.iteritems(): if hasattr(self, k): setattr(self, k, v) if not self.name: self.name = "Job-{0}".format(time.time()) self.ctx = JobContext(**self.context) self.build_dir = self.ctx.build_dir def dockerize(self): """Generate a Dockerfile based on the job properties """ if not os.path.exists(self.build_dir): os.mkdir(self.build_dir) entrypoint_script = os.path.join(self.build_dir, 'entrypoint-{0}'.format(self.name)) docker_file = os.path.join(self.build_dir, "Dockerfile-{0}".format(self.name)) # add the steps to an entrypoint script with open(entrypoint_script, 'w') as f: f.write('\n'.join(self.steps)) print 'Generated entrypoint script {0}'.format(entrypoint_script) l_entrypoint = os.path.basename(entrypoint_script) with open(docker_file, 'w') as f: f.write("FROM {0}\n".format(self.image)) f.write("ADD {0} /usr/local/bin/entrypoint.sh\n".format(l_entrypoint)) f.write("RUN chmod 755 /usr/local/bin/entrypoint.sh\n") f.write("ENTRYPOINT /usr/local/bin/entrypoint.sh\n") print 'Created Dockerfile {0}'.format(docker_file) return docker_file def compose(self): """Generate a docker-compose file based on the job properties celery-builder: build: . dockerfile: Dockerfile-celery-sdist volumes: - /Users/cindy.cao/workspace:/workspace - /Users/cindy.cao/builds:/builds working_dir: /workspace """ compose_file = os.path.join(self.build_dir, "docker-compose-{0}.yml".format(self.name)) compose_conf = {"build": self.build_dir, "dockerfile": os.path.basename(self.dockerize()), "working_dir": self.ctx.working_dir } if self.ctx.volumes: volumes = [] for local_dir, mnt_point in self.ctx.volumes.iteritems(): volumes.append("{0}:{1}".format(local_dir, mnt_point)) compose_conf["volumes"] = volumes compose = {self.name: compose_conf} with open(compose_file, 'w') as f: yaml.dump(compose, f, indent=4, default_flow_style=False) return compose_file
{ "content_hash": "c69005d20e9924ed00b068b44a1e2d91", "timestamp": "", "source": "github", "line_count": 95, "max_line_length": 95, "avg_line_length": 34.04210526315789, "alnum_prop": 0.5534941249226963, "repo_name": "coolhacks/docker-hacks", "id": "9625edee34697ee3b9e39eb4ec50bfd59d82eba0", "size": "3234", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "examples/docker-flow/dockerflow/job.py", "mode": "33188", "license": "mit", "language": [ { "name": "Batchfile", "bytes": "23973" }, { "name": "CSS", "bytes": "1227" }, { "name": "Groff", "bytes": "37179" }, { "name": "HTML", "bytes": "50500" }, { "name": "Nginx", "bytes": "3121" }, { "name": "Python", "bytes": "10073" }, { "name": "Shell", "bytes": "35683" } ], "symlink_target": "" }
from django.http import HttpResponse from django.template import loader from django.db.models import Avg from sites.models import * def summary_sum(request): template = loader.get_template('summary/summary.html') context = {} sites = Sites.objects.all() for site in sites: site.A_value = sum([item.a_value for item in site.site_set.all()]) site.B_value = sum([item.b_value for item in site.site_set.all()]) context['sites'] = sites context['sum'] = True return HttpResponse(template.render(context, request)) def summary_avg(request): template = loader.get_template('summary/summary.html') context = {} sites = Sites.objects.all() for site in sites: site.A_value = site.site_set.all().aggregate(a_avg= Avg('a_value'))['a_avg'] site.B_value = site.site_set.all().aggregate(b_avg= Avg('b_value'))['b_avg'] context['sites'] = sites context['average'] = True return HttpResponse(template.render(context, request))
{ "content_hash": "498b03b8b6abafba26aa8f0f57780450", "timestamp": "", "source": "github", "line_count": 31, "max_line_length": 83, "avg_line_length": 33.225806451612904, "alnum_prop": 0.6485436893203883, "repo_name": "ZhibinCH/my3MW", "id": "ac864bcc24065b89f5d32bb88fb0527c4420bc72", "size": "1030", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "summary/views.py", "mode": "33188", "license": "bsd-2-clause", "language": [ { "name": "HTML", "bytes": "4119" }, { "name": "Python", "bytes": "15872" } ], "symlink_target": "" }
""" ex-json borrowed from Marcin Kuzminski source: https://secure.rhodecode.org/ext-json """ import datetime import functools import decimal import imp __all__ = ['json', 'simplejson', 'stdlibjson'] def _is_aware(value): """ Determines if a given datetime.time is aware. The logic is described in Python's docs: http://docs.python.org/library/datetime.html#datetime.tzinfo """ return (value.tzinfo is not None and value.tzinfo.utcoffset(value) is not None) def _obj_dump(obj): """ Custom function for dumping objects to JSON, if obj has __json__ attribute or method defined it will be used for serialization :param obj: """ if isinstance(obj, complex): return [obj.real, obj.imag] # See "Date Time String Format" in the ECMA-262 specification. # some code borrowed from django 1.4 elif isinstance(obj, datetime.datetime): r = obj.isoformat() # increase precision # if obj.microsecond: # r = r[:23] + r[26:] if r.endswith('+00:00'): r = r[:-6] + 'Z' return r elif isinstance(obj, datetime.date): return obj.isoformat() elif isinstance(obj, decimal.Decimal): return str(obj) elif isinstance(obj, datetime.time): if _is_aware(obj): raise ValueError("JSON can't represent timezone-aware times.") r = obj.isoformat() if obj.microsecond: r = r[:12] return r elif isinstance(obj, set): return list(obj) elif hasattr(obj, '__json__'): if callable(obj.__json__): return obj.__json__() else: return obj.__json__ else: raise NotImplementedError # Import simplejson try: # import simplejson initially _sj = imp.load_module('_sj', *imp.find_module('simplejson')) def extended_encode(obj): try: return _obj_dump(obj) except NotImplementedError: pass raise TypeError("%r is not JSON serializable" % (obj,)) # we handle decimals our own it makes unified behavior of json vs # simplejson sj_version = [int(x) for x in _sj.__version__.split('.')] major, minor = sj_version[0], sj_version[1] if major < 2 or (major == 2 and minor < 1): # simplejson < 2.1 doesnt support use_decimal _sj.dumps = functools.partial(_sj.dumps, default=extended_encode) _sj.dump = functools.partial(_sj.dump, default=extended_encode) else: _sj.dumps = functools.partial(_sj.dumps, default=extended_encode, use_decimal=False) _sj.dump = functools.partial(_sj.dump, default=extended_encode, use_decimal=False) simplejson = _sj except ImportError: # no simplejson set it to None simplejson = None try: # simplejson not found try out regular json module _json = imp.load_module('_json', *imp.find_module('json')) # extended JSON encoder for json class ExtendedEncoder(_json.JSONEncoder): def default(self, obj): try: return _obj_dump(obj) except NotImplementedError: pass raise TypeError("%r is not JSON serializable" % (obj,)) # monkey-patch JSON encoder to use extended version _json.dumps = functools.partial(_json.dumps, cls=ExtendedEncoder) _json.dump = functools.partial(_json.dump, cls=ExtendedEncoder) except ImportError: json = None stdlibjson = _json # set all available json modules if simplejson: json = _sj elif _json: json = _json else: raise ImportError('Could not find any json modules')
{ "content_hash": "874828d5fc372880d65ae9dc88db6a5a", "timestamp": "", "source": "github", "line_count": 130, "max_line_length": 78, "avg_line_length": 29.984615384615385, "alnum_prop": 0.5785017957927142, "repo_name": "jpwilliams/appenlight-client-python", "id": "93763ccc2995b3a95565c720bdbe0e8a4ab295fb", "size": "3898", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "appenlight_client/ext_json.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "Python", "bytes": "199009" } ], "symlink_target": "" }
r""" ====== Pyplot ====== .. currentmodule:: bqplot.pyplot .. autosummary:: :toctree: _generate/ figure show axes plot scatter hist bar ohlc geo clear close current_figure scales xlim ylim """ from collections import OrderedDict from IPython.display import display from ipywidgets import VBox from numpy import arange, issubdtype from .figure import Figure from .scales import Scale, LinearScale, Mercator from .axes import Axis from .marks import Lines, Scatter, Hist, Bars, OHLC, Pie, Map, Label from .toolbar import Toolbar from .interacts import (BrushIntervalSelector, FastIntervalSelector, BrushSelector, IndexSelector, MultiSelector, LassoSelector) from traitlets.utils.sentinel import Sentinel Keep = Sentinel('Keep', 'bqplot.pyplot', ''' Used in bqplot.pyplot to specify that the same scale should be used for a certain dimension. ''') # `_context` object contains the global information for pyplot. # `figure`: refers to the current figure to which marks will be added. # `scales`: The current set of scales which will be used for drawing a mark. if # the scale for an attribute is not present, it is created based on the range # type. # `scale_registry`: This is a dictionary where the keys are the context names and # the values are the set of scales which were used on the last plot in that # context. This is useful when switching context. # `last_mark`: refers to the last mark that has been plotted. # `current_key`: The key for the current context figure. If there is no key, # then the value is `None`. _context = { 'figure': None, 'figure_registry': {}, 'scales': {}, 'scale_registry': {}, 'last_mark': None, 'current_key': None } LINE_STYLE_CODES = OrderedDict([(':', 'dotted'), ('-.', 'dash_dotted'), ('--', 'dashed'), ('-', 'solid')]) COLOR_CODES = {'b': 'blue', 'g': 'green', 'r': 'red', 'c': 'cyan', 'm': 'magenta', 'y': 'yellow', 'k': 'black'} MARKER_CODES = {'o': 'circle', 'v': 'triangle-down', '^': 'triangle-up', 's': 'square', 'd': 'diamond', '+': 'cross'} def show(key=None, display_toolbar=True): """Shows the current context figure in the output area. Parameters ---------- key : hashable, optional Any variable that can be used as a key for a dictionary. display_toolbar: bool (default: True) If True, a toolbar for different mouse interaction is displayed with the figure. Raises ------ KeyError When no context figure is associated with the provided key. Examples -------- >>> import numpy as np >>> import pyplot as plt >>> n = 100 >>> x = np.arange(n) >>> y = np.cumsum(np.random.randn(n)) >>> plt.plot(x,y) >>> plt.show() """ if key is None: figure = current_figure() else: figure = _context['figure_registry'][key] if display_toolbar: if not hasattr(figure, 'pyplot'): figure.pyplot = Toolbar(figure=figure) display(VBox([figure, figure.pyplot])) else: display(figure) def figure(key=None, fig=None, **kwargs): """Creates figures and switches between figures. If a ``bqplot.Figure`` object is provided via the fig optional argument, this figure becomes the current context figure. Otherwise: - If no key is provided, a new empty context figure is created. - If a key is provided for which a context already exists, the corresponding context becomes current. - If a key is provided and no corresponding context exists, a new context is reated for that key and becomes current. Besides, optional arguments allow to set or modify Attributes of the selected context figure. Parameters ---------- key: hashable, optional Any variable that can be used as a key for a dictionary fig: Figure, optional A bqplot Figure """ scales_arg = kwargs.pop('scales', {}) _context['current_key'] = key if fig is not None: # fig provided _context['figure'] = fig if key is not None: _context['figure_registry'][key] = fig for arg in kwargs: setattr(_context['figure'], arg, kwargs[arg]) else: # no fig provided if key is None: # no key provided _context['figure'] = Figure(**kwargs) else: # a key is provided if key not in _context['figure_registry']: if 'title' not in kwargs: kwargs['title'] = 'Figure' + ' ' + str(key) _context['figure_registry'][key] = Figure(**kwargs) _context['figure'] = _context['figure_registry'][key] for arg in kwargs: setattr(_context['figure'], arg, kwargs[arg]) scales(key, scales=scales_arg) # Set the axis reference dictionary. This dictionary contains the mapping # from the possible dimensions in the figure to the list of scales with # respect to which axes have been drawn for this figure. # Used to automatically generate axis. if(getattr(_context['figure'], 'axis_registry', None) is None): setattr(_context['figure'], 'axis_registry', {}) def close(key): """Closes and unregister the context figure corresponding to the key. Parameters ---------- key: hashable Any variable that can be used as a key for a dictionary """ figure_registry = _context['figure_registry'] if key not in figure_registry: return if _context['figure'] == figure_registry[key]: figure() fig = figure_registry[key] if hasattr(fig, 'pyplot'): fig.pyplot.close() fig.close() del figure_registry[key] del _context['scale_registry'][key] def scales(key=None, scales={}): """Creates and switches between context scales. If no key is provided, a new blank context is created. If a key is provided for which a context already exists, the existing context is set as the current context. If a key is provided and no corresponding context exists, a new context is created for that key and set as the current context. Parameters ---------- key: hashable, optional Any variable that can be used as a key for a dictionary scales: dictionary Dictionary of scales to be used in the new context Example ------- >>> scales(scales={ >>> 'x': Keep, >>> 'color': ColorScale(min=0, max=1) >>> }) This creates a new scales context, where the 'x' scale is kept from the previous context, the 'color' scale is an instance of ColorScale provided by the user. Other scales, potentially needed such as the 'y' scale in the case of a line chart will be created on the fly when needed. Notes ----- Every call to the function figure triggers a call to scales. The `scales` parameter is ignored if the `key` argument is not Keep and context scales already exist for that key. """ old_ctxt = _context['scales'] if key is None: # No key provided _context['scales'] = {_get_attribute_dimension(k): scales[k] if scales[k] is not Keep else old_ctxt[_get_attribute_dimension(k)] for k in scales} else: # A key is provided if key not in _context['scale_registry']: _context['scale_registry'][key] = {_get_attribute_dimension(k): scales[k] if scales[k] is not Keep else old_ctxt[_get_attribute_dimension(k)] for k in scales} _context['scales'] = _context['scale_registry'][key] def xlim(min, max): """Set the domain bounds of the current 'x' scale. """ return set_lim(min, max, 'x') def ylim(min, max): """Set the domain bounds of the current 'y' scale. """ return set_lim(min, max, 'y') def set_lim(min, max, name): """Set the domain bounds of the scale associated with the provided key. Parameters ---------- name: hashable Any variable that can be used as a key for a dictionary Raises ------ KeyError When no context figure is associated with the provided key. """ scale = _context['scales'][_get_attribute_dimension(name)] scale.min = min scale.max = max return scale def axes(mark=None, options={}, **kwargs): """Draws axes corresponding to the scales of a given mark. It also returns a dictionary of drawn axes. If the mark is not provided, the last drawn mark is used. Parameters ---------- mark: Mark or None (default: None) The mark to inspect to create axes. If None, the last mark drawn is used instead. options: dict (default: {}) Options for the axes to be created. If a scale labeled 'x' is required for that mark, options['x'] contains optional keyword arguments for the constructor of the corresponding axis type. """ if mark is None: mark = _context['last_mark'] if mark is None: return {} fig = kwargs.get('figure', current_figure()) scales = mark.scales fig_axes = [axis for axis in fig.axes] axes = {} for name in scales: if name not in mark.class_trait_names(scaled=True): # The scale is not needed. continue scale_metadata = mark.scales_metadata.get(name, {}) dimension = scale_metadata.get('dimension', scales[name]) axis_args = dict(scale_metadata, **(options.get(name, {}))) axis = _fetch_axis(fig, dimension, scales[name]) if axis is not None: # For this figure, an axis exists for the scale in the given # dimension. Apply the properties and return back the object. _apply_properties(axis, options.get(name, {})) axes[name] = axis continue # An axis must be created. We fetch the type from the registry # the key being provided in the scaled attribute decoration key = mark.class_traits()[name].get_metadata('atype') if(key is not None): axis_type = Axis.axis_types[key] axis = axis_type(scale=scales[name], **axis_args) axes[name] = axis fig_axes.append(axis) # Update the axis registry of the figure once the axis is added _update_fig_axis_registry(fig, dimension, scales[name], axis) fig.axes = fig_axes return axes def _draw_mark(mark_type, options={}, axes_options={}, **kwargs): """Draw the mark of specified mark type. Parameters ---------- mark_type: type The type of mark to be drawn options: dict (default: {}) Options for the scales to be created. If a scale labeled 'x' is required for that mark, options['x'] contains optional keyword arguments for the constructor of the corresponding scale type. axes_options: dict (default: {}) Options for the axes to be created. If an axis labeled 'x' is required for that mark, axes_options['x'] contains optional keyword arguments for the constructor of the corresponding axis type. """ fig = kwargs.pop('figure', current_figure()) scales = kwargs.pop('scales', {}) # Going through the list of data attributes for name in mark_type.class_trait_names(scaled=True): dimension = _get_attribute_dimension(name, mark_type) # TODO: the following should also happen if name in kwargs and # scales[name] is incompatible. if name not in kwargs: # The scaled attribute is not being passed to the mark. So no need # create a scale for this. continue elif name in scales: _context['scales'][dimension] = scales[name] # Scale has to be fetched from the conext or created as it has not # been passed. elif dimension not in _context['scales']: # Creating a scale for the dimension if a matching scale is not # present in _context['scales'] traitlet = mark_type.class_traits()[name] rtype = traitlet.get_metadata('rtype') dtype = traitlet.validate(None, kwargs[name]).dtype # Fetching the first matching scale for the rtype and dtype of the # scaled attributes of the mark. compat_scale_types = [Scale.scale_types[key] for key in Scale.scale_types if Scale.scale_types[key].rtype == rtype and issubdtype(dtype, Scale.scale_types[key].dtype)] # TODO: something better than taking the FIRST compatible # scale type. scales[name] = compat_scale_types[0](**options.get(name, {})) # Adding the scale to the conext scales _context['scales'][dimension] = scales[name] else: scales[name] = _context['scales'][dimension] mark = mark_type(scales=scales, **kwargs) _context['last_mark'] = mark fig.marks = [m for m in fig.marks] + [mark] if kwargs.get('axes', True): axes(mark, options=axes_options) return mark def plot(*args, **kwargs): """Draw lines in the current context figure. Signature: `plot(x, y, **kwargs)` or `plot(y, **kwargs)`, depending of the length of the list of positional arguments. In the case where the `x` array is not provided. Parameters ---------- x: numpy.ndarray or list, 1d or 2d (optional) The x-coordinates of the plotted line. When not provided, the function defaults to `numpy.arange(len(y))` x can be 1-dimensional or 2-dimensional. y: numpy.ndarray or list, 1d or 2d The y-coordinates of the plotted line. If argument `x` is 2-dimensional it must also be 2-dimensional. marker_str: string string representing line_style, marker and color. For e.g. 'g--o', 'sr' etc options: dict (default: {}) Options for the scales to be created. If a scale labeled 'x' is required for that mark, options['x'] contains optional keyword arguments for the constructor of the corresponding scale type. axes_options: dict (default: {}) Options for the axes to be created. If an axis labeled 'x' is required for that mark, axes_options['x'] contains optional keyword arguments for the constructor of the corresponding axis type. """ marker_str = None if len(args) == 1: kwargs['y'] = args[0] kwargs['x'] = arange(len(args[0])) elif len(args) == 2: if type(args[1]) == str: kwargs['y'] = args[0] kwargs['x'] = arange(len(args[0])) marker_str = args[1].strip() else: kwargs['x'] = args[0] kwargs['y'] = args[1] elif len(args) == 3: kwargs['x'] = args[0] kwargs['y'] = args[1] if type(args[2]) == str: marker_str = args[2].strip() if marker_str: line_style, color, marker = _get_line_styles(marker_str) # only marker specified => draw scatter if marker and not line_style: kwargs['marker'] = marker if color: kwargs['default_colors'] = [color] return _draw_mark(Scatter, **kwargs) else: # draw lines in all other cases kwargs['line_style'] = line_style or 'solid' if marker: kwargs['marker'] = marker if color: kwargs['colors'] = [color] return _draw_mark(Lines, **kwargs) else: return _draw_mark(Lines, **kwargs) def ohlc(*args, **kwargs): """Draw OHLC bars or candle bars in the current context figure. Signature: `ohlc(x, y, **kwargs)` or `ohlc(y, **kwargs)`, depending of the length of the list of positional arguments. In the case where the `x` array is not provided Parameters ---------- x: numpy.ndarray or list, 1d (optional) The x-coordinates of the plotted line. When not provided, the function defaults to `numpy.arange(len(y))`. y: numpy.ndarray or list, 2d The ohlc (open/high/low/close) information. A two dimensional array. y must have the shape (n, 4). options: dict (default: {}) Options for the scales to be created. If a scale labeled 'x' is required for that mark, options['x'] contains optional keyword arguments for the constructor of the corresponding scale type. axes_options: dict (default: {}) Options for the axes to be created. If an axis labeled 'x' is required for that mark, axes_options['x'] contains optional keyword arguments for the constructor of the corresponding axis type. """ if len(args) == 2: kwargs['x'] = args[0] kwargs['y'] = args[1] elif len(args) == 1: kwargs['y'] = args[0] length = len(args[0]) kwargs['x'] = arange(length) return _draw_mark(OHLC, **kwargs) def scatter(x, y, **kwargs): """Draw a scatter in the current context figure. Parameters ---------- x: numpy.ndarray, 1d The x-coordinates of the data points. y: numpy.ndarray, 1d The y-coordinates of the data points. options: dict (default: {}) Options for the scales to be created. If a scale labeled 'x' is required for that mark, options['x'] contains optional keyword arguments for the constructor of the corresponding scale type. axes_options: dict (default: {}) Options for the axes to be created. If an axis labeled 'x' is required for that mark, axes_options['x'] contains optional keyword arguments for the constructor of the corresponding axis type. """ kwargs['x'] = x kwargs['y'] = y return _draw_mark(Scatter, **kwargs) def hist(sample, options={}, **kwargs): """Draw a histogram in the current context figure. Parameters ---------- sample: numpy.ndarray, 1d The sample for which the histogram must be generated. options: dict (default: {}) Options for the scales to be created. If a scale labeled 'counts' is required for that mark, options['counts'] contains optional keyword arguments for the constructor of the corresponding scale type. axes_options: dict (default: {}) Options for the axes to be created. If an axis labeled 'counts' is required for that mark, axes_options['counts'] contains optional keyword arguments for the constructor of the corresponding axis type. """ kwargs['sample'] = sample scales = kwargs.pop('scales', {}) if 'count' not in scales: dimension = _get_attribute_dimension('count', Hist) if dimension in _context['scales']: scales['count'] = _context['scales'][dimension] else: scales['count'] = LinearScale(**options.get('count', {})) _context['scales'][dimension] = scales['count'] kwargs['scales'] = scales return _draw_mark(Hist, options=options, **kwargs) def bar(x, y, **kwargs): """Draws a bar chart in the current context figure. Parameters ---------- x: numpy.ndarray, 1d The x-coordinates of the data points. y: numpy.ndarray, 1d The y-coordinates of the data pints. options: dict (default: {}) Options for the scales to be created. If a scale labeled 'x' is required for that mark, options['x'] contains optional keyword arguments for the constructor of the corresponding scale type. axes_options: dict (default: {}) Options for the axes to be created. If an axis labeled 'x' is required for that mark, axes_options['x'] contains optional keyword arguments for the constructor of the corresponding axis type. """ kwargs['x'] = x kwargs['y'] = y return _draw_mark(Bars, **kwargs) def pie(sizes, **kwargs): """Draws a Pie in the current context figure. Parameters ---------- sizes: numpy.ndarray, 1d The proportions to be represented by the Pie. options: dict (default: {}) Options for the scales to be created. If a scale labeled 'x' is required for that mark, options['x'] contains optional keyword arguments for the constructor of the corresponding scale type. axes_options: dict (default: {}) Options for the axes to be created. If an axis labeled 'x' is required for that mark, axes_options['x'] contains optional keyword arguments for the constructor of the corresponding axis type. """ kwargs['sizes'] = sizes return _draw_mark(Pie, **kwargs) def label(text, **kwargs): """Draws a Label in the current context figure. Parameters ---------- text: string The label to be displayed. options: dict (default: {}) Options for the scales to be created. If a scale labeled 'x' is required for that mark, options['x'] contains optional keyword arguments for the constructor of the corresponding scale type. axes_options: dict (default: {}) Options for the axes to be created. If an axis labeled 'x' is required for that mark, axes_options['x'] contains optional keyword arguments for the constructor of the corresponding axis type. """ kwargs['text'] = text return _draw_mark(Label, **kwargs) def geo(map_data, **kwargs): """Draw a map in the current context figure. Parameters ---------- options: dict (default: {}) Options for the scales to be created. If a scale labeled 'x' is required for that mark, options['x'] contains optional keyword arguments for the constructor of the corresponding scale type. axes_options: dict (default: {}) Options for the axes to be created. If an axis labeled 'x' is required for that mark, axes_options['x'] contains optional keyword arguments for the constructor of the corresponding axis type. """ scales = kwargs.pop('scales', _context['scales']) options = kwargs.get('options', {}) if 'projection' not in scales: scales['projection'] = Mercator(**options.get('projection', {})) kwargs['scales'] = scales kwargs['map_data'] = map_data return _draw_mark(Map, **kwargs) def _add_interaction(int_type, **kwargs): """Add the interaction for the specified type. If a figure is passed using the key-word argument `figure` it is used. Else the context figure is used. If a list of marks are passed using the key-word argument `marks` it is used. Else the latest mark that is passed is used as the only mark associated with the selector. Parameters ---------- int_type: type The type of interaction to be added. """ fig = kwargs.pop('figure', current_figure()) marks = kwargs.pop('marks', [_context['last_mark']]) for name, traitlet in int_type.class_traits().items(): dimension = traitlet.get_metadata('dimension') if dimension is not None: # only scales have this attribute in interactions kwargs[name] = _get_context_scale(dimension) kwargs['marks'] = marks interaction = int_type(**kwargs) if fig.interaction is not None: fig.interaction.close() fig.interaction = interaction return interaction def _get_context_scale(dimension): """Return the scale instance in the current context for a given dimension. Parameters ---------- dimension: string The dimension along which the current context scale is to be fetched. """ return _context['scales'][dimension] def _create_selector(int_type, func, trait, **kwargs): """Create a selector of the specified type. Also attaches the function `func` as an `on_trait_change` listener for the trait `trait` of the selector. This is an internal function which should not be called by the user. Parameters ---------- int_type: type The type of selector to be added. func: function The call back function. It should take atleast two arguments. The name of the trait and the value of the trait are passed as arguments. trait: string The name of the Selector trait whose change triggers the call back function `func`. """ interaction = _add_interaction(int_type, **kwargs) if func is not None: interaction.on_trait_change(func, trait) return interaction def brush_int_selector(func=None, trait='selected', **kwargs): """Create a `BrushIntervalSelector` interaction for the `figure`. Also attaches the function `func` as an event listener for the specified trait. Parameters ---------- func: function The call back function. It should take atleast two arguments. The name of the trait and the value of the trait are passed as arguments. trait: string The name of the BrushIntervalSelector trait whose change triggers the call back function `func`. """ return _create_selector(BrushIntervalSelector, func, trait, **kwargs) def int_selector(func=None, trait='selected', **kwargs): """Creates a `FastIntervalSelector` interaction for the `figure`. Also attaches the function `func` as an event listener for the trait `trait`. Parameters ---------- func: function The call back function. It should take atleast two arguments. The name of the trait and the value of the trait are passed as arguments. trait: string The name of the IntervalSelector trait whose change triggers the call back function `func`. """ return _create_selector(FastIntervalSelector, func, trait, **kwargs) def index_selector(func=None, trait='selected', **kwargs): """Creates an `IndexSelector` interaction for the `figure`. Also attaches the function `func` as an event listener for the trait `trait`. Parameters ---------- func: function The call back function. It should take atleast two arguments. The name of the trait and the value of the trait are passed as arguments. trait: string The name of the IndexSelector trait whose change triggers the call back function `func`. """ return _create_selector(IndexSelector, func, trait, **kwargs) def brush_selector(func=None, trait='selected', **kwargs): """Creates a `BrushSelector` interaction for the `figure`. Also attaches the function `func` as an event listener for the trait `trait`. Parameters ---------- func: function The call back function. It should take atleast two arguments. The name of the trait and the value of the trait are passed as arguments. trait: string The name of the BrushSelector trait whose change triggers the call back function `func`. """ return _create_selector(BrushSelector, func, trait, **kwargs) def multi_selector(func=None, trait='selected', **kwargs): """Creates a `MultiSelector` interaction for the `figure`. Also attaches the function `func` as an event listener for the trait `trait`. Parameters ---------- func: function The call back function. It should take atleast two arguments. The name of the trait and the value of the trait are passed as arguments. trait: string The name of the MultiSelector trait whose change triggers the call back function `func`. """ return _create_selector(MultiSelector, func, trait, **kwargs) def lasso_selector(func=None, trait='selected', **kwargs): """Creates a `LassoSelector` interaction for the `figure`. Also attaches the function `func` as an event listener for the specified trait. Parameters ---------- func: function The call back function. It should take atleast two arguments. The name of the trait and the value of the trait are passed as arguments. trait: string The name of the LassoSelector trait whose change triggers the call back function `func`. """ return _create_selector(LassoSelector, func, trait, **kwargs) def clear(): """Clears the current context figure of all marks axes and grid lines.""" fig = _context['figure'] if fig is not None: fig.marks = [] fig.axes = [] setattr(fig, 'axis_registry', {}) _context['scales'] = {} key = _context['current_key'] if key is not None: _context['scale_registry'][key] = {} def current_figure(): """Returns the current context figure.""" if _context['figure'] is None: figure() return _context['figure'] # FOR DEBUG ONLY def get_context(): """Used for debug only. Return the current global context dictionary.""" return _context def _fetch_axis(fig, dimension, scale): # Internal utility function. # Given a figure instance `fig`, the dimension of the scaled attribute and # the instance of a scale, returns the axis if an axis is present for that # combination. Else returns `None` axis_registry = getattr(fig, 'axis_registry', {}) dimension_data = axis_registry.get(dimension, []) dimension_scales = [dim['scale'] for dim in dimension_data] dimension_axes = [dim['axis'] for dim in dimension_data] try: return dimension_axes[dimension_scales.index(scale)] except (ValueError, IndexError): return None def _update_fig_axis_registry(fig, dimension, scale, axis): axis_registry = fig.axis_registry dimension_scales = axis_registry.get(dimension, []) dimension_scales.append({'scale': scale, 'axis': axis}) axis_registry[dimension] = dimension_scales setattr(fig, 'axis_registry', axis_registry) def _get_attribute_dimension(trait_name, mark_type=None): """Returns the dimension for the name of the trait for the specified mark. If `mark_type` is `None`, then the `trait_name` is returned as is. Returns `None` if the `trait_name` is not valid for `mark_type`. """ if(mark_type is None): return trait_name scale_metadata = mark_type.class_traits()['scales_metadata'].default_args[0] return scale_metadata.get(trait_name, {}).get('dimension', None) def _apply_properties(widget, properties={}): """Applies the specified properties to the widget. `properties` is a dictionary with key value pairs corresponding to the properties to be applied to the widget. """ with widget.hold_sync(): for key, value in properties.items(): setattr(widget, key, value) def _get_line_styles(marker_str): """Return line style, color and marker type from specified marker string. For example, if ``marker_str`` is 'g-o' then the method returns ``('solid', 'green', 'circle')``. """ def _extract_marker_value(marker_str, code_dict): """Extracts the marker value from a given marker string. Looks up the `code_dict` and returns the corresponding marker for a specific code. For example if `marker_str` is 'g-o' then the method extracts - 'green' if the code_dict is color_codes, - 'circle' if the code_dict is marker_codes etc. """ val = None for code in code_dict: if code in marker_str: val = code_dict[code] break return val return [_extract_marker_value(marker_str, code_dict) for code_dict in [LINE_STYLE_CODES, COLOR_CODES, MARKER_CODES]]
{ "content_hash": "85e2d3c49a2af0b9b9cae75f07c7e720", "timestamp": "", "source": "github", "line_count": 914, "max_line_length": 93, "avg_line_length": 35.167396061269145, "alnum_prop": 0.6220639019382136, "repo_name": "rmenegaux/bqplot", "id": "553c356127945bea116ae4e854d5861e3dd00777", "size": "32730", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "bqplot/pyplot.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "CSS", "bytes": "5500" }, { "name": "JavaScript", "bytes": "641299" }, { "name": "Python", "bytes": "166038" } ], "symlink_target": "" }
from . import grammar from . import cps __all___ = ['print_program'] def print_program(program): writer = Writer() writer(program) return ''.join(writer._buffer) _cases = [] def case(cls): def register(f): _cases.append((cls, f)) return f return register class Writer(object): def __init__(self): self._indent = '' self._buffer = [] def __call__(self, *args): for arg in args: self.write(arg) def write(self, node): if isinstance(node, basestring): self._buffer.append(node) return for (cls, handler) in _cases: if isinstance(node, cls): handler(self, node) return if isinstance(node, (list, tuple)): write_body(self, node, '') return print 'not found', type(node), node raise NotImplementedError @case(cps.Call) def write_call(writer, node): writer('goto ', node.continue_label, ' with ', node.left, '(', node.right, ')') @case(cps.CondGoto) def write_cond_goto(writer, node): writer('if ', node.test, ' goto ', node.true_label, ' else ', node.false_label) @case(cps.Goto) def write_goto(writer, node): writer('goto ', node.label) write_elements(writer, '(', node.args, ')') @case(cps.Label) def write_label(writer, node): writer('label ', node.name) if node.params: write_elements(writer, '(', node.params, ')') @case(cps.TailCall) def write_tail_call(writer, node): writer('return with ', node.left, '(', node.right, ')') @case(grammar.Definition) def write_definition(writer, node): writer(node.left, ' = ', node.right) @case(grammar.Func) def write_func(writer, node): writer('func') if node.is_predicate: writer(' is') if node.name is not None: writer(' ', node.name) write_elements(writer, '(', node.params, ')') if node.returns is not None: writer(': ', node.returns) if node.body is not None: # writer(writer._indent, ' label @Enter()\n') write_body(writer, node.body, indent=' ') def write_body(writer, body, indent): if not isinstance(body, (list, tuple)): writer(body) return writer('\n') prev = writer._indent try: writer._indent += indent for line in body: if isinstance(line, (grammar.Func, cps.Label)): writer('\n') if isinstance(line, cps.Label) and len(writer._indent) >= 2: writer._indent = writer._indent[:-2] writer(writer._indent, line, '\n') if isinstance(line, cps.Label): writer._indent += ' ' finally: writer._indent = prev def write_elements(writer, open, elements, close): writer(open) for index, element in enumerate(elements): if index != 0: writer(', ') writer(element) writer(close) @case(grammar.Parameter) def write_param(writer, param): writer(param.name) if param.type is not None: writer(': ', param.type) if param.default is not None: writer(' = ', param.default) @case(grammar.Record) def write_record(writer, node): write_elements(writer, '[', node.elements, ']') @case(grammar.ReturnStmt) def write_return_stmt(writer, stmt): writer('return') if stmt.value is not None: writer(' ', stmt.value) @case(grammar.Tokens.WholeNumber) def write_whole_number(writer, num): writer(num.content)
{ "content_hash": "b14306ff4dac94dc33708c903d0f4dae", "timestamp": "", "source": "github", "line_count": 145, "max_line_length": 83, "avg_line_length": 24.372413793103448, "alnum_prop": 0.5797962648556876, "repo_name": "jvs/stride", "id": "61c8bf5d137fb1e6a64f46ae5863d0c971b1d804", "size": "3534", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "stride/printer.py", "mode": "33188", "license": "mit", "language": [ { "name": "Makefile", "bytes": "182" }, { "name": "Python", "bytes": "51719" } ], "symlink_target": "" }
from __future__ import print_function import os import glob import sys from tempfile import mkdtemp import numpy as np from sklearn.decomposition import PCA from sklearn.manifold import TSNE from sklearn.metrics.pairwise import pairwise_distances import dendropy from dendropy.calculate.treesum import TreeSummarizer if sys.version_info[0] == 2: from ete2 import Tree as EteTree elif sys.version_info[0] == 3: from ete3 import Tree as EteTree from . distance_metrics import minmax from . clustering.cluster import VNClusterer, Clusterer def pca(corpus, nb_dimensions=2): """ Apply dimension reduction to the vectorized texts in the corpus, using Principal Components Analysis. Parameters ---------- corpus : string, default=None The corpus to be analyzed. Expects that the corpus has been vectorized. nb_dimensions : int, default=2 The nb of components desired. Returns ---------- (pca_matrix, pca_loadings): tuple Returns a tuple with: - the projection of the corpus texts in the reduced space, [n_texts, nb_dimensions] - the loadings of the features on each component, [n_features, nb_dimensions] """ try: X = corpus.vectorizer.X except AttributeError: ValueError('Your corpus does not seem to have been vectorized yet.') prin_comp = PCA(n_components=nb_dimensions) try: pca_matrix = prin_comp.fit_transform(X.toarray()) # unsparsify except AttributeError: pca_matrix = prin_comp.fit_transform(X) # input not sparse pca_loadings = prin_comp.components_.transpose() return pca_matrix, pca_loadings def tsne(corpus, nb_dimensions=2): """ Apply dimension reduction to the vectorized texts in the corpus, using t-Distributed Stochastic Neighbor Embedding (t-SNE). See: L.J.P. van der Maaten and G.E. Hinton. Visualizing High-Dimensional Data Using t-SNE. Journal of Machine Learning Research 9(Nov): 2579-2605, 2008. Parameters ---------- corpus : string, default=None The corpus to be analyzed. Expects that the corpus has been vectorized. nb_dimensions : int, default=2 The nb of dimensions in which to project the corpus. Returns ---------- tsne_matrix : array-like, [n_texts, n_dimensions] The projection of the corpus texts in the reduced space, [n_texts, nb_dimensions] """ try: X = corpus.vectorizer.X except AttributeError: ValueError('Your corpus does not seem to have been vectorized yet.') tsne = TSNE(n_components=nb_dimensions) try: return tsne.fit_transform(X.toarray()) # unsparsify except AttributeError: return tsne.fit_transform(X) # input already sparse def distance_matrix(corpus=None, X=None, metric='manhattan'): """ Calculate a square distance matrix for all the texts in the corpus. Parameters ---------- corpus : string, default=None The corpus to be analyzed. Expects that the corpus has been vectorized. metric : str, default='manhattan' The distance metric to be used for the pairwise distance calculations. Currently supports: 'manhattan', 'cityblock', 'euclidean', 'cosine', 'minmax'. Returns ---------- distance_matrix : 2D-array, [n_texts, n_texts] A square distance table holding all the pairwise distance calculations. Notes: ---------- For a comparison/explication of the metrics consult: - S. Argamon, 'Interpreting Burrows's Delta: Geometric and Probabilistic Foundations', LLC 23:3 (2008). - Evert S. et al., Towards a better understanding of Burrows's Delta in literary authorship attribution. Proceedings of the Fourth Workshop on Computational Linguistics for Literature (at NAACL HLT 2015), 2015. - Koppel et al., Determining if two documents are written by the same author, JASIST 2014 (minmax in particular). """ if not metric in ('manhattan', 'cityblock', 'euclidean', 'cosine', 'minmax'): raise ValueError('Unsupported distance metric: %s' %(metric)) # we unsparsify here to make it easier for contributors # to add distance functions (in `pystyl.distance_metrics.py`). if corpus: try: X = corpus.vectorizer.X try: X = X.toarray() except AttributeError: pass except AttributeError: ValueError('Your corpus does not seem to have been vectorized yet.') if metric == 'minmax': return pairwise_distances(X, metric=minmax) else: return pairwise_distances(X, metric=metric) def hierarchical_clustering(distance_matrix, linkage): """ Run hierarchical cluster analysis on the texts in the corpus. Parameters ---------- distance_matrix : 2D-array, [n_texts, n_texts] A square distance table holding all the pairwise distance calculations. linkage : string The linkage function to be used in the corpus. Returns ---------- cluster : A fitted `Clusterer` """ tree = Clusterer(distance_matrix, linkage=linkage) tree.cluster(verbose=0) return tree def vnc_clustering(distance_matrix, linkage): """ Run a the variability-based neighbor clustering (VNC) on the texts in the corpus. The analysis has the property that it will respect the order of the texts in the corpus. Useful for stylochronometry (or any other application where the order of the texts in relevant). Will assume that the corpus holds the texts in the correct chronological order. Also see: `corpus.temporal_sort()` The VNC method been described in e.g.: Gries, S. et al., Variability-based neighbor clustering: A bottom-up approach to periodization in historical linguistics, The Oxford Handbook of the History of English, OUP, 2012. Parameters ---------- distance_matrix : 2D-array, [n_texts, n_texts] A square distance table holding all the pairwise distance calculations. linkage : string The linkage function to be used in the corpus. Returns ---------- cluster : A fitted `VNClusterer` """ tree = VNClusterer(distance_matrix, linkage=linkage) tree.cluster(verbose=0) return tree def bootstrapped_distance_matrices(corpus, n_iter=100, random_prop=0.50, metric='manhattan', random_state=1985): dms = [] try: X = corpus.vectorizer.X try: X = X.toarray() except AttributeError: pass except AttributeError: ValueError('Your corpus does not seem to have been vectorized yet.') full_size = X.shape[1] bootstrap_size = int(full_size*float(random_prop)) # set random state for replicability: np.random.seed(random_state) for i in range(n_iter): rnd_indices = np.random.randint(low=0, high=full_size, size=bootstrap_size) bootstrap_matrix = X[:,rnd_indices] dms.append(distance_matrix(X=bootstrap_matrix, metric=metric)) return dms def bootstrap_consensus_tree(corpus, trees=[], consensus_level=0.5): tmp_dir = mkdtemp() for idx, tree in enumerate(trees): t = tree.dendrogram.to_ete(labels=corpus.titles) t.write(outfile=tmp_dir+'/tree_'+str(idx)+'.newick') trees = [] tns = dendropy.TaxonNamespace(corpus.titles, label="label") for filename in glob.glob(tmp_dir+'/*.newick'): tree = dendropy.Tree.get(path=filename, schema='newick', preserve_underscores=True, taxon_namespace=tns) trees.append(tree) tsum = TreeSummarizer(support_as_labels=True, support_as_edge_lengths=False, support_as_percentages = True, add_node_metadata = True, weighted_splits = True) taxon_namespace = trees[0].taxon_namespace split_distribution = dendropy.SplitDistribution(taxon_namespace=taxon_namespace) tsum.count_splits_on_trees(trees, split_distribution=split_distribution, is_bipartitions_updated=False) tree = tsum.tree_from_splits(split_distribution, min_freq=consensus_level, rooted=False, include_edge_lengths=False) # this param is crucial ete_tree = EteTree(tree.as_string("newick").replace('[&U] ', '')+';') return ete_tree
{ "content_hash": "345fa282833a3abea7f28fd500d09537", "timestamp": "", "source": "github", "line_count": 260, "max_line_length": 84, "avg_line_length": 33.76538461538462, "alnum_prop": 0.6361772411436383, "repo_name": "mikekestemont/PyStyl", "id": "349707421ac161ed3709549685f6ed6a02f591b5", "size": "8803", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "pystyl/analysis.py", "mode": "33261", "license": "bsd-3-clause", "language": [ { "name": "CSS", "bytes": "41" }, { "name": "HTML", "bytes": "1666553" }, { "name": "JavaScript", "bytes": "1800" }, { "name": "Jupyter Notebook", "bytes": "326808" }, { "name": "Python", "bytes": "93651" } ], "symlink_target": "" }
def polygon(canvas, points, line_width, line_color, fill_color): """ Add a polygon item on the canvas """ canvas.create_polygon(points, width = int(line_width), outline = line_color, fill = fill_color)
{ "content_hash": "ad5348ce04c06d19db9c36a6418a8323", "timestamp": "", "source": "github", "line_count": 6, "max_line_length": 66, "avg_line_length": 40.5, "alnum_prop": 0.6008230452674898, "repo_name": "jem-gh/STplayer", "id": "c0a159a1bffdf32975a55c796e936d202944de8c", "size": "405", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "simplegui2tkinter_API/STmodules/STdrawing/STpolygon.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "49848" } ], "symlink_target": "" }
import billboard import unittest from nose.tools import raises from requests.exceptions import ConnectionError import six class MiscTest(unittest.TestCase): @raises(ConnectionError) def testTimeout(self): """Checks that using a very small timeout prevents connection.""" billboard.ChartData("hot-100", timeout=1e-9) @raises(billboard.BillboardNotFoundException) def testNonExistentChart(self): """Checks that requesting a non-existent chart fails.""" billboard.ChartData("does-not-exist") def testUnicode(self): """Checks that the Billboard website does not use Unicode characters.""" chart = billboard.ChartData("hot-100", date="2018-01-27") self.assertEqual( chart[97].title, six.text_type("El Bano") ) # With Unicode this should be "El Baño" def testDifficultTitleCasing(self): """Checks that a difficult chart title receives proper casing.""" chart = billboard.ChartData("greatest-r-b-hip-hop-songs") self.assertEqual(chart.title, "Greatest of All Time Hot R&B/Hip-Hop Songs")
{ "content_hash": "c09ac92c63597b78abe645eb5070164c", "timestamp": "", "source": "github", "line_count": 29, "max_line_length": 83, "avg_line_length": 38.310344827586206, "alnum_prop": 0.6921692169216922, "repo_name": "guoguo12/billboard-charts", "id": "3c9923c76cd6c885ce5df3f8912a5f86a243295e", "size": "1137", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "tests/test_misc.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "24764" }, { "name": "Shell", "bytes": "95" } ], "symlink_target": "" }
from __future__ import division __author__ = 'Alejandro Hdz. Cruz' # Imports import csv import random import numpy as np # install in your computer: http://stackoverflow.com/questions/1273203/cant-import-numpy-in-python # ====== Declare global variables ====== # === Static constants === # change to test different simulation results eDividedByK = .001 # to answer question 1 {.001, .01, .1} bufferSizeInPackages = 3 # to answer question 1 {50, 100, 250 & 500 } (n) frameMinSuccessRate = .9 # to answer question 1 {.9, .95, .99} probServerSaturationLimit = .01 # to answer question 2 {.05, .01, .001} fixedUsers = 15 # to answer question 2 {5, 10, 15, 20} # fixed simulationTime = 30 # Time the simulation will run Lambda = 0.5 # rate of requests entering the system every second (1/tp) requestArrivalTime = 1/Lambda # Average time between any user request (tp = 2) waitTimeMax = 1 # U. 1 second in seconds framesTobeServedPerUser = 2000 # number of frames that every user receives throughputPackages = 4500 # rate of packages leaving the buffer every second (Miu) packageLeavesBufferTime = round(1/throughputPackages, 6) # Average time in which a package leaves the buffer(.000222) randomFrameRangeMin = 10 # Used to choose the start of the frames to be sent to any user (randrange) randomFrameRangeMax = 87997 # Used to choose the end of the frames to be sent to any user (randrange) wifiUserLimit = 256 # fps = 24.0 # Each video runs at 24 frames per second (frame request per user) videoRatePerUser = round(1/fps, 6) # Each user needs one frame 24 times per second bandwidthMaxInPackages = 4500 # UPDATE: the limitation of 100 fps was removed of the simulation # frameLeavesApplicationLayer = .01 # r # throughputFrames = 1/frameLeavesApplicationLayer # number of frames going out of the application layer (1/r= 100) # === Variables === # time time = 0 # current simulation time in seconds serviceTimePackage = 0 # total service time in seconds (occupation time) serviceTimeFrame = 0 # total service time in seconds (occupation time) serviceTimeUser = 0 # total service time in seconds (occupation time) # users usersInSystem = 0 # number of users currently in the system usersServed = 0 # users whose 2000 frames came through the system usersSuccess = 0 # number of users that were well served by the system usersFailed = 0 # users that received a corrupt video usersAcceptedInBuffer = 0 # usersRejectedFromBuffer = 0 # usersDelivered = 0 # usersNotDelivered = 0 # these users received a corrupt video (without 1 or more packages) usersBeingServed = 0 # users being served in any moment (max 256) currentUserIndex = 0 # position that the current user has in the users/petitions array servedFramesOfCurrentUser = 0 # lu = 0 # average of users in system # frames framesInSystem = 0 # number of frames currently in the system framesServed = 0 # frames that went out of the system framesSuccess = 0 # frames that were successfully served through the system framesFailed = 0 # frames that failed due to waiting or e framesAcceptedInBuffer = 0 # frames that waited less than 1 second framesRejectedFromBuffer = 0 # frames that waited more than 1 second framesDelivered = 0 # framesNotDelivered = 0 # currentFrameSize = 0 # currentFrameIndex = 0 # id of the frame being sent to the user currentFrameStreamingIndex = 0 # position of the original frame sequence being streamed to the current user numPackagesOfCurrentFrame = 0 # servedPackagesOfCurrentFrame = 0 # lastFrameServed = -1 # lf = 0 # average of frames in system # packages packagesInSystem = 0 # number of packages currently in the system packagesServed = 0 # packages that went out of the system packagesSuccess = 0 # packages that were successfully served through the system packagesFailed = 0 # packages that failed to be delivered or accedpted in the system packagesAcceptedInBuffer = 0 packagesRejectedFromBuffer = 0 packagesDelivered = 0 # made it to their destiny packagesNotDelivered = 0 # failed because of e # packagesInBuffer = 0 # number of packages waiting to go out of the system packagesPendingForCurrentFrame = 0 # currentPackageIndex = 0 # currentPackageSize = 0 # lastPackageServed = -1 # lp = 0 # average of packages in system # probabilities G = 0 # probability of buffer saturation e = eDividedByK*usersInSystem # probability of package not arriving its destination randomE = 0 # to compare e with and determine if a package arrives successfully to client # delays delay = 0 # total waiting time: timeInBuffer + amazonCurrentDelay timeInBuffer = 0 # time between arrival and departure of the current package amazonCurrentDelay = 0 # amazonDelayIndexLimit = 52686 # determined from the csv file provided amazonCurrentDelayIndex = 0 # used to read the delay from the delays array # utilization utilizationUser = 0 # percentage of utilization of the system utilizationFrame = 0 # percentage of utilization of the system utilizationPackage = 0 # percentage of utilization of the system # bandwidth currentBandwidth = 0 # bits coming out of the system # === Arrays === # probabilities probabilityServerSaturationArr = [] # G probabilityPackageSendFailArr = [] # e # users arrivalTimeUsersArr = [] # time in which every request that reaches the system arrived departureTimeUsersArr = [] # time in which every request that left the system usersInSystemArr = [] # history of the number of users in the system usersBeingServedArr = [] # history of the users going out of the system (not waiting in buffer) startStreamingPositionPerUser = [] # in which position of the framesArray every user starts framesDeliveredPerUserArr = [] # count of how many frames have been sent to every user, up to 2000 currentFramePerUserIndex = [] # to know which frame is being served to every user usersAcceptedInBufferArr = [] # accepted or rejected usersFullyDeliveredArr = [] # yes or no, depending on it's packages e check # frames arrivalTimeFramesArr = [] # time in which every frame entered the system departureTimeFramesArr = [] # time in which every frame left the system framesArray = [] # sequence of the frames to be served framesOriginalArray = [] # all the video frames that can be served (from the .csv file) framesInSystemArr = [] # history of the number of frames in the system # framesServed = [] # frames that came out of the system frameSizeArr = [] frameOwnersArr = [] # list of users by frame in the system (owner) packagesPerFrameArr = [] # history of how many packages has every frame produced packagesServedPerFrameArr = [] # to know hoy many packages of each frame have left the system framesAcceptedInBufferArr = [] # to save which frames were taken or rejected of the buffer framesFullyDeliveredArr = [] # yes or no, depending on the error e of its packages # packages arrivalTimePackagesArr = [] # time in which every package entered the system departureTimePackagesArray = [] # time in which every package left the system packagesArray = [] # Sequence of the packages packagesInSystemArr = [] # history of the number of packages in the system packagesAcceptedInBufferArr = [] # accepted or rejected, depending on the error e packagesDeliveryStatusArr = [] # delivered or failed packageSizeArr = [] # packageOwnersArr = [] # user that will needs every package frameOfEveryPackage = [] # to know of which frame every package is part of # delay delayArr = [] # history of the # total waiting time: timeInBuffer + amazonCurrentDelay timeInBufferPerPackageArr = [] # history of how many seconds ech petition waited in buffer amazonDelaysArr = [] # Amazon delays from the .csv file # bandwidth bandwidthArr = [] # bits transferred every second # Read Amazon delay data from csv file delaysReader = csv.reader(open('AmazonS3_delays-Ag-15.csv', 'rb'), delimiter= ',', quotechar='"') for i in delaysReader: amazonDelaysArr.append(i) framesReader = csv.reader(open('Terse_DieHardIII.csv', 'rb'), delimiter= ',', quotechar='"') for i in framesReader: framesOriginalArray.append(i) # ====== Main ====== while time < simulationTime: # save system's status (saving this might be too much data and we should save it every .01 seconds) usersInSystemArr.append(usersInSystem) usersBeingServedArr.append(usersBeingServed) framesInSystemArr.append(framesInSystem) packagesInSystemArr.append(packagesInSystem) bandwidthArr.append(currentBandwidth) probabilityServerSaturationArr.append(G) probabilityPackageSendFailArr.append(e) timeInBufferPerPackageArr.append(timeInBuffer) delayArr.append(delay) time += 0.000001 time = round(time, 6) # define amazonCurrentDelay amazonCurrentDelay = amazonDelaysArr[amazonCurrentDelayIndex] # === five users arrive === if (time*1000000) - (requestArrivalTime*1000000) == 0: # one user enters the system every 2 seconds i = 0 while i < fixedUsers: usersInSystem += 1 print time, ": user added. Total: ", usersInSystem arrivalTimeUsersArr.append(time) usersFullyDeliveredArr.append("no") usersAcceptedInBufferArr.append("-") departureTimeUsersArr.append("-") framesDeliveredPerUserArr.append(0) startStreamingPositionPerUser.append(random.randrange(randomFrameRangeMin, randomFrameRangeMax)) currentFramePerUserIndex.append(0) i += 1 # === new frames needed === elif ((time*1000000) % (videoRatePerUser*100000) < 0.000001) and (usersInSystem > 0): # every 1/24 seconds, every user asks for a frame currentUserIndex = 0 if usersBeingServed < wifiUserLimit: # serve only 256 users # find next user that needs one of her 2000 frames for index, item in enumerate(framesDeliveredPerUserArr): if item <= framesTobeServedPerUser and index > currentUserIndex: currentUserIndex = index # get index of next currentFrame for current user # nextFrameForThisUser = framesOriginalArray[currentFramePerUserIndex[currentUserIndex] + startStreamingPositionPerUser[currentUserIndex]] # this shouldn't fail because the randomFrameRangeMax is the frame sequence - 2000 currentFrameStreamingIndex = currentFramePerUserIndex[currentUserIndex] if currentFrameStreamingIndex == 0: currentFrameStreamingIndex += startStreamingPositionPerUser[currentUserIndex] else: currentFrameStreamingIndex += 1 # save new currentFrameIndex for this user currentFramePerUserIndex[currentUserIndex] = currentFrameStreamingIndex # add frame to the system currentFrameSize = framesOriginalArray[currentFrameStreamingIndex] currentFrameSize = np.int32(currentFrameSize) arrivalTimeFramesArr.append(time) departureTimeFramesArr.append("-") packagesServedPerFrameArr.append(0) framesFullyDeliveredArr.append("no") frameOwnersArr.append(currentUserIndex) frameSizeArr.append(currentFrameSize) print time, ": CurrentFrameSize: ", currentFrameSize usersBeingServed += 1 # divide frame in packages while currentFrameSize >= 1500: # subdivide frames into packages currentFrameSize -= 1500 numPackagesOfCurrentFrame += 1 if currentFrameSize > 0: numPackagesOfCurrentFrame += 1 packagesPerFrameArr.append(numPackagesOfCurrentFrame) packs = 0 # save data for n-1 packages of the frame while packs < (numPackagesOfCurrentFrame-1): packageSizeArr.append(1500) frameOfEveryPackage.append(currentFrameIndex) packageOwnersArr.append(currentUserIndex) arrivalTimePackagesArr.append(time) departureTimePackagesArray.append("-") packagesDeliveryStatusArr.append("-") packs += 1 # save data for last package of the frame packageSizeArr.append(currentPackageSize) frameOfEveryPackage.append(currentFrameIndex) packageOwnersArr.append(currentUserIndex) arrivalTimePackagesArr.append(time) departureTimePackagesArray.append("-") packagesDeliveryStatusArr.append("-") if delay > 1 and packagesInSystem+numPackagesOfCurrentFrame < bufferSizeInPackages: # reject the frame print time, ": Frame rejected. Total: ", framesInSystem, "..." framesFailed += 1 framesRejectedFromBuffer += 1 framesAcceptedInBufferArr.append("rejected") usersAcceptedInBufferArr[currentUserIndex] = "rejected" rej = 0 # mark all the packages of this frame as rejected and failed while rej < numPackagesOfCurrentFrame: print time, ":", numPackagesOfCurrentFrame, " Packages rejected. Total: ", packagesInSystem packagesRejectedFromBuffer += 1 packagesAcceptedInBufferArr.append("rejected") rej += 1 else: # accept the frame in the system framesInSystem += 1 print time, ": Frame added. - Total: ", framesInSystem, "..." framesAcceptedInBuffer += 1 framesAcceptedInBufferArr.append("accepted") acc = 0 # mark all the packages of this frame as accepted and in the system packagesInSystem += numPackagesOfCurrentFrame print time, ":", numPackagesOfCurrentFrame, " packages added. Total: ", packagesInSystem while acc < numPackagesOfCurrentFrame: packagesAcceptedInBuffer += 1 packagesAcceptedInBufferArr.append("accepted") packagesArray.append(currentPackageIndex) acc += 1 # === package leaves === elif (time*1000000) % (packageLeavesBufferTime*1000000) < .000001 and packagesInSystem > 0: # one package leaves the buffer every .000222 seconds currentBandwidth = 0 isInSys = False inx = 0 # find next package in system while isInSys is False: packageInSystemStatus = packagesAcceptedInBufferArr[inx] if packageInSystemStatus is "accepted": currentPackageIndex = inx isInSys = True # Compute bandwidth currentBandwidth = 1/bandwidthMaxInPackages # since only one package is being served inx += 1 # remove package from system departureTimePackagesArray[currentPackageIndex] = time packagesInSystem -= 1 print time, ": Package served. Total: ", packagesInSystem packagesServed += 1 packagesAcceptedInBufferArr[currentPackageIndex] = "served" # package was served # we need cpi to get arrivalTime of package that entered the system cpi = 0 for index, package in enumerate(packagesArray): if package == currentPackageIndex: currentUserIndex = index cpi = index # calculate service time serviceTimePackage += time - arrivalTimePackagesArr[cpi] servedPackagesOfCurrentFrame = packagesServedPerFrameArr[currentFrameIndex] servedPackagesOfCurrentFrame += 1 packagesServedPerFrameArr[currentFrameIndex] = servedPackagesOfCurrentFrame # get this package's user and frame currentFrameIndex = frameOfEveryPackage[currentPackageIndex] currentUserIndex = packageOwnersArr[currentPackageIndex] numPackagesOfCurrentFrame = np.int32(packagesPerFrameArr[currentFrameIndex]) # compute waiting time in Buffer/System timeInBuffer = 1/(4500 - numPackagesOfCurrentFrame) delay = timeInBuffer + np.float64(amazonCurrentDelay) # delay = departureTimePackagesArray[currentPackageIndex] - arrivalTimePackagesArr[currentPackageIndex] # delay += amazonCurrentDelay # compute and check e e = eDividedByK*usersInSystem randomE = round(random.uniform(0, 1), 4) # probability with 4 decimals if randomE > e: packagesDeliveryStatusArr[currentPackageIndex] = "delivered" packagesDelivered += 1 packagesSuccess += 1 # tag package's frame if framesFullyDeliveredArr[currentFrameIndex] is not "no": framesFullyDeliveredArr[currentFrameIndex] = "yes" # tag package's user if usersFullyDeliveredArr[currentUserIndex] is not "no": usersFullyDeliveredArr[currentUserIndex] = "yes" else: packagesDeliveryStatusArr[currentPackageIndex] = "failed" packagesFailed += 1 packagesNotDelivered += 1 # tag package's frame framesFullyDeliveredArr[currentFrameIndex] = "no" # tag package's user usersFullyDeliveredArr[currentUserIndex] = "no" # === Follow-up of the packages->frames->users final departure times === # When all the packages of one frame are served if servedPackagesOfCurrentFrame == packagesPerFrameArr[currentFrameIndex]: # remove frames from the system framesInSystem -= 1 print time, ": Frame served. Total: ", framesInSystem departureTimeFramesArr.append(time) serviceTimeFrame += time - arrivalTimeFramesArr[currentFrameIndex] # up-count the good frames framesServed += 1 if framesFullyDeliveredArr[currentFrameIndex] is "yes": framesDelivered += 1 framesSuccess += 1 else: framesFailed += 1 framesNotDelivered += 1 # tag user's delivery status usersFullyDeliveredArr[currentUserIndex] = "no" fdpu = framesDeliveredPerUserArr[currentUserIndex] fdpu += 1 framesDeliveredPerUserArr[currentUserIndex] = fdpu # When the system has already sent 2000 frames to the current user if fdpu == framesTobeServedPerUser: print time, ": User served. Total: ", usersInSystem # remove user from system usersServed += 1 usersInSystem -= 1 departureTimeUsersArr[currentUserIndex] = time # compute service time serviceTimeUser += time - arrivalTimeUsersArr[currentUserIndex] # tag user's delivery status if usersFullyDeliveredArr[currentUserIndex] != "no": usersFullyDeliveredArr[currentUserIndex] = "yes" usersSuccess += 1 else: usersFailed += 1 if usersAcceptedInBufferArr[currentUserIndex] != "rejected": usersAcceptedInBufferArr[currentUserIndex] = "accepted" usersAcceptedInBuffer += 1 # Compute G if packagesServed > 0: G = packagesFailed/packagesServed if G > probServerSaturationLimit: bufferSizeInPackages += 1 if amazonCurrentDelay < amazonDelayIndexLimit: amazonCurrentDelayIndex += 1 else: amazonCurrentDelayIndex = 0 # ====== Compute L & U ====== # average of objects in the system lp = (packagesServed+packagesInSystem)/time lf = (framesServed+framesInSystem)/time lu = (usersServed+usersInSystem)/time utilizationPackage = serviceTimePackage/time utilizationFrame = serviceTimeFrame/time utilizationUser = serviceTimeUser/time # ======= Print all csv files ====== rows = [] with open("question2.csv", "w") as a: writerr = csv.writer(a) row = [bufferSizeInPackages] rows.append(row) writerr.writerows(rows) with open("general_info.csv", "w") as f: writer = csv.writer(f) row = [time, usersInSystem, usersServed, usersSuccess, usersFailed, usersAcceptedInBuffer, usersRejectedFromBuffer, usersDelivered, usersNotDelivered, usersBeingServed, lu, lf, lp, utilizationPackage, utilizationFrame, utilizationUser] rows.append(row) writer.writerows(rows) with open("users.csv", "w") as g: writer0 = csv.writer(g) for index, t in enumerate(arrivalTimeUsersArr): arrTUsr = arrivalTimeUsersArr[index] depTUsr = departureTimeUsersArr[index] startStr = startStreamingPositionPerUser[index] frDeliv = framesDeliveredPerUserArr[index] currFr = currentFramePerUserIndex[index] accBuff = usersAcceptedInBufferArr[index] fullDeliv = usersFullyDeliveredArr[index] row = [arrTUsr, depTUsr, startStr, frDeliv, currFr, accBuff, fullDeliv] rows.append(row) writer0.writerows(rows) with open("frames.csv", "w") as h: writer1 = csv.writer(h) for index, t in enumerate(arrivalTimeFramesArr): arrTFr = arrivalTimeFramesArr[index] depTFr = departureTimeFramesArr[index] # frameIndx = framesArray[index] frSize = frameSizeArr[index] owner = frameOwnersArr[index] accBuff = framesAcceptedInBufferArr[index] fullDeliv = framesFullyDeliveredArr[index] packsFr = packagesPerFrameArr[index] packsServFr = packagesServedPerFrameArr[index] row = [arrTFr, depTFr, frSize, owner, accBuff, fullDeliv, packsFr, packsServFr] rows.append(row) writer1.writerows(rows) with open("packages.csv", "w") as i: writer2 = csv.writer(i) for index, t in enumerate(arrivalTimePackagesArr): arrTPack = arrivalTimePackagesArr[index] depTPack = departureTimePackagesArray[index] # packageIndx = packagesArray[index] packSize = packageSizeArr[index] owner = packageOwnersArr[index] accBuff = packagesAcceptedInBufferArr[index] deliverySts = packagesDeliveryStatusArr[index] row = [arrTPack, depTPack, packSize, owner, accBuff, deliverySts] rows.append(row) writer2.writerows(rows) with open("every_microsecond_data.csv", "w") as j: writer3 = csv.writer(j) for index, i in enumerate(usersInSystemArr): uinSys = usersInSystemArr[index] uBingServed = usersBeingServedArr[index] frInSys = framesInSystemArr[index] packInSys = packagesInSystemArr[index] probG = probabilityServerSaturationArr[index] probE = probabilityPackageSendFailArr[index] tBuff = timeInBufferPerPackageArr[index] dlay = delayArr[index] bn = bandwidthArr[index] row = [uinSys, uBingServed, frInSys, packInSys, probG, probE, tBuff, dlay, bn] rows.append(row) writer3.writerows(rows) print "END in time: ", time
{ "content_hash": "38cd3e2cfb0bc2e25538fc2209d9e76e", "timestamp": "", "source": "github", "line_count": 533, "max_line_length": 239, "avg_line_length": 45.23076923076923, "alnum_prop": 0.6531027044964327, "repo_name": "AlejandroHCruz/VideoServerNURXSimulation", "id": "bf6e760256570a80b4674c24f03d80de80b6c138", "size": "24108", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "Main2.py", "mode": "33188", "license": "mit", "language": [ { "name": "C", "bytes": "19663" }, { "name": "Java", "bytes": "1377" }, { "name": "Python", "bytes": "106400" } ], "symlink_target": "" }
"""Unittest for ciscoasa acl rendering module.""" from absl.testing import absltest from unittest import mock from capirca.lib import ciscoasa from capirca.lib import naming from capirca.lib import policy GOOD_HEADER = """ header { comment:: "this is a test acl" target:: ciscoasa test-filter } """ GOOD_TERM_1 = """ term good-term-1 { verbatim:: ciscoasa "mary had a little lamb" verbatim:: iptables "mary had second lamb" verbatim:: juniper "mary had third lamb" } """ GOOD_TERM_2 = """ term good-term-2 { verbatim:: ciscoasa "mary had a little lamb" policer:: batman } """ SUPPORTED_TOKENS = { 'action', 'comment', 'destination_address', 'destination_address_exclude', 'destination_port', 'expiration', 'icmp_type', 'stateless_reply', 'logging', 'name', 'option', 'owner', 'platform', 'platform_exclude', 'protocol', 'source_address', 'source_address_exclude', 'source_port', 'translated', 'verbatim', } SUPPORTED_SUB_TOKENS = { 'action': {'accept', 'deny', 'reject', 'next', 'reject-with-tcp-rst'}, 'icmp_type': { 'alternate-address', 'certification-path-advertisement', 'certification-path-solicitation', 'conversion-error', 'destination-unreachable', 'echo-reply', 'echo-request', 'mobile-redirect', 'home-agent-address-discovery-reply', 'home-agent-address-discovery-request', 'icmp-node-information-query', 'icmp-node-information-response', 'information-request', 'inverse-neighbor-discovery-advertisement', 'inverse-neighbor-discovery-solicitation', 'mask-reply', 'mask-request', 'information-reply', 'mobile-prefix-advertisement', 'mobile-prefix-solicitation', 'multicast-listener-done', 'multicast-listener-query', 'multicast-listener-report', 'multicast-router-advertisement', 'multicast-router-solicitation', 'multicast-router-termination', 'neighbor-advertisement', 'neighbor-solicit', 'packet-too-big', 'parameter-problem', 'redirect', 'redirect-message', 'router-advertisement', 'router-renumbering', 'router-solicit', 'router-solicitation', 'source-quench', 'time-exceeded', 'timestamp-reply', 'timestamp-request', 'unreachable', 'version-2-multicast-listener-report', }, 'option': {'established', 'tcp-established'}} # Print a info message when a term is set to expire in that many weeks. # This is normally passed from command line. EXP_INFO = 2 class CiscoASATest(absltest.TestCase): def setUp(self): super().setUp() self.naming = mock.create_autospec(naming.Naming) def testBuildTokens(self): pol1 = ciscoasa.CiscoASA(policy.ParsePolicy(GOOD_HEADER + GOOD_TERM_1, self.naming), EXP_INFO) st, sst = pol1._BuildTokens() self.assertEqual(st, SUPPORTED_TOKENS) self.assertEqual(sst, SUPPORTED_SUB_TOKENS) def testBuildWarningTokens(self): pol1 = ciscoasa.CiscoASA(policy.ParsePolicy(GOOD_HEADER + GOOD_TERM_2, self.naming), EXP_INFO) st, sst = pol1._BuildTokens() self.assertEqual(st, SUPPORTED_TOKENS) self.assertEqual(sst, SUPPORTED_SUB_TOKENS) if __name__ == '__main__': absltest.main()
{ "content_hash": "992e1fcff545e4455d322f813a632a4f", "timestamp": "", "source": "github", "line_count": 130, "max_line_length": 74, "avg_line_length": 27.015384615384615, "alnum_prop": 0.6173120728929385, "repo_name": "google/capirca", "id": "fb9b48527edf5f4e5a52f7e78fb391a41b7781e2", "size": "4109", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "tests/lib/ciscoasa_test.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "C++", "bytes": "368" }, { "name": "Dockerfile", "bytes": "169" }, { "name": "Perl", "bytes": "1590" }, { "name": "Python", "bytes": "1778745" }, { "name": "Shell", "bytes": "2576" } ], "symlink_target": "" }
import sys import os.path sys.path.append(os.path.abspath('../../../')) from distutils.core import setup, Extension from src.util.FileSystem import FileSystem extDir = FileSystem.getExtDir() jsonPath = os.path.join(extDir, 'SimpleJSON-master/src') jsonObj1Path = os.path.join(extDir, 'SimpleJSON-master/obj/JSON.o') jsonObj2Path = os.path.join(extDir, 'SimpleJSON-master/obj/JSONValue.o') module1 = Extension( 'PyMatch', sources = ['PyMatch.cpp', 'Match.cpp'], extra_objects = [jsonObj1Path, jsonObj2Path], include_dirs = ['.', jsonPath], library_dirs = [], libraries = [], extra_compile_args = ['-fPIC'] ) setup (name = 'PyMatch',version = '0.1',description = 'Matches octave code.',ext_modules = [module1], packages = [])
{ "content_hash": "7964071f501f3b43e08d1dec962a4143", "timestamp": "", "source": "github", "line_count": 24, "max_line_length": 116, "avg_line_length": 31.708333333333332, "alnum_prop": 0.6819973718791065, "repo_name": "tanonev/codewebs", "id": "bb3dc286e605f51deb611e51456adb8576cf5005", "size": "761", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "src/matching/pythonMatching/setup.py", "mode": "33188", "license": "mit", "language": [ { "name": "C", "bytes": "790" }, { "name": "C++", "bytes": "301221" }, { "name": "Java", "bytes": "479184" }, { "name": "Makefile", "bytes": "5459" }, { "name": "Matlab", "bytes": "50455" }, { "name": "Python", "bytes": "230306" }, { "name": "Shell", "bytes": "13311" } ], "symlink_target": "" }
from __future__ import (division, absolute_import, print_function, unicode_literals) """Fixes file permissions after the file gets written on import. Put something like the following in your config.yaml to configure: permissions: file: 644 dir: 755 """ import os from beets import config, util from beets.plugins import BeetsPlugin from beets.util import ancestry def convert_perm(perm): """If the perm is a int it will first convert it to a string and back to an oct int. Else it just converts it to oct. """ if isinstance(perm, int): return int(bytes(perm), 8) else: return int(perm, 8) def check_permissions(path, permission): """Checks the permissions of a path. """ return oct(os.stat(path).st_mode & 0o777) == oct(permission) def dirs_in_library(library, item): """Creates a list of ancestor directories in the beets library path. """ return [ancestor for ancestor in ancestry(item) if ancestor.startswith(library)][1:] class Permissions(BeetsPlugin): def __init__(self): super(Permissions, self).__init__() # Adding defaults. self.config.add({ u'file': 644, u'dir': 755 }) self.register_listener('item_imported', permissions) self.register_listener('album_imported', permissions) def permissions(lib, item=None, album=None): """Running the permission fixer. """ # Getting the config. file_perm = config['permissions']['file'].get() dir_perm = config['permissions']['dir'].get() # Converts permissions to oct. file_perm = convert_perm(file_perm) dir_perm = convert_perm(dir_perm) # Create chmod_queue. file_chmod_queue = [] if item: file_chmod_queue.append(item.path) elif album: for album_item in album.items(): file_chmod_queue.append(album_item.path) # A set of directories to change permissions for. dir_chmod_queue = set() for path in file_chmod_queue: # Changing permissions on the destination file. os.chmod(util.bytestring_path(path), file_perm) # Checks if the destination path has the permissions configured. if not check_permissions(util.bytestring_path(path), file_perm): message = 'There was a problem setting permission on {}'.format( path) print(message) # Adding directories to the directory chmod queue. dir_chmod_queue.update( dirs_in_library(config['directory'].get(), path)) # Change permissions for the directories. for path in dir_chmod_queue: # Chaning permissions on the destination directory. os.chmod(util.bytestring_path(path), dir_perm) # Checks if the destination path has the permissions configured. if not check_permissions(util.bytestring_path(path), dir_perm): message = 'There was a problem setting permission on {}'.format( path) print(message)
{ "content_hash": "d0208a0cb5a3f3edcaea3afe549b175c", "timestamp": "", "source": "github", "line_count": 101, "max_line_length": 78, "avg_line_length": 30.85148514851485, "alnum_prop": 0.6267650834403081, "repo_name": "multikatt/beets", "id": "a85bff6b50e937860f0b8aabab19c8d00fb6bade", "size": "3116", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "beetsplug/permissions.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "2951" }, { "name": "HTML", "bytes": "3307" }, { "name": "JavaScript", "bytes": "85938" }, { "name": "Python", "bytes": "1488443" }, { "name": "Shell", "bytes": "7413" } ], "symlink_target": "" }
import datetime import warnings from contextlib import suppress from typing import Optional, Union import numpy as np import pandas as pd from pydantic import PositiveInt, confloat, validate_arguments from toolbox_utils import tsutils from tstoolbox import tstoolbox from typing_extensions import Literal from . import tdew as tdew_melo from .melodist.melodist.humidity import ( calculate_month_hour_precip_mean, disaggregate_humidity, ) from .melodist.melodist.radiation import disaggregate_radiation from .melodist.melodist.temperature import disaggregate_temperature, get_shift_by_data from .melodist.melodist.util.util import ( calculate_mean_daily_course_by_month, get_sun_times, ) from .melodist.melodist.wind import disaggregate_wind @tsutils.transform_args(source_units=tsutils.make_list, target_units=tsutils.make_list) @validate_arguments def single_target_units(source_units, target_units, default=None, cnt=1): if default is None: return source_units if target_units is None: return [default] * len(source_units) tunits = set(target_units) if len(tunits) != cnt: raise ValueError( tsutils.error_wrapper( f""" Since creating a single disaggregated time-series there can only be a single "target_units". You gave "{target_units}". """ ) ) if len(source_units) == len(target_units): return target_units return [target_units[0]] * len(source_units) @validate_arguments(config=dict(arbitrary_types_allowed=True)) def temperature( method: Literal[ "sine_min_max", "sine_mean", "sine", "mean_course_min_max", "mean_course_mean" ], source_units, min_max_time: Literal["fix", "sun_loc", "sun_loc_shift"] = "fix", mod_nighttime: bool = False, input_ts="-", start_date=None, end_date=None, dropna="no", clean=False, round_index=None, skiprows=None, index_type="datetime", names=None, print_input=False, target_units=None, max_delta: bool = False, temp_min_col: Optional[Union[PositiveInt, str, pd.Series]] = None, temp_max_col: Optional[Union[PositiveInt, str, pd.Series]] = None, temp_mean_col: Optional[Union[PositiveInt, str, pd.Series]] = None, lat: Optional[confloat(ge=-90, le=90)] = None, lon: Optional[confloat(ge=-180, le=180)] = None, hourly: Optional[Union[str, pd.Series]] = None, ): """Disaggregate daily temperature to hourly temperature.""" target_units = single_target_units(source_units, target_units, "degC") pd.options.display.width = 60 if ( method in ("mean_course_min_max", "mean_course_mean") or min_max_time == "sun_loc_shift" or max_delta ) and hourly is None: raise ValueError( tsutils.error_wrapper( """ The methods "mean_course_min", "mean_course_mean", or if `max_delta` is True, or if `min_max_time` is "sun_loc_shift" require a HOURLY temperature values in the CSV file specified by the keyword `hourly`. """ ) ) if ( method in ("mean_course_min_max", "mean_course_mean") or min_max_time == "sun_loc_shift" or max_delta ): hourly = tstoolbox.read(hourly) mean_course = calculate_mean_daily_course_by_month( hourly.squeeze(), normalize=True ) else: mean_course = None if min_max_time == "sun_loc_shift" or max_delta: max_delta = get_shift_by_data(hourly.squeeze(), lon, lat, round(lon / 15.0)) else: max_delta = None if temp_min_col is None or temp_max_col is None: raise ValueError( tsutils.error_wrapper( f""" For "temperature" disaggregation you need to supply the daily minimum column (name or number, data column numbering starts at 1) and the daily maximum column (name or number). Instead `temp_min_col` is {temp_min_col} and `temp_max_col` is {temp_max_col} """ ) ) with suppress(TypeError): temp_min_col = int(temp_min_col) with suppress(TypeError): temp_max_col = int(temp_max_col) columns = [temp_min_col, temp_max_col] if temp_mean_col is not None: with suppress(TypeError): temp_mean_col = int(temp_mean_col) columns.append(temp_mean_col) tsd = tsutils.common_kwds( tsutils.read_iso_ts( input_ts, skiprows=skiprows, names=names, index_type=index_type ), start_date=start_date, end_date=end_date, pick=columns, round_index=round_index, dropna=dropna, source_units=source_units, target_units=target_units, clean=clean, ) if len(tsd.columns) == 3: tsd.columns = ("tmin", "tmax", "temp") else: tsd.columns = ("tmin", "tmax") if any((tsd.tmax <= tsd.tmin).dropna()): raise ValueError( tsutils.error_wrapper( f""" On the following dates: {tsd[tsd.tmax <= tsd.tmin].index}, minimum temperature values in column "{temp_min_col}" are greater than or equal to the maximum temperature values in column "{temp_max_col}". """ ) ) if temp_mean_col is None: warnings.warn( tsutils.error_wrapper( """ Since `temp_mean_col` is None, the average daily temperature will be estimated by the average of `temp_min_col` and `temp_max_col` """ ) ) tsd["temp"] = (tsd.tmin + tsd.tmax) / 2.0 if any((tsd.tmin >= tsd.temp).dropna()) or any((tsd.tmax <= tsd.temp).dropna()): raise ValueError( tsutils.error_wrapper( f""" On the following dates: {tsd[tsd.tmin >= tsd.temp | tsd.tmax <= tsd.temp]}, the daily average is either below or equal to the minimum temperature in column {temp_min_col} or higher or equal to the maximum temperature in column {temp_max_col}. """ ) ) if min_max_time == "fix": # Not dependent on sun, just average values. sun_times = pd.DataFrame( index=[1], columns=("sunrise", "sunnoon", "sunset", "daylength") ) sun_times.sunrise = 7 sun_times.sunnoon = 12 sun_times.sunset = 19 sun_times.daylength = 12 elif lat is None or lon is None: raise ValueError( tsutils.error_wrapper( f""" The `min_max_time` options other than "fix" require calculation of sunrise, sun noon, sunset, and day length. The calculation requires the latitude with keyword "lat" and longitude with keyword "lon". You gave: lat={lat} lon={lon} """ ) ) else: sun_times = get_sun_times(tsd.index, float(lon), float(lat), round(lon / 15.0)) ntsd = pd.DataFrame( disaggregate_temperature( tsd, method=method, min_max_time=min_max_time, mod_nighttime=mod_nighttime, max_delta=max_delta, mean_course=mean_course, sun_times=sun_times, ) ) ntsd.columns = [f"temperature:{target_units[0]}:disagg"] return tsutils.return_input(print_input, tsd, ntsd) @validate_arguments(config=dict(arbitrary_types_allowed=True)) def prepare_hum_tdew( method: Literal[ "equal", "minimal", "dewpoint_regression", "linear_dewpoint_variation", "min_max", "month_hour_precip_mean", ], source_units, input_ts="-", columns=None, start_date=None, end_date=None, dropna="no", clean=False, round_index=None, skiprows=None, index_type="datetime", names=None, target_units=None, hum_min_col: Optional[Union[PositiveInt, str, pd.Series]] = None, hum_max_col: Optional[Union[PositiveInt, str, pd.Series]] = None, hum_mean_col: Optional[Union[PositiveInt, str, pd.Series]] = None, temp_min_col: Optional[Union[PositiveInt, str, pd.Series]] = None, temp_max_col: Optional[Union[PositiveInt, str, pd.Series]] = None, precip_col: Optional[Union[PositiveInt, str, pd.Series]] = None, a0=None, a1=None, kr=None, hourly_temp=None, hourly_precip_hum=None, preserve_daily_mean=None, ): """Disaggregate daily humidity to hourly humidity data.""" target_units = single_target_units(source_units, target_units, "") if method == "equal" and hum_mean_col is None: raise ValueError( tsutils.error_wrapper( """ If `method` is "equal" then the mean daily humidity is a required column identified with the keyword `hum_mean_col` """ ) ) if method == "month_hour_precip_mean" and precip_col is None: raise ValueError( tsutils.error_wrapper( """ If `method` is "month_hour_precip_mean" then the daily precip is a required column identified with the keyword `precip_col` """ ) ) if ( method in ("minimal", "dewpoint_regression", "linear_dewpoint_variation") and temp_min_col is None ): raise ValueError( tsutils.error_wrapper( """ If `method` is "minimal", "dewpoint_regression", or "linear_dewpoint_variation" then the minimum daily temperature is a required column identified with the keyword `temp_min_col`. """ ) ) if method == "min_max" and ( hum_min_col is None or hum_max_col is None or temp_min_col is None or temp_max_col is None ): raise ValueError( tsutils.error_wrapper( f""" If `method` is "min_max" then: Minimum daily humidity is a required column identified with the keyword `hum_min_col`. You gave {hum_min_col}. Maximum daily humidity is a required column identified with the keyword `hum_max_col`. You gave {hum_max_col}. Minimum daily temperature is a required column identified with the keyword `temp_min_col`. You gave {temp_min_col}. Maximum daily temperature is a required column identified with the keyword `temp_max_col`. You gave {temp_max_col}. """ ) ) if method in ("dewpoint_regression", "linear_dewpoint_variation") and ( a0 is None or a1 is None ): raise ValueError( tsutils.error_wrapper( """ If `method` is "dewpoint_regression" or "linear_dewpoint_variation" then a0 and a1 must be given. """ ) ) if method == "linear_dewpoint_variation" and kr is None: raise ValueError( tsutils.error_wrapper( """ If `method` is "linear_dewpoint_variation" then kr must be given """ ) ) if ( method in ( "minimal", "dewpoint_regression", "linear_dewpoint_variation", "min_max", ) and hourly_temp is None ): raise ValueError( tsutils.error_wrapper( """ If `method` is "minimal", "dewpoint_regression", "linear_dewpoint_variation", or "min_max" then hourly temperature is required identified by the filename in keyword `hourly_temp`. """ ) ) pd.options.display.width = 60 columns = [] if method == "equal": with suppress(TypeError): hum_mean_col = int(hum_mean_col) columns.append(hum_mean_col) if method == "min_max": with suppress(TypeError): temp_min_col = int(temp_min_col) columns.append(temp_min_col) with suppress(TypeError): temp_max_col = int(temp_max_col) columns.append(temp_max_col) with suppress(TypeError): hum_min_col = int(hum_min_col) columns.append(hum_min_col) with suppress(TypeError): hum_max_col = int(hum_max_col) columns.append(hum_max_col) if method in ("minimal", "dewpoint_regression", "linear_dewpoint_variation"): with suppress(TypeError): temp_min_col = int(temp_min_col) columns.append(temp_min_col) if method == "month_hour_precip_mean": with suppress(TypeError): precip_col = int(precip_col) columns.append(precip_col) if preserve_daily_mean is not None and method in ( "minimal", "dewpoint_regression", "linear_dewpoint_variation", "min_max", "month_hour_precip_mean", ): with suppress(TypeError): hum_mean_col = int(preserve_daily_mean) columns.append(hum_mean_col) tsd = tsutils.common_kwds( tsutils.read_iso_ts( input_ts, skiprows=skiprows, names=names, index_type=index_type ), start_date=start_date, end_date=end_date, pick=columns, round_index=round_index, dropna=dropna, source_units=source_units, target_units=target_units, clean=clean, ) if method == "equal": tsd.columns = ["hum"] if preserve_daily_mean is not None: if method in ("minimal", "dewpoint_regression", "linear_dewpoint_variation"): tsd.columns = ("tmin", "hum") if method == "min_max": tsd.columns = ("tmin", "tmax", "hum_min", "hum_max", "hum") elif method == "month_hour_precip_mean": tsd.columns = ("precip", "hum") preserve_daily_mean = True else: if method in ("minimal", "dewpoint_regression", "linear_dewpoint_variation"): tsd.columns = "tmin" if method == "min_max": tsd.columns = ("tmin", "tmax", "hum_min", "hum_max") elif method == "month_hour_precip_mean": tsd.columns = "precip" if method in ( "minimal", "dewpoint_regression", "linear_dewpoint_variation", "min_max", ): hourly_temp = tstoolbox.read(hourly_temp) hourly_temp = hourly_temp.astype(float).squeeze() if method == "month_hour_precip_mean": hourly_precip_hum = tstoolbox.read(hourly_precip_hum) month_hour_precip_mean = calculate_month_hour_precip_mean(hourly_precip_hum) else: month_hour_precip_mean = "None" return tsd, hourly_temp, month_hour_precip_mean @validate_arguments(config=dict(arbitrary_types_allowed=True)) def humidity( method: Literal[ "equal", "minimal", "dewpoint_regression", "linear_dewpoint_variation", "min_max", "month_hour_precip_mean", ], source_units, input_ts="-", columns=None, start_date=None, end_date=None, dropna="no", clean=False, round_index=None, skiprows=None, index_type="datetime", names=None, target_units=None, print_input=False, hum_min_col: Optional[Union[PositiveInt, str, pd.Series]] = None, hum_max_col: Optional[Union[PositiveInt, str, pd.Series]] = None, hum_mean_col: Optional[Union[PositiveInt, str, pd.Series]] = None, temp_min_col: Optional[Union[PositiveInt, str, pd.Series]] = None, temp_max_col: Optional[Union[PositiveInt, str, pd.Series]] = None, precip_col: Optional[Union[PositiveInt, str, pd.Series]] = None, a0=None, a1=None, kr=None, hourly_temp=None, hourly_precip_hum=None, preserve_daily_mean=None, ): """Disaggregate daily humidity to hourly humidity data.""" target_units = single_target_units(source_units, target_units, "") tsd, hourly_temp, month_hour_precip_mean = prepare_hum_tdew( method, source_units, input_ts=input_ts, columns=columns, start_date=start_date, end_date=end_date, dropna=dropna, clean=clean, round_index=round_index, skiprows=skiprows, index_type=index_type, names=names, target_units=target_units, print_input=print_input, hum_min_col=hum_min_col, hum_max_col=hum_max_col, hum_mean_col=hum_mean_col, temp_min_col=temp_min_col, temp_max_col=temp_max_col, precip_col=precip_col, a0=a0, a1=a1, kr=kr, hourly_temp=hourly_temp, hourly_precip_hum=hourly_precip_hum, preserve_daily_mean=preserve_daily_mean, ) ntsd = pd.DataFrame( disaggregate_humidity( tsd.astype(float), method=method, temp=hourly_temp, a0=a0, a1=a1, kr=kr, preserve_daily_mean=preserve_daily_mean, month_hour_precip_mean=month_hour_precip_mean, ) ) ntsd.columns = ["humidity:{0}:disagg"] return tsutils.return_input(print_input, tsd, ntsd) @validate_arguments(config=dict(arbitrary_types_allowed=True)) def dewpoint_temperature( method: Literal[ "equal", "minimal", "dewpoint_regression", "linear_dewpoint_variation", "min_max", "month_hour_precip_mean", ], source_units, input_ts="-", columns=None, start_date=None, end_date=None, dropna="no", clean=False, round_index=None, skiprows=None, index_type="datetime", names=None, target_units=None, print_input=False, hum_min_col: Optional[Union[PositiveInt, str, pd.Series]] = None, hum_max_col: Optional[Union[PositiveInt, str, pd.Series]] = None, hum_mean_col: Optional[Union[PositiveInt, str, pd.Series]] = None, temp_min_col: Optional[Union[PositiveInt, str, pd.Series]] = None, temp_max_col: Optional[Union[PositiveInt, str, pd.Series]] = None, precip_col: Optional[Union[PositiveInt, str, pd.Series]] = None, a0=None, a1=None, kr=None, hourly_temp=None, hourly_precip_hum=None, preserve_daily_mean=None, ): """Disaggregate daily humidity to hourly humidity data.""" # target_units = single_target_units(source_units, target_units, "") target_units = single_target_units(source_units, target_units, "degK") tsd, hourly_temp, month_hour_precip_mean = prepare_hum_tdew( method, source_units, input_ts=input_ts, columns=columns, start_date=start_date, end_date=end_date, dropna=dropna, clean=clean, round_index=round_index, skiprows=skiprows, index_type=index_type, names=names, target_units=target_units, hum_min_col=hum_min_col, hum_max_col=hum_max_col, hum_mean_col=hum_mean_col, temp_min_col=temp_min_col, temp_max_col=temp_max_col, precip_col=precip_col, a0=a0, a1=a1, kr=kr, hourly_temp=hourly_temp, hourly_precip_hum=hourly_precip_hum, preserve_daily_mean=preserve_daily_mean, ) ntsd = pd.DataFrame( tdew_melo.disaggregate_tdew( tsd.astype(float), method=method, temp=hourly_temp, a0=a0, a1=a1, kr=kr, preserve_daily_mean=preserve_daily_mean, month_hour_precip_mean=month_hour_precip_mean, ) ) ntsd.columns = ["dewpoint_temp:degK:disagg"] ntsd_units = tsutils._normalize_units( ntsd, source_units="degK", target_units=target_units[0] ) return tsutils.return_input(print_input, tsd, ntsd) @validate_arguments(config=dict(arbitrary_types_allowed=True)) def wind_speed( method: Literal["equal", "cosine", "random"], source_units, input_ts="-", columns=None, start_date=None, end_date=None, dropna="no", clean=False, round_index=None, skiprows=None, index_type="datetime", names=None, target_units=None, print_input=False, a=None, b=None, t_shift=None, ): """Disaggregate daily to hourly data.""" target_units = single_target_units(source_units, target_units, "m/s") if method == "cosine" and (a is None or b is None or t_shift is None): raise ValueError( tsutils.error_wrapper( f""" For the "cosine" method, requires the `a`, `b`, and `t_shift` keywords. You gave: a = {a} b = {b} t_shift = {t_shift} """ ) ) if method in ("equal", "random") and not ( a is None or b is None or t_shift is None ): warnings.warn( tsutils.error_wrapper( """ The a, b, and t_shift options are ignored for the "equal" and "random" methods. """ ) ) tsd = tsutils.common_kwds( tsutils.read_iso_ts( input_ts, skiprows=skiprows, names=names, index_type=index_type ), start_date=start_date, end_date=end_date, pick=columns, round_index=round_index, dropna=dropna, source_units=source_units, target_units=target_units, clean=clean, ) ndf = pd.DataFrame() for column_name, column_data in tsd.iteritems(): df = disaggregate_wind(column_data, method=method, a=a, b=b, t_shift=t_shift) ndf = ndf.join(df, how="outer") return tsutils.return_input( print_input, tsd, ndf, ) @validate_arguments(config=dict(arbitrary_types_allowed=True)) def radiation( method: Literal["pot_rad", "pot_rad_via_ssd", "pot_rad_via_bc", "mean_course"], source_units, input_ts="-", columns=None, start_date=None, end_date=None, dropna="no", clean=False, round_index=None, skiprows=None, index_type="datetime", names=None, target_units=None, print_input=False, pot_rad=None, angstr_a=0.25, angstr_b=0.5, bristcamp_a=0.75, bristcamp_c=2.4, hourly_rad=None, lat=None, lon=None, glob_swr_col=None, ): """Disaggregate daily to hourly data.""" target_units = single_target_units(source_units, target_units, "W/m2") target_units = target_units[0] * len(source_units) pd.options.display.width = 60 if method == "mean_course" and hourly_rad is None: raise ValueError( tsutils.error_wrapper( """ If method is "mean_course" need to supply CSV filename of hourly radiation by the `hourly_rad` keyword.""" ) ) if method in ("pot_rad", "mean_course") and glob_swr_col is None: raise ValueError( tsutils.error_wrapper( """ If method is "pot_rad" or "mean_course" need to supply the daily global short wave radiation as column name or index with keyword `glob_swr_col` """ ) ) if method == "pot_rad_via_bc" and (bristcamp_a is None or bristcamp_c is None): raise ValueError( tsutils.error_wrapper( """ If method is "pot_rad_via_bc" need to supply the keywords `bristcamp_a` and `bristcamp_c`. """ ) ) tsd = tsutils.common_kwds( tsutils.read_iso_ts( input_ts, skiprows=skiprows, names=names, index_type=index_type ), start_date=start_date, end_date=end_date, pick=columns, round_index=round_index, dropna=dropna, source_units=source_units, target_units=target_units, clean=clean, ) if method in ("pot_rad", "mean_course"): with suppress(ValueError): glob_swr_col = glob_swr_col - 1 tsd["glob"] = tsd[glob_swr_col] sun_times = None if method == "pot_rad_via_ssd": sun_times = get_sun_times(tsd.index, float(lon), float(lat), round(lon / 15.0)) return tsutils.return_input( print_input, tsd, pd.DataFrame( disaggregate_radiation( tsd, sun_times=sun_times, pot_rad=pot_rad, method=method, angstr_a=angstr_a, angstr_b=angstr_b, bristcamp_a=bristcamp_a, bristcamp_c=bristcamp_c, mean_course=hourly_rad, ) ), ) @validate_arguments(config=dict(arbitrary_types_allowed=True)) def precipitation( method: Literal["equal", "cascade", "masterstation"], source_units, input_ts="-", start_date=None, end_date=None, dropna="no", clean=False, round_index=None, skiprows=None, index_type="datetime", names=None, target_units=None, print_input=False, columns=None, masterstation_hour_col: Optional[Union[PositiveInt, str]] = None, ): """Disaggregate daily to hourly data.""" target_units = single_target_units(source_units, target_units, "mm") pd.options.display.width = 60 tsd = tsutils.common_kwds( input_tsd=tsutils.make_list(input_ts), skiprows=skiprows, index_type=index_type, start_date=start_date, end_date=end_date, round_index=round_index, names=names, dropna=dropna, clean=clean, source_units=source_units, target_units=target_units, usecols=columns, ) if method == "masterstation": try: # If masterstations_hour_col is a column name: masterstation_hour_col = tsd.columns.get_loc(masterstation_hour_col) except KeyError: # If masterstations_hour_col is a column number: masterstation_hour_col = int(masterstation_hour_col) - 1 try: mhour = tsd[masterstation_hour_col].to_frame() except: mhour = tsutils.common_kwds( input_tsd=tsutils.make_list(input_ts), skiprows=skiprows, index_type=index_type, start_date=start_date, end_date=end_date, round_index=round_index, names=names, dropna=dropna, clean=clean, source_units=source_units, target_units=target_units, usecols=columns, ) # Should only be one hourly column in the input. dsum = mhour.groupby(pd.Grouper(freq="D")).sum().asfreq("H", method="ffill") master = mhour.join(dsum, rsuffix="sum") mask = master.iloc[:, 0] > 0.0 master = ( master.loc[mask, master.columns[0]] / master.loc[mask, master.columns[1]] ).to_frame() print(master) ntsd = tsd.loc[:, tsd.columns != masterstation_hour_col].asfreq( "H", method="ffill" ) print(ntsd) ntsd = ntsd.join(master) print(ntsd) ntsd = ntsd.loc[:, tsd.columns != masterstation_hour_col].multiply( ntsd.iloc[:, -1:], axis="index" ) print(ntsd) sys.exit() # All the remaining columns are daily. ntsd = ( tsd.loc[:, tsd.columns != masterstation_hour_col] .asfreq("H", method="ffill") .mul(master, axis="rows") ) return tsutils.return_input(print_input, tsd, ntsd) @validate_arguments(config=dict(arbitrary_types_allowed=True)) def evaporation( method: Literal["trap", "fixed"], source_units, input_ts="-", columns=None, start_date=None, end_date=None, dropna="no", clean=False, round_index=None, skiprows=None, index_type="datetime", names=None, target_units=None, print_input=False, lat: Optional[confloat(ge=-90, le=90)] = None, ): """Disaggregate daily to hourly data.""" target_units = single_target_units(source_units, target_units) pd.options.display.width = 60 if method == "trap" and lat is None: raise ValueError( tsutils.error_wrapper( f""" The "trap" method requires latitude with the `lat` keyword. You gave "{lat}". """ ) ) tsd = tsutils.common_kwds( tsutils.read_iso_ts( input_ts, skiprows=skiprows, names=names, index_type=index_type ), start_date=start_date, end_date=end_date, pick=columns, round_index=round_index, dropna=dropna, source_units=source_units, target_units=target_units, clean=clean, ) ntsd = tsd.append( pd.DataFrame( columns=tsd.columns, index=[tsd.index[-1] + datetime.timedelta(days=1)] ) ) ndata = ntsd.resample("H").ffill() fdata = pd.DataFrame(columns=ndata.columns, index=ndata.index, dtype="f") if method == "trap": lrad = lat * np.pi / 180.0 ad = 0.40928 * np.cos(0.0172141 * (172 - tsd.index.dayofyear)) ss = np.sin(lrad) * np.sin(ad) cs = np.cos(lrad) * np.cos(ad) x2 = -ss / cs delt = 7.6394 * (np.pi / 2.0 - np.arctan(x2 / np.square(1 - x2**2))) sunr = 12.0 - delt / 2.0 # develop hourly distribution given sunrise, # sunset and length of day (DELT) dtr2 = delt / 2.0 dtr4 = delt / 4.0 tr2 = sunr + dtr4 tr3 = tr2 + dtr2 tr4 = tr3 + dtr4 for index, toss in enumerate(sunr): cdate = ntsd.index[index] fdata.loc[ datetime.datetime(cdate.year, cdate.month, cdate.day, int(sunr[index])), :, ] = 0.0 fdata.loc[ datetime.datetime( cdate.year, cdate.month, cdate.day, int(tr4[index]) + 1 ), :, ] = 0.0 fdata.loc[ datetime.datetime( cdate.year, cdate.month, cdate.day, int(round(tr2[index])) ), :, ] = 1.0 fdata.loc[ datetime.datetime( cdate.year, cdate.month, cdate.day, int(round(tr3[index])) ), :, ] = 1.0 fdata.iloc[0, :] = 0.0 fdata.iloc[-1, :] = 0.0 fdata = fdata.interpolate("linear") fdata = fdata.fillna(0.0) fdata = fdata / fdata.groupby(pd.Grouper(freq="D")).sum().resample("H").ffill() fdata = fdata * ndata fdata = fdata.iloc[:-1, :] elif method == "fixed": # DATA EVAPDIST / 0.000,0.000,0.000,0.000,0.000,0.000,0.019,0.041, # $ 0.067,0.088,0.102,0.110,0.110,0.110,0.105,0.095, # $ 0.081,0.055,0.017,0.000,0.000,0.000,0.000,0.000 fdata = fdata.fillna(0.0) fdata[fdata.index.hour == 7] = 0.019 fdata[fdata.index.hour == 8] = 0.041 fdata[fdata.index.hour == 9] = 0.067 fdata[fdata.index.hour == 10] = 0.088 fdata[fdata.index.hour == 11] = 0.102 fdata[fdata.index.hour == 12] = 0.110 fdata[fdata.index.hour == 13] = 0.110 fdata[fdata.index.hour == 14] = 0.110 fdata[fdata.index.hour == 15] = 0.105 fdata[fdata.index.hour == 16] = 0.095 fdata[fdata.index.hour == 17] = 0.081 fdata[fdata.index.hour == 18] = 0.055 fdata[fdata.index.hour == 19] = 0.017 fdata = fdata * ndata fdata = fdata.iloc[:-1, :] return tsutils.print_input(print_input, tsd, fdata, None)
{ "content_hash": "93828444a31b2513273163dfccb16652", "timestamp": "", "source": "github", "line_count": 1069, "max_line_length": 88, "avg_line_length": 30.507015902712816, "alnum_prop": 0.5537532196737397, "repo_name": "timcera/mettoolbox", "id": "5a8c43de32a920c0f60cceb67f50a1892d7bb891", "size": "32612", "binary": false, "copies": "1", "ref": "refs/heads/main", "path": "src/mettoolbox/disaggregate.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "Jupyter Notebook", "bytes": "1077048" }, { "name": "Python", "bytes": "208651" } ], "symlink_target": "" }
""" AUTHOR : Lang PURPOSE : Multi Self Deep Learning """ __author__ = 'Lang' import tensorflow as tf, sys import os import shutil # change this as you see fit graph_path_temple = sys.argv[1] label_path_temple = sys.argv[2] graph_path = os.path.abspath(graph_path_temple) label_path = os.path.abspath(label_path_temple) # Loads label file, strips off carriage return label_lines = [line.rstrip() for line in tf.gfile.GFile(label_path)] # Unpersists graph from file with tf.gfile.FastGFile(graph_path, 'rb') as f: graph_def = tf.GraphDef() graph_def.ParseFromString(f.read()) _ = tf.import_graph_def(graph_def, name='') count = 0 tracing = open("processing.txt",'w') tracing.close() move_directory = "Removed_Pictures" try: os.stat(move_directory) except: os.mkdir(move_directory) for image_dir_path in os.listdir('.'): try: for image_path in os.listdir(image_dir_path): try: # Read in the image_data image_data = tf.gfile.FastGFile(image_dir_path+'/'+image_path, 'rb').read() with tf.Session() as sess: # Feed the image_data as input to the graph and get first prediction softmax_tensor = sess.graph.get_tensor_by_name('final_result:0') predictions = sess.run(softmax_tensor, \ {'DecodeJpeg/contents:0': image_data}) # Sort to show labels of first prediction in order of confidence top_k = predictions[0].argsort()[-len(predictions[0]):][::-1] if label_lines[top_k[0]] == "no": shutil.move(image_dir_path+'/'+image_path, move_directory+'/'+image_dir_path + ' ' + image_path) print('removed picture '+image_path) else: print('remain picture '+image_path) except: os.remove(image_dir_path+'/'+image_path) print('removed picture'+image_path) count = count +1 tracing = open("processing.txt",'a') tracing.write("finish " + str(count) + " kinds of removing not flower pictures\n") tracing.close() except: print('error:'+ image_dir_path) tracing = open("processing.txt",'a') tracing.write("all finished") tracing.close()
{ "content_hash": "c119471ee64ea93ba865f91ebbaeff12", "timestamp": "", "source": "github", "line_count": 76, "max_line_length": 120, "avg_line_length": 31.157894736842106, "alnum_prop": 0.582347972972973, "repo_name": "HeavenMin/PlantImageRecognition", "id": "d4d4074133cdcf69d751385a79dbfab1e660de3a", "size": "2369", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "Dataset Process/Move_Anything_Not_Flower.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "HTML", "bytes": "119507" }, { "name": "Python", "bytes": "168234" } ], "symlink_target": "" }
"""Test parsing of COUNTER 5 TRJ2 report (turnaways)""" import datetime def test_metric(trj2_report): assert trj2_report.metric is None # Multiple metrics per report def test_type(trj2_report): assert trj2_report.report_type == u"TR_J2" def test_data(trj2_report): i = iter(trj2_report) row = next(i) item = next(iter(row)) assert item == (datetime.date(2017, 1, 1), u"Limit_Exceeded", 3)
{ "content_hash": "a5692d49b355de3d09b2b32424e4cf23", "timestamp": "", "source": "github", "line_count": 18, "max_line_length": 68, "avg_line_length": 23.38888888888889, "alnum_prop": 0.672209026128266, "repo_name": "pitthsls/pycounter", "id": "d7e97bef42ee8a73ced3122621e89a3c51f6cc39", "size": "421", "binary": false, "copies": "1", "ref": "refs/heads/main", "path": "pycounter/test/counter5/test_trj2.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "114031" } ], "symlink_target": "" }
from vispy import testing from vispy.visuals.graphs.layouts import get_layout from vispy.visuals.graphs.layouts.networkx_layout import NetworkxCoordinates import numpy as np # conditional import try: import networkx as nx except ModuleNotFoundError: nx = None def test_networkx_layout_with_graph(): """ Testing the various inputs to the networkx layout """ settings = dict(name="networkx_layout") if nx: # empty input # testing.assert_raises(ValueError("Requires networkx input"), get_layout(**settings)) # define graph graph = nx.complete_graph(5) # define positions layout = np.random.rand(5, 2) settings['graph'] = graph settings['layout'] = layout # test numpy array input testing.assert_true(isinstance( get_layout(**settings), NetworkxCoordinates)) # testing string input settings['layout'] = 'circular' testing.assert_true(isinstance( get_layout(**settings), NetworkxCoordinates)) # testing dict input settings['layout'] = nx.circular_layout(graph) testing.assert_true(isinstance( get_layout(**settings), NetworkxCoordinates)) def test_networkx_layout_no_networkx(): settings = dict(name="networkx_layout") testing.assert_raises(ValueError, get_layout, **settings)
{ "content_hash": "7cac8c0af687abed034242ca76a922d8", "timestamp": "", "source": "github", "line_count": 45, "max_line_length": 94, "avg_line_length": 30.666666666666668, "alnum_prop": 0.6608695652173913, "repo_name": "Eric89GXL/vispy", "id": "4369514bb3f0e92262f57f32052bb79bf2edc91c", "size": "1539", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "vispy/testing/tests/test_networkx_layout.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "C", "bytes": "143081" }, { "name": "GLSL", "bytes": "195460" }, { "name": "JavaScript", "bytes": "5007" }, { "name": "Makefile", "bytes": "1638" }, { "name": "PowerShell", "bytes": "4078" }, { "name": "Python", "bytes": "2461885" } ], "symlink_target": "" }
import sys import hashlib import time import json import os import binascii import datetime import random import requests # pip install requests from requests import Request, Session AUTH_KEY = os.environ['AUTH_KEY'] USERNAME = os.environ['USERNAME'] if 'USERNAME' in os.environ else 'joe' PASSPHRASE = os.environ['PASSPHRASE'] if 'PASSPHRASE' in os.environ else 'clipperz' #URLS = os.environ['URLS'] if 'URLS' in os.environ else ['https://clipperz.is', 'https://dev.clipperz.is', 'https://app2.cloud.clipperz.is'] URLS = os.environ['URLS'] if 'URLS' in os.environ else ['https://clipperz.is'] def md5(content): hash = hashlib.md5() hash.update(content) result = bytearray(hash.digest()) return result def sha256(content): hash = hashlib.sha256() hash.update(content) result = bytearray(hash.digest()) return result def shaD256(content): return sha256(sha256(content)) def hash(content): return shaD256(content) def stringHash(value): return binascii.hexlify(hash(value)) def dataToInt(data): return int(binascii.hexlify(data), 16) def intToHex(value): return hex(value).rstrip("L").lstrip("0x") def downloadApp(session, label, url): sys.stdout.write('Downloading application version {}'.format(label)) request = Request('GET', url) preparedRequest = session.prepare_request(request) preparedRequest.headers['Accept'] = 'text/html' preparedRequest.headers['Accept-Encoding'] = 'gzip,deflate,sdch' # SNI will never be supported in Python 2 series: http://stackoverflow.com/questions/18578439/using-requests-with-tls-doesnt-give-sni-support#comment30104870_18579484 start = time.time() response = session.send(preparedRequest, verify=False) loadTime = time.time() - start result = { 'url': url, 'status': response.status_code, 'etag': response.headers['etag'], 'lastModified': response.headers['last-modified'], 'timing': loadTime, } if response.status_code == 200: # result['content'] = response.headers['content-encoding'], result['size'] = len(response.content) result['signature'] = binascii.hexlify(md5(response.content)) print(' -> signature: {} - size: {}'.format(result['signature'], str(result['size']))) else: print(" error: " + response.status_code) return result def payToll(toll): def prefixMatchingBits(value, target): result = 0 c = min(len(value), len(target)) i = 0 while (i < c) and (value[i] == target[i]): result += 8 i += 1 if (i < c): xorValue = value[i] ^ target[i] if xorValue >= 64: result += 1 elif xorValue >= 32: result += 2 elif xorValue >= 16: result += 3 elif xorValue >= 8: result += 4 elif xorValue >= 4: result += 5 elif xorValue >= 2: result += 6 elif xorValue >= 1: result += 7 return result def increment(value): i = len(value) - 1 done = False while (i >= 0) and (done == False): currentValue = value[i] if currentValue == 0xff: value[i] = 0x00 if i >= 0: i -= 1 else: done = True else: value[i] = currentValue + 1 done = True return value cost = toll['cost'] target = bytearray(toll['targetValue'].decode("hex")) payment = bytearray(os.urandom(32)) while True: if prefixMatchingBits(sha256(payment), target) > cost: break else: payment = increment(payment) result = binascii.hexlify(payment) return result def postPayload(session, url, payload): start = time.time() request = Request('POST', url, data=payload) preparedRequest = session.prepare_request(request) response = session.send(preparedRequest, verify=False) timing = time.time() - start result = response.json() return timing, result def knock(session, url): payload = { 'method': 'knock', 'version': 'fake-app-version', 'parameters': json.dumps({ 'requestType': 'CONNECT' }) } timing, result = postPayload(session, url, payload) toll = result['toll'] return timing, toll def handshake_connect(session, url, C, A, toll, payment): payload = { 'method': 'handshake', 'version': 'fake-app-version', 'parameters': json.dumps({ "parameters": { "message": "connect", "version": "0.2", "parameters": { "C": C, "A": A } }, "toll": { "targetValue": toll['targetValue'], "toll": payment } }) } timing, result = postPayload(session, url, payload) toll = result['toll'] challenge = result['result'] return timing, challenge, toll def handshake_credentialCheck(session, url, M1, toll, payment): payload = { 'method': 'handshake', 'version': 'fake-app-version', 'parameters': json.dumps({ "parameters": { "message": "credentialCheck", "version": "0.2", "parameters": { "M1": M1 } }, "toll": { "targetValue": toll['targetValue'], "toll": payment } }) } timing, result = postPayload(session, url, payload) toll = result['toll'] info = result['result'] return timing, info, toll def message_getUserDetails(session, url, sharedSecret, toll, payment): payload = { 'method': 'message', 'version': 'fake-app-version', 'parameters': json.dumps({ "parameters": { "message": "getUserDetails", "srpSharedSecret": sharedSecret, "parameters": {} }, "toll": { "targetValue": toll['targetValue'], "toll": payment } }) } timing, result = postPayload(session, url, payload) toll = result['toll'] details = result['result'] return timing, details, toll def doLogin(session, url, username, passphrase): sys.stdout.write("Doing login ...") try: start = time.time() g = 2 n = int('115b8b692e0e045692cf280b436735c77a5a9e8a9e7ed56c965f87db5b2a2ece3', 16) k = int('64398bff522814e306a97cb9bfc4364b7eed16a8c17c5208a40a2bad2933c8e', 16) knockTiming, toll = knock(session, url) C = stringHash(username + passphrase) p = stringHash(passphrase + username) a = dataToInt(bytearray(os.urandom(32))) A = pow(g, a, n) connectTiming, challenge, toll = handshake_connect(session, url, C, intToHex(A), toll, payToll(toll)) B = int(challenge['B'], 16) s = challenge['s'] u = dataToInt(hash(str(A) + str(B))) x = dataToInt(hash(('0000000000000000000000000000000000000000000000000000000000000000' + s)[-64:] + p)) S = pow((B - k * pow(g, x, n)), (a + u * x), n) K = stringHash(str(S)) M1 = stringHash( "597626870978286801440197562148588907434001483655788865609375806439877501869636875571920406529" + stringHash(C) + str(int(s, 16)) + str(A) + str(B) + K ) credentialCheckTiming, info, toll = handshake_credentialCheck(session, url, M1, toll, payToll(toll)) sharedSecret = K getUserDetailsTiming, details, toll = message_getUserDetails(session, url, sharedSecret, toll, payToll(toll)) result = { 'knock': knockTiming, 'connect': connectTiming, 'credentialCheck': credentialCheckTiming, 'getUserDetails': getUserDetailsTiming, 'total': time.time() - start } except Exception as exception: result = { 'error': str(exception) } print(" done") return result, C #def collectCurrentLocationInfo(): # return { # 'timestamp': datetime.datetime.utcnow().isoformat(), # 'ip': requests.get('http://ifconfig.me/ip').text.rstrip().encode("ascii") # } def main (baseUrl, username, passphrase): session = Session() betaInfo = downloadApp(session, 'beta', baseUrl + '/beta') gammaInfo = downloadApp(session, 'gamma', baseUrl + '/gamma') deltaInfo = downloadApp(session, 'delta', baseUrl + '/delta') connectInfo, C = doLogin(session, baseUrl + '/json', username, passphrase) # currentLocationInfo = collectCurrentLocationInfo() result = { 'info': { 'host': baseUrl, 'user': C }, 'beta': betaInfo, 'gamma': gammaInfo, 'delta': deltaInfo, 'timing': connectInfo # 'info': currentLocationInfo } data = json.dumps(result) print("Collected data:\n" + json.dumps(result, indent=4)) response = requests.post('http://collector.stats.clipperz.is/submit', data, auth=('x', AUTH_KEY)) # response = requests.post('http://localhost:8888/submit', data, auth=('x', AUTH_KEY)) if response.status_code != 200: # raise Exception("failed to submit data") print("Sorry. Failed to submit data: " + str(response.status_code)) else: print("Data successfully submitted. Thanks!") if __name__ == "__main__": for url in URLS: waitingTime = int(random.random() * 5 * 60) print("....z.zz.. (waiting for " + str(waitingTime) + " seconds)") time.sleep(waitingTime) main(url, USERNAME, PASSPHRASE)
{ "content_hash": "8e390cf472de9b9142e14a8a6e9b973f", "timestamp": "", "source": "github", "line_count": 343, "max_line_length": 167, "avg_line_length": 24.737609329446062, "alnum_prop": 0.6651738361814967, "repo_name": "clipperz/stats-collector", "id": "66622cb95bcc9063cc1688ff4d092cd5c0452f80", "size": "8504", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "collectData.py", "mode": "33261", "license": "apache-2.0", "language": [ { "name": "Python", "bytes": "12425" } ], "symlink_target": "" }
from abc import ABCMeta, abstractmethod from six import add_metaclass from fuel.iterator import DataIterator @add_metaclass(ABCMeta) class AbstractDataStream(object): """A stream of data separated into epochs. A data stream is an iterable stream of examples/minibatches. It shares similarities with Python file handles return by the ``open`` method. Data streams can be closed using the :meth:`close` method and reset using :meth:`reset` (similar to ``f.seek(0)``). Parameters ---------- iteration_scheme : :class:`.IterationScheme`, optional The iteration scheme to use when retrieving data. Note that not all datasets support the same iteration schemes, some datasets require one, and others don't support any. In case when the data stream wraps another data stream, the choice of supported iteration schemes is typically even more limited. Be sure to read the documentation of the dataset or data stream in question. Attributes ---------- iteration_scheme : :class:`.IterationScheme` The iteration scheme used to retrieve data. Can be ``None`` when not used. sources : tuple of strings The names of the data sources returned by this data stream, as given by the dataset. """ def __init__(self, iteration_scheme=None): self.iteration_scheme = iteration_scheme def get_data(self, request=None): """Request data from the dataset or the wrapped stream. Parameters ---------- request : object A request fetched from the `request_iterator`. """ pass @abstractmethod def reset(self): """Reset the data stream.""" pass @abstractmethod def close(self): """Gracefully close the data stream, e.g. releasing file handles.""" pass @abstractmethod def next_epoch(self): """Switch the data stream to the next epoch.""" pass @abstractmethod def get_epoch_iterator(self, as_dict=False): return DataIterator(self, self.iteration_scheme.get_request_iterator() if self.iteration_scheme else None, as_dict=as_dict) def iterate_epochs(self, as_dict=False): """Allow iteration through all epochs. Notes ----- This method uses the :meth:`get_epoch_iterator` method to retrieve the :class:`DataIterator` for each epoch. The default implementation of this method resets the state of the data stream so that the new epoch can read the data from the beginning. However, this behavior only works as long as the ``epochs`` property is iterated over using e.g. ``for epoch in stream.epochs``. If you create the data iterators in advance (e.g. using ``for i, epoch in zip(range(10), stream.epochs`` in Python 2) you must call the :meth:`reset` method yourself. """ while True: yield self.get_epoch_iterator(as_dict=as_dict) class DataStream(AbstractDataStream): """A stream of data from a dataset. Parameters ---------- dataset : instance of :class:`Dataset` The dataset from which the data is fetched. """ def __init__(self, dataset, **kwargs): super(DataStream, self).__init__(**kwargs) self.dataset = dataset self.data_state = self.dataset.open() self._fresh_state = True @property def sources(self): if hasattr(self, '_sources'): return self._sources return self.dataset.sources @sources.setter def sources(self, value): self._sources = value def close(self): self.data_state = self.dataset.close(self.data_state) def reset(self): self.data_state = self.dataset.reset(self.data_state) self._fresh_state = True def next_epoch(self): self.data_state = self.dataset.next_epoch(self.data_state) def get_data(self, request=None): """Get data from the dataset.""" return self.dataset.get_data(self.data_state, request) def get_epoch_iterator(self, **kwargs): """Get an epoch iterator for the data stream.""" if not self._fresh_state: self.next_epoch() else: self._fresh_state = False return super(DataStream, self).get_epoch_iterator(**kwargs)
{ "content_hash": "1d4a28232c63d4f60574d9136963d5d4", "timestamp": "", "source": "github", "line_count": 137, "max_line_length": 78, "avg_line_length": 32.56934306569343, "alnum_prop": 0.628641864634693, "repo_name": "mducoffe/fuel", "id": "0286c20af0c21e9684ec5d931c9a0c4983b7abd9", "size": "4462", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "fuel/streams.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "100247" } ], "symlink_target": "" }
from wagtail.contrib.modeladmin.options import ( ModelAdmin, modeladmin_register) from unusualbusiness.howtos.models import HowToPage class HowToPageModelAdmin(ModelAdmin): model = HowToPage menu_label = 'Knowledge pools' # ditch this to use verbose_name_plural from model menu_icon = 'radio-empty howtos' # change as required menu_order = 200 # will put in 3rd place (000 being 1st, 100 2nd) list_display = ('title', ) list_filter = ('live', ) search_fields = ('title',) # Now you just need to register your customised ModelAdmin class with Wagtail modeladmin_register(HowToPageModelAdmin)
{ "content_hash": "02d05203d6927906e413a6a5ca7a5066", "timestamp": "", "source": "github", "line_count": 16, "max_line_length": 85, "avg_line_length": 39.125, "alnum_prop": 0.7348242811501597, "repo_name": "jeremy-c/unusualbusiness", "id": "da9b56ddaa1bd3450286c64aa289b65e7d84a5f9", "size": "626", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "unusualbusiness/howtos/wagtail_hooks.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "CSS", "bytes": "120772" }, { "name": "HTML", "bytes": "136629" }, { "name": "JavaScript", "bytes": "39256" }, { "name": "Nginx", "bytes": "1127" }, { "name": "Python", "bytes": "209333" }, { "name": "Shell", "bytes": "3340" } ], "symlink_target": "" }
from mock import Mock from allura.lib import helpers as h from tg import tmpl_context as c from forgetracker.tracker_main import MilestoneController def test_unicode_lookup(): # can't use name= in constructor, that's special attribute for Mock milestone = Mock() milestone.name = 'Перспектива' milestone_field = Mock(milestones=[milestone]) milestone_field.name = '_milestone' app = Mock(globals=Mock(milestone_fields=[milestone_field])) with h.push_config(c, app=app): root = None field = 'milestone' # u'Перспектива' milestone_urlparam = '%D0%9F%D0%B5%D1%80%D1%81%D0%BF%D0%B5%D0%BA%D1%82%D0%B8%D0%B2%D0%B0' mc = MilestoneController(root, field, milestone_urlparam) assert mc.milestone # check that it is found assert mc.milestone.name == 'Перспектива'
{ "content_hash": "18099ffa417ae20f589cba1fa7ed8cfe", "timestamp": "", "source": "github", "line_count": 25, "max_line_length": 97, "avg_line_length": 33.48, "alnum_prop": 0.6881720430107527, "repo_name": "apache/allura", "id": "9634eb62d004e4b9064047be92c5ab590def40e9", "size": "1741", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "ForgeTracker/forgetracker/tests/unit/test_milestone_controller.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Batchfile", "bytes": "6142" }, { "name": "CSS", "bytes": "181457" }, { "name": "Dockerfile", "bytes": "4748" }, { "name": "HTML", "bytes": "867332" }, { "name": "JavaScript", "bytes": "1191836" }, { "name": "Makefile", "bytes": "6248" }, { "name": "Python", "bytes": "4499987" }, { "name": "RAML", "bytes": "27600" }, { "name": "Roff", "bytes": "41" }, { "name": "Ruby", "bytes": "1280" }, { "name": "SCSS", "bytes": "27742" }, { "name": "Shell", "bytes": "131207" }, { "name": "XSLT", "bytes": "3357" } ], "symlink_target": "" }
from django.db import models from django.contrib.contenttypes.fields import GenericRelation from django.core.exceptions import ValidationError from mezzanine.pages.page_processors import processor_for from hs_core.models import BaseResource, ResourceManager, resource_processor, \ CoreMetaData, AbstractMetaDataElement from .utils import get_SupportedResTypes_choices class ToolResource(BaseResource): objects = ResourceManager('ToolResource') class Meta: proxy = True verbose_name = 'Web App Resource' @classmethod def get_supported_upload_file_types(cls): # no file types are supported return () @classmethod def allow_multiple_file_upload(cls): # no file can be uploaded return False @classmethod def can_have_multiple_files(cls): # resource can't have any files return False @property def metadata(self): md = ToolMetaData() return self._get_metadata(md) @property def can_be_published(self): return False processor_for(ToolResource)(resource_processor) class AppHomePageUrl(AbstractMetaDataElement): term = 'AppHomePageUrl' value = models.CharField(max_length=1024, blank=True, default="") class Meta: # AppHomePageUrl element is not repeatable unique_together = ("content_type", "object_id") class RequestUrlBase(AbstractMetaDataElement): term = 'RequestUrlBase' value = models.CharField(max_length=1024, blank=True, default="") class Meta: # RequestUrlBase element is not repeatable unique_together = ("content_type", "object_id") class ToolVersion(AbstractMetaDataElement): term = 'AppVersion' value = models.CharField(max_length=128, blank=True) class Meta: # ToolVersion element is not repeatable unique_together = ("content_type", "object_id") class SupportedResTypeChoices(models.Model): description = models.CharField(max_length=128) def __unicode__(self): return self.description class SupportedResTypes(AbstractMetaDataElement): term = 'SupportedResTypes' supported_res_types = models.ManyToManyField(SupportedResTypeChoices, blank=True) def get_supported_res_types_str(self): return ','.join([parameter.description for parameter in self.supported_res_types.all()]) @classmethod def _add_supported_res_type(cls, meta_instance, supported_res_types): for res_type in supported_res_types: # there are two possibilities for res_type_str values: # list of string (during normal create or update) or # integer (during creating new version of the resource) if isinstance(res_type, int): # "copy res" or "create a new version" qs = SupportedResTypeChoices.objects.filter(id=res_type) if not qs.exists(): raise meta_instance.supported_res_types.add(qs[0]) elif isinstance(res_type, basestring): # create or update res qs = SupportedResTypeChoices.objects.filter(description__iexact=res_type) if qs.exists(): meta_instance.supported_res_types.add(qs[0]) else: meta_instance.supported_res_types.create(description=res_type) else: raise ValidationError("No supported_res_types parameter " "was found in the **kwargs list") @classmethod def _validate_supported_res_types(cls, supported_res_types): for res_type in supported_res_types: if isinstance(res_type, basestring) \ and res_type not in [res_type_choice[0] for res_type_choice in get_SupportedResTypes_choices()]: raise ValidationError('Invalid supported_res_types:%s' % res_type) @classmethod def create(cls, **kwargs): if 'supported_res_types' in kwargs: cls._validate_supported_res_types(kwargs['supported_res_types']) metadata_obj = kwargs['content_object'] new_meta_instance = SupportedResTypes.objects.create(content_object=metadata_obj) cls._add_supported_res_type(new_meta_instance, kwargs['supported_res_types']) return new_meta_instance else: raise ValidationError("No supported_res_types parameter was found in the **kwargs list") @classmethod def update(cls, element_id, **kwargs): meta_instance = SupportedResTypes.objects.get(id=element_id) if 'supported_res_types' in kwargs: cls._validate_supported_res_types(kwargs['supported_res_types']) meta_instance.supported_res_types.clear() cls._add_supported_res_type(meta_instance, kwargs['supported_res_types']) meta_instance.save() else: raise ValidationError("No supported_res_types parameter was found in the **kwargs list") @classmethod def remove(cls, element_id): raise ValidationError("SupportedResTypes element can't be deleted.") class SupportedSharingStatusChoices(models.Model): description = models.CharField(max_length=128) def __unicode__(self): return self.description class SupportedSharingStatus(AbstractMetaDataElement): term = 'SupportedSharingStatus' sharing_status = models.ManyToManyField(SupportedSharingStatusChoices, blank=True) def get_sharing_status_str(self): return ', '.join([parameter.description for parameter in self.sharing_status.all()]) @classmethod def _add_sharing_status(cls, meta_instance, sharing_status_list): for sharing_status in sharing_status_list: # there are two possibilities for res_type_str values: # list of string (during normal create or update) or # integer (during creating new version of the resource) if isinstance(sharing_status, int): # "copy res" or "create a new version" qs = SupportedSharingStatusChoices.objects.filter(id=sharing_status) if not qs.exists(): raise meta_instance.sharing_status.add(qs[0]) elif isinstance(sharing_status, basestring): # create or update res qs = SupportedSharingStatusChoices.objects.\ filter(description__iexact=sharing_status) if qs.exists(): meta_instance.sharing_status.add(qs[0]) else: meta_instance.sharing_status.create(description=sharing_status) else: raise ValidationError("No sharing_status parameter " "was found in the **kwargs list") @classmethod def _validate_sharing_status(cls, sharing_status_list): for sharing_status in sharing_status_list: if isinstance(sharing_status, basestring) and \ sharing_status not in \ ["Published", "Public", "Discoverable", "Private"]: raise ValidationError('Invalid sharing_status:%s' % sharing_status) @classmethod def create(cls, **kwargs): if 'sharing_status' in kwargs: cls._validate_sharing_status(kwargs["sharing_status"]) metadata_obj = kwargs['content_object'] new_meta_instance = SupportedSharingStatus.objects.create(content_object=metadata_obj) cls._add_sharing_status(new_meta_instance, kwargs['sharing_status']) return new_meta_instance else: raise ValidationError("No sharing_status parameter was found in the **kwargs list") @classmethod def update(cls, element_id, **kwargs): meta_instance = SupportedSharingStatus.objects.get(id=element_id) if 'sharing_status' in kwargs: cls._validate_sharing_status(kwargs["sharing_status"]) meta_instance.sharing_status.clear() cls._add_sharing_status(meta_instance, kwargs['sharing_status']) meta_instance.save() else: raise ValidationError("No sharing_status parameter " "was found in the **kwargs list") @classmethod def remove(cls, element_id): raise ValidationError("SupportedSharingStatus element can't be deleted.") class ToolIcon(AbstractMetaDataElement): term = 'ToolIcon' value = models.CharField(max_length=1024, blank=True, default="") class Meta: # ToolVersion element is not repeatable unique_together = ("content_type", "object_id") class ToolMetaData(CoreMetaData): url_bases = GenericRelation(RequestUrlBase) versions = GenericRelation(ToolVersion) supported_res_types = GenericRelation(SupportedResTypes) tool_icon = GenericRelation(ToolIcon) supported_sharing_status = GenericRelation(SupportedSharingStatus) homepage_url = GenericRelation(AppHomePageUrl) @property def resource(self): return ToolResource.objects.filter(object_id=self.id).first() @classmethod def get_supported_element_names(cls): elements = super(ToolMetaData, cls).get_supported_element_names() elements.append('RequestUrlBase') elements.append('ToolVersion') elements.append('SupportedResTypes') elements.append('ToolIcon') elements.append('SupportedSharingStatus') elements.append('AppHomePageUrl') return elements def has_all_required_elements(self): if self.get_required_missing_elements(): return False return True def get_required_missing_elements(self): # show missing required meta missing_required_elements = super(ToolMetaData, self).get_required_missing_elements() # At least one of the two metadata must exist: Home Page URL or App-launching URL Pattern if (not self.url_bases.all().first() or not self.url_bases.all().first().value) \ and (not self.homepage_url.all().first() or not self.homepage_url.all().first().value): missing_required_elements.append('App Home Page URL or App-launching URL Pattern') else: # If one between App-launching URL Pattern and Supported Res Type presents, # the other must present as well if self.url_bases.all().first() and self.url_bases.all().first().value: if not self.supported_res_types.all().first() \ or not self.supported_res_types.all().first().supported_res_types.count() > 0: missing_required_elements.append('Supported Resource Types') if self.supported_res_types.all().first() \ and self.supported_res_types.all().first().supported_res_types.count() > 0: if not self.url_bases.all().first() or not self.url_bases.all().first().value: missing_required_elements.append('App-launching URL Pattern') # if Supported Res Type presents, Supported Sharing Status must present, not vice versa if self.supported_res_types.all().first() \ and self.supported_res_types.all().first().supported_res_types.count() > 0: if not self.supported_sharing_status.all().first() \ or not self.supported_sharing_status.all().first().sharing_status.count() > 0: missing_required_elements.append('Supported Sharing Status') return missing_required_elements def delete_all_elements(self): super(ToolMetaData, self).delete_all_elements() self.url_bases.all().delete() self.versions.all().delete() self.supported_res_types.all().delete() self.tool_icon.all().delete() self.supported_sharing_status.all().delete() self.homepage_url.all().delete()
{ "content_hash": "4b5e16cc77e9ada9282ba43131744aad", "timestamp": "", "source": "github", "line_count": 303, "max_line_length": 100, "avg_line_length": 39.67656765676568, "alnum_prop": 0.6397438030277824, "repo_name": "FescueFungiShare/hydroshare", "id": "1cdf3870c172f321245c8cb21e061bee0f80ec52", "size": "12022", "binary": false, "copies": "1", "ref": "refs/heads/FescueFungiShare-develop", "path": "hs_tools_resource/models.py", "mode": "33261", "license": "bsd-3-clause", "language": [ { "name": "CSS", "bytes": "374952" }, { "name": "HTML", "bytes": "1107800" }, { "name": "JavaScript", "bytes": "1822132" }, { "name": "Python", "bytes": "3599347" }, { "name": "R", "bytes": "4475" }, { "name": "Shell", "bytes": "49970" }, { "name": "XSLT", "bytes": "790987" } ], "symlink_target": "" }
import os import base64 import urlparse import urllib2 import BaseHTTPServer import unittest import hashlib from test import test_support mimetools = test_support.import_module('mimetools', deprecated=True) threading = test_support.import_module('threading') try: import ssl except ImportError: ssl = None here = os.path.dirname(__file__) # Self-signed cert file for 'localhost' CERT_localhost = os.path.join(here, 'keycert.pem') # Self-signed cert file for 'fakehostname' CERT_fakehostname = os.path.join(here, 'keycert2.pem') # Loopback http server infrastructure class LoopbackHttpServer(BaseHTTPServer.HTTPServer): """HTTP server w/ a few modifications that make it useful for loopback testing purposes. """ def __init__(self, server_address, RequestHandlerClass): BaseHTTPServer.HTTPServer.__init__(self, server_address, RequestHandlerClass) # Set the timeout of our listening socket really low so # that we can stop the server easily. self.socket.settimeout(0.1) def get_request(self): """BaseHTTPServer method, overridden.""" request, client_address = self.socket.accept() # It's a loopback connection, so setting the timeout # really low shouldn't affect anything, but should make # deadlocks less likely to occur. request.settimeout(10.0) return (request, client_address) class LoopbackHttpServerThread(threading.Thread): """Stoppable thread that runs a loopback http server.""" def __init__(self, request_handler): threading.Thread.__init__(self) self._stop = False self.ready = threading.Event() request_handler.protocol_version = "HTTP/1.0" self.httpd = LoopbackHttpServer(('127.0.0.1', 0), request_handler) #print "Serving HTTP on %s port %s" % (self.httpd.server_name, # self.httpd.server_port) self.port = self.httpd.server_port def stop(self): """Stops the webserver if it's currently running.""" # Set the stop flag. self._stop = True self.join() def run(self): self.ready.set() while not self._stop: self.httpd.handle_request() # Authentication infrastructure class BasicAuthHandler(BaseHTTPServer.BaseHTTPRequestHandler): """Handler for performing Basic Authentication.""" # Server side values USER = "testUser" PASSWD = "testPass" REALM = "Test" USER_PASSWD = "%s:%s" % (USER, PASSWD) ENCODED_AUTH = base64.b64encode(USER_PASSWD) def __init__(self, *args, **kwargs): BaseHTTPServer.BaseHTTPRequestHandler.__init__(self, *args, **kwargs) def log_message(self, format, *args): # Suppress the HTTP Console log output pass def do_HEAD(self): self.send_response(200) self.send_header("Content-type", "text/html") self.end_headers() def do_AUTHHEAD(self): self.send_response(401) self.send_header("WWW-Authenticate", "Basic realm=\"%s\"" % self.REALM) self.send_header("Content-type", "text/html") self.end_headers() def do_GET(self): if self.headers.getheader("Authorization") == None: self.do_AUTHHEAD() self.wfile.write("No Auth Header Received") elif self.headers.getheader( "Authorization") == "Basic " + self.ENCODED_AUTH: self.wfile.write("It works!") else: # Unauthorized Request self.do_AUTHHEAD() class DigestAuthHandler: """Handler for performing digest authentication.""" def __init__(self): self._request_num = 0 self._nonces = [] self._users = {} self._realm_name = "Test Realm" self._qop = "auth" def set_qop(self, qop): self._qop = qop def set_users(self, users): assert isinstance(users, dict) self._users = users def set_realm(self, realm): self._realm_name = realm def _generate_nonce(self): self._request_num += 1 nonce = hashlib.md5(str(self._request_num)).hexdigest() self._nonces.append(nonce) return nonce def _create_auth_dict(self, auth_str): first_space_index = auth_str.find(" ") auth_str = auth_str[first_space_index+1:] parts = auth_str.split(",") auth_dict = {} for part in parts: name, value = part.split("=") name = name.strip() if value[0] == '"' and value[-1] == '"': value = value[1:-1] else: value = value.strip() auth_dict[name] = value return auth_dict def _validate_auth(self, auth_dict, password, method, uri): final_dict = {} final_dict.update(auth_dict) final_dict["password"] = password final_dict["method"] = method final_dict["uri"] = uri HA1_str = "%(username)s:%(realm)s:%(password)s" % final_dict HA1 = hashlib.md5(HA1_str).hexdigest() HA2_str = "%(method)s:%(uri)s" % final_dict HA2 = hashlib.md5(HA2_str).hexdigest() final_dict["HA1"] = HA1 final_dict["HA2"] = HA2 response_str = "%(HA1)s:%(nonce)s:%(nc)s:" \ "%(cnonce)s:%(qop)s:%(HA2)s" % final_dict response = hashlib.md5(response_str).hexdigest() return response == auth_dict["response"] def _return_auth_challenge(self, request_handler): request_handler.send_response(407, "Proxy Authentication Required") request_handler.send_header("Content-Type", "text/html") request_handler.send_header( 'Proxy-Authenticate', 'Digest realm="%s", ' 'qop="%s",' 'nonce="%s", ' % \ (self._realm_name, self._qop, self._generate_nonce())) # XXX: Not sure if we're supposed to add this next header or # not. #request_handler.send_header('Connection', 'close') request_handler.end_headers() request_handler.wfile.write("Proxy Authentication Required.") return False def handle_request(self, request_handler): """Performs digest authentication on the given HTTP request handler. Returns True if authentication was successful, False otherwise. If no users have been set, then digest auth is effectively disabled and this method will always return True. """ if len(self._users) == 0: return True if 'Proxy-Authorization' not in request_handler.headers: return self._return_auth_challenge(request_handler) else: auth_dict = self._create_auth_dict( request_handler.headers['Proxy-Authorization'] ) if auth_dict["username"] in self._users: password = self._users[ auth_dict["username"] ] else: return self._return_auth_challenge(request_handler) if not auth_dict.get("nonce") in self._nonces: return self._return_auth_challenge(request_handler) else: self._nonces.remove(auth_dict["nonce"]) auth_validated = False # MSIE uses short_path in its validation, but Python's # urllib2 uses the full path, so we're going to see if # either of them works here. for path in [request_handler.path, request_handler.short_path]: if self._validate_auth(auth_dict, password, request_handler.command, path): auth_validated = True if not auth_validated: return self._return_auth_challenge(request_handler) return True # Proxy test infrastructure class FakeProxyHandler(BaseHTTPServer.BaseHTTPRequestHandler): """This is a 'fake proxy' that makes it look like the entire internet has gone down due to a sudden zombie invasion. It main utility is in providing us with authentication support for testing. """ def __init__(self, digest_auth_handler, *args, **kwargs): # This has to be set before calling our parent's __init__(), which will # try to call do_GET(). self.digest_auth_handler = digest_auth_handler BaseHTTPServer.BaseHTTPRequestHandler.__init__(self, *args, **kwargs) def log_message(self, format, *args): # Uncomment the next line for debugging. #sys.stderr.write(format % args) pass def do_GET(self): (scm, netloc, path, params, query, fragment) = urlparse.urlparse( self.path, 'http') self.short_path = path if self.digest_auth_handler.handle_request(self): self.send_response(200, "OK") self.send_header("Content-Type", "text/html") self.end_headers() self.wfile.write("You've reached %s!<BR>" % self.path) self.wfile.write("Our apologies, but our server is down due to " "a sudden zombie invasion.") # Test cases class BaseTestCase(unittest.TestCase): def setUp(self): self._threads = test_support.threading_setup() def tearDown(self): self.doCleanups() test_support.threading_cleanup(*self._threads) class BasicAuthTests(BaseTestCase): USER = "testUser" PASSWD = "testPass" INCORRECT_PASSWD = "Incorrect" REALM = "Test" def setUp(self): super(BasicAuthTests, self).setUp() # With Basic Authentication def http_server_with_basic_auth_handler(*args, **kwargs): return BasicAuthHandler(*args, **kwargs) self.server = LoopbackHttpServerThread(http_server_with_basic_auth_handler) self.server_url = 'http://127.0.0.1:%s' % self.server.port self.server.start() self.server.ready.wait() self.addCleanup(self.server.stop) def test_basic_auth_success(self): ah = urllib2.HTTPBasicAuthHandler() ah.add_password(self.REALM, self.server_url, self.USER, self.PASSWD) urllib2.install_opener(urllib2.build_opener(ah)) try: self.assertTrue(urllib2.urlopen(self.server_url)) except urllib2.HTTPError: self.fail("Basic Auth Failed for url: %s" % self.server_url) except Exception as e: raise e def test_basic_auth_httperror(self): ah = urllib2.HTTPBasicAuthHandler() ah.add_password(self.REALM, self.server_url, self.USER, self.INCORRECT_PASSWD) urllib2.install_opener(urllib2.build_opener(ah)) self.assertRaises(urllib2.HTTPError, urllib2.urlopen, self.server_url) class ProxyAuthTests(BaseTestCase): URL = "http://localhost" USER = "tester" PASSWD = "test123" REALM = "TestRealm" def setUp(self): super(ProxyAuthTests, self).setUp() # Ignore proxy bypass settings in the environment. def restore_environ(old_environ): os.environ.clear() os.environ.update(old_environ) self.addCleanup(restore_environ, os.environ.copy()) os.environ['NO_PROXY'] = '' os.environ['no_proxy'] = '' self.digest_auth_handler = DigestAuthHandler() self.digest_auth_handler.set_users({self.USER: self.PASSWD}) self.digest_auth_handler.set_realm(self.REALM) # With Digest Authentication def create_fake_proxy_handler(*args, **kwargs): return FakeProxyHandler(self.digest_auth_handler, *args, **kwargs) self.server = LoopbackHttpServerThread(create_fake_proxy_handler) self.server.start() self.server.ready.wait() self.addCleanup(self.server.stop) proxy_url = "http://127.0.0.1:%d" % self.server.port handler = urllib2.ProxyHandler({"http" : proxy_url}) self.proxy_digest_handler = urllib2.ProxyDigestAuthHandler() self.opener = urllib2.build_opener(handler, self.proxy_digest_handler) def test_proxy_with_bad_password_raises_httperror(self): self.proxy_digest_handler.add_password(self.REALM, self.URL, self.USER, self.PASSWD+"bad") self.digest_auth_handler.set_qop("auth") self.assertRaises(urllib2.HTTPError, self.opener.open, self.URL) def test_proxy_with_no_password_raises_httperror(self): self.digest_auth_handler.set_qop("auth") self.assertRaises(urllib2.HTTPError, self.opener.open, self.URL) def test_proxy_qop_auth_works(self): self.proxy_digest_handler.add_password(self.REALM, self.URL, self.USER, self.PASSWD) self.digest_auth_handler.set_qop("auth") result = self.opener.open(self.URL) while result.read(): pass result.close() def test_proxy_qop_auth_int_works_or_throws_urlerror(self): self.proxy_digest_handler.add_password(self.REALM, self.URL, self.USER, self.PASSWD) self.digest_auth_handler.set_qop("auth-int") try: result = self.opener.open(self.URL) except urllib2.URLError: # It's okay if we don't support auth-int, but we certainly # shouldn't receive any kind of exception here other than # a URLError. result = None if result: while result.read(): pass result.close() def GetRequestHandler(responses): class FakeHTTPRequestHandler(BaseHTTPServer.BaseHTTPRequestHandler): server_version = "TestHTTP/" requests = [] headers_received = [] port = 80 def do_GET(self): body = self.send_head() if body: self.wfile.write(body) def do_POST(self): content_length = self.headers['Content-Length'] post_data = self.rfile.read(int(content_length)) self.do_GET() self.requests.append(post_data) def send_head(self): FakeHTTPRequestHandler.headers_received = self.headers self.requests.append(self.path) response_code, headers, body = responses.pop(0) self.send_response(response_code) for (header, value) in headers: self.send_header(header, value % self.port) if body: self.send_header('Content-type', 'text/plain') self.end_headers() return body self.end_headers() def log_message(self, *args): pass return FakeHTTPRequestHandler class TestUrlopen(BaseTestCase): """Tests urllib2.urlopen using the network. These tests are not exhaustive. Assuming that testing using files does a good job overall of some of the basic interface features. There are no tests exercising the optional 'data' and 'proxies' arguments. No tests for transparent redirection have been written. """ def setUp(self): proxy_handler = urllib2.ProxyHandler({}) opener = urllib2.build_opener(proxy_handler) urllib2.install_opener(opener) super(TestUrlopen, self).setUp() def urlopen(self, url, data=None, **kwargs): l = [] f = urllib2.urlopen(url, data, **kwargs) try: # Exercise various methods l.extend(f.readlines(200)) l.append(f.readline()) l.append(f.read(1024)) l.append(f.read()) finally: f.close() return b"".join(l) def start_server(self, responses): handler = GetRequestHandler(responses) self.server = LoopbackHttpServerThread(handler) self.server.start() self.server.ready.wait() self.addCleanup(self.server.stop) port = self.server.port handler.port = port return handler def start_https_server(self, responses=None, **kwargs): if not hasattr(urllib2, 'HTTPSHandler'): self.skipTest('ssl support required') from test.ssl_servers import make_https_server if responses is None: responses = [(200, [], b"we care a bit")] handler = GetRequestHandler(responses) server = make_https_server(self, handler_class=handler, **kwargs) handler.port = server.port return handler def test_redirection(self): expected_response = 'We got here...' responses = [ (302, [('Location', 'http://localhost:%s/somewhere_else')], ''), (200, [], expected_response) ] handler = self.start_server(responses) f = urllib2.urlopen('http://localhost:%s/' % handler.port) data = f.read() f.close() self.assertEqual(data, expected_response) self.assertEqual(handler.requests, ['/', '/somewhere_else']) def test_404(self): expected_response = 'Bad bad bad...' handler = self.start_server([(404, [], expected_response)]) try: urllib2.urlopen('http://localhost:%s/weeble' % handler.port) except urllib2.URLError, f: pass else: self.fail('404 should raise URLError') data = f.read() f.close() self.assertEqual(data, expected_response) self.assertEqual(handler.requests, ['/weeble']) def test_200(self): expected_response = 'pycon 2008...' handler = self.start_server([(200, [], expected_response)]) f = urllib2.urlopen('http://localhost:%s/bizarre' % handler.port) data = f.read() f.close() self.assertEqual(data, expected_response) self.assertEqual(handler.requests, ['/bizarre']) def test_200_with_parameters(self): expected_response = 'pycon 2008...' handler = self.start_server([(200, [], expected_response)]) f = urllib2.urlopen('http://localhost:%s/bizarre' % handler.port, 'get=with_feeling') data = f.read() f.close() self.assertEqual(data, expected_response) self.assertEqual(handler.requests, ['/bizarre', 'get=with_feeling']) def test_https(self): handler = self.start_https_server() context = ssl.create_default_context(cafile=CERT_localhost) data = self.urlopen("https://localhost:%s/bizarre" % handler.port, context=context) self.assertEqual(data, b"we care a bit") def test_https_with_cafile(self): handler = self.start_https_server(certfile=CERT_localhost) # Good cert data = self.urlopen("https://localhost:%s/bizarre" % handler.port, cafile=CERT_localhost) self.assertEqual(data, b"we care a bit") # Bad cert with self.assertRaises(urllib2.URLError): self.urlopen("https://localhost:%s/bizarre" % handler.port, cafile=CERT_fakehostname) # Good cert, but mismatching hostname handler = self.start_https_server(certfile=CERT_fakehostname) with self.assertRaises(ssl.CertificateError): self.urlopen("https://localhost:%s/bizarre" % handler.port, cafile=CERT_fakehostname) def test_https_with_cadefault(self): handler = self.start_https_server(certfile=CERT_localhost) # Self-signed cert should fail verification with system certificate store with self.assertRaises(urllib2.URLError): self.urlopen("https://localhost:%s/bizarre" % handler.port, cadefault=True) def test_https_sni(self): if ssl is None: self.skipTest("ssl module required") if not ssl.HAS_SNI: self.skipTest("SNI support required in OpenSSL") sni_name = [None] def cb_sni(ssl_sock, server_name, initial_context): sni_name[0] = server_name context = ssl.SSLContext(ssl.PROTOCOL_TLS) context.set_servername_callback(cb_sni) handler = self.start_https_server(context=context, certfile=CERT_localhost) context = ssl.create_default_context(cafile=CERT_localhost) self.urlopen("https://localhost:%s" % handler.port, context=context) self.assertEqual(sni_name[0], "localhost") def test_sending_headers(self): handler = self.start_server([(200, [], "we don't care")]) req = urllib2.Request("http://localhost:%s/" % handler.port, headers={'Range': 'bytes=20-39'}) urllib2.urlopen(req) self.assertEqual(handler.headers_received['Range'], 'bytes=20-39') def test_basic(self): handler = self.start_server([(200, [], "we don't care")]) open_url = urllib2.urlopen("http://localhost:%s" % handler.port) for attr in ("read", "close", "info", "geturl"): self.assertTrue(hasattr(open_url, attr), "object returned from " "urlopen lacks the %s attribute" % attr) try: self.assertTrue(open_url.read(), "calling 'read' failed") finally: open_url.close() def test_info(self): handler = self.start_server([(200, [], "we don't care")]) open_url = urllib2.urlopen("http://localhost:%s" % handler.port) info_obj = open_url.info() self.assertIsInstance(info_obj, mimetools.Message, "object returned by 'info' is not an " "instance of mimetools.Message") self.assertEqual(info_obj.getsubtype(), "plain") def test_geturl(self): # Make sure same URL as opened is returned by geturl. handler = self.start_server([(200, [], "we don't care")]) open_url = urllib2.urlopen("http://localhost:%s" % handler.port) url = open_url.geturl() self.assertEqual(url, "http://localhost:%s" % handler.port) def test_bad_address(self): # Make sure proper exception is raised when connecting to a bogus # address. # as indicated by the comment below, this might fail with some ISP, # so we run the test only when -unetwork/-uall is specified to # mitigate the problem a bit (see #17564) test_support.requires('network') self.assertRaises(IOError, # Given that both VeriSign and various ISPs have in # the past or are presently hijacking various invalid # domain name requests in an attempt to boost traffic # to their own sites, finding a domain name to use # for this test is difficult. RFC2606 leads one to # believe that '.invalid' should work, but experience # seemed to indicate otherwise. Single character # TLDs are likely to remain invalid, so this seems to # be the best choice. The trailing '.' prevents a # related problem: The normal DNS resolver appends # the domain names from the search path if there is # no '.' the end and, and if one of those domains # implements a '*' rule a result is returned. # However, none of this will prevent the test from # failing if the ISP hijacks all invalid domain # requests. The real solution would be to be able to # parameterize the framework with a mock resolver. urllib2.urlopen, "http://sadflkjsasf.i.nvali.d./") def test_iteration(self): expected_response = "pycon 2008..." handler = self.start_server([(200, [], expected_response)]) data = urllib2.urlopen("http://localhost:%s" % handler.port) for line in data: self.assertEqual(line, expected_response) def ztest_line_iteration(self): lines = ["We\n", "got\n", "here\n", "verylong " * 8192 + "\n"] expected_response = "".join(lines) handler = self.start_server([(200, [], expected_response)]) data = urllib2.urlopen("http://localhost:%s" % handler.port) for index, line in enumerate(data): self.assertEqual(line, lines[index], "Fetched line number %s doesn't match expected:\n" " Expected length was %s, got %s" % (index, len(lines[index]), len(line))) self.assertEqual(index + 1, len(lines)) def test_main(): # We will NOT depend on the network resource flag # (Lib/test/regrtest.py -u network) since all tests here are only # localhost. However, if this is a bad rationale, then uncomment # the next line. #test_support.requires("network") test_support.run_unittest(BasicAuthTests, ProxyAuthTests, TestUrlopen) if __name__ == "__main__": test_main()
{ "content_hash": "9fccdfa72d300e52e26ce996cf6f6bb5", "timestamp": "", "source": "github", "line_count": 684, "max_line_length": 93, "avg_line_length": 37.244152046783626, "alnum_prop": 0.5867713444553484, "repo_name": "IronLanguages/ironpython2", "id": "932b57223a5652c373d896a4ccba09ae833aa1a2", "size": "25475", "binary": false, "copies": "5", "ref": "refs/heads/master", "path": "Src/StdLib/Lib/test/test_urllib2_localnet.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Batchfile", "bytes": "4080" }, { "name": "C", "bytes": "20290" }, { "name": "C#", "bytes": "12424667" }, { "name": "C++", "bytes": "69156" }, { "name": "Classic ASP", "bytes": "2117" }, { "name": "HTML", "bytes": "13181412" }, { "name": "JavaScript", "bytes": "1656" }, { "name": "Makefile", "bytes": "332" }, { "name": "PLSQL", "bytes": "22886" }, { "name": "PowerShell", "bytes": "67035" }, { "name": "Python", "bytes": "27860071" }, { "name": "Roff", "bytes": "21" }, { "name": "Shell", "bytes": "193" }, { "name": "Smalltalk", "bytes": "3" }, { "name": "VBScript", "bytes": "974" }, { "name": "XSLT", "bytes": "2058" } ], "symlink_target": "" }
from __future__ import absolute_import from __future__ import unicode_literals import io import os.path from git_code_debt.server.app import create_metric_config_if_not_exists from git_code_debt.server.app import main from testing.utilities.cwd import cwd def test_file_does_not_exist(): assert main(argv=['i_dont_exist.db']) == 1 def test_create_metric_config_if_not_exists_existing(tmpdir): with cwd(tmpdir.strpath): with io.open( 'metric_config.yaml', 'w', ) as metric_config_file: # pragma: no cover (PY26 derps on `with`) metric_config_file.write('Groups: []\nColorOverrides: []\n') create_metric_config_if_not_exists() after_contents = io.open('metric_config.yaml').read() assert after_contents == 'Groups: []\nColorOverrides: []\n' def test_create_metric_config_if_not_exists_not_existing(tmpdir): with cwd(tmpdir.strpath): create_metric_config_if_not_exists() assert os.path.exists('metric_config.yaml')
{ "content_hash": "db03af8c2e6313dd0b89f2d8c5376c1f", "timestamp": "", "source": "github", "line_count": 33, "max_line_length": 75, "avg_line_length": 30.78787878787879, "alnum_prop": 0.6761811023622047, "repo_name": "ucarion/git-code-debt", "id": "c3844008917b2252808f8276cbf8b55bc46d7af2", "size": "1016", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "tests/server/app_test.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "2514" }, { "name": "HTML", "bytes": "1617" }, { "name": "JavaScript", "bytes": "5161" }, { "name": "Makefile", "bytes": "384" }, { "name": "Mako", "bytes": "5510" }, { "name": "Python", "bytes": "135268" } ], "symlink_target": "" }
from setuptools import setup from beewarn import VERSION setup(name='beewarn', version=VERSION, description='Utility for warning about bees', author='Alistair Lynn', author_email='[email protected]', license='MIT', url='https://github.com/prophile/beewarn', zip_safe=True, setup_requires=['nose >=1.0, <2.0'], entry_points = { 'console_scripts': [ 'beewarn=beewarn.cli:run_cli' ] }, packages=['beewarn'], test_suite='nose.collector')
{ "content_hash": "bdb9771f80f2928b40c204036fa49890", "timestamp": "", "source": "github", "line_count": 21, "max_line_length": 51, "avg_line_length": 25.857142857142858, "alnum_prop": 0.5874769797421732, "repo_name": "prophile/beewarn", "id": "f6b3be7c9a1548e3e0e943e73713d158323b6aa4", "size": "543", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "setup.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "762" } ], "symlink_target": "" }
""" Default experiment for clean smp Should be self-contained requiring now external packages or processes. Robot: Point mass World: open linear (1D) space Task: go to a goal position and stay there Brain: taxis Loss: mean squared error / goal distance """ import time from smq.utils import make_column_names_numbered, make_expr_id, make_robot_name from smq.worlds import RobotWorld from smq.robots import SimpleRandomRobot, PointmassRobot from smq.plot import PlotTimeseries from smq.tasks import NullTask, SetpointTask, GoalTask, GoalTaskTaxis from smq.brains import NullBrain, TaxisBrain # local variables for re-use numsteps = 1000 motors = 1 name = "taxis_1d" expr_id = make_expr_id(name) # using dict convention seemed to be the best over yaml and friends conf = { # first level corresponds to experiment "numsteps": numsteps, "id": "%s-%s" % (name, time.strftime("%Y%m%d-%H%M%S")), # these are arrays of dicts specifying components "robots": [ { "class": PointmassRobot, # SimpleRandomRobot, "type": "explauto", "name": make_robot_name(expr_id, "pm", 0), # dimensions of different subparts of sm vector # make that more compact / automatically inferred # actually: make that lists of names whose length is the dim "dim_s_proprio": make_column_names_numbered("acc", motors), "dim_s_extero": make_column_names_numbered("vel", motors), "dim_s_intero": make_column_names_numbered("vel_", motors) + make_column_names_numbered("pos_", motors) + make_column_names_numbered("vel_goal", motors) + make_column_names_numbered("vel_error", motors), "dim_s_reward": make_column_names_numbered("dist_goal", 1), "dim_s_pred": make_column_names_numbered("acc_pred", motors), "dim_s_motor": make_column_names_numbered("m", motors), # above is not enough, need either full dict / access variable by column name # OR dict mapping variable name to numerical index (HACK?) "numsteps": numsteps, "control": "force", "ros": False, "brains": [ { "class": TaxisBrain, "name": "taxisbrain", "dim_s_motor": motors, "variant": "binary_threshold", # "continuous_linear" "continuous_gain": 1.5, "binary_threshold": 0.2, "binary_high_range": 1.0, "binary_low_range": 0.01, # tasks be of length either one or same as len(robots) "tasks": [ { "class": GoalTaskTaxis, "name": "goaltasktaxis", "goalspace": "s_extero", "goaldim": motors, "goalinteroindex": 2, "loss": "mse", } ], }, ], } ], "worlds": [ {"class": RobotWorld, "dt": 0.1, "map": "open_planar_isotropic", "dim": 0, "numsteps": numsteps, } ], "loss": "mse", "analyses": [ { "class": PlotTimeseries, "name": "plottimeseries", "type": "seaborn" # "pyplot" }, ], }
{ "content_hash": "d857769d7fc6f91de56ba1eebd827f2c", "timestamp": "", "source": "github", "line_count": 94, "max_line_length": 215, "avg_line_length": 37.287234042553195, "alnum_prop": 0.5289586305278174, "repo_name": "x75/smq", "id": "6fbe532ead88afe961a46ae4a56fe55f36949f49", "size": "3505", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "experiments/conf/taxis_1d_pm.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "168491" } ], "symlink_target": "" }
""" losses for training neural networks """ from __future__ import absolute_import __all__ = ['Loss', 'L2Loss', 'L1Loss', 'SigmoidBinaryCrossEntropyLoss', 'SigmoidBCELoss', 'SoftmaxCrossEntropyLoss', 'SoftmaxCELoss', 'KLDivLoss', 'CTCLoss', 'HuberLoss', 'HingeLoss', 'SquaredHingeLoss', 'LogisticLoss', 'TripletLoss', 'PoissonNLLLoss', 'CosineEmbeddingLoss'] import numpy as np from .. import ndarray from ..base import numeric_types from .block import HybridBlock def _apply_weighting(F, loss, weight=None, sample_weight=None): """Apply weighting to loss. Parameters ---------- loss : Symbol The loss to be weighted. weight : float or None Global scalar weight for loss. sample_weight : Symbol or None Per sample weighting. Must be broadcastable to the same shape as loss. For example, if loss has shape (64, 10) and you want to weight each sample in the batch separately, `sample_weight` should have shape (64, 1). Returns ------- loss : Symbol Weighted loss """ if sample_weight is not None: loss = F.broadcast_mul(loss, sample_weight) if weight is not None: assert isinstance(weight, numeric_types), "weight must be a number" loss = loss * weight return loss def _reshape_like(F, x, y): """Reshapes x to the same shape as y.""" return x.reshape(y.shape) if F is ndarray else F.reshape_like(x, y) class Loss(HybridBlock): """Base class for loss. Parameters ---------- weight : float or None Global scalar weight for loss. batch_axis : int, default 0 The axis that represents mini-batch. """ def __init__(self, weight, batch_axis, **kwargs): super(Loss, self).__init__(**kwargs) self._weight = weight self._batch_axis = batch_axis def __repr__(self): s = '{name}(batch_axis={_batch_axis}, w={_weight})' return s.format(name=self.__class__.__name__, **self.__dict__) def hybrid_forward(self, F, x, *args, **kwargs): """Overrides to construct symbolic graph for this `Block`. Parameters ---------- x : Symbol or NDArray The first input tensor. *args : list of Symbol or list of NDArray Additional input tensors. """ # pylint: disable= invalid-name raise NotImplementedError class L2Loss(Loss): r"""Calculates the mean squared error between `pred` and `label`. .. math:: L = \frac{1}{2} \sum_i \vert {pred}_i - {label}_i \vert^2. `pred` and `label` can have arbitrary shape as long as they have the same number of elements. Parameters ---------- weight : float or None Global scalar weight for loss. batch_axis : int, default 0 The axis that represents mini-batch. Inputs: - **pred**: prediction tensor with arbitrary shape - **label**: target tensor with the same size as pred. - **sample_weight**: element-wise weighting tensor. Must be broadcastable to the same shape as pred. For example, if pred has shape (64, 10) and you want to weigh each sample in the batch separately, sample_weight should have shape (64, 1). Outputs: - **loss**: loss tensor with shape (batch_size,). Dimenions other than batch_axis are averaged out. """ def __init__(self, weight=1., batch_axis=0, **kwargs): super(L2Loss, self).__init__(weight, batch_axis, **kwargs) def hybrid_forward(self, F, pred, label, sample_weight=None): label = _reshape_like(F, label, pred) loss = F.square(pred - label) loss = _apply_weighting(F, loss, self._weight/2, sample_weight) return F.mean(loss, axis=self._batch_axis, exclude=True) class L1Loss(Loss): r"""Calculates the mean absolute error between `pred` and `label`. .. math:: L = \sum_i \vert {pred}_i - {label}_i \vert. `pred` and `label` can have arbitrary shape as long as they have the same number of elements. Parameters ---------- weight : float or None Global scalar weight for loss. batch_axis : int, default 0 The axis that represents mini-batch. Inputs: - **pred**: prediction tensor with arbitrary shape - **label**: target tensor with the same size as pred. - **sample_weight**: element-wise weighting tensor. Must be broadcastable to the same shape as pred. For example, if pred has shape (64, 10) and you want to weigh each sample in the batch separately, sample_weight should have shape (64, 1). Outputs: - **loss**: loss tensor with shape (batch_size,). Dimenions other than batch_axis are averaged out. """ def __init__(self, weight=None, batch_axis=0, **kwargs): super(L1Loss, self).__init__(weight, batch_axis, **kwargs) def hybrid_forward(self, F, pred, label, sample_weight=None): label = _reshape_like(F, label, pred) loss = F.abs(pred - label) loss = _apply_weighting(F, loss, self._weight, sample_weight) return F.mean(loss, axis=self._batch_axis, exclude=True) class SigmoidBinaryCrossEntropyLoss(Loss): r"""The cross-entropy loss for binary classification. (alias: SigmoidBCELoss) BCE loss is useful when training logistic regression. If `from_sigmoid` is False (default), this loss computes: .. math:: prob = \frac{1}{1 + \exp(-{pred})} L = - \sum_i {label}_i * \log({prob}_i) + (1 - {label}_i) * \log(1 - {prob}_i) If `from_sigmoid` is True, this loss computes: .. math:: L = - \sum_i {label}_i * \log({pred}_i) + (1 - {label}_i) * \log(1 - {pred}_i) `pred` and `label` can have arbitrary shape as long as they have the same number of elements. Parameters ---------- from_sigmoid : bool, default is `False` Whether the input is from the output of sigmoid. Set this to false will make the loss calculate sigmoid and BCE together, which is more numerically stable through log-sum-exp trick. weight : float or None Global scalar weight for loss. batch_axis : int, default 0 The axis that represents mini-batch. Inputs: - **pred**: prediction tensor with arbitrary shape - **label**: target tensor with values in range `[0, 1]`. Must have the same size as `pred`. - **sample_weight**: element-wise weighting tensor. Must be broadcastable to the same shape as pred. For example, if pred has shape (64, 10) and you want to weigh each sample in the batch separately, sample_weight should have shape (64, 1). Outputs: - **loss**: loss tensor with shape (batch_size,). Dimenions other than batch_axis are averaged out. """ def __init__(self, from_sigmoid=False, weight=None, batch_axis=0, **kwargs): super(SigmoidBinaryCrossEntropyLoss, self).__init__(weight, batch_axis, **kwargs) self._from_sigmoid = from_sigmoid def hybrid_forward(self, F, pred, label, sample_weight=None): label = _reshape_like(F, label, pred) if not self._from_sigmoid: # We use the stable formula: max(x, 0) - x * z + log(1 + exp(-abs(x))) loss = F.relu(pred) - pred * label + F.Activation(-F.abs(pred), act_type='softrelu') else: loss = -(F.log(pred+1e-12)*label + F.log(1.-pred+1e-12)*(1.-label)) loss = _apply_weighting(F, loss, self._weight, sample_weight) return F.mean(loss, axis=self._batch_axis, exclude=True) SigmoidBCELoss = SigmoidBinaryCrossEntropyLoss class SoftmaxCrossEntropyLoss(Loss): r"""Computes the softmax cross entropy loss. (alias: SoftmaxCELoss) If `sparse_label` is `True` (default), label should contain integer category indicators: .. math:: \DeclareMathOperator{softmax}{softmax} p = \softmax({pred}) L = -\sum_i \log p_{i,{label}_i} `label`'s shape should be `pred`'s shape with the `axis` dimension removed. i.e. for `pred` with shape (1,2,3,4) and `axis = 2`, `label`'s shape should be (1,2,4). If `sparse_label` is `False`, `label` should contain probability distribution and `label`'s shape should be the same with `pred`: .. math:: p = \softmax({pred}) L = -\sum_i \sum_j {label}_j \log p_{ij} Parameters ---------- axis : int, default -1 The axis to sum over when computing softmax and entropy. sparse_label : bool, default True Whether label is an integer array instead of probability distribution. from_logits : bool, default False Whether input is a log probability (usually from log_softmax) instead of unnormalized numbers. weight : float or None Global scalar weight for loss. batch_axis : int, default 0 The axis that represents mini-batch. Inputs: - **pred**: the prediction tensor, where the `batch_axis` dimension ranges over batch size and `axis` dimension ranges over the number of classes. - **label**: the truth tensor. When `sparse_label` is True, `label`'s shape should be `pred`'s shape with the `axis` dimension removed. i.e. for `pred` with shape (1,2,3,4) and `axis = 2`, `label`'s shape should be (1,2,4) and values should be integers between 0 and 2. If `sparse_label` is False, `label`'s shape must be the same as `pred` and values should be floats in the range `[0, 1]`. - **sample_weight**: element-wise weighting tensor. Must be broadcastable to the same shape as label. For example, if label has shape (64, 10) and you want to weigh each sample in the batch separately, sample_weight should have shape (64, 1). Outputs: - **loss**: loss tensor with shape (batch_size,). Dimenions other than batch_axis are averaged out. """ def __init__(self, axis=-1, sparse_label=True, from_logits=False, weight=None, batch_axis=0, **kwargs): super(SoftmaxCrossEntropyLoss, self).__init__(weight, batch_axis, **kwargs) self._axis = axis self._sparse_label = sparse_label self._from_logits = from_logits def hybrid_forward(self, F, pred, label, sample_weight=None): if not self._from_logits: pred = F.log_softmax(pred, self._axis) if self._sparse_label: loss = -F.pick(pred, label, axis=self._axis, keepdims=True) else: label = _reshape_like(F, label, pred) loss = -F.sum(pred*label, axis=self._axis, keepdims=True) loss = _apply_weighting(F, loss, self._weight, sample_weight) return F.mean(loss, axis=self._batch_axis, exclude=True) SoftmaxCELoss = SoftmaxCrossEntropyLoss class KLDivLoss(Loss): r"""The Kullback-Leibler divergence loss. KL divergence measures the distance between contiguous distributions. It can be used to minimize information loss when approximating a distribution. If `from_logits` is True (default), loss is defined as: .. math:: L = \sum_i {label}_i * \big[\log({label}_i) - {pred}_i\big] If `from_logits` is False, loss is defined as: .. math:: \DeclareMathOperator{softmax}{softmax} prob = \softmax({pred}) L = \sum_i {label}_i * \big[\log({label}_i) - log({pred}_i)\big] `pred` and `label` can have arbitrary shape as long as they have the same number of elements. Parameters ---------- from_logits : bool, default is `True` Whether the input is log probability (usually from log_softmax) instead of unnormalized numbers. axis : int, default -1 The dimension along with to compute softmax. Only used when `from_logits` is False. weight : float or None Global scalar weight for loss. batch_axis : int, default 0 The axis that represents mini-batch. Inputs: - **pred**: prediction tensor with arbitrary shape. If `from_logits` is True, `pred` should be log probabilities. Otherwise, it should be unnormalized predictions, i.e. from a dense layer. - **label**: truth tensor with values in range `(0, 1)`. Must have the same size as `pred`. - **sample_weight**: element-wise weighting tensor. Must be broadcastable to the same shape as pred. For example, if pred has shape (64, 10) and you want to weigh each sample in the batch separately, sample_weight should have shape (64, 1). Outputs: - **loss**: loss tensor with shape (batch_size,). Dimenions other than batch_axis are averaged out. References ---------- `Kullback-Leibler divergence <https://en.wikipedia.org/wiki/Kullback-Leibler_divergence>`_ """ def __init__(self, from_logits=True, axis=-1, weight=None, batch_axis=0, **kwargs): super(KLDivLoss, self).__init__(weight, batch_axis, **kwargs) self._from_logits = from_logits self._axis = axis def hybrid_forward(self, F, pred, label, sample_weight=None): if not self._from_logits: pred = F.log_softmax(pred, self._axis) loss = label * (F.log(label+1e-12) - pred) loss = _apply_weighting(F, loss, self._weight, sample_weight) return F.mean(loss, axis=self._batch_axis, exclude=True) class CTCLoss(Loss): r"""Connectionist Temporal Classification Loss. Parameters ---------- layout : str, default 'NTC' Layout of prediction tensor. 'N', 'T', 'C' stands for batch size, sequence length, and alphabet_size respectively. label_layout : str, default 'NT' Layout of the labels. 'N', 'T' stands for batch size, and sequence length respectively. weight : float or None Global scalar weight for loss. Inputs: - **pred**: unnormalized prediction tensor (before softmax). Its shape depends on `layout`. If `layout` is 'TNC', pred should have shape `(sequence_length, batch_size, alphabet_size)`. Note that in the last dimension, index `alphabet_size-1` is reserved for internal use as blank label. So `alphabet_size` is one plus the actual alphabet size. - **label**: zero-based label tensor. Its shape depends on `label_layout`. If `label_layout` is 'TN', `label` should have shape `(label_sequence_length, batch_size)`. - **pred_lengths**: optional (default None), used for specifying the length of each entry when different `pred` entries in the same batch have different lengths. `pred_lengths` should have shape `(batch_size,)`. - **label_lengths**: optional (default None), used for specifying the length of each entry when different `label` entries in the same batch have different lengths. `label_lengths` should have shape `(batch_size,)`. Outputs: - **loss**: output loss has shape `(batch_size,)`. **Example**: suppose the vocabulary is `[a, b, c]`, and in one batch we have three sequences 'ba', 'cbb', and 'abac'. We can index the labels as `{'a': 0, 'b': 1, 'c': 2, blank: 3}`. Then `alphabet_size` should be 4, where label 3 is reserved for internal use by `CTCLoss`. We then need to pad each sequence with `-1` to make a rectangular `label` tensor:: [[1, 0, -1, -1], [2, 1, 1, -1], [0, 1, 0, 2]] References ---------- `Connectionist Temporal Classification: Labelling Unsegmented Sequence Data with Recurrent Neural Networks <http://www.cs.toronto.edu/~graves/icml_2006.pdf>`_ """ def __init__(self, layout='NTC', label_layout='NT', weight=None, **kwargs): assert layout in ['NTC', 'TNC'],\ "Only 'NTC' and 'TNC' layouts for pred are supported. Got: %s"%layout assert label_layout in ['NT', 'TN'],\ "Only 'NT' and 'TN' layouts for label are supported. Got: %s"%label_layout self._layout = layout self._label_layout = label_layout batch_axis = label_layout.find('N') super(CTCLoss, self).__init__(weight, batch_axis, **kwargs) def hybrid_forward(self, F, pred, label, pred_lengths=None, label_lengths=None, sample_weight=None): if self._layout == 'NTC': pred = F.swapaxes(pred, 0, 1) if self._batch_axis == 1: label = F.swapaxes(label, 0, 1) loss = F.CTCLoss(pred, label, pred_lengths, label_lengths, use_data_lengths=pred_lengths is not None, use_label_lengths=label_lengths is not None, blank_label='last') return _apply_weighting(F, loss, self._weight, sample_weight) class HuberLoss(Loss): r"""Calculates smoothed L1 loss that is equal to L1 loss if absolute error exceeds rho but is equal to L2 loss otherwise. Also called SmoothedL1 loss. .. math:: L = \sum_i \begin{cases} \frac{1}{2 {rho}} ({pred}_i - {label}_i)^2 & \text{ if } |{pred}_i - {label}_i| < {rho} \\ |{pred}_i - {label}_i| - \frac{{rho}}{2} & \text{ otherwise } \end{cases} `pred` and `label` can have arbitrary shape as long as they have the same number of elements. Parameters ---------- rho : float, default 1 Threshold for trimmed mean estimator. weight : float or None Global scalar weight for loss. batch_axis : int, default 0 The axis that represents mini-batch. Inputs: - **pred**: prediction tensor with arbitrary shape - **label**: target tensor with the same size as pred. - **sample_weight**: element-wise weighting tensor. Must be broadcastable to the same shape as pred. For example, if pred has shape (64, 10) and you want to weigh each sample in the batch separately, sample_weight should have shape (64, 1). Outputs: - **loss**: loss tensor with shape (batch_size,). Dimenions other than batch_axis are averaged out. """ def __init__(self, rho=1, weight=None, batch_axis=0, **kwargs): super(HuberLoss, self).__init__(weight, batch_axis, **kwargs) self._rho = rho def hybrid_forward(self, F, pred, label, sample_weight=None): label = _reshape_like(F, label, pred) loss = F.abs(pred - label) loss = F.where(loss > self._rho, loss - 0.5 * self._rho, (0.5/self._rho) * F.square(loss)) loss = _apply_weighting(F, loss, self._weight, sample_weight) return F.mean(loss, axis=self._batch_axis, exclude=True) class HingeLoss(Loss): r"""Calculates the hinge loss function often used in SVMs: .. math:: L = \sum_i max(0, {margin} - {pred}_i \cdot {label}_i) where `pred` is the classifier prediction and `label` is the target tensor containing values -1 or 1. `pred` and `label` must have the same number of elements. Parameters ---------- margin : float The margin in hinge loss. Defaults to 1.0 weight : float or None Global scalar weight for loss. batch_axis : int, default 0 The axis that represents mini-batch. Inputs: - **pred**: prediction tensor with arbitrary shape. - **label**: truth tensor with values -1 or 1. Must have the same size as pred. - **sample_weight**: element-wise weighting tensor. Must be broadcastable to the same shape as pred. For example, if pred has shape (64, 10) and you want to weigh each sample in the batch separately, sample_weight should have shape (64, 1). Outputs: - **loss**: loss tensor with shape (batch_size,). Dimenions other than batch_axis are averaged out. """ def __init__(self, margin=1, weight=None, batch_axis=0, **kwargs): super(HingeLoss, self).__init__(weight, batch_axis, **kwargs) self._margin = margin def hybrid_forward(self, F, pred, label, sample_weight=None): label = _reshape_like(F, label, pred) loss = F.relu(self._margin - pred * label) loss = _apply_weighting(F, loss, self._weight, sample_weight) return F.mean(loss, axis=self._batch_axis, exclude=True) class SquaredHingeLoss(Loss): r"""Calculates the soft-margin loss function used in SVMs: .. math:: L = \sum_i max(0, {margin} - {pred}_i \cdot {label}_i)^2 where `pred` is the classifier prediction and `label` is the target tensor containing values -1 or 1. `pred` and `label` can have arbitrary shape as long as they have the same number of elements. Parameters ---------- margin : float The margin in hinge loss. Defaults to 1.0 weight : float or None Global scalar weight for loss. batch_axis : int, default 0 The axis that represents mini-batch. Inputs: - **pred**: prediction tensor with arbitrary shape - **label**: truth tensor with values -1 or 1. Must have the same size as pred. - **sample_weight**: element-wise weighting tensor. Must be broadcastable to the same shape as pred. For example, if pred has shape (64, 10) and you want to weigh each sample in the batch separately, sample_weight should have shape (64, 1). Outputs: - **loss**: loss tensor with shape (batch_size,). Dimenions other than batch_axis are averaged out. """ def __init__(self, margin=1, weight=None, batch_axis=0, **kwargs): super(SquaredHingeLoss, self).__init__(weight, batch_axis, **kwargs) self._margin = margin def hybrid_forward(self, F, pred, label, sample_weight=None): label = _reshape_like(F, label, pred) loss = F.square(F.relu(self._margin - pred * label)) loss = _apply_weighting(F, loss, self._weight, sample_weight) return F.mean(loss, axis=self._batch_axis, exclude=True) class LogisticLoss(Loss): r"""Calculates the logistic loss (for binary losses only): .. math:: L = \sum_i \log(1 + \exp(- {pred}_i \cdot {label}_i)) where `pred` is the classifier prediction and `label` is the target tensor containing values -1 or 1 (0 or 1 if `label_format` is binary). `pred` and `label` can have arbitrary shape as long as they have the same number of elements. Parameters ---------- weight : float or None Global scalar weight for loss. batch_axis : int, default 0 The axis that represents mini-batch. label_format : str, default 'signed' Can be either 'signed' or 'binary'. If the label_format is 'signed', all label values should be either -1 or 1. If the label_format is 'binary', all label values should be either 0 or 1. Inputs: - **pred**: prediction tensor with arbitrary shape. - **label**: truth tensor with values -1/1 (label_format is 'signed') or 0/1 (label_format is 'binary'). Must have the same size as pred. - **sample_weight**: element-wise weighting tensor. Must be broadcastable to the same shape as pred. For example, if pred has shape (64, 10) and you want to weigh each sample in the batch separately, sample_weight should have shape (64, 1). Outputs: - **loss**: loss tensor with shape (batch_size,). Dimenions other than batch_axis are averaged out. """ def __init__(self, weight=None, batch_axis=0, label_format='signed', **kwargs): super(LogisticLoss, self).__init__(weight, batch_axis, **kwargs) self._label_format = label_format if self._label_format not in ["signed", "binary"]: raise ValueError("label_format can only be signed or binary, recieved %s." % label_format) def hybrid_forward(self, F, pred, label, sample_weight=None): label = _reshape_like(F, label, pred) if self._label_format == 'signed': label = (label + 1.0) / 2.0 # Transform label to be either 0 or 1 # Use a stable formula in computation loss = F.relu(pred) - pred * label + F.Activation(-F.abs(pred), act_type='softrelu') loss = _apply_weighting(F, loss, self._weight, sample_weight) return F.mean(loss, axis=self._batch_axis, exclude=True) class TripletLoss(Loss): r"""Calculates triplet loss given three input tensors and a positive margin. Triplet loss measures the relative similarity between prediction, a positive example and a negative example: .. math:: L = \sum_i \max(\Vert {pred}_i - {pos_i} \Vert_2^2 - \Vert {pred}_i - {neg_i} \Vert_2^2 + {margin}, 0) `pred`, `positive` and `negative` can have arbitrary shape as long as they have the same number of elements. Parameters ---------- margin : float Margin of separation between correct and incorrect pair. weight : float or None Global scalar weight for loss. batch_axis : int, default 0 The axis that represents mini-batch. Inputs: - **pred**: prediction tensor with arbitrary shape - **positive**: positive example tensor with arbitrary shape. Must have the same size as pred. - **negative**: negative example tensor with arbitrary shape Must have the same size as pred. Outputs: - **loss**: loss tensor with shape (batch_size,). """ def __init__(self, margin=1, weight=None, batch_axis=0, **kwargs): super(TripletLoss, self).__init__(weight, batch_axis, **kwargs) self._margin = margin def hybrid_forward(self, F, pred, positive, negative): positive = _reshape_like(F, positive, pred) negative = _reshape_like(F, negative, pred) loss = F.sum(F.square(pred-positive) - F.square(pred-negative), axis=self._batch_axis, exclude=True) loss = F.relu(loss + self._margin) return _apply_weighting(F, loss, self._weight, None) class PoissonNLLLoss(Loss): r"""For a target (Random Variable) in a Poisson distribution, the function calculates the Negative Log likelihood loss. PoissonNLLLoss measures the loss accrued from a poisson regression prediction made by the model. .. math:: L = \text{pred} - \text{target} * \log(\text{pred}) +\log(\text{target!}) `pred`, `target` can have arbitrary shape as long as they have the same number of elements. Parameters ---------- from_logits : boolean, default True indicating whether log(predicted) value has already been computed. If True, the loss is computed as :math:`\exp(\text{pred}) - \text{target} * \text{pred}`, and if False, then loss is computed as :math:`\text{pred} - \text{target} * \log(\text{pred}+\text{epsilon})`.The default value weight : float or None Global scalar weight for loss. batch_axis : int, default 0 The axis that represents mini-batch. compute_full: boolean, default False Indicates whether to add an approximation(Stirling factor) for the Factorial term in the formula for the loss. The Stirling factor is: :math:`\text{target} * \log(\text{target}) - \text{target} + 0.5 * \log(2 * \pi * \text{target})` epsilon: float, default 1e-08 This is to avoid calculating log(0) which is not defined. Inputs: - **pred**: Predicted value - **target**: Random variable(count or number) which belongs to a Poisson distribution. - **sample_weight**: element-wise weighting tensor. Must be broadcastable to the same shape as pred. For example, if pred has shape (64, 10) and you want to weigh each sample in the batch separately, sample_weight should have shape (64, 1). Outputs: - **loss**: Average loss (shape=(1,1)) of the loss tensor with shape (batch_size,). """ def __init__(self, weight=None, from_logits=True, batch_axis=0, compute_full=False, **kwargs): super(PoissonNLLLoss, self).__init__(weight, batch_axis, **kwargs) self._from_logits = from_logits self._compute_full = compute_full def hybrid_forward(self, F, pred, target, sample_weight=None, epsilon=1e-08): target = _reshape_like(F, target, pred) if self._from_logits: loss = F.exp(pred) - target * pred else: loss = pred - target * F.log(pred + epsilon) if self._compute_full: # Using numpy's pi value stirling_factor = target * F.log(target)- target + 0.5 * F.log(2 * target * np.pi) target_gt_1 = target > 1 stirling_factor *= target_gt_1 loss += stirling_factor loss = _apply_weighting(F, loss, self._weight, sample_weight) return F.mean(loss, axis=self._batch_axis, exclude=True) class CosineEmbeddingLoss(Loss): r"""For a target label 1 or -1, vectors input1 and input2, the function computes the cosine distance between the vectors. This can be interpreted as how similar/dissimilar two input vectors are. .. math:: L = \sum_i \begin{cases} 1 - {cos\_sim({input1}_i, {input2}_i)} & \text{ if } {label}_i = 1\\ {cos\_sim({input1}_i, {input2}_i)} & \text{ if } {label}_i = -1 \end{cases}\\ cos\_sim(input1, input2) = \frac{{input1}_i.{input2}_i}{||{input1}_i||.||{input2}_i||} `input1`, `input2` can have arbitrary shape as long as they have the same number of elements. Parameters ---------- weight : float or None Global scalar weight for loss. batch_axis : int, default 0 The axis that represents mini-batch. margin : float Margin of separation between correct and incorrect pair. Inputs: - **input1**: a tensor with arbitrary shape - **input2**: another tensor with same shape as pred to which input1 is compared for similarity and loss calculation - **label**: A 1-D tensor indicating for each pair input1 and input2, target label is 1 or -1 - **sample_weight**: element-wise weighting tensor. Must be broadcastable to the same shape as input1. For example, if input1 has shape (64, 10) and you want to weigh each sample in the batch separately, sample_weight should have shape (64, 1). Outputs: - **loss**: The loss tensor with shape (batch_size,). """ def __init__(self, weight=None, batch_axis=0, margin=0, **kwargs): super(CosineEmbeddingLoss, self).__init__(weight, batch_axis, **kwargs) self._margin = margin def hybrid_forward(self, F, input1, input2, label, sample_weight=None): input1 = _reshape_like(F, input1, input2) label = label.reshape((-1, 1)) cos_sim = self._cosine_similarity(F, input1, input2) y_1 = label == 1 y_minus_1 = label == -1 cos_sim_a = (1 - cos_sim) * y_1 if F is ndarray: z_array = F.array([0]) else: z_array = F.zeros((1, 1)) cos_sim_b = F.broadcast_maximum(z_array, y_minus_1 * (cos_sim - self._margin), axis=1) loss = cos_sim_a + cos_sim_b loss = _apply_weighting(F, loss, self._weight, sample_weight) return loss def _cosine_similarity(self, F, x, y, axis=-1): # Calculates the cosine similarity between 2 vectors x_norm = F.norm(x, axis=axis).reshape(-1, 1) y_norm = F.norm(y, axis=axis).reshape(-1, 1) x_dot_y = F.sum(x*y, axis=axis).reshape(-1, 1) if F is ndarray: eps_arr = F.array([1e-12]) else: eps_arr = F.full((1, 1), 1e-12) return (x_dot_y / F.broadcast_maximum(x_norm * y_norm, eps_arr))
{ "content_hash": "d2c3b98e6074d558669a8cf0ef69db0a", "timestamp": "", "source": "github", "line_count": 818, "max_line_length": 118, "avg_line_length": 39.43520782396088, "alnum_prop": 0.6110422220844441, "repo_name": "mlperf/training_results_v0.6", "id": "238b300ba37bc187c45a01d3108121ad78981a7f", "size": "33095", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "Fujitsu/benchmarks/resnet/implementations/mxnet/python/mxnet/gluon/loss.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "ANTLR", "bytes": "1731" }, { "name": "Batchfile", "bytes": "13941" }, { "name": "C", "bytes": "208630" }, { "name": "C++", "bytes": "10999411" }, { "name": "CMake", "bytes": "129712" }, { "name": "CSS", "bytes": "64767" }, { "name": "Clojure", "bytes": "396764" }, { "name": "Cuda", "bytes": "2272433" }, { "name": "Dockerfile", "bytes": "67820" }, { "name": "Groovy", "bytes": "62557" }, { "name": "HTML", "bytes": "19753082" }, { "name": "Java", "bytes": "166294" }, { "name": "JavaScript", "bytes": "71846" }, { "name": "Julia", "bytes": "408765" }, { "name": "Jupyter Notebook", "bytes": "2713169" }, { "name": "Lua", "bytes": "4430" }, { "name": "MATLAB", "bytes": "34903" }, { "name": "Makefile", "bytes": "115694" }, { "name": "Perl", "bytes": "1535873" }, { "name": "Perl 6", "bytes": "7280" }, { "name": "PowerShell", "bytes": "6150" }, { "name": "Python", "bytes": "24905683" }, { "name": "R", "bytes": "351865" }, { "name": "Roff", "bytes": "293052" }, { "name": "Scala", "bytes": "1189019" }, { "name": "Shell", "bytes": "794096" }, { "name": "Smalltalk", "bytes": "3497" }, { "name": "TypeScript", "bytes": "361164" } ], "symlink_target": "" }
import graphene from .....checkout import calculations from .....checkout.fetch import fetch_checkout_info, fetch_checkout_lines from .....payment.error_codes import PaymentErrorCode from .....payment.models import ChargeStatus, Payment from .....plugins.manager import get_plugins_manager from ....tests.utils import get_graphql_content DUMMY_GATEWAY = "mirumee.payments.dummy" CREATE_PAYMENT_MUTATION = """ mutation CheckoutPaymentCreate( $checkoutId: ID, $token: UUID, $input: PaymentInput! ) { checkoutPaymentCreate(checkoutId: $checkoutId, token: $token, input: $input) { payment { chargeStatus } errors { code field } } } """ def test_checkout_add_payment_by_checkout_id( user_api_client, checkout_without_shipping_required, address ): checkout = checkout_without_shipping_required checkout.billing_address = address checkout.save() checkout_id = graphene.Node.to_global_id("Checkout", checkout.pk) manager = get_plugins_manager() lines, _ = fetch_checkout_lines(checkout) checkout_info = fetch_checkout_info(checkout, lines, [], manager) total = calculations.checkout_total( manager=manager, checkout_info=checkout_info, lines=lines, address=address ) variables = { "checkoutId": checkout_id, "input": { "gateway": DUMMY_GATEWAY, "token": "sample-token", "amount": total.gross.amount, }, } response = user_api_client.post_graphql(CREATE_PAYMENT_MUTATION, variables) content = get_graphql_content(response) data = content["data"]["checkoutPaymentCreate"] assert not data["errors"] payment = Payment.objects.get() assert payment.checkout == checkout assert payment.is_active assert payment.token == "sample-token" assert payment.total == total.gross.amount assert payment.currency == total.gross.currency assert payment.charge_status == ChargeStatus.NOT_CHARGED assert payment.billing_address_1 == checkout.billing_address.street_address_1 assert payment.billing_first_name == checkout.billing_address.first_name assert payment.billing_last_name == checkout.billing_address.last_name def test_checkout_add_payment_neither_token_and_id_given( user_api_client, checkout_without_shipping_required, address ): checkout = checkout_without_shipping_required checkout.billing_address = address checkout.save() manager = get_plugins_manager() lines, _ = fetch_checkout_lines(checkout) checkout_info = fetch_checkout_info(checkout, lines, [], manager) total = calculations.checkout_total( manager=manager, checkout_info=checkout_info, lines=lines, address=address ) variables = { "input": { "gateway": DUMMY_GATEWAY, "token": "sample-token", "amount": total.gross.amount, }, } response = user_api_client.post_graphql(CREATE_PAYMENT_MUTATION, variables) content = get_graphql_content(response) data = content["data"]["checkoutPaymentCreate"] assert len(data["errors"]) == 1 assert not data["payment"] assert data["errors"][0]["code"] == PaymentErrorCode.GRAPHQL_ERROR.name def test_checkout_add_payment_both_token_and_id_given( user_api_client, checkout_without_shipping_required, address ): checkout = checkout_without_shipping_required checkout.billing_address = address checkout.save() checkout_id = graphene.Node.to_global_id("Checkout", checkout.pk) manager = get_plugins_manager() lines, _ = fetch_checkout_lines(checkout) checkout_info = fetch_checkout_info(checkout, lines, [], manager) total = calculations.checkout_total( manager=manager, checkout_info=checkout_info, lines=lines, address=address ) variables = { "checkoutId": checkout_id, "token": checkout.token, "input": { "gateway": DUMMY_GATEWAY, "token": "sample-token", "amount": total.gross.amount, }, } response = user_api_client.post_graphql(CREATE_PAYMENT_MUTATION, variables) content = get_graphql_content(response) data = content["data"]["checkoutPaymentCreate"] assert len(data["errors"]) == 1 assert not data["payment"] assert data["errors"][0]["code"] == PaymentErrorCode.GRAPHQL_ERROR.name
{ "content_hash": "575785b9021d609a37e222f4232c96c1", "timestamp": "", "source": "github", "line_count": 123, "max_line_length": 86, "avg_line_length": 36.24390243902439, "alnum_prop": 0.6639748766262898, "repo_name": "mociepka/saleor", "id": "53672ce5038affbeca0816f407b2efdd081c1511", "size": "4458", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "saleor/graphql/payment/tests/deprecated/test_checkout_payment_create.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "Dockerfile", "bytes": "2228" }, { "name": "HTML", "bytes": "249248" }, { "name": "Procfile", "bytes": "290" }, { "name": "Python", "bytes": "12686831" }, { "name": "Shell", "bytes": "439" } ], "symlink_target": "" }
from django.conf import settings # noinspection PyProtectedMember from django.core.cache import caches from django.utils.six import iteritems from logging import getLogger import requests import requests.exceptions import string import random import socket logger = getLogger(__name__) def random_password(minlength=20, maxlength=30): """ Generate random string used as password. """ length = random.randint(minlength, maxlength) letters = string.ascii_letters + string.digits return ''.join([random.choice(letters) for _ in range(length)]) def _test_vnc(host, port, timeout=3): """ Test VNC connection. """ sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.settimeout(timeout) try: sock.connect((host, port)) if sock.recv(1024).startswith('RFB'): return True except (socket.error, socket.timeout, socket.herror, socket.gaierror) as err: logger.warning('Error "%s" when testing VNC on "%s:%s"', err, host, port) finally: sock.close() return False class Guacamole(object): """ Manipulate guacamole authorization from django. """ def __init__(self, request, vm=None, username=None, password=None, save_password=False, load_password=False): """ :param request: django request object. :param vm: vm object or list of vm objects (queryset). If it's a object it will be turned into a list. :param username: if not specified it will be set to the username attribute of request.user object. :param password: if not specified it will be auto generated. :param save_password: if True, then save the password in the request.session object. :param load_password: if True, then load the password from the request.session object. """ self.auth = None self.tree = None self.request = request self.vm = vm if self.vm and not hasattr(self.vm, '__iter__'): self.vm = [vm] self.usr = username if not self.usr: self.usr = request.user.username self.key = settings.GUACAMOLE_KEY + self.usr self.pwd = password if not self.pwd: if load_password: self.pwd = self.request.session.get(self.key, random_password()) else: self.pwd = random_password() if save_password: self.request.session[self.key] = self.pwd def __set_tree(self): self.tree = {} def __set_auth(self): self.tree['password'] = self.pwd def __set_vm(self): for i in self.vm: self.tree[i.hostname] = { 'protocol': 'vnc', 'hostname': i.node.address, 'port': i.vnc_port } @classmethod def test_vnc(cls, vm, timeout=2): """ Test VNC connection on VM. """ return _test_vnc(vm.node.address, vm.vnc_port, timeout=timeout) def usermap(self): """ Generate the user-mapping XML and return it along with the key string. """ logger.debug('Creating guacamole user-mapping for user %s.', self.usr) self.__set_tree() self.__set_auth() if self.vm: self.__set_vm() return self.key, self.tree def login(self, save_cookie=True): """ Perform a login to guacamole by issuing a POST request to /api/tokens. """ logger.info('Performing guacamole login of user %s.', self.usr) exc = None r = None try: r = requests.post( settings.GUACAMOLE_URI + '/api/tokens', data={'username': self.usr, 'password': self.pwd}, headers={'User-Agent': settings.GUACAMOLE_USERAGENT}, timeout=settings.GUACAMOLE_TIMEOUT, allow_redirects=False ) except requests.exceptions.RequestException as exc: logger.exception(exc) status = None else: status = r.status_code if status == 200 and settings.GUACAMOLE_COOKIE in r.cookies: token = r.json().get('authToken', '') cookie = r.cookies[settings.GUACAMOLE_COOKIE] logger.info('User %s got guacamole cookie=%s and token=%s.', self.usr, cookie, token) if save_cookie: self.request.session[settings.GUACAMOLE_COOKIE] = cookie self.request.session[settings.GUACAMOLE_TOKEN] = token res = { 'token': token, 'cookie': { 'key': settings.GUACAMOLE_COOKIE, 'value': cookie, 'path': settings.GUACAMOLE_COOKIEPATH, 'domain': settings.GUACAMOLE_COOKIEDOMAIN, 'httponly': False } } else: logger.error('User %s could not login to guacamole, status=%s, response="%r".', self.usr, status, exc or r.text) res = {} return res def logout(self): """ Perform a logout from guacamole by issuing a DELETE request to /api/tokens/<token>. """ session = self.request.session token = '' logger.info('Performing guacamole logout of user %s.', self.usr) if settings.GUACAMOLE_COOKIE in session and settings.GUACAMOLE_TOKEN in session: token = session[settings.GUACAMOLE_TOKEN] try: r = requests.delete( settings.GUACAMOLE_URI + '/api/tokens/' + token, cookies={settings.GUACAMOLE_COOKIE: session[settings.GUACAMOLE_COOKIE]}, headers={'User-Agent': settings.GUACAMOLE_USERAGENT}, timeout=settings.GUACAMOLE_TIMEOUT, allow_redirects=False ) r.raise_for_status() except requests.exceptions.RequestException as exc: if exc.response and exc.response.status_code == 404: logger.warning('User %s could not logout from guacamole because the token "%s" ' 'does not exist anymore', self.usr, token) else: logger.exception(exc) logger.error('User %s could not logout from guacamole (%r).', self.usr, exc) else: logger.info('User %s has no guacamole cookie and/or token.', self.usr) return { 'token': token, 'cookie': { 'key': settings.GUACAMOLE_COOKIE, 'path': settings.GUACAMOLE_COOKIEPATH, } } class GuacamoleAuth(Guacamole): """ Manipulate guacamole-auth-redis keys. """ redis = caches['redis'].master_client def set_auth(self): """ Create Guacamole usermap and store it in redis. """ username, configs = self.usermap() pipe = self.redis.pipeline() pipe.hset(username, 'password', configs.pop('password', None)) for key, cfg in iteritems(configs): val = '\n'.join([str(i) + '=' + str(j) for i, j in iteritems(cfg)]) pipe.hset(username, key, val) return pipe.execute() def del_auth(self): """ Remove Guacamole usermap from redis. """ return self.redis.delete(self.key)
{ "content_hash": "89304966f8a285b323f9cfa01fcf06bb", "timestamp": "", "source": "github", "line_count": 235, "max_line_length": 113, "avg_line_length": 31.953191489361704, "alnum_prop": 0.5591956319083766, "repo_name": "erigones/esdc-ce", "id": "d3ad7519736beb8391b8973acd2c09cb798b8bdb", "size": "7509", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "gui/vm/guacamole.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Awk", "bytes": "2728" }, { "name": "C", "bytes": "8581" }, { "name": "CSS", "bytes": "146461" }, { "name": "DTrace", "bytes": "2250" }, { "name": "Erlang", "bytes": "18842" }, { "name": "HTML", "bytes": "473343" }, { "name": "JavaScript", "bytes": "679240" }, { "name": "Jinja", "bytes": "29584" }, { "name": "PLpgSQL", "bytes": "17954" }, { "name": "Perl", "bytes": "93955" }, { "name": "Python", "bytes": "3124524" }, { "name": "Ruby", "bytes": "56" }, { "name": "SCSS", "bytes": "82814" }, { "name": "Shell", "bytes": "281885" } ], "symlink_target": "" }
""" Testing suite for the PyTorch M2M100 model. """ import copy import tempfile import unittest from transformers import is_torch_available from transformers.file_utils import cached_property from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from .test_configuration_common import ConfigTester from .test_generation_utils import GenerationTesterMixin from .test_modeling_common import ModelTesterMixin, ids_tensor if is_torch_available(): import torch from transformers import M2M100Config, M2M100ForConditionalGeneration, M2M100Model, M2M100Tokenizer from transformers.models.m2m_100.modeling_m2m_100 import M2M100Decoder, M2M100Encoder def prepare_m2m_100_inputs_dict( config, input_ids, decoder_input_ids, attention_mask=None, decoder_attention_mask=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, ): if attention_mask is None: attention_mask = input_ids.ne(config.pad_token_id) if decoder_attention_mask is None: decoder_attention_mask = decoder_input_ids.ne(config.pad_token_id) if head_mask is None: head_mask = torch.ones(config.encoder_layers, config.encoder_attention_heads, device=torch_device) if decoder_head_mask is None: decoder_head_mask = torch.ones(config.decoder_layers, config.decoder_attention_heads, device=torch_device) if cross_attn_head_mask is None: cross_attn_head_mask = torch.ones(config.decoder_layers, config.decoder_attention_heads, device=torch_device) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_torch class M2M100ModelTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_labels=False, vocab_size=99, hidden_size=16, num_hidden_layers=2, num_attention_heads=4, intermediate_size=4, hidden_act="relu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, encoder_layerdrop=0.0, decoder_layerdrop=0.0, max_position_embeddings=20, eos_token_id=2, pad_token_id=1, bos_token_id=0, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.encoder_layerdrop = encoder_layerdrop self.decoder_layerdrop = decoder_layerdrop self.max_position_embeddings = max_position_embeddings self.eos_token_id = eos_token_id self.pad_token_id = pad_token_id self.bos_token_id = bos_token_id def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_ids[:, -1] = self.eos_token_id # Eos Token decoder_input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) # we need to clamp the input ids here to avoid having pad token in between # this is because for M2M100 the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input input_ids = input_ids.clamp(self.pad_token_id + 1) decoder_input_ids = decoder_input_ids.clamp(self.pad_token_id + 1) config = M2M100Config( vocab_size=self.vocab_size, d_model=self.hidden_size, encoder_layers=self.num_hidden_layers, decoder_layers=self.num_hidden_layers, encoder_attention_heads=self.num_attention_heads, decoder_attention_heads=self.num_attention_heads, encoder_ffn_dim=self.intermediate_size, decoder_ffn_dim=self.intermediate_size, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, encoder_layerdrop=self.encoder_layerdrop, decoder_layerdrop=self.decoder_layerdrop, max_position_embeddings=self.max_position_embeddings, eos_token_id=self.eos_token_id, bos_token_id=self.bos_token_id, pad_token_id=self.pad_token_id, ) inputs_dict = prepare_m2m_100_inputs_dict(config, input_ids, decoder_input_ids) return config, inputs_dict def prepare_config_and_inputs_for_common(self): config, inputs_dict = self.prepare_config_and_inputs() return config, inputs_dict def create_and_check_decoder_model_past_large_inputs(self, config, inputs_dict): model = M2M100Model(config=config).get_decoder().to(torch_device).eval() input_ids = inputs_dict["input_ids"] attention_mask = inputs_dict["attention_mask"] head_mask = inputs_dict["head_mask"] # first forward pass outputs = model(input_ids, attention_mask=attention_mask, head_mask=head_mask, use_cache=True) output, past_key_values = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) next_attn_mask = ids_tensor((self.batch_size, 3), 2) # append to next input_ids and next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) next_attention_mask = torch.cat([attention_mask, next_attn_mask], dim=-1) output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)["last_hidden_state"] output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[ "last_hidden_state" ] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-2)) def check_encoder_decoder_model_standalone(self, config, inputs_dict): model = M2M100Model(config=config).to(torch_device).eval() outputs = model(**inputs_dict) encoder_last_hidden_state = outputs.encoder_last_hidden_state last_hidden_state = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: encoder = model.get_encoder() encoder.save_pretrained(tmpdirname) encoder = M2M100Encoder.from_pretrained(tmpdirname).to(torch_device) encoder_last_hidden_state_2 = encoder(inputs_dict["input_ids"], attention_mask=inputs_dict["attention_mask"])[ 0 ] self.parent.assertTrue((encoder_last_hidden_state_2 - encoder_last_hidden_state).abs().max().item() < 1e-3) with tempfile.TemporaryDirectory() as tmpdirname: decoder = model.get_decoder() decoder.save_pretrained(tmpdirname) decoder = M2M100Decoder.from_pretrained(tmpdirname).to(torch_device) last_hidden_state_2 = decoder( input_ids=inputs_dict["decoder_input_ids"], attention_mask=inputs_dict["decoder_attention_mask"], encoder_hidden_states=encoder_last_hidden_state, encoder_attention_mask=inputs_dict["attention_mask"], )[0] self.parent.assertTrue((last_hidden_state_2 - last_hidden_state).abs().max().item() < 1e-3) @require_torch class M2M100ModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase): all_model_classes = ( ( M2M100Model, M2M100ForConditionalGeneration, ) if is_torch_available() else () ) all_generative_model_classes = (M2M100ForConditionalGeneration,) if is_torch_available() else () is_encoder_decoder = True test_pruning = False test_missing_keys = False def setUp(self): self.model_tester = M2M100ModelTester(self) self.config_tester = ConfigTester(self, config_class=M2M100Config) def test_config(self): self.config_tester.run_common_tests() def test_save_load_strict(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: model = model_class(config) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) model2, info = model_class.from_pretrained(tmpdirname, output_loading_info=True) self.assertEqual(info["missing_keys"], []) def test_decoder_model_past_with_large_inputs(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs) def test_encoder_decoder_model_standalone(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*config_and_inputs) def test_inputs_embeds(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in (M2M100Model, M2M100ForConditionalGeneration): model = model_class(config) model.to(torch_device) model.eval() inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class)) if not self.is_encoder_decoder: input_ids = inputs["input_ids"] del inputs["input_ids"] else: encoder_input_ids = inputs["input_ids"] decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids) del inputs["input_ids"] inputs.pop("decoder_input_ids", None) wte = model.get_input_embeddings() if not self.is_encoder_decoder: inputs["inputs_embeds"] = wte(input_ids) else: inputs["inputs_embeds"] = wte(encoder_input_ids) inputs["decoder_inputs_embeds"] = wte(decoder_input_ids) with torch.no_grad(): model(**inputs)[0] def test_generate_fp16(self): config, input_dict = self.model_tester.prepare_config_and_inputs() input_ids = input_dict["input_ids"] attention_mask = input_ids.ne(1).to(torch_device) model = M2M100ForConditionalGeneration(config).eval().to(torch_device) if torch_device == "cuda": model.half() model.generate(input_ids, attention_mask=attention_mask) model.generate(num_beams=4, do_sample=True, early_stopping=False, num_return_sequences=3) def _long_tensor(tok_lst): return torch.tensor(tok_lst, dtype=torch.long, device=torch_device) TOLERANCE = 1e-4 @require_torch @require_sentencepiece @require_tokenizers @slow class M2M100ModelIntegrationTests(unittest.TestCase): @cached_property def default_tokenizer(self): return M2M100Tokenizer.from_pretrained("facebook/m2m100_418M") def test_inference_no_head(self): model = M2M100Model.from_pretrained("facebook/m2m100_418M").to(torch_device) input_ids = _long_tensor([[128028, 98, 12, 30527, 2732, 159, 7755, 61904, 39144, 38, 2]]) decoder_input_ids = _long_tensor([[2, 128028, 98, 12, 30527, 2732, 159, 7755, 61904, 39144, 38]]) inputs_dict = prepare_m2m_100_inputs_dict(model.config, input_ids, decoder_input_ids) with torch.no_grad(): output = model(**inputs_dict)[0] expected_shape = torch.Size((1, 11, 1024)) self.assertEqual(output.shape, expected_shape) # change to expected output here expected_slice = torch.tensor( [[-0.7780, -0.1676, 0.1038], [-6.7556, -1.3992, 0.0567], [-7.5383, -0.5920, -0.2779]], device=torch_device ) self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=TOLERANCE)) def test_inference_head(self): model = M2M100ForConditionalGeneration.from_pretrained("facebook/m2m100_418M").to(torch_device) # change to intended input input_ids = _long_tensor([[128028, 98, 12, 30527, 2732, 159, 7755, 61904, 39144, 38, 2]]) decoder_input_ids = _long_tensor([[2, 128028, 98, 12, 30527, 2732, 159, 7755, 61904, 39144, 38]]) inputs_dict = prepare_m2m_100_inputs_dict(model.config, input_ids, decoder_input_ids) with torch.no_grad(): output = model(**inputs_dict)[0] expected_shape = torch.Size((1, 11, model.config.vocab_size)) self.assertEqual(output.shape, expected_shape) # change to expected output here expected_slice = torch.tensor( [[-1.0448, -1.0411, 3.7992], [-3.2191, -3.2386, -1.3451], [-3.6210, -3.5993, 0.4925]], device=torch_device ) self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=TOLERANCE)) def test_seq_to_seq_generation(self): model = M2M100ForConditionalGeneration.from_pretrained("facebook/m2m100_418M").to(torch_device) tokenizer = M2M100Tokenizer.from_pretrained("facebook/m2m100_418M", src_lang="fr", tgt_lang="en") src_fr = [ "L'affaire NSA souligne l'absence totale de débat sur le renseignement", "Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.", "Lorsque François Hollande téléphone à Barack Obama ou quand le ministre des affaires étrangères Laurent Fabius convoque l'ambassadeur des Etats-Unis, ils réagissent à une vraie découverte, qui est celle de l'ampleur de la surveillance américaine sur l'ensemble des communications en France.", ] # The below article tests that we don't add any hypotheses outside of the top n_beams dct = tokenizer(src_fr, padding=True, return_tensors="pt") hypotheses_batch = model.generate( input_ids=dct["input_ids"].to(torch_device), attention_mask=dct["attention_mask"].to(torch_device), num_beams=5, forced_bos_token_id=tokenizer.get_lang_id("en"), ) expected_en = [ "The NSA case highlights the total absence of intelligence debate", "I think there are two levels of response from the French government.", "When François Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S. Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all communications in France.", ] generated = tokenizer.batch_decode( hypotheses_batch.tolist(), clean_up_tokenization_spaces=True, skip_special_tokens=True ) assert generated == expected_en
{ "content_hash": "112cc1458510425b51c21e8e709c72c4", "timestamp": "", "source": "github", "line_count": 363, "max_line_length": 305, "avg_line_length": 43.917355371900825, "alnum_prop": 0.652866641575712, "repo_name": "huggingface/pytorch-transformers", "id": "e39876e4ee7cecd996470b3c2ecb2e7130ce7b19", "size": "16582", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "tests/test_modeling_m2m_100.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Dockerfile", "bytes": "194" }, { "name": "Jupyter Notebook", "bytes": "535623" }, { "name": "Python", "bytes": "897445" } ], "symlink_target": "" }
import warnings from functools import partial from typing import ( # pylint: disable=unused-import Any, AnyStr, Dict, IO, Iterable, List, Optional, overload, Tuple, Union, TYPE_CHECKING ) from azure.core.async_paging import AsyncItemPaged from azure.core.exceptions import ResourceNotFoundError, HttpResponseError, ResourceExistsError from azure.core.pipeline import AsyncPipeline from azure.core.tracing.decorator import distributed_trace from azure.core.tracing.decorator_async import distributed_trace_async from .._shared.base_client_async import AsyncStorageAccountHostsMixin, AsyncTransportWrapper from .._shared.policies_async import ExponentialRetry from .._shared.response_handlers import return_response_headers, process_storage_error from .._generated.aio import AzureBlobStorage from .._generated.models import CpkInfo from .._blob_client import BlobClient as BlobClientBase from .._deserialize import ( deserialize_blob_properties, deserialize_pipeline_response_into_cls, get_page_ranges_result, parse_tags ) from .._encryption import StorageEncryptionMixin from .._models import BlobType, BlobBlock, BlobProperties, PageRange from .._serialize import get_modify_conditions, get_api_version, get_access_conditions from ._download_async import StorageStreamDownloader from ._lease_async import BlobLeaseClient from ._models import PageRangePaged from ._upload_helpers import ( upload_block_blob, upload_append_blob, upload_page_blob ) if TYPE_CHECKING: from azure.core.credentials import AzureNamedKeyCredential, AzureSasCredential, TokenCredential from datetime import datetime from .._models import ( # pylint: disable=unused-import ContentSettings, ImmutabilityPolicy, PremiumPageBlobTier, StandardBlobTier, SequenceNumberAction ) class BlobClient(AsyncStorageAccountHostsMixin, BlobClientBase, StorageEncryptionMixin): # pylint: disable=too-many-public-methods """A client to interact with a specific blob, although that blob may not yet exist. :param str account_url: The URI to the storage account. In order to create a client given the full URI to the blob, use the :func:`from_blob_url` classmethod. :param container_name: The container name for the blob. :type container_name: str :param blob_name: The name of the blob with which to interact. If specified, this value will override a blob value specified in the blob URL. :type blob_name: str :param str snapshot: The optional blob snapshot on which to operate. This can be the snapshot ID string or the response returned from :func:`create_snapshot`. :param credential: The credentials with which to authenticate. This is optional if the account URL already has a SAS token. The value can be a SAS token string, an instance of a AzureSasCredential or AzureNamedKeyCredential from azure.core.credentials, an account shared access key, or an instance of a TokenCredentials class from azure.identity. If the resource URI already contains a SAS token, this will be ignored in favor of an explicit credential - except in the case of AzureSasCredential, where the conflicting SAS tokens will raise a ValueError. If using an instance of AzureNamedKeyCredential, "name" should be the storage account name, and "key" should be the storage account key. :keyword str api_version: The Storage API version to use for requests. Default value is the most recent service version that is compatible with the current SDK. Setting to an older version may result in reduced feature compatibility. .. versionadded:: 12.2.0 :keyword str secondary_hostname: The hostname of the secondary endpoint. :keyword int max_block_size: The maximum chunk size for uploading a block blob in chunks. Defaults to 4*1024*1024, or 4MB. :keyword int max_single_put_size: If the blob size is less than or equal max_single_put_size, then the blob will be uploaded with only one http PUT request. If the blob size is larger than max_single_put_size, the blob will be uploaded in chunks. Defaults to 64*1024*1024, or 64MB. :keyword int min_large_block_upload_threshold: The minimum chunk size required to use the memory efficient algorithm when uploading a block blob. Defaults to 4*1024*1024+1. :keyword bool use_byte_buffer: Use a byte buffer for block blob uploads. Defaults to False. :keyword int max_page_size: The maximum chunk size for uploading a page blob. Defaults to 4*1024*1024, or 4MB. :keyword int max_single_get_size: The maximum size for a blob to be downloaded in a single call, the exceeded part will be downloaded in chunks (could be parallel). Defaults to 32*1024*1024, or 32MB. :keyword int max_chunk_get_size: The maximum chunk size used for downloading a blob. Defaults to 4*1024*1024, or 4MB. .. admonition:: Example: .. literalinclude:: ../samples/blob_samples_authentication_async.py :start-after: [START create_blob_client] :end-before: [END create_blob_client] :language: python :dedent: 8 :caption: Creating the BlobClient from a URL to a public blob (no auth needed). .. literalinclude:: ../samples/blob_samples_authentication_async.py :start-after: [START create_blob_client_sas_url] :end-before: [END create_blob_client_sas_url] :language: python :dedent: 8 :caption: Creating the BlobClient from a SAS URL to a blob. """ def __init__( self, account_url: str, container_name: str, blob_name: str, snapshot: Optional[Union[str, Dict[str, Any]]] = None, credential: Optional[Union[str, Dict[str, str], "AzureNamedKeyCredential", "AzureSasCredential", "TokenCredential"]] = None, # pylint: disable=line-too-long **kwargs: Any ) -> None: kwargs['retry_policy'] = kwargs.get('retry_policy') or ExponentialRetry(**kwargs) super(BlobClient, self).__init__( account_url, container_name=container_name, blob_name=blob_name, snapshot=snapshot, credential=credential, **kwargs) self._client = AzureBlobStorage(self.url, base_url=self.url, pipeline=self._pipeline) self._client._config.version = get_api_version(kwargs) # pylint: disable=protected-access self._configure_encryption(kwargs) @distributed_trace_async async def get_account_information(self, **kwargs): # type: ignore # type: (Optional[int]) -> Dict[str, str] """Gets information related to the storage account in which the blob resides. The information can also be retrieved if the user has a SAS to a container or blob. The keys in the returned dictionary include 'sku_name' and 'account_kind'. :returns: A dict of account information (SKU and account type). :rtype: dict(str, str) """ try: return await self._client.blob.get_account_info(cls=return_response_headers, **kwargs) # type: ignore except HttpResponseError as error: process_storage_error(error) @distributed_trace_async async def upload_blob_from_url(self, source_url, **kwargs): # type: (str, Any) -> Dict[str, Any] """ Creates a new Block Blob where the content of the blob is read from a given URL. The content of an existing blob is overwritten with the new blob. :param str source_url: A URL of up to 2 KB in length that specifies a file or blob. The value should be URL-encoded as it would appear in a request URI. If the source is in another account, the source must either be public or must be authenticated via a shared access signature. If the source is public, no authentication is required. Examples: https://myaccount.blob.core.windows.net/mycontainer/myblob https://myaccount.blob.core.windows.net/mycontainer/myblob?snapshot=<DateTime> https://otheraccount.blob.core.windows.net/mycontainer/myblob?sastoken :keyword bool overwrite: Whether the blob to be uploaded should overwrite the current data. If True, upload_blob will overwrite the existing data. If set to False, the operation will fail with ResourceExistsError. :keyword bool include_source_blob_properties: Indicates if properties from the source blob should be copied. Defaults to True. :keyword tags: Name-value pairs associated with the blob as tag. Tags are case-sensitive. The tag set may contain at most 10 tags. Tag keys must be between 1 and 128 characters, and tag values must be between 0 and 256 characters. Valid tag key and value characters include: lowercase and uppercase letters, digits (0-9), space (` `), plus (+), minus (-), period (.), solidus (/), colon (:), equals (=), underscore (_) :paramtype tags: dict(str, str) :keyword bytearray source_content_md5: Specify the md5 that is used to verify the integrity of the source bytes. :keyword ~datetime.datetime source_if_modified_since: A DateTime value. Azure expects the date value passed in to be UTC. If timezone is included, any non-UTC datetimes will be converted to UTC. If a date is passed in without timezone info, it is assumed to be UTC. Specify this header to perform the operation only if the source resource has been modified since the specified time. :keyword ~datetime.datetime source_if_unmodified_since: A DateTime value. Azure expects the date value passed in to be UTC. If timezone is included, any non-UTC datetimes will be converted to UTC. If a date is passed in without timezone info, it is assumed to be UTC. Specify this header to perform the operation only if the source resource has not been modified since the specified date/time. :keyword str source_etag: The source ETag value, or the wildcard character (*). Used to check if the resource has changed, and act according to the condition specified by the `match_condition` parameter. :keyword ~azure.core.MatchConditions source_match_condition: The source match condition to use upon the etag. :keyword ~datetime.datetime if_modified_since: A DateTime value. Azure expects the date value passed in to be UTC. If timezone is included, any non-UTC datetimes will be converted to UTC. If a date is passed in without timezone info, it is assumed to be UTC. Specify this header to perform the operation only if the resource has been modified since the specified time. :keyword ~datetime.datetime if_unmodified_since: A DateTime value. Azure expects the date value passed in to be UTC. If timezone is included, any non-UTC datetimes will be converted to UTC. If a date is passed in without timezone info, it is assumed to be UTC. Specify this header to perform the operation only if the resource has not been modified since the specified date/time. :keyword str etag: The destination ETag value, or the wildcard character (*). Used to check if the resource has changed, and act according to the condition specified by the `match_condition` parameter. :keyword ~azure.core.MatchConditions match_condition: The destination match condition to use upon the etag. :keyword destination_lease: The lease ID specified for this header must match the lease ID of the destination blob. If the request does not include the lease ID or it is not valid, the operation fails with status code 412 (Precondition Failed). :paramtype destination_lease: ~azure.storage.blob.BlobLeaseClient or str :keyword int timeout: The timeout parameter is expressed in seconds. :keyword ~azure.storage.blob.ContentSettings content_settings: ContentSettings object used to set blob properties. Used to set content type, encoding, language, disposition, md5, and cache control. :keyword ~azure.storage.blob.CustomerProvidedEncryptionKey cpk: Encrypts the data on the service-side with the given key. Use of customer-provided keys must be done over HTTPS. As the encryption key itself is provided in the request, a secure connection must be established to transfer the key. :keyword str encryption_scope: A predefined encryption scope used to encrypt the data on the service. An encryption scope can be created using the Management API and referenced here by name. If a default encryption scope has been defined at the container, this value will override it if the container-level scope is configured to allow overrides. Otherwise an error will be raised. :keyword ~azure.storage.blob.StandardBlobTier standard_blob_tier: A standard blob tier value to set the blob to. For this version of the library, this is only applicable to block blobs on standard storage accounts. :keyword str source_authorization: Authenticate as a service principal using a client secret to access a source blob. Ensure "bearer " is the prefix of the source_authorization string. """ options = self._upload_blob_from_url_options( source_url=self._encode_source_url(source_url), **kwargs) try: return await self._client.block_blob.put_blob_from_url(**options) except HttpResponseError as error: process_storage_error(error) @distributed_trace_async async def upload_blob( self, data, # type: Union[bytes, str, Iterable[AnyStr], IO[AnyStr]] blob_type=BlobType.BlockBlob, # type: Union[str, BlobType] length=None, # type: Optional[int] metadata=None, # type: Optional[Dict[str, str]] **kwargs ): # type: (...) -> Any """Creates a new blob from a data source with automatic chunking. :param data: The blob data to upload. :param ~azure.storage.blob.BlobType blob_type: The type of the blob. This can be either BlockBlob, PageBlob or AppendBlob. The default value is BlockBlob. :param int length: Number of bytes to read from the stream. This is optional, but should be supplied for optimal performance. :param metadata: Name-value pairs associated with the blob as metadata. :type metadata: dict(str, str) :keyword tags: Name-value pairs associated with the blob as tag. Tags are case-sensitive. The tag set may contain at most 10 tags. Tag keys must be between 1 and 128 characters, and tag values must be between 0 and 256 characters. Valid tag key and value characters include: lowercase and uppercase letters, digits (0-9), space (` `), plus (+), minus (-), period (.), solidus (/), colon (:), equals (=), underscore (_) .. versionadded:: 12.4.0 :paramtype tags: dict(str, str) :keyword bool overwrite: Whether the blob to be uploaded should overwrite the current data. If True, upload_blob will overwrite the existing data. If set to False, the operation will fail with ResourceExistsError. The exception to the above is with Append blob types: if set to False and the data already exists, an error will not be raised and the data will be appended to the existing blob. If set overwrite=True, then the existing append blob will be deleted, and a new one created. Defaults to False. :keyword ~azure.storage.blob.ContentSettings content_settings: ContentSettings object used to set blob properties. Used to set content type, encoding, language, disposition, md5, and cache control. :keyword bool validate_content: If true, calculates an MD5 hash for each chunk of the blob. The storage service checks the hash of the content that has arrived with the hash that was sent. This is primarily valuable for detecting bitflips on the wire if using http instead of https, as https (the default), will already validate. Note that this MD5 hash is not stored with the blob. Also note that if enabled, the memory-efficient upload algorithm will not be used because computing the MD5 hash requires buffering entire blocks, and doing so defeats the purpose of the memory-efficient algorithm. :keyword lease: If specified, upload_blob only succeeds if the blob's lease is active and matches this ID. Required if the blob has an active lease. :paramtype: ~azure.storage.blob.aio.BlobLeaseClient :keyword ~datetime.datetime if_modified_since: A DateTime value. Azure expects the date value passed in to be UTC. If timezone is included, any non-UTC datetimes will be converted to UTC. If a date is passed in without timezone info, it is assumed to be UTC. Specify this header to perform the operation only if the resource has been modified since the specified time. :keyword ~datetime.datetime if_unmodified_since: A DateTime value. Azure expects the date value passed in to be UTC. If timezone is included, any non-UTC datetimes will be converted to UTC. If a date is passed in without timezone info, it is assumed to be UTC. Specify this header to perform the operation only if the resource has not been modified since the specified date/time. :keyword str etag: An ETag value, or the wildcard character (*). Used to check if the resource has changed, and act according to the condition specified by the `match_condition` parameter. :keyword ~azure.core.MatchConditions match_condition: The match condition to use upon the etag. :keyword str if_tags_match_condition: Specify a SQL where clause on blob tags to operate only on blob with a matching value. eg. ``\"\\\"tagname\\\"='my tag'\"`` .. versionadded:: 12.4.0 :keyword ~azure.storage.blob.PremiumPageBlobTier premium_page_blob_tier: A page blob tier value to set the blob to. The tier correlates to the size of the blob and number of allowed IOPS. This is only applicable to page blobs on premium storage accounts. :keyword ~azure.storage.blob.ImmutabilityPolicy immutability_policy: Specifies the immutability policy of a blob, blob snapshot or blob version. Currently this parameter of upload_blob() API is for BlockBlob only. .. versionadded:: 12.10.0 This was introduced in API version '2020-10-02'. :keyword bool legal_hold: Specified if a legal hold should be set on the blob. Currently this parameter of upload_blob() API is for BlockBlob only. .. versionadded:: 12.10.0 This was introduced in API version '2020-10-02'. :keyword ~azure.storage.blob.StandardBlobTier standard_blob_tier: A standard blob tier value to set the blob to. For this version of the library, this is only applicable to block blobs on standard storage accounts. :keyword int maxsize_condition: Optional conditional header. The max length in bytes permitted for the append blob. If the Append Block operation would cause the blob to exceed that limit or if the blob size is already greater than the value specified in this header, the request will fail with MaxBlobSizeConditionNotMet error (HTTP status code 412 - Precondition Failed). :keyword int max_concurrency: Maximum number of parallel connections to use when the blob size exceeds 64MB. :keyword ~azure.storage.blob.CustomerProvidedEncryptionKey cpk: Encrypts the data on the service-side with the given key. Use of customer-provided keys must be done over HTTPS. As the encryption key itself is provided in the request, a secure connection must be established to transfer the key. :keyword str encryption_scope: A predefined encryption scope used to encrypt the data on the service. An encryption scope can be created using the Management API and referenced here by name. If a default encryption scope has been defined at the container, this value will override it if the container-level scope is configured to allow overrides. Otherwise an error will be raised. .. versionadded:: 12.2.0 :keyword str encoding: Defaults to UTF-8. :keyword progress_hook: An async callback to track the progress of a long running upload. The signature is function(current: int, total: Optional[int]) where current is the number of bytes transfered so far, and total is the size of the blob or None if the size is unknown. :paramtype progress_hook: Callable[[int, Optional[int]], Awaitable[None]] :keyword int timeout: The timeout parameter is expressed in seconds. This method may make multiple calls to the Azure service and the timeout will apply to each call individually. :returns: Blob-updated property dict (Etag and last modified) :rtype: dict[str, Any] .. admonition:: Example: .. literalinclude:: ../samples/blob_samples_hello_world_async.py :start-after: [START upload_a_blob] :end-before: [END upload_a_blob] :language: python :dedent: 16 :caption: Upload a blob to the container. """ options = self._upload_blob_options( data, blob_type=blob_type, length=length, metadata=metadata, **kwargs) if blob_type == BlobType.BlockBlob: return await upload_block_blob(**options) if blob_type == BlobType.PageBlob: return await upload_page_blob(**options) return await upload_append_blob(**options) @overload async def download_blob( self, offset: int = None, length: int = None, *, encoding: str, **kwargs) -> StorageStreamDownloader[str]: ... @overload async def download_blob( self, offset: int = None, length: int = None, *, encoding: None = None, **kwargs) -> StorageStreamDownloader[bytes]: ... @distributed_trace_async async def download_blob( self, offset: int = None, length: int = None, *, encoding: Optional[str] = None, **kwargs) -> StorageStreamDownloader: """Downloads a blob to the StorageStreamDownloader. The readall() method must be used to read all the content or readinto() must be used to download the blob into a stream. Using chunks() returns an async iterator which allows the user to iterate over the content in chunks. :param int offset: Start of byte range to use for downloading a section of the blob. Must be set if length is provided. :param int length: Number of bytes to read from the stream. This is optional, but should be supplied for optimal performance. :keyword str version_id: The version id parameter is an opaque DateTime value that, when present, specifies the version of the blob to download. .. versionadded:: 12.4.0 This keyword argument was introduced in API version '2019-12-12'. :keyword bool validate_content: If true, calculates an MD5 hash for each chunk of the blob. The storage service checks the hash of the content that has arrived with the hash that was sent. This is primarily valuable for detecting bitflips on the wire if using http instead of https, as https (the default), will already validate. Note that this MD5 hash is not stored with the blob. Also note that if enabled, the memory-efficient upload algorithm will not be used because computing the MD5 hash requires buffering entire blocks, and doing so defeats the purpose of the memory-efficient algorithm. :keyword lease: Required if the blob has an active lease. If specified, download_blob only succeeds if the blob's lease is active and matches this ID. Value can be a BlobLeaseClient object or the lease ID as a string. :paramtype lease: ~azure.storage.blob.aio.BlobLeaseClient or str :keyword ~datetime.datetime if_modified_since: A DateTime value. Azure expects the date value passed in to be UTC. If timezone is included, any non-UTC datetimes will be converted to UTC. If a date is passed in without timezone info, it is assumed to be UTC. Specify this header to perform the operation only if the resource has been modified since the specified time. :keyword ~datetime.datetime if_unmodified_since: A DateTime value. Azure expects the date value passed in to be UTC. If timezone is included, any non-UTC datetimes will be converted to UTC. If a date is passed in without timezone info, it is assumed to be UTC. Specify this header to perform the operation only if the resource has not been modified since the specified date/time. :keyword str etag: An ETag value, or the wildcard character (*). Used to check if the resource has changed, and act according to the condition specified by the `match_condition` parameter. :keyword ~azure.core.MatchConditions match_condition: The match condition to use upon the etag. :keyword str if_tags_match_condition: Specify a SQL where clause on blob tags to operate only on blob with a matching value. eg. ``\"\\\"tagname\\\"='my tag'\"`` .. versionadded:: 12.4.0 :keyword ~azure.storage.blob.CustomerProvidedEncryptionKey cpk: Encrypts the data on the service-side with the given key. Use of customer-provided keys must be done over HTTPS. As the encryption key itself is provided in the request, a secure connection must be established to transfer the key. :keyword int max_concurrency: The number of parallel connections with which to download. :keyword str encoding: Encoding to decode the downloaded bytes. Default is None, i.e. no decoding. :keyword progress_hook: An async callback to track the progress of a long running download. The signature is function(current: int, total: int) where current is the number of bytes transfered so far, and total is the total size of the download. :paramtype progress_hook: Callable[[int, int], Awaitable[None]] :keyword int timeout: The timeout parameter is expressed in seconds. This method may make multiple calls to the Azure service and the timeout will apply to each call individually. :returns: A streaming object (StorageStreamDownloader) :rtype: ~azure.storage.blob.aio.StorageStreamDownloader .. admonition:: Example: .. literalinclude:: ../samples/blob_samples_hello_world_async.py :start-after: [START download_a_blob] :end-before: [END download_a_blob] :language: python :dedent: 16 :caption: Download a blob. """ options = self._download_blob_options( offset=offset, length=length, encoding=encoding, **kwargs) downloader = StorageStreamDownloader(**options) await downloader._setup() # pylint: disable=protected-access return downloader @distributed_trace_async async def delete_blob(self, delete_snapshots=None, **kwargs): # type: (str, Any) -> None """Marks the specified blob for deletion. The blob is later deleted during garbage collection. Note that in order to delete a blob, you must delete all of its snapshots. You can delete both at the same time with the delete_blob() operation. If a delete retention policy is enabled for the service, then this operation soft deletes the blob and retains the blob for a specified number of days. After the specified number of days, the blob's data is removed from the service during garbage collection. Soft deleted blob is accessible through :func:`~ContainerClient.list_blobs()` specifying `include=['deleted']` option. Soft-deleted blob can be restored using :func:`undelete` operation. :param str delete_snapshots: Required if the blob has associated snapshots. Values include: - "only": Deletes only the blobs snapshots. - "include": Deletes the blob along with all snapshots. :keyword str version_id: The version id parameter is an opaque DateTime value that, when present, specifies the version of the blob to delete. .. versionadded:: 12.4.0 This keyword argument was introduced in API version '2019-12-12'. :keyword lease: Required if the blob has an active lease. If specified, delete_blob only succeeds if the blob's lease is active and matches this ID. Value can be a BlobLeaseClient object or the lease ID as a string. :paramtype lease: ~azure.storage.blob.BlobLeaseClient or str :keyword ~datetime.datetime if_modified_since: A DateTime value. Azure expects the date value passed in to be UTC. If timezone is included, any non-UTC datetimes will be converted to UTC. If a date is passed in without timezone info, it is assumed to be UTC. Specify this header to perform the operation only if the resource has been modified since the specified time. :keyword ~datetime.datetime if_unmodified_since: A DateTime value. Azure expects the date value passed in to be UTC. If timezone is included, any non-UTC datetimes will be converted to UTC. If a date is passed in without timezone info, it is assumed to be UTC. Specify this header to perform the operation only if the resource has not been modified since the specified date/time. :keyword str etag: An ETag value, or the wildcard character (*). Used to check if the resource has changed, and act according to the condition specified by the `match_condition` parameter. :keyword ~azure.core.MatchConditions match_condition: The match condition to use upon the etag. :keyword str if_tags_match_condition: Specify a SQL where clause on blob tags to operate only on blob with a matching value. eg. ``\"\\\"tagname\\\"='my tag'\"`` .. versionadded:: 12.4.0 :keyword int timeout: The timeout parameter is expressed in seconds. :rtype: None .. admonition:: Example: .. literalinclude:: ../samples/blob_samples_hello_world_async.py :start-after: [START delete_blob] :end-before: [END delete_blob] :language: python :dedent: 16 :caption: Delete a blob. """ options = self._delete_blob_options(delete_snapshots=delete_snapshots, **kwargs) try: await self._client.blob.delete(**options) except HttpResponseError as error: process_storage_error(error) @distributed_trace_async async def undelete_blob(self, **kwargs): # type: (Any) -> None """Restores soft-deleted blobs or snapshots. Operation will only be successful if used within the specified number of days set in the delete retention policy. If blob versioning is enabled, the base blob cannot be restored using this method. Instead use :func:`start_copy_from_url` with the URL of the blob version you wish to promote to the current version. :keyword int timeout: The timeout parameter is expressed in seconds. :rtype: None .. admonition:: Example: .. literalinclude:: ../samples/blob_samples_common_async.py :start-after: [START undelete_blob] :end-before: [END undelete_blob] :language: python :dedent: 12 :caption: Undeleting a blob. """ try: await self._client.blob.undelete(timeout=kwargs.pop('timeout', None), **kwargs) except HttpResponseError as error: process_storage_error(error) @distributed_trace_async async def exists(self, **kwargs): # type: (**Any) -> bool """ Returns True if a blob exists with the defined parameters, and returns False otherwise. :kwarg str version_id: The version id parameter is an opaque DateTime value that, when present, specifies the version of the blob to check if it exists. :kwarg int timeout: The timeout parameter is expressed in seconds. :returns: boolean """ try: await self._client.blob.get_properties( snapshot=self.snapshot, **kwargs) return True # Encrypted with CPK except ResourceExistsError: return True except HttpResponseError as error: try: process_storage_error(error) except ResourceNotFoundError: return False @distributed_trace_async async def get_blob_properties(self, **kwargs): # type: (Any) -> BlobProperties """Returns all user-defined metadata, standard HTTP properties, and system properties for the blob. It does not return the content of the blob. :keyword lease: Required if the blob has an active lease. Value can be a BlobLeaseClient object or the lease ID as a string. :paramtype lease: ~azure.storage.blob.aio.BlobLeaseClient or str :keyword str version_id: The version id parameter is an opaque DateTime value that, when present, specifies the version of the blob to get properties. .. versionadded:: 12.4.0 This keyword argument was introduced in API version '2019-12-12'. :keyword ~datetime.datetime if_modified_since: A DateTime value. Azure expects the date value passed in to be UTC. If timezone is included, any non-UTC datetimes will be converted to UTC. If a date is passed in without timezone info, it is assumed to be UTC. Specify this header to perform the operation only if the resource has been modified since the specified time. :keyword ~datetime.datetime if_unmodified_since: A DateTime value. Azure expects the date value passed in to be UTC. If timezone is included, any non-UTC datetimes will be converted to UTC. If a date is passed in without timezone info, it is assumed to be UTC. Specify this header to perform the operation only if the resource has not been modified since the specified date/time. :keyword str etag: An ETag value, or the wildcard character (*). Used to check if the resource has changed, and act according to the condition specified by the `match_condition` parameter. :keyword ~azure.core.MatchConditions match_condition: The match condition to use upon the etag. :keyword str if_tags_match_condition: Specify a SQL where clause on blob tags to operate only on blob with a matching value. eg. ``\"\\\"tagname\\\"='my tag'\"`` .. versionadded:: 12.4.0 :keyword ~azure.storage.blob.CustomerProvidedEncryptionKey cpk: Encrypts the data on the service-side with the given key. Use of customer-provided keys must be done over HTTPS. As the encryption key itself is provided in the request, a secure connection must be established to transfer the key. :keyword int timeout: The timeout parameter is expressed in seconds. :returns: BlobProperties :rtype: ~azure.storage.blob.BlobProperties .. admonition:: Example: .. literalinclude:: ../samples/blob_samples_common_async.py :start-after: [START get_blob_properties] :end-before: [END get_blob_properties] :language: python :dedent: 12 :caption: Getting the properties for a blob. """ access_conditions = get_access_conditions(kwargs.pop('lease', None)) mod_conditions = get_modify_conditions(kwargs) cpk = kwargs.pop('cpk', None) cpk_info = None if cpk: if self.scheme.lower() != 'https': raise ValueError("Customer provided encryption key must be used over HTTPS.") cpk_info = CpkInfo(encryption_key=cpk.key_value, encryption_key_sha256=cpk.key_hash, encryption_algorithm=cpk.algorithm) try: cls_method = kwargs.pop('cls', None) if cls_method: kwargs['cls'] = partial(deserialize_pipeline_response_into_cls, cls_method) blob_props = await self._client.blob.get_properties( timeout=kwargs.pop('timeout', None), version_id=kwargs.pop('version_id', None), snapshot=self.snapshot, lease_access_conditions=access_conditions, modified_access_conditions=mod_conditions, cls=kwargs.pop('cls', None) or deserialize_blob_properties, cpk_info=cpk_info, **kwargs) except HttpResponseError as error: process_storage_error(error) blob_props.name = self.blob_name if isinstance(blob_props, BlobProperties): blob_props.container = self.container_name blob_props.snapshot = self.snapshot return blob_props # type: ignore @distributed_trace_async async def set_http_headers(self, content_settings=None, **kwargs): # type: (Optional[ContentSettings], Any) -> None """Sets system properties on the blob. If one property is set for the content_settings, all properties will be overridden. :param ~azure.storage.blob.ContentSettings content_settings: ContentSettings object used to set blob properties. Used to set content type, encoding, language, disposition, md5, and cache control. :keyword lease: Required if the blob has an active lease. Value can be a BlobLeaseClient object or the lease ID as a string. :paramtype lease: ~azure.storage.blob.aio.BlobLeaseClient or str :keyword ~datetime.datetime if_modified_since: A DateTime value. Azure expects the date value passed in to be UTC. If timezone is included, any non-UTC datetimes will be converted to UTC. If a date is passed in without timezone info, it is assumed to be UTC. Specify this header to perform the operation only if the resource has been modified since the specified time. :keyword ~datetime.datetime if_unmodified_since: A DateTime value. Azure expects the date value passed in to be UTC. If timezone is included, any non-UTC datetimes will be converted to UTC. If a date is passed in without timezone info, it is assumed to be UTC. Specify this header to perform the operation only if the resource has not been modified since the specified date/time. :keyword str etag: An ETag value, or the wildcard character (*). Used to check if the resource has changed, and act according to the condition specified by the `match_condition` parameter. :keyword ~azure.core.MatchConditions match_condition: The match condition to use upon the etag. :keyword str if_tags_match_condition: Specify a SQL where clause on blob tags to operate only on blob with a matching value. eg. ``\"\\\"tagname\\\"='my tag'\"`` .. versionadded:: 12.4.0 :keyword int timeout: The timeout parameter is expressed in seconds. :returns: Blob-updated property dict (Etag and last modified) :rtype: Dict[str, Any] """ options = self._set_http_headers_options(content_settings=content_settings, **kwargs) try: return await self._client.blob.set_http_headers(**options) # type: ignore except HttpResponseError as error: process_storage_error(error) @distributed_trace_async async def set_blob_metadata(self, metadata=None, **kwargs): # type: (Optional[Dict[str, str]], Any) -> Dict[str, Union[str, datetime]] """Sets user-defined metadata for the blob as one or more name-value pairs. :param metadata: Dict containing name and value pairs. Each call to this operation replaces all existing metadata attached to the blob. To remove all metadata from the blob, call this operation with no metadata headers. :type metadata: dict(str, str) :keyword lease: Required if the blob has an active lease. Value can be a BlobLeaseClient object or the lease ID as a string. :paramtype lease: ~azure.storage.blob.aio.BlobLeaseClient or str :keyword ~datetime.datetime if_modified_since: A DateTime value. Azure expects the date value passed in to be UTC. If timezone is included, any non-UTC datetimes will be converted to UTC. If a date is passed in without timezone info, it is assumed to be UTC. Specify this header to perform the operation only if the resource has been modified since the specified time. :keyword ~datetime.datetime if_unmodified_since: A DateTime value. Azure expects the date value passed in to be UTC. If timezone is included, any non-UTC datetimes will be converted to UTC. If a date is passed in without timezone info, it is assumed to be UTC. Specify this header to perform the operation only if the resource has not been modified since the specified date/time. :keyword str etag: An ETag value, or the wildcard character (*). Used to check if the resource has changed, and act according to the condition specified by the `match_condition` parameter. :keyword ~azure.core.MatchConditions match_condition: The match condition to use upon the etag. :keyword str if_tags_match_condition: Specify a SQL where clause on blob tags to operate only on blob with a matching value. eg. ``\"\\\"tagname\\\"='my tag'\"`` .. versionadded:: 12.4.0 :keyword ~azure.storage.blob.CustomerProvidedEncryptionKey cpk: Encrypts the data on the service-side with the given key. Use of customer-provided keys must be done over HTTPS. As the encryption key itself is provided in the request, a secure connection must be established to transfer the key. :keyword str encryption_scope: A predefined encryption scope used to encrypt the data on the service. An encryption scope can be created using the Management API and referenced here by name. If a default encryption scope has been defined at the container, this value will override it if the container-level scope is configured to allow overrides. Otherwise an error will be raised. .. versionadded:: 12.2.0 :keyword int timeout: The timeout parameter is expressed in seconds. :returns: Blob-updated property dict (Etag and last modified) """ options = self._set_blob_metadata_options(metadata=metadata, **kwargs) try: return await self._client.blob.set_metadata(**options) # type: ignore except HttpResponseError as error: process_storage_error(error) @distributed_trace_async async def set_immutability_policy(self, immutability_policy, **kwargs): # type: (ImmutabilityPolicy, **Any) -> Dict[str, str] """The Set Immutability Policy operation sets the immutability policy on the blob. .. versionadded:: 12.10.0 This operation was introduced in API version '2020-10-02'. :param ~azure.storage.blob.ImmutabilityPolicy immutability_policy: Specifies the immutability policy of a blob, blob snapshot or blob version. .. versionadded:: 12.10.0 This was introduced in API version '2020-10-02'. :keyword int timeout: The timeout parameter is expressed in seconds. :returns: Key value pairs of blob tags. :rtype: Dict[str, str] """ kwargs['immutability_policy_expiry'] = immutability_policy.expiry_time kwargs['immutability_policy_mode'] = immutability_policy.policy_mode return await self._client.blob.set_immutability_policy(cls=return_response_headers, **kwargs) @distributed_trace_async() async def delete_immutability_policy(self, **kwargs): # type: (**Any) -> None """The Delete Immutability Policy operation deletes the immutability policy on the blob. .. versionadded:: 12.10.0 This operation was introduced in API version '2020-10-02'. :keyword int timeout: The timeout parameter is expressed in seconds. :returns: Key value pairs of blob tags. :rtype: Dict[str, str] """ await self._client.blob.delete_immutability_policy(**kwargs) @distributed_trace_async async def set_legal_hold(self, legal_hold, **kwargs): # type: (bool, **Any) -> Dict[str, Union[str, datetime, bool]] """The Set Legal Hold operation sets a legal hold on the blob. .. versionadded:: 12.10.0 This operation was introduced in API version '2020-10-02'. :param bool legal_hold: Specified if a legal hold should be set on the blob. :keyword int timeout: The timeout parameter is expressed in seconds. :returns: Key value pairs of blob tags. :rtype: Dict[str, Union[str, datetime, bool]] """ return await self._client.blob.set_legal_hold(legal_hold, cls=return_response_headers, **kwargs) @distributed_trace_async async def create_page_blob( # type: ignore self, size, # type: int content_settings=None, # type: Optional[ContentSettings] metadata=None, # type: Optional[Dict[str, str]] premium_page_blob_tier=None, # type: Optional[Union[str, PremiumPageBlobTier]] **kwargs ): # type: (...) -> Dict[str, Union[str, datetime]] """Creates a new Page Blob of the specified size. :param int size: This specifies the maximum size for the page blob, up to 1 TB. The page blob size must be aligned to a 512-byte boundary. :param ~azure.storage.blob.ContentSettings content_settings: ContentSettings object used to set blob properties. Used to set content type, encoding, language, disposition, md5, and cache control. :param metadata: Name-value pairs associated with the blob as metadata. :type metadata: dict(str, str) :param ~azure.storage.blob.PremiumPageBlobTier premium_page_blob_tier: A page blob tier value to set the blob to. The tier correlates to the size of the blob and number of allowed IOPS. This is only applicable to page blobs on premium storage accounts. :keyword tags: Name-value pairs associated with the blob as tag. Tags are case-sensitive. The tag set may contain at most 10 tags. Tag keys must be between 1 and 128 characters, and tag values must be between 0 and 256 characters. Valid tag key and value characters include: lowercase and uppercase letters, digits (0-9), space (` `), plus (+), minus (-), period (.), solidus (/), colon (:), equals (=), underscore (_) .. versionadded:: 12.4.0 :paramtype tags: dict(str, str) :keyword int sequence_number: Only for Page blobs. The sequence number is a user-controlled value that you can use to track requests. The value of the sequence number must be between 0 and 2^63 - 1.The default value is 0. :keyword lease: Required if the blob has an active lease. Value can be a BlobLeaseClient object or the lease ID as a string. :paramtype lease: ~azure.storage.blob.aio.BlobLeaseClient or str :keyword ~azure.storage.blob.ImmutabilityPolicy immutability_policy: Specifies the immutability policy of a blob, blob snapshot or blob version. .. versionadded:: 12.10.0 This was introduced in API version '2020-10-02'. :keyword bool legal_hold: Specified if a legal hold should be set on the blob. .. versionadded:: 12.10.0 This was introduced in API version '2020-10-02'. :keyword ~datetime.datetime if_modified_since: A DateTime value. Azure expects the date value passed in to be UTC. If timezone is included, any non-UTC datetimes will be converted to UTC. If a date is passed in without timezone info, it is assumed to be UTC. Specify this header to perform the operation only if the resource has been modified since the specified time. :keyword ~datetime.datetime if_unmodified_since: A DateTime value. Azure expects the date value passed in to be UTC. If timezone is included, any non-UTC datetimes will be converted to UTC. If a date is passed in without timezone info, it is assumed to be UTC. Specify this header to perform the operation only if the resource has not been modified since the specified date/time. :keyword str etag: An ETag value, or the wildcard character (*). Used to check if the resource has changed, and act according to the condition specified by the `match_condition` parameter. :keyword ~azure.core.MatchConditions match_condition: The match condition to use upon the etag. :keyword ~azure.storage.blob.CustomerProvidedEncryptionKey cpk: Encrypts the data on the service-side with the given key. Use of customer-provided keys must be done over HTTPS. As the encryption key itself is provided in the request, a secure connection must be established to transfer the key. :keyword str encryption_scope: A predefined encryption scope used to encrypt the data on the service. An encryption scope can be created using the Management API and referenced here by name. If a default encryption scope has been defined at the container, this value will override it if the container-level scope is configured to allow overrides. Otherwise an error will be raised. .. versionadded:: 12.2.0 :keyword int timeout: The timeout parameter is expressed in seconds. :returns: Blob-updated property dict (Etag and last modified). :rtype: dict[str, Any] """ options = self._create_page_blob_options( size, content_settings=content_settings, metadata=metadata, premium_page_blob_tier=premium_page_blob_tier, **kwargs) try: return await self._client.page_blob.create(**options) # type: ignore except HttpResponseError as error: process_storage_error(error) @distributed_trace_async async def create_append_blob(self, content_settings=None, metadata=None, **kwargs): # type: (Optional[ContentSettings], Optional[Dict[str, str]], Any) -> Dict[str, Union[str, datetime]] """Creates a new Append Blob. :param ~azure.storage.blob.ContentSettings content_settings: ContentSettings object used to set blob properties. Used to set content type, encoding, language, disposition, md5, and cache control. :param metadata: Name-value pairs associated with the blob as metadata. :type metadata: dict(str, str) :keyword tags: Name-value pairs associated with the blob as tag. Tags are case-sensitive. The tag set may contain at most 10 tags. Tag keys must be between 1 and 128 characters, and tag values must be between 0 and 256 characters. Valid tag key and value characters include: lowercase and uppercase letters, digits (0-9), space (` `), plus (+), minus (-), period (.), solidus (/), colon (:), equals (=), underscore (_) .. versionadded:: 12.4.0 :paramtype tags: dict(str, str) :keyword ~azure.storage.blob.ImmutabilityPolicy immutability_policy: Specifies the immutability policy of a blob, blob snapshot or blob version. .. versionadded:: 12.10.0 This was introduced in API version '2020-10-02'. :keyword bool legal_hold: Specified if a legal hold should be set on the blob. .. versionadded:: 12.10.0 This was introduced in API version '2020-10-02'. :keyword lease: Required if the blob has an active lease. Value can be a BlobLeaseClient object or the lease ID as a string. :paramtype lease: ~azure.storage.blob.aio.BlobLeaseClient or str :keyword ~datetime.datetime if_modified_since: A DateTime value. Azure expects the date value passed in to be UTC. If timezone is included, any non-UTC datetimes will be converted to UTC. If a date is passed in without timezone info, it is assumed to be UTC. Specify this header to perform the operation only if the resource has been modified since the specified time. :keyword ~datetime.datetime if_unmodified_since: A DateTime value. Azure expects the date value passed in to be UTC. If timezone is included, any non-UTC datetimes will be converted to UTC. If a date is passed in without timezone info, it is assumed to be UTC. Specify this header to perform the operation only if the resource has not been modified since the specified date/time. :keyword str etag: An ETag value, or the wildcard character (*). Used to check if the resource has changed, and act according to the condition specified by the `match_condition` parameter. :keyword ~azure.core.MatchConditions match_condition: The match condition to use upon the etag. :keyword ~azure.storage.blob.CustomerProvidedEncryptionKey cpk: Encrypts the data on the service-side with the given key. Use of customer-provided keys must be done over HTTPS. As the encryption key itself is provided in the request, a secure connection must be established to transfer the key. :keyword str encryption_scope: A predefined encryption scope used to encrypt the data on the service. An encryption scope can be created using the Management API and referenced here by name. If a default encryption scope has been defined at the container, this value will override it if the container-level scope is configured to allow overrides. Otherwise an error will be raised. .. versionadded:: 12.2.0 :keyword int timeout: The timeout parameter is expressed in seconds. :returns: Blob-updated property dict (Etag and last modified). :rtype: dict[str, Any] """ options = self._create_append_blob_options( content_settings=content_settings, metadata=metadata, **kwargs) try: return await self._client.append_blob.create(**options) # type: ignore except HttpResponseError as error: process_storage_error(error) @distributed_trace_async async def create_snapshot(self, metadata=None, **kwargs): # type: (Optional[Dict[str, str]], Any) -> Dict[str, Union[str, datetime]] """Creates a snapshot of the blob. A snapshot is a read-only version of a blob that's taken at a point in time. It can be read, copied, or deleted, but not modified. Snapshots provide a way to back up a blob as it appears at a moment in time. A snapshot of a blob has the same name as the base blob from which the snapshot is taken, with a DateTime value appended to indicate the time at which the snapshot was taken. :param metadata: Name-value pairs associated with the blob as metadata. :type metadata: dict(str, str) :keyword ~datetime.datetime if_modified_since: A DateTime value. Azure expects the date value passed in to be UTC. If timezone is included, any non-UTC datetimes will be converted to UTC. If a date is passed in without timezone info, it is assumed to be UTC. Specify this header to perform the operation only if the resource has been modified since the specified time. :keyword ~datetime.datetime if_unmodified_since: A DateTime value. Azure expects the date value passed in to be UTC. If timezone is included, any non-UTC datetimes will be converted to UTC. If a date is passed in without timezone info, it is assumed to be UTC. Specify this header to perform the operation only if the resource has not been modified since the specified date/time. :keyword str etag: An ETag value, or the wildcard character (*). Used to check if the resource has changed, and act according to the condition specified by the `match_condition` parameter. :keyword ~azure.core.MatchConditions match_condition: The match condition to use upon the etag. :keyword str if_tags_match_condition: Specify a SQL where clause on blob tags to operate only on blob with a matching value. eg. ``\"\\\"tagname\\\"='my tag'\"`` .. versionadded:: 12.4.0 :keyword lease: Required if the blob has an active lease. Value can be a BlobLeaseClient object or the lease ID as a string. :paramtype lease: ~azure.storage.blob.aio.BlobLeaseClient or str :keyword ~azure.storage.blob.CustomerProvidedEncryptionKey cpk: Encrypts the data on the service-side with the given key. Use of customer-provided keys must be done over HTTPS. As the encryption key itself is provided in the request, a secure connection must be established to transfer the key. :keyword str encryption_scope: A predefined encryption scope used to encrypt the data on the service. An encryption scope can be created using the Management API and referenced here by name. If a default encryption scope has been defined at the container, this value will override it if the container-level scope is configured to allow overrides. Otherwise an error will be raised. .. versionadded:: 12.2.0 :keyword int timeout: The timeout parameter is expressed in seconds. :returns: Blob-updated property dict (Snapshot ID, Etag, and last modified). :rtype: dict[str, Any] .. admonition:: Example: .. literalinclude:: ../samples/blob_samples_common_async.py :start-after: [START create_blob_snapshot] :end-before: [END create_blob_snapshot] :language: python :dedent: 12 :caption: Create a snapshot of the blob. """ options = self._create_snapshot_options(metadata=metadata, **kwargs) try: return await self._client.blob.create_snapshot(**options) # type: ignore except HttpResponseError as error: process_storage_error(error) @distributed_trace_async async def start_copy_from_url(self, source_url, metadata=None, incremental_copy=False, **kwargs): # type: (str, Optional[Dict[str, str]], bool, Any) -> Dict[str, Union[str, datetime]] """Copies a blob from the given URL. This operation returns a dictionary containing `copy_status` and `copy_id`, which can be used to check the status of or abort the copy operation. `copy_status` will be 'success' if the copy completed synchronously or 'pending' if the copy has been started asynchronously. For asynchronous copies, the status can be checked by polling the :func:`get_blob_properties` method and checking the copy status. Set `requires_sync` to True to force the copy to be synchronous. The Blob service copies blobs on a best-effort basis. The source blob for a copy operation may be a block blob, an append blob, or a page blob. If the destination blob already exists, it must be of the same blob type as the source blob. Any existing destination blob will be overwritten. The destination blob cannot be modified while a copy operation is in progress. When copying from a page blob, the Blob service creates a destination page blob of the source blob's length, initially containing all zeroes. Then the source page ranges are enumerated, and non-empty ranges are copied. For a block blob or an append blob, the Blob service creates a committed blob of zero length before returning from this operation. When copying from a block blob, all committed blocks and their block IDs are copied. Uncommitted blocks are not copied. At the end of the copy operation, the destination blob will have the same committed block count as the source. When copying from an append blob, all committed blocks are copied. At the end of the copy operation, the destination blob will have the same committed block count as the source. :param str source_url: A URL of up to 2 KB in length that specifies a file or blob. The value should be URL-encoded as it would appear in a request URI. If the source is in another account, the source must either be public or must be authenticated via a shared access signature. If the source is public, no authentication is required. Examples: https://myaccount.blob.core.windows.net/mycontainer/myblob https://myaccount.blob.core.windows.net/mycontainer/myblob?snapshot=<DateTime> https://otheraccount.blob.core.windows.net/mycontainer/myblob?sastoken :param metadata: Name-value pairs associated with the blob as metadata. If no name-value pairs are specified, the operation will copy the metadata from the source blob or file to the destination blob. If one or more name-value pairs are specified, the destination blob is created with the specified metadata, and metadata is not copied from the source blob or file. :type metadata: dict(str, str) :param bool incremental_copy: Copies the snapshot of the source page blob to a destination page blob. The snapshot is copied such that only the differential changes between the previously copied snapshot are transferred to the destination. The copied snapshots are complete copies of the original snapshot and can be read or copied from as usual. Defaults to False. :keyword tags: Name-value pairs associated with the blob as tag. Tags are case-sensitive. The tag set may contain at most 10 tags. Tag keys must be between 1 and 128 characters, and tag values must be between 0 and 256 characters. Valid tag key and value characters include: lowercase and uppercase letters, digits (0-9), space (` `), plus (+), minus (-), period (.), solidus (/), colon (:), equals (=), underscore (_). The (case-sensitive) literal "COPY" can instead be passed to copy tags from the source blob. This option is only available when `incremental_copy=False` and `requires_sync=True`. .. versionadded:: 12.4.0 :paramtype tags: dict(str, str) or Literal["COPY"] :keyword ~azure.storage.blob.ImmutabilityPolicy immutability_policy: Specifies the immutability policy of a blob, blob snapshot or blob version. .. versionadded:: 12.10.0 This was introduced in API version '2020-10-02'. :keyword bool legal_hold: Specified if a legal hold should be set on the blob. .. versionadded:: 12.10.0 This was introduced in API version '2020-10-02'. :keyword ~datetime.datetime source_if_modified_since: A DateTime value. Azure expects the date value passed in to be UTC. If timezone is included, any non-UTC datetimes will be converted to UTC. If a date is passed in without timezone info, it is assumed to be UTC. Specify this conditional header to copy the blob only if the source blob has been modified since the specified date/time. :keyword ~datetime.datetime source_if_unmodified_since: A DateTime value. Azure expects the date value passed in to be UTC. If timezone is included, any non-UTC datetimes will be converted to UTC. If a date is passed in without timezone info, it is assumed to be UTC. Specify this conditional header to copy the blob only if the source blob has not been modified since the specified date/time. :keyword str source_etag: The source ETag value, or the wildcard character (*). Used to check if the resource has changed, and act according to the condition specified by the `match_condition` parameter. :keyword ~azure.core.MatchConditions source_match_condition: The source match condition to use upon the etag. :keyword ~datetime.datetime if_modified_since: A DateTime value. Azure expects the date value passed in to be UTC. If timezone is included, any non-UTC datetimes will be converted to UTC. If a date is passed in without timezone info, it is assumed to be UTC. Specify this conditional header to copy the blob only if the destination blob has been modified since the specified date/time. If the destination blob has not been modified, the Blob service returns status code 412 (Precondition Failed). :keyword ~datetime.datetime if_unmodified_since: A DateTime value. Azure expects the date value passed in to be UTC. If timezone is included, any non-UTC datetimes will be converted to UTC. If a date is passed in without timezone info, it is assumed to be UTC. Specify this conditional header to copy the blob only if the destination blob has not been modified since the specified date/time. If the destination blob has been modified, the Blob service returns status code 412 (Precondition Failed). :keyword str etag: The destination ETag value, or the wildcard character (*). Used to check if the resource has changed, and act according to the condition specified by the `match_condition` parameter. :keyword ~azure.core.MatchConditions match_condition: The destination match condition to use upon the etag. :keyword str if_tags_match_condition: Specify a SQL where clause on blob tags to operate only on blob with a matching value. eg. ``\"\\\"tagname\\\"='my tag'\"`` .. versionadded:: 12.4.0 :keyword destination_lease: The lease ID specified for this header must match the lease ID of the destination blob. If the request does not include the lease ID or it is not valid, the operation fails with status code 412 (Precondition Failed). :paramtype destination_lease: ~azure.storage.blob.aio.BlobLeaseClient or str :keyword source_lease: Specify this to perform the Copy Blob operation only if the lease ID given matches the active lease ID of the source blob. :paramtype source_lease: ~azure.storage.blob.aio.BlobLeaseClient or str :keyword int timeout: The timeout parameter is expressed in seconds. :keyword ~azure.storage.blob.PremiumPageBlobTier premium_page_blob_tier: A page blob tier value to set the blob to. The tier correlates to the size of the blob and number of allowed IOPS. This is only applicable to page blobs on premium storage accounts. :keyword ~azure.storage.blob.StandardBlobTier standard_blob_tier: A standard blob tier value to set the blob to. For this version of the library, this is only applicable to block blobs on standard storage accounts. :keyword ~azure.storage.blob.RehydratePriority rehydrate_priority: Indicates the priority with which to rehydrate an archived blob :keyword bool seal_destination_blob: Seal the destination append blob. This operation is only for append blob. .. versionadded:: 12.4.0 :keyword bool requires_sync: Enforces that the service will not return a response until the copy is complete. :keyword str source_authorization: Authenticate as a service principal using a client secret to access a source blob. Ensure "bearer " is the prefix of the source_authorization string. This option is only available when `incremental_copy` is set to False and `requires_sync` is set to True. .. versionadded:: 12.9.0 :keyword str encryption_scope: A predefined encryption scope used to encrypt the data on the sync copied blob. An encryption scope can be created using the Management API and referenced here by name. If a default encryption scope has been defined at the container, this value will override it if the container-level scope is configured to allow overrides. Otherwise an error will be raised. .. versionadded:: 12.10.0 :returns: A dictionary of copy properties (etag, last_modified, copy_id, copy_status). :rtype: dict[str, Union[str, ~datetime.datetime]] .. admonition:: Example: .. literalinclude:: ../samples/blob_samples_common_async.py :start-after: [START copy_blob_from_url] :end-before: [END copy_blob_from_url] :language: python :dedent: 16 :caption: Copy a blob from a URL. """ options = self._start_copy_from_url_options( source_url=self._encode_source_url(source_url), metadata=metadata, incremental_copy=incremental_copy, **kwargs) try: if incremental_copy: return await self._client.page_blob.copy_incremental(**options) return await self._client.blob.start_copy_from_url(**options) except HttpResponseError as error: process_storage_error(error) @distributed_trace_async async def abort_copy(self, copy_id, **kwargs): # type: (Union[str, Dict[str, Any], BlobProperties], Any) -> None """Abort an ongoing copy operation. This will leave a destination blob with zero length and full metadata. This will raise an error if the copy operation has already ended. :param copy_id: The copy operation to abort. This can be either an ID, or an instance of BlobProperties. :type copy_id: str or ~azure.storage.blob.BlobProperties :rtype: None .. admonition:: Example: .. literalinclude:: ../samples/blob_samples_common_async.py :start-after: [START abort_copy_blob_from_url] :end-before: [END abort_copy_blob_from_url] :language: python :dedent: 16 :caption: Abort copying a blob from URL. """ options = self._abort_copy_options(copy_id, **kwargs) try: await self._client.blob.abort_copy_from_url(**options) except HttpResponseError as error: process_storage_error(error) @distributed_trace_async async def acquire_lease(self, lease_duration=-1, lease_id=None, **kwargs): # type: (int, Optional[str], Any) -> BlobLeaseClient """Requests a new lease. If the blob does not have an active lease, the Blob Service creates a lease on the blob and returns a new lease. :param int lease_duration: Specifies the duration of the lease, in seconds, or negative one (-1) for a lease that never expires. A non-infinite lease can be between 15 and 60 seconds. A lease duration cannot be changed using renew or change. Default is -1 (infinite lease). :param str lease_id: Proposed lease ID, in a GUID string format. The Blob Service returns 400 (Invalid request) if the proposed lease ID is not in the correct format. :keyword ~datetime.datetime if_modified_since: A DateTime value. Azure expects the date value passed in to be UTC. If timezone is included, any non-UTC datetimes will be converted to UTC. If a date is passed in without timezone info, it is assumed to be UTC. Specify this header to perform the operation only if the resource has been modified since the specified time. :keyword ~datetime.datetime if_unmodified_since: A DateTime value. Azure expects the date value passed in to be UTC. If timezone is included, any non-UTC datetimes will be converted to UTC. If a date is passed in without timezone info, it is assumed to be UTC. Specify this header to perform the operation only if the resource has not been modified since the specified date/time. :keyword str etag: An ETag value, or the wildcard character (*). Used to check if the resource has changed, and act according to the condition specified by the `match_condition` parameter. :keyword ~azure.core.MatchConditions match_condition: The match condition to use upon the etag. :keyword str if_tags_match_condition: Specify a SQL where clause on blob tags to operate only on blob with a matching value. eg. ``\"\\\"tagname\\\"='my tag'\"`` .. versionadded:: 12.4.0 :keyword int timeout: The timeout parameter is expressed in seconds. :returns: A BlobLeaseClient object. :rtype: ~azure.storage.blob.aio.BlobLeaseClient .. admonition:: Example: .. literalinclude:: ../samples/blob_samples_common_async.py :start-after: [START acquire_lease_on_blob] :end-before: [END acquire_lease_on_blob] :language: python :dedent: 12 :caption: Acquiring a lease on a blob. """ lease = BlobLeaseClient(self, lease_id=lease_id) # type: ignore await lease.acquire(lease_duration=lease_duration, **kwargs) return lease @distributed_trace_async async def set_standard_blob_tier(self, standard_blob_tier, **kwargs): # type: (Union[str, StandardBlobTier], Any) -> None """This operation sets the tier on a block blob. A block blob's tier determines Hot/Cool/Archive storage type. This operation does not update the blob's ETag. :param standard_blob_tier: Indicates the tier to be set on the blob. Options include 'Hot', 'Cool', 'Archive'. The hot tier is optimized for storing data that is accessed frequently. The cool storage tier is optimized for storing data that is infrequently accessed and stored for at least a month. The archive tier is optimized for storing data that is rarely accessed and stored for at least six months with flexible latency requirements. :type standard_blob_tier: str or ~azure.storage.blob.StandardBlobTier :keyword ~azure.storage.blob.RehydratePriority rehydrate_priority: Indicates the priority with which to rehydrate an archived blob :keyword str if_tags_match_condition: Specify a SQL where clause on blob tags to operate only on blob with a matching value. eg. ``\"\\\"tagname\\\"='my tag'\"`` .. versionadded:: 12.4.0 :keyword int timeout: The timeout parameter is expressed in seconds. :keyword lease: Required if the blob has an active lease. Value can be a BlobLeaseClient object or the lease ID as a string. :paramtype lease: ~azure.storage.blob.aio.BlobLeaseClient or str :rtype: None """ access_conditions = get_access_conditions(kwargs.pop('lease', None)) mod_conditions = get_modify_conditions(kwargs) if standard_blob_tier is None: raise ValueError("A StandardBlobTier must be specified") try: await self._client.blob.set_tier( tier=standard_blob_tier, timeout=kwargs.pop('timeout', None), modified_access_conditions=mod_conditions, lease_access_conditions=access_conditions, **kwargs) except HttpResponseError as error: process_storage_error(error) @distributed_trace_async async def stage_block( self, block_id, # type: str data, # type: Union[Iterable[AnyStr], IO[AnyStr]] length=None, # type: Optional[int] **kwargs ): # type: (...) -> None """Creates a new block to be committed as part of a blob. :param str block_id: A string value that identifies the block. The string should be less than or equal to 64 bytes in size. For a given blob, the block_id must be the same size for each block. :param data: The blob data. :param int length: Size of the block. :keyword bool validate_content: If true, calculates an MD5 hash for each chunk of the blob. The storage service checks the hash of the content that has arrived with the hash that was sent. This is primarily valuable for detecting bitflips on the wire if using http instead of https, as https (the default), will already validate. Note that this MD5 hash is not stored with the blob. Also note that if enabled, the memory-efficient upload algorithm will not be used because computing the MD5 hash requires buffering entire blocks, and doing so defeats the purpose of the memory-efficient algorithm. :keyword lease: Required if the blob has an active lease. Value can be a BlobLeaseClient object or the lease ID as a string. :paramtype lease: ~azure.storage.blob.aio.BlobLeaseClient or str :keyword str encoding: Defaults to UTF-8. :keyword ~azure.storage.blob.CustomerProvidedEncryptionKey cpk: Encrypts the data on the service-side with the given key. Use of customer-provided keys must be done over HTTPS. As the encryption key itself is provided in the request, a secure connection must be established to transfer the key. :keyword str encryption_scope: A predefined encryption scope used to encrypt the data on the service. An encryption scope can be created using the Management API and referenced here by name. If a default encryption scope has been defined at the container, this value will override it if the container-level scope is configured to allow overrides. Otherwise an error will be raised. .. versionadded:: 12.2.0 :keyword int timeout: The timeout parameter is expressed in seconds. :rtype: None """ options = self._stage_block_options( block_id, data, length=length, **kwargs) try: return await self._client.block_blob.stage_block(**options) except HttpResponseError as error: process_storage_error(error) @distributed_trace_async async def stage_block_from_url( self, block_id, # type: Union[str, int] source_url, # type: str source_offset=None, # type: Optional[int] source_length=None, # type: Optional[int] source_content_md5=None, # type: Optional[Union[bytes, bytearray]] **kwargs ): # type: (...) -> None """Creates a new block to be committed as part of a blob where the contents are read from a URL. :param str block_id: A string value that identifies the block. The string should be less than or equal to 64 bytes in size. For a given blob, the block_id must be the same size for each block. :param str source_url: The URL. :param int source_offset: Start of byte range to use for the block. Must be set if source length is provided. :param int source_length: The size of the block in bytes. :param bytearray source_content_md5: Specify the md5 calculated for the range of bytes that must be read from the copy source. :keyword lease: Required if the blob has an active lease. Value can be a BlobLeaseClient object or the lease ID as a string. :paramtype lease: ~azure.storage.blob.aio.BlobLeaseClient or str :keyword ~azure.storage.blob.CustomerProvidedEncryptionKey cpk: Encrypts the data on the service-side with the given key. Use of customer-provided keys must be done over HTTPS. As the encryption key itself is provided in the request, a secure connection must be established to transfer the key. :keyword str encryption_scope: A predefined encryption scope used to encrypt the data on the service. An encryption scope can be created using the Management API and referenced here by name. If a default encryption scope has been defined at the container, this value will override it if the container-level scope is configured to allow overrides. Otherwise an error will be raised. .. versionadded:: 12.2.0 :keyword int timeout: The timeout parameter is expressed in seconds. :keyword str source_authorization: Authenticate as a service principal using a client secret to access a source blob. Ensure "bearer " is the prefix of the source_authorization string. :rtype: None """ options = self._stage_block_from_url_options( block_id, source_url=self._encode_source_url(source_url), source_offset=source_offset, source_length=source_length, source_content_md5=source_content_md5, **kwargs) try: return await self._client.block_blob.stage_block_from_url(**options) except HttpResponseError as error: process_storage_error(error) @distributed_trace_async async def get_block_list(self, block_list_type="committed", **kwargs): # type: (Optional[str], Any) -> Tuple[List[BlobBlock], List[BlobBlock]] """The Get Block List operation retrieves the list of blocks that have been uploaded as part of a block blob. :param str block_list_type: Specifies whether to return the list of committed blocks, the list of uncommitted blocks, or both lists together. Possible values include: 'committed', 'uncommitted', 'all' :keyword lease: Required if the blob has an active lease. Value can be a BlobLeaseClient object or the lease ID as a string. :paramtype lease: ~azure.storage.blob.aio.BlobLeaseClient or str :keyword str if_tags_match_condition: Specify a SQL where clause on blob tags to operate only on blob with a matching value. eg. ``\"\\\"tagname\\\"='my tag'\"`` .. versionadded:: 12.4.0 :keyword int timeout: The timeout parameter is expressed in seconds. :returns: A tuple of two lists - committed and uncommitted blocks :rtype: tuple(list(~azure.storage.blob.BlobBlock), list(~azure.storage.blob.BlobBlock)) """ access_conditions = get_access_conditions(kwargs.pop('lease', None)) mod_conditions = get_modify_conditions(kwargs) try: blocks = await self._client.block_blob.get_block_list( list_type=block_list_type, snapshot=self.snapshot, timeout=kwargs.pop('timeout', None), lease_access_conditions=access_conditions, modified_access_conditions=mod_conditions, **kwargs) except HttpResponseError as error: process_storage_error(error) return self._get_block_list_result(blocks) @distributed_trace_async async def commit_block_list( # type: ignore self, block_list, # type: List[BlobBlock] content_settings=None, # type: Optional[ContentSettings] metadata=None, # type: Optional[Dict[str, str]] **kwargs ): # type: (...) -> Dict[str, Union[str, datetime]] """The Commit Block List operation writes a blob by specifying the list of block IDs that make up the blob. :param list block_list: List of Blockblobs. :param ~azure.storage.blob.ContentSettings content_settings: ContentSettings object used to set blob properties. Used to set content type, encoding, language, disposition, md5, and cache control. :param metadata: Name-value pairs associated with the blob as metadata. :type metadata: dict[str, str] :keyword tags: Name-value pairs associated with the blob as tag. Tags are case-sensitive. The tag set may contain at most 10 tags. Tag keys must be between 1 and 128 characters, and tag values must be between 0 and 256 characters. Valid tag key and value characters include: lowercase and uppercase letters, digits (0-9), space (` `), plus (+), minus (-), period (.), solidus (/), colon (:), equals (=), underscore (_) .. versionadded:: 12.4.0 :paramtype tags: dict(str, str) :keyword lease: Required if the blob has an active lease. Value can be a BlobLeaseClient object or the lease ID as a string. :paramtype lease: ~azure.storage.blob.aio.BlobLeaseClient or str :keyword ~azure.storage.blob.ImmutabilityPolicy immutability_policy: Specifies the immutability policy of a blob, blob snapshot or blob version. .. versionadded:: 12.10.0 This was introduced in API version '2020-10-02'. :keyword bool legal_hold: Specified if a legal hold should be set on the blob. .. versionadded:: 12.10.0 This was introduced in API version '2020-10-02'. :keyword bool validate_content: If true, calculates an MD5 hash of the page content. The storage service checks the hash of the content that has arrived with the hash that was sent. This is primarily valuable for detecting bitflips on the wire if using http instead of https, as https (the default), will already validate. Note that this MD5 hash is not stored with the blob. :keyword ~datetime.datetime if_modified_since: A DateTime value. Azure expects the date value passed in to be UTC. If timezone is included, any non-UTC datetimes will be converted to UTC. If a date is passed in without timezone info, it is assumed to be UTC. Specify this header to perform the operation only if the resource has been modified since the specified time. :keyword ~datetime.datetime if_unmodified_since: A DateTime value. Azure expects the date value passed in to be UTC. If timezone is included, any non-UTC datetimes will be converted to UTC. If a date is passed in without timezone info, it is assumed to be UTC. Specify this header to perform the operation only if the resource has not been modified since the specified date/time. :keyword str etag: An ETag value, or the wildcard character (*). Used to check if the resource has changed, and act according to the condition specified by the `match_condition` parameter. :keyword ~azure.core.MatchConditions match_condition: The match condition to use upon the etag. :keyword str if_tags_match_condition: Specify a SQL where clause on blob tags to operate only on blob with a matching value. eg. ``\"\\\"tagname\\\"='my tag'\"`` .. versionadded:: 12.4.0 :keyword ~azure.storage.blob.StandardBlobTier standard_blob_tier: A standard blob tier value to set the blob to. For this version of the library, this is only applicable to block blobs on standard storage accounts. :keyword ~azure.storage.blob.CustomerProvidedEncryptionKey cpk: Encrypts the data on the service-side with the given key. Use of customer-provided keys must be done over HTTPS. As the encryption key itself is provided in the request, a secure connection must be established to transfer the key. :keyword str encryption_scope: A predefined encryption scope used to encrypt the data on the service. An encryption scope can be created using the Management API and referenced here by name. If a default encryption scope has been defined at the container, this value will override it if the container-level scope is configured to allow overrides. Otherwise an error will be raised. .. versionadded:: 12.2.0 :keyword int timeout: The timeout parameter is expressed in seconds. :returns: Blob-updated property dict (Etag and last modified). :rtype: dict(str, Any) """ options = self._commit_block_list_options( block_list, content_settings=content_settings, metadata=metadata, **kwargs) try: return await self._client.block_blob.commit_block_list(**options) # type: ignore except HttpResponseError as error: process_storage_error(error) @distributed_trace_async async def set_premium_page_blob_tier(self, premium_page_blob_tier, **kwargs): # type: (Union[str, PremiumPageBlobTier], **Any) -> None """Sets the page blob tiers on the blob. This API is only supported for page blobs on premium accounts. :param premium_page_blob_tier: A page blob tier value to set the blob to. The tier correlates to the size of the blob and number of allowed IOPS. This is only applicable to page blobs on premium storage accounts. :type premium_page_blob_tier: ~azure.storage.blob.PremiumPageBlobTier :keyword str if_tags_match_condition: Specify a SQL where clause on blob tags to operate only on blob with a matching value. eg. ``\"\\\"tagname\\\"='my tag'\"`` .. versionadded:: 12.4.0 :keyword int timeout: The timeout parameter is expressed in seconds. This method may make multiple calls to the Azure service and the timeout will apply to each call individually. :keyword lease: Required if the blob has an active lease. Value can be a BlobLeaseClient object or the lease ID as a string. :paramtype lease: ~azure.storage.blob.aio.BlobLeaseClient or str :rtype: None """ access_conditions = get_access_conditions(kwargs.pop('lease', None)) mod_conditions = get_modify_conditions(kwargs) if premium_page_blob_tier is None: raise ValueError("A PremiumPageBlobTiermust be specified") try: await self._client.blob.set_tier( tier=premium_page_blob_tier, timeout=kwargs.pop('timeout', None), lease_access_conditions=access_conditions, modified_access_conditions=mod_conditions, **kwargs) except HttpResponseError as error: process_storage_error(error) @distributed_trace_async async def set_blob_tags(self, tags=None, **kwargs): # type: (Optional[Dict[str, str]], **Any) -> Dict[str, Any] """The Set Tags operation enables users to set tags on a blob or specific blob version, but not snapshot. Each call to this operation replaces all existing tags attached to the blob. To remove all tags from the blob, call this operation with no tags set. .. versionadded:: 12.4.0 This operation was introduced in API version '2019-12-12'. :param tags: Name-value pairs associated with the blob as tag. Tags are case-sensitive. The tag set may contain at most 10 tags. Tag keys must be between 1 and 128 characters, and tag values must be between 0 and 256 characters. Valid tag key and value characters include: lowercase and uppercase letters, digits (0-9), space (` `), plus (+), minus (-), period (.), solidus (/), colon (:), equals (=), underscore (_) :type tags: dict(str, str) :keyword str version_id: The version id parameter is an opaque DateTime value that, when present, specifies the version of the blob to delete. :keyword bool validate_content: If true, calculates an MD5 hash of the tags content. The storage service checks the hash of the content that has arrived with the hash that was sent. This is primarily valuable for detecting bitflips on the wire if using http instead of https, as https (the default), will already validate. Note that this MD5 hash is not stored with the blob. :keyword str if_tags_match_condition: Specify a SQL where clause on blob tags to operate only on blob with a matching value. eg. ``\"\\\"tagname\\\"='my tag'\"`` :keyword lease: Required if the blob has an active lease. Value can be a BlobLeaseClient object or the lease ID as a string. :paramtype lease: ~azure.storage.blob.BlobLeaseClient or str :keyword int timeout: The timeout parameter is expressed in seconds. :returns: Blob-updated property dict (Etag and last modified) :rtype: Dict[str, Any] """ options = self._set_blob_tags_options(tags=tags, **kwargs) try: return await self._client.blob.set_tags(**options) except HttpResponseError as error: process_storage_error(error) @distributed_trace_async async def get_blob_tags(self, **kwargs): # type: (**Any) -> Dict[str, str] """The Get Tags operation enables users to get tags on a blob or specific blob version, but not snapshot. .. versionadded:: 12.4.0 This operation was introduced in API version '2019-12-12'. :keyword str version_id: The version id parameter is an opaque DateTime value that, when present, specifies the version of the blob to add tags to. :keyword str if_tags_match_condition: Specify a SQL where clause on blob tags to operate only on blob with a matching value. eg. ``\"\\\"tagname\\\"='my tag'\"`` :keyword lease: Required if the blob has an active lease. Value can be a BlobLeaseClient object or the lease ID as a string. :paramtype lease: ~azure.storage.blob.BlobLeaseClient or str :keyword int timeout: The timeout parameter is expressed in seconds. :returns: Key value pairs of blob tags. :rtype: Dict[str, str] """ options = self._get_blob_tags_options(**kwargs) try: _, tags = await self._client.blob.get_tags(**options) return parse_tags(tags) # pylint: disable=protected-access except HttpResponseError as error: process_storage_error(error) @distributed_trace_async async def get_page_ranges( # type: ignore self, offset=None, # type: Optional[int] length=None, # type: Optional[int] previous_snapshot_diff=None, # type: Optional[Union[str, Dict[str, Any]]] **kwargs ): # type: (...) -> Tuple[List[Dict[str, int]], List[Dict[str, int]]] """DEPRECATED: Returns the list of valid page ranges for a Page Blob or snapshot of a page blob. :param int offset: Start of byte range to use for getting valid page ranges. If no length is given, all bytes after the offset will be searched. Pages must be aligned with 512-byte boundaries, the start offset must be a modulus of 512 and the length must be a modulus of 512. :param int length: Number of bytes to use for getting valid page ranges. If length is given, offset must be provided. This range will return valid page ranges from the offset start up to the specified length. Pages must be aligned with 512-byte boundaries, the start offset must be a modulus of 512 and the length must be a modulus of 512. :param str previous_snapshot_diff: The snapshot diff parameter that contains an opaque DateTime value that specifies a previous blob snapshot to be compared against a more recent snapshot or the current blob. :keyword lease: Required if the blob has an active lease. Value can be a BlobLeaseClient object or the lease ID as a string. :paramtype lease: ~azure.storage.blob.aio.BlobLeaseClient or str :keyword ~datetime.datetime if_modified_since: A DateTime value. Azure expects the date value passed in to be UTC. If timezone is included, any non-UTC datetimes will be converted to UTC. If a date is passed in without timezone info, it is assumed to be UTC. Specify this header to perform the operation only if the resource has been modified since the specified time. :keyword ~datetime.datetime if_unmodified_since: A DateTime value. Azure expects the date value passed in to be UTC. If timezone is included, any non-UTC datetimes will be converted to UTC. If a date is passed in without timezone info, it is assumed to be UTC. Specify this header to perform the operation only if the resource has not been modified since the specified date/time. :keyword str etag: An ETag value, or the wildcard character (*). Used to check if the resource has changed, and act according to the condition specified by the `match_condition` parameter. :keyword ~azure.core.MatchConditions match_condition: The match condition to use upon the etag. :keyword str if_tags_match_condition: Specify a SQL where clause on blob tags to operate only on blob with a matching value. eg. ``\"\\\"tagname\\\"='my tag'\"`` .. versionadded:: 12.4.0 :keyword int timeout: The timeout parameter is expressed in seconds. :returns: A tuple of two lists of page ranges as dictionaries with 'start' and 'end' keys. The first element are filled page ranges, the 2nd element is cleared page ranges. :rtype: tuple(list(dict(str, str), list(dict(str, str)) """ warnings.warn( "get_page_ranges is deprecated, use list_page_ranges instead", DeprecationWarning ) options = self._get_page_ranges_options( offset=offset, length=length, previous_snapshot_diff=previous_snapshot_diff, **kwargs) try: if previous_snapshot_diff: ranges = await self._client.page_blob.get_page_ranges_diff(**options) else: ranges = await self._client.page_blob.get_page_ranges(**options) except HttpResponseError as error: process_storage_error(error) return get_page_ranges_result(ranges) @distributed_trace def list_page_ranges( self, *, offset: Optional[int] = None, length: Optional[int] = None, previous_snapshot: Optional[Union[str, Dict[str, Any]]] = None, **kwargs: Any ) -> AsyncItemPaged[PageRange]: """Returns the list of valid page ranges for a Page Blob or snapshot of a page blob. If `previous_snapshot` is specified, the result will be a diff of changes between the target blob and the previous snapshot. :keyword int offset: Start of byte range to use for getting valid page ranges. If no length is given, all bytes after the offset will be searched. Pages must be aligned with 512-byte boundaries, the start offset must be a modulus of 512 and the length must be a modulus of 512. :keyword int length: Number of bytes to use for getting valid page ranges. If length is given, offset must be provided. This range will return valid page ranges from the offset start up to the specified length. Pages must be aligned with 512-byte boundaries, the start offset must be a modulus of 512 and the length must be a modulus of 512. :keyword previous_snapshot: A snapshot value that specifies that the response will contain only pages that were changed between target blob and previous snapshot. Changed pages include both updated and cleared pages. The target blob may be a snapshot, as long as the snapshot specified by `previous_snapshot` is the older of the two. :paramtype previous_snapshot: str or Dict[str, Any] :keyword lease: Required if the blob has an active lease. Value can be a BlobLeaseClient object or the lease ID as a string. :paramtype lease: ~azure.storage.blob.BlobLeaseClient or str :keyword ~datetime.datetime if_modified_since: A DateTime value. Azure expects the date value passed in to be UTC. If timezone is included, any non-UTC datetimes will be converted to UTC. If a date is passed in without timezone info, it is assumed to be UTC. Specify this header to perform the operation only if the resource has been modified since the specified time. :keyword ~datetime.datetime if_unmodified_since: A DateTime value. Azure expects the date value passed in to be UTC. If timezone is included, any non-UTC datetimes will be converted to UTC. If a date is passed in without timezone info, it is assumed to be UTC. Specify this header to perform the operation only if the resource has not been modified since the specified date/time. :keyword str etag: An ETag value, or the wildcard character (*). Used to check if the resource has changed, and act according to the condition specified by the `match_condition` parameter. :keyword ~azure.core.MatchConditions match_condition: The match condition to use upon the etag. :keyword str if_tags_match_condition: Specify a SQL where clause on blob tags to operate only on blob with a matching value. eg. ``\"\\\"tagname\\\"='my tag'\"`` .. versionadded:: 12.4.0 :keyword int results_per_page: The maximum number of page ranges to retrieve per API call. :keyword int timeout: The timeout parameter is expressed in seconds. :returns: An iterable (auto-paging) of PageRange. :rtype: ~azure.core.paging.ItemPaged[~azure.storage.blob.PageRange] """ results_per_page = kwargs.pop('results_per_page', None) options = self._get_page_ranges_options( offset=offset, length=length, previous_snapshot_diff=previous_snapshot, **kwargs) if previous_snapshot: command = partial( self._client.page_blob.get_page_ranges_diff, **options) else: command = partial( self._client.page_blob.get_page_ranges, **options) return AsyncItemPaged( command, results_per_page=results_per_page, page_iterator_class=PageRangePaged) @distributed_trace_async async def get_page_range_diff_for_managed_disk( self, previous_snapshot_url, # type: str offset=None, # type: Optional[int] length=None, # type: Optional[int] **kwargs ): # type: (...) -> Tuple[List[Dict[str, int]], List[Dict[str, int]]] """Returns the list of valid page ranges for a managed disk or snapshot. .. note:: This operation is only available for managed disk accounts. .. versionadded:: 12.2.0 This operation was introduced in API version '2019-07-07'. :param previous_snapshot_url: Specifies the URL of a previous snapshot of the managed disk. The response will only contain pages that were changed between the target blob and its previous snapshot. :param int offset: Start of byte range to use for getting valid page ranges. If no length is given, all bytes after the offset will be searched. Pages must be aligned with 512-byte boundaries, the start offset must be a modulus of 512 and the length must be a modulus of 512. :param int length: Number of bytes to use for getting valid page ranges. If length is given, offset must be provided. This range will return valid page ranges from the offset start up to the specified length. Pages must be aligned with 512-byte boundaries, the start offset must be a modulus of 512 and the length must be a modulus of 512. :keyword lease: Required if the blob has an active lease. Value can be a BlobLeaseClient object or the lease ID as a string. :paramtype lease: ~azure.storage.blob.aio.BlobLeaseClient or str :keyword ~datetime.datetime if_modified_since: A DateTime value. Azure expects the date value passed in to be UTC. If timezone is included, any non-UTC datetimes will be converted to UTC. If a date is passed in without timezone info, it is assumed to be UTC. Specify this header to perform the operation only if the resource has been modified since the specified time. :keyword ~datetime.datetime if_unmodified_since: A DateTime value. Azure expects the date value passed in to be UTC. If timezone is included, any non-UTC datetimes will be converted to UTC. If a date is passed in without timezone info, it is assumed to be UTC. Specify this header to perform the operation only if the resource has not been modified since the specified date/time. :keyword str etag: An ETag value, or the wildcard character (*). Used to check if the resource has changed, and act according to the condition specified by the `match_condition` parameter. :keyword ~azure.core.MatchConditions match_condition: The match condition to use upon the etag. :keyword int timeout: The timeout parameter is expressed in seconds. :returns: A tuple of two lists of page ranges as dictionaries with 'start' and 'end' keys. The first element are filled page ranges, the 2nd element is cleared page ranges. :rtype: tuple(list(dict(str, str), list(dict(str, str)) """ options = self._get_page_ranges_options( offset=offset, length=length, prev_snapshot_url=previous_snapshot_url, **kwargs) try: ranges = await self._client.page_blob.get_page_ranges_diff(**options) except HttpResponseError as error: process_storage_error(error) return get_page_ranges_result(ranges) @distributed_trace_async async def set_sequence_number( # type: ignore self, sequence_number_action, # type: Union[str, SequenceNumberAction] sequence_number=None, # type: Optional[str] **kwargs ): # type: (...) -> Dict[str, Union[str, datetime]] """Sets the blob sequence number. :param str sequence_number_action: This property indicates how the service should modify the blob's sequence number. See :class:`~azure.storage.blob.SequenceNumberAction` for more information. :param str sequence_number: This property sets the blob's sequence number. The sequence number is a user-controlled property that you can use to track requests and manage concurrency issues. :keyword lease: Required if the blob has an active lease. Value can be a BlobLeaseClient object or the lease ID as a string. :paramtype lease: ~azure.storage.blob.aio.BlobLeaseClient or str :keyword ~datetime.datetime if_modified_since: A DateTime value. Azure expects the date value passed in to be UTC. If timezone is included, any non-UTC datetimes will be converted to UTC. If a date is passed in without timezone info, it is assumed to be UTC. Specify this header to perform the operation only if the resource has been modified since the specified time. :keyword ~datetime.datetime if_unmodified_since: A DateTime value. Azure expects the date value passed in to be UTC. If timezone is included, any non-UTC datetimes will be converted to UTC. If a date is passed in without timezone info, it is assumed to be UTC. Specify this header to perform the operation only if the resource has not been modified since the specified date/time. :keyword str etag: An ETag value, or the wildcard character (*). Used to check if the resource has changed, and act according to the condition specified by the `match_condition` parameter. :keyword ~azure.core.MatchConditions match_condition: The match condition to use upon the etag. :keyword str if_tags_match_condition: Specify a SQL where clause on blob tags to operate only on blob with a matching value. eg. ``\"\\\"tagname\\\"='my tag'\"`` .. versionadded:: 12.4.0 :keyword int timeout: The timeout parameter is expressed in seconds. :returns: Blob-updated property dict (Etag and last modified). :rtype: dict(str, Any) """ options = self._set_sequence_number_options( sequence_number_action, sequence_number=sequence_number, **kwargs) try: return await self._client.page_blob.update_sequence_number(**options) # type: ignore except HttpResponseError as error: process_storage_error(error) @distributed_trace_async async def resize_blob(self, size, **kwargs): # type: (int, Any) -> Dict[str, Union[str, datetime]] """Resizes a page blob to the specified size. If the specified value is less than the current size of the blob, then all pages above the specified value are cleared. :param int size: Size used to resize blob. Maximum size for a page blob is up to 1 TB. The page blob size must be aligned to a 512-byte boundary. :keyword lease: Required if the blob has an active lease. Value can be a BlobLeaseClient object or the lease ID as a string. :paramtype lease: ~azure.storage.blob.aio.BlobLeaseClient or str :keyword ~datetime.datetime if_modified_since: A DateTime value. Azure expects the date value passed in to be UTC. If timezone is included, any non-UTC datetimes will be converted to UTC. If a date is passed in without timezone info, it is assumed to be UTC. Specify this header to perform the operation only if the resource has been modified since the specified time. :keyword ~datetime.datetime if_unmodified_since: A DateTime value. Azure expects the date value passed in to be UTC. If timezone is included, any non-UTC datetimes will be converted to UTC. If a date is passed in without timezone info, it is assumed to be UTC. Specify this header to perform the operation only if the resource has not been modified since the specified date/time. :keyword str etag: An ETag value, or the wildcard character (*). Used to check if the resource has changed, and act according to the condition specified by the `match_condition` parameter. :keyword ~azure.core.MatchConditions match_condition: The match condition to use upon the etag. :keyword str if_tags_match_condition: Specify a SQL where clause on blob tags to operate only on blob with a matching value. eg. ``\"\\\"tagname\\\"='my tag'\"`` .. versionadded:: 12.4.0 :keyword ~azure.storage.blob.PremiumPageBlobTier premium_page_blob_tier: A page blob tier value to set the blob to. The tier correlates to the size of the blob and number of allowed IOPS. This is only applicable to page blobs on premium storage accounts. :keyword int timeout: The timeout parameter is expressed in seconds. :returns: Blob-updated property dict (Etag and last modified). :rtype: dict(str, Any) """ options = self._resize_blob_options(size, **kwargs) try: return await self._client.page_blob.resize(**options) # type: ignore except HttpResponseError as error: process_storage_error(error) @distributed_trace_async async def upload_page( # type: ignore self, page, # type: bytes offset, # type: int length, # type: int **kwargs ): # type: (...) -> Dict[str, Union[str, datetime]] """The Upload Pages operation writes a range of pages to a page blob. :param bytes page: Content of the page. :param int offset: Start of byte range to use for writing to a section of the blob. Pages must be aligned with 512-byte boundaries, the start offset must be a modulus of 512 and the length must be a modulus of 512. :param int length: Number of bytes to use for writing to a section of the blob. Pages must be aligned with 512-byte boundaries, the start offset must be a modulus of 512 and the length must be a modulus of 512. :keyword lease: Required if the blob has an active lease. Value can be a BlobLeaseClient object or the lease ID as a string. :paramtype lease: ~azure.storage.blob.aio.BlobLeaseClient or str :keyword bool validate_content: If true, calculates an MD5 hash of the page content. The storage service checks the hash of the content that has arrived with the hash that was sent. This is primarily valuable for detecting bitflips on the wire if using http instead of https, as https (the default), will already validate. Note that this MD5 hash is not stored with the blob. :keyword int if_sequence_number_lte: If the blob's sequence number is less than or equal to the specified value, the request proceeds; otherwise it fails. :keyword int if_sequence_number_lt: If the blob's sequence number is less than the specified value, the request proceeds; otherwise it fails. :keyword int if_sequence_number_eq: If the blob's sequence number is equal to the specified value, the request proceeds; otherwise it fails. :keyword ~datetime.datetime if_modified_since: A DateTime value. Azure expects the date value passed in to be UTC. If timezone is included, any non-UTC datetimes will be converted to UTC. If a date is passed in without timezone info, it is assumed to be UTC. Specify this header to perform the operation only if the resource has been modified since the specified time. :keyword ~datetime.datetime if_unmodified_since: A DateTime value. Azure expects the date value passed in to be UTC. If timezone is included, any non-UTC datetimes will be converted to UTC. If a date is passed in without timezone info, it is assumed to be UTC. Specify this header to perform the operation only if the resource has not been modified since the specified date/time. :keyword str etag: An ETag value, or the wildcard character (*). Used to check if the resource has changed, and act according to the condition specified by the `match_condition` parameter. :keyword ~azure.core.MatchConditions match_condition: The match condition to use upon the etag. :keyword str if_tags_match_condition: Specify a SQL where clause on blob tags to operate only on blob with a matching value. eg. ``\"\\\"tagname\\\"='my tag'\"`` .. versionadded:: 12.4.0 :keyword ~azure.storage.blob.CustomerProvidedEncryptionKey cpk: Encrypts the data on the service-side with the given key. Use of customer-provided keys must be done over HTTPS. As the encryption key itself is provided in the request, a secure connection must be established to transfer the key. :keyword str encryption_scope: A predefined encryption scope used to encrypt the data on the service. An encryption scope can be created using the Management API and referenced here by name. If a default encryption scope has been defined at the container, this value will override it if the container-level scope is configured to allow overrides. Otherwise an error will be raised. .. versionadded:: 12.2.0 :keyword str encoding: Defaults to UTF-8. :keyword int timeout: The timeout parameter is expressed in seconds. :returns: Blob-updated property dict (Etag and last modified). :rtype: dict(str, Any) """ options = self._upload_page_options( page=page, offset=offset, length=length, **kwargs) try: return await self._client.page_blob.upload_pages(**options) # type: ignore except HttpResponseError as error: process_storage_error(error) @distributed_trace_async async def upload_pages_from_url(self, source_url, # type: str offset, # type: int length, # type: int source_offset, # type: int **kwargs ): # type: (...) -> Dict[str, Any] """ The Upload Pages operation writes a range of pages to a page blob where the contents are read from a URL. :param str source_url: The URL of the source data. It can point to any Azure Blob or File, that is either public or has a shared access signature attached. :param int offset: Start of byte range to use for writing to a section of the blob. Pages must be aligned with 512-byte boundaries, the start offset must be a modulus of 512 and the length must be a modulus of 512. :param int length: Number of bytes to use for writing to a section of the blob. Pages must be aligned with 512-byte boundaries, the start offset must be a modulus of 512 and the length must be a modulus of 512. :param int source_offset: This indicates the start of the range of bytes(inclusive) that has to be taken from the copy source. The service will read the same number of bytes as the destination range (length-offset). :keyword bytes source_content_md5: If given, the service will calculate the MD5 hash of the block content and compare against this value. :keyword ~datetime.datetime source_if_modified_since: A DateTime value. Azure expects the date value passed in to be UTC. If timezone is included, any non-UTC datetimes will be converted to UTC. If a date is passed in without timezone info, it is assumed to be UTC. Specify this header to perform the operation only if the source resource has been modified since the specified time. :keyword ~datetime.datetime source_if_unmodified_since: A DateTime value. Azure expects the date value passed in to be UTC. If timezone is included, any non-UTC datetimes will be converted to UTC. If a date is passed in without timezone info, it is assumed to be UTC. Specify this header to perform the operation only if the source resource has not been modified since the specified date/time. :keyword str source_etag: The source ETag value, or the wildcard character (*). Used to check if the resource has changed, and act according to the condition specified by the `match_condition` parameter. :keyword ~azure.core.MatchConditions source_match_condition: The source match condition to use upon the etag. :keyword lease: Required if the blob has an active lease. Value can be a BlobLeaseClient object or the lease ID as a string. :paramtype lease: ~azure.storage.blob.aio.BlobLeaseClient or str :keyword int if_sequence_number_lte: If the blob's sequence number is less than or equal to the specified value, the request proceeds; otherwise it fails. :keyword int if_sequence_number_lt: If the blob's sequence number is less than the specified value, the request proceeds; otherwise it fails. :keyword int if_sequence_number_eq: If the blob's sequence number is equal to the specified value, the request proceeds; otherwise it fails. :keyword ~datetime.datetime if_modified_since: A DateTime value. Azure expects the date value passed in to be UTC. If timezone is included, any non-UTC datetimes will be converted to UTC. If a date is passed in without timezone info, it is assumed to be UTC. Specify this header to perform the operation only if the resource has been modified since the specified time. :keyword ~datetime.datetime if_unmodified_since: A DateTime value. Azure expects the date value passed in to be UTC. If timezone is included, any non-UTC datetimes will be converted to UTC. If a date is passed in without timezone info, it is assumed to be UTC. Specify this header to perform the operation only if the resource has not been modified since the specified date/time. :keyword str etag: The destination ETag value, or the wildcard character (*). Used to check if the resource has changed, and act according to the condition specified by the `match_condition` parameter. :keyword ~azure.core.MatchConditions match_condition: The destination match condition to use upon the etag. :keyword str if_tags_match_condition: Specify a SQL where clause on blob tags to operate only on blob with a matching value. eg. ``\"\\\"tagname\\\"='my tag'\"`` .. versionadded:: 12.4.0 :keyword ~azure.storage.blob.CustomerProvidedEncryptionKey cpk: Encrypts the data on the service-side with the given key. Use of customer-provided keys must be done over HTTPS. As the encryption key itself is provided in the request, a secure connection must be established to transfer the key. :keyword str encryption_scope: A predefined encryption scope used to encrypt the data on the service. An encryption scope can be created using the Management API and referenced here by name. If a default encryption scope has been defined at the container, this value will override it if the container-level scope is configured to allow overrides. Otherwise an error will be raised. .. versionadded:: 12.2.0 :keyword int timeout: The timeout parameter is expressed in seconds. :keyword str source_authorization: Authenticate as a service principal using a client secret to access a source blob. Ensure "bearer " is the prefix of the source_authorization string. """ options = self._upload_pages_from_url_options( source_url=self._encode_source_url(source_url), offset=offset, length=length, source_offset=source_offset, **kwargs ) try: return await self._client.page_blob.upload_pages_from_url(**options) # type: ignore except HttpResponseError as error: process_storage_error(error) @distributed_trace_async async def clear_page(self, offset, length, **kwargs): # type: (int, int, Any) -> Dict[str, Union[str, datetime]] """Clears a range of pages. :param int offset: Start of byte range to use for writing to a section of the blob. Pages must be aligned with 512-byte boundaries, the start offset must be a modulus of 512 and the length must be a modulus of 512. :param int length: Number of bytes to use for writing to a section of the blob. Pages must be aligned with 512-byte boundaries, the start offset must be a modulus of 512 and the length must be a modulus of 512. :keyword lease: Required if the blob has an active lease. Value can be a BlobLeaseClient object or the lease ID as a string. :paramtype lease: ~azure.storage.blob.aio.BlobLeaseClient or str :keyword int if_sequence_number_lte: If the blob's sequence number is less than or equal to the specified value, the request proceeds; otherwise it fails. :keyword int if_sequence_number_lt: If the blob's sequence number is less than the specified value, the request proceeds; otherwise it fails. :keyword int if_sequence_number_eq: If the blob's sequence number is equal to the specified value, the request proceeds; otherwise it fails. :keyword ~datetime.datetime if_modified_since: A DateTime value. Azure expects the date value passed in to be UTC. If timezone is included, any non-UTC datetimes will be converted to UTC. If a date is passed in without timezone info, it is assumed to be UTC. Specify this header to perform the operation only if the resource has been modified since the specified time. :keyword ~datetime.datetime if_unmodified_since: A DateTime value. Azure expects the date value passed in to be UTC. If timezone is included, any non-UTC datetimes will be converted to UTC. If a date is passed in without timezone info, it is assumed to be UTC. Specify this header to perform the operation only if the resource has not been modified since the specified date/time. :keyword str etag: An ETag value, or the wildcard character (*). Used to check if the resource has changed, and act according to the condition specified by the `match_condition` parameter. :keyword ~azure.core.MatchConditions match_condition: The match condition to use upon the etag. :keyword str if_tags_match_condition: Specify a SQL where clause on blob tags to operate only on blob with a matching value. eg. ``\"\\\"tagname\\\"='my tag'\"`` .. versionadded:: 12.4.0 :keyword ~azure.storage.blob.CustomerProvidedEncryptionKey cpk: Encrypts the data on the service-side with the given key. Use of customer-provided keys must be done over HTTPS. As the encryption key itself is provided in the request, a secure connection must be established to transfer the key. :keyword int timeout: The timeout parameter is expressed in seconds. :returns: Blob-updated property dict (Etag and last modified). :rtype: dict(str, Any) """ options = self._clear_page_options(offset, length, **kwargs) try: return await self._client.page_blob.clear_pages(**options) # type: ignore except HttpResponseError as error: process_storage_error(error) @distributed_trace_async async def append_block( # type: ignore self, data, # type: Union[bytes, str, Iterable[AnyStr], IO[AnyStr]] length=None, # type: Optional[int] **kwargs ): # type: (...) -> Dict[str, Union[str, datetime, int]] """Commits a new block of data to the end of the existing append blob. :param data: Content of the block. :param int length: Size of the block in bytes. :keyword bool validate_content: If true, calculates an MD5 hash of the block content. The storage service checks the hash of the content that has arrived with the hash that was sent. This is primarily valuable for detecting bitflips on the wire if using http instead of https, as https (the default), will already validate. Note that this MD5 hash is not stored with the blob. :keyword int maxsize_condition: Optional conditional header. The max length in bytes permitted for the append blob. If the Append Block operation would cause the blob to exceed that limit or if the blob size is already greater than the value specified in this header, the request will fail with MaxBlobSizeConditionNotMet error (HTTP status code 412 - Precondition Failed). :keyword int appendpos_condition: Optional conditional header, used only for the Append Block operation. A number indicating the byte offset to compare. Append Block will succeed only if the append position is equal to this number. If it is not, the request will fail with the AppendPositionConditionNotMet error (HTTP status code 412 - Precondition Failed). :keyword lease: Required if the blob has an active lease. Value can be a BlobLeaseClient object or the lease ID as a string. :paramtype lease: ~azure.storage.blob.aio.BlobLeaseClient or str :keyword ~datetime.datetime if_modified_since: A DateTime value. Azure expects the date value passed in to be UTC. If timezone is included, any non-UTC datetimes will be converted to UTC. If a date is passed in without timezone info, it is assumed to be UTC. Specify this header to perform the operation only if the resource has been modified since the specified time. :keyword ~datetime.datetime if_unmodified_since: A DateTime value. Azure expects the date value passed in to be UTC. If timezone is included, any non-UTC datetimes will be converted to UTC. If a date is passed in without timezone info, it is assumed to be UTC. Specify this header to perform the operation only if the resource has not been modified since the specified date/time. :keyword str etag: An ETag value, or the wildcard character (*). Used to check if the resource has changed, and act according to the condition specified by the `match_condition` parameter. :keyword ~azure.core.MatchConditions match_condition: The match condition to use upon the etag. :keyword str if_tags_match_condition: Specify a SQL where clause on blob tags to operate only on blob with a matching value. eg. ``\"\\\"tagname\\\"='my tag'\"`` .. versionadded:: 12.4.0 :keyword str encoding: Defaults to UTF-8. :keyword ~azure.storage.blob.CustomerProvidedEncryptionKey cpk: Encrypts the data on the service-side with the given key. Use of customer-provided keys must be done over HTTPS. As the encryption key itself is provided in the request, a secure connection must be established to transfer the key. :keyword str encryption_scope: A predefined encryption scope used to encrypt the data on the service. An encryption scope can be created using the Management API and referenced here by name. If a default encryption scope has been defined at the container, this value will override it if the container-level scope is configured to allow overrides. Otherwise an error will be raised. .. versionadded:: 12.2.0 :keyword int timeout: The timeout parameter is expressed in seconds. :returns: Blob-updated property dict (Etag, last modified, append offset, committed block count). :rtype: dict(str, Any) """ options = self._append_block_options( data, length=length, **kwargs ) try: return await self._client.append_blob.append_block(**options) # type: ignore except HttpResponseError as error: process_storage_error(error) @distributed_trace_async() async def append_block_from_url(self, copy_source_url, # type: str source_offset=None, # type: Optional[int] source_length=None, # type: Optional[int] **kwargs): # type: (...) -> Dict[str, Union[str, datetime, int]] """ Creates a new block to be committed as part of a blob, where the contents are read from a source url. :param str copy_source_url: The URL of the source data. It can point to any Azure Blob or File, that is either public or has a shared access signature attached. :param int source_offset: This indicates the start of the range of bytes(inclusive) that has to be taken from the copy source. :param int source_length: This indicates the end of the range of bytes that has to be taken from the copy source. :keyword bytearray source_content_md5: If given, the service will calculate the MD5 hash of the block content and compare against this value. :keyword int maxsize_condition: Optional conditional header. The max length in bytes permitted for the append blob. If the Append Block operation would cause the blob to exceed that limit or if the blob size is already greater than the value specified in this header, the request will fail with MaxBlobSizeConditionNotMet error (HTTP status code 412 - Precondition Failed). :keyword int appendpos_condition: Optional conditional header, used only for the Append Block operation. A number indicating the byte offset to compare. Append Block will succeed only if the append position is equal to this number. If it is not, the request will fail with the AppendPositionConditionNotMet error (HTTP status code 412 - Precondition Failed). :keyword lease: Required if the blob has an active lease. Value can be a BlobLeaseClient object or the lease ID as a string. :paramtype lease: ~azure.storage.blob.aio.BlobLeaseClient or str :keyword ~datetime.datetime if_modified_since: A DateTime value. Azure expects the date value passed in to be UTC. If timezone is included, any non-UTC datetimes will be converted to UTC. If a date is passed in without timezone info, it is assumed to be UTC. Specify this header to perform the operation only if the resource has been modified since the specified time. :keyword ~datetime.datetime if_unmodified_since: A DateTime value. Azure expects the date value passed in to be UTC. If timezone is included, any non-UTC datetimes will be converted to UTC. If a date is passed in without timezone info, it is assumed to be UTC. Specify this header to perform the operation only if the resource has not been modified since the specified date/time. :keyword str etag: The destination ETag value, or the wildcard character (*). Used to check if the resource has changed, and act according to the condition specified by the `match_condition` parameter. :keyword ~azure.core.MatchConditions match_condition: The destination match condition to use upon the etag. :keyword str if_tags_match_condition: Specify a SQL where clause on blob tags to operate only on blob with a matching value. eg. ``\"\\\"tagname\\\"='my tag'\"`` .. versionadded:: 12.4.0 :keyword ~datetime.datetime source_if_modified_since: A DateTime value. Azure expects the date value passed in to be UTC. If timezone is included, any non-UTC datetimes will be converted to UTC. If a date is passed in without timezone info, it is assumed to be UTC. Specify this header to perform the operation only if the source resource has been modified since the specified time. :keyword ~datetime.datetime source_if_unmodified_since: A DateTime value. Azure expects the date value passed in to be UTC. If timezone is included, any non-UTC datetimes will be converted to UTC. If a date is passed in without timezone info, it is assumed to be UTC. Specify this header to perform the operation only if the source resource has not been modified since the specified date/time. :keyword str source_etag: The source ETag value, or the wildcard character (*). Used to check if the resource has changed, and act according to the condition specified by the `match_condition` parameter. :keyword ~azure.core.MatchConditions source_match_condition: The source match condition to use upon the etag. :keyword ~azure.storage.blob.CustomerProvidedEncryptionKey cpk: Encrypts the data on the service-side with the given key. Use of customer-provided keys must be done over HTTPS. As the encryption key itself is provided in the request, a secure connection must be established to transfer the key. :keyword str encryption_scope: A predefined encryption scope used to encrypt the data on the service. An encryption scope can be created using the Management API and referenced here by name. If a default encryption scope has been defined at the container, this value will override it if the container-level scope is configured to allow overrides. Otherwise an error will be raised. .. versionadded:: 12.2.0 :keyword int timeout: The timeout parameter is expressed in seconds. :keyword str source_authorization: Authenticate as a service principal using a client secret to access a source blob. Ensure "bearer " is the prefix of the source_authorization string. """ options = self._append_block_from_url_options( copy_source_url=self._encode_source_url(copy_source_url), source_offset=source_offset, source_length=source_length, **kwargs ) try: return await self._client.append_blob.append_block_from_url(**options) # type: ignore except HttpResponseError as error: process_storage_error(error) @distributed_trace_async() async def seal_append_blob(self, **kwargs): # type: (...) -> Dict[str, Union[str, datetime, int]] """The Seal operation seals the Append Blob to make it read-only. .. versionadded:: 12.4.0 :keyword int appendpos_condition: Optional conditional header, used only for the Append Block operation. A number indicating the byte offset to compare. Append Block will succeed only if the append position is equal to this number. If it is not, the request will fail with the AppendPositionConditionNotMet error (HTTP status code 412 - Precondition Failed). :keyword lease: Required if the blob has an active lease. Value can be a BlobLeaseClient object or the lease ID as a string. :paramtype lease: ~azure.storage.blob.BlobLeaseClient or str :keyword ~datetime.datetime if_modified_since: A DateTime value. Azure expects the date value passed in to be UTC. If timezone is included, any non-UTC datetimes will be converted to UTC. If a date is passed in without timezone info, it is assumed to be UTC. Specify this header to perform the operation only if the resource has been modified since the specified time. :keyword ~datetime.datetime if_unmodified_since: A DateTime value. Azure expects the date value passed in to be UTC. If timezone is included, any non-UTC datetimes will be converted to UTC. If a date is passed in without timezone info, it is assumed to be UTC. Specify this header to perform the operation only if the resource has not been modified since the specified date/time. :keyword str etag: An ETag value, or the wildcard character (*). Used to check if the resource has changed, and act according to the condition specified by the `match_condition` parameter. :keyword ~azure.core.MatchConditions match_condition: The match condition to use upon the etag. :keyword int timeout: The timeout parameter is expressed in seconds. :returns: Blob-updated property dict (Etag, last modified, append offset, committed block count). :rtype: dict(str, Any) """ options = self._seal_append_blob_options(**kwargs) try: return await self._client.append_blob.seal(**options) # type: ignore except HttpResponseError as error: process_storage_error(error) def _get_container_client(self): # pylint: disable=client-method-missing-kwargs # type: (...) -> ContainerClient """Get a client to interact with the blob's parent container. The container need not already exist. Defaults to current blob's credentials. :returns: A ContainerClient. :rtype: ~azure.storage.blob.ContainerClient .. admonition:: Example: .. literalinclude:: ../samples/blob_samples_containers_async.py :start-after: [START get_container_client_from_blob_client] :end-before: [END get_container_client_from_blob_client] :language: python :dedent: 12 :caption: Get container client from blob object. """ from ._container_client_async import ContainerClient if not isinstance(self._pipeline._transport, AsyncTransportWrapper): # pylint: disable = protected-access _pipeline = AsyncPipeline( transport=AsyncTransportWrapper(self._pipeline._transport), # pylint: disable = protected-access policies=self._pipeline._impl_policies # pylint: disable = protected-access ) else: _pipeline = self._pipeline # pylint: disable = protected-access return ContainerClient( "{}://{}".format(self.scheme, self.primary_hostname), container_name=self.container_name, credential=self._raw_credential, api_version=self.api_version, _configuration=self._config, _pipeline=_pipeline, _location_mode=self._location_mode, _hosts=self._hosts, require_encryption=self.require_encryption, encryption_version=self.encryption_version, key_encryption_key=self.key_encryption_key, key_resolver_function=self.key_resolver_function)
{ "content_hash": "a21997f7a201bce8f9f5db8e6c12cc07", "timestamp": "", "source": "github", "line_count": 2764, "max_line_length": 169, "avg_line_length": 54.27496382054993, "alnum_prop": 0.6448778796928327, "repo_name": "Azure/azure-sdk-for-python", "id": "3807e8f9fdadf1cb97fbf4eef49d74e3bb80439e", "size": "150387", "binary": false, "copies": "1", "ref": "refs/heads/main", "path": "sdk/storage/azure-storage-blob/azure/storage/blob/aio/_blob_client_async.py", "mode": "33188", "license": "mit", "language": [ { "name": "Batchfile", "bytes": "1224" }, { "name": "Bicep", "bytes": "24196" }, { "name": "CSS", "bytes": "6089" }, { "name": "Dockerfile", "bytes": "4892" }, { "name": "HTML", "bytes": "12058" }, { "name": "JavaScript", "bytes": "8137" }, { "name": "Jinja", "bytes": "10377" }, { "name": "Jupyter Notebook", "bytes": "272022" }, { "name": "PowerShell", "bytes": "518535" }, { "name": "Python", "bytes": "715484989" }, { "name": "Shell", "bytes": "3631" } ], "symlink_target": "" }
import os class PsicrawlerPipeline(object): def get_base_path(self): return os.path.dirname(os.path.realpath(__file__)) + "/../xmlfiles" def write_item(self, item): if len(item['topics']) > 0: targetDir = self.get_base_path() firstLetter = item['title'][0].lower() targetDir += '/' + item['source'] + '/' + firstLetter if os.path.exists(targetDir) == False: os.makedirs(targetDir) fn = item['title'].replace(' ', '_') + '.xml' with open(targetDir + '/' + fn, 'w') as f: f.write(item.asXml()) def process_item(self, item, spider): self.write_item(item) return item
{ "content_hash": "fd6b18f2b8e07d4984e0bdca53a439fe", "timestamp": "", "source": "github", "line_count": 26, "max_line_length": 75, "avg_line_length": 28.346153846153847, "alnum_prop": 0.5115332428765265, "repo_name": "psiopic2/psicrawler", "id": "ff321fca705e925e6e8e1de4f89424a7a0bf96bf", "size": "761", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "psicrawler/pipelines.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "21963" }, { "name": "Shell", "bytes": "79" } ], "symlink_target": "" }
import minecraft.minecraft as minecraft #import minecraft block module import minecraft.block as block #import time, so delays can be used import time if __name__ == "__main__": time.sleep(2) #Connect to minecraft by creating the minecraft object # - minecraft needs to be running and in a game mc = minecraft.Minecraft.create() #Post a message to the minecraft chat window mc.postToChat("Hi, Minecraft API, the basics, what can you do? ") time.sleep(5) #Find out your players position playerPos = mc.player.getPos() mc.postToChat("Find your position - its x=" + str(playerPos.x) + ", y=" + str(playerPos.y) + ", z=" + str(playerPos.z)) time.sleep(5) #Using your players position # - the players position is an x,y,z coordinate of floats (e.g. 23.59,12.00,-45.32) # - in order to use the players position in other commands we need integers (e.g. 23,12,-45) # - so round the players position playerPos = minecraft.Vec3(int(playerPos.x), int(playerPos.y), int(playerPos.z)) #Changing your players position mc.postToChat("Move your player - 30 blocks UP!") time.sleep(2) mc.player.setPos(playerPos.x,playerPos.y + 30,playerPos.z) # - wait for you to fall! time.sleep(5) #Interacting with a block # - get the type block directly below you blockType = mc.getBlock(playerPos.x,playerPos.y - 1,playerPos.z) mc.postToChat("Interact with blocks - the block below you is of type - " + str(blockType)) time.sleep(5) # - change the block below you to wood planks mc.setBlock(playerPos.x,playerPos.y-1,playerPos.z,block.WOOD_PLANKS) mc.postToChat("Change blocks - the block below you is now wood planks") time.sleep(5) #Creating many blocks mc.postToChat("Create blocks - making a diamond tower") # - loop 20 times for up in range(0, 20): mc.setBlock(playerPos.x + 1, playerPos.y + up, playerPos.z, block.DIAMOND_BLOCK) time.sleep(0.3) time.sleep(2) # - put you on top of the tower mc.postToChat("Dont look down, because Im putting you on top of it!") time.sleep(1) mc.player.setPos(playerPos.x + 1, playerPos.y + 20, playerPos.z) time.sleep(5) mc.postToChat("www.stuffaboutcode.com") #Setting multiple blocks at once (only works for 2 blocks - wierd!) # - create list of arguments #towerArgs = [] # - append co-ord to list #for up in range(0, 20): # towerArgs.append(playerPos.x + 2) # towerArgs.append(playerPos.y + up) # ccccccc.append(playerPos.z) # - append block type to list #towerArgs.append(5) # - call method #mc.setBlocks(*towerBlocks) # move player #mc.player.setPos(playerPos.x + 1, playerPos.y + 21, playerPos.z)
{ "content_hash": "1ebb014dec9633be5ff9457ab2e68c44", "timestamp": "", "source": "github", "line_count": 86, "max_line_length": 123, "avg_line_length": 32.73255813953488, "alnum_prop": 0.6550621669626998, "repo_name": "martinohanlon/minecraft-api-tutorial", "id": "381386daaf5a24c5350609fa567f2c1da2cb199b", "size": "2943", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "minecraft-api.py", "mode": "33188", "license": "mit", "language": [ { "name": "Perl", "bytes": "1023" }, { "name": "Python", "bytes": "16490" } ], "symlink_target": "" }
import unittest import threading import time import IECore import Gaffer import GafferTest class NodeTest( GafferTest.TestCase ) : def testParenting( self ) : c = Gaffer.GraphComponent() n = Gaffer.Node() self.assertEqual( n.acceptsParent( c ), False ) self.assertRaises( RuntimeError, c.addChild, n ) n2 = Gaffer.Node() self.assertEqual( n.acceptsParent( n2 ), True ) n2.addChild( n ) p = Gaffer.Plug() self.assert_( n.acceptsChild( p ) ) self.assert_( not n.acceptsParent( p ) ) n.addChild( p ) self.assert_( p.parent().isSame( n ) ) def testNaming( self ) : n = Gaffer.Node() self.assertEqual( n.getName(), "Node" ) def testScriptNode( self ) : n = Gaffer.Node() n2 = Gaffer.Node() self.assertEqual( n.scriptNode(), None ) self.assertEqual( n2.scriptNode(), None ) sn = Gaffer.ScriptNode() sn.addChild( n ) n.addChild( n2 ) self.assert_( n.scriptNode().isSame( sn ) ) self.assert_( n2.scriptNode().isSame( sn ) ) def testExtendedConstructor( self ) : n = Gaffer.Node() self.assertEqual( n.getName(), "Node" ) n = Gaffer.Node( "a" ) self.assertEqual( n.getName(), "a" ) self.assertRaises( Exception, Gaffer.Node, "too", "many" ) def testDynamicPlugSerialisationOrder( self ) : n = Gaffer.Node() n["p1"] = Gaffer.FloatPlug( flags = Gaffer.Plug.Flags.Default | Gaffer.Plug.Flags.Dynamic ) n["p2"] = Gaffer.FloatPlug( flags = Gaffer.Plug.Flags.Default | Gaffer.Plug.Flags.Dynamic ) n["p3"] = Gaffer.FloatPlug( flags = Gaffer.Plug.Flags.Default | Gaffer.Plug.Flags.Dynamic ) self.assertEqual( n.children()[0].getName(), "user" ) self.assertEqual( n.children()[1].getName(), "p1" ) self.assertEqual( n.children()[2].getName(), "p2" ) self.assertEqual( n.children()[3].getName(), "p3" ) s = Gaffer.ScriptNode() s["n"] = n ss = s.serialise() s = Gaffer.ScriptNode() s.execute( ss ) self.assertEqual( s["n"].children()[0].getName(), "user" ) self.assertEqual( s["n"].children()[1].getName(), "p1" ) self.assertEqual( s["n"].children()[2].getName(), "p2" ) self.assertEqual( s["n"].children()[3].getName(), "p3" ) def testSerialiseDynamicStringPlugs( self ) : n = Gaffer.Node() n["p1"] = Gaffer.StringPlug( defaultValue = "default", flags = Gaffer.Plug.Flags.Default | Gaffer.Plug.Flags.Dynamic ) n["p1"].setValue( "value" ) self.assertEqual( n["p1"].getValue(), "value" ) s = Gaffer.ScriptNode() s["n"] = n ss = s.serialise() s = Gaffer.ScriptNode() s.execute( ss ) self.assertEqual( s["n"]["p1"].defaultValue(), "default" ) self.assertEqual( s["n"]["p1"].getValue(), "value" ) def testSerialiseDynamicBoolPlugs( self ) : n = Gaffer.Node() n["p1"] = Gaffer.BoolPlug( defaultValue = True, flags = Gaffer.Plug.Flags.Default | Gaffer.Plug.Flags.Dynamic ) n["p1"].setValue( False ) s = Gaffer.ScriptNode() s["n"] = n ss = s.serialise() s = Gaffer.ScriptNode() s.execute( ss ) self.assertEqual( s["n"]["p1"].defaultValue(), True ) self.assertEqual( s["n"]["p1"].getValue(), False ) def testUnparentingRemovesConnections( self ) : s = Gaffer.ScriptNode() n1 = GafferTest.AddNode( "n1" ) n2 = GafferTest.AddNode( "n2" ) s.addChild( n1 ) s.addChild( n2 ) n2["op1"].setInput( n1["sum"] ) self.failUnless( n2["op1"].getInput().isSame( n1["sum"] ) ) del s["n2"] self.assertEqual( n2["op1"].getInput(), None ) s.addChild( n2 ) n2["op1"].setInput( n1["sum"] ) self.failUnless( n2["op1"].getInput().isSame( n1["sum"] ) ) del s["n1"] self.assertEqual( n2["op1"].getInput(), None ) def testOverrideAcceptsInput( self ) : class AcceptsInputTestNode( Gaffer.Node ) : def __init__( self, name = "AcceptsInputTestNode" ) : Gaffer.Node.__init__( self, name ) self.addChild( Gaffer.IntPlug( "in" ) ) self.addChild( Gaffer.IntPlug( "out", Gaffer.Plug.Direction.Out ) ) def acceptsInput( self, plug, inputPlug ) : if plug.isSame( self["in"] ) : return isinstance( inputPlug.source().node(), AcceptsInputTestNode ) return True n1 = AcceptsInputTestNode() n2 = AcceptsInputTestNode() n3 = GafferTest.AddNode() self.assertEqual( n1["in"].acceptsInput( n2["out"] ), True ) self.assertEqual( n1["in"].acceptsInput( n3["sum"] ), False ) # check that we can't use a pass-through connection as # a loophole. # this particular connection makes no sense but breaks # no rules - we're just using it to test the loophole. n2["out"].setInput( n3["sum"] ) self.assertEqual( n1["in"].acceptsInput( n2["out"] ), False ) def testPlugFlagsChangedSignal( self ) : n = Gaffer.Node() n["p"] = Gaffer.Plug() cs = GafferTest.CapturingSlot( n.plugFlagsChangedSignal() ) self.assertEqual( len( cs ), 0 ) n["p"].setFlags( Gaffer.Plug.Flags.ReadOnly, True ) self.assertEqual( len( cs ), 1 ) self.failUnless( cs[0][0].isSame( n["p"] ) ) # second time should have no effect because they're the same n["p"].setFlags( Gaffer.Plug.Flags.ReadOnly, True ) self.assertEqual( len( cs ), 1 ) n["p"].setFlags( Gaffer.Plug.Flags.ReadOnly, False ) self.assertEqual( len( cs ), 2 ) self.failUnless( cs[1][0].isSame( n["p"] ) ) def testUserPlugs( self ) : s = Gaffer.ScriptNode() s["n"] = Gaffer.Node() s["n"]["user"]["test"] = Gaffer.IntPlug( flags = Gaffer.Plug.Flags.Default | Gaffer.Plug.Flags.Dynamic ) s["n"]["user"]["test"].setValue( 10 ) s2 = Gaffer.ScriptNode() s2.execute( s.serialise() ) self.assertEqual( s2["n"]["user"]["test"].getValue(), 10 ) if __name__ == "__main__": unittest.main()
{ "content_hash": "3e4ebfc509ba8c3f100204c64b91839a", "timestamp": "", "source": "github", "line_count": 214, "max_line_length": 120, "avg_line_length": 26.60747663551402, "alnum_prop": 0.6283807516684229, "repo_name": "paulondc/gaffer", "id": "2d39c7024137cdc07f338e8358e5c88f412af7aa", "size": "7578", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "python/GafferTest/NodeTest.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "C", "bytes": "15447" }, { "name": "C++", "bytes": "2630344" }, { "name": "COBOL", "bytes": "64449" }, { "name": "CSS", "bytes": "28027" }, { "name": "Objective-C", "bytes": "107529" }, { "name": "Python", "bytes": "2745422" }, { "name": "Shell", "bytes": "6943" }, { "name": "Slash", "bytes": "32856" } ], "symlink_target": "" }
import re class FilePermissions(object): """ Class for parsing `ls -l` line targeted at concrete file and handling parsed properties. It is useful for checking file permissions and owner. Attributes: perms_owner (str): Owner permissions, e.g. 'rwx' perms_group (str): Group permissions perms_other (str): Other permissions owner (str): Owner user name group (str): Owner group name path (str): Full path to file Note: This class does not support Access Control Lists (ACLs). If that is needed in the future, it would be preferable to create another class than extend this one. Advanced File Permissions - SUID, SGID and Sticky Bit - are not yet correctly parsed. """ _PERMISSIONS_PATTERN = re.compile(''' ^ .([-rwxsS]{3})([-rwxsS]{3})([-rwxsS]{3}) # -rwxrwxrwx # -rw-------. 1 root root 4308 Apr 22 15:57 /etc/ssh/sshd_config # ^^^^^^^^^^ # Valid characters are -rwxsS # s == execute bit and sticky bit # S == sticky bit without execute bit \S* # the character(s) after rwxrwxrwx for ACLs/xattrs # -rw-------. 1 root root 4308 Apr 22 15:57 /etc/ssh/sshd_config # ^ \s+\S+\s+ # the number of hardlinks and spaces around # -rw-------. 1 root root 4308 Apr 22 15:57 /etc/ssh/sshd_config # ^^^ ([^\s:]+)\s+([^\s:]+) # owner, spaces, group # -rw-------. 1 root root 4308 Apr 22 15:57 /etc/ssh/sshd_config # ^^^^^^^^^ # Username and group name are strings without whitespace \s and without colon :. \s+\S+\s+ # size and spaces around # -rw-------. 1 root root 4308 Apr 22 15:57 /etc/ssh/sshd_config # ^^^^^^ \S+\s+\S+ # month and day # -rw-------. 1 root root 4308 Apr 22 15:57 /etc/ssh/sshd_config # ^^^^^^ \s+\S+\s+ # time/year and spaces around # -rw-------. 1 root root 4308 Apr 22 2009 /etc/ssh/sshd_config # ^^^^^^ # -rw-------. 1 root root 4308 Apr 22 15:57 /etc/ssh/sshd_config # ^^^^^^^ (.*) # file name or path # -rw-------. 1 root root 4308 Apr 22 15:57 /etc/ssh/sshd_config # ^^^^^^^^^^^^^^^^^^^^ # -rw-------. 1 root root 4308 Apr 22 15:57 file_name_without_path # ^^^^^^^^^^^^^^^^^^^^^^ $ ''', re.VERBOSE) def __init__(self, line): """ Args: line (str): A line from `ls -l /concrete/file` execution. Such as: -rw-------. 1 root root 762 Sep 23 002 /etc/ssh/sshd_config -rw-------. 1 root root 4308 Apr 22 15:57 /etc/ssh/sshd_config -rw-r--r--. 1 root root 4179 Dec 1 2014 /boot/grub2/grub.cfg Raises: ValueError: If line is malformed """ self.line = line r = self._PERMISSIONS_PATTERN.search(self.line) if r: (self.perms_owner, self.perms_group, self.perms_other, self.owner, self.group, self.path) = r.groups() else: raise ValueError('Invalid `ls -l` line "{}"'.format(self.line)) @classmethod def from_dict(self, dirent): """ Create a new FilePermissions object from the given dictionary. This works with the FileListing parser class, which has already done the hard work of pulling many of these fields out. We create an object with all the dictionary keys available as properties, and also split the ``perms`` string up into owner, group """ # Check that we have at least as much data as the __init__ requires for k in ['perms', 'owner', 'group', 'name', 'dir']: if k not in dirent: raise ValueError("Need required key '{k}'".format(k=k)) # Copy all values across for k in dirent: setattr(self, k, dirent[k]) # Create perms parts self.perms_owner = self.perms[0:3] self.perms_group = self.perms[3:6] self.perms_other = self.perms[6:9] return self def owned_by(self, owner, also_check_group=False): """ Checks if the specified user or user and group own the file. Args: owner (str): the user (or group) name for which we ask about ownership also_check_group (bool): if set to True, both user owner and group owner checked if set to False, only user owner checked Returns: bool: True if owner of the file is the specified owner """ if also_check_group: return self.owner == owner and self.group == owner else: return self.owner == owner def owner_can_read(self): """ Checks if owner can read the file. Write and execute bits are not evaluated. Returns: bool: True if owner can read the file. """ return 'r' in self.perms_owner def group_can_read(self): """ Checks if group can read the file. Write and execute bits are not evaluated. Returns: bool: True if group can read the file. """ return 'r' in self.perms_group def others_can_read(self): """ Checks if 'others' can read the file. Write and execute bits are not evaluated. ('others' in the sense of unix permissions that know about user, group, others.) Returns: bool: True if 'others' can read the file. """ return 'r' in self.perms_other def owner_can_only_read(self): """ Checks if owner has read-only permissions for the file. Therefore, write and execute bits for owner must be unset and read bit must be set. Returns: bool: True if owner can only read the file. """ return 'r--' == self.perms_owner def group_can_only_read(self): """ Checks if group has read-only permissions for the file. Therefore, write and execute bits for group must be unset and read bit must be set. Returns: bool: True if group can only read the file. """ return 'r--' == self.perms_group def others_can_only_read(self): """ Checks if 'others' has read-only permissions for the file. Therefore, write and execute bits for 'others' must be unset and read bit must be set. ('others' in the sense of unix permissions that know about user, group, others.) Returns: bool: True if 'others' can only read the file. """ return 'r--' == self.perms_other def owner_can_write(self): """ Checks if owner can write the file. Read and execute bits are not evaluated. Returns: bool: True if owner can write the file. """ return 'w' in self.perms_owner def group_can_write(self): """ Checks if group can write the file. Read and execute bits are not evaluated. Returns: bool: True if group can write the file. """ return 'w' in self.perms_group def others_can_write(self): """ Checks if 'others' can write the file. Read and execute bits are not evaluated. ('others' in the sense of unix permissions that know about user, group, others.) Returns: bool: True if 'others' can write the file. """ return 'w' in self.perms_other def only_root_can_read(self, root_group_can_read=True): """ Checks if only root is allowed to read the file (and anyone else is forbidden from reading). Write and execute bits are not checked. The read bits for root user/group are not checked because root can read/write anything regardless of the read/write permissions. When called with ``root_group_can_read`` = ``True``: * owner must be root * and 'others' permissions must not contain read * and if group owner is not root, the 'group' permissions must not contain read Valid cases:: rwxrwxrwx owner ownergroup ------------------------------- ???-??-?? root nonroot ??????-?? root root r--r----- root root r-------- root nonroot rwxrwx--- root root rwxrwx-wx root root Specifically, these cases are NOT valid because the owner can chmod permissions and grant themselves permissions without root's knowledge:: rwxrwxrwx owner ownergroup ------------------------------- -??-??-?? nonroot nonroot -??r??-?? nonroot root --------- nonroot nonroot When called with ``root_group_can_read`` = ``False``: * owner must be root * and 'group' and 'others' permissions must not contain read Valid cases:: rwxrwxrwx owner ownergroup ------------------------------- ???-??-?? root ? r-------- root root r-------- root nonroot rwx-wx--- root root rwx-wx--- root nonroot rwx-wxrwx root nonroot Specifically, these cases are NOT valid because the owner can chmod permissions and grant themselves permissions without root's knowledge:: rwxrwxrwx owner ownergroup ------------------------------- -??-??-?? nonroot nonroot --------- nonroot nonroot Args: root_group_can_read (bool): if set to True, this tests whether the 'root' group can also read the file. Returns: bool: True if only root user (or optionally root group) can read the file. """ requirements = True # The final answer is progressively assembled in this variable. requirements &= self.owner == 'root' requirements &= not self.others_can_read() if root_group_can_read: if self.group != 'root': # if group is not root, group must not be able to read requirements &= not self.group_can_read() else: # root_group_can_read == False requirements &= not self.group_can_read() return requirements def only_root_can_write(self, root_group_can_write=True): """ Checks if only root is allowed to write the file (and anyone else is barred from writing). Read and execute bits are not checked. The write bits for root user/group are not checked because root can read/write anything regardless of the read/write permissions. When called with ``root_group_can_write`` = ``True``: * owner must be root * and 'others' permissions must not contain write * and if group owner is not root, the 'group' permissions must not contain write Valid cases:: rwxrwxrwx owner ownergroup ------------------------------- ????-??-? root nonroot ???????-? root root -w--w---- root root -w------- root root rwxrwx--- root root rwxrwxr-x root root Specifically, these cases are NOT valid because the owner can chmod permissions and grant themselves permissions without root's knowledge:: rwxrwxrwx owner ownergroup ------------------------------- ?-??-??-? nonroot nonroot ?-??w??-? nonroot root --------- nonroot nonroot When called with ``root_group_can_write`` = ``False``: * owner must be root * and 'group' and 'others' permissions must not contain write Valid cases:: rwxrwxrwx owner ownergroup ------------------------------- ????-??-? root ? -w------- root root -w------- root nonroot rwxr-x--- root root rwxr-x--- root nonroot rwxr-xr-x root nonroot Specifically, these cases are NOT valid because the owner can chmod permissions and grant themselves permissions without root's knowledge:: rwxrwxrwx owner ownergroup ------------------------------- ?-??-??-? nonroot nonroot --------- nonroot nonroot Args: root_group_can_write (bool): if set to True, this tests whether 'root' group can also write to the file. Returns: bool: True if only root user (or optionally root group) can write the file. """ requirements = True # The final answer is progressively assembled in this variable. requirements &= self.owner == 'root' requirements &= not self.others_can_write() if root_group_can_write: if self.group != 'root': # if group is not root, group must not be able to write requirements &= not self.group_can_write() else: # root_group_can_write == False requirements &= not self.group_can_write() return requirements def all_zero(self): """ Checks that all permissions are zero ('---------' in ls -l) - nobody but root can read, write, exec. Returns: bool: True if all permissions are zero ('---------') """ _PERM_NOTHING = '---' return all(( self.perms_owner == _PERM_NOTHING, self.perms_group == _PERM_NOTHING, self.perms_other == _PERM_NOTHING, )) def __repr__(self): return 'FilePermissions(' + self.path + ')'
{ "content_hash": "0150d8704fc40fe1f510ec78eb275d29", "timestamp": "", "source": "github", "line_count": 388, "max_line_length": 100, "avg_line_length": 37.03350515463917, "alnum_prop": 0.5220961792748278, "repo_name": "RedHatInsights/insights-core", "id": "26fbc25905bd3eab3c83e4172b3456890f001bf0", "size": "14369", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "insights/util/file_permissions.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Dockerfile", "bytes": "220" }, { "name": "Python", "bytes": "8219046" }, { "name": "Shell", "bytes": "1754" } ], "symlink_target": "" }
import os import tarfile import zipfile from .basefile import BaseFile from ...errors.fe import FileContainerFileNotFound as CNF from ...errors.fe import FileContainerFailedExtraction as CFE class ContainerFile(BaseFile): """ The **CompressedFile** :py:class:`pynion.Multiton` is a file management object created directly through the py:class:`pynion.File` factory. Extends :py:class:`pynion.filesystem._filetypes.BaseFile` It specifically manages compacted or compressed files with multiple files within. """ def __init__(self, file_name, action, ctype): super(ContainerFile, self).__init__(file_name, action) self.ctype = ctype if self.is_tarfile: self.action = self.action + '|*' ############ # BOOLEANS # ############ @property def is_gzipped(self): """ :return: Check if compression is gzip :rtype: bool """ return self.ctype.endswith('gzip') @property def is_bzipped(self): """ :return: Check if compression is bzip :rtype: bool """ return self.ctype.endswith('bzip') @property def is_zipped(self): """ :return: Check if compression is zip :rtype: bool """ return self.ctype == 'zip' @property def is_tarfile(self): """ :return: Check if compression is tar :rtype: bool """ return self.ctype.startswith('tar') #################### # METHODS: ON FILE # #################### def open(self): """ Open the file in the previously defined action type. :rtype: self """ if self.is_open: return self if self.is_tarfile: self._fd = tarfile.open(self.full) if self.is_zipped: self._fd = zipfile.ZipFile(self.full) return self def read_file(self, file_name): """ Get a specific file from the file bundle. :param str file_name: Name of the query internal file. :raise: :py:class:`pynion.errors.fe.FileContainerFileNotFound` if query file is not in the bundle. :rtype: str """ if self.is_zipped: if file_name not in self._fd.namelist(): raise CNF(self.full, file_name) return self._fd.read(file_name).split('\n') if self.is_tarfile: if file_name not in self._fd.getnames(): raise CNF(self.full, file_name) return self._fd.extractfile(self._fd.getmember(file_name)).readlines() def has_file(self, file_name): """ Query if file exists in the bundle. :rtype: bool """ if self.is_zipped: return file_name in self._fd.namelist() if self.is_tarfile: return file_name in self._fd.getnames() def extract(self, target_file = None, target_dir = os.getcwd()): """ Extract a specific file from the bundle. :param str target_file: Query file to extract from the bundle. If :py:data:`None`, all files contained :param str target_dir: Directory to which to write the file. By default that is the current working directory :raise: :py:class:`pyninon.errors.fe.FileContainerFailedExtraction` if target_file not """ if not os.path.isdir(target_dir) or not os.access(target_dir, os.W_OK): raise CFE(self.full, target_dir) if target_file is not None and not self.has_file(target_file): raise CNF(self.full, target_file) if target_file is None: self._fd.extractall(path = target_dir) else: self._fd.extract(target_file, target_dir) def list_files(self): """ Name of all files in the bundle.. :rtype: list """ if self.is_tarfile: return self._fd.getnames() if self.is_zipped: return self._fd.namelist() def length(self): """ Number of lines in the file. :rtype: int """ return len(self.list_files) def __new__(self): raise NotImplementedError def __exit__(self, type, value, traceback): raise NotImplementedError
{ "content_hash": "ac28935bd431ba1aa237f83c9c1c1106", "timestamp": "", "source": "github", "line_count": 147, "max_line_length": 82, "avg_line_length": 29.428571428571427, "alnum_prop": 0.5665742024965326, "repo_name": "jaumebonet/pynion", "id": "043d127b3d1ad50d6b4efd6540cedda63e8c386b", "size": "4326", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "pynion/filesystem/_filetypes/containerfile.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "80950" } ], "symlink_target": "" }
import functools from stronghold import decorators import django if django.VERSION[:2] < (1, 9): from django.utils import unittest else: import unittest class StrongholdDecoratorTests(unittest.TestCase): def test_public_decorator_sets_attr(self): @decorators.public def function(): pass self.assertTrue(function.STRONGHOLD_IS_PUBLIC) def test_public_decorator_sets_attr_with_nested_decorators(self): def stub_decorator(func): return func @decorators.public @stub_decorator def inner_function(): pass self.assertTrue(inner_function.STRONGHOLD_IS_PUBLIC) def test_public_decorator_works_with_partials(self): def function(): pass partial = functools.partial(function) decorators.public(partial) self.assertTrue(function.STRONGHOLD_IS_PUBLIC)
{ "content_hash": "f9c95708f340e74b0c303414cd17e1cf", "timestamp": "", "source": "github", "line_count": 39, "max_line_length": 69, "avg_line_length": 23.46153846153846, "alnum_prop": 0.6579234972677596, "repo_name": "klenks/jobsportal", "id": "8726b9b36b0d77a74dced7686763fd9087310192", "size": "915", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "venv/lib/python2.7/site-packages/stronghold/tests/testdecorators.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "138702" }, { "name": "HTML", "bytes": "158529" }, { "name": "JavaScript", "bytes": "250743" }, { "name": "Python", "bytes": "7450092" }, { "name": "Shell", "bytes": "3234" } ], "symlink_target": "" }
from oslo_config import cfg from nova.conf import serial_console CONF = cfg.CONF serial_console.register_opts(CONF)
{ "content_hash": "4053e8075244ac70ed62c5eec8a017c0", "timestamp": "", "source": "github", "line_count": 7, "max_line_length": 36, "avg_line_length": 17, "alnum_prop": 0.7899159663865546, "repo_name": "devendermishrajio/nova", "id": "33426f4aa20e45e43c5791fe2499e1a98fff39cc", "size": "964", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "nova/conf/__init__.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Python", "bytes": "16836881" }, { "name": "Shell", "bytes": "24210" }, { "name": "Smarty", "bytes": "351433" } ], "symlink_target": "" }
import cupy import numpy as np from cupy._core import internal from cupy import _util from cupyx.scipy.sparse import _base from cupyx.scipy.sparse import _coo from cupyx.scipy.sparse import _sputils _ufuncs = [ 'arcsin', 'arcsinh', 'arctan', 'arctanh', 'ceil', 'deg2rad', 'expm1', 'floor', 'log1p', 'rad2deg', 'rint', 'sign', 'sin', 'sinh', 'sqrt', 'tan', 'tanh', 'trunc', ] class _data_matrix(_base.spmatrix): def __init__(self, data): self.data = data @property def dtype(self): """Data type of the matrix.""" return self.data.dtype def _with_data(self, data, copy=True): raise NotImplementedError def __abs__(self): """Elementwise abosulte.""" return self._with_data(abs(self.data)) def __neg__(self): """Elementwise negative.""" return self._with_data(-self.data) def astype(self, t): """Casts the array to given data type. Args: dtype: Type specifier. Returns: A copy of the array with a given type. """ return self._with_data(self.data.astype(t)) def conj(self, copy=True): if cupy.issubdtype(self.dtype, cupy.complexfloating): return self._with_data(self.data.conj(), copy=copy) elif copy: return self.copy() else: return self conj.__doc__ = _base.spmatrix.conj.__doc__ def copy(self): return self._with_data(self.data.copy(), copy=True) copy.__doc__ = _base.spmatrix.copy.__doc__ def count_nonzero(self): """Returns number of non-zero entries. .. note:: This method counts the actual number of non-zero entories, which does not include explicit zero entries. Instead ``nnz`` returns the number of entries including explicit zeros. Returns: Number of non-zero entries. """ return cupy.count_nonzero(self.data) def mean(self, axis=None, dtype=None, out=None): """Compute the arithmetic mean along the specified axis. Args: axis (int or ``None``): Axis along which the sum is computed. If it is ``None``, it computes the average of all the elements. Select from ``{None, 0, 1, -2, -1}``. Returns: cupy.ndarray: Summed array. .. seealso:: :meth:`scipy.sparse.spmatrix.mean` """ _sputils.validateaxis(axis) nRow, nCol = self.shape data = self.data.copy() if axis is None: n = nRow * nCol elif axis in (0, -2): n = nRow else: n = nCol return self._with_data(data / n).sum(axis, dtype, out) def power(self, n, dtype=None): """Elementwise power function. Args: n: Exponent. dtype: Type specifier. """ if dtype is None: data = self.data.copy() else: data = self.data.astype(dtype, copy=True) data **= n return self._with_data(data) def _find_missing_index(ind, n): positions = cupy.arange(ind.size) diff = ind != positions return cupy.where( diff.any(), diff.argmax(), cupy.asarray(ind.size if ind.size < n else -1)) def _non_zero_cmp(mat, am, zero, m): size = np.prod(mat.shape) if size == mat.nnz: return am else: ind = mat.row * mat.shape[1] + mat.col zero_ind = _find_missing_index(ind, size) return cupy.where( m == zero, cupy.minimum(zero_ind, am), zero_ind) class _minmax_mixin(object): """Mixin for min and max methods. These are not implemented for dia_matrix, hence the separate class. """ def _min_or_max_axis(self, axis, min_or_max, explicit): N = self.shape[axis] if N == 0: raise ValueError("zero-size array to reduction operation") M = self.shape[1 - axis] mat = self.tocsc() if axis == 0 else self.tocsr() mat.sum_duplicates() # Do the reduction value = mat._minor_reduce(min_or_max, axis, explicit) major_index = cupy.arange(M) mask = value != 0 major_index = cupy.compress(mask, major_index) value = cupy.compress(mask, value) if axis == 0: return _coo.coo_matrix( (value, (cupy.zeros(len(value)), major_index)), dtype=self.dtype, shape=(1, M)) else: return _coo.coo_matrix( (value, (major_index, cupy.zeros(len(value)))), dtype=self.dtype, shape=(M, 1)) def _min_or_max(self, axis, out, min_or_max, explicit): if out is not None: raise ValueError(("Sparse matrices do not support " "an 'out' parameter.")) _sputils.validateaxis(axis) if axis is None: if 0 in self.shape: raise ValueError("zero-size array to reduction operation") zero = cupy.zeros((), dtype=self.dtype) if self.nnz == 0: return zero self.sum_duplicates() m = min_or_max(self.data) if explicit: return m if self.nnz != internal.prod(self.shape): if min_or_max is cupy.min: m = cupy.minimum(zero, m) elif min_or_max is cupy.max: m = cupy.maximum(zero, m) else: assert False return m if axis < 0: axis += 2 return self._min_or_max_axis(axis, min_or_max, explicit) def _arg_min_or_max_axis(self, axis, op): if self.shape[axis] == 0: raise ValueError("Can't apply the operation along a zero-sized " "dimension.") mat = self.tocsc() if axis == 0 else self.tocsr() mat.sum_duplicates() # Do the reduction value = mat._arg_minor_reduce(op, axis) if axis == 0: return value[None, :] else: return value[:, None] def _arg_min_or_max(self, axis, out, op, compare): if out is not None: raise ValueError("Sparse matrices do not support " "an 'out' parameter.") _sputils.validateaxis(axis) if axis is None: if 0 in self.shape: raise ValueError("Can't apply the operation to " "an empty matrix.") if self.nnz == 0: return 0 else: zero = cupy.asarray(self.dtype.type(0)) mat = self.tocoo() mat.sum_duplicates() am = op(mat.data) m = mat.data[am] return cupy.where( compare(m, zero), mat.row[am] * mat.shape[1] + mat.col[am], _non_zero_cmp(mat, am, zero, m)) if axis < 0: axis += 2 return self._arg_min_or_max_axis(axis, op) def max(self, axis=None, out=None, *, explicit=False): """Returns the maximum of the matrix or maximum along an axis. Args: axis (int): {-2, -1, 0, 1, ``None``} (optional) Axis along which the sum is computed. The default is to compute the maximum over all the matrix elements, returning a scalar (i.e. ``axis`` = ``None``). out (None): (optional) This argument is in the signature *solely* for NumPy compatibility reasons. Do not pass in anything except for the default value, as this argument is not used. explicit (bool): Return the maximum value explicitly specified and ignore all implicit zero entries. If the dimension has no explicit values, a zero is then returned to indicate that it is the only implicit value. This parameter is experimental and may change in the future. Returns: (cupy.ndarray or float): Maximum of ``a``. If ``axis`` is ``None``, the result is a scalar value. If ``axis`` is given, the result is an array of dimension ``a.ndim - 1``. This differs from numpy for computational efficiency. .. seealso:: min : The minimum value of a sparse matrix along a given axis. .. seealso:: numpy.matrix.max : NumPy's implementation of ``max`` for matrices """ if explicit: api_name = 'explicit of cupyx.scipy.sparse.{}.max'.format( self.__class__.__name__) _util.experimental(api_name) return self._min_or_max(axis, out, cupy.max, explicit) def min(self, axis=None, out=None, *, explicit=False): """Returns the minimum of the matrix or maximum along an axis. Args: axis (int): {-2, -1, 0, 1, ``None``} (optional) Axis along which the sum is computed. The default is to compute the minimum over all the matrix elements, returning a scalar (i.e. ``axis`` = ``None``). out (None): (optional) This argument is in the signature *solely* for NumPy compatibility reasons. Do not pass in anything except for the default value, as this argument is not used. explicit (bool): Return the minimum value explicitly specified and ignore all implicit zero entries. If the dimension has no explicit values, a zero is then returned to indicate that it is the only implicit value. This parameter is experimental and may change in the future. Returns: (cupy.ndarray or float): Minimum of ``a``. If ``axis`` is None, the result is a scalar value. If ``axis`` is given, the result is an array of dimension ``a.ndim - 1``. This differs from numpy for computational efficiency. .. seealso:: max : The maximum value of a sparse matrix along a given axis. .. seealso:: numpy.matrix.min : NumPy's implementation of 'min' for matrices """ if explicit: api_name = 'explicit of cupyx.scipy.sparse.{}.min'.format( self.__class__.__name__) _util.experimental(api_name) return self._min_or_max(axis, out, cupy.min, explicit) def argmax(self, axis=None, out=None): """Returns indices of maximum elements along an axis. Implicit zero elements are taken into account. If there are several maximum values, the index of the first occurrence is returned. If ``NaN`` values occur in the matrix, the output defaults to a zero entry for the row/column in which the NaN occurs. Args: axis (int): {-2, -1, 0, 1, ``None``} (optional) Axis along which the argmax is computed. If ``None`` (default), index of the maximum element in the flatten data is returned. out (None): (optional) This argument is in the signature *solely* for NumPy compatibility reasons. Do not pass in anything except for the default value, as this argument is not used. Returns: (cupy.narray or int): Indices of maximum elements. If array, its size along ``axis`` is 1. """ return self._arg_min_or_max(axis, out, cupy.argmax, cupy.greater) def argmin(self, axis=None, out=None): """ Returns indices of minimum elements along an axis. Implicit zero elements are taken into account. If there are several minimum values, the index of the first occurrence is returned. If ``NaN`` values occur in the matrix, the output defaults to a zero entry for the row/column in which the NaN occurs. Args: axis (int): {-2, -1, 0, 1, ``None``} (optional) Axis along which the argmin is computed. If ``None`` (default), index of the minimum element in the flatten data is returned. out (None): (optional) This argument is in the signature *solely* for NumPy compatibility reasons. Do not pass in anything except for the default value, as this argument is not used. Returns: (cupy.narray or int): Indices of minimum elements. If matrix, its size along ``axis`` is 1. """ return self._arg_min_or_max(axis, out, cupy.argmin, cupy.less) def _install_ufunc(func_name): def f(self): ufunc = getattr(cupy, func_name) result = ufunc(self.data) return self._with_data(result) f.__doc__ = 'Elementwise %s.' % func_name f.__name__ = func_name setattr(_data_matrix, func_name, f) def _install_ufuncs(): for func_name in _ufuncs: _install_ufunc(func_name) _install_ufuncs()
{ "content_hash": "e2143de949f9e83296b86471d43f075a", "timestamp": "", "source": "github", "line_count": 398, "max_line_length": 79, "avg_line_length": 33.14572864321608, "alnum_prop": 0.5489690721649485, "repo_name": "cupy/cupy", "id": "1615aea2db15f5b1a46cc5cd7f6a28061990781f", "size": "13192", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "cupyx/scipy/sparse/_data.py", "mode": "33188", "license": "mit", "language": [ { "name": "Batchfile", "bytes": "38" }, { "name": "C", "bytes": "712019" }, { "name": "C++", "bytes": "895316" }, { "name": "Cuda", "bytes": "151799" }, { "name": "Cython", "bytes": "1996454" }, { "name": "Dockerfile", "bytes": "40251" }, { "name": "PowerShell", "bytes": "7361" }, { "name": "Python", "bytes": "4841354" }, { "name": "Shell", "bytes": "24521" } ], "symlink_target": "" }
""" pyshtools ========= pyshtools is an archive of scientific routines that can be used to perform spherical harmonic transforms and reconstructions, rotations of data expressed in spherical harmonics, and multitaper spectral analyses on the sphere. This module imports the following classes and subpackages into the main namespace: SHCoeffs - A high level class for spherical harmonic coefficients. SHGrid - A high level classes for global grids. SHWindow - A high level classes for localization windows. shclasses - All pyshtools classes and subclasses. shtools - All Python-wrapped Fortran 95 routines. constant - pyshtools constants. legendre - Legendre functions. expand - Spherical harmonic expansion routines. shio - Spherical harmonic I/O, storage, and conversion routines. spectralanalysis - Global and localized spectral analysis routines. rotate - Spherical harmonic rotation routines. gravmag - Gravity and magnetics routines. utils - pyshtools utilities. For further information, consult the web documentation at https://shtools.oca.eu/ and the GitHub project page at https://github.com/SHTOOLS/SHTOOLS """ from __future__ import absolute_import as _absolute_import from __future__ import division as _division from __future__ import print_function as _print_function __version__ = '4.2' __author__ = 'SHTOOLS developers' import os as _os import numpy as _np # ---- Import shtools subpackages ---- from . import shtools from . import constant from . import shclasses from . import legendre from . import expand from . import shio from . import spectralanalysis from . import rotate from . import gravmag from . import utils # ---- Import classes into pyshtools namespace from .shclasses import SHCoeffs, SHGrid, SHWindow # ---- Define __all__ for use with: from pyshtools import * ---- __all__ = ['constant', 'shclasses', 'SHCoeffs', 'SHGrid', 'SHWindow', 'legendre', 'expand', 'shio', 'spectralanalysis', 'rotate', 'gravmag', 'utils']
{ "content_hash": "2eb2757d0c74b2cc86310bea8f7eae02", "timestamp": "", "source": "github", "line_count": 64, "max_line_length": 71, "avg_line_length": 31.90625, "alnum_prop": 0.732615083251714, "repo_name": "ioshchepkov/SHTOOLS", "id": "a1203d186778eb0948671ea65ef6d35a5a2b39ae", "size": "2042", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "pyshtools/__init__.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "Fortran", "bytes": "1204574" }, { "name": "Makefile", "bytes": "26801" }, { "name": "Python", "bytes": "290300" } ], "symlink_target": "" }
""" This script builds and runs a graph with miniflow. There is no need to change anything to solve this quiz! However, feel free to play with the network! Can you also build a network that solves the equation below? (x + y) + y """ from miniflow import * x, y = Input(), Input() f = Add(x, y) feed_dict = {x: 10, y: 5} sorted_nodes = topological_sort(feed_dict) output = forward_pass(f, sorted_nodes) # NOTE: because topological_sort set the values for the `Input` nodes we could also access # the value for x with x.value (same goes for y). print("{} + {} = {} (according to miniflow)".format(feed_dict[x], feed_dict[y], output))
{ "content_hash": "75c5c246a3fb21429bf6510b4f7a0bc5", "timestamp": "", "source": "github", "line_count": 25, "max_line_length": 90, "avg_line_length": 25.64, "alnum_prop": 0.6911076443057722, "repo_name": "nehal96/Deep-Learning-ND-Exercises", "id": "bcde0b8316a3647afc0ae880cd34ee9a71dbde3c", "size": "641", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "MiniFlow/1 - Forward Propagation/nn.py", "mode": "33188", "license": "mit", "language": [ { "name": "HTML", "bytes": "1116048" }, { "name": "Jupyter Notebook", "bytes": "11694856" }, { "name": "Python", "bytes": "33916" } ], "symlink_target": "" }
"""This bot will move pages out of redirected categories. The bot will look for categories that are marked with a category redirect template, take the first parameter of the template as the target of the redirect, and move all pages and subcategories of the category there. It also changes hard redirects into soft redirects, and fixes double redirects. A log is written under <userpage>/category_redirect_log. Only category pages that haven't been edited for a certain cooldown period (currently 7 days) are taken into account. -delay:# Set an amount of days. If the category is edited more recenty than given days, ignore it. Default is 7. -tiny Only loops over Category:Non-empty_category_redirects and moves all images, pages and categories in redirect categories to the target category. Usage: python pwb.py category_redirect [options] """ # # (C) Pywikibot team, 2008-2017 # # Distributed under the terms of the MIT license. # from __future__ import absolute_import, unicode_literals import re import sys import time from datetime import timedelta import pywikibot from pywikibot import i18n, pagegenerators, config if sys.version_info[0] > 2: import pickle as cPickle else: import cPickle class CategoryRedirectBot(pywikibot.Bot): """Page category update bot.""" def __init__(self, **kwargs): """Constructor.""" self.availableOptions.update({ 'tiny': False, # use Non-empty category redirects only 'delay': 7, # cool down delay in days }) super(CategoryRedirectBot, self).__init__(**kwargs) self.cooldown = self.getOption('delay') self.site = pywikibot.Site() self.catprefix = self.site.namespace(14) + ":" self.log_text = [] self.edit_requests = [] self.problems = [] self.template_list = [] self.cat = None self.log_page = pywikibot.Page(self.site, u"User:%(user)s/category redirect log" % {'user': self.site.username()}) # Localization: # Category that contains all redirected category pages self.cat_redirect_cat = { 'commons': "Category:Category redirects", 'meta': 'Category:Maintenance of categories/Soft redirected categories', 'ar': u"تصنيف:تحويلات تصنيفات ويكيبيديا", 'cs': 'Kategorie:Údržba:Zastaralé kategorie', 'da': "Kategori:Omdirigeringskategorier", 'en': "Category:Wikipedia soft redirected categories", 'es': "Categoría:Wikipedia:Categorías redirigidas", 'fa': u"رده:رده‌های منتقل‌شده", 'hu': "Kategória:Kategóriaátirányítások", 'ja': "Category:移行中のカテゴリ", 'no': "Kategori:Wikipedia omdirigertekategorier", 'pl': "Kategoria:Przekierowania kategorii", 'pt': "Categoria:!Redirecionamentos de categorias", 'ru': "Категория:Википедия:Категории-дубликаты", 'sco': "Category:Wikipaedia soft redirectit categories", 'simple': "Category:Category redirects", 'sh': u"Kategorija:Preusmjerene kategorije Wikipedije", 'vi': u"Thể loại:Thể loại đổi hướng", 'zh': u"Category:已重定向的分类", 'ro': 'Categorie:Categorii de redirecționare', } # Category that contains non-empty redirected category pages self.tiny_cat_redirect_cat = 'Q8099903' self.move_comment = 'category_redirect-change-category' self.redir_comment = 'category_redirect-add-template' self.dbl_redir_comment = 'category_redirect-fix-double' self.maint_comment = 'category_redirect-comment' self.edit_request_text = i18n.twtranslate( self.site, 'category_redirect-edit-request') + u'\n~~~~' self.edit_request_item = i18n.twtranslate( self.site, 'category_redirect-edit-request-item') def get_cat(self): """Specify the category page.""" if self.getOption('tiny'): self.cat = self.site.page_from_repository( self.tiny_cat_redirect_cat) else: cat_title = pywikibot.translate(self.site, self.cat_redirect_cat) if cat_title: self.cat = pywikibot.Category(pywikibot.Link(cat_title, self.site)) return self.cat is not None def move_contents(self, oldCatTitle, newCatTitle, editSummary): """The worker function that moves pages out of oldCat into newCat.""" while True: try: oldCat = pywikibot.Category(self.site, self.catprefix + oldCatTitle) newCat = pywikibot.Category(self.site, self.catprefix + newCatTitle) param = { 'oldCatLink': oldCat.title(), 'oldCatTitle': oldCatTitle, 'newCatLink': newCat.title(), 'newCatTitle': newCatTitle, } summary = editSummary % param # Move articles found, moved = 0, 0 for article in oldCat.members(): found += 1 changed = article.change_category(oldCat, newCat, summary=summary) if changed: moved += 1 # pass 2: look for template doc pages for item in pywikibot.data.api.ListGenerator( "categorymembers", cmtitle=oldCat.title(), cmprop="title|sortkey", cmnamespace="10", cmlimit="max"): doc = pywikibot.Page(pywikibot.Link(item['title'] + "/doc", self.site)) try: doc.get() except pywikibot.Error: continue changed = doc.change_category(oldCat, newCat, summary=summary) if changed: moved += 1 if found: pywikibot.output(u"%s: %s found, %s moved" % (oldCat.title(), found, moved)) return (found, moved) except pywikibot.ServerError: pywikibot.output(u"Server error: retrying in 5 seconds...") time.sleep(5) continue except KeyboardInterrupt: raise except: return (None, None) def readyToEdit(self, cat): """Return True if cat not edited during cooldown period, else False.""" today = pywikibot.Timestamp.now() deadline = today + timedelta(days=-self.cooldown) if cat.editTime() is None: raise RuntimeError return (deadline > cat.editTime()) def get_log_text(self): """Rotate log text and return the most recent text.""" LOG_SIZE = 7 # Number of items to keep in active log try: log_text = self.log_page.get() except pywikibot.NoPage: log_text = u"" log_items = {} header = None for line in log_text.splitlines(): if line.startswith("==") and line.endswith("=="): header = line[2:-2].strip() if header is not None: log_items.setdefault(header, []) log_items[header].append(line) if len(log_items) < LOG_SIZE: return log_text # sort by keys and keep the first (LOG_SIZE-1) values keep = [text for (key, text) in sorted(log_items.items(), reverse=True)[:LOG_SIZE - 1]] log_text = "\n".join("\n".join(line for line in text) for text in keep) # get permalink to older logs history = list(self.log_page.revisions(total=LOG_SIZE)) # get the id of the newest log being archived rotate_revid = history[-1].revid # append permalink log_text += ("\n\n'''[%s Older logs]'''" % self.log_page.permalink(oldid=rotate_revid)) return log_text def check_hard_redirect(self): """ Check for hard-redirected categories. Check categories that are not already marked with an appropriate softredirect template. """ pywikibot.output("Checking hard-redirect category pages.") comment = i18n.twtranslate(self.site, self.redir_comment) # generator yields all hard redirect pages in namespace 14 for page in pagegenerators.PreloadingGenerator( self.site.allpages(namespace=14, filterredir=True), groupsize=250): if page.isCategoryRedirect(): # this is already a soft-redirect, so skip it (for now) continue try: target = page.getRedirectTarget() except pywikibot.CircularRedirect: target = page self.problems.append(u"# %s is a self-linked redirect" % page.title(asLink=True, textlink=True)) except RuntimeError: # race condition: someone else removed the redirect while we # were checking for it continue if target.is_categorypage(): # this is a hard-redirect to a category page newtext = (u"{{%(template)s|%(cat)s}}" % {'cat': target.title(withNamespace=False), 'template': self.template_list[0]}) try: page.text = newtext page.save(comment) self.log_text.append(u"* Added {{tl|%s}} to %s" % (self.template_list[0], page.title(asLink=True, textlink=True))) except pywikibot.Error: self.log_text.append(u"* Failed to add {{tl|%s}} to %s" % (self.template_list[0], page.title(asLink=True, textlink=True))) else: self.problems.append(u"# %s is a hard redirect to %s" % (page.title(asLink=True, textlink=True), target.title(asLink=True, textlink=True))) def run(self): """Run the bot.""" # validate L10N self.template_list = self.site.category_redirects() if not self.template_list: pywikibot.warning(u"No redirect templates defined for %s" % self.site) return if not self.get_cat(): pywikibot.warning(u"No redirect category found for %s" % self.site) return user = self.site.user() # invokes login() newredirs = [] l = time.localtime() today = "%04d-%02d-%02d" % l[:3] edit_request_page = pywikibot.Page( self.site, u"User:%s/category edit requests" % user) datafile = pywikibot.config.datafilepath("%s-catmovebot-data" % self.site.dbName()) try: with open(datafile, "rb") as inp: record = cPickle.load(inp) except IOError: record = {} if record: with open(datafile + ".bak", "wb") as f: cPickle.dump(record, f, protocol=config.pickle_protocol) # regex to match soft category redirects # TODO: enhance and use textlib._MultiTemplateMatchBuilder # note that any templates containing optional "category:" are # incorrect and will be fixed by the bot template_regex = re.compile( r"""{{\s*(?:%(prefix)s\s*:\s*)? # optional "template:" (?:%(template)s)\s*\| # catredir template name (\s*%(catns)s\s*:\s*)? # optional "category:" ([^|}]+) # redirect target cat (?:\|[^|}]*)*}} # optional arguments 2+, ignored """ % {'prefix': self.site.namespace(10).lower(), 'template': "|".join(item.replace(" ", "[ _]+") for item in self.template_list), 'catns': self.site.namespace(14)}, re.I | re.X) self.check_hard_redirect() comment = i18n.twtranslate(self.site, self.move_comment) counts = {} nonemptypages = [] redircat = self.cat pywikibot.output(u"\nChecking %d category redirect pages" % redircat.categoryinfo['subcats']) catpages = set() for cat in redircat.subcategories(): catpages.add(cat) cat_title = cat.title(withNamespace=False) if "category redirect" in cat_title: self.log_text.append(u"* Ignoring %s" % cat.title(asLink=True, textlink=True)) continue if hasattr(cat, "_catinfo"): # skip empty categories that don't return a "categoryinfo" key catdata = cat.categoryinfo if "size" in catdata and int(catdata['size']): # save those categories that have contents nonemptypages.append(cat) if cat_title not in record: # make sure every redirect has a record entry record[cat_title] = {today: None} try: newredirs.append("*# %s -> %s" % (cat.title(asLink=True, textlink=True), cat.getCategoryRedirectTarget().title( asLink=True, textlink=True))) except pywikibot.Error: pass # do a null edit on cat try: cat.save() except: pass # delete record entries for non-existent categories for cat_name in record.keys(): if pywikibot.Category(self.site, self.catprefix + cat_name) not in catpages: del record[cat_name] pywikibot.output(u"\nMoving pages out of %s redirected categories." % len(nonemptypages)) for cat in pagegenerators.PreloadingGenerator(nonemptypages): try: if not cat.isCategoryRedirect(): self.log_text.append(u"* False positive: %s" % cat.title(asLink=True, textlink=True)) continue except pywikibot.Error: self.log_text.append(u"* Could not load %s; ignoring" % cat.title(asLink=True, textlink=True)) continue cat_title = cat.title(withNamespace=False) if not self.readyToEdit(cat): counts[cat_title] = None self.log_text.append(u"* Skipping %s; in cooldown period." % cat.title(asLink=True, textlink=True)) continue dest = cat.getCategoryRedirectTarget() if not dest.exists(): self.problems.append("# %s redirects to %s" % (cat.title(asLink=True, textlink=True), dest.title(asLink=True, textlink=True))) # do a null edit on cat to update any special redirect # categories this wiki might maintain try: cat.save() except: pass continue if dest.isCategoryRedirect(): double = dest.getCategoryRedirectTarget() if double == dest or double == cat: self.log_text.append(u"* Redirect loop from %s" % dest.title(asLink=True, textlink=True)) # do a null edit on cat try: cat.save() except: pass else: self.log_text.append( u"* Fixed double-redirect: %s -> %s -> %s" % (cat.title(asLink=True, textlink=True), dest.title(asLink=True, textlink=True), double.title(asLink=True, textlink=True))) oldtext = cat.text # remove the old redirect from the old text, # leaving behind any non-redirect text oldtext = template_regex.sub("", oldtext) newtext = (u"{{%(redirtemp)s|%(ncat)s}}" % {'redirtemp': self.template_list[0], 'ncat': double.title(withNamespace=False)}) newtext = newtext + oldtext.strip() try: cat.text = newtext cat.save(i18n.twtranslate(self.site, self.dbl_redir_comment)) except pywikibot.Error as e: self.log_text.append("** Failed: %s" % e) continue found, moved = self.move_contents(cat_title, dest.title(withNamespace=False), editSummary=comment) if found is None: self.log_text.append( u"* [[:%s%s]]: error in move_contents" % (self.catprefix, cat_title)) elif found: record[cat_title][today] = found self.log_text.append( u"* [[:%s%s]]: %d found, %d moved" % (self.catprefix, cat_title, found, moved)) counts[cat_title] = found # do a null edit on cat try: cat.save() except: pass with open(datafile, "wb") as f: cPickle.dump(record, f, protocol=config.pickle_protocol) self.log_text.sort() self.problems.sort() newredirs.sort() comment = i18n.twtranslate(self.site, self.maint_comment) self.log_page.text = (u"\n== %i-%02i-%02iT%02i:%02i:%02iZ ==\n" % time.gmtime()[:6] + u'\n'.join(self.log_text) + u'\n* New redirects since last report:\n' + u'\n'.join(newredirs) + u'\n' + u'\n'.join(self.problems) + u'\n' + self.get_log_text()) self.log_page.save(comment) if self.edit_requests: edit_request_page.text = (self.edit_request_text % {'itemlist': u"\n" + u"\n".join( (self.edit_request_item % item) for item in self.edit_requests)}) edit_request_page.save(comment) def main(*args): """ Process command line arguments and invoke bot. If args is an empty list, sys.argv is used. @param args: command line arguments @type args: list of unicode """ options = {} for arg in pywikibot.handle_args(args): if arg.startswith('-delay:'): pos = arg.find(':') options[arg[1:pos]] = int(arg[pos + 1:]) else: # generic handling of we have boolean options options[arg[1:]] = True bot = CategoryRedirectBot(**options) bot.run() if __name__ == "__main__": main()
{ "content_hash": "e7fe7078d366bad262c93fcc3f3f4f42", "timestamp": "", "source": "github", "line_count": 479, "max_line_length": 84, "avg_line_length": 42.937369519832984, "alnum_prop": 0.4948218019156902, "repo_name": "npdoty/pywikibot", "id": "a401fd9d499f3c5c4370fdfc4b1f84ca8aea5cc2", "size": "20750", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "scripts/category_redirect.py", "mode": "33261", "license": "mit", "language": [ { "name": "Batchfile", "bytes": "97" }, { "name": "HTML", "bytes": "1365" }, { "name": "Python", "bytes": "4485564" } ], "symlink_target": "" }
from django.db import models, migrations import evennia.accounts.manager import django.core.validators class Migration(migrations.Migration): dependencies = [("accounts", "0003_auto_20150209_2234")] operations = [ migrations.DeleteModel(name="DefaultGuest"), migrations.DeleteModel(name="DefaultAccount"), migrations.AlterModelManagers( name="accountdb", managers=[("objects", evennia.accounts.manager.AccountDBManager())] ), migrations.AlterField( model_name="accountdb", name="email", field=models.EmailField(max_length=254, verbose_name="email address", blank=True), ), migrations.AlterField( model_name="accountdb", name="groups", field=models.ManyToManyField( related_query_name="user", related_name="user_set", to="auth.Group", blank=True, help_text="The groups this user belongs to. A user will get all permissions granted to each of their groups.", verbose_name="groups", ), ), migrations.AlterField( model_name="accountdb", name="last_login", field=models.DateTimeField(null=True, verbose_name="last login", blank=True), ), migrations.AlterField( model_name="accountdb", name="username", field=models.CharField( error_messages={"unique": "A user with that username already exists."}, max_length=30, validators=[ django.core.validators.RegexValidator( "^[\\w.@+-]+$", "Enter a valid username. This value may contain only letters, numbers and @/./+/-/_ characters.", "invalid", ) ], help_text="Required. 30 characters or fewer. Letters, digits and @/./+/-/_ only.", unique=True, verbose_name="username", ), ), ]
{ "content_hash": "93504dbe79163780b731057bbb85c0cc", "timestamp": "", "source": "github", "line_count": 56, "max_line_length": 126, "avg_line_length": 38.05357142857143, "alnum_prop": 0.5344908493664946, "repo_name": "jamesbeebop/evennia", "id": "51217a83e5c2c148274cf1203d94761b7cb6d2d5", "size": "2157", "binary": false, "copies": "4", "ref": "refs/heads/master", "path": "evennia/accounts/migrations/0004_auto_20150403_2339.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "CSS", "bytes": "19127" }, { "name": "Emacs Lisp", "bytes": "2734" }, { "name": "HTML", "bytes": "13558" }, { "name": "JavaScript", "bytes": "24398" }, { "name": "Python", "bytes": "2143170" } ], "symlink_target": "" }
__author__ = 'olesya' import unittest from models.User import User from DAL import DAL class UserDetails(unittest.TestCase): def test_get_name(self): d = DAL() self.assertEqual(d.get_user_details("user_name"),"oles_ka") def test_set_name(self): d = DAL() us_list = d.set_user_details("itamar", "[email protected]", "123") self.assertEqual(us_list.pop().user_name ,"itamar") def main(): unittest.main() if __name__ == "__main__": main()
{ "content_hash": "2a02d217726f103b2f32f0d1167634fe", "timestamp": "", "source": "github", "line_count": 22, "max_line_length": 67, "avg_line_length": 23.181818181818183, "alnum_prop": 0.5764705882352941, "repo_name": "shaipeer/ATTENDER", "id": "64b2b9c1d5f3803e57e23eac7111beeef8e52d11", "size": "510", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "server/attender-mobile/tests/DBTest.py", "mode": "33188", "license": "mit", "language": [ { "name": "Java", "bytes": "14507" }, { "name": "Python", "bytes": "12376" } ], "symlink_target": "" }
""" progress handler. Old progress funcs needto be depricated ProgressIter and ProgChunks are pretty much the only useful things here. """ from __future__ import absolute_import, division, print_function, unicode_literals import time import math import datetime from functools import partial from utool import util_logging from utool import util_inject from utool import util_arg from utool import util_time from utool import util_iter from utool import util_cplat from six.moves import range, zip import collections import six # NOQA print, rrr, profile = util_inject.inject2(__name__) default_timer = util_time.default_timer SILENT = util_arg.SILENT VERBOSE = util_arg.VERBOSE VALID_PROGRESS_TYPES = ['none', 'dots', 'fmtstr', 'simple'] AGGROFLUSH = util_arg.get_argflag('--aggroflush') PROGGRESS_BACKSPACE = not util_arg.get_argflag(('--screen', '--progress-backspace')) NO_PROGRESS = util_arg.get_argflag(('--no-progress', '--noprogress')) FORCE_ALL_PROGRESS = util_arg.get_argflag(('--force-all-progress',)) #('--screen' not in sys.argv and '--progress-backspace' not in sys.argv) DEBUG_FREQ_ADJUST = util_arg.get_argflag('--debug-adjust-freq') def test_progress(): """ CommandLine: python -m utool.util_progress --test-test_progress Example: >>> # ENABLE_DOCTEST >>> from utool.util_progress import * # NOQA >>> test_progress() """ import utool as ut #import time #ut.rrrr() print('_________________') #numiter = 50 #sleeptime = 1E-4 #sleeptime2 = 1E-2 numiter = 20 sleeptime = 1E-7 sleeptime2 = 1E-7 with ut.Timer(): for x in ut.ProgressIter(range(0, numiter), freq=8, adjust=True): time.sleep(sleeptime) print('_________________') numiter = 50 sleeptime = 1E-4 with ut.Timer(): for x in ut.ProgressIter(range(0, numiter), freq=8, adjust=True): time.sleep(sleeptime) print('_________________') print('No frequncy run:') with ut.Timer(): for x in range(0, numiter): time.sleep(sleeptime) print('_________________') numiter = 500 sleeptime = 8E-7 with ut.Timer(): for x in ut.ProgressIter(range(0, numiter), freq=8, adjust=True): time.sleep(sleeptime) print('_________________') with ut.Timer(): for x in ut.ProgressIter(range(0, numiter), freq=200): time.sleep(sleeptime) print('_________________') print('No frequncy run:') with ut.Timer(): for x in range(0, numiter): time.sleep(sleeptime) print('_________________') # Test nested iter # progiter1 = ut.ProgressIter(range(0, 10), lbl='prog1', freq=1, adjust=False) # for count1 in progiter1: # progiter_partials = progiter1.get_subindexers(1) # progiter2 = progiter_partials[0](range(0, 7), lbl='sub_prog1', freq=1, adjust=False) # for count2 in progiter2: # pass for x in ut.ProgressIter(zip(range(10), range(10)), freq=8, adjust=True): time.sleep(sleeptime) #progiter3 = progiter_partials[1](range(0, 3), lbl='sub_prog2', freq=1, adjust=False) #for count3 in progiter3: # pass print('Double backspace progress 1') progiter1 = ut.ProgressIter(range(0, 10), lbl='prog1', freq=1, adjust=False, backspace=False) for count1 in progiter1: progiter2 = ut.ProgressIter(range(0, 10), lbl='prog2', freq=1, adjust=False, backspace=True) for count2 in progiter2: time.sleep(sleeptime2) print('Double backspace progress 2') progiter1 = ut.ProgressIter(range(0, 10), lbl='prog1', freq=1, adjust=False, backspace=True) for count1 in progiter1: progiter2 = ut.ProgressIter(range(0, 10), lbl='prog2', freq=1, adjust=False, backspace=True) for count2 in progiter2: time.sleep(sleeptime2) def get_num_chunks(length, chunksize): r""" Returns the number of chunks that a list will be split into given a chunksize. Args: length (int): chunksize (int): Returns: int: n_chunks CommandLine: python -m utool.util_progress --exec-get_num_chunks:0 Example0: >>> # ENABLE_DOCTEST >>> from utool.util_progress import * # NOQA >>> length = 2000 >>> chunksize = 256 >>> n_chunks = get_num_chunks(length, chunksize) >>> result = ('n_chunks = %s' % (six.text_type(n_chunks),)) >>> print(result) n_chunks = 8 """ n_chunks = int(math.ceil(length / chunksize)) return n_chunks def ProgChunks(list_, chunksize, nInput=None, **kwargs): """ Yeilds an iterator in chunks and computes progress Progress version of ut.ichunks Args: list_ (list): chunksize (?): nInput (None): (default = None) Kwargs: length, freq Returns: ProgressIter: progiter_ CommandLine: python -m utool.util_progress ProgChunks --show Example: >>> # ENABLE_DOCTEST >>> from utool.util_progress import * # NOQA >>> import utool as ut >>> list_ = range(100) >>> chunksize = 10 >>> nInput = None >>> progiter_ = ProgChunks(list_, chunksize, nInput) >>> iter_ = iter(progiter_) >>> chunk = six.next(iter_) >>> assert len(chunk) == 10 >>> rest = ut.flatten(list(progiter_)) >>> assert len(rest) == 90 """ if nInput is None: nInput = len(list_) n_chunks = get_num_chunks(nInput, chunksize) kwargs['length'] = n_chunks if 'freq' not in kwargs: kwargs['freq'] = 1 chunk_iter = util_iter.ichunks(list_, chunksize) progiter_ = ProgressIter(chunk_iter, **kwargs) return progiter_ def ProgPartial(*args, **kwargs): return partial(ProgressIter, *args, **kwargs) class ProgressIter(object): """ Wraps a for loop with progress reporting lbl='Progress: ', length=0, flushfreq=4, startafter=-1, start=True, repl=False, approx=False, disable=False, writefreq=1, with_time=False, backspace=True, pad_stdout=False, wfreq=None, ffreq=None, freq=None, total=None, num=None, with_totaltime=None Referencs: https://github.com/verigak/progress/blob/master/progress/__init__.py Args: iterable (): iterable normally passed to for loop lbl (str): progress label length (int): flushfreq (int): startafter (int): start (bool): repl (bool): approx (bool): enabled (bool): writefreq (int): with_totaltime (bool): backspace (bool): pad_stdout (bool): autoadjust (bool): no adjusting frequency if True (default False) wfreq (None): alias for write_freq ffreq (None): alias for flush_freq total (None): alias for length num (None): alias for length Timeit:: import utool as ut setup = ut.codeblock( ''' import utool as ut from six.moves import range, zip import time def time_append(size): start_time = time.time() last_time = start_time list2 = [] for x in range(size): now_time = time.time() between = now_time - last_time last_time = now_time list2.append(between) def time_assign(size): start_time = time.time() last_time = start_time list1 = ut.alloc_nones(size) for x in range(size): now_time = time.time() between = now_time - last_time last_time = now_time list1[x] = between def time_baseline(size): start_time = time.time() last_time = start_time for x in range(size): now_time = time.time() between = now_time - last_time last_time = now_time def time_null(size): for x in range(size): pass ''') input_sizes = [2 ** count for count in range(7, 12)] stmt_list = ['time_assign', 'time_append', 'time_baseline', 'time_null'] input_sizes=[100, 1000, 10000] ut.timeit_grid(stmt_list, setup, input_sizes=input_sizes, show=True) CommandLine: python -m utool.util_progress --test-ProgressIter python -m utool.util_progress --test-ProgressIter:0 python -m utool.util_progress --test-ProgressIter:1 python -m utool.util_progress --test-ProgressIter:2 python -m utool.util_progress --test-ProgressIter:3 Example: >>> # ENABLE_DOCTEST >>> import utool as ut >>> from six.moves import range >>> num = 1000 >>> num2 = 10001 >>> results1 = [x for x in ut.ProgressIter(range(num), wfreq=10, adjust=True)] >>> results4 = [x for x in ut.ProgressIter(range(num), wfreq=1, adjust=True)] >>> results2 = [x for x in range(num)] >>> results3 = [x for x in ut.progiter((y + 1 for y in range(num2)), >>> ntotal=num2, wfreq=1000, >>> backspace=True, adjust=True)] >>> assert results1 == results2 Example1: >>> # DISABLE_DOCTEST >>> # SLOW_DOCTEST >>> import utool as ut >>> from six.moves import range >>> num2 = 10001 >>> progiter = ut.ProgressIter(range(num2), lbl='testing primes', >>> report_unit='seconds', freq=1, >>> time_thresh=.1, adjust=True) >>> [ut.get_nth_prime_bruteforce(29) for x in progiter] Example2: >>> # DISABLE_DOCTEST >>> # SLOW_DOCTEST >>> import utool as ut >>> from six.moves import range >>> num2 = 100001 >>> progiter = ut.ProgressIter(range(num2), lbl='testing primes', >>> report_unit='seconds', freq=1, >>> time_thresh=3, adjust=True, bs=True) >>> [ut.get_nth_prime_bruteforce(29) for x in progiter] Example3: >>> # DISABLE_DOCTEST >>> # SLOW_DOCTEST >>> import utool as ut >>> from six.moves import range >>> import time >>> crazy_time_list = [.001, .01, .0001] * 1000 >>> crazy_time_iter = (time.sleep(x) for x in crazy_time_list) >>> progiter = ut.ProgressIter(crazy_time_iter, lbl='crazy times', length=len(crazy_time_list), freq=10) >>> list(progiter) """ def __init__(self, iterable=None, *args, **kwargs): self.iterable = iterable if len(args) < 2 and 'nTotal' not in kwargs and 'length' not in kwargs: try: length = len(iterable) kwargs['length'] = length except Exception: pass self.use_rate = kwargs.pop('use_rate', True) self.use_rate = True # Force self.lbl = kwargs.get('lbl', 'lbl') self.lbl = kwargs.get('label', self.lbl) self.length = kwargs.get('nTotal', kwargs.get('length', 0)) #self.backspace = kwargs.get('backspace', True) self.backspace = kwargs.get('backspace', kwargs.get('bs', False)) self.freq = kwargs.get('freq', 1) self.invert_rate = kwargs.get('invert_rate', False) self.auto_invert_rate = kwargs.get('auto_invert_rate', True) self.verbose = kwargs.pop('verbose', True) # VERBOSE #self.report_unit = kwargs.get('report_unit', 'minutes') self.enabled = kwargs.get('enabled', True) self.report_unit = kwargs.get('report_unit', 'seconds') # autoadjust frequency of reporting self.autoadjust = kwargs.get('autoadjust', kwargs.get('adjust', False)) self.time_thresh = kwargs.pop('time_thresh', None) self.prog_hook = kwargs.pop('prog_hook', None) self.prehack = kwargs.pop('prehack', None) self.freq_est_strat = kwargs.pop('freq_est', 'between') if 'separate' in kwargs: print('WARNING separate no longer supported by ProgIter') # FIXME: get these subinder things working # ~/code/guitool/guitool/guitool_components.py #self.substep_min = kwargs.pop('substep_min', 0) #self.substep_size = kwargs.pop('substep_size', 1) #self.level = kwargs.pop('level', 0) self.parent_index = kwargs.pop('parent_index', 0) self.parent_length = kwargs.pop('parent_length', 1) self.parent_offset = self.parent_index * self.length self._cursor_at_newline = True # Window sizes for estimates self.est_window = kwargs.pop('est_window', 64) #self.start_offset = self.substep_min self.stream = kwargs.pop('stream', None) self.extra = '' if FORCE_ALL_PROGRESS: self.freq = 1 self.autoadjust = False if self.prog_hook is not None: # Sets the label of a progress bar to the ProgIter label self.prog_hook.register_progiter(self) #self.time_thresh_growth = kwargs.pop('time_thresh_growth', 1.0) self.time_thresh_growth = kwargs.pop('time_thresh_growth', 1.0) self.with_totaltime = False if self.freq is None: self.freq = 1 if self.use_rate: # Hacky so hacky. this needs major cleanup # saving args and kwargs so can wait on log_progress call # not sure where it is called and dont want to break things self.args = args self.kwargs = kwargs self.mark = None self.end = None #else: # self.mark, self.end = log_progress(*args, **kwargs) self.count = 0 def __call__(self, iterable): self.iterable = iterable return self def __iter__(self): if not self.enabled: return iter(self.iterable) if NO_PROGRESS: # IF PROGRESS IS TURNED OFF msg = 'Iterating ' + self.lbl + ' with no progress' if self.verbose: print(msg) #with ut.Timer(msg): return iter(self.iterable) else: #if self.use_rate: # STANDARD CALL CASE return self.iter_rate() #else: # return self.iter_without_rate() #def get_subindexers(prog_iter, num_substeps): # # FIXME and make this a method of progiter # step_min = (((prog_iter.count - 1) / prog_iter.length) * # prog_iter.substep_size + prog_iter.substep_min) # step_size = (1.0 / prog_iter.length) * prog_iter.substep_size # substep_size = step_size / num_substeps # substep_min_list = [(step * substep_size) + step_min # for step in range(num_substeps)] # #level = prog_iter.level + 1 # DEBUG = False # if DEBUG: # with ut.Indenter(' ' * 4 * prog_iter.level): # print('\n') # print('+____<NEW SUBSTEPS>____') # print('Making %d substeps for prog_iter.lbl = %s' % ( # num_substeps, prog_iter.lbl,)) # print(' * step_min = %.2f' % (step_min,)) # print(' * step_size = %.2f' % (step_size,)) # print(' * substep_size = %.2f' % (substep_size,)) # print(' * substep_min_list = %r' % (substep_min_list,)) # print(r'L____</NEW SUBSTEPS>____') # print('\n') # subprog_partial_list = [ # partial(ProgressIter, # parent_length=prog_iter.length * num_substeps, # parent_index=(prog_iter.count - 1) + (prog_iter.length * step)) # for step in range(num_substeps)] # return subprog_partial_list #def build_msg_fmtstr_time(self, lbl, invert_rate, backspace): # with_wall = True # tzname = time.tzname[0] # if util_cplat.WIN32: # tzname = tzname.replace('Eastern Standard Time', 'EST') # msg_fmtstr_time = ''.join(( # 'rate=%3.3f seconds/iter, ' if invert_rate else 'rate=%4.2f Hz,', # ' etr=%s,', # ' ellapsed=%s,', # ' wall=%s ' + tzname if with_wall else '', # #'' if backspace else '\n', # '\n' if backspace else '', # )) # return msg_fmtstr_time @staticmethod def build_msg_fmtstr_head_cols(length, lbl): nTotal_ = '?' if length == 0 else six.text_type(length) msg_head_columns = ['', lbl, ' {count:4d}/', nTotal_ , '... '] return msg_head_columns @staticmethod def build_msg_fmtstr2(lbl, length, invert_rate, backspace): r""" Args: lbl (str): invert_rate (bool): backspace (bool): Returns: str: msg_fmtstr_time CommandLine: python -m utool.util_progress --exec-ProgressIter.build_msg_fmtstr2 Setup: >>> from utool.util_progress import * # NOQA >>> lbl = 'foo' >>> invert_rate = True >>> backspace = False >>> length = None Example: >>> # DISABLE_DOCTEST >>> msg_fmtstr_time = ProgressIter.build_msg_fmtstr2(lbl, length, invert_rate, backspace) >>> result = ('%s' % (ut.repr2(msg_fmtstr_time),)) >>> print(result) """ with_wall = True tzname = time.tzname[0] if util_cplat.WIN32: tzname = tzname.replace('Eastern Standard Time', 'EST') # ansii/vt100 code for clearline # CLEARLINE_L2 = '\33[2K' # BEFORE_PROG = '\r\033[?25l' CLEARLINE_EL0 = '\33[0K' # clear line to right # CLEARLINE_EL1 = '\33[1K' # clear line to left CLEARLINE_EL2 = '\33[2K' # clear line # DECTCEM_HIDE = '\033[?25l' # hide cursor CLEAR_BEFORE = '\r' + CLEARLINE_EL2 # + DECTCEM_HIDE # FIXME: hideing cursor persists if the program crashes CLEAR_AFTER = CLEARLINE_EL0 msg_head = ProgressIter.build_msg_fmtstr_head_cols(length, lbl) if backspace: msg_head = [CLEAR_BEFORE] + msg_head msg_tail = [ ( 'rate={rate:4.2f} sec/iter, ' if invert_rate else 'rate={rate:4.2f} Hz,' ), ( '' if length == 0 else ' etr={etr},' ), ' ellapsed={ellapsed},', ( ' wall={wall} ' + tzname if with_wall else '' ), # backslash-r is a carrage return and undoes all previous output on # a written line (' {extra}'), CLEAR_AFTER if backspace else '\n', ] msg_fmtstr_time = ''.join((msg_head + msg_tail)) return msg_fmtstr_time def iter_rate(self): """ pun not intended # TODO: record iteration times for analysis # TODO Incorporate this better # FIXME; pad_stdout into subfunctions import dis dis.dis(ut.ProgressIter.iter_rate) """ #class IterState(object): # def __init__(state): # state.freq = 1 # state.freq = 1 # pass adjust = self.autoadjust self._cursor_at_newline = not self.backspace # SETUP VARIABLES # HACK: reaquire logging print funcs in case they have changed if self.stream is None: self.write = util_logging._utool_write() self.flush = util_logging._utool_flush() else: self.write = lambda msg: self.stream.write(msg) # NOQA self.flush = lambda: self.stream.flush() # NOQA length = self.length * self.parent_length # hack freq = self.freq self.count = 0 between_count = 0 last_count = 0 # how long iterations should be before a flush # (used for freq adjustment) time_thresh = (self._get_timethresh_heuristics() if self.time_thresh is None else self.time_thresh) time_thresh_growth = self.time_thresh_growth if time_thresh_growth > 1: # time_thresh_growth is specified for very long processes # print out the starting timestamp in that case timestamp = time.strftime('%Y-%m-%d %H:%M:%S') + ' ' + time.tzname[0] print('Start progress lbl= %s at %s' % (self.lbl, timestamp,)) #time_thresh = 0.5 max_between_time = -1.0 max_between_count = -1.0 # why is this different? # because frequency varies # TODO: should be kept as a statistic that uses the max time from a # list of iterations divided by the size of that list that will account # for buffering issues iters_per_second = 0 self.iters_per_second = float('nan') self.est_seconds_left = 0 self.total_seconds = 0 # Write initial message #force_newlines = not self.backspace start_msg_fmt = ''.join(self.build_msg_fmtstr_head_cols(length, self.lbl)) self.msg_fmtstr = self.build_msg_fmtstr2(self.lbl, length, self.invert_rate, self.backspace) try: util_logging._utool_flush()() except IOError as ex: # There is some weird error when doing progress in IPython notebook if util_arg.VERBOSE: print('IOError flushing %s' % (ex,)) if not self.prehack: if self.backspace: self.display_message() elif self.verbose: start_msg = start_msg_fmt.format(count=self.parent_offset) util_logging._utool_write()(start_msg + '\n') self._cursor_at_newline = not self.backspace try: util_logging._utool_flush()() except IOError as ex: # There is some weird error when doing progress in IPython notebook if util_arg.VERBOSE: print('IOError flushing %s' % (ex,)) else: self._cursor_at_newline = True if self.prog_hook is not None: self.prog_hook(self.count, length) # TODO: on windows is time.clock better? # http://exnumerus.blogspot.com/2011/02/how-to-quickly-plot-multiple-line.html start_time = default_timer() last_time = start_time start = 1 + self.parent_offset if self.freq_est_strat == 'between': FREQ_EST = 0 elif self.freq_est_strat == 'absolute': FREQ_EST = 1 else: FREQ_EST = 1 USE_RECORD = True # use last 64 times to compute a more stable average rate measure_between_time = collections.deque([], maxlen=self.est_window) # Wrap the for loop with a generator for self.count, item in enumerate(self.iterable, start=start): if self.prehack: # hack to print before yeilding # so much for efficiency self.set_extra((self.lbl + '=' + self.prehack) % item) self.display_message() self.ensure_newline() # GENERATE yield item if self.prehack or (self.count) % freq == 0: now_time = default_timer() between_time = (now_time - last_time) between_count = self.count - last_count total_seconds = (now_time - start_time) self.total_seconds = total_seconds if FREQ_EST == 0: if USE_RECORD: measure_between_time.append(between_count / (float(between_time) + 1E-9)) iters_per_second = sum(measure_between_time) / len(measure_between_time) else: iters_per_second = between_count / (float(between_time) + 1E-9) elif FREQ_EST == 1: iters_per_second = (now_time - start_time) / self.count self.iters_per_second = iters_per_second # If the future is known if length is None: est_seconds_left = -1 else: iters_left = length - self.count est_seconds_left = iters_left / (iters_per_second + 1E-9) self.est_seconds_left = est_seconds_left # /future last_count = self.count last_time = now_time # ADJUST FREQ IF NEEDED # Adjust frequency if printing too quickly # so progress doesnt slow down actual function # TODO: better adjust algorithm time_thresh *= time_thresh_growth if adjust and (between_time < time_thresh or between_time > time_thresh * 2.0): max_between_time = max(max(max_between_time, between_time), 1E-9) max_between_count = max(max_between_count, between_count) # If progress was uniform and all time estimates were # perfect this would be the new freq to achieve time_thresh new_freq = max(int(time_thresh * max_between_count / max_between_time), 1) if DEBUG_FREQ_ADJUST: print('\n+---') print('[prog] between_count = %r' % between_count) print('[prog] between_time = %.8r' % between_time) print('[prog] time_thresh = %r' % time_thresh) print('[prog] max_between_count = %r' % max_between_count) print('[prog] max_between_time = %.8r' % max_between_time) print('[prog] Adusting frequency from: %r' % freq) print('[prog] Adusting frequency to: %r' % new_freq) print('L___') # But things are not perfect. So, don't make drastic changes max_freq_change_up = max(256, freq * 2) max_freq_change_down = freq // 2 if (new_freq - freq) > max_freq_change_up: freq += max_freq_change_up elif (freq - new_freq) > max_freq_change_down: freq -= max_freq_change_down else: freq = new_freq if not self.prehack: self.display_message() # DO PROGRESS INFO if self.prog_hook is not None: # From the point of view of the progress iter, we are about # to enter the body of a for loop. (But we may have # executed the body implicitly in the yeild.... so it is # ambiguous. In the second case 0 will be executed twice. self.prog_hook(self.count, length) if self.prehack: self.set_extra('') # --- end of main loop # cleanup if (self.count) % freq != 0: # If the final line of progress was not written in the loop, write # it here self.est_seconds_left = 0 self.total_seconds = (default_timer() - start_time) self.display_message() if self.prog_hook is not None: # From the point of view of the progress iter, we are about to # enter the body of a for loop. (But we may have executed the # body implicitly in the yeild.... so it is ambiguous. In the # second case 0 will be executed twice. self.prog_hook(self.count, length) self.ensure_newline() def display_message(self): # HACK to be more like sklearn.extrnals ProgIter version if self.verbose: instant_invert_rate = self.iters_per_second < 0.1 if self.auto_invert_rate and self.invert_rate != instant_invert_rate: self.invert_rate = instant_invert_rate length = self.length * self.parent_length # hack self.msg_fmtstr = self.build_msg_fmtstr2(self.lbl, length, self.invert_rate, self.backspace) rate = 1.0 / (self.iters_per_second + 1E-9) if self.invert_rate else self.iters_per_second msg = self.msg_fmtstr.format( count=self.count, rate=rate, etr=six.text_type(datetime.timedelta(seconds=int(self.est_seconds_left))), ellapsed=six.text_type(datetime.timedelta(seconds=int(self.total_seconds))), wall=time.strftime('%H:%M'), extra=self.extra ) self.write(msg) self._cursor_at_newline = not self.backspace try: self.flush() except IOError as ex: if util_arg.VERBOSE: print('IOError flushing %s' % (ex,)) #print('self.flush = %r' % (self.flush,)) #import utool as ut #ut.debug_logging_iostreams() #ut.printex(ex) #raise pass def set_extra(self, extra): """ specify a custom info appended to the end of the next message TODO: come up with a better name and rename """ self.extra = extra def ensure_newline(self): """ use before any custom printing when using the progress iter to ensure your print statement starts on a new line instead of at the end of a progress line """ DECTCEM_SHOW = '\033[?25h' # show cursor AT_END = DECTCEM_SHOW + '\n' if not self._cursor_at_newline: self.write(AT_END) self._cursor_at_newline = True def _get_timethresh_heuristics(self): """ resonably decent hueristics for how much time to wait before updating progress. """ if self.length > 1E5: time_thresh = 2.5 elif self.length > 1E4: time_thresh = 2.0 elif self.length > 1E3: time_thresh = 1.0 else: time_thresh = 0.5 return time_thresh progiter = ProgressIter class ProgIter(ProgressIter): """ Thin wrapper with better arg positions """ def __init__(self, iterable, lbl='Prog', adjust=True, freq=1, bs=True, **kwargs): import utool as ut super(ut.ProgIter, self).__init__(iterable, lbl=lbl, adjust=adjust, freq=freq, bs=bs, **kwargs) def progress_str(max_val, lbl='Progress: ', repl=False, approx=False, backspace=PROGGRESS_BACKSPACE): r""" makes format string that prints progress: %Xd/MAX_VAL with backspaces NOTE: \r can be used instead of backspaces. This function is not very relevant because of that. """ # string that displays max value max_str = six.text_type(max_val) if approx: # denote approximate maximum max_str = '~' + max_str dnumstr = six.text_type(len(max_str)) # string that displays current progress cur_str = '%' + dnumstr + 'd' # If user passed in the label if repl: _fmt_str = lbl.replace('<cur_str>', cur_str).replace('<max_str>', max_str) else: _fmt_str = lbl + cur_str + '/' + max_str if backspace: # put backspace characters into the progress string # (looks nice on normal terminals) #nBackspaces = len(_fmt_str) - len(dnumstr) + len(max_str) #backspaces = '\b' * nBackspaces #fmt_str = backspaces + _fmt_str # FIXME: USE CARAGE RETURN INSTEAD OF BACKSPACES fmt_str = '\r' + _fmt_str else: # FIXME: USE CARAGE RETURN INSTEAD OF BACKSPACES # this looks better on terminals without backspaces fmt_str = _fmt_str + '\n' return fmt_str def log_progress(lbl='Progress: ', length=0, flushfreq=4, startafter=-1, start=True, repl=False, approx=False, disable=False, writefreq=1, with_time=False, backspace=True, pad_stdout=False, wfreq=None, ffreq=None, freq=None, total=None, num=None, with_totaltime=None): """ DEPRICATE FIXME: depricate for ProgressIter. still used in util_dev """ global AGGROFLUSH # Alias kwargs with simpler names if num is not None: length = num if total is not None: length = total if wfreq is not None: writefreq = wfreq if ffreq is not None: flushfreq = ffreq if freq is not None: writefreq = flushfreq = freq if with_totaltime is not None: with_time = with_totaltime # flush frequency must be a multiple of write frequency flushfreq = max(int(round(flushfreq / writefreq)), 1) * writefreq if length < startafter or disable: # Do not mark progress if only executing a small number of tasks def mark_progress(*args): pass def end_progress(*args): pass return mark_progress, end_progress else: write_fn = util_logging._utool_write() flush_fn = util_logging._utool_flush() # build format string for displaying progress fmt_str = progress_str(length, lbl=lbl, repl=repl, approx=approx, backspace=backspace) if AGGROFLUSH: # Progress function which automatically flushes def mark_progress(count, flush_fn=flush_fn): count_ = count + 1 write_fn(fmt_str % (count_)) flush_fn() else: # Progress function flushes every <flushfreq> times def mark_progress(count, fmt_str=fmt_str, flushfreq=flushfreq, writefreq=writefreq, write_fn=write_fn, flush_fn=flush_fn): count_ = count + 1 if count_ % writefreq == 0: write_fn(fmt_str % count_) if count_ % flushfreq == 0: flush_fn() if pad_stdout: write_fn('\n') write_fn('\n') flush_fn() if with_time: tt = util_time.tic(lbl) def end_progress(count_=length, write_fn=write_fn, flush_fn=flush_fn): write_fn(fmt_str % (count_)) write_fn('\n') flush_fn() if with_time: util_time.toc(tt) if pad_stdout: write_fn('\n\n') flush_fn() #mark_progress(0) if start: mark_progress(-1) return mark_progress, end_progress if __name__ == '__main__': """ CommandLine: python -c "import utool, utool.util_progress; utool.doctest_funcs(utool.util_progress, allexamples=True)" python -c "import utool, utool.util_progress; utool.doctest_funcs(utool.util_progress)" python -m utool.util_progress python -m utool.util_progress --allexamples """ import multiprocessing multiprocessing.freeze_support() # for win32 import utool as ut # NOQA ut.doctest_funcs()
{ "content_hash": "c7895f345908dde409546d7658bc0158", "timestamp": "", "source": "github", "line_count": 961, "max_line_length": 113, "avg_line_length": 37.733610822060356, "alnum_prop": 0.5336164580001103, "repo_name": "Erotemic/utool", "id": "2654077b7e1eefca2017b3333102d189b02bfc24", "size": "36286", "binary": false, "copies": "1", "ref": "refs/heads/main", "path": "utool/util_progress.py", "mode": "33261", "license": "apache-2.0", "language": [ { "name": "Batchfile", "bytes": "3366" }, { "name": "PowerShell", "bytes": "17042" }, { "name": "Python", "bytes": "2272952" }, { "name": "Shell", "bytes": "37605" } ], "symlink_target": "" }
__author__ = 'radlab' import ctypes as ct # Enums _ARUCO_FAILURE = -1 _ARUCO_SUCCESS = 0 _ARUCO_FALSE = 0 _ARUCO_TRUE = 1 # Structures class _Size(ct.Structure): _fields_ = [ ('width', ct.c_int), ('height', ct.c_int), ] class _Image(ct.Structure): _fields_ = [ ('data', ct.POINTER(ct.c_uint8)), ('size', _Size), ] # Basic types def _Status(status): """A type wrapper callable that converts an aruco staus into an exception. """ if status != _ARUCO_SUCCESS: raise ArucoError( _dll.aruco_error_last_str(), _dll.aruco_error_last_code()) return status _Handle = ct.POINTER(ct.c_int32) _Size = ct.c_uint64 _ImagePtr = ct.POINTER(_Image) # Load the DLL import ctypes import ctypes.util name = ctypes.util.find_library(r'C:\Users\radlab\drone_demo\native\build32\third-party\aruco-1.0.0\bin\Release\caruco') _dll = ctypes.CDLL(name) if _dll is None: raise ImportError('Could not load caruco native library.') else: print _dll # Function return and argument types _dll.aruco_error_last_str.restype = ct.c_char_p _dll.aruco_board_new.restype = _Handle _dll.aruco_board_free.argtypes = ( _Handle, ) _dll.aruco_board_draw_3d_axis.argtypes = ( _Handle, _ImagePtr, _Handle ) _dll.aruco_board_draw_3d_cube.argtypes = ( _Handle, _ImagePtr, _Handle ) _dll.aruco_board_get_extrinsics.argtypes = ( _Handle, ct.POINTER(ct.c_float), ct.POINTER(ct.c_float) ) _dll.aruco_board_configuration_new.restype = _Handle _dll.aruco_board_configuration_free.argtypes = ( _Handle, ) _dll.aruco_board_configuration_save_to_file.restype = _Status _dll.aruco_board_configuration_save_to_file.argtypes = ( _Handle, ct.c_char_p ) _dll.aruco_board_configuration_read_from_file.restype = _Status _dll.aruco_board_configuration_read_from_file.argtypes = ( _Handle, ct.c_char_p ) _dll.aruco_board_configuration_marker_ids.argtypes = ( _Handle, ct.POINTER(ct.c_int) ) _dll.aruco_detect_board.restype = _Status _dll.aruco_detect_board.argtypes = ( _Handle, _Handle, _Handle, _Handle, ct.c_float, ct.POINTER(ct.c_float) ) _dll.aruco_camera_parameters_new.restype = _Handle _dll.aruco_camera_parameters_free.argtypes = ( _Handle, ) _dll.aruco_camera_parameters_is_valid.argtypes = ( _Handle, ) _dll.aruco_camera_parameters_save_to_file.restype = _Status _dll.aruco_camera_parameters_save_to_file.argtypes = ( _Handle, ct.c_char_p ) _dll.aruco_camera_parameters_read_from_file.restype = _Status _dll.aruco_camera_parameters_read_from_file.argtypes = ( _Handle, ct.c_char_p ) _dll.aruco_camera_parameters_read_from_xml_file.restype = _Status _dll.aruco_camera_parameters_read_from_xml_file.argtypes = ( _Handle, ct.c_char_p ) _dll.aruco_camera_parameters_resize.argtypes = ( _Handle, ct.POINTER(_Size) ) _dll.aruco_camera_parameters_get_camera_matrix.argtypes = ( _Handle, ct.POINTER(ct.c_float) ) _dll.aruco_camera_parameters_get_distortion_coeffs.argtypes = ( _Handle, ct.POINTER(ct.c_float) ) _dll.aruco_marker_new.restype = _Handle _dll.aruco_marker_free.argtypes = ( _Handle, ) _dll.aruco_marker_copy_from.argtypes = ( _Handle, _Handle ) _dll.aruco_marker_is_valid.argtypes = ( _Handle, ) _dll.aruco_marker_id.argtypes = ( _Handle, ) _dll.aruco_marker_calculate_extrinsics.restype = _Status _dll.aruco_marker_calculate_extrinsics.argtypes = ( _Handle, ct.c_float, _Handle ) _dll.aruco_marker_draw.argtypes = ( _Handle, _ImagePtr, ct.c_float, ct.c_float, ct.c_float, ct.c_int, ct.c_int ) _dll.aruco_marker_centroid_x.argtypes = (_Handle, ) _dll.aruco_marker_centroid_y.argtypes = (_Handle, ) _dll.aruco_marker_draw_3d_axis.argtypes = ( _Handle, _ImagePtr, _Handle ) _dll.aruco_marker_draw_3d_cube.argtypes = ( _Handle, _ImagePtr, _Handle ) _dll.aruco_detect_markers.restype = _Status _dll.aruco_detect_markers.argtypes = ( _ImagePtr, _Handle ) _dll.aruco_detect_markers_full.restype = _Status _dll.aruco_detect_markers_full.argtypes = ( _ImagePtr, _Handle, _Handle, ct.c_float ) _dll.aruco_marker_vector_new.restype = _Handle _dll.aruco_marker_vector_free.argtypes = ( _Handle, ) _dll.aruco_marker_vector_clear.argtypes = ( _Handle, ) _dll.aruco_marker_vector_size.argtypes = ( _Handle, ) _dll.aruco_marker_vector_element.restype = _Handle _dll.aruco_marker_vector_element.argtypes = ( _Handle, _Size ) _dll.aruco_marker_vector_push_back.argtypes = ( _Handle, _Handle ) class ArucoError(Exception): """An exception which wraps an error returned from the aruco library. *msg* is a description of the error. *code* is an integer code for the error. """ def __init__(self, msg, code=-1): self.code = code self.msg = msg def __str__(self): if self.code == -1: return str(self.msg) return "%s: %s" % (self.code, self.msg) # Internal classes class _HandleWrapper(object): """A wrapper around an aruco handle. Set the class attributes ``_new``, ``_free`` and (optionally) ``_copy`` in a derived class. """ def __init__(self): assert _dll is not None self.handle = self.__class__._new() def __enter__(self): return self def __exit__(self, type, value, traceback): self.close() def __del__(self): self.close() def copy_from(self, other_handle): if hasattr(self.__class__, '_copy'): self.__class__._copy(self.handle, other_handle) else: raise NotImplementedError('Copy not implemented') def close(self): if self.handle is None: return self.__class__._free(self.handle) self.handle = None def _to_image(image, allow_read_only=True): """Converts an object whcih exports the array interface to one which can be passed as an image pointer to a caruco API function. The array interface is defined at http://docs.scipy.org/doc/numpy/reference/arrays.interface.html """ # Check the input image supports the array interface if not hasattr(image, '__array_interface__'): raise ValueError('Input must support the array interface: ' + 'http://docs.scipy.org/doc/numpy/reference/arrays.interface.html') array = image.__array_interface__ if 'version' in array and array['version'] < 3: raise ValueError('Input must support >= version 3 of the array interface.') shape = array['shape'] typestr = array['typestr'] # Check array type and shape if len(shape) != 3 or shape[2] != 3: raise ValueError('Input must be an array with three colour channels, i.e. wxhx3 in shape.') if typestr != '|u1': raise ValueError('Input must be an array of bytes.') # Check packing if 'strides' in array and array['strides'] is not None: strides = array['strides'] if strides != (shape[1]*shape[2],shape[2],1): raise ValueError('Input must be packed.') data_ptr = None # Do we have a data tuple? if 'data' in array and array['data'] is not None: data = array['data'] if isinstance(data, tuple): # Check for read-only images if data[1] and not allow_read_only: raise ValueError('Input must not be read-only.') # Extract pointer data_ptr = ct.pointer(ct.c_uint8.from_address(data[0])) else: # data object must export buffer inteface. # An explicit check for string types. if isinstance(data, str): if not allow_read_only: raise ValueError('Input must not be read-only. Strings are read-only.') data_ptr = ct.cast(ct.c_char_p(data), ct.POINTER(ct.c_uint8)) else: data_ptr = ct.pointer(ct.c_uint8.from_buffer(data)) else: # If data entry is not present, use the buffer interface of the input data_ptr = ct.pointer(ct.c_uint8.from_buffer(image)) assert data_ptr is not None # Create an image structure im = _Image() #im.data = np.array(image, copy=False).ctypes.data_as(ct.POINTER(ct.c_uint8)) im.data = data_ptr im.size.width = shape[0] im.size.height = shape[1] return ct.byref(im) class _MarkerVector(_HandleWrapper): _new = _dll.aruco_marker_vector_new _free = _dll.aruco_marker_vector_free def clear(self): _dll.aruco_marker_vector_clear(self.handle) def size(self): return _dll.aruco_marker_vector_size(self.handle) def contents(self): contents = [] for idx in range(self.size()): m = Marker() m.copy_from(_dll.aruco_marker_vector_element(self.handle, idx)) contents.append(m) return contents def push_back(self, m): if not isinstance(m, Marker): raise ValueError('Expected instance of ardrone.aruco.Marker') _dll.aruco_marker_vector_push_back(self.handle, m.handle) # Public classes class Board(_HandleWrapper): """This class encapsulates the orientation and position of a detected board. """ _new = _dll.aruco_board_new _free = _dll.aruco_board_free def draw_3d_axis(self, image, params): """Draw the 3d axis of this object into an image. *image* is an image to draw into (see Marker.draw for this object's type). *params* is an instance of CameraParameters. """ _dll.aruco_board_draw_3d_axis(self.handle, _to_image(image, allow_read_only=False), params.handle) def draw_3d_cube(self, image, params): """Draw the 3d cube of this object into an image. *image* is an image to draw into (see Marker.draw for this object's type). *params* is an instance of CameraParameters. """ _dll.aruco_board_draw_3d_cube(self.handle, _to_image(image, allow_read_only=False), params.handle) def get_extrinsics(self): """Return a pair describing the extrinsics of the board. The first element is a triple giving the Rodrigues rotation. The second element is a triple giving the translation vector for the board. """ r = (ct.c_float * 3)() t = (ct.c_float * 3)() _dll.aruco_board_get_extrinsics(self.handle, r, t) return (tuple([float(x) for x in r]), tuple([float(x) for x in t])) class BoardConfiguration(_HandleWrapper): """This class defines a board with several markers. """ _new = _dll.aruco_board_configuration_new _free = _dll.aruco_board_configuration_free _copy = _dll.aruco_board_configuration_copy_from def save_to_file(self, path): """Save the board configuration to a file. *path* is a filesystem path Raises an ArucoError if there is a file I/O error. """ _dll.aruco_board_configuration_save_to_file(self.handle, path) def read_from_file(self, path): """Read the board configuration from a file previously saved via save_to_file. *path* is a filesystem path Raises an ArucoError if there is a file I/O error. """ _dll.aruco_board_configuration_read_from_file(self.handle, path) def marker_ids(self): """Return a sequence of integer marker ids for this board.""" sz = _dll.aruco_board_configuration_marker_ids(self.handle, None) ids = (ct.c_int * sz)() _dll.aruco_board_configuration_marker_ids(self.handle, ids) return ids[:] class CameraParameters(_HandleWrapper): """Parameters of the camera. """ _new = _dll.aruco_camera_parameters_new _free = _dll.aruco_camera_parameters_free _copy = _dll.aruco_camera_parameters_copy_from def is_valid(self): """Return True iff the parameters are valid.""" return _dll.aruco_camera_parameters_is_valid(self.handle) == _ARUCO_TRUE def save_to_file(self, path): """Save the camera parameters to a file. *path* is a filesystem path Raises an ArucoError if there is a file I/O error. """ _dll.aruco_camera_parameters_save_to_file(self.handle, path) def read_from_file(self, path): """Read the camera parameters from a file previously saved via save_to_file. *path* is a filesystem path Raises an ArucoError if there is a file I/O error. """ _dll.aruco_camera_parameters_read_from_file(self.handle, path) def read_from_xml_file(self, path): """Read the camera parameters from an XML or YAML file as generated by OpenCV's calibration program. *path* is a filesystem path Raises an ArucoError if there is a file I/O error. """ _dll.aruco_camera_parameters_read_from_xml_file(self.handle, path) def resize(self, size): """Adjust the parameters to the size of the image indicated. *size* is a pair specifying the width and height of the image in pixels. """ sz = _Size() sz.width, sz.height = size _dll.aruco_camera_parameters_resize(self.handle, ct.byref(sz)) def get_camera_matrix(self): m = (ct.c_float * 9)() _dll.aruco_camera_parameters_get_camera_matrix(self.handle, m) return ( tuple([float(x) for x in m[0:3]]), tuple([float(x) for x in m[3:6]]), tuple([float(x) for x in m[6:9]]) ) def get_distortion_coeffs(self): m = (ct.c_float * 4)() _dll.aruco_camera_parameters_get_distortion_coeffs(self.handle, m) return tuple([float(x) for x in m]) class Marker(_HandleWrapper): """This class represents a marker. """ _new = _dll.aruco_marker_new _free = _dll.aruco_marker_free _copy = _dll.aruco_marker_copy_from def is_valid(self): """Return True iff the marker is valid.""" return _dll.aruco_marker_is_valid(self.handle) == _ARUCO_TRUE def id(self): """Return an integer id for the marker.""" return _dll.aruco_marker_id(self.handle) def centroid_x(self): """Return a cv::Point with location of centroid of marker""" return _dll.aruco_marker_centroid_x(self.handle) def centroid_y(self): """Return a cv::Point with location of centroid of marker""" return _dll.aruco_marker_centroid_y(self.handle) def draw(self, image, color = tuple((1.0, 0.0, 0.0)), line_width = 1, write_id = True): """Draw the marker into an image. *image* is an object which supports the array interface. It must be width x height x 3 in shape and have a datatype of ``u1`` (i.e. a byte). *color* is a red, green, blue triplet where each element is on the interfal [0,1]. *line_width* is the width of the line used to draw the marker in the image. *write_id* is a flag indicating whether the integer marker id should be drawn into the image. """ _dll.aruco_marker_draw(self.handle, _to_image(image, allow_read_only=False), color[0], color[1], color[2], line_width, _ARUCO_TRUE if write_id else _ARUCO_FALSE) def draw_3d_axis(self, image, params): """Draw the 3d axis of this object into an image. *image* is an image to draw into (see Marker.draw for this object's type). *params* is an instance of CameraParameters. """ _dll.aruco_marker_draw_3d_axis(self.handle, _to_image(image, allow_read_only=False), params.handle) def draw_3d_cube(self, image, params): """Draw the 3d cube of this object into an image. *image* is an image to draw into (see Marker.draw for this object's type). *params* is an instance of CameraParameters. """ _dll.aruco_marker_draw_3d_cube(self.handle, _to_image(image, allow_read_only=False), params.handle) def detect_board(markers, configuration, params, marker_size): """Detects a board given some markers. *markers* is a sequence of markers as returned from the MarkerDetector. *configuration* is a BoardConfiguration for the board. *params* is an instance of CameraParameters which must have been initialised to the camera intrinsics. *marker_size* is the size of the marker images in metres. Returns *board, lik*, an instance of the Board class describing the detected board and a float giving a measure of it's likelihood of being in the image. """ mv = _MarkerVector() [mv.push_back(m) for m in markers] b = Board() lik = ct.c_float(0) _dll.aruco_detect_board(mv.handle, configuration.handle, b.handle, params.handle, marker_size, ct.byref(lik)) return (b, lik.value) def detect_markers(image, params=None, marker_size=None): """Detects the markers in the image passed. If you provide information about the camera parameters and the size of the marker, then, the extrinsics of the markers are detected. If one of *params* or *marker_size* is not None and the other is None, an ArucoError is raised. *params* is an instance of CameraParameters which must have been initialised to the camera intrinsics. *marker_size* is the size of the marker images in metres. Returns a sequence of Marker objects, one for each detected marker. """ v = _MarkerVector() if (params is None) and (marker_size is None): _dll.aruco_detect_markers(_to_image(image), v.handle) elif (params is not None) and (marker_size is not None): _dll.aruco_detect_markers_full(_to_image(image), v.handle, params.handle, marker_size) else: raise ArucoError('Both params and marker_size must be None or ' + 'both must not be None.') return v.contents()
{ "content_hash": "6335f5075c092878812576e289a90391", "timestamp": "", "source": "github", "line_count": 517, "max_line_length": 120, "avg_line_length": 32.359767891682786, "alnum_prop": 0.6805738194859534, "repo_name": "richstoner/pyaruco", "id": "b915beb0802ad03c3849aa4851d9db6a5c4f333d", "size": "16730", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "pyaruco.py", "mode": "33188", "license": "mit", "language": [ { "name": "C", "bytes": "8451" }, { "name": "C++", "bytes": "139195" }, { "name": "Python", "bytes": "18398" } ], "symlink_target": "" }
from jinja2 import Environment, FunctionLoader, ChoiceLoader, FileSystemLoader from itertools import chain from collections import OrderedDict class TemplateError(Exception): def __init__(self, message): self.message = message class _TemplateFunc: def __init__(self, *params): self.ids = params self.values = [] def _getParamDict(self, *args): return OrderedDict((v,args[k]) for k,v in enumerate(self.ids)) def addValues(self, *args): if len(args) != len(self.ids): raise TemplateError("Wrong number of template arguments") self.values.append(args) return self._getParamDict(*args) def getParamDictList(self): return list(self._getParamDict(*val) for val in self.values) def __str__(self): return "ids:" + str(self.ids) + "\nvalues:" + str(self.values) def _tfrealID(name, paramdic): return name + "_" + "_".join(chain(*zip(paramdic.keys(), paramdic.values()))) class _TemplateFuncDict: def __init__(self): self.d = {} def define(self, name, *params): if name in self.d: raise TemplateError("Redefinition of template function \"" + name + "\"") self.d[name] = _TemplateFunc(*params) def call(self, name, *values): if name not in self.d: raise TemplateError(name + " is not defined") paramdic = self.d[name].addValues(*values) return _tfrealID(name, paramdic) def get(self, name): return self.d[name].getParamDictList() def _load_internal_template_module(name): if name == "tmplFunc.tmpl": return """\ {% macro defTmplFunc(name) %} {% if GLSLJinja_IsInstanciate %} {% for d in _tfget(name) %} `caller(_tfrealID(name, d), *d.values())` {% endfor %} {% else %} `_tfdef(name, *varargs)` {% endif %} {% endmacro %} """ else: return None class _PreprocessChoiceLoader(ChoiceLoader): def __init__(self, loaders): super().__init__(loaders) def get_source(self, environment, template): ret = super().get_source(environment, template) text = ret[0] lines = text.split("\n") lineNo = ["#line %d" % i for i in range(2, len(lines)+2)] #Last line under last "#line %d" must not empty or boost wave crash. newText = "\n".join(chain(*zip(lines, lineNo))) + "\n\n" return (newText,) + (ret[1:]) def load(self, environment, name, globals=None): return super(ChoiceLoader, self).load(environment, name, globals) class _GLSLJinaTempl: def __init__(self, templ): self.templ = templ def render(self, *args, **kwargs): tmplDic = _TemplateFuncDict() d = dict( _tfdef = tmplDic.define, tfcall = tmplDic.call, _tfget = tmplDic.get, _tfrealID = _tfrealID) self.templ.render(GLSLJinja_IsInstanciate = False, *args, **dict(d, **kwargs)) return self.templ.render(GLSLJinja_IsInstanciate = True, *args, **dict(d, **kwargs)) class GLSLJinjaLoader: def __init__(self, searchpath=""): self.env = Environment( loader=_PreprocessChoiceLoader([ FunctionLoader(_load_internal_template_module), FileSystemLoader(searchpath)]), variable_start_string="`", variable_end_string="`") def get_template(self, filename): return _GLSLJinaTempl(self.env.get_template(filename)) def get_includable_template_from_string(self, source): return self.env.from_string(source) if __name__ == "__main__": def _tftest(): tmplDic = _TemplateFuncDict() tmplDic.define("testFunc", "T", "U") tmplDic.define("testFunc2", "X", "Y", "Z") tmplDic.call("testFunc", "int", "vec3") tmplDic.call("testFunc", "float", "sometype") for k,v in tmplDic.d.items(): print(k) print(v) d = v.getParamDictList() for j in d: print(j) _tftest() env = GLSLJinjaLoader() tmpl = env.get_template("testjinja2.tmpl") print(tmpl.render(delta="0.01", func="distanceFieldSphere"))
{ "content_hash": "0b1112bd7d38a6b966f00b328f3c2560", "timestamp": "", "source": "github", "line_count": 128, "max_line_length": 92, "avg_line_length": 34.046875, "alnum_prop": 0.5686094538779256, "repo_name": "demotomohiro/Reflection-Refraction-less-Ronpa-Raytracing-Renderer", "id": "e54d18bce2130cb6d6e627dc9b864487c86c1bdc", "size": "4358", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "anim_script/GLSLJinja.py", "mode": "33188", "license": "mit", "language": [ { "name": "Assembly", "bytes": "14209" }, { "name": "Batchfile", "bytes": "314" }, { "name": "C++", "bytes": "50262" }, { "name": "CMake", "bytes": "5019" }, { "name": "GLSL", "bytes": "19273" }, { "name": "Python", "bytes": "21372" } ], "symlink_target": "" }
""" github3.repos.contents ====================== This module contains the Contents object pertaining to READMEs and other files that can be accessed via the GitHub API. """ from __future__ import unicode_literals from json import dumps from base64 import b64decode, b64encode from ..git import Commit from ..models import GitHubCore from ..decorators import requires_auth class Contents(GitHubCore): """The :class:`Contents <Contents>` object. It holds the information concerning any content in a repository requested via the API. Two content instances can be checked like so:: c1 == c2 c1 != c2 And is equivalent to:: c1.sha == c2.sha c1.sha != c2.sha See also: http://developer.github.com/v3/repos/contents/ """ def _update_attributes(self, content): # links self._api = content.get('url') #: Dictionary of links self.links = content.get('_links') #: URL of the README on github.com self.html_url = content.get('html_url') #: URL for the git api pertaining to the README self.git_url = content.get('git_url') #: git:// URL of the content if it is a submodule self.submodule_git_url = content.get('submodule_git_url') # should always be 'base64' #: Returns encoding used on the content. self.encoding = content.get('encoding', '') # content, base64 encoded and decoded #: Base64-encoded content of the file. self.content = content.get('content') #: Decoded content of the file as a bytes object. If we try to decode #: to character set for you, we might encounter an exception which #: will prevent the object from being created. On python2 this is the #: same as a string, but on python3 you should call the decode method #: with the character set you wish to use, e.g., #: ``content.decoded.decode('utf-8')``. #: .. versionchanged:: 0.5.2 self.decoded = self.content if self.encoding == 'base64' and self.content: self.decoded = b64decode(self.content.encode()) # file name, path, and size #: Name of the content. self.name = content.get('name', '') #: Path to the content. self.path = content.get('path', '') #: Size of the content self.size = content.get('size', 0) #: SHA string. self.sha = content.get('sha', '') #: Type of content. ('file', 'symlink', 'submodule') self.type = content.get('type', '') #: Target will only be set of type is a symlink. This is what the link #: points to self.target = content.get('target', '') self._uniq = self.sha def _repr(self): return '<Content [{0}]>'.format(self.path) def __eq__(self, other): return self.decoded == other def __ne__(self, other): return self.sha != other @requires_auth def delete(self, message, branch=None, committer=None, author=None): """Delete this file. :param str message: (required), commit message to describe the removal :param str branch: (optional), branch where the file exists. Defaults to the default branch of the repository. :param dict committer: (optional), if no information is given the authenticated user's information will be used. You must specify both a name and email. :param dict author: (optional), if omitted this will be filled in with committer information. If passed, you must specify both a name and email. :returns: dictionary of new content and associated commit :rtype: :class:`~github3.repos.contents.Contents` and :class:`~github3.git.Commit` """ json = {} if message: data = {'message': message, 'sha': self.sha, 'branch': branch, 'committer': validate_commmitter(committer), 'author': validate_commmitter(author)} self._remove_none(data) json = self._json(self._delete(self._api, data=dumps(data)), 200) if json and 'commit' in json: json['commit'] = Commit(json['commit'], self) if json and 'content' in json: json['content'] = self._instance_or_null(Contents, json['content']) return json @requires_auth def update(self, message, content, branch=None, committer=None, author=None): """Update this file. :param str message: (required), commit message to describe the update :param str content: (required), content to update the file with :param str branch: (optional), branch where the file exists. Defaults to the default branch of the repository. :param dict committer: (optional), if no information is given the authenticated user's information will be used. You must specify both a name and email. :param dict author: (optional), if omitted this will be filled in with committer information. If passed, you must specify both a name and email. :returns: dictionary containing the updated contents object and the commit in which it was changed. :rtype: dictionary of :class:`~github3.repos.contents.Contents` and :class:`~github3.git.Commit` """ if content and not isinstance(content, bytes): raise ValueError( # (No coverage) 'content must be a bytes object') # (No coverage) json = None if message and content: content = b64encode(content).decode('utf-8') data = {'message': message, 'content': content, 'branch': branch, 'sha': self.sha, 'committer': validate_commmitter(committer), 'author': validate_commmitter(author)} self._remove_none(data) json = self._json(self._put(self._api, data=dumps(data)), 200) if json and 'content' in json: self._update_attributes(json['content']) json['content'] = self if json and 'commit' in json: json['commit'] = Commit(json['commit'], self) return json def validate_commmitter(d): if d and d.get('name') and d.get('email'): return d return None
{ "content_hash": "8761e4e9ff5fdf38bc8c13fa92829357", "timestamp": "", "source": "github", "line_count": 169, "max_line_length": 78, "avg_line_length": 38.72781065088758, "alnum_prop": 0.5911382734912146, "repo_name": "christophelec/github3.py", "id": "e143d34753dfcdd17ad86a30e816df5f54b14443", "size": "6569", "binary": false, "copies": "1", "ref": "refs/heads/develop", "path": "github3/repos/contents.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "Jupyter Notebook", "bytes": "97717" }, { "name": "Makefile", "bytes": "362" }, { "name": "Python", "bytes": "693579" } ], "symlink_target": "" }
import sys import os project_root = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) sys.path.append(project_root) import argparse import astropy import astropy.units as units from astropy.coordinates import SkyCoord import numpy import numpy.linalg from arl.test_support import import_visibility_from_oskar, export_visibility_to_fits from arl.visibility_operations import * import gc # Parse arguments parser = argparse.ArgumentParser(description='Collect and coalesce visibilities for a baseline from OSKAR files.') parser.add_argument('input', metavar='files', type=argparse.FileType('r'), nargs='*', help='input files') parser.add_argument('--out', dest='pre', metavar='pre', type=str, required=True, help='output prefix') args = parser.parse_args() # Loop through files for i, inp in enumerate(args.input): # Make sure we are going into this with a clean slate gc.collect() # Read. First one will already be loaded print("Reading", inp.name, "...") vis = import_visibility_from_oskar(inp.name) gc.collect() # Loop through visibilities print("Grouping...") data_by_antenna = vis.data.group_by(['antenna1', 'antenna2']) gc.collect() # Loop through baselines print("Collecting...", end="", flush=True) last_a1 = -1 for j, key in enumerate(data_by_antenna.groups.keys): # Interested in this baseline? a1 = key['antenna1'] a2 = key['antenna2'] if a1 != last_a1: print(" %d" % a1, end="", flush=True) last_a1 = a1 # Concatenate visibilities v = data_by_antenna.groups[j]['vis'] with open(args.pre + "%d-%d.bin" % (a1, a2), "ab") as f: f.write(v.tobytes()) print(" done")
{ "content_hash": "a5b38b1e666ad4e0e55ce0da74b795d2", "timestamp": "", "source": "github", "line_count": 60, "max_line_length": 114, "avg_line_length": 30.083333333333332, "alnum_prop": 0.6393351800554017, "repo_name": "SKA-ScienceDataProcessor/crocodile", "id": "6b0bbee06e3d7c36be1493402ee0a813c8a008e9", "size": "1825", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "scripts/bin_dataset.py", "mode": "33261", "license": "apache-2.0", "language": [ { "name": "Python", "bytes": "161449" } ], "symlink_target": "" }
import MySQLdb import string import sys reload(sys) sys.setdefaultencoding('utf8') import ConfigParser def get_item(data_dict,item): try: item_value = data_dict[item] return item_value except: pass def get_parameters(conn): try: curs=conn.cursor() data=curs.execute('select name,value from v$parameter'); data_list=curs.fetchall() parameters={} for item in data_list: parameters[item[0]] = item[1] return parameters except Exception,e: print e finally: curs.close() def get_sysstat(conn): try: curs=conn.cursor() data=curs.execute('select name,value value from v$sysstat'); data_list=curs.fetchall() sysstat={} for item in data_list: sysstat[item[0]] = item[1] return sysstat except Exception,e: print e finally: curs.close() def get_instance(conn,field): try: curs=conn.cursor() curs.execute("select %s from v$instance" %(field) ); result = curs.fetchone()[0] return result except Exception,e: result = '' print e finally: curs.close() def get_database(conn,field): try: curs=conn.cursor() curs.execute("select %s from v$database" %(field) ); result = curs.fetchone()[0] return result except Exception,e: result = '' print e finally: curs.close() def get_version(conn): try: curs=conn.cursor() curs.execute("select product,version from product_component_version where product like '%Database%'"); result = curs.fetchone()[1] return result except Exception,e: print e finally: curs.close() def get_current_snap_id(conn, inst_id): try: curs=conn.cursor() curs.execute("select max(snap_id) from wrm$_snapshot where instance_number = %s" %(inst_id)); result = curs.fetchone()[0] return result except Exception,e: print e finally: curs.close() def get_end_interval_time(conn, inst_id): try: curs=conn.cursor() curs.execute("""select to_char(t.end_interval_time, 'yyyy-mm-dd hh24:mi:ss') from wrm$_snapshot t where t.snap_id in (select max(snap_id) from wrm$_snapshot) and t.instance_number = %s """ %(inst_id)); result = curs.fetchone()[0] return result except Exception,e: print e finally: curs.close() def get_sessions(conn): try: curs=conn.cursor() curs.execute("select count(*) from v$session"); result = curs.fetchone()[0] return result except Exception,e: return null print e finally: curs.close() def get_actives(conn): try: curs=conn.cursor() curs.execute("select count(*) from v$session where STATUS='ACTIVE'"); result = curs.fetchone()[0] return result except Exception,e: return null print e finally: curs.close() def get_waits(conn): try: curs=conn.cursor() curs.execute("select count(*) from v$session where event like 'library%' or event like 'cursor%' or event like 'latch%' or event like 'enq%' or event like 'log file%'"); result = curs.fetchone()[0] return result except Exception,e: return null print e finally: curs.close() def get_dg_stats(conn): try: curs=conn.cursor() curs.execute("SELECT substr((SUBSTR(VALUE,5)),0,2)*3600 + substr((SUBSTR(VALUE,5)),4,2)*60 + substr((SUBSTR(VALUE,5)),7,2) AS seconds,VALUE FROM v$dataguard_stats a WHERE NAME ='apply lag'"); list = curs.fetchone() if list: result = 1 else: result = 0 return result except Exception,e: return null print e finally: curs.close() def get_dg_delay(conn): try: curs=conn.cursor() curs.execute("SELECT substr((SUBSTR(VALUE,5)),0,2)*3600 + substr((SUBSTR(VALUE,5)),4,2)*60 + substr((SUBSTR(VALUE,5)),7,2) AS seconds,VALUE FROM v$dataguard_stats a WHERE NAME ='apply lag'"); list = curs.fetchone() if list: result = list[0] else: result = '---' return result except Exception,e: return null print e finally: curs.close() def get_sysdate(conn): try: curs=conn.cursor() curs.execute("select to_char(sysdate, 'yyyymmddhh24miss') from dual"); result = curs.fetchone()[0] return result except Exception,e: return null print e finally: curs.close() def get_dg_p_info(conn, dest_id): try: curs=conn.cursor() curs.execute("""select * from (select dest_id, thread#, sequence#+1, archived, applied, current_scn, to_char(scn_to_timestamp(current_scn), 'yyyy-mm-dd hh24:mi:ss') curr_db_time, row_number() over(partition by thread# order by sequence# desc) rn from v$archived_log t, v$database d where t.dest_id = %s) where rn = 1 """ %(dest_id)); result = curs.fetchall() return result except Exception,e: return None print e finally: curs.close() def get_dg_p_info_2(conn, dest_id): try: curs=conn.cursor() curs.execute("""select * from (select t.dest_id, transmit_mode, thread#, sequence#+1, archived, applied, current_scn, to_char(scn_to_timestamp(current_scn), 'yyyy-mm-dd hh24:mi:ss') curr_db_time, row_number() over(partition by thread# order by sequence# desc) rn from v$archived_log t, v$archive_dest a, v$database d where t.dest_id = a.dest_id and t.dest_id = %s) where rn = 1 """ %(dest_id)); result = curs.fetchall() return result except Exception,e: return None print e finally: curs.close() def get_log_archived_delay(conn, dest_id, thread_id): try: result = 0 curs=conn.cursor() curs.execute("""select count(1) from v$archived_log where dest_id = %s and thread# = %s and archived= 'NO' group by dest_id """ %(dest_id, thread_id)); list = curs.fetchone() if list: result = list[0] else: result = 0 return result except Exception,e: return None print e finally: curs.close() def get_log_applied_delay(conn, dest_id, thread_id): try: result = 0 curs=conn.cursor() curs.execute("""select count(1) from v$archived_log where dest_id = %s and thread# = %s and applied= 'NO' group by dest_id """ %(dest_id, thread_id)); list = curs.fetchone() if list: result = list[0] else: result = 0 return result except Exception,e: return None print e finally: curs.close() def get_redo_per_hour(conn): try: curs=conn.cursor() curs.execute("""select to_char(first_time, 'yyyy-mm-dd hh24')||':00' key_time, trunc(sum(blocks * block_size) / 1024 / 1024) redo_p_h from v$archived_log where to_char(first_time, 'yyyymmddhh24') = to_char(sysdate, 'yyyymmddhh24') and standby_dest = 'NO' group by to_char(first_time, 'yyyy-mm-dd hh24') """); result = curs.fetchone() return result except Exception,e: print e return None finally: curs.close() def get_db_time(conn, snap_id, inst_id): try: curs=conn.cursor() curs.execute("""select snap_id, end_time, dbtime, elapsed, round(dbtime/elapsed, 2) as rate from ( select n.stat_name as name, e.snap_id, to_char(te.end_interval_time,'yyyy-mm-dd hh24:mi:ss') as end_time, round((case when (e.value - b.value) > 0 then e.value - b.value else e.value end) / 1000 / 1000, 2) as dbtime, (to_date(to_char(te.end_interval_time,'yyyy-mm-dd hh24:mi:ss'),'yyyy-mm-dd hh24:mi:ss') - to_date(to_char(tb.end_interval_time,'yyyy-mm-dd hh24:mi:ss'),'yyyy-mm-dd hh24:mi:ss'))*86400 as elapsed from wrh$_sys_time_model e, wrh$_sys_time_model b, wrh$_stat_name n, wrm$_snapshot tb, wrm$_snapshot te where e.stat_id = n.stat_id and b.stat_id = n.stat_id and b.snap_id = e.snap_id - 1 and e.snap_id = %s and e.snap_id = te.snap_id and e.instance_number = te.instance_number and b.snap_id = tb.snap_id and b.instance_number = tb.instance_number and e.instance_number=b.instance_number and e.instance_number=%s and n.stat_name = 'DB time') tmp """ %(snap_id, inst_id)); result = curs.fetchone() return result except Exception,e: print e return None finally: curs.close() def get_dg_s_ms(conn): try: curs=conn.cursor() curs.execute("""select ms.thread#, ms.sequence#, ms.block#, ms.delay_mins from v$managed_standby ms where ms.process in ('MRP0') and ms.sequence# <> 0 """); result = curs.fetchone() return result except Exception,e: return None print e finally: curs.close() def get_dg_s_al(conn, scn): try: curs=conn.cursor() curs.execute(""" select thread#,sequence# from v$archived_log where first_change#<%s and next_change#>=%s """ %(scn,scn)); result = curs.fetchone() return result except Exception,e: return None print e finally: curs.close() def get_dg_s_rate(conn): try: curs=conn.cursor() curs.execute("""select * from (select rp.sofar avg_apply_rate from v$recovery_progress rp where rp.item = 'Average Apply Rate' order by start_time desc) where rownum < 2 """); result = curs.fetchone() return result except Exception,e: return None print e finally: curs.close() def get_dg_s_mrp(conn): try: curs=conn.cursor() curs.execute("""select status from gv$session where program like '%(MRP0)' """); list = curs.fetchone() if list: result = 1 else: result = 0 return result except Exception,e: return 0 print e finally: curs.close() def get_standby_redo_count(conn): try: curs=conn.cursor() curs.execute("""select count(1) from v$standby_log """); result = curs.fetchone()[0] return result except Exception,e: return 0 print e finally: curs.close() def get_time_by_scn(conn, scn): try: result=None curs=conn.cursor() curs.execute("""select to_char(scn_to_timestamp(%s), 'yyyy-mm-dd hh24:mi:ss') curr_db_time from v$database """ %(scn)); res = curs.fetchone() if res: result = res[0] else: result = None return result except Exception,e: #print e return None finally: curs.close() def get_time_from_restorepoint(conn, scn): try: result=None curs=conn.cursor() curs.execute("""select to_char(time, 'yyyy-mm-dd hh24:mi:ss') curr_db_time from v$restore_point where scn = %s """ %(scn)); res = curs.fetchone() if res: result = res[0] else: result = None return result except Exception,e: print e return None finally: curs.close() def get_pri_id_by_server(conn, id): try: result=None curs=conn.cursor() curs.execute("""select CASE is_switch WHEN 0 THEN standby_db_id ELSE primary_db_id END as sta_id from db_cfg_oracle_dg where primary_db_id = %s or standby_db_id = %s """ %(id, id)); res = curs.fetchone() if res: result = res[0] else: result = None return result except Exception,e: print e return None finally: curs.close() def get_earliest_fbscn(conn): try: curs=conn.cursor() curs.execute("""select min(scn) from v$restore_point """); result = curs.fetchone()[0] return result except Exception,e: return None print e finally: curs.close() def get_earliest_fbtime(conn,flashback_retention): try: curs=conn.cursor() curs.execute("""select to_char(min(time) + 1/48, 'yyyy-mm-dd hh24:mi:ss') mintime from v$restore_point where time > sysdate -%s/24/60 """ %(flashback_retention)); mintime = curs.fetchone() result = 'null' if mintime[0]: result = mintime[0] return result except Exception,e: print e return None finally: curs.close() def get_last_fbtime(conn): try: curs=conn.cursor() curs.execute("""select to_char(max(time), 'yyyymmddhh24miss') maxtime from v$restore_point """); lasttime = curs.fetchone() result = 'null' if lasttime[0]: result = lasttime[0] return result except Exception,e: print e return None finally: curs.close() def get_flashback_space_used(conn): try: curs=conn.cursor() curs.execute("""select sum(percent_space_used) from v$flash_recovery_area_usage """); fb_space = curs.fetchone() result = 0 if fb_space: result = fb_space[0] if result == '' or result is None: result = 0 return result except Exception,e: print e return None finally: curs.close() def get_restorepoint(conn, flashback_retention): try: curs=conn.cursor() curs.execute("select name from v$restore_point where time > sysdate -%s/60/24 order by name desc " %(flashback_retention)); list = curs.fetchall() return list except Exception,e: return None print e finally: curs.close() def get_expire_restore_list(conn, flashback_retention): try: curs=conn.cursor() curs.execute("select name from v$restore_point where time < sysdate - %s/60/24 " %(flashback_retention)); list = curs.fetchall() return list except Exception,e: return None print e finally: curs.close() def get_tablespace(conn): try: curs=conn.cursor() curs.execute("""select tpsname,status,mgr,max_size,curr_size, max_used from (SELECT d.tablespace_name tpsname, d.status status, d.segment_space_management mgr, TO_CHAR(NVL(trunc(A.maxbytes / 1024 / 1024), 0), '99999990') max_size, TO_CHAR(NVL(trunc(a.bytes / 1024 / 1024), 0), '99999990') curr_size, TO_CHAR(NVL((a.bytes - NVL(f.bytes, 0)) / a.bytes * 100, 0), '990D00') c_used, TO_CHAR(NVL((a.bytes - NVL(f.bytes, 0)) / a.maxbytes * 100, 0), '990D00') max_used FROM sys.dba_tablespaces d, (SELECT tablespace_name, sum(bytes) bytes, SUM(case autoextensible when 'NO' then BYTES when 'YES' then MAXBYTES else null end) maxbytes FROM dba_data_files GROUP BY tablespace_name) a, (SELECT tablespace_name, SUM(bytes) bytes, MAX(bytes) largest_free FROM dba_free_space GROUP BY tablespace_name) f WHERE d.tablespace_name = a.tablespace_name AND d.tablespace_name = f.tablespace_name(+)) order by max_used desc """); list = curs.fetchall() return list except Exception,e: return None print e finally: curs.close() def get_diskgroup(conn): try: curs=conn.cursor() curs.execute("""select name, state, type, total_mb, free_mb, trunc(((total_mb - free_mb) / total_mb) * 100, 2) used_rate from v$asm_diskgroup """); list = curs.fetchall() return list except Exception,e: return None print e finally: curs.close() def get_tables(conn): try: curs=conn.cursor() curs.execute("select owner, owner || '.' || table_name from dba_tables "); list = curs.fetchall() return list except Exception,e: return None print e finally: curs.close()
{ "content_hash": "8686269d9e5fec7f74861e6728710638", "timestamp": "", "source": "github", "line_count": 717, "max_line_length": 199, "avg_line_length": 26.702928870292887, "alnum_prop": 0.490232946829625, "repo_name": "JK-Warriors/Heimdallr", "id": "d6773bd3040831389dce08a7c83360bb63ad7f04", "size": "19185", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "python/include/wl_oracle.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "CSS", "bytes": "138793" }, { "name": "HTML", "bytes": "88463" }, { "name": "JavaScript", "bytes": "9581672" }, { "name": "PHP", "bytes": "2937844" }, { "name": "Python", "bytes": "602526" }, { "name": "Shell", "bytes": "14641" }, { "name": "TSQL", "bytes": "140135" } ], "symlink_target": "" }
from xmlrpclib import ServerProxy, Fault from os.path import join, abspath, isfile from SimpleXMLRPCServer import SimpleXMLRPCServer from urlparse import urlparse import sys SimpleXMLRPCServer.allow_reuse_address = 1 MAX_HISTORY_LENGTH = 6 UNHANDLED = 100 ACCESS_DENIED = 200 class UnhandledQuery(Fault): def __init__(self, message="Couldn't handle the query"): Fault.__init__(self, UNHANDLED, message) class AccessDenied(Fault): def __init__(self, message="Access denied"): Fault.__init__(self, ACCESS_DENIED, message) def inside(dir, name): dir = abspath(dir) name = abspath(name) return name.startswith(join(dir, '')) def getPort(url): name = urlparse(url)[1] parts = name.split(':') return int(parts[-1]) class Node: def __init__(self, url, dirname, secret): self.url = url self.dirname = dirname self.secret = secret self.known = set() def query(self, query, history=[]): try: return self._handle(query) except UnhandledQuery: history = history + [self.url] if len(history) >= MAX_HISTORY_LENGTH: raise return self._broadcast(query, history) def hello(self, other): self.known.add(other) return 0 def fetch(self, query, secret): if secret != self.secret: raise AccessDenied result = self.query(query) f = open(join(self.dirname, query), 'w') f.write(result) f.close() return 0 def _start(self): s = SimpleXMLRPCServer(("", getPort(self.url)), logRequests=False) s.register_instance(self) s.serve_forever() def _handle(self, query): dir = self.dirname name = join(dir, query) if not isfile(name): raise UnhandledQuery if not inside(dir, name): raise AccessDenied return open(name).read() def _broadcase(self, query, history): for other in self.known.copy(): if other in history: continue try: s = ServerProxy(other) return s.query(query, history) except Fault, f: if f.faultCode == UNHANDLED: pass else: self.known.remove(other) except: self.known.remove(other) raise UnhandledQuery def main(): url, directory, secret = sys.argv[1:] n = Node(url, directory, secret) n._start() if __name__=='__main__': main()
{ "content_hash": "e91846ed765591868f4f9b931cfd9a8f", "timestamp": "", "source": "github", "line_count": 102, "max_line_length": 74, "avg_line_length": 25.50980392156863, "alnum_prop": 0.568793235972329, "repo_name": "gavinfish/Awesome-Python", "id": "a4fc2ff796910dc238a29822353499b7a0f4afb5", "size": "2602", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "beginning-python/project/file-share/server.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "LLVM", "bytes": "56984" }, { "name": "Python", "bytes": "67143" } ], "symlink_target": "" }
import pytest import unittest from modules.sfp_greensnow import sfp_greensnow from sflib import SpiderFoot @pytest.mark.usefixtures class TestModuleGreensnow(unittest.TestCase): def test_opts(self): module = sfp_greensnow() self.assertEqual(len(module.opts), len(module.optdescs)) def test_setup(self): sf = SpiderFoot(self.default_options) module = sfp_greensnow() module.setup(sf, dict()) def test_watchedEvents_should_return_list(self): module = sfp_greensnow() self.assertIsInstance(module.watchedEvents(), list) def test_producedEvents_should_return_list(self): module = sfp_greensnow() self.assertIsInstance(module.producedEvents(), list)
{ "content_hash": "e85ebc5313b1f4dbfd79d9252fe301ac", "timestamp": "", "source": "github", "line_count": 26, "max_line_length": 64, "avg_line_length": 28.46153846153846, "alnum_prop": 0.6972972972972973, "repo_name": "smicallef/spiderfoot", "id": "5a0bcacf82ba55002a8bd727f40b439324a0009c", "size": "740", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "test/unit/modules/test_sfp_greensnow.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "9833" }, { "name": "Dockerfile", "bytes": "2779" }, { "name": "JavaScript", "bytes": "34248" }, { "name": "Python", "bytes": "2845553" }, { "name": "RobotFramework", "bytes": "7584" }, { "name": "Shell", "bytes": "1636" } ], "symlink_target": "" }
from __future__ import absolute_import, division, print_function, with_statement, unicode_literals import oz.redis_sessions import oz import unittest @oz.test class CDNCoreTestCase(unittest.TestCase): def test_password_hash(self): hash = oz.redis_sessions.password_hash("bar", password_salt="foo") self.assertEqual(hash, "sha256!c3ab8ff13720e8ad9047dd39466b3c8974e592c2fa383d4a3960714caef0c4f2") def test_random_hex(self): hexchars = set("0123456789abcdef") s1 = oz.redis_sessions.random_hex(10) self.assertEqual(len(s1), 10) for c in s1: self.assertTrue(c in hexchars, "%s not in %s" % (c, hexchars)) s2 = oz.redis_sessions.random_hex(10) self.assertEqual(len(s2), 10) for c in s2: self.assertTrue(c in hexchars, "%s not in %s" % (c, hexchars)) self.assertNotEqual(s1, s2)
{ "content_hash": "e85a42f4ffe456064af86cda567f0646", "timestamp": "", "source": "github", "line_count": 28, "max_line_length": 105, "avg_line_length": 31.928571428571427, "alnum_prop": 0.6621923937360179, "repo_name": "dailymuse/oz", "id": "f952216e653ae3f86a2a60f0c35f72cb0d4fbcc9", "size": "894", "binary": false, "copies": "1", "ref": "refs/heads/develop", "path": "tests/redis_sessions/test_core.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "HTML", "bytes": "9121" }, { "name": "Makefile", "bytes": "239" }, { "name": "Python", "bytes": "102713" }, { "name": "Shell", "bytes": "74" } ], "symlink_target": "" }
class TripadPipeline(object): def process_item(self, item, spider): return item
{ "content_hash": "59d04b64939244c8dbe162954b04dddc", "timestamp": "", "source": "github", "line_count": 3, "max_line_length": 41, "avg_line_length": 30.666666666666668, "alnum_prop": 0.6847826086956522, "repo_name": "acehanks/projects", "id": "c487d9df196e6508d47e666ac4234efd3f76ac3b", "size": "286", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "tripadvisor_scrapy/tripad/pipelines.py", "mode": "33188", "license": "mit", "language": [ { "name": "HTML", "bytes": "1663666" }, { "name": "Jupyter Notebook", "bytes": "747568" }, { "name": "Python", "bytes": "10264" } ], "symlink_target": "" }
from stringmatching.base import Base from collections import defaultdict class LastOcc(Base): def search(self, pattern, text, all=False): start = 0 self.m = len(pattern) self.n = len(text) self.last_occ = self.__last_occurence(pattern, text) if all: results = [] limit = len(text) - len(pattern) stop = False while start <= limit and not stop: result = self.__last_occ(pattern, text, start) if result is not None: results.append(result) start = result + len(pattern) else: stop = True return results else: return [ self.__last_occ(pattern, text, start) ] def __last_occ(self, pat, text, start): ''' Sliding window text search with last occurrence table P. 41 in Algorithms on Strings, there the alg. is called Fast-Search Args: pat (str): pattern to search for text (str): source in what the pattern should be searched start (str): position in text where search should be started ''' j = self.m - 1 while j < self.n: i = start + j - self.m + 1 if text[i:start+j+1] == pat: return i j += self.last_occ[text[j]] def __last_occurence(self, pat, text): ''' Returns the last occurrence table Args: pat (str): pattern to search for text (str): source in what the pattern should be searched ''' last_occ = defaultdict(lambda: self.m) # saves initialization overhead by returning a default value when a non exisiting key is used for k in range(0, self.m - 1): last_occ[pat[k]] = self.m - 1 - k return last_occ
{ "content_hash": "4ff9e57a0907cbd78f1e2baa9943339f", "timestamp": "", "source": "github", "line_count": 53, "max_line_length": 140, "avg_line_length": 35.509433962264154, "alnum_prop": 0.5345377258235919, "repo_name": "klingtnet/stringologie-ss14", "id": "9049ef1ca4e0400181e7c4507ace90b3c80486d3", "size": "1882", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "stringmatching/last_occ.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "29176" }, { "name": "Shell", "bytes": "123" } ], "symlink_target": "" }
"""The tests for the MQTT switch platform.""" import copy from unittest.mock import patch import pytest from homeassistant.components import switch from homeassistant.components.mqtt.switch import MQTT_SWITCH_ATTRIBUTES_BLOCKED from homeassistant.const import ( ATTR_ASSUMED_STATE, ATTR_DEVICE_CLASS, STATE_OFF, STATE_ON, STATE_UNKNOWN, ) import homeassistant.core as ha from homeassistant.setup import async_setup_component from .test_common import ( help_test_availability_when_connection_lost, help_test_availability_without_topic, help_test_custom_availability_payload, help_test_default_availability_payload, help_test_discovery_broken, help_test_discovery_removal, help_test_discovery_update, help_test_discovery_update_attr, help_test_discovery_update_unchanged, help_test_encoding_subscribable_topics, help_test_entity_debug_info_message, help_test_entity_device_info_remove, help_test_entity_device_info_update, help_test_entity_device_info_with_connection, help_test_entity_device_info_with_identifier, help_test_entity_id_update_discovery_update, help_test_entity_id_update_subscriptions, help_test_publishing_with_custom_encoding, help_test_reloadable, help_test_reloadable_late, help_test_setting_attribute_via_mqtt_json_message, help_test_setting_attribute_with_template, help_test_setting_blocked_attribute_via_mqtt_json_message, help_test_unique_id, help_test_update_with_json_attrs_bad_JSON, help_test_update_with_json_attrs_not_dict, ) from tests.common import async_fire_mqtt_message from tests.components.switch import common DEFAULT_CONFIG = { switch.DOMAIN: {"platform": "mqtt", "name": "test", "command_topic": "test-topic"} } async def test_controlling_state_via_topic(hass, mqtt_mock): """Test the controlling state via topic.""" assert await async_setup_component( hass, switch.DOMAIN, { switch.DOMAIN: { "platform": "mqtt", "name": "test", "state_topic": "state-topic", "command_topic": "command-topic", "payload_on": 1, "payload_off": 0, "device_class": "switch", } }, ) await hass.async_block_till_done() state = hass.states.get("switch.test") assert state.state == STATE_UNKNOWN assert state.attributes.get(ATTR_DEVICE_CLASS) == "switch" assert not state.attributes.get(ATTR_ASSUMED_STATE) async_fire_mqtt_message(hass, "state-topic", "1") state = hass.states.get("switch.test") assert state.state == STATE_ON async_fire_mqtt_message(hass, "state-topic", "0") state = hass.states.get("switch.test") assert state.state == STATE_OFF async_fire_mqtt_message(hass, "state-topic", "None") state = hass.states.get("switch.test") assert state.state == STATE_UNKNOWN async def test_sending_mqtt_commands_and_optimistic(hass, mqtt_mock): """Test the sending MQTT commands in optimistic mode.""" fake_state = ha.State("switch.test", "on") with patch( "homeassistant.helpers.restore_state.RestoreEntity.async_get_last_state", return_value=fake_state, ): assert await async_setup_component( hass, switch.DOMAIN, { switch.DOMAIN: { "platform": "mqtt", "name": "test", "command_topic": "command-topic", "payload_on": "beer on", "payload_off": "beer off", "qos": "2", } }, ) await hass.async_block_till_done() state = hass.states.get("switch.test") assert state.state == STATE_ON assert state.attributes.get(ATTR_ASSUMED_STATE) await common.async_turn_on(hass, "switch.test") mqtt_mock.async_publish.assert_called_once_with( "command-topic", "beer on", 2, False ) mqtt_mock.async_publish.reset_mock() state = hass.states.get("switch.test") assert state.state == STATE_ON await common.async_turn_off(hass, "switch.test") mqtt_mock.async_publish.assert_called_once_with( "command-topic", "beer off", 2, False ) state = hass.states.get("switch.test") assert state.state == STATE_OFF async def test_sending_inital_state_and_optimistic(hass, mqtt_mock): """Test the initial state in optimistic mode.""" assert await async_setup_component( hass, switch.DOMAIN, { switch.DOMAIN: { "platform": "mqtt", "name": "test", "command_topic": "command-topic", } }, ) await hass.async_block_till_done() state = hass.states.get("switch.test") assert state.state == STATE_UNKNOWN assert state.attributes.get(ATTR_ASSUMED_STATE) async def test_controlling_state_via_topic_and_json_message(hass, mqtt_mock): """Test the controlling state via topic and JSON message.""" assert await async_setup_component( hass, switch.DOMAIN, { switch.DOMAIN: { "platform": "mqtt", "name": "test", "state_topic": "state-topic", "command_topic": "command-topic", "payload_on": "beer on", "payload_off": "beer off", "value_template": "{{ value_json.val }}", } }, ) await hass.async_block_till_done() state = hass.states.get("switch.test") assert state.state == STATE_UNKNOWN async_fire_mqtt_message(hass, "state-topic", '{"val":"beer on"}') state = hass.states.get("switch.test") assert state.state == STATE_ON async_fire_mqtt_message(hass, "state-topic", '{"val":"beer off"}') state = hass.states.get("switch.test") assert state.state == STATE_OFF async_fire_mqtt_message(hass, "state-topic", '{"val": null}') state = hass.states.get("switch.test") assert state.state == STATE_UNKNOWN async def test_availability_when_connection_lost(hass, mqtt_mock): """Test availability after MQTT disconnection.""" await help_test_availability_when_connection_lost( hass, mqtt_mock, switch.DOMAIN, DEFAULT_CONFIG ) async def test_availability_without_topic(hass, mqtt_mock): """Test availability without defined availability topic.""" await help_test_availability_without_topic( hass, mqtt_mock, switch.DOMAIN, DEFAULT_CONFIG ) async def test_default_availability_payload(hass, mqtt_mock): """Test availability by default payload with defined topic.""" config = { switch.DOMAIN: { "platform": "mqtt", "name": "test", "state_topic": "state-topic", "command_topic": "command-topic", "payload_on": 1, "payload_off": 0, } } await help_test_default_availability_payload( hass, mqtt_mock, switch.DOMAIN, config, True, "state-topic", "1" ) async def test_custom_availability_payload(hass, mqtt_mock): """Test availability by custom payload with defined topic.""" config = { switch.DOMAIN: { "platform": "mqtt", "name": "test", "state_topic": "state-topic", "command_topic": "command-topic", "payload_on": 1, "payload_off": 0, } } await help_test_custom_availability_payload( hass, mqtt_mock, switch.DOMAIN, config, True, "state-topic", "1" ) async def test_custom_state_payload(hass, mqtt_mock): """Test the state payload.""" assert await async_setup_component( hass, switch.DOMAIN, { switch.DOMAIN: { "platform": "mqtt", "name": "test", "state_topic": "state-topic", "command_topic": "command-topic", "payload_on": 1, "payload_off": 0, "state_on": "HIGH", "state_off": "LOW", } }, ) await hass.async_block_till_done() state = hass.states.get("switch.test") assert state.state == STATE_UNKNOWN assert not state.attributes.get(ATTR_ASSUMED_STATE) async_fire_mqtt_message(hass, "state-topic", "HIGH") state = hass.states.get("switch.test") assert state.state == STATE_ON async_fire_mqtt_message(hass, "state-topic", "LOW") state = hass.states.get("switch.test") assert state.state == STATE_OFF async def test_setting_attribute_via_mqtt_json_message(hass, mqtt_mock): """Test the setting of attribute via MQTT with JSON payload.""" await help_test_setting_attribute_via_mqtt_json_message( hass, mqtt_mock, switch.DOMAIN, DEFAULT_CONFIG ) async def test_setting_blocked_attribute_via_mqtt_json_message(hass, mqtt_mock): """Test the setting of attribute via MQTT with JSON payload.""" await help_test_setting_blocked_attribute_via_mqtt_json_message( hass, mqtt_mock, switch.DOMAIN, DEFAULT_CONFIG, MQTT_SWITCH_ATTRIBUTES_BLOCKED ) async def test_setting_attribute_with_template(hass, mqtt_mock): """Test the setting of attribute via MQTT with JSON payload.""" await help_test_setting_attribute_with_template( hass, mqtt_mock, switch.DOMAIN, DEFAULT_CONFIG ) async def test_update_with_json_attrs_not_dict(hass, mqtt_mock, caplog): """Test attributes get extracted from a JSON result.""" await help_test_update_with_json_attrs_not_dict( hass, mqtt_mock, caplog, switch.DOMAIN, DEFAULT_CONFIG ) async def test_update_with_json_attrs_bad_JSON(hass, mqtt_mock, caplog): """Test attributes get extracted from a JSON result.""" await help_test_update_with_json_attrs_bad_JSON( hass, mqtt_mock, caplog, switch.DOMAIN, DEFAULT_CONFIG ) async def test_discovery_update_attr(hass, mqtt_mock, caplog): """Test update of discovered MQTTAttributes.""" await help_test_discovery_update_attr( hass, mqtt_mock, caplog, switch.DOMAIN, DEFAULT_CONFIG ) async def test_unique_id(hass, mqtt_mock): """Test unique id option only creates one switch per unique_id.""" config = { switch.DOMAIN: [ { "platform": "mqtt", "name": "Test 1", "state_topic": "test-topic", "command_topic": "command-topic", "unique_id": "TOTALLY_UNIQUE", }, { "platform": "mqtt", "name": "Test 2", "state_topic": "test-topic", "command_topic": "command-topic", "unique_id": "TOTALLY_UNIQUE", }, ] } await help_test_unique_id(hass, mqtt_mock, switch.DOMAIN, config) async def test_discovery_removal_switch(hass, mqtt_mock, caplog): """Test removal of discovered switch.""" data = ( '{ "name": "test",' ' "state_topic": "test_topic",' ' "command_topic": "test_topic" }' ) await help_test_discovery_removal(hass, mqtt_mock, caplog, switch.DOMAIN, data) async def test_discovery_update_switch_topic_template(hass, mqtt_mock, caplog): """Test update of discovered switch.""" config1 = copy.deepcopy(DEFAULT_CONFIG[switch.DOMAIN]) config2 = copy.deepcopy(DEFAULT_CONFIG[switch.DOMAIN]) config1["name"] = "Beer" config2["name"] = "Milk" config1["state_topic"] = "switch/state1" config2["state_topic"] = "switch/state2" config1["value_template"] = "{{ value_json.state1.state }}" config2["value_template"] = "{{ value_json.state2.state }}" state_data1 = [ ([("switch/state1", '{"state1":{"state":"ON"}}')], "on", None), ] state_data2 = [ ([("switch/state2", '{"state2":{"state":"OFF"}}')], "off", None), ([("switch/state2", '{"state2":{"state":"ON"}}')], "on", None), ([("switch/state1", '{"state1":{"state":"OFF"}}')], "on", None), ([("switch/state1", '{"state2":{"state":"OFF"}}')], "on", None), ([("switch/state2", '{"state1":{"state":"OFF"}}')], "on", None), ([("switch/state2", '{"state2":{"state":"OFF"}}')], "off", None), ] await help_test_discovery_update( hass, mqtt_mock, caplog, switch.DOMAIN, config1, config2, state_data1=state_data1, state_data2=state_data2, ) async def test_discovery_update_switch_template(hass, mqtt_mock, caplog): """Test update of discovered switch.""" config1 = copy.deepcopy(DEFAULT_CONFIG[switch.DOMAIN]) config2 = copy.deepcopy(DEFAULT_CONFIG[switch.DOMAIN]) config1["name"] = "Beer" config2["name"] = "Milk" config1["state_topic"] = "switch/state1" config2["state_topic"] = "switch/state1" config1["value_template"] = "{{ value_json.state1.state }}" config2["value_template"] = "{{ value_json.state2.state }}" state_data1 = [ ([("switch/state1", '{"state1":{"state":"ON"}}')], "on", None), ] state_data2 = [ ([("switch/state1", '{"state2":{"state":"OFF"}}')], "off", None), ([("switch/state1", '{"state2":{"state":"ON"}}')], "on", None), ([("switch/state1", '{"state1":{"state":"OFF"}}')], "on", None), ([("switch/state1", '{"state2":{"state":"OFF"}}')], "off", None), ] await help_test_discovery_update( hass, mqtt_mock, caplog, switch.DOMAIN, config1, config2, state_data1=state_data1, state_data2=state_data2, ) async def test_discovery_update_unchanged_switch(hass, mqtt_mock, caplog): """Test update of discovered switch.""" data1 = ( '{ "name": "Beer",' ' "device_class": "switch",' ' "state_topic": "test_topic",' ' "command_topic": "test_topic" }' ) with patch( "homeassistant.components.mqtt.switch.MqttSwitch.discovery_update" ) as discovery_update: await help_test_discovery_update_unchanged( hass, mqtt_mock, caplog, switch.DOMAIN, data1, discovery_update ) @pytest.mark.no_fail_on_log_exception async def test_discovery_broken(hass, mqtt_mock, caplog): """Test handling of bad discovery message.""" data1 = '{ "name": "Beer" }' data2 = ( '{ "name": "Milk",' ' "state_topic": "test_topic",' ' "command_topic": "test_topic" }' ) await help_test_discovery_broken( hass, mqtt_mock, caplog, switch.DOMAIN, data1, data2 ) async def test_entity_device_info_with_connection(hass, mqtt_mock): """Test MQTT switch device registry integration.""" await help_test_entity_device_info_with_connection( hass, mqtt_mock, switch.DOMAIN, DEFAULT_CONFIG ) async def test_entity_device_info_with_identifier(hass, mqtt_mock): """Test MQTT switch device registry integration.""" await help_test_entity_device_info_with_identifier( hass, mqtt_mock, switch.DOMAIN, DEFAULT_CONFIG ) async def test_entity_device_info_update(hass, mqtt_mock): """Test device registry update.""" await help_test_entity_device_info_update( hass, mqtt_mock, switch.DOMAIN, DEFAULT_CONFIG ) async def test_entity_device_info_remove(hass, mqtt_mock): """Test device registry remove.""" await help_test_entity_device_info_remove( hass, mqtt_mock, switch.DOMAIN, DEFAULT_CONFIG ) async def test_entity_id_update_subscriptions(hass, mqtt_mock): """Test MQTT subscriptions are managed when entity_id is updated.""" await help_test_entity_id_update_subscriptions( hass, mqtt_mock, switch.DOMAIN, DEFAULT_CONFIG ) async def test_entity_id_update_discovery_update(hass, mqtt_mock): """Test MQTT discovery update when entity_id is updated.""" await help_test_entity_id_update_discovery_update( hass, mqtt_mock, switch.DOMAIN, DEFAULT_CONFIG ) async def test_entity_debug_info_message(hass, mqtt_mock): """Test MQTT debug info.""" await help_test_entity_debug_info_message( hass, mqtt_mock, switch.DOMAIN, DEFAULT_CONFIG, switch.SERVICE_TURN_ON ) @pytest.mark.parametrize( "service,topic,parameters,payload,template", [ ( switch.SERVICE_TURN_ON, "command_topic", None, "ON", None, ), ( switch.SERVICE_TURN_OFF, "command_topic", None, "OFF", None, ), ], ) async def test_publishing_with_custom_encoding( hass, mqtt_mock, caplog, service, topic, parameters, payload, template, ): """Test publishing MQTT payload with different encoding.""" domain = switch.DOMAIN config = DEFAULT_CONFIG[domain] await help_test_publishing_with_custom_encoding( hass, mqtt_mock, caplog, domain, config, service, topic, parameters, payload, template, ) async def test_reloadable(hass, mqtt_mock, caplog, tmp_path): """Test reloading the MQTT platform.""" domain = switch.DOMAIN config = DEFAULT_CONFIG[domain] await help_test_reloadable(hass, mqtt_mock, caplog, tmp_path, domain, config) async def test_reloadable_late(hass, mqtt_client_mock, caplog, tmp_path): """Test reloading the MQTT platform with late entry setup.""" domain = switch.DOMAIN config = DEFAULT_CONFIG[domain] await help_test_reloadable_late(hass, caplog, tmp_path, domain, config) @pytest.mark.parametrize( "topic,value,attribute,attribute_value", [ ("state_topic", "ON", None, "on"), ], ) async def test_encoding_subscribable_topics( hass, mqtt_mock, caplog, topic, value, attribute, attribute_value ): """Test handling of incoming encoded payload.""" await help_test_encoding_subscribable_topics( hass, mqtt_mock, caplog, switch.DOMAIN, DEFAULT_CONFIG[switch.DOMAIN], topic, value, attribute, attribute_value, )
{ "content_hash": "8639b31050cb249face438514590e4c2", "timestamp": "", "source": "github", "line_count": 588, "max_line_length": 86, "avg_line_length": 31.102040816326532, "alnum_prop": 0.6042213473315835, "repo_name": "rohitranjan1991/home-assistant", "id": "a458ac03baa14dec9832cfdc218ceeb588612546", "size": "18288", "binary": false, "copies": "2", "ref": "refs/heads/dev", "path": "tests/components/mqtt/test_switch.py", "mode": "33188", "license": "mit", "language": [ { "name": "HTML", "bytes": "1017265" }, { "name": "Python", "bytes": "1051086" }, { "name": "Shell", "bytes": "3946" } ], "symlink_target": "" }
"""Libraries for building Stack Overflow next-word prediction models.""" import tensorflow as tf class TransposableEmbedding(tf.keras.layers.Layer): """A Keras layer implementing a transposed projection output layer.""" def __init__(self, embedding_layer: tf.keras.layers.Embedding): super().__init__() self.embeddings = embedding_layer.embeddings # Placing `tf.matmul` under the `call` method is important for backpropagating # the gradients of `self.embeddings` in graph mode. def call(self, inputs): return tf.matmul(inputs, self.embeddings, transpose_b=True) def create_recurrent_model(vocab_size: int, embedding_size: int = 96, num_lstm_layers: int = 1, lstm_size: int = 670, shared_embedding: bool = False) -> tf.keras.Model: """Constructs a recurrent model with an initial embeding layer. The resulting model embeds sequences of integer tokens (whose values vary between `0` and `vocab_size-1`) into an `embedding_size`-dimensional space. It then applies `num_lstm_layers` LSTM layers, each of size `lstm_size`. Each LSTM is followed by a dense layer mapping the output to `embedding_size` units. The model then has a final dense layer mapping to `vocab_size` logits units. Note that this model does not compute any kind of softmax on the final logits. This should instead be done in the loss function for the purposes of backpropagation. Args: vocab_size: Vocabulary size to use in the initial embedding layer. embedding_size: The size of the embedding layer. num_lstm_layers: The number of LSTM layers in the model. lstm_size: The size of each LSTM layer. shared_embedding: If set to `True`, the final layer of the model is a dense layer given by the transposition of the embedding layer. If `False`, the final dense layer is instead learned separately. Returns: An uncompiled `tf.keras.Model`. """ if vocab_size < 1: raise ValueError('vocab_size must be a positive integer.') if embedding_size < 1: raise ValueError('embedding_size must be a positive integer.') if num_lstm_layers < 1: raise ValueError('num_lstm_layers must be a positive integer.') if lstm_size < 1: raise ValueError('lstm_size must be a positive integer.') inputs = tf.keras.layers.Input(shape=(None,)) input_embedding = tf.keras.layers.Embedding( input_dim=vocab_size, output_dim=embedding_size, mask_zero=True) embedded = input_embedding(inputs) projected = embedded for _ in range(num_lstm_layers): layer = tf.keras.layers.LSTM(lstm_size, return_sequences=True) processed = layer(projected) projected = tf.keras.layers.Dense(embedding_size)(processed) if shared_embedding: transposed_embedding = TransposableEmbedding(input_embedding) logits = transposed_embedding(projected) else: logits = tf.keras.layers.Dense(vocab_size, activation=None)(projected) return tf.keras.Model(inputs=inputs, outputs=logits)
{ "content_hash": "9003a03ac11ee3863daed7a66cc4c45f", "timestamp": "", "source": "github", "line_count": 73, "max_line_length": 80, "avg_line_length": 41.945205479452056, "alnum_prop": 0.705421293272371, "repo_name": "tensorflow/federated", "id": "acdc9bf0ca9100b18429c5373f03675db8dec0ec", "size": "3639", "binary": false, "copies": "1", "ref": "refs/heads/main", "path": "tensorflow_federated/python/simulation/baselines/stackoverflow/word_prediction_models.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "C++", "bytes": "729470" }, { "name": "Dockerfile", "bytes": "1983" }, { "name": "Python", "bytes": "6700736" }, { "name": "Shell", "bytes": "7123" }, { "name": "Starlark", "bytes": "387382" } ], "symlink_target": "" }
def assert_nearly_equal(left, right, precision=7, message=None): """Asserts that left is equal to right up to precision digits""" condition = round(abs(left - right), precision) == 0 if message is not None: assert condition, message else: assert condition
{ "content_hash": "49befc24ee355af70b56545da15ea2e9", "timestamp": "", "source": "github", "line_count": 7, "max_line_length": 68, "avg_line_length": 41.142857142857146, "alnum_prop": 0.6701388888888888, "repo_name": "Benjamin-Marks/mit-tab", "id": "ecdb7d6b38eecd96c6aa3f11802979d900b808f4", "size": "289", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "mittab/libs/tests/assertion.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "17627" }, { "name": "HTML", "bytes": "58720" }, { "name": "JavaScript", "bytes": "13545" }, { "name": "Makefile", "bytes": "364" }, { "name": "Python", "bytes": "253153" } ], "symlink_target": "" }
__version__ = '17.11' from .base import DAL from .objects import Field from .helpers.classes import SQLCustomType from .helpers.methods import geoPoint, geoLine, geoPolygon
{ "content_hash": "ce0490223e6ecea768ebc590a47d922d", "timestamp": "", "source": "github", "line_count": 6, "max_line_length": 58, "avg_line_length": 29, "alnum_prop": 0.7816091954022989, "repo_name": "xiang12835/python_web", "id": "5964d36488a35f34c1ae2547042b0dbede755785", "size": "174", "binary": false, "copies": "3", "ref": "refs/heads/master", "path": "py2_web2py/web2py/gluon/packages/dal/pydal/__init__.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "HTML", "bytes": "3341" }, { "name": "Python", "bytes": "17420" } ], "symlink_target": "" }
import unittest from wsgid.core import parser from wsgid.core.parser import CommandLineOption, BOOL, INT, STRING, LIST import wsgid.conf import sys import signal import platform from mock import patch from wsgid.commands import * class ParserTest(unittest.TestCase): def setUp(self): wsgid.conf.settings = None ''' Test if we correctly parse options added by sub-commands --no-daemon is added by the config command ''' def test_parse_aditional_options(self): sys.argv[1:] = ['--no-debug', '--app-path=/tmp'] opts = parser.parse_options() self.assertTrue(opts.no_debug) def test_parse_aditional_options_py26(self): with patch('platform.python_version'): platform.python_version.return_value = '2.6' # Call the parser sys.argv[1:] = ['--no-debug', '--app-path=/tmp'] opts = parser.parse_options() self.assertTrue(opts.no_debug) ''' Tests that the default signal os 15 (SIGTERM) ''' def test_default_signal(self): sys.argv[1:] = ['--app-path=/tmp'] opts = parser.parse_options() self.assertEquals(signal.SIGTERM, opts.send_signal) def test_parse_workers_as_integer(self): with patch('platform.python_version'): platform.python_version.return_value = '2.7.1' sys.argv[1:] = ['--workers=4'] opts = parser.parse_options() self.assertEquals(4, opts.workers) def test_parse_default_workers_as_integer(self): with patch('platform.python_version'): platform.python_version.return_value = '2.7.1' sys.argv[1:] = [] opts = parser.parse_options() self.assertEquals(1, opts.workers) def test_parse_forced_django_app(self): sys.argv[1:] = ['--app-path=/tmp', '--django'] opts = parser.parse_options() self.assertTrue(wsgid.conf.settings.django) def test_parse_forced_django_defaults_to_false(self): sys.argv[1:] = ['--app-path=/tmp'] opts = parser.parse_options() self.assertFalse(wsgid.conf.settings.django) ''' Ensure we save the parsed options at wsgid.conf.settings ''' def test_write_conf_settings(self): sys.argv[1:] = ['--app-path=/tmp', '--debug', '--no-daemon'] self.assertTrue(wsgid.conf.settings is None) opts = parser.parse_options() self.assertTrue(wsgid.conf.settings is not None) self.assertEquals('/tmp', wsgid.conf.settings.app_path) self.assertTrue(wsgid.conf.settings.debug) self.assertTrue(wsgid.conf.settings.no_daemon) def test_no_parse_twice(self): sys.argv[1:] = ['--app-path=/tmp', '--debug'] opts = parser.parse_options() self.assertTrue(wsgid.conf.settings is not None) self.assertEquals('/tmp', wsgid.conf.settings.app_path) self.assertTrue(wsgid.conf.settings.debug) sys.argv[1:] = ['--app-path=/tmp/2', '--debug', '--recv=tcp://127.0.0.1:9000'] parser.parse_options() self.assertEquals(None, wsgid.conf.settings.recv) self.assertEquals('/tmp', wsgid.conf.settings.app_path) def test_app_path_defaults_to_pwd(self): sys.argv[1:] = [] with patch('os.getcwd') as cwd: cwd.return_value = '/my/path' opts = parser.parse_options() self.assertEquals('/my/path', opts.app_path) class CommandLineOptionTest(unittest.TestCase): def test_bool_default_true(self): opt = CommandLineOption(name="debug", type = BOOL, dest = 'debug', default_value = True) self.assertEquals('--debug', opt.name) self.assertEquals('store_true', opt.action) self.assertEquals('debug', opt.dest) def test_bool_default_false(self): opt = CommandLineOption(name="no-debug", type = BOOL, dest = 'nodebug', default_value = False) self.assertEquals('--no-debug', opt.name) self.assertEquals('store_false', opt.action) self.assertEquals('nodebug', opt.dest) def test_default_dest(self): opt = CommandLineOption(name="no-debug", type = BOOL, default_value = False) self.assertEquals('--no-debug', opt.name) self.assertEquals('store_false', opt.action) self.assertEquals('no_debug', opt.dest) def test_default_action(self): opt = CommandLineOption(name="no-debug", default_value = False) self.assertEquals('store', opt.action) def test_bool_correct_type(self): opt = CommandLineOption(name="no-debug", type = BOOL, default_value = False) self.assertEquals(bool, opt.type) def test_int_correct_type(self): opt = CommandLineOption(name="workers", type = INT) self.assertEquals(int, opt.type)
{ "content_hash": "b8ecf74ea9ec444f84a6e25bc867d535", "timestamp": "", "source": "github", "line_count": 135, "max_line_length": 98, "avg_line_length": 33.01481481481481, "alnum_prop": 0.672425398249944, "repo_name": "daltonmatos/wsgid", "id": "952f7a7312fd9e83d1a4d81e39bae89eeecb6d80", "size": "4461", "binary": false, "copies": "1", "ref": "refs/heads/develop", "path": "tests/unit/parser_test.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "Python", "bytes": "150087" }, { "name": "Shell", "bytes": "195" } ], "symlink_target": "" }
from django.conf.urls import url from . import views """ L'application tournament affiche le dernier tournois actif (different de archived or comming) dans cette page est affiche * 2 onglets : equipe et resultats * un bouton pour choisir un autre tournoi """ urlpatterns = [ url( r'^$', views.tournament_list, name='tournament_list' ), url( r'^tournaments/$', views.tournament_list, name='tournament_list' ), url( r'^tournaments/(?P<tournament_id>[0-9]+)/$', views.tournament_detail, name = "tournament_detail" ), #rl( r'^tournaments/(?P<tournament_id>[0-9]+)/match_add/$', views.match_add, name='match_add' ), # TODO url( r'^tournament/(?P<tournament_id>[0-9]+)/team_add/$', views.team_add_to, name='team_add_to' ), url( r'^teams/$', views.team_list, name="team_list" ), #rl( r'^teams/add/$', views.team_add, name='team_add' ), #url( r'^team/team_add/$', views.team_add, name='team_add' ), url( r'^teams/(?P<team_id>[0-9]+)/$', views.team_detail, name = "team_detail" ), url( r'^matchs/$', views.match_list, name='match_list' ), url( r'^matchs/(?P<match_id>[0-9]+)/$', views.match_detail, name = "match_detail" ), ]
{ "content_hash": "c3c177e246516bed01c1aef7f17e9c18", "timestamp": "", "source": "github", "line_count": 23, "max_line_length": 109, "avg_line_length": 50.56521739130435, "alnum_prop": 0.6423043852106621, "repo_name": "cedlerouge/betwit", "id": "3941a0f85f64c9b2450a6010075c4cf2b3c0973b", "size": "1163", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "tournaments/urls.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "CSS", "bytes": "179301" }, { "name": "Dockerfile", "bytes": "140" }, { "name": "HTML", "bytes": "129068" }, { "name": "JavaScript", "bytes": "289518" }, { "name": "Python", "bytes": "98253" }, { "name": "SCSS", "bytes": "65612" }, { "name": "Shell", "bytes": "2004" } ], "symlink_target": "" }
from __future__ import absolute_import, unicode_literals import json from datetime import datetime, timedelta import six from django.conf.urls import url, include from django.core.exceptions import ImproperlyConfigured from django.http import QueryDict from django.utils import six from django.test import TestCase, SimpleTestCase, override_settings from haystack.query import SearchQuerySet from rest_framework import serializers from rest_framework.fields import CharField, IntegerField from rest_framework.routers import DefaultRouter from rest_framework.test import APIRequestFactory, APITestCase from drf_haystack import fields from drf_haystack.serializers import ( HighlighterMixin, HaystackSerializer, HaystackSerializerMixin, HaystackFacetSerializer, HaystackSerializerMeta) from drf_haystack.viewsets import HaystackViewSet from drf_haystack.mixins import MoreLikeThisMixin, FacetMixin from .mixins import WarningTestCaseMixin from .mockapp.models import MockPerson, MockAllField from .mockapp.search_indexes import MockPersonIndex, MockPetIndex, MockAllFieldIndex factory = APIRequestFactory() # More like this stuff class SearchPersonMLTSerializer(HaystackSerializer): more_like_this = serializers.HyperlinkedIdentityField(view_name="search-person-mlt-more-like-this", read_only=True) class Meta: index_classes = [MockPersonIndex] fields = ["firstname", "lastname", "full_name"] class SearchPersonMLTViewSet(MoreLikeThisMixin, HaystackViewSet): serializer_class = SearchPersonMLTSerializer class Meta: index_models = [MockPerson] # Faceting stuff class SearchPersonFSerializer(HaystackSerializer): class Meta: index_classes = [MockPersonIndex] fields = ["firstname", "lastname", "full_name"] class SearchPersonFacetSerializer(HaystackFacetSerializer): serialize_objects = True class Meta: index_classes = [MockPersonIndex] fields = ["firstname", "lastname", "created"] field_options = { "firstname": {}, "lastname": {}, "created": { "start_date": datetime.now() - timedelta(days=10 * 365), "end_date": datetime.now(), "gap_by": "month", "gap_amount": 1 } } class SearchPersonFacetViewSet(FacetMixin, HaystackViewSet): serializer_class = SearchPersonFSerializer facet_serializer_class = SearchPersonFacetSerializer class Meta: index_models = [MockPerson] router = DefaultRouter() router.register("search-person-mlt", viewset=SearchPersonMLTViewSet, base_name="search-person-mlt") router.register("search-person-facet", viewset=SearchPersonFacetViewSet, base_name="search-person-facet") urlpatterns = [ url(r"^", include(router.urls)) ] class HaystackSerializerTestCase(WarningTestCaseMixin, TestCase): fixtures = ["mockperson", "mockpet"] def setUp(self): MockPersonIndex().reindex() MockPetIndex().reindex() class Serializer1(HaystackSerializer): integer_field = serializers.IntegerField() city = serializers.CharField() class Meta: index_classes = [MockPersonIndex] fields = ["text", "firstname", "lastname", "autocomplete"] def get_integer_field(self, obj): return 1 def get_city(self, obj): return "Declared overriding field" class Serializer2(HaystackSerializer): class Meta: index_classes = [MockPersonIndex] exclude = ["firstname"] class Serializer3(HaystackSerializer): class Meta: index_classes = [MockPersonIndex] fields = ["text", "firstname", "lastname", "autocomplete"] ignore_fields = ["autocomplete"] class Serializer7(HaystackSerializer): class Meta: index_classes = [MockPetIndex] class ViewSet1(HaystackViewSet): serializer_class = Serializer1 class Meta: index_models = [MockPerson] self.serializer1 = Serializer1 self.serializer2 = Serializer2 self.serializer3 = Serializer3 self.serializer7 = Serializer7 self.view1 = ViewSet1 def tearDown(self): MockPersonIndex().clear() def test_serializer_raise_without_meta_class(self): try: class Serializer(HaystackSerializer): pass self.fail("Did not fail when defining a Serializer without a Meta class") except ImproperlyConfigured as e: self.assertEqual(str(e), "%s must implement a Meta class or have the property _abstract" % "Serializer") def test_serializer_gets_default_instance(self): serializer = self.serializer1(instance=None) self.assertIsInstance(serializer.instance, SearchQuerySet, "Did not get default instance of type SearchQuerySet") def test_serializer_get_fields(self): obj = SearchQuerySet().filter(lastname="Foreman")[0] serializer = self.serializer1(instance=obj) fields = serializer.get_fields() self.assertIsInstance(fields, dict) self.assertIsInstance(fields["integer_field"], IntegerField) self.assertIsInstance(fields["text"], CharField) self.assertIsInstance(fields["firstname"], CharField) self.assertIsInstance(fields["lastname"], CharField) self.assertIsInstance(fields["autocomplete"], CharField) def test_serializer_get_fields_with_exclude(self): obj = SearchQuerySet().filter(lastname="Foreman")[0] serializer = self.serializer2(instance=obj) fields = serializer.get_fields() self.assertIsInstance(fields, dict) self.assertIsInstance(fields["text"], CharField) self.assertIsInstance(fields["lastname"], CharField) self.assertIsInstance(fields["autocomplete"], CharField) self.assertFalse("firstname" in fields) def test_serializer_get_fields_with_ignore_fields(self): obj = SearchQuerySet().filter(lastname="Foreman")[0] serializer = self.serializer3(instance=obj) fields = serializer.get_fields() self.assertIsInstance(fields, dict) self.assertIsInstance(fields["text"], CharField) self.assertIsInstance(fields["firstname"], CharField) self.assertIsInstance(fields["lastname"], CharField) self.assertFalse("autocomplete" in fields) def test_serializer_boolean_field(self): dog = self.serializer7(instance=SearchQuerySet().filter(species="Dog")[0]) iguana = self.serializer7(instance=SearchQuerySet().filter(species="Iguana")[0]) self.assertTrue(dog.data["has_rabies"]) self.assertFalse(iguana.data["has_rabies"]) class HaystackSerializerAllFieldsTestCase(TestCase): fixtures = ["mockallfield"] def setUp(self): MockAllFieldIndex().reindex() class Serializer1(HaystackSerializer): class Meta: index_classes = [MockAllFieldIndex] fields = ["charfield", "integerfield", "floatfield", "decimalfield", "boolfield", "datefield", "datetimefield", "multivaluefield"] self.serializer1 = Serializer1 def test_serialize_field_is_correct_type(self): obj = SearchQuerySet().models(MockAllField).latest('datetimefield') serializer = self.serializer1(instance=obj, many=False) self.assertIsInstance(serializer.fields['charfield'], fields.HaystackCharField) self.assertIsInstance(serializer.fields['integerfield'], fields.HaystackIntegerField) self.assertIsInstance(serializer.fields['floatfield'], fields.HaystackFloatField) self.assertIsInstance(serializer.fields['decimalfield'], fields.HaystackDecimalField) self.assertIsInstance(serializer.fields['boolfield'], fields.HaystackBooleanField) self.assertIsInstance(serializer.fields['datefield'], fields.HaystackDateField) self.assertIsInstance(serializer.fields['datetimefield'], fields.HaystackDateTimeField) self.assertIsInstance(serializer.fields['multivaluefield'], fields.HaystackMultiValueField) class HaystackSerializerMultipleIndexTestCase(WarningTestCaseMixin, TestCase): fixtures = ["mockperson", "mockpet"] def setUp(self): MockPersonIndex().reindex() MockPetIndex().reindex() class Serializer1(HaystackSerializer): """ Regular multiple index serializer """ class Meta: index_classes = [MockPersonIndex, MockPetIndex] fields = ["text", "firstname", "lastname", "name", "species", "autocomplete"] class Serializer2(HaystackSerializer): """ Multiple index serializer with declared fields """ _MockPersonIndex__hair_color = serializers.CharField() extra = serializers.IntegerField() class Meta: index_classes = [MockPersonIndex, MockPetIndex] exclude = ["firstname"] def get__MockPersonIndex__hair_color(self): return "black" def get_extra(self): return 1 class Serializer3(HaystackSerializer): """ Multiple index serializer with index aliases """ class Meta: index_classes = [MockPersonIndex, MockPetIndex] exclude = ["firstname"] index_aliases = { 'mockapp.MockPersonIndex': 'People' } class ViewSet1(HaystackViewSet): serializer_class = Serializer1 class ViewSet2(HaystackViewSet): serializer_class = Serializer2 class ViewSet3(HaystackViewSet): serializer_class = Serializer3 self.serializer1 = Serializer1 self.serializer2 = Serializer2 self.serializer3 = Serializer3 self.view1 = ViewSet1 self.view2 = ViewSet2 self.view3 = ViewSet3 def tearDown(self): MockPersonIndex().clear() MockPetIndex().clear() def test_serializer_multiple_index_data(self): objs = SearchQuerySet().filter(text="John") serializer = self.serializer1(instance=objs, many=True) data = serializer.data self.assertEqual(len(data), 4) for result in data: if "name" in result: self.assertTrue("species" in result, "Pet results should have 'species' and 'name' fields") self.assertTrue("firstname" not in result, "Pet results should have 'species' and 'name' fields") self.assertTrue("lastname" not in result, "Pet results should have 'species' and 'name' fields") elif "firstname" in result: self.assertTrue("lastname" in result, "Person results should have 'firstname' and 'lastname' fields") self.assertTrue("name" not in result, "Person results should have 'firstname' and 'lastname' fields") self.assertTrue("species" not in result, "Person results should have 'firstname' and 'lastname' fields") else: self.fail("Result should contain either Pet or Person fields") def test_serializer_multiple_index_declared_fields(self): objs = SearchQuerySet().filter(text="John") serializer = self.serializer2(instance=objs, many=True) data = serializer.data self.assertEqual(len(data), 4) for result in data: if "name" in result: self.assertTrue("extra" in result, "'extra' should be present in Pet results") self.assertTrue("hair_color" not in result, "'hair_color' should not be present in Pet results") elif "lastname" in result: self.assertTrue("extra" in result, "'extra' should be present in Person results") self.assertTrue("hair_color" in result, "'hair_color' should be present in Person results") else: self.fail("Result should contain either Pet or Person fields") class HaystackSerializerHighlighterMixinTestCase(WarningTestCaseMixin, TestCase): fixtures = ["mockperson"] def setUp(self): MockPersonIndex().reindex() class Serializer2(HighlighterMixin, HaystackSerializer): highlighter_html_tag = "div" highlighter_css_class = "my-fancy-highlighter" highlighter_field = "description" class Meta: index_classes = [MockPersonIndex] fields = ["firstname", "lastname", "description"] class Serializer3(Serializer2): highlighter_class = None class ViewSet1(HaystackViewSet): serializer_class = Serializer2 class ViewSet2(HaystackViewSet): serializer_class = Serializer3 self.view1 = ViewSet1 self.view2 = ViewSet2 def tearDown(self): MockPersonIndex().clear() def test_serializer_highlighting(self): request = factory.get(path="/", data={"firstname": "jeremy"}, content_type="application/json") response = self.view1.as_view(actions={"get": "list"})(request) response.render() for result in json.loads(response.content.decode()): self.assertTrue("highlighted" in result) self.assertEqual( result["highlighted"], " ".join(('<%(tag)s class="%(css_class)s">Jeremy</%(tag)s>' % { "tag": self.view1.serializer_class.highlighter_html_tag, "css_class": self.view1.serializer_class.highlighter_css_class }, "%s" % "is a nice chap!")) ) def test_serializer_highlighter_raise_no_highlighter_class(self): request = factory.get(path="/", data={"firstname": "jeremy"}, content_type="application/json") try: self.view2.as_view(actions={"get": "list"})(request) self.fail("Did not raise ImproperlyConfigured error when called without a serializer_class") except ImproperlyConfigured as e: self.assertEqual( str(e), "%(cls)s is missing a highlighter_class. Define %(cls)s.highlighter_class, " "or override %(cls)s.get_highlighter()." % {"cls": self.view2.serializer_class.__name__} ) @override_settings(ROOT_URLCONF="tests.test_serializers") class HaystackSerializerMoreLikeThisTestCase(APITestCase): fixtures = ["mockperson"] def setUp(self): MockPersonIndex().reindex() def tearDown(self): MockPersonIndex().clear() def test_serializer_more_like_this_link(self): response = self.client.get( path="/search-person-mlt/", data={"firstname": "odysseus", "lastname": "cooley"}, format="json" ) self.assertEqual( response.data, [{ "lastname": "Cooley", "full_name": "Odysseus Cooley", "firstname": "Odysseus", "more_like_this": "http://testserver/search-person-mlt/18/more-like-this/" }] ) @override_settings(ROOT_URLCONF="tests.test_serializers") class HaystackFacetSerializerTestCase(TestCase): fixtures = ["mockperson"] def setUp(self): MockPersonIndex().reindex() self.response = self.client.get( path="/search-person-facet/facets/", data={}, format="json" ) def tearDown(self): MockPersonIndex().clear() @staticmethod def build_absolute_uri(location): """ Builds an absolute URI using the test server's domain and the specified location. """ location = location.lstrip("/") return "http://testserver/{location}".format(location=location) @staticmethod def is_paginated_facet_response(response): """ Returns True if the response.data seems like a faceted result. Only works for responses created with the test client. """ return "objects" in response.data and \ all([k in response.data["objects"] for k in ("count", "next", "previous", "results")]) def test_serializer_facet_top_level_structure(self): for key in ("fields", "dates", "queries"): self.assertContains(self.response, key, count=1) def test_serializer_facet_field_result(self): fields = self.response.data["fields"] for field in ("firstname", "lastname"): self.assertTrue(field in fields) self.assertTrue(isinstance(fields[field], list)) firstname = fields["firstname"][0] self.assertTrue({"text", "count", "narrow_url"} <= set(firstname)) self.assertEqual( firstname["narrow_url"], self.build_absolute_uri("/search-person-facet/facets/?selected_facets=firstname_exact%3A{term}".format( term=firstname["text"])) ) lastname = fields["lastname"][0] self.assertTrue({"text", "count", "narrow_url"} <= set(lastname)) self.assertEqual( lastname["narrow_url"], self.build_absolute_uri("/search-person-facet/facets/?selected_facets=lastname_exact%3A{term}".format( term=lastname["text"] )) ) def test_serializer_facet_date_result(self): dates = self.response.data["dates"] self.assertTrue("created" in dates) self.assertEqual(len(dates["created"]), 1) created = dates["created"][0] self.assertTrue(all([k in created for k in ("text", "count", "narrow_url")])) self.assertEqual(created["text"], "2015-05-01T00:00:00Z") self.assertEqual(created["count"], 100) self.assertEqual( created["narrow_url"], self.build_absolute_uri("/search-person-facet/facets/?selected_facets=created_exact%3A2015-05-01+00%3A00%3A00") ) def test_serializer_facet_queries_result(self): # Not Implemented pass def test_serializer_facet_narrow(self): response = self.client.get( path="/search-person-facet/facets/", data=QueryDict("selected_facets=firstname_exact:John&selected_facets=lastname_exact:McClane"), format="json" ) self.assertEqual(response.data["queries"], {}) self.assertTrue([all(("firstname", "lastname" in response.data["fields"]))]) self.assertEqual(len(response.data["fields"]["firstname"]), 1) self.assertEqual(response.data["fields"]["firstname"][0]["text"], "John") self.assertEqual(response.data["fields"]["firstname"][0]["count"], 1) self.assertEqual( response.data["fields"]["firstname"][0]["narrow_url"], self.build_absolute_uri("/search-person-facet/facets/?selected_facets=firstname_exact%3AJohn" "&selected_facets=lastname_exact%3AMcClane") ) self.assertEqual(len(response.data["fields"]["lastname"]), 1) self.assertEqual(response.data["fields"]["lastname"][0]["text"], "McClane") self.assertEqual(response.data["fields"]["lastname"][0]["count"], 1) self.assertEqual( response.data["fields"]["lastname"][0]["narrow_url"], self.build_absolute_uri("/search-person-facet/facets/?selected_facets=firstname_exact%3AJohn" "&selected_facets=lastname_exact%3AMcClane") ) self.assertTrue("created" in response.data["dates"]) self.assertEqual(len(response.data["dates"]), 1) self.assertEqual(response.data["dates"]["created"][0]["text"], "2015-05-01T00:00:00Z") self.assertEqual(response.data["dates"]["created"][0]["count"], 1) self.assertEqual( response.data["dates"]["created"][0]["narrow_url"], self.build_absolute_uri("/search-person-facet/facets/?selected_facets=created_exact%3A2015-05-01+00%3A00%3A00" "&selected_facets=firstname_exact%3AJohn&selected_facets=lastname_exact%3AMcClane" ) ) def test_serializer_raise_without_meta_class(self): try: class FacetSerializer(HaystackFacetSerializer): pass self.fail("Did not fail when defining a Serializer without a Meta class") except ImproperlyConfigured as e: self.assertEqual(str(e), "%s must implement a Meta class or have the property _abstract" % "FacetSerializer") class HaystackSerializerMixinTestCase(WarningTestCaseMixin, TestCase): fixtures = ["mockperson"] def setUp(self): MockPersonIndex().reindex() class MockPersonSerializer(serializers.ModelSerializer): class Meta: model = MockPerson fields = ('id', 'firstname', 'lastname', 'created', 'updated') read_only_fields = ('created', 'updated') class Serializer1(HaystackSerializerMixin, MockPersonSerializer): class Meta(MockPersonSerializer.Meta): search_fields = ['text', ] class Viewset1(HaystackViewSet): serializer_class = Serializer1 self.serializer1 = Serializer1 self.viewset1 = Viewset1 def tearDown(self): MockPersonIndex().clear() def test_serializer_mixin(self): objs = SearchQuerySet().filter(text="Foreman") serializer = self.serializer1(instance=objs, many=True) self.assertEqual( json.loads(json.dumps(serializer.data)), [{ "id": 1, "firstname": "Abel", "lastname": "Foreman", "created": "2015-05-19T10:48:08.686000Z", "updated": "2016-04-24T16:02:59.378000Z" }] ) class HaystackMultiSerializerTestCase(WarningTestCaseMixin, TestCase): fixtures = ["mockperson", "mockpet"] def setUp(self): MockPersonIndex().reindex() MockPetIndex().reindex() class MockPersonSerializer(HaystackSerializer): class Meta: index_classes = [MockPersonIndex] fields = ('text', 'firstname', 'lastname', 'description') class MockPetSerializer(HaystackSerializer): class Meta: index_classes = [MockPetIndex] exclude = ('description', 'autocomplete') class Serializer1(HaystackSerializer): class Meta: serializers = { MockPersonIndex: MockPersonSerializer, MockPetIndex: MockPetSerializer } self.serializer1 = Serializer1 def tearDown(self): MockPersonIndex().clear() MockPetIndex().clear() def test_multi_serializer(self): objs = SearchQuerySet().filter(text="Zane") serializer = self.serializer1(instance=objs, many=True) self.assertEqual( json.loads(json.dumps(serializer.data)), [{ "has_rabies": True, "text": "Zane", "name": "Zane", "species": "Dog" }, { "text": "Zane Griffith\n", "firstname": "Zane", "lastname": "Griffith", "description": "Zane is a nice chap!" }] ) class TestHaystackSerializerMeta(SimpleTestCase): def test_abstract_not_inherited(self): class Base(six.with_metaclass(HaystackSerializerMeta, serializers.Serializer)): _abstract = True def create_subclass(): class Sub(HaystackSerializer): pass self.assertRaises(ImproperlyConfigured, create_subclass) class TestMeta(SimpleTestCase): def test_inheritance(self): """ Tests that Meta fields are correctly overriden by subclasses. """ class Serializer(HaystackSerializer): class Meta: fields = ('overriden_fields',) self.assertEqual(Serializer.Meta.fields, ('overriden_fields',)) def test_default_attrs(self): class Serializer(HaystackSerializer): class Meta: fields = ('overriden_fields',) self.assertEqual(Serializer.Meta.exclude, tuple()) def test_raises_if_fields_and_exclude_defined(self): def create_subclass(): class Serializer(HaystackSerializer): class Meta: fields = ('include_field',) exclude = ('exclude_field',) return Serializer self.assertRaises(ImproperlyConfigured, create_subclass)
{ "content_hash": "26b5750739ad14e501a11d5c052d99dc", "timestamp": "", "source": "github", "line_count": 679, "max_line_length": 123, "avg_line_length": 36.83652430044182, "alnum_prop": 0.6193826963057733, "repo_name": "jannon/drf-haystack", "id": "5cdbdea72213297e67bf5a4b37357ff5efe1afb4", "size": "25098", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "tests/test_serializers.py", "mode": "33188", "license": "mit", "language": [ { "name": "Dockerfile", "bytes": "536" }, { "name": "Python", "bytes": "161158" } ], "symlink_target": "" }
from urllib import urlencode, unquote from urlparse import parse_qs import re, sys, traceback from twisted.internet import defer from twisted.internet.defer import inlineCallbacks from twisted.internet.error import ConnectionRefusedError from twisted.web import http from twisted.web.resource import Resource from twisted.web.server import NOT_DONE_YET from vumi.transports.base import Transport from vumi.utils import http_request_full, normalize_msisdn from vumi import log class MobivateHttpTransport(Transport): tranport_type = 'sms' def mkres(self, cls, publish_func, path_key): resource = cls(self.config, publish_func) self._resources.append(resource) return (resource, "%s/%s" % (self.config['receive_path'], path_key)) @inlineCallbacks def setup_transport(self): log.msg("Setup Mobivate Transport %s" % self.config) super(MobivateHttpTransport, self).setup_transport() self._resources = [] resources = [ self.mkres(MobivateReceiveSMSResource, self.publish_message, "SMSfromMobiles"), self.mkres(MobivateReceiveReceipt, self.publish_delivery_report, "DeliveryReciept") ] self.web_resource = yield self.start_web_resources( resources, self.config['receive_port']) def teardown_transport(self): log.msg("Stop Mobivate Transport") if hasattr(self, 'web_resource'): return self.web_resource.stopListening() @inlineCallbacks def handle_outbound_message(self, message): log.msg("Outbound message %s" % repr(message)) try: params = { 'USER_NAME': self.config['user_name'], 'PASSWORD': self.config['password'], 'ORIGINATOR': message['from_addr'], 'MESSAGE_TEXT': message['content'], 'RECIPIENT': message['to_addr'], 'REFERENCE': message['message_id'] } encoded_params = urlencode(params) log.msg('Hitting %s with %s' % (self.config['url'], encoded_params)) response = yield http_request_full( "%s?%s" % (self.config['url'], encoded_params), headers={'User-Agent': ['Vumi Mobivate Transport'], 'Content-Type': ['application/json;charset=UTF-8'], }, method='GET') if response.code == http.OK: response_content = response.delivered_body.split("\n") response_status = response_content[0] response_msg = response_content[1] if len(response_content) > 1 else '' if (response_status in ['0', '1']): yield self.publish_ack( user_message_id=message['message_id'], sent_message_id=message['message_id']) else: reason = "SERVICE ERROR %s - %s" % (response_status, response_msg) log.error(reason) yield self.publish_nack(message['message_id'], reason) else: reason = "HTTP ERROR %s - %s" % (response.code, response.delivered_body) log.error(reason) yield self.publish_nack(message['message_id'], reason) except Exception as ex: exc_type, exc_value, exc_traceback = sys.exc_info() log.error( "TRANSPORT ERROR: %r" % traceback.format_exception(exc_type, exc_value, exc_traceback)) reason = "TRANSPORT ERROR %s" % (ex.message) yield self.publish_nack(message['message_id'], reason) class MobivateReceiveSMSResource(Resource): isLeaf = True def __init__(self, config, publish_func): log.msg("Init ReceiveSMSResource %s" % (config)) self.config = config self.publish_func = publish_func self.transport_name = self.config['transport_name'] @inlineCallbacks def do_render(self, request): log.msg('got hit with %s' % request.args) request.setResponseCode(http.OK) request.setHeader('Content-Type', 'text/plain') try: yield self.publish_func( transport_name=self.transport_name, transport_type='sms', to_addr=request.args['RECIPIENT'][0], from_addr=request.args['ORIGINATOR'][0], content=request.args['MESSAGE_TEXT'][0], transport_metadata={}) request.write('0') except Exception, e: request.setResponseCode(http.INTERNAL_SERVER_ERROR) log.msg("Error processing the request: %s" % (request,)) request.finish() def render(self, request): self.do_render(request) return NOT_DONE_YET class MobivateReceiveReceipt(Resource): isLeaf = True def __init__(self, config, publish_func): log.msg("Init ReceiveSMSResource %s" % (config)) self.config = config self.publish_func = publish_func self.transport_name = self.config['transport_name'] @inlineCallbacks def do_render(self, request): log.msg('got hit with %s' % request.args) request.setResponseCode(http.OK) request.setHeader('Content-Type', 'text/plain') try: yield self.publish_func( user_message_id=request.args['REFERENCE'][0], delivery_status='delivered') request.write('0') except Exception, e: request.setResponseCode(http.INTERNAL_SERVER_ERROR) log.msg("Error processing the request: %s" % (request,)) request.finish() def render(self, request): self.do_render(request) return NOT_DONE_YET
{ "content_hash": "a37d82ce7a50f0294404b2d34719f807", "timestamp": "", "source": "github", "line_count": 152, "max_line_length": 91, "avg_line_length": 39.01973684210526, "alnum_prop": 0.5759568369583544, "repo_name": "texttochange/vusion-backend", "id": "695c7101d8f9a7ce5a03c861f15a8e5a466e2ebd", "size": "5931", "binary": false, "copies": "1", "ref": "refs/heads/develop", "path": "transports/mobivate_malawi/mobivate_http.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "JavaScript", "bytes": "1510" }, { "name": "Python", "bytes": "1204678" }, { "name": "Shell", "bytes": "798" } ], "symlink_target": "" }
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from .. import base # Module API def extract_source(record): source = { 'id': 'gsk', 'name': 'GlaxoSmithKline', 'type': 'register', 'source_url': 'http://www.gsk.com', 'terms_and_conditions_url': 'http://www.gsk.com/en-gb/terms-of-use', } return source def extract_trial(record): # Get identifiers identifiers = base.helpers.clean_identifiers({ 'nct': record['clinicaltrials_gov_identifier'], 'gsk': record['study_id'], }) # Get public title public_title = base.helpers.get_optimal_title( record['study_title'], record['official_study_title'], record['study_id'], ) # Get status and recruitment status statuses = { None: [None, None], 'Active, not recruiting': ['ongoing', 'not_recruiting'], 'Active not recruiting': ['ongoing', 'not_recruiting'], 'Completed': ['complete', 'not_recruiting'], 'Not yet recruiting': ['ongoing', 'not_recruiting'], 'Recruiting': ['ongoing', 'recruiting'], 'Suspended': ['suspended', 'not_recruiting'], 'Terminated': ['terminated', 'not_recruiting'], 'Withdrawn': ['withdrawn', 'not_recruiting'], } status, recruitment_status = statuses[record.get('study_recruitment_status')] # Get gender gender = None if record['gender']: gender = record['gender'].lower() # Get has_published_results has_published_results = False if record['protocol_id']: has_published_results = True # Get study_phase study_phase = base.normalizers.get_normalized_phase(record['phase']) trial = { 'identifiers': identifiers, 'registration_date': record['first_received'], 'public_title': public_title, 'brief_summary': record['brief_summary'], 'scientific_title': record['official_study_title'], 'description': record['detailed_description'], 'status': status, 'recruitment_status': recruitment_status, 'eligibility_criteria': { 'criteria': record['eligibility_criteria'], }, 'target_sample_size': record['enrollment'], 'first_enrollment_date': record['study_start_date'], 'study_type': record['study_type'], 'study_design': record['study_design'], 'study_phase': study_phase, 'primary_outcomes': record['primary_outcomes'], 'secondary_outcomes': record['secondary_outcomes'], 'gender': gender, 'has_published_results': has_published_results, 'last_verification_date': record['record_verification_date'], } return trial def extract_conditions(record): conditions = [] for element in record['conditions'] or []: conditions.append({ 'name': element, }) return conditions def extract_interventions(record): interventions = [] return interventions def extract_locations(record): locations = [] return locations def extract_organisations(record): organisations = [] return organisations def extract_persons(record): persons = [] return persons def extract_documents(record): documents = [] results_url = record.get('results_url') if results_url: document = { 'name': 'Results', 'source_url': results_url, } documents.append(document) return documents def extract_document_category(record): return base.config.DOCUMENT_CATEGORIES['clinical_study_report']
{ "content_hash": "a1adc021606aa54876bd2821b43774bb", "timestamp": "", "source": "github", "line_count": 132, "max_line_length": 81, "avg_line_length": 28.053030303030305, "alnum_prop": 0.6138266270591413, "repo_name": "arthurSena/processors", "id": "906fc6e7ff63a9d4ce2ec3c3d02d993443312f38", "size": "3727", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "processors/gsk/extractors.py", "mode": "33188", "license": "mit", "language": [ { "name": "Makefile", "bytes": "414" }, { "name": "Python", "bytes": "253590" } ], "symlink_target": "" }
__author__ = 'root' from django.conf.urls import patterns, include, url urlpatterns = patterns('', # Examples: # url(r'^telco_billing/', include('telco_billing.urls'), name='home'), # url(r'^blog/', include('blog.urls')), url(r'^home/$', 'wedding.views.index' , name='index-page'), )
{ "content_hash": "15807c0062b2435cc6a0be3e242f51ee", "timestamp": "", "source": "github", "line_count": 14, "max_line_length": 74, "avg_line_length": 21.857142857142858, "alnum_prop": 0.6111111111111112, "repo_name": "harshittrivedi78/hotel_listing", "id": "aa5782865c821b9c7389c23565b5330d2bcefb9b", "size": "306", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "myproject/wedding/urls.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "CSS", "bytes": "959022" }, { "name": "HTML", "bytes": "1584548" }, { "name": "JavaScript", "bytes": "4087475" }, { "name": "PHP", "bytes": "1742" }, { "name": "Python", "bytes": "12432" } ], "symlink_target": "" }
'''Autogenerated by xml_generate script, do not edit!''' from OpenGL import platform as _p, arrays # Code generation uses this from OpenGL.raw.WGL import _types as _cs # End users want this... from OpenGL.raw.WGL._types import * from OpenGL.raw.WGL import _errors from OpenGL.constant import Constant as _C import ctypes _EXTENSION_NAME = 'WGL_NV_DX_interop2' def _f( function ): return _p.createFunction( function,_p.PLATFORM.WGL,'WGL_NV_DX_interop2',error_checker=_errors._error_checker)
{ "content_hash": "9ea100a6ec9658292c0e5f6717675603", "timestamp": "", "source": "github", "line_count": 15, "max_line_length": 113, "avg_line_length": 33.13333333333333, "alnum_prop": 0.7464788732394366, "repo_name": "alexus37/AugmentedRealityChess", "id": "7f602b3bf435d8ce878cc374884d763acaf31335", "size": "497", "binary": false, "copies": "6", "ref": "refs/heads/master", "path": "pythonAnimations/pyOpenGLChess/engineDirectory/oglc-env/lib/python2.7/site-packages/OpenGL/raw/WGL/NV/DX_interop2.py", "mode": "33188", "license": "mit", "language": [ { "name": "C", "bytes": "158062" }, { "name": "C++", "bytes": "267993" }, { "name": "CMake", "bytes": "11319" }, { "name": "Fortran", "bytes": "3707" }, { "name": "Makefile", "bytes": "14618" }, { "name": "Python", "bytes": "12813086" }, { "name": "Roff", "bytes": "3310" }, { "name": "Shell", "bytes": "3855" } ], "symlink_target": "" }
import cv2 import numpy as np import tensorflow as tf import os import argparse from tensorpack import * from tensorpack.utils import viz from tensorpack.tfutils.scope_utils import auto_reuse_variable_scope, under_name_scope from tensorpack.tfutils import optimizer, summary, gradproc from tensorpack.dataflow import dataset from GAN import GANTrainer, GANModelDesc """ To train: ./InfoGAN-mnist.py To visualize: ./InfoGAN-mnist.py --sample --load path/to/model A pretrained model is at http://models.tensorpack.com/GAN/ """ BATCH = 128 # latent space is cat(10) x uni(2) x noise(NOISE_DIM) NUM_CLASS = 10 NUM_UNIFORM = 2 DIST_PARAM_DIM = NUM_CLASS + NUM_UNIFORM NOISE_DIM = 62 # prior: the assumption how the latent factors are presented in the dataset DIST_PRIOR_PARAM = [1.] * NUM_CLASS + [0.] * NUM_UNIFORM def shapeless_placeholder(x, axis, name): """ Make the static shape of a tensor less specific. If you want to feed to a tensor, the shape of the feed value must match the tensor's static shape. This function creates a placeholder which defaults to x if not fed, but has a less specific static shape than x. See also `tensorflow#5680 <https://github.com/tensorflow/tensorflow/issues/5680>`_. Args: x: a tensor axis(int or list of ints): these axes of ``x.get_shape()`` will become None in the output. name(str): name of the output tensor Returns: a tensor equal to x, but shape information is partially cleared. """ shp = x.get_shape().as_list() if not isinstance(axis, list): axis = [axis] for a in axis: if shp[a] is None: raise ValueError("Axis {} of shape {} is already unknown!".format(a, shp)) shp[a] = None x = tf.placeholder_with_default(x, shape=shp, name=name) return x def get_distributions(vec_cat, vec_uniform): cat = tf.distributions.Categorical(logits=vec_cat, validate_args=True, name='cat') uni = tf.distributions.Normal(vec_uniform, scale=1., validate_args=True, allow_nan_stats=False, name='uni_a') return cat, uni def entropy_from_samples(samples, vec): """ Estimate H(x|s) ~= -E_{x \sim P(x|s)}[\log Q(x|s)], where x are samples, and Q is parameterized by vec. """ samples_cat = tf.argmax(samples[:, :NUM_CLASS], axis=1, output_type=tf.int32) samples_uniform = samples[:, NUM_CLASS:] cat, uniform = get_distributions(vec[:, :NUM_CLASS], vec[:, NUM_CLASS:]) def neg_logprob(dist, sample, name): nll = -dist.log_prob(sample) # average over batch return tf.reduce_sum(tf.reduce_mean(nll, axis=0), name=name) entropies = [neg_logprob(cat, samples_cat, 'nll_cat'), neg_logprob(uniform, samples_uniform, 'nll_uniform')] return entropies @under_name_scope() def sample_prior(batch_size): cat, _ = get_distributions(DIST_PRIOR_PARAM[:NUM_CLASS], DIST_PRIOR_PARAM[NUM_CLASS:]) sample_cat = tf.one_hot(cat.sample(batch_size), NUM_CLASS) """ OpenAI official code actually models the "uniform" latent code as a Gaussian distribution, but obtain the samples from a uniform distribution. """ sample_uni = tf.random_uniform([batch_size, NUM_UNIFORM], -1, 1) samples = tf.concat([sample_cat, sample_uni], axis=1) return samples class Model(GANModelDesc): def inputs(self): return [tf.placeholder(tf.float32, (None, 28, 28), 'input')] def generator(self, z): l = FullyConnected('fc0', z, 1024, activation=BNReLU) l = FullyConnected('fc1', l, 128 * 7 * 7, activation=BNReLU) l = tf.reshape(l, [-1, 7, 7, 128]) l = Conv2DTranspose('deconv1', l, 64, 4, 2, activation=BNReLU) l = Conv2DTranspose('deconv2', l, 1, 4, 2, activation=tf.identity) l = tf.sigmoid(l, name='gen') return l @auto_reuse_variable_scope def discriminator(self, imgs): with argscope(Conv2D, kernel_size=4, strides=2): l = (LinearWrap(imgs) .Conv2D('conv0', 64) .tf.nn.leaky_relu() .Conv2D('conv1', 128) .BatchNorm('bn1') .tf.nn.leaky_relu() .FullyConnected('fc1', 1024) .BatchNorm('bn2') .tf.nn.leaky_relu()()) logits = FullyConnected('fct', l, 1) encoder = (LinearWrap(l) .FullyConnected('fce1', 128) .BatchNorm('bne') .tf.nn.leaky_relu() .FullyConnected('fce-out', DIST_PARAM_DIM)()) return logits, encoder def build_graph(self, real_sample): real_sample = tf.expand_dims(real_sample, -1) # sample the latent code: zc = shapeless_placeholder(sample_prior(BATCH), 0, name='z_code') z_noise = shapeless_placeholder( tf.random_uniform([BATCH, NOISE_DIM], -1, 1), 0, name='z_noise') z = tf.concat([zc, z_noise], 1, name='z') with argscope([Conv2D, Conv2DTranspose, FullyConnected], kernel_initializer=tf.truncated_normal_initializer(stddev=0.02)): with tf.variable_scope('gen'): fake_sample = self.generator(z) fake_sample_viz = tf.cast((fake_sample) * 255.0, tf.uint8, name='viz') tf.summary.image('gen', fake_sample_viz, max_outputs=30) # may need to investigate how bn stats should be updated across two discrim with tf.variable_scope('discrim'): real_pred, _ = self.discriminator(real_sample) fake_pred, dist_param = self.discriminator(fake_sample) """ Mutual information between x (i.e. zc in this case) and some information s (the generated samples in this case): I(x;s) = H(x) - H(x|s) = H(x) + E[\log P(x|s)] The distribution from which zc is sampled, in this case, is set to a fixed prior already. So the first term is a constant. For the second term, we can maximize its variational lower bound: E_{x \sim P(x|s)}[\log Q(x|s)] where Q(x|s) is a proposal distribution to approximate P(x|s). Here, Q(x|s) is assumed to be a distribution which shares the form of P, and whose parameters are predicted by the discriminator network. """ with tf.name_scope("mutual_information"): with tf.name_scope('prior_entropy'): cat, uni = get_distributions(DIST_PRIOR_PARAM[:NUM_CLASS], DIST_PRIOR_PARAM[NUM_CLASS:]) ents = [cat.entropy(name='cat_entropy'), tf.reduce_sum(uni.entropy(), name='uni_entropy')] entropy = tf.add_n(ents, name='total_entropy') # Note that the entropy of prior is a constant. The paper mentioned it but didn't use it. with tf.name_scope('conditional_entropy'): cond_ents = entropy_from_samples(zc, dist_param) cond_entropy = tf.add_n(cond_ents, name="total_entropy") MI = tf.subtract(entropy, cond_entropy, name='mutual_information') summary.add_moving_summary(entropy, cond_entropy, MI, *cond_ents) # default GAN objective self.build_losses(real_pred, fake_pred) # subtract mutual information for latent factors (we want to maximize them) self.g_loss = tf.subtract(self.g_loss, MI, name='total_g_loss') self.d_loss = tf.subtract(self.d_loss, MI, name='total_d_loss') summary.add_moving_summary(self.g_loss, self.d_loss) # distinguish between variables of generator and discriminator updates self.collect_variables() def optimizer(self): lr = tf.get_variable('learning_rate', initializer=2e-4, dtype=tf.float32, trainable=False) opt = tf.train.AdamOptimizer(lr, beta1=0.5, epsilon=1e-6) # generator learns 5 times faster return optimizer.apply_grad_processors( opt, [gradproc.ScaleGradient(('gen/.*', 5))]) def get_data(): ds = ConcatData([dataset.Mnist('train'), dataset.Mnist('test')]) ds = BatchData(ds, BATCH) ds = MapData(ds, lambda dp: [dp[0]]) # only use the image return ds def sample(model_path): pred = OfflinePredictor(PredictConfig( session_init=get_model_loader(model_path), model=Model(), input_names=['z_code', 'z_noise'], output_names=['gen/viz'])) # sample all one-hot encodings (10 times) z_cat = np.tile(np.eye(10), [10, 1]) # sample continuos variables from -2 to +2 as mentioned in the paper z_uni = np.linspace(-2.0, 2.0, num=100) z_uni = z_uni[:, None] IMG_SIZE = 400 while True: # only categorical turned on z_noise = np.random.uniform(-1, 1, (100, NOISE_DIM)) zc = np.concatenate((z_cat, z_uni * 0, z_uni * 0), axis=1) o = pred(zc, z_noise)[0] viz1 = viz.stack_patches(o, nr_row=10, nr_col=10) viz1 = cv2.resize(viz1, (IMG_SIZE, IMG_SIZE)) # show effect of first continous variable with fixed noise zc = np.concatenate((z_cat, z_uni, z_uni * 0), axis=1) o = pred(zc, z_noise * 0)[0] viz2 = viz.stack_patches(o, nr_row=10, nr_col=10) viz2 = cv2.resize(viz2, (IMG_SIZE, IMG_SIZE)) # show effect of second continous variable with fixed noise zc = np.concatenate((z_cat, z_uni * 0, z_uni), axis=1) o = pred(zc, z_noise * 0)[0] viz3 = viz.stack_patches(o, nr_row=10, nr_col=10) viz3 = cv2.resize(viz3, (IMG_SIZE, IMG_SIZE)) canvas = viz.stack_patches( [viz1, viz2, viz3], nr_row=1, nr_col=3, border=5, bgcolor=(255, 0, 0)) viz.interactive_imshow(canvas) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--gpu', help='comma separated list of GPU(s) to use.') parser.add_argument('--load', help='load model') parser.add_argument('--sample', action='store_true', help='visualize the space of the 10 latent codes') args = parser.parse_args() if args.gpu: os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu if args.sample: BATCH = 100 sample(args.load) else: logger.auto_set_dir() GANTrainer(QueueInput(get_data()), Model()).train_with_defaults( callbacks=[ModelSaver(keep_checkpoint_every_n_hours=0.1)], steps_per_epoch=500, max_epoch=100, session_init=SaverRestore(args.load) if args.load else None )
{ "content_hash": "99d9a30054056bc1219af669b8183fb9", "timestamp": "", "source": "github", "line_count": 275, "max_line_length": 113, "avg_line_length": 38.68, "alnum_prop": 0.6075961267274608, "repo_name": "eyaler/tensorpack", "id": "19be093c97c3a4e410007d162f97b56ca3ac6f56", "size": "10728", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "examples/GAN/InfoGAN-mnist.py", "mode": "33261", "license": "apache-2.0", "language": [ { "name": "Python", "bytes": "742109" }, { "name": "Shell", "bytes": "1775" } ], "symlink_target": "" }
__author__ = 'kohlmannj' from copy import copy, deepcopy import os import Ity import DocuscopeDictionary from DocuscopeCSVDictionary import DocuscopeCSVDictionary from Ity.Tokenizers import Tokenizer from Ity.Taggers import Tagger import time class DocuscopeTagger(Tagger): """ DocuscopeTagger uses an implementation of the Docuscope rule-matching algorithm to apply rules ("lats") from the Docucsope dictionary (by Kaufer and Ishizaki of Carnegie Mellon University). The dictionary maps rule names to one or more "phrases", which themselves are one or more words ("we") or "word classes" ("!ROYALWE"). These rules may also include punctuation characters. The algorithm prioritizes the longest rules, so it applies the rule for which there appears the longest contiguous subset of matching words, given a starting token from a text. If the Docuscope dictionary does not contain an applicable long rule, it provides additional "short" rules that apply for single words (or punctuation characters, in theory). This Tagger excludes whitespace and newline characters, but does so in a way that such tokens are simply passed. There is the potential for erroneous long rule applications in cases where a long rule may be matched across a newline token, for example. Most of the time, the structure of the Docuscope dictionary's rules and the structure of the document itself should prevent this from happening often. (That is, a long rule matching "who goes there" could not be applied to "who goes.\n\nThere" because the period ending the sentence prevents the rule from being applied.) The long rule application algorithm is based on the original one written by Michael Gleicher in his DocuscopeJr module. DocuscopeTagger may be instantiated with an alternative `dictionary_path`, which refers to either a folder containing Docuscope-style plain text files with rule and word class specifications, or a CSV file specifying rule and word class specifications. If `None` is provided, DocuscopeTagger defaults to the "stock" Docuscope dictionary, which is not publicly available at this time. """ def __init__( self, debug=False, label="", excluded_token_types=( Tokenizer.TYPES["WHITESPACE"], Tokenizer.TYPES["NEWLINE"] ), untagged_rule_name=None, unrecognized_rule_name=None, excluded_rule_name=None, return_untagged_tags=False, return_unrecognized_tags=False, return_excluded_tags=False, return_included_tags=False, allow_overlapping_tags=False, dictionary_path=None, blacklist=[], return_tag_maps=False, ): super(DocuscopeTagger, self).__init__( debug=debug, label=label, excluded_token_types=excluded_token_types, untagged_rule_name=untagged_rule_name, unrecognized_rule_name=unrecognized_rule_name, excluded_rule_name=excluded_rule_name, return_untagged_tags=return_untagged_tags, return_unrecognized_tags=return_unrecognized_tags, return_excluded_tags=return_excluded_tags, return_included_tags=return_included_tags, blacklist=blacklist, return_tag_maps=return_tag_maps ) # Set blacklist self.blacklist = blacklist self.return_tag_maps = return_tag_maps # This is a weird setting self.allow_overlapping_tags = allow_overlapping_tags # Allow DocuscopeTagger to be initialized with a different path to the Docuscope dictionary. if dictionary_path is not None and os.path.exists(dictionary_path): self.dictionary_path = dictionary_path # Swizzle the dictionary filename into this instance's label. self._label += "." + os.path.basename(dictionary_path) if self.return_excluded_tags: self._label += "." + "return_excluded_tags" if self.allow_overlapping_tags: self._label += "." + "allow_overlapping_tags" elif dictionary_path is not None and os.path.exists(os.path.join(Ity.dictionaries_root, 'Docuscope', dictionary_path)): self.dictionary_path = os.path.join(Ity.dictionaries_root, 'Docuscope', dictionary_path) self._label += '.' + dictionary_path # If the given dictionary path is invalid, use the following default value. else: # lf.write("swapped to default at 102"+ '\n') self.dictionary_path = os.path.join(Ity.dictionaries_root, "Docuscope/default") # Swizzle ".default" into this instance's label. self._label += ".default" # Is this dictionary a folder? if os.path.isdir(self.dictionary_path): # Cool, use DocuscopeDictionary.getDict to load that dictionary. self._ds_dict = DocuscopeDictionary.getDict(self.dictionary_path) # Is the dictionary a file with the extension ".csv"? elif os.path.isfile(self.dictionary_path) and os.path.splitext(self.dictionary_path)[1] == ".csv": # Load the Dictionary with a TopicModelDictionary. self._ds_dict = DocuscopeCSVDictionary(rules_filename=self.dictionary_path) self._ds_dict._load_rules() # lf.close() def _get_ds_words_for_token(self, token, case_sensitive=False): # Get all the str representations of this token. token_strs = token[Tokenizer.INDEXES["STRS"]] # Try to find a matching Docuscope token while we still have # token_strs to try with. ds_words = [] for token_str in token_strs: if not case_sensitive: token_str = token_str.lower() # UnicodeWarning previously happened here when this was a try / KeyError block if token_str in self._ds_dict.words: ds_words = self._ds_dict.words[token_str] return ds_words def _get_ds_words_for_token_index(self, token_index, case_sensitive=False): try: token = self.tokens[token_index] if token[0][0] in self.blacklist: return [] return self._get_ds_words_for_token(token, case_sensitive) except IndexError: return [] def _get_long_rule_tag(self): rule = copy(Tagger.empty_rule) tag = deepcopy(Tagger.empty_tag) # Is this token's type one that is excluded? if self.tokens[self.token_index][Tokenizer.INDEXES["TYPE"]] in self.excluded_token_types: # Early return, then. return None, None # Is there a next token? next_token_index = self._get_nth_next_included_token_index() if next_token_index is None: # Nope, no next token, so we can't look for long rules. return None, None # Oh good, there's a next token. Go find the longest rule, then. # This algorithm below is based on Mike Gleicher's DocuscopeJr tagger. best_ds_rule = None best_ds_lat = None best_ds_rule_len = 0 for token_ds_word in self._get_ds_words_for_token_index(self.token_index): try: rule_dict = self._ds_dict.rules[token_ds_word] for next_token_ds_word in self._get_ds_words_for_token_index(next_token_index): try: # for the rd[nw] for ds_lat, ds_rule in rule_dict[next_token_ds_word]: # check to see if the rule applies ds_rule_len = len(ds_rule) if ds_rule_len > best_ds_rule_len and self._long_rule_applies_at_token_index(ds_rule): # keep the "best" rule best_ds_rule = ds_rule best_ds_lat = ds_lat best_ds_rule_len = ds_rule_len except KeyError: pass except KeyError: pass if best_ds_rule is not None and best_ds_rule_len > 0: # Update the rule structure. rule["name"] = best_ds_lat rule["full_name"] = best_ds_lat # Update the tag structure. last_token_index = self._get_nth_next_included_token_index(n=best_ds_rule_len - 1) tag.update( rules=[ (rule["name"], best_ds_rule) ], index_start=self.token_index, index_end=last_token_index, pos_start=self.tokens[self.token_index][Tokenizer.INDEXES["POS"]], pos_end=self.tokens[last_token_index][Tokenizer.INDEXES["POS"]], len=tag["index_end"] - tag["index_start"] + 1, token_end_len=self.tokens[last_token_index][Tokenizer.INDEXES["LENGTH"]], num_included_tokens=best_ds_rule_len ) # Okay, do we have a valid tag and tag to return? (That's the best rule). if self._is_valid_rule(rule) and self._is_valid_tag(tag): # Return the best rule's rule and tag. return rule, tag else: # No long rule applies. return None, None def _long_rule_applies_at_token_index(self, rule): try: # Get the next token index so that the first reassignment to # next_token_index in the loop references the 3rd token in the rule. next_token_index = self._get_nth_next_included_token_index() for i in range(2, len(rule)): next_token_index = self._get_nth_next_included_token_index(starting_token_index=next_token_index) if next_token_index is None or not (rule[i] in self._get_ds_words_for_token_index(next_token_index)): return False # Made it out of the loop? Then the rule applies! return next_token_index except IndexError: return False def _get_short_rule_tag(self): rule = copy(Tagger.empty_rule) # Some data for the current token. token = self.tokens[self.token_index] token_ds_words = self._get_ds_words_for_token(token) # Update some information in tag right away for this one-token tag. tag = deepcopy(Tagger.empty_tag) tag.update( index_start=self.token_index, index_end=self.token_index, pos_start=token[Tokenizer.INDEXES["POS"]], pos_end=token[Tokenizer.INDEXES["POS"]], len=1, num_included_tokens=1, token_end_len=token[Tokenizer.INDEXES["LENGTH"]] ) # For words and punctuation... matching_ds_word = None if token[0][0] in self.blacklist: rule["name"] = "!BLACKLISTED" elif token[Tokenizer.INDEXES["TYPE"]] not in self.excluded_token_types: # Try to find a short rule for one of this token's ds_words. for ds_word in token_ds_words: try: # Note: we'll set rule["full_name"] later. rule["name"] = self._ds_dict.shortRules[ds_word] matching_ds_word = ds_word break except KeyError: continue # Handle untagged tokens (words and punctuation that # exist in the Docuscope dictionary's words dict but do not have # an applicable rule). if rule["name"] is None: for ds_word in token_ds_words: if ds_word in self._ds_dict.words: rule["name"] = self.untagged_rule_name break # Still don't have a rule? # Handle !UNRECOGNIZED tokens---tokens that do not exist in the dictionary. if rule["name"] is None: rule["name"] = self.unrecognized_rule_name # For excluded token types...uh, they're excluded. else: rule["name"] = self.excluded_rule_name # For all cases, we should have a rule "name" by now. # Update the rule's full_name value and append a rule tuple to the # tag's "rules" list. if "name" in rule and type(rule["name"]) is str: rule["full_name"] = rule["name"] rule_tuple = (rule["full_name"], matching_ds_word) tag["rules"].append(rule_tuple) # self._get_tag() will validate the returned rule and tag. return rule, tag def _get_tag(self): # Try finding a long rule. rule, tag = self._get_long_rule_tag() # If the long rule and tag are invalid (i.e. we got None and None), try finding a short rule. if not self._is_valid_rule(rule) and not self._is_valid_tag(tag): # Try finding a short rule (which could be the "untagged", # "no rule", or "excluded" rules). This method *should* never # return None, None (but technically it can). rule, tag = self._get_short_rule_tag() # We should absolutely have a valid rule and tag at this point. if not self._is_valid_rule(rule) or not self._is_valid_tag(tag): raise ValueError("Unexpected None, None return value/s from\ self._get_short_rule_tag(). Can't tag token '%s' at index %u." % ( self.tokens[self.token_index], self.token_index )) # Add the rule to self.rules (if we're supposed to) and add the tag to # self.tags. if self._should_return_rule(rule): # Is this the first time we've seen this rule? if rule["full_name"] not in self.rules: rule["num_tags"] = 1 rule["num_included_tokens"] = tag["num_included_tokens"] self.rules[rule["name"]] = rule # We've seen this rule already, but update its num_tags count. else: self.rules[rule["name"]]["num_tags"] += 1 self.rules[rule["name"]]["num_included_tokens"] += tag["num_included_tokens"] # Append the tag to self.tags. if self.return_tag_maps: self.tags.append(tag) # Debug: print the tokens that have been tagged. if self.debug: tag_token_strs = [] for token in self.tokens[tag["index_start"]:(tag["index_end"] + 1)]: tag_token_strs.append(token[Tokenizer.INDEXES["STRS"]][-1]) print ">>> BEST RULE: %s for \"%s\"" % ( rule["name"], str(tag_token_strs) ) # Compute the new token index. # If "overlapping tags" are allowed, start at the token following # the **first** token in the tag we just finished making. if self.allow_overlapping_tags: self.token_index = tag["index_start"] + 1 # Otherwise, start at the token following the **last** token in the # tag we just finished making. else: self.token_index = tag["index_end"] + 1 def tag(self, tokens): # Several helper methods need access to the tokens. self.tokens = tokens self.token_index = 0 # Loop through the tokens and tag them. while self.token_index < len(self.tokens) and self.token_index is not None: if self.debug: print "\nPassing self.tokens[%u] = %s" % (self.token_index, str(self.tokens[self.token_index])) self._get_tag() # All done, so let's do some cleanup. rules = self.rules tags = self.tags # Clear this instance's tokens, rules, and tags. # (This is an attempt to free up memory a bit earlier.) self.tokens = [] self.rules = {} self.tags = [] # Return the goods. if self.return_tag_maps: return rules, tags else: return rules
{ "content_hash": "1ae3886e9892091b6c93a2b5d922c99c", "timestamp": "", "source": "github", "line_count": 338, "max_line_length": 127, "avg_line_length": 48.01775147928994, "alnum_prop": 0.5863832409118915, "repo_name": "uwgraphics/Ubiqu-Ity", "id": "57e3e19b90d67971a1ceb3790e1ca6d341a4243d", "size": "16245", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "Ity/Taggers/DocuscopeTagger/DocuscopeTagger.py", "mode": "33188", "license": "bsd-2-clause", "language": [ { "name": "Batchfile", "bytes": "5090" }, { "name": "CSS", "bytes": "604180" }, { "name": "HTML", "bytes": "750751" }, { "name": "JavaScript", "bytes": "381542" }, { "name": "Makefile", "bytes": "10123" }, { "name": "Python", "bytes": "348678" }, { "name": "Ruby", "bytes": "1797" } ], "symlink_target": "" }
import sys import pyrfa p = pyrfa.Pyrfa() p.createConfigDb("./pyrfa.cfg") p.setDebugMode(False) p.acquireSession("Session3") p.createOMMConsumer() p.login() p.directoryRequest() p.dictionaryRequest() p.historyRequest("tANZ.AX") count = 0 while not p.isHistoryRefreshComplete(): for u in p.dispatchEventQueue(): if count == 1: print(u['SERVICE'] + " - " + u['RIC']) print("-----------------------") for k,v in u.items(): sys.stdout.write(k+',') print("") for k,v in u.items(): sys.stdout.write(str(v)+',') elif count > 1: for k,v in u.items(): sys.stdout.write(str(v)+',') count += 1 print("") print("\n\n########## total history records: %s ###################\n\n" % (count - 1))
{ "content_hash": "174119241fc59d152df8b7e48a938437", "timestamp": "", "source": "github", "line_count": 32, "max_line_length": 87, "avg_line_length": 26.25, "alnum_prop": 0.5, "repo_name": "devcartel/pyrfa", "id": "04df1992a66ddbca846956ad53f9a1dbba7cae76", "size": "1258", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "examples/history.py", "mode": "33261", "license": "mit", "language": [ { "name": "C", "bytes": "1884" }, { "name": "C++", "bytes": "940595" }, { "name": "Python", "bytes": "2071" } ], "symlink_target": "" }
from boto.pyami.config import Config, BotoConfigLocations from boto.storage_uri import BucketStorageUri, FileStorageUri import boto.plugin import os, re, sys import logging import logging.config import urlparse from boto.exception import InvalidUriError __version__ = '2.4.1' Version = __version__ # for backware compatibility UserAgent = 'Boto/%s (%s)' % (__version__, sys.platform) config = Config() def init_logging(): for file in BotoConfigLocations: try: logging.config.fileConfig(os.path.expanduser(file)) except: pass class NullHandler(logging.Handler): def emit(self, record): pass log = logging.getLogger('boto') log.addHandler(NullHandler()) init_logging() # convenience function to set logging to a particular file def set_file_logger(name, filepath, level=logging.INFO, format_string=None): global log if not format_string: format_string = "%(asctime)s %(name)s [%(levelname)s]:%(message)s" logger = logging.getLogger(name) logger.setLevel(level) fh = logging.FileHandler(filepath) fh.setLevel(level) formatter = logging.Formatter(format_string) fh.setFormatter(formatter) logger.addHandler(fh) log = logger def set_stream_logger(name, level=logging.DEBUG, format_string=None): global log if not format_string: format_string = "%(asctime)s %(name)s [%(levelname)s]:%(message)s" logger = logging.getLogger(name) logger.setLevel(level) fh = logging.StreamHandler() fh.setLevel(level) formatter = logging.Formatter(format_string) fh.setFormatter(formatter) logger.addHandler(fh) log = logger def connect_sqs(aws_access_key_id=None, aws_secret_access_key=None, **kwargs): """ :type aws_access_key_id: string :param aws_access_key_id: Your AWS Access Key ID :type aws_secret_access_key: string :param aws_secret_access_key: Your AWS Secret Access Key :rtype: :class:`boto.sqs.connection.SQSConnection` :return: A connection to Amazon's SQS """ from boto.sqs.connection import SQSConnection return SQSConnection(aws_access_key_id, aws_secret_access_key, **kwargs) def connect_s3(aws_access_key_id=None, aws_secret_access_key=None, **kwargs): """ :type aws_access_key_id: string :param aws_access_key_id: Your AWS Access Key ID :type aws_secret_access_key: string :param aws_secret_access_key: Your AWS Secret Access Key :rtype: :class:`boto.s3.connection.S3Connection` :return: A connection to Amazon's S3 """ from boto.s3.connection import S3Connection return S3Connection(aws_access_key_id, aws_secret_access_key, **kwargs) def connect_gs(gs_access_key_id=None, gs_secret_access_key=None, **kwargs): """ @type gs_access_key_id: string @param gs_access_key_id: Your Google Cloud Storage Access Key ID @type gs_secret_access_key: string @param gs_secret_access_key: Your Google Cloud Storage Secret Access Key @rtype: L{GSConnection<boto.gs.connection.GSConnection>} @return: A connection to Google's Storage service """ from boto.gs.connection import GSConnection return GSConnection(gs_access_key_id, gs_secret_access_key, **kwargs) def connect_ec2(aws_access_key_id=None, aws_secret_access_key=None, **kwargs): """ :type aws_access_key_id: string :param aws_access_key_id: Your AWS Access Key ID :type aws_secret_access_key: string :param aws_secret_access_key: Your AWS Secret Access Key :rtype: :class:`boto.ec2.connection.EC2Connection` :return: A connection to Amazon's EC2 """ from boto.ec2.connection import EC2Connection return EC2Connection(aws_access_key_id, aws_secret_access_key, **kwargs) def connect_elb(aws_access_key_id=None, aws_secret_access_key=None, **kwargs): """ :type aws_access_key_id: string :param aws_access_key_id: Your AWS Access Key ID :type aws_secret_access_key: string :param aws_secret_access_key: Your AWS Secret Access Key :rtype: :class:`boto.ec2.elb.ELBConnection` :return: A connection to Amazon's Load Balancing Service """ from boto.ec2.elb import ELBConnection return ELBConnection(aws_access_key_id, aws_secret_access_key, **kwargs) def connect_autoscale(aws_access_key_id=None, aws_secret_access_key=None, **kwargs): """ :type aws_access_key_id: string :param aws_access_key_id: Your AWS Access Key ID :type aws_secret_access_key: string :param aws_secret_access_key: Your AWS Secret Access Key :rtype: :class:`boto.ec2.autoscale.AutoScaleConnection` :return: A connection to Amazon's Auto Scaling Service """ from boto.ec2.autoscale import AutoScaleConnection return AutoScaleConnection(aws_access_key_id, aws_secret_access_key, **kwargs) def connect_cloudwatch(aws_access_key_id=None, aws_secret_access_key=None, **kwargs): """ :type aws_access_key_id: string :param aws_access_key_id: Your AWS Access Key ID :type aws_secret_access_key: string :param aws_secret_access_key: Your AWS Secret Access Key :rtype: :class:`boto.ec2.cloudwatch.CloudWatchConnection` :return: A connection to Amazon's EC2 Monitoring service """ from boto.ec2.cloudwatch import CloudWatchConnection return CloudWatchConnection(aws_access_key_id, aws_secret_access_key, **kwargs) def connect_sdb(aws_access_key_id=None, aws_secret_access_key=None, **kwargs): """ :type aws_access_key_id: string :param aws_access_key_id: Your AWS Access Key ID :type aws_secret_access_key: string :param aws_secret_access_key: Your AWS Secret Access Key :rtype: :class:`boto.sdb.connection.SDBConnection` :return: A connection to Amazon's SDB """ from boto.sdb.connection import SDBConnection return SDBConnection(aws_access_key_id, aws_secret_access_key, **kwargs) def connect_fps(aws_access_key_id=None, aws_secret_access_key=None, **kwargs): """ :type aws_access_key_id: string :param aws_access_key_id: Your AWS Access Key ID :type aws_secret_access_key: string :param aws_secret_access_key: Your AWS Secret Access Key :rtype: :class:`boto.fps.connection.FPSConnection` :return: A connection to FPS """ from boto.fps.connection import FPSConnection return FPSConnection(aws_access_key_id, aws_secret_access_key, **kwargs) def connect_mturk(aws_access_key_id=None, aws_secret_access_key=None, **kwargs): """ :type aws_access_key_id: string :param aws_access_key_id: Your AWS Access Key ID :type aws_secret_access_key: string :param aws_secret_access_key: Your AWS Secret Access Key :rtype: :class:`boto.mturk.connection.MTurkConnection` :return: A connection to MTurk """ from boto.mturk.connection import MTurkConnection return MTurkConnection(aws_access_key_id, aws_secret_access_key, **kwargs) def connect_cloudfront(aws_access_key_id=None, aws_secret_access_key=None, **kwargs): """ :type aws_access_key_id: string :param aws_access_key_id: Your AWS Access Key ID :type aws_secret_access_key: string :param aws_secret_access_key: Your AWS Secret Access Key :rtype: :class:`boto.fps.connection.FPSConnection` :return: A connection to FPS """ from boto.cloudfront import CloudFrontConnection return CloudFrontConnection(aws_access_key_id, aws_secret_access_key, **kwargs) def connect_vpc(aws_access_key_id=None, aws_secret_access_key=None, **kwargs): """ :type aws_access_key_id: string :param aws_access_key_id: Your AWS Access Key ID :type aws_secret_access_key: string :param aws_secret_access_key: Your AWS Secret Access Key :rtype: :class:`boto.vpc.VPCConnection` :return: A connection to VPC """ from boto.vpc import VPCConnection return VPCConnection(aws_access_key_id, aws_secret_access_key, **kwargs) def connect_rds(aws_access_key_id=None, aws_secret_access_key=None, **kwargs): """ :type aws_access_key_id: string :param aws_access_key_id: Your AWS Access Key ID :type aws_secret_access_key: string :param aws_secret_access_key: Your AWS Secret Access Key :rtype: :class:`boto.rds.RDSConnection` :return: A connection to RDS """ from boto.rds import RDSConnection return RDSConnection(aws_access_key_id, aws_secret_access_key, **kwargs) def connect_emr(aws_access_key_id=None, aws_secret_access_key=None, **kwargs): """ :type aws_access_key_id: string :param aws_access_key_id: Your AWS Access Key ID :type aws_secret_access_key: string :param aws_secret_access_key: Your AWS Secret Access Key :rtype: :class:`boto.emr.EmrConnection` :return: A connection to Elastic mapreduce """ from boto.emr import EmrConnection return EmrConnection(aws_access_key_id, aws_secret_access_key, **kwargs) def connect_sns(aws_access_key_id=None, aws_secret_access_key=None, **kwargs): """ :type aws_access_key_id: string :param aws_access_key_id: Your AWS Access Key ID :type aws_secret_access_key: string :param aws_secret_access_key: Your AWS Secret Access Key :rtype: :class:`boto.sns.SNSConnection` :return: A connection to Amazon's SNS """ from boto.sns import SNSConnection return SNSConnection(aws_access_key_id, aws_secret_access_key, **kwargs) def connect_iam(aws_access_key_id=None, aws_secret_access_key=None, **kwargs): """ :type aws_access_key_id: string :param aws_access_key_id: Your AWS Access Key ID :type aws_secret_access_key: string :param aws_secret_access_key: Your AWS Secret Access Key :rtype: :class:`boto.iam.IAMConnection` :return: A connection to Amazon's IAM """ from boto.iam import IAMConnection return IAMConnection(aws_access_key_id, aws_secret_access_key, **kwargs) def connect_route53(aws_access_key_id=None, aws_secret_access_key=None, **kwargs): """ :type aws_access_key_id: string :param aws_access_key_id: Your AWS Access Key ID :type aws_secret_access_key: string :param aws_secret_access_key: Your AWS Secret Access Key :rtype: :class:`boto.dns.Route53Connection` :return: A connection to Amazon's Route53 DNS Service """ from boto.route53 import Route53Connection return Route53Connection(aws_access_key_id, aws_secret_access_key, **kwargs) def connect_cloudformation(aws_access_key_id=None, aws_secret_access_key=None, **kwargs): """ :type aws_access_key_id: string :param aws_access_key_id: Your AWS Access Key ID :type aws_secret_access_key: string :param aws_secret_access_key: Your AWS Secret Access Key :rtype: :class:`boto.cloudformation.CloudFormationConnection` :return: A connection to Amazon's CloudFormation Service """ from boto.cloudformation import CloudFormationConnection return CloudFormationConnection(aws_access_key_id, aws_secret_access_key, **kwargs) def connect_euca(host=None, aws_access_key_id=None, aws_secret_access_key=None, port=8773, path='/services/Eucalyptus', is_secure=False, **kwargs): """ Connect to a Eucalyptus service. :type host: string :param host: the host name or ip address of the Eucalyptus server :type aws_access_key_id: string :param aws_access_key_id: Your AWS Access Key ID :type aws_secret_access_key: string :param aws_secret_access_key: Your AWS Secret Access Key :rtype: :class:`boto.ec2.connection.EC2Connection` :return: A connection to Eucalyptus server """ from boto.ec2 import EC2Connection from boto.ec2.regioninfo import RegionInfo # Check for values in boto config, if not supplied as args if not aws_access_key_id: aws_access_key_id = config.get('Credentials', 'euca_access_key_id', None) if not aws_secret_access_key: aws_secret_access_key = config.get('Credentials', 'euca_secret_access_key', None) if not host: host = config.get('Boto', 'eucalyptus_host', None) reg = RegionInfo(name='eucalyptus', endpoint=host) return EC2Connection(aws_access_key_id, aws_secret_access_key, region=reg, port=port, path=path, is_secure=is_secure, **kwargs) def connect_ec2_endpoint(url, aws_access_key_id=None, aws_secret_access_key=None, **kwargs): """ Connect to an EC2 Api endpoint. Additional arguments are passed through to connect_ec2. :type url: string :param url: A url for the ec2 api endpoint to connect to :type aws_access_key_id: string :param aws_access_key_id: Your AWS Access Key ID :type aws_secret_access_key: string :param aws_secret_access_key: Your AWS Secret Access Key :rtype: :class:`boto.ec2.connection.EC2Connection` :return: A connection to Eucalyptus server """ from boto.ec2.regioninfo import RegionInfo purl = urlparse.urlparse(url) kwargs['port'] = purl.port kwargs['host'] = purl.hostname kwargs['path'] = purl.path if not 'is_secure' in kwargs: kwargs['is_secure'] = (purl.scheme == "https") kwargs['region'] = RegionInfo(name = purl.hostname, endpoint = purl.hostname) kwargs['aws_access_key_id']=aws_access_key_id kwargs['aws_secret_access_key']=aws_secret_access_key return(connect_ec2(**kwargs)) def connect_walrus(host=None, aws_access_key_id=None, aws_secret_access_key=None, port=8773, path='/services/Walrus', is_secure=False, **kwargs): """ Connect to a Walrus service. :type host: string :param host: the host name or ip address of the Walrus server :type aws_access_key_id: string :param aws_access_key_id: Your AWS Access Key ID :type aws_secret_access_key: string :param aws_secret_access_key: Your AWS Secret Access Key :rtype: :class:`boto.s3.connection.S3Connection` :return: A connection to Walrus """ from boto.s3.connection import S3Connection from boto.s3.connection import OrdinaryCallingFormat # Check for values in boto config, if not supplied as args if not aws_access_key_id: aws_access_key_id = config.get('Credentials', 'euca_access_key_id', None) if not aws_secret_access_key: aws_secret_access_key = config.get('Credentials', 'euca_secret_access_key', None) if not host: host = config.get('Boto', 'walrus_host', None) return S3Connection(aws_access_key_id, aws_secret_access_key, host=host, port=port, path=path, calling_format=OrdinaryCallingFormat(), is_secure=is_secure, **kwargs) def connect_ses(aws_access_key_id=None, aws_secret_access_key=None, **kwargs): """ :type aws_access_key_id: string :param aws_access_key_id: Your AWS Access Key ID :type aws_secret_access_key: string :param aws_secret_access_key: Your AWS Secret Access Key :rtype: :class:`boto.ses.SESConnection` :return: A connection to Amazon's SES """ from boto.ses import SESConnection return SESConnection(aws_access_key_id, aws_secret_access_key, **kwargs) def connect_sts(aws_access_key_id=None, aws_secret_access_key=None, **kwargs): """ :type aws_access_key_id: string :param aws_access_key_id: Your AWS Access Key ID :type aws_secret_access_key: string :param aws_secret_access_key: Your AWS Secret Access Key :rtype: :class:`boto.sts.STSConnection` :return: A connection to Amazon's STS """ from boto.sts import STSConnection return STSConnection(aws_access_key_id, aws_secret_access_key, **kwargs) def connect_ia(ia_access_key_id=None, ia_secret_access_key=None, is_secure=False, **kwargs): """ Connect to the Internet Archive via their S3-like API. :type ia_access_key_id: string :param ia_access_key_id: Your IA Access Key ID. This will also look in your boto config file for an entry in the Credentials section called "ia_access_key_id" :type ia_secret_access_key: string :param ia_secret_access_key: Your IA Secret Access Key. This will also look in your boto config file for an entry in the Credentials section called "ia_secret_access_key" :rtype: :class:`boto.s3.connection.S3Connection` :return: A connection to the Internet Archive """ from boto.s3.connection import S3Connection from boto.s3.connection import OrdinaryCallingFormat access_key = config.get('Credentials', 'ia_access_key_id', ia_access_key_id) secret_key = config.get('Credentials', 'ia_secret_access_key', ia_secret_access_key) return S3Connection(access_key, secret_key, host='s3.us.archive.org', calling_format=OrdinaryCallingFormat(), is_secure=is_secure, **kwargs) def connect_dynamodb(aws_access_key_id=None, aws_secret_access_key=None, **kwargs): """ :type aws_access_key_id: string :param aws_access_key_id: Your AWS Access Key ID :type aws_secret_access_key: string :param aws_secret_access_key: Your AWS Secret Access Key :rtype: :class:`boto.dynamodb.layer2.Layer2` :return: A connection to the Layer2 interface for DynamoDB. """ from boto.dynamodb.layer2 import Layer2 return Layer2(aws_access_key_id, aws_secret_access_key, **kwargs) def connect_swf(aws_access_key_id=None, aws_secret_access_key=None, **kwargs): """ :type aws_access_key_id: string :param aws_access_key_id: Your AWS Access Key ID :type aws_secret_access_key: string :param aws_secret_access_key: Your AWS Secret Access Key :rtype: :class:`boto.swf.layer1.Layer1` :return: A connection to the Layer1 interface for SWF. """ from boto.swf.layer1 import Layer1 return Layer1(aws_access_key_id, aws_secret_access_key, **kwargs) def connect_cloudsearch(aws_access_key_id=None, aws_secret_access_key=None, **kwargs): """ :type aws_access_key_id: string :param aws_access_key_id: Your AWS Access Key ID :type aws_secret_access_key: string :param aws_secret_access_key: Your AWS Secret Access Key :rtype: :class:`boto.ec2.autoscale.CloudSearchConnection` :return: A connection to Amazon's CloudSearch service """ from boto.cloudsearch.layer2 import Layer2 return Layer2(aws_access_key_id, aws_secret_access_key, **kwargs) def check_extensions(module_name, module_path): """ This function checks for extensions to boto modules. It should be called in the __init__.py file of all boto modules. See: http://code.google.com/p/boto/wiki/ExtendModules for details. """ option_name = '%s_extend' % module_name version = config.get('Boto', option_name, None) if version: dirname = module_path[0] path = os.path.join(dirname, version) if os.path.isdir(path): log.info('extending module %s with: %s' % (module_name, path)) module_path.insert(0, path) _aws_cache = {} def _get_aws_conn(service): global _aws_cache conn = _aws_cache.get(service) if not conn: meth = getattr(sys.modules[__name__], 'connect_' + service) conn = meth() _aws_cache[service] = conn return conn def lookup(service, name): global _aws_cache conn = _get_aws_conn(service) obj = _aws_cache.get('.'.join((service, name)), None) if not obj: obj = conn.lookup(name) _aws_cache['.'.join((service, name))] = obj return obj def storage_uri(uri_str, default_scheme='file', debug=0, validate=True, bucket_storage_uri_class=BucketStorageUri, suppress_consec_slashes=True): """ Instantiate a StorageUri from a URI string. :type uri_str: string :param uri_str: URI naming bucket + optional object. :type default_scheme: string :param default_scheme: default scheme for scheme-less URIs. :type debug: int :param debug: debug level to pass in to boto connection (range 0..2). :type validate: bool :param validate: whether to check for bucket name validity. :type bucket_storage_uri_class: BucketStorageUri interface. :param bucket_storage_uri_class: Allows mocking for unit tests. :param suppress_consec_slashes: If provided, controls whether consecutive slashes will be suppressed in key paths. We allow validate to be disabled to allow caller to implement bucket-level wildcarding (outside the boto library; see gsutil). :rtype: :class:`boto.StorageUri` subclass :return: StorageUri subclass for given URI. ``uri_str`` must be one of the following formats: * gs://bucket/name * s3://bucket/name * gs://bucket * s3://bucket * filename The last example uses the default scheme ('file', unless overridden) """ # Manually parse URI components instead of using urlparse.urlparse because # what we're calling URIs don't really fit the standard syntax for URIs # (the latter includes an optional host/net location part). end_scheme_idx = uri_str.find('://') if end_scheme_idx == -1: # Check for common error: user specifies gs:bucket instead # of gs://bucket. Some URI parsers allow this, but it can cause # confusion for callers, so we don't. if uri_str.find(':') != -1: raise InvalidUriError('"%s" contains ":" instead of "://"' % uri_str) scheme = default_scheme.lower() path = uri_str else: scheme = uri_str[0:end_scheme_idx].lower() path = uri_str[end_scheme_idx + 3:] if scheme not in ['file', 's3', 'gs']: raise InvalidUriError('Unrecognized scheme "%s"' % scheme) if scheme == 'file': # For file URIs we have no bucket name, and use the complete path # (minus 'file://') as the object name. is_stream = False if path == '-': is_stream = True return FileStorageUri(path, debug, is_stream) else: path_parts = path.split('/', 1) bucket_name = path_parts[0] if (validate and bucket_name and # Disallow buckets violating charset or not [3..255] chars total. (not re.match('^[a-z0-9][a-z0-9\._-]{1,253}[a-z0-9]$', bucket_name) # Disallow buckets with individual DNS labels longer than 63. or re.search('[-_a-z0-9]{64}', bucket_name))): raise InvalidUriError('Invalid bucket name in URI "%s"' % uri_str) # If enabled, ensure the bucket name is valid, to avoid possibly # confusing other parts of the code. (For example if we didn't # catch bucket names containing ':', when a user tried to connect to # the server with that name they might get a confusing error about # non-integer port numbers.) object_name = '' if len(path_parts) > 1: object_name = path_parts[1] return bucket_storage_uri_class( scheme, bucket_name, object_name, debug, suppress_consec_slashes=suppress_consec_slashes) def storage_uri_for_key(key): """Returns a StorageUri for the given key. :type key: :class:`boto.s3.key.Key` or subclass :param key: URI naming bucket + optional object. """ if not isinstance(key, boto.s3.key.Key): raise InvalidUriError('Requested key (%s) is not a subclass of ' 'boto.s3.key.Key' % str(type(key))) prov_name = key.bucket.connection.provider.get_provider_name() uri_str = '%s://%s/%s' % (prov_name, key.bucket.name, key.name) return storage_uri(uri_str) boto.plugin.load_plugins(config)
{ "content_hash": "17c72be48301dc4b04d1167715f19c3b", "timestamp": "", "source": "github", "line_count": 665, "max_line_length": 89, "avg_line_length": 36.69624060150376, "alnum_prop": 0.656271769864361, "repo_name": "darcyliu/storyboard", "id": "9ae6ccaf7c0425adc4d08412c1aed99c33ce4f3d", "size": "25683", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "boto/__init__.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "57467" }, { "name": "JavaScript", "bytes": "483502" }, { "name": "Python", "bytes": "4223732" }, { "name": "Shell", "bytes": "751" } ], "symlink_target": "" }
from setuptools import setup, find_packages setup( name='fureon', version='0.0', description='Crowd enabled music streamer and library', author='Andy Tran', author_email='[email protected]', url='', packages=find_packages(), include_package_data=True, zip_safe=False, install_requires=[ 'tornado', 'sqlalchemy', 'sqlalchemy_utils', 'mutagen', 'redis', 'passlib', 'psycopg2', 'itsdangerous', ], entry_points={ 'console_scripts': [ 'fureon-start = fureon.app:main', ] } )
{ "content_hash": "29448ab1c126f9f8087a4f7b96c70484", "timestamp": "", "source": "github", "line_count": 28, "max_line_length": 59, "avg_line_length": 21.857142857142858, "alnum_prop": 0.5490196078431373, "repo_name": "ATRAN2/fureon", "id": "f579f2ee7eda43c28e9eba36b7c34aad0502c901", "size": "638", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "backend/setup.py", "mode": "33261", "license": "apache-2.0", "language": [ { "name": "Python", "bytes": "77288" } ], "symlink_target": "" }
"""CouchMail.py imports your mail from an IMAP server into a CouchDB database License: Apache 2.0 - http://opensource.org/licenses/Apache-2.0 """ import calendar from base64 import b64encode from dateutil.parser import parse from couchdb import ResourceConflict def headers(msg): mail = {} for header, value in msg._message.items(): header = header.lower() if header in mail: if isinstance(mail[header], str): mail[header] = [mail[header], value] else: mail[header].append(value) else: mail[header] = value return mail def parts(attachments): parts = {} for (filename, data, content_type) in attachments: parts[filename] = {'content_type': content_type, 'data': b64encode(data)} return parts def truly_unique_id(msg): # TODO: check `date` header existence? if msg.message_id: unique_id = msg.message_id.strip() else: dt = parse(msg.date) unique_id = calendar.timegm(dt.timetuple()) return unique_id def archive_msg(couch, msg): dt = parse(msg.date) hdrs = headers(msg) doc_id = truly_unique_id(msg) base_doc = {'_id': doc_id, 'headers': hdrs, 'date': [dt.year, dt.month, dt.day, dt.hour, dt.minute, dt.second], 'to': msg.to, 'from': msg.from_addr, 'sender': msg.sender, 'cc': msg.cc, 'deliveredto': msg.delivered_to, 'references': msg.references, 'subject': msg.title, 'message': msg.body} # clean out empty values top-level keys doc = dict((k,v) for k, v in base_doc.iteritems() if v) # Add the raw message content for "auditing" doc['_attachments'] = parts(msg.attachments) doc['_attachments']['raw.eml'] = { 'content_type': 'message/rfc822', 'data': b64encode(msg.raw)} if doc_id in couch: doc['_rev'] = couch[doc_id]['_rev'] try: couch.save(doc) if '_rev' in doc: print doc_id + ' updated.' else: print doc_id + ' stored.' except ResourceConflict: print doc_id + ' could not be updated.'
{ "content_hash": "af69f95c263abcce6b89f0eb6c9f2dc0", "timestamp": "", "source": "github", "line_count": 78, "max_line_length": 77, "avg_line_length": 28.78205128205128, "alnum_prop": 0.5661469933184855, "repo_name": "BigBlueHat/couchmail.py", "id": "dd0d480f3c5234f9d1c01b8d89e4878a7877789c", "size": "2246", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "couchmail/couchmail.py", "mode": "33261", "license": "apache-2.0", "language": [ { "name": "CSS", "bytes": "20700" }, { "name": "HTML", "bytes": "7440" }, { "name": "JavaScript", "bytes": "130314" }, { "name": "Python", "bytes": "9071" }, { "name": "Shell", "bytes": "32" } ], "symlink_target": "" }
from __pyversor__.sta import *
{ "content_hash": "60362885849bcab46267873b28fb982c", "timestamp": "", "source": "github", "line_count": 1, "max_line_length": 30, "avg_line_length": 31, "alnum_prop": 0.6774193548387096, "repo_name": "tingelst/pyversor", "id": "e5444bc6936eea4335785329df9bfcc4ce02b3b0", "size": "31", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "pyversor/sta/__init__.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "Batchfile", "bytes": "51" }, { "name": "C++", "bytes": "299962" }, { "name": "CMake", "bytes": "808" }, { "name": "Python", "bytes": "27114" }, { "name": "Shell", "bytes": "71" } ], "symlink_target": "" }
from __future__ import print_function import itertools from collections import OrderedDict import nnabla as nn import numpy as np class NnpNetwork(object): '''A graph object which is read from nnp file. An instance of NnpNetwork is usually created by an NnpLoader instance. See an example usage described in :obj:`NnpLoader`. Attributes: variables (dict): A dict of all variables in a created graph with a variable name as a key, and a nnabla.Variable as a value. inputs (dict): All input variables. outputs (dict): All output variables. ''' def __init__(self, proto_network, batch_size, callback): proto_network = proto_network.expand_loop_control() self.proto_network = proto_network.promote(callback) self.proto_network(batch_size=batch_size) for k, v in itertools.chain( self.proto_network.variables.items(), self.proto_network.parameters.items()): if v.variable_instance is not None: v.variable_instance.name = k self._inputs = { i: self.proto_network.variables[i].variable_instance for i in self.proto_network.inputs } self._outputs = { i: self.proto_network.variables[i].variable_instance for i in self.proto_network.outputs } self._variables = { k: v.variable_instance for k, v in itertools.chain( self.proto_network.variables.items(), self.proto_network.parameters.items()) } # publish network's parameters to current parameter scope # like original implementation. with nn.parameter_scope('', nn.get_current_parameter_scope()): for k, v in self.proto_network.parameters.items(): nn.parameter.set_parameter(k, v.variable_instance) @property def inputs(self): return self._inputs @property def outputs(self): return self._outputs @property def variables(self): return self._variables class NnpLoader(object): '''An NNP file loader. Args: filepath : file-like object or filepath. extension: if filepath is file-like object, extension is one of ".nnp", ".nntxt", ".prototxt". Example: .. code-block:: python from nnabla.utils.nnp_graph import NnpLoader # Read a .nnp file. nnp = NnpLoader('/path/to/nnp.nnp') # Assume a graph `graph_a` is in the nnp file. net = nnp.get_network(network_name, batch_size=1) # `x` is an input of the graph. x = net.inputs['x'] # 'y' is an outputs of the graph. y = net.outputs['y'] # Set random data as input and perform forward prop. x.d = np.random.randn(*x.shape) y.forward(clear_buffer=True) print('output:', y.d) ''' def __init__(self, filepath, scope=None, extension=".nntxt"): # OrderedDict maintains loaded parameters from nnp files. # The loaded parameters will be copied to the current # scope when get_network is called. self._params = scope if scope else OrderedDict() self.g = nn.graph_def.load( filepath, parameter_scope=self._params, rng=np.random.RandomState(1223), extension=extension) self.network_dict = { name: pn for name, pn in self.g.networks.items() } def get_network_names(self): '''Returns network names available. ''' return list(self.network_dict.keys()) def get_network(self, name, batch_size=None, callback=None): '''Create a variable graph given network by name Returns: NnpNetwork ''' return NnpNetwork(self.network_dict[name], batch_size, callback=callback) class NnpNetworkPass(object): def _no_verbose(self, *a, **kw): pass def _verbose(self, *a, **kw): print(*a, **kw) def __init__(self, verbose=0): self._variable_callbacks = {} self._function_callbacks_by_name = {} self._function_callbacks_by_type = {} self._passes_by_name = {} self._passes_by_type = {} self._fix_parameters = False self._use_up_to_variables = set() self.verbose = self._no_verbose self.verbose2 = self._no_verbose if verbose: self.verbose = self._verbose if verbose > 1: self.verbose2 = self._verbose def on_function_pass_by_name(self, name): def _on_function_pass_by_name(callback): def _callback(f, variables, param_scope): return callback(f, variables, param_scope) self._passes_by_name[name] = _callback return _callback return _on_function_pass_by_name def on_function_pass_by_type(self, name): def _on_function_pass_by_type(callback): def _callback(f, variables, param_scope): return callback(f, variables, param_scope) self._passes_by_name[name] = _callback return _callback return _on_function_pass_by_type def on_generate_variable(self, name): def _on_generate_variable(callback): def _callback(v): return callback(v) self._variable_callbacks[name] = _callback return _callback return _on_generate_variable def on_generate_function_by_name(self, name): def _on_generate_function_by_name(callback): def _callback(v): return callback(v) self._function_callbacks_by_name[name] = _callback return _callback return _on_generate_function_by_name def on_generate_function_by_type(self, name): def _on_generate_function_by_type(callback): def _callback(v): return callback(v) self._function_callbacks_by_type[name] = _callback return _callback return _on_generate_function_by_type def drop_function(self, *names): def callback(f, variables, param_scope): self.verbose('Pass: Deleting {}.'.format(f.name)) f.disable() for name in names: self.on_function_pass_by_name(name)(callback) def fix_parameters(self): self._fix_parameters = True def use_up_to(self, *names): self._use_up_to_variables.update(set(names)) def remove_and_rewire(self, name, i=0, o=0): @self.on_function_pass_by_name(name) def on_dr(f, variables, param_scope): fi = f.inputs[i] fo = f.outputs[o] self.verbose('Removing {} and rewire input={} and output={}.'.format( f.name, fi.name, fo.name)) fo.rewire_on(fi) # Use input name fo.proto.name = fi.name def set_variable(self, name, input_var): @self.on_generate_variable(name) def on_input_x(v): self.verbose('Replace {} by {}.'.format(name, input_var)) v.proto.shape.dim[:] = input_var.shape v.variable = input_var input_var.name = v.name return v def force_average_pooling_global(self, name, by_type=False): dec = self.on_generate_function_by_name if by_type: dec = self.on_generate_function_by_type @dec(name) def on_avgpool(f): pool_shape = f.inputs[0].proto.shape.dim[2:] self.verbose('Change strides of {} to {}.'.format( f.name, pool_shape)) p = f.proto.average_pooling_param p.kernel.dim[:] = pool_shape p.stride.dim[:] = pool_shape return f def check_average_pooling_global(self, name, by_type=False): dec = self.on_generate_function_by_name if by_type: dec = self.on_generate_function_by_type @dec(name) def on_avgpool_check(f): pool_shape = f.inputs[0].proto.shape.dim[2:] p = f.proto.average_pooling_param if p.kernel.dim[:] != pool_shape or p.stride.dim[:] != pool_shape: raise ValueError( 'Stride configuration of average pooling is not for global pooling.' ' Given Image shape is {}, whereas pooling window size is {} and its stride is {}.' ' Consider using force_global_pooling=True'.format( pool_shape, p.kernel.dim[:], p.stride.dim[:])) return f def set_batch_normalization_batch_stat_all(self, batch_stat): @self.on_generate_function_by_type('BatchNormalization') def on_bn(f): self.verbose('Setting batch_stat={} at {}.'.format( batch_stat, f.name)) p = f.proto.batch_normalization_param p.batch_stat = batch_stat return f def _apply_function_pass_by_name(self, f, variables, param_scope): if f.name not in self._passes_by_name: return f return self._passes_by_name[f.name](f, variables, param_scope) def _apply_function_pass_by_type(self, f, variables, param_scope): if f.proto.type not in self._passes_by_type: return f return self._passes_by_type[f.proto.type](f, variables, param_scope) def _apply_generate_variable(self, v): if v.name in self._variable_callbacks: v = self._variable_callbacks[v.name](v) if self._fix_parameters: v.need_grad = False return v def _apply_generate_function_by_name(self, f): if f.name not in self._function_callbacks_by_name: return f return self._function_callbacks_by_name[f.name](f) def _apply_generate_function_by_type(self, f): if f.proto.type not in self._function_callbacks_by_type: return f return self._function_callbacks_by_type[f.proto.type](f) def _apply_use_up_to(self, variables): for v in variables: if v.name in self._use_up_to_variables: self.verbose('Stopping at {}.'.format(v.name)) v.stop = True
{ "content_hash": "55c5ad77acec682f52808eb66298a206", "timestamp": "", "source": "github", "line_count": 292, "max_line_length": 105, "avg_line_length": 35.02739726027397, "alnum_prop": 0.581834180680485, "repo_name": "sony/nnabla", "id": "da4ceb81634c515f0b6f34ff728775200e4714ef", "size": "10866", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "python/src/nnabla/utils/nnp_graph.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Batchfile", "bytes": "25938" }, { "name": "C++", "bytes": "2590231" }, { "name": "CMake", "bytes": "35358" }, { "name": "Cython", "bytes": "180959" }, { "name": "Dockerfile", "bytes": "5431" }, { "name": "Jupyter Notebook", "bytes": "540006" }, { "name": "Makefile", "bytes": "24294" }, { "name": "Python", "bytes": "5311538" }, { "name": "Shell", "bytes": "4750" } ], "symlink_target": "" }
import sqlite3 db_name = 'HTMLContent.db' table_name = 'webPageContent' def connectionAndTableDecorator(function): def wrapper(*args, **kwargs): connection = sqlite3.connect(db_name) cursor = connection.cursor() table_create_query = "CREATE TABLE IF NOT EXISTS {} (ID INTEGER PRIMARY KEY, Content TEXT NOT NULL, Name TEXT);".format(table_name) cursor.execute(table_create_query) return_value = function(cursor, *args, **kwargs) connection.commit() connection.close() return return_value return wrapper @connectionAndTableDecorator def queryAll(cursor): query = 'SELECT * FROM {};'.format(table_name) query_results = cursor.execute(query) results_list = convertSQLResultsToList(query_results) return results_list def convertSQLResultsToList(query_results): results_list = [] for item in query_results: results_list.append(item) return results_list @connectionAndTableDecorator def queryContent(cursor, row_ID): query = 'SELECT Content FROM {} WHERE ID = {};'.format(table_name, row_ID) query_results = cursor.execute(query) content = convertSQLResultsToList(query_results)[0][0] return content @connectionAndTableDecorator def insertItem(cursor, content, name): insert = 'INSERT INTO {} (Content, Name) VALUES (?,?);'.format(table_name) values = (content, name) cursor.execute(insert, values) def connectionOnlyDecorator(function, *args, **kwargs): def wrapper(*args, **kwargs): connection = sqlite3.connect(db_name) cursor = connection.cursor() function(cursor, *args, **kwargs) connection.commit() connection.close() return wrapper @connectionOnlyDecorator def dropTable(cursor, table_name): drop_table_query = "DROP TABLE IF EXISTS {};".format(table_name) cursor.execute(drop_table_query) if __name__ == '__main__': #dropTable(table_name) #insertItem('Here is some conent', 'Item number 1') #insertItem('This is the content column', 'Item number 2') #insertItem('This record has None in the name', None) #query_results = queryAll() #print(type(query_results)) #print(query_results) content = queryContent(1) print(type(content)) #print(content)
{ "content_hash": "599d9fd40762f6a999b6f0330f8f0cfa", "timestamp": "", "source": "github", "line_count": 84, "max_line_length": 139, "avg_line_length": 27.61904761904762, "alnum_prop": 0.6724137931034483, "repo_name": "danielharada/HtmlFileGenerator", "id": "817b53595aff2dc9312cb600e032fd785db4df28", "size": "2320", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "sqliteAccessors.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "13077" } ], "symlink_target": "" }
import pandas as pd import os import numpy as np from collections import namedtuple task_status_tuple = namedtuple('task_status_tuple', ['todo', 'doing', 'done']) task_status = task_status_tuple('todo', 'doing', 'done') class project: _tasklist = pd.DataFrame(columns=['workpackage', 'task', 'status', 'size']) _wp = pd.DataFrame(columns=['workpackage','order']) _name = 'empty' _status = 1 _priority = 1 _AOI = 'General' def __init__(self, name='empty', priority=1): self._name = name self._priority = priority def _load_from_series(self, directory, projectseries): self._load(directory, projectseries.AOI, projectseries.name, projectseries.status, projectseries.priority) def _load(self, directory, AOI, name, status, priority): self._status = status self._priority =priority self._name = name self._AOI = AOI self._tasklist = pd.read_csv(os.path.join(directory, name, 'tasklist.csv'), index_col=0) self._wp = pd.read_csv(os.path.join(directory, name, 'workpackages.csv'), index_col=0) def _save(self, directory): project_dir, success = self.prepare_directory(directory) if success: self._tasklist.to_csv(os.path.join(project_dir, 'tasklist.csv')) self._wp.to_csv(os.path.join(project_dir,'workpackages.csv')) def prepare_directory(self, directory): success = False project_dir = '' if not os.path.isdir(directory): print('Directory \'{}\' does not exist'.format(directory)) print('Save failed') else: project_dir = os.path.join(directory, self._name) if not os.path.isdir(project_dir): os.makedirs(project_dir) success = True return project_dir, success def add_workpackage(self,workpackage): self.insert_workpackage(workpackage, np.max(np.append(self._wp['order'].values, [0]))+1) def insert_workpackage(self, workpackage, position): if self.wp_exists(workpackage): print('workpackage \'{}\' alread exists'.format(workpackage)) else: self.shift_positions(position) self._wp = self._wp.append({'workpackage': workpackage, 'order': position}, ignore_index = True) self.sort_workpackages() def sort_workpackages(self): if self._wp.order.size > 1: if self._wp.order.values[-2] > self._wp.order.values[-1:]: self._wp = self._wp.sort_values(by='order') def shift_positions(self, position): self._wp.loc[self._wp.order >= position, 'order'] += 1 def repos_workpackage(self, workpackage, position): self._wp = self._wp.drop(self._wp[self._wp.workpackage == workpackage].index) self.insert_workpackage(workpackage, position) def remove_workpackage(self, workpackage): self._wp = self._wp.drop(self._wp[self._wp.workpackage == workpackage].index) self._tasklist = self._tasklist.drop(self._tasklist[self._tasklist.workpackage == workpackage].index) def add_task(self, workpackage, task, size = 1, status=task_status.todo): if self.task_exists(task, workpackage): print('Task \'{}\' already exists in workpackage \'{}\'.'.format(task, workpackage)) elif self.wp_exists(workpackage): self._tasklist = self._tasklist.append({'workpackage': workpackage, 'task': task, 'status': status, 'size': size}, ignore_index = True) else: print('add workpackage \'{}\' first'.format(workpackage)) def wp_exists(self, workpackage): return workpackage in self._wp.workpackage.values def task_exists(self, task, workpackage): return task in self._tasklist[self._tasklist.workpackage == workpackage].task.values def remove_task(self, workpackage, task): index = self.get_task_index(workpackage, task) if index.size==1: self._tasklist = self._tasklist.drop(index) elif index.size ==0: print('Task \'{}\' does not exist in workpackage \'{}\'.'.format(task, workpackage)) else: raise RuntimeError('ERROR in remove_task: task exists twice in same workpackage') def set_task_status(self, workpackage, task, status): index = self.get_task_index(workpackage, task) self._tasklist.loc[index, 'status'] = status def get_tasklist(self): return self._tasklist def get_workpackages(self): return self._wp def name(self): return self._name def get_task_index(self, workpackage, task): return self._tasklist[(self._tasklist.workpackage == workpackage) & (self._tasklist.task == task)].index def print(self): print('--------------------') print('name: ' + self._name) print('--------------------') print('workpackages:') print(self._wp) print('--------------------') print('tasks:') print(self._tasklist) print('--------------------') print('status = {}'.format(self._status)) print('--------------------')
{ "content_hash": "4c295ef605b9a2f1a4c5a705893fed76", "timestamp": "", "source": "github", "line_count": 132, "max_line_length": 147, "avg_line_length": 40.09090909090909, "alnum_prop": 0.58994708994709, "repo_name": "Koet-273/Projectmanagement", "id": "922db5cd703ef679336530ddfc94f9e5abc1677c", "size": "5292", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "project.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "12332" } ], "symlink_target": "" }
from msrest.paging import Paged class VirtualNetworkPeeringPaged(Paged): """ A paging container for iterating over a list of :class:`VirtualNetworkPeering <azure.mgmt.network.v2017_08_01.models.VirtualNetworkPeering>` object """ _attribute_map = { 'next_link': {'key': 'nextLink', 'type': 'str'}, 'current_page': {'key': 'value', 'type': '[VirtualNetworkPeering]'} } def __init__(self, *args, **kwargs): super(VirtualNetworkPeeringPaged, self).__init__(*args, **kwargs)
{ "content_hash": "f24c816a30f453918a012eb5d6eb761b", "timestamp": "", "source": "github", "line_count": 16, "max_line_length": 151, "avg_line_length": 32.6875, "alnum_prop": 0.6462715105162524, "repo_name": "AutorestCI/azure-sdk-for-python", "id": "a5f6cf1d46a903a74e1a3a50005f022cbe0a9fb0", "size": "997", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "azure-mgmt-network/azure/mgmt/network/v2017_08_01/models/virtual_network_peering_paged.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "34619070" } ], "symlink_target": "" }
from django.contrib import admin from staff.models import Department, Position class PositionInline(admin.TabularInline): model = Position extra = 1 class DepartmentAdmin(admin.ModelAdmin): fields = ['name', 'email', 'chair'] inlines = [PositionInline] list_display = ('name', 'email') ordering = ['name'] admin.site.register(Department, DepartmentAdmin)
{ "content_hash": "9c332c00520bb56cc4df4c14328db675", "timestamp": "", "source": "github", "line_count": 14, "max_line_length": 48, "avg_line_length": 27.785714285714285, "alnum_prop": 0.7017994858611826, "repo_name": "lynchnf/maneki-neko-web", "id": "950aff3210f93755ac8846df919dfe8d66c37877", "size": "389", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "staff/admin.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "17591" }, { "name": "HTML", "bytes": "36953" }, { "name": "JavaScript", "bytes": "331952" }, { "name": "Python", "bytes": "55173" } ], "symlink_target": "" }
from sqlalchemy import Column, event, ForeignKey, Integer, String from rdr_service.model.base import Base, model_insert_listener, model_update_listener from rdr_service.model.consent_file import ConsentFile from rdr_service.model.participant import Participant from rdr_service.model.utils import UTCDateTime class HealthProConsentFile(Base): __tablename__ = 'hpro_consent_files' id = Column("id", Integer, primary_key=True, autoincrement=True, nullable=False) created = Column(UTCDateTime) modified = Column(UTCDateTime) participant_id = Column(Integer, ForeignKey(Participant.participantId)) consent_file_id = Column(Integer, ForeignKey(ConsentFile.id)) file_upload_time = Column(UTCDateTime, nullable=True) file_path = Column(String(250), nullable=True) event.listen(HealthProConsentFile, "before_insert", model_insert_listener) event.listen(HealthProConsentFile, "before_update", model_update_listener)
{ "content_hash": "bbf4948e0bd2f113da65ae4072d811d6", "timestamp": "", "source": "github", "line_count": 22, "max_line_length": 85, "avg_line_length": 42.95454545454545, "alnum_prop": 0.7777777777777778, "repo_name": "all-of-us/raw-data-repository", "id": "6ea8439b9ef20f3ee2a9507866d8502fef282976", "size": "945", "binary": false, "copies": "1", "ref": "refs/heads/devel", "path": "rdr_service/model/hpro_consent_files.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "Jupyter Notebook", "bytes": "1866" }, { "name": "Mako", "bytes": "1715" }, { "name": "Python", "bytes": "17040924" }, { "name": "R", "bytes": "2212" }, { "name": "Shell", "bytes": "92213" } ], "symlink_target": "" }
from subprocess import check_output import re import json from os.path import exists, join, normpath from licenses_vivaldi_texts import onlineLicenses try: f = open(normpath("gen/vivaldi/vivapp/module_list"), mode="r", encoding="utf-8") maindeps = f.read() f.close() except: maindeps = "" modules = {} for m in re.findall(r"(.*node_modules[/\\]((@[^/\\]+[/\\])?[^@][^/\\\n]+))\n", maindeps): moduledir = m[0] modulename = m[1] if (moduledir in modules or (modulename == "chrome") # ours or (modulename == "wo-stringencoding") # ours or modulename == "vivaldi-color" # ours or (modulename == "url") # ignore for now, LICENSE file is on master, https://github.com/defunctzombie/node-url or (modulename == "ripemd160") # ignore for now, LICENSE file is on master, https://github.com/cryptocoinjs/ripemd160 or (modulename == "indexof") # trivial or (modulename == "binary-search") # CC0-1.0, no need to put in credits file ): continue entry = { "name": modulename, "License File": "", # Can't be None due to string conversion below } # get license file (in order of preference) for l in ["LICENSE-MIT", "LICENSE-MIT.TXT", "LICENSE.MIT", "LICENSE.BSD", "LICENSE.APACHE2", "LICENSE", "LICENSE.txt", "LICENSE.md", "License", "license.txt", "License.md", "LICENSE.mkd", "UNLICENSE"]: file_name = join(moduledir, l) if exists(file_name): entry["License File"] = file_name f = open(file_name, mode="r", encoding="utf-8") entry["license"] = f.read() f.close() break # get one word license type from package.json f = open(join(moduledir, "package.json"), mode="r", encoding="utf-8") pjson = json.loads(f.read()) f.close() preferred = None if "license" in pjson: preferred = "license" elif "licence" in pjson: # typo in react-list preferred = "licence" elif "licenses" in pjson: preferred = "licenses" if preferred: if type(pjson[preferred]) is list: entry["licensetype"] = pjson[preferred][0]["type"] entry["licenseurl"] = pjson[preferred][0]["url"] elif type(pjson[preferred]) is dict: entry["licensetype"] = pjson[preferred]["type"] entry["licenseurl"] = pjson[preferred]["url"] else: entry["licensetype"] = pjson[preferred] if "licensetype" in entry and entry["licensetype"] not in [ "(BSD-3-Clause AND Apache-2.0)", "(MIT AND Zlib)", "Apache 2.0", "Apache License, Version 2.0", "Apache-2.0", "BSD-2-Clause", "BSD-3-Clause", "BSD", "0BSD", "CC0-1.0", "Creative Commons Attribution 2.5 License", "ISC", "MIT Licensed. http://www.opensource.org/licenses/mit-license.php", "MIT", "(MPL-2.0 OR Apache-2.0)", "MPL", "Public Domain", "WTFPL" ]: print("ERROR: " + moduledir + " uses a license that hasn't been reviewed for Vivaldi: " + entry["licensetype"]) exit(1) if not "license" in entry and "licenseurl" in entry: if entry["licenseurl"] in onlineLicenses: entry["license"] = onlineLicenses[entry["licenseurl"]] else: print("ERROR: " + modulename + " provides URL " + entry["licenseurl"] + " as a license but it hasn't been copied to licenses_vivaldi_texts.py") exit(1) if not "license" in entry and "licensetype" in entry: entry["license"] = entry["licensetype"] if not "license" in entry: print("ERROR: License statement missing for module " + moduledir + ". Add it to the list of exceptions in licenses_vivaldi.py if it's not a third party module.") exit(1) if "homepage" in pjson: entry["url"] = pjson["homepage"] else: entry["url"] = ("https://www.npmjs.org/package/"+entry["name"]) if "licensetype" in entry and entry["licensetype"] == "MPL": entry["license_unescaped"] = "Source code is available for download at <a href='http://registry.npmjs.org/"+modulename+"/-/"+modulename+"-"+pjson["version"]+".tgz'>http://registry.npmjs.org/"+modulename+"/-/"+modulename+"-"+pjson["version"]+".tgz<a/>. No source code files were modified for use in Vivaldi." else: entry["license_unescaped"] = "" for e in entry: try: entry[e] = entry[e] except: pass modules[moduledir] = entry ADDITIONAL_PATHS = ( join('..', 'third_party', '_winsparkle_lib'), join('..', 'third_party', 'sparkle_lib'), join('..', 'platform_media'), join('..', 'scripts', 'licenses'), join('..', 'vivapp', 'src', 'browserjs'), join('..', 'vivapp', 'src', 'components', 'image-inspector'), join('..', 'vivapp', 'src', 'util'), ) SPECIAL_CASES = { join('..', 'platform_media'): { "Name": "Opera", "URL": "http://www.opera.com/", "License": "BSD", "License File": "/../platform_media/OPERA_LICENSE.txt", }, join('..', 'third_party', '_winsparkle_lib'): { "Name": "WinSparkle", "URL": "http://winsparkle.org/", "License": "MIT", "License File": "/../third_party/_winsparkle_lib/COPYING", }, join('..', 'thirdparty', 'macsparkle'): { "Name": "Sparkle", "URL": "http://sparkle-project.org/", "License": "MIT", "License File": "/../thirdparty/macsparkle/LICENSE", }, join('..', 'vivapp', 'src', 'browserjs'): { "Name": "boss-select", "URL": "https://github.com/grks/boss-select#readme", "License": "MIT", "License File": "/../vivapp/src/browserjs/boss-select-license.txt", }, join('..', 'vivapp', 'src', 'components', 'image-inspector'): { "Name": "Exif.js", "URL": "https://github.com/exif-js/exif-js", "License": "MIT", "License File": "/../vivapp/src/components/image-inspector/exif_js_license.txt", }, join('..', 'scripts', 'licenses'): { "Name": "Profile avatar illustrations", "URL": "https://www.flaticon.com/", "License": "attribution required", "License File": "/../scripts/licenses/avatar_profiles_license.txt", }, join('..', 'vivapp', 'src', 'util'): { "Name": "Boyer-Moore-Horspool Search", "URL": "https://github.com/Chocobo1/bmhs", "License": "BSD-3-Clause", "License File": "/../vivapp/src/util/bmhs_license.txt", }, } def GetEntries(entry_template, EvaluateTemplate): entries = [] for module, license in modules.items(): entries.append({ 'name': license['name'], 'content': EvaluateTemplate(entry_template, license), 'license_file': license['License File'], }) return entries
{ "content_hash": "3bd3a39ac1f3aa5b86173ba6bc0f7604", "timestamp": "", "source": "github", "line_count": 184, "max_line_length": 311, "avg_line_length": 35.766304347826086, "alnum_prop": 0.5970217292204832, "repo_name": "ric2b/Vivaldi-browser", "id": "e28c58f23f121297478db4c31915abeb973e649f", "size": "6581", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "scripts/licenses/licenses_vivaldi.py", "mode": "33188", "license": "bsd-3-clause", "language": [], "symlink_target": "" }
def get_recently_modified_keys(db_connection, no_of_days = -4): o = urlparse(db_connction) db_scheme = o.scheme db_host = o.hostname db_name = o.path.lstrip('/') db_user = o.username db_password = o.password # NOTE: SQL expects a positive number for interval value... if no_of_days < 0: no_of_days = no_of_days * -1 sql_src = f'''SELECT eprintid AS eprint_id FROM eprint WHERE CONCAT_WS('-', LPAD(lastmod_year, 4, '0'), LPAD(lastmod_month, 2, '0'), LPAD(lastmod_day, 2, '0')) >= DATE_SUB(NOW(), INTERVAL {no_of_days} DAY) ORDER BY eprintid DESC''' #log.print(f'DEBUG SQL: {sql_src}') log.print('Updating my.cnf') with open('my.cnf', 'w') as f: f.write('[client]\n') f.write(f'host = {db_host}\n') f.write(f'user = {db_user}\n') f.write(f'password = {db_password}\n') os.chmod('my.cnf', stat.S_IWUSR | stat.S_IRUSR) # Verify that SQL file exists # Build up command and execute it cmd = [ "mysql" ] if os.path.exists('my.cnf'): my_cnf = os.path.abspath('my.cnf') cmd.append(f'--defaults-file={my_cnf}') else: if db_host != '': cmd.append('--host') cmd.append(db_host) if db_user != '': cmd.append('--user') cmd.append(db_user) if db_password != '': cmd.append(f'--password={db_password}') cmd.append('--default-character-set=utf8') cmd.append(f'--execute={sql_src}') cmd.append('--batch') if db_name: cmd.append(db_name) else: printf("Missing repository id db name") return [] # NOTE: Now assemble and run the MySQL command to read in the file. eprint_ids = [] with Popen(cmd, stdout = PIPE, encoding = 'utf-8') as proc: src = proc.stdout.read() for line in src.split("\n"): if line.isdigit(): eprint_ids.append(line.strip(" \n\r")) return eprint_ids
{ "content_hash": "b8be3c9534d9dbf2937780277c00d727", "timestamp": "", "source": "github", "line_count": 55, "max_line_length": 235, "avg_line_length": 35.81818181818182, "alnum_prop": 0.5614213197969543, "repo_name": "caltechlibrary/epgo", "id": "28a55d61baad46b1fec1b7c1bf7ed6bc1f74b883", "size": "2095", "binary": false, "copies": "1", "ref": "refs/heads/main", "path": "eprinttools/mysql_access.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "CSS", "bytes": "8820" }, { "name": "Go", "bytes": "65250" }, { "name": "HTML", "bytes": "5343" }, { "name": "Makefile", "bytes": "3662" }, { "name": "PHP", "bytes": "1299" }, { "name": "Shell", "bytes": "6978" } ], "symlink_target": "" }
import base64 import calendar import datetime import re import unicodedata import warnings from binascii import Error as BinasciiError from email.utils import formatdate from urllib.parse import ( ParseResult, SplitResult, _coerce_args, _splitnetloc, _splitparams, quote, quote_plus, scheme_chars, unquote, unquote_plus, urlencode as original_urlencode, uses_params, ) from django.core.exceptions import TooManyFieldsSent from django.utils.datastructures import MultiValueDict from django.utils.deprecation import RemovedInDjango40Warning from django.utils.functional import keep_lazy_text # based on RFC 7232, Appendix C ETAG_MATCH = re.compile(r''' \A( # start of string and capture group (?:W/)? # optional weak indicator " # opening quote [^"]* # any sequence of non-quote characters " # end quote )\Z # end of string and capture group ''', re.X) MONTHS = 'jan feb mar apr may jun jul aug sep oct nov dec'.split() __D = r'(?P<day>\d{2})' __D2 = r'(?P<day>[ \d]\d)' __M = r'(?P<mon>\w{3})' __Y = r'(?P<year>\d{4})' __Y2 = r'(?P<year>\d{2})' __T = r'(?P<hour>\d{2}):(?P<min>\d{2}):(?P<sec>\d{2})' RFC1123_DATE = re.compile(r'^\w{3}, %s %s %s %s GMT$' % (__D, __M, __Y, __T)) RFC850_DATE = re.compile(r'^\w{6,9}, %s-%s-%s %s GMT$' % (__D, __M, __Y2, __T)) ASCTIME_DATE = re.compile(r'^\w{3} %s %s %s %s$' % (__M, __D2, __T, __Y)) RFC3986_GENDELIMS = ":/?#[]@" RFC3986_SUBDELIMS = "!$&'()*+,;=" FIELDS_MATCH = re.compile('[&;]') @keep_lazy_text def urlquote(url, safe='/'): """ A legacy compatibility wrapper to Python's urllib.parse.quote() function. (was used for unicode handling on Python 2) """ warnings.warn( 'django.utils.http.urlquote() is deprecated in favor of ' 'urllib.parse.quote().', RemovedInDjango40Warning, stacklevel=2, ) return quote(url, safe) @keep_lazy_text def urlquote_plus(url, safe=''): """ A legacy compatibility wrapper to Python's urllib.parse.quote_plus() function. (was used for unicode handling on Python 2) """ warnings.warn( 'django.utils.http.urlquote_plus() is deprecated in favor of ' 'urllib.parse.quote_plus(),', RemovedInDjango40Warning, stacklevel=2, ) return quote_plus(url, safe) @keep_lazy_text def urlunquote(quoted_url): """ A legacy compatibility wrapper to Python's urllib.parse.unquote() function. (was used for unicode handling on Python 2) """ warnings.warn( 'django.utils.http.urlunquote() is deprecated in favor of ' 'urllib.parse.unquote().', RemovedInDjango40Warning, stacklevel=2, ) return unquote(quoted_url) @keep_lazy_text def urlunquote_plus(quoted_url): """ A legacy compatibility wrapper to Python's urllib.parse.unquote_plus() function. (was used for unicode handling on Python 2) """ warnings.warn( 'django.utils.http.urlunquote_plus() is deprecated in favor of ' 'urllib.parse.unquote_plus().', RemovedInDjango40Warning, stacklevel=2, ) return unquote_plus(quoted_url) def urlencode(query, doseq=False): """ A version of Python's urllib.parse.urlencode() function that can operate on MultiValueDict and non-string values. """ if isinstance(query, MultiValueDict): query = query.lists() elif hasattr(query, 'items'): query = query.items() query_params = [] for key, value in query: if value is None: raise TypeError( "Cannot encode None for key '%s' in a query string. Did you " "mean to pass an empty string or omit the value?" % key ) elif not doseq or isinstance(value, (str, bytes)): query_val = value else: try: itr = iter(value) except TypeError: query_val = value else: # Consume generators and iterators, when doseq=True, to # work around https://bugs.python.org/issue31706. query_val = [] for item in itr: if item is None: raise TypeError( "Cannot encode None for key '%s' in a query " "string. Did you mean to pass an empty string or " "omit the value?" % key ) elif not isinstance(item, bytes): item = str(item) query_val.append(item) query_params.append((key, query_val)) return original_urlencode(query_params, doseq) def http_date(epoch_seconds=None): """ Format the time to match the RFC1123 date format as specified by HTTP RFC7231 section 7.1.1.1. `epoch_seconds` is a floating point number expressed in seconds since the epoch, in UTC - such as that outputted by time.time(). If set to None, it defaults to the current time. Output a string in the format 'Wdy, DD Mon YYYY HH:MM:SS GMT'. """ return formatdate(epoch_seconds, usegmt=True) def parse_http_date(date): """ Parse a date format as specified by HTTP RFC7231 section 7.1.1.1. The three formats allowed by the RFC are accepted, even if only the first one is still in widespread use. Return an integer expressed in seconds since the epoch, in UTC. """ # email.utils.parsedate() does the job for RFC1123 dates; unfortunately # RFC7231 makes it mandatory to support RFC850 dates too. So we roll # our own RFC-compliant parsing. for regex in RFC1123_DATE, RFC850_DATE, ASCTIME_DATE: m = regex.match(date) if m is not None: break else: raise ValueError("%r is not in a valid HTTP date format" % date) try: year = int(m.group('year')) if year < 100: if year < 70: year += 2000 else: year += 1900 month = MONTHS.index(m.group('mon').lower()) + 1 day = int(m.group('day')) hour = int(m.group('hour')) min = int(m.group('min')) sec = int(m.group('sec')) result = datetime.datetime(year, month, day, hour, min, sec) return calendar.timegm(result.utctimetuple()) except Exception as exc: raise ValueError("%r is not a valid date" % date) from exc def parse_http_date_safe(date): """ Same as parse_http_date, but return None if the input is invalid. """ try: return parse_http_date(date) except Exception: pass # Base 36 functions: useful for generating compact URLs def base36_to_int(s): """ Convert a base 36 string to an int. Raise ValueError if the input won't fit into an int. """ # To prevent overconsumption of server resources, reject any # base36 string that is longer than 13 base36 digits (13 digits # is sufficient to base36-encode any 64-bit integer) if len(s) > 13: raise ValueError("Base36 input too large") return int(s, 36) def int_to_base36(i): """Convert an integer to a base36 string.""" char_set = '0123456789abcdefghijklmnopqrstuvwxyz' if i < 0: raise ValueError("Negative base36 conversion input.") if i < 36: return char_set[i] b36 = '' while i != 0: i, n = divmod(i, 36) b36 = char_set[n] + b36 return b36 def urlsafe_base64_encode(s): """ Encode a bytestring to a base64 string for use in URLs. Strip any trailing equal signs. """ return base64.urlsafe_b64encode(s).rstrip(b'\n=').decode('ascii') def urlsafe_base64_decode(s): """ Decode a base64 encoded string. Add back any trailing equal signs that might have been stripped. """ s = s.encode() try: return base64.urlsafe_b64decode(s.ljust(len(s) + len(s) % 4, b'=')) except (LookupError, BinasciiError) as e: raise ValueError(e) def parse_etags(etag_str): """ Parse a string of ETags given in an If-None-Match or If-Match header as defined by RFC 7232. Return a list of quoted ETags, or ['*'] if all ETags should be matched. """ if etag_str.strip() == '*': return ['*'] else: # Parse each ETag individually, and return any that are valid. etag_matches = (ETAG_MATCH.match(etag.strip()) for etag in etag_str.split(',')) return [match.group(1) for match in etag_matches if match] def quote_etag(etag_str): """ If the provided string is already a quoted ETag, return it. Otherwise, wrap the string in quotes, making it a strong ETag. """ if ETAG_MATCH.match(etag_str): return etag_str else: return '"%s"' % etag_str def is_same_domain(host, pattern): """ Return ``True`` if the host is either an exact match or a match to the wildcard pattern. Any pattern beginning with a period matches a domain and all of its subdomains. (e.g. ``.example.com`` matches ``example.com`` and ``foo.example.com``). Anything else is an exact string match. """ if not pattern: return False pattern = pattern.lower() return ( pattern[0] == '.' and (host.endswith(pattern) or host == pattern[1:]) or pattern == host ) def is_safe_url(url, allowed_hosts, require_https=False): """ Return ``True`` if the url is a safe redirection (i.e. it doesn't point to a different host and uses a safe scheme). Always return ``False`` on an empty url. If ``require_https`` is ``True``, only 'https' will be considered a valid scheme, as opposed to 'http' and 'https' with the default, ``False``. """ if url is not None: url = url.strip() if not url: return False if allowed_hosts is None: allowed_hosts = set() elif isinstance(allowed_hosts, str): allowed_hosts = {allowed_hosts} # Chrome treats \ completely as / in paths but it could be part of some # basic auth credentials so we need to check both URLs. return (_is_safe_url(url, allowed_hosts, require_https=require_https) and _is_safe_url(url.replace('\\', '/'), allowed_hosts, require_https=require_https)) # Copied from urllib.parse.urlparse() but uses fixed urlsplit() function. def _urlparse(url, scheme='', allow_fragments=True): """Parse a URL into 6 components: <scheme>://<netloc>/<path>;<params>?<query>#<fragment> Return a 6-tuple: (scheme, netloc, path, params, query, fragment). Note that we don't break the components up in smaller bits (e.g. netloc is a single string) and we don't expand % escapes.""" url, scheme, _coerce_result = _coerce_args(url, scheme) splitresult = _urlsplit(url, scheme, allow_fragments) scheme, netloc, url, query, fragment = splitresult if scheme in uses_params and ';' in url: url, params = _splitparams(url) else: params = '' result = ParseResult(scheme, netloc, url, params, query, fragment) return _coerce_result(result) # Copied from urllib.parse.urlsplit() with # https://github.com/python/cpython/pull/661 applied. def _urlsplit(url, scheme='', allow_fragments=True): """Parse a URL into 5 components: <scheme>://<netloc>/<path>?<query>#<fragment> Return a 5-tuple: (scheme, netloc, path, query, fragment). Note that we don't break the components up in smaller bits (e.g. netloc is a single string) and we don't expand % escapes.""" url, scheme, _coerce_result = _coerce_args(url, scheme) netloc = query = fragment = '' i = url.find(':') if i > 0: for c in url[:i]: if c not in scheme_chars: break else: scheme, url = url[:i].lower(), url[i + 1:] if url[:2] == '//': netloc, url = _splitnetloc(url, 2) if (('[' in netloc and ']' not in netloc) or (']' in netloc and '[' not in netloc)): raise ValueError("Invalid IPv6 URL") if allow_fragments and '#' in url: url, fragment = url.split('#', 1) if '?' in url: url, query = url.split('?', 1) v = SplitResult(scheme, netloc, url, query, fragment) return _coerce_result(v) def _is_safe_url(url, allowed_hosts, require_https=False): # Chrome considers any URL with more than two slashes to be absolute, but # urlparse is not so flexible. Treat any url with three slashes as unsafe. if url.startswith('///'): return False try: url_info = _urlparse(url) except ValueError: # e.g. invalid IPv6 addresses return False # Forbid URLs like http:///example.com - with a scheme, but without a hostname. # In that URL, example.com is not the hostname but, a path component. However, # Chrome will still consider example.com to be the hostname, so we must not # allow this syntax. if not url_info.netloc and url_info.scheme: return False # Forbid URLs that start with control characters. Some browsers (like # Chrome) ignore quite a few control characters at the start of a # URL and might consider the URL as scheme relative. if unicodedata.category(url[0])[0] == 'C': return False scheme = url_info.scheme # Consider URLs without a scheme (e.g. //example.com/p) to be http. if not url_info.scheme and url_info.netloc: scheme = 'http' valid_schemes = ['https'] if require_https else ['http', 'https'] return ((not url_info.netloc or url_info.netloc in allowed_hosts) and (not scheme or scheme in valid_schemes)) def limited_parse_qsl(qs, keep_blank_values=False, encoding='utf-8', errors='replace', fields_limit=None): """ Return a list of key/value tuples parsed from query string. Copied from urlparse with an additional "fields_limit" argument. Copyright (C) 2013 Python Software Foundation (see LICENSE.python). Arguments: qs: percent-encoded query string to be parsed keep_blank_values: flag indicating whether blank values in percent-encoded queries should be treated as blank strings. A true value indicates that blanks should be retained as blank strings. The default false value indicates that blank values are to be ignored and treated as if they were not included. encoding and errors: specify how to decode percent-encoded sequences into Unicode characters, as accepted by the bytes.decode() method. fields_limit: maximum number of fields parsed or an exception is raised. None means no limit and is the default. """ if fields_limit: pairs = FIELDS_MATCH.split(qs, fields_limit) if len(pairs) > fields_limit: raise TooManyFieldsSent( 'The number of GET/POST parameters exceeded ' 'settings.DATA_UPLOAD_MAX_NUMBER_FIELDS.' ) else: pairs = FIELDS_MATCH.split(qs) r = [] for name_value in pairs: if not name_value: continue nv = name_value.split('=', 1) if len(nv) != 2: # Handle case of a control-name with no equal sign if keep_blank_values: nv.append('') else: continue if nv[1] or keep_blank_values: name = nv[0].replace('+', ' ') name = unquote(name, encoding=encoding, errors=errors) value = nv[1].replace('+', ' ') value = unquote(value, encoding=encoding, errors=errors) r.append((name, value)) return r def escape_leading_slashes(url): """ If redirecting to an absolute path (two leading slashes), a slash must be escaped to prevent browsers from handling the path as schemaless and redirecting to another host. """ if url.startswith('//'): url = '/%2F{}'.format(url[2:]) return url
{ "content_hash": "4497e3d58ae8b59304aeff17c36da2cd", "timestamp": "", "source": "github", "line_count": 460, "max_line_length": 93, "avg_line_length": 34.708695652173915, "alnum_prop": 0.6156833270700238, "repo_name": "schinckel/django", "id": "050375832cf8640ea25a2dd5d70d6033cff2734e", "size": "15966", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "django/utils/http.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "CSS", "bytes": "85024" }, { "name": "HTML", "bytes": "224566" }, { "name": "JavaScript", "bytes": "251536" }, { "name": "Makefile", "bytes": "125" }, { "name": "Python", "bytes": "13234142" }, { "name": "Shell", "bytes": "809" }, { "name": "Smarty", "bytes": "130" } ], "symlink_target": "" }