text
stringlengths
4
1.02M
meta
dict
"""Utility helpers to handle progress bars in `huggingface_hub`. Example: 1. Use `huggingface_hub.utils.tqdm` as you would use `tqdm.tqdm` or `tqdm.auto.tqdm`. 2. To disable progress bars, either use `disable_progress_bars()` helper or set the environment variable `HF_HUB_DISABLE_PROGRESS_BARS` to 1. 3. To re-enable progress bars, use `enable_progress_bars()`. 4. To check whether progress bars are disabled, use `are_progress_bars_disabled()`. NOTE: Environment variable `HF_HUB_DISABLE_PROGRESS_BARS` has the priority. Example: ```py from huggingface_hub.utils import ( are_progress_bars_disabled, disable_progress_bars, enable_progress_bars, tqdm, ) # Disable progress bars globally disable_progress_bars() # Use as normal `tqdm` for _ in tqdm(range(5)): do_something() # Still not showing progress bars, as `disable=False` is overwritten to `True`. for _ in tqdm(range(5), disable=False): do_something() are_progress_bars_disabled() # True # Re-enable progress bars globally enable_progress_bars() # Progress bar will be shown ! for _ in tqdm(range(5)): do_something() ``` """ import warnings from tqdm.auto import tqdm as old_tqdm from ..constants import HF_HUB_DISABLE_PROGRESS_BARS # `HF_HUB_DISABLE_PROGRESS_BARS` is `Optional[bool]` while `_hf_hub_progress_bars_disabled` # is a `bool`. If `HF_HUB_DISABLE_PROGRESS_BARS` is set to True or False, it has priority. # If `HF_HUB_DISABLE_PROGRESS_BARS` is None, it means the user have not set the # environment variable and is free to enable/disable progress bars programmatically. # TL;DR: env variable has priority over code. # # By default, progress bars are enabled. _hf_hub_progress_bars_disabled: bool = HF_HUB_DISABLE_PROGRESS_BARS or False def disable_progress_bars() -> None: """ Disable globally progress bars used in `huggingface_hub` except if `HF_HUB_DISABLE_PROGRESS_BARS` environment variable has been set. """ if HF_HUB_DISABLE_PROGRESS_BARS is False: warnings.warn( "Cannot disable progress bars: environment variable" " `HF_HUB_DISABLE_PROGRESS_BARS=0` is set and has priority." ) return global _hf_hub_progress_bars_disabled _hf_hub_progress_bars_disabled = True def enable_progress_bars() -> None: """ Enable globally progress bars used in `huggingface_hub` except if `HF_HUB_DISABLE_PROGRESS_BARS` environment variable has been set. """ if HF_HUB_DISABLE_PROGRESS_BARS is True: warnings.warn( "Cannot enable progress bars: environment variable" " `HF_HUB_DISABLE_PROGRESS_BARS=1` is set and has priority." ) return global _hf_hub_progress_bars_disabled _hf_hub_progress_bars_disabled = False def are_progress_bars_disabled() -> bool: """Return whether progress bars are globally disabled or not.""" global _hf_hub_progress_bars_disabled return _hf_hub_progress_bars_disabled class tqdm(old_tqdm): """ Class to override `disable` argument in case progress bars are globally disabled. Taken from https://github.com/tqdm/tqdm/issues/619#issuecomment-619639324. """ def __init__(self, *args, **kwargs): if are_progress_bars_disabled(): kwargs["disable"] = True super().__init__(*args, **kwargs)
{ "content_hash": "3b636e3c7e5bb7fa103f8e478458abab", "timestamp": "", "source": "github", "line_count": 105, "max_line_length": 91, "avg_line_length": 32.76190476190476, "alnum_prop": 0.6718023255813953, "repo_name": "huggingface/huggingface_hub", "id": "c16beb58e79ba90694c08e5287493e1ca9e0c3c9", "size": "4087", "binary": false, "copies": "1", "ref": "refs/heads/main", "path": "src/huggingface_hub/utils/tqdm.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Makefile", "bytes": "338" }, { "name": "Python", "bytes": "1086946" } ], "symlink_target": "" }
import copy import sys import numpy as np import json import chainer import chainer.links as L import chainer.functions as F from my_iterator import SerialIterator from chainer import cuda from chainer import training, Variable, ChainList from chainer.training import extensions from chainer.optimizer import WeightDecay, GradientClipping from chainer.dataset.convert import _concat_arrays from ccgbank import walk_autodir from japanese_ccg import JaCCGReader from collections import defaultdict, OrderedDict from py_utils import read_pretrained_embeddings, read_model_defs from tree import Leaf, Tree, get_leaves from biaffine import Biaffine, Bilinear from dyer_lstm import DyerLSTM from param import Param from qrnn import QRNNLayer from lstm_tagger import UNK, OOR2, OOR3, OOR4, START, END, IGNORE, MISS from lstm_tagger import log, get_suffix, get_prefix, normalize from lstm_parser import TrainingDataCreator, FeatureExtractor from lstm_parser import LSTMParser, LSTMParserTriTrainDataset def scanl(f, base, l): res = [base] acc = base for x in l: acc = f(acc, x) res += [acc] return res class LSTMParserDataset(chainer.dataset.DatasetMixin): def __init__(self, model_path, samples_path): self.model_path = model_path self.targets = read_model_defs(model_path + "/target.txt") self.extractor = FeatureExtractor(model_path) with open(samples_path) as f: self.samples = sorted( json.load(f), key=lambda x: len(x[1][0])) def __len__(self): return len(self.samples) def get_example(self, i): words, [cats, deps] = self.samples[i] splitted = words.split(" ") w, s, p = self.extractor.process(splitted) cats = np.array([-1] + [self.targets.get(x, IGNORE) for x in cats] + [-1], 'i') deps = np.array([-1] + deps + [-1], 'i') l = len(splitted) + 2 weight = np.array(1, 'f') return w, s, p, l, cats, deps, weight class QRNNTriTrainDataset(LSTMParserTriTrainDataset): def __init__(self, model_path, ccgbank_path, tritrain_path, weight): self.model_path = model_path self.targets = read_model_defs(model_path + "/target.txt") self.extractor = FeatureExtractor(model_path) self.weight = weight self.ncopies = 15 with open(ccgbank_path) as f: self.ccgbank_samples = sorted( json.load(f), key=lambda x: len(x[1][0])) self.ccgbank_size = len(self.ccgbank_samples) with open(tritrain_path) as f: self.tritrain_samples = sorted( json.load(f), key=lambda x: len(x[1][0])) self.tritrain_size = len(self.tritrain_samples) print >> sys.stderr, "len(ccgbank):", self.ccgbank_size print >> sys.stderr, "len(ccgbank) * # copies:", self.ccgbank_size * self.ncopies print >> sys.stderr, "len(tritrain):", self.tritrain_size def get_example(self, i): w, s, p, cats, deps, weight = super(QRNNTriTrainDataset, self).get_example(i) l = w.shape[0] return w, s, p, l, cats, deps, weight class QRNNParser(chainer.Chain): def __init__(self, model_path, word_dim=None, afix_dim=None, nlayers=2, hidden_dim=128, elu_dim=64, dep_dim=100, dropout_ratio=0.5, use_cudnn=False): self.model_path = model_path defs_file = model_path + "/tagger_defs.txt" if word_dim is None: self.train = False Param.load(self, defs_file) self.extractor = FeatureExtractor(model_path) else: self.train = True p = Param(self) p.dep_dim = dep_dim p.word_dim = word_dim p.afix_dim = afix_dim p.hidden_dim = hidden_dim p.elu_dim = elu_dim p.nlayers = nlayers p.n_words = len(read_model_defs(model_path + "/words.txt")) p.n_suffixes = len(read_model_defs(model_path + "/suffixes.txt")) p.n_prefixes = len(read_model_defs(model_path + "/prefixes.txt")) p.targets = read_model_defs(model_path + "/target.txt") p.dump(defs_file) self.in_dim = self.word_dim + 8 * self.afix_dim self.dropout_ratio = dropout_ratio super(QRNNParser, self).__init__( emb_word=L.EmbedID(self.n_words, self.word_dim, ignore_label=IGNORE), emb_suf=L.EmbedID(self.n_suffixes, self.afix_dim, ignore_label=IGNORE), emb_prf=L.EmbedID(self.n_prefixes, self.afix_dim, ignore_label=IGNORE), qrnn_fs=ChainList(), qrnn_bs=ChainList(), arc_dep=L.Linear(2 * self.hidden_dim, self.dep_dim), arc_head=L.Linear(2 * self.hidden_dim, self.dep_dim), rel_dep=L.Linear(2 * self.hidden_dim, self.dep_dim), rel_head=L.Linear(2 * self.hidden_dim, self.dep_dim), biaffine_arc=Biaffine(self.dep_dim), biaffine_tag=Bilinear(self.dep_dim, self.dep_dim, len(self.targets)) ) in_dim = self.in_dim for _ in range(self.nlayers): self.qrnn_fs.add_link(QRNNLayer(in_dim, self.hidden_dim)) self.qrnn_bs.add_link(QRNNLayer(in_dim, self.hidden_dim)) in_dim = self.hidden_dim # in_dim += self.hidden_dim def load_pretrained_embeddings(self, path): self.emb_word.W.data = read_pretrained_embeddings(path) def __call__(self, ws, ss, ps, ls, cat_ts, dep_ts, weights): """ xs [(w,s,p,y), ..., ] w: word, s: suffix, p: prefix, y: label """ try: batchsize, length = ws.shape cat_ys, dep_ys = self.forward(ws, ss, ps, ls, dep_ts if self.train else None) cat_loss = reduce(lambda x, y: x + y, [we * F.softmax_cross_entropy(y, t) \ for y, t, we in zip(cat_ys, cat_ts, weights)]) cat_acc = reduce(lambda x, y: x + y, [F.accuracy(y, t, ignore_label=IGNORE) \ for y, t in zip(cat_ys, cat_ts)]) / batchsize dep_loss = reduce(lambda x, y: x + y, [we * F.softmax_cross_entropy(y, t) \ for y, t, we in zip(dep_ys, dep_ts, weights)]) dep_acc = reduce(lambda x, y: x + y, [F.accuracy(y, t, ignore_label=IGNORE) \ for y, t in zip(dep_ys, dep_ts)]) / batchsize except: print "caught erroneous example ignoring..." print [w.shape for w in ws] print [w.shape for w in ss] print [w.shape for w in ps] print ls print [w.shape for w in cat_ts] print [w.shape for w in dep_ts] xp = chainer.cuda.get_array_module(ws[0]) return Variable(xp.array(0, 'f')) chainer.report({ "tagging_loss": cat_loss, "tagging_accuracy": cat_acc, "parsing_loss": dep_loss, "parsing_accuracy": dep_acc }, self) return cat_loss + dep_loss def forward(self, ws, ss, ps, ls, dep_ts=None): batchsize, length = ws.shape split = scanl(lambda x,y: x+y, 0, ls)[1:-1] xp = chainer.cuda.get_array_module(ws[0]) ws = self.emb_word(ws) # (batch, length, word_dim) ss = F.reshape(self.emb_suf(ss), (batchsize, length, -1)) ps = F.reshape(self.emb_prf(ps), (batchsize, length, -1)) hs = F.concat([ws, ss, ps], 2) hs = F.dropout(hs, self.dropout_ratio, train=self.train) fs = hs for qrnn_f in self.qrnn_fs: inp = fs fs = qrnn_f(inp) bs = hs[:, ::-1, :] for qrnn_b in self.qrnn_bs: inp = bs bs = qrnn_b(inp) # fs = [hs] # for qrnn_f in self.qrnn_fs: # inp = F.concat(fs, 2) # fs.append(F.dropout(qrnn_f(inp), 0.32, train=self.train)) # fs = fs[-1] # # bs = [hs[:, ::-1, :]] # for qrnn_b in self.qrnn_bs: # inp = F.concat(bs, 2) # bs.append(F.dropout(qrnn_b(inp), 0.32, train=self.train)) # bs = bs[-1] # hs = F.concat([fs, bs[:, ::-1, :]], 2) _, hs_len, hidden = hs.shape hs = [F.reshape(var, (hs_len, hidden))[:l] for l, var in \ zip(ls, F.split_axis(hs, batchsize, 0))] dep_ys = [self.biaffine_arc( F.elu(F.dropout(self.arc_dep(h), 0.32, train=self.train)), F.elu(F.dropout(self.arc_head(h), 0.32, train=self.train))) for h in hs] if dep_ts is not None: heads = dep_ts else: heads = [F.argmax(y, axis=1) for y in dep_ys] heads = F.elu(F.dropout( self.rel_head( F.vstack([F.embed_id(t, h, ignore_label=IGNORE) \ for h, t in zip(hs, heads)])), 0.32, train=self.train)) childs = F.elu(F.dropout(self.rel_dep(F.vstack(hs)), 0.32, train=self.train)) cat_ys = self.biaffine_tag(childs, heads) cat_ys = list(F.split_axis(cat_ys, split, 0)) return cat_ys, dep_ys def predict(self, xs): """ batch: list of splitted sentences """ fs = [self.extractor.process(x) for x in xs] ws, ss, ps = concat_examples(fs) ls = [len(x)+2 for x in xs] cat_ys, dep_ys = self.forward(ws, ss, ps, ls) return zip([F.log_softmax(y[1:-1]).data for y in cat_ys], [F.log_softmax(y[1:-1, :-1]).data for y in dep_ys]) def predict_doc(self, doc, batchsize=16): """ doc list of splitted sentences """ res = [] for i in range(0, len(doc), batchsize): res.extend([(i + j, 0, y) for j, y in enumerate(self.predict(doc[i:i + batchsize]))]) return res @property def cats(self): return zip(*sorted(self.targets.items(), key=lambda x: x[1]))[0] def concat_examples(batch, device=None): if len(batch) == 0: raise ValueError('batch is empty') if device is None: def to_device(x): return x elif device < 0: to_device = cuda.to_cpu else: def to_device(x): return cuda.to_gpu(x, device, cuda.Stream.null) result = [to_device(_concat_arrays([s[0] for s in batch], -1)), # ws to_device(_concat_arrays([s[1] for s in batch], -1)), # ps to_device(_concat_arrays([s[2] for s in batch], -1))] # ss if len(batch[0]) == 7: result.append([s[3] for s in batch]) # ls result.append([to_device(s[4]) for s in batch]) # cat_ts result.append([to_device(s[5]) for s in batch]) # dep_ts result.append(to_device(_concat_arrays([s[6] for s in batch], None))) # weights return tuple(result) class MyUpdater(training.StandardUpdater): def update_core(self): batch = self._iterators['main'].next() optimizer = self._optimizers['main'] loss_func = self.loss_func or optimizer.target optimizer.update(loss_func, *self.converter(batch, self.device)) from chainer import reporter as reporter_module class MyEvaluator(extensions.Evaluator): def evaluate(self): iterator = self._iterators['main'] target = self._targets['main'] eval_func = self.eval_func or target if self.eval_hook: self.eval_hook(self) it = copy.copy(iterator) summary = reporter_module.DictSummary() for batch in it: observation = {} with reporter_module.report_scope(observation): eval_func(*self.converter(batch, self.device)) summary.add(observation) return summary.compute_mean() def train(args): model = QRNNParser(args.model, args.word_emb_size, args.afix_emb_size, args.nlayers, args.hidden_dim, args.elu_dim, args.dep_dim, args.dropout_ratio, args.gpu >= 0) with open(args.model + "/params", "w") as f: log(args, f) if args.initmodel: print 'Load model from', args.initmodel chainer.serializers.load_npz(args.initmodel, model) if args.pretrained: print 'Load pretrained word embeddings from', args.pretrained model.load_pretrained_embeddings(args.pretrained) if args.gpu >= 0: chainer.cuda.get_device(args.gpu).use() model.to_gpu() converter = lambda x, device: concat_examples(x, device=device) if args.tritrain is not None: train = QRNNTriTrainDataset( args.model, args.train, args.tritrain, args.tri_weight) else: train = LSTMParserDataset(args.model, args.train) train_iter = SerialIterator(train, args.batchsize) val = LSTMParserDataset(args.model, args.val) val_iter = chainer.iterators.SerialIterator( val, 32, repeat=False, shuffle=False) # val, args.batchsize, repeat=False, shuffle=False) # optimizer = chainer.optimizers.Adam(beta2=0.9) # optimizer = chainer.optimizers.MomentumSGD(momentum=0.7) optimizer = chainer.optimizers.RMSprop(0.001, 0.9, 1e-8) optimizer.setup(model) optimizer.add_hook(WeightDecay(4e-6)) # optimizer.add_hook(GradientClipping(5.)) updater = MyUpdater(train_iter, optimizer, device=args.gpu, converter=converter) trainer = training.Trainer(updater, (args.epoch, 'epoch'), args.model) val_interval = 1000, 'iteration' log_interval = 200, 'iteration' eval_model = model.copy() eval_model.train = False # trainer.extend(extensions.ExponentialShift( # "eps", .75, init=2e-3, optimizer=optimizer), trigger=(2500, 'iteration')) trainer.extend(MyEvaluator(val_iter, eval_model, converter, device=args.gpu), trigger=val_interval) trainer.extend(extensions.snapshot_object( model, 'model_iter_{.updater.iteration}'), trigger=val_interval) trainer.extend(extensions.LogReport(trigger=log_interval)) trainer.extend(extensions.PrintReport([ 'epoch', 'iteration', 'main/tagging_accuracy', 'main/tagging_loss', 'main/parsing_accuracy', 'main/parsing_loss', 'validation/main/tagging_accuracy', 'validation/main/parsing_accuracy' ]), trigger=log_interval) trainer.extend(extensions.ProgressBar(update_interval=10)) trainer.run() if __name__ == "__main__": import argparse parser = argparse.ArgumentParser( "CCG parser's LSTM supertag tagger") subparsers = parser.add_subparsers() # Creating training data parser_c = subparsers.add_parser( "create", help="create tagger input data") parser_c.add_argument("path", help="path to ccgbank data file") parser_c.add_argument("out", help="output directory path") parser_c.add_argument("--cat-freq-cut", type=int, default=10, help="only allow categories which appear >= freq-cut") parser_c.add_argument("--word-freq-cut", type=int, default=5, help="only allow words which appear >= freq-cut") parser_c.add_argument("--afix-freq-cut", type=int, default=5, help="only allow afixes which appear >= freq-cut") parser_c.add_argument("--subset", choices=["train", "test", "dev", "all"], default="train") parser_c.add_argument("--mode", choices=["train", "test"], default="train") parser_c.set_defaults(func= (lambda args: TrainingDataCreator.create_traindata(args) if args.mode == "train" else TrainingDataCreator.create_testdata(args))) #TODO updater # Do training using training data created through `create` parser_t = subparsers.add_parser( "train", help="train supertagger model") parser_t.add_argument("model", help="path to model directory") parser_t.add_argument("--gpu", type=int, default=-1, help="path to model directory") parser_t.add_argument("train", help="training data file path") parser_t.add_argument("val", help="validation data file path") parser_t.add_argument("--tritrain", help="tri-training data file path") parser_t.add_argument("--tri-weight", type=float, default=0.4, help="multiply tri-training sample losses") parser_t.add_argument("--batchsize", type=int, default=16, help="batch size") parser_t.add_argument("--epoch", type=int, default=20, help="epoch") parser_t.add_argument("--word-emb-size", type=int, default=50, help="word embedding size") parser_t.add_argument("--afix-emb-size", type=int, default=32, help="character embedding size") parser_t.add_argument("--nlayers", type=int, default=1, help="number of layers for each LSTM") parser_t.add_argument("--hidden-dim", type=int, default=128, help="dimensionality of hidden layer") parser_t.add_argument("--elu-dim", type=int, default=64, help="dimensionality of elu layer") parser_t.add_argument("--dep-dim", type=int, default=100, help="dim") parser_t.add_argument("--dropout-ratio", type=float, default=0.5, help="dropout ratio") parser_t.add_argument("--initmodel", help="initialize model with `initmodel`") parser_t.add_argument("--pretrained", help="pretrained word embeddings") parser_t.set_defaults(func=train) args = parser.parse_args() args.func(args)
{ "content_hash": "4821227d5b09378a7c6fd97cc5b77867", "timestamp": "", "source": "github", "line_count": 466, "max_line_length": 95, "avg_line_length": 38.547210300429185, "alnum_prop": 0.5760173690363525, "repo_name": "masashi-y/myccg", "id": "90344659cf053329f5da14fbc3bc22f5bef8c978", "size": "17964", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "src/py/qrnn_parser.py", "mode": "33188", "license": "mit", "language": [ { "name": "C", "bytes": "5099" }, { "name": "C++", "bytes": "114374" }, { "name": "Makefile", "bytes": "979" }, { "name": "Python", "bytes": "179658" }, { "name": "Shell", "bytes": "718" } ], "symlink_target": "" }
__author__ = 'Andreas Bader' __version__ = "0.01" import threading import time import vagrant import os import Util import re from fabric.api import * import subprocess class Vm(): vagrantFolders=None pathVagrantfile=None credFiles=None basicFilesFolder=None pathFolder=None tmpFolder=None name=None logging=False logger=None created=False vm=None thread=None provider=None ip=None # vagrantFolders: Folders inside which vagrantfiles+folders are # tmpFolder: Path to tempfolder # name: name of the VM # logger: Logger instance # logging: if true, vagrant debug logging will be done def __init__(self, vagrantFolders, credFiles, basicFilesFolder, tmpFolder, name, logger, provider, logging): self.vagrantFolders = vagrantFolders self.credFiles=credFiles self.basicFilesFolder=basicFilesFolder self.tmpFolder = tmpFolder self.name = name self.logger = logger self.logging = logging self.provider = provider def start(self): self.thread = threading.Thread(target=self.run) self.thread.start() def join(self): self.thread.join() def run(self): if not self.created: self.create_vm() else: self.destroy() def destroy(self): if self.vm != None: try: if self.vm.status()[0].state == vagrant.Vagrant.RUNNING: self.vm.halt() startTime = int(time.time()) while self.vm.status()[0].state == "powering-off" and (int(time.time()) - startTime) < 60 : time.sleep(1) if self.vm.status()[0].state != vagrant.Vagrant.POWEROFF and self.vm.status()[0].state != vagrant.Vagrant.SHUTOFF: self.vm.halt(force=True) return self.vm.destroy() except subprocess.CalledProcessError: # ignore warnings that destroy did not work (occurs sometimes) self.logger.warning("There might be some leftovers from vm '%s'." %(self.name)) return True return True def create_vm(self): # Check if you want to log log_cm=None self.logger.info("BEGIN Creating %s." %(self.name)) if self.logging: try: filename="%s_%s.log" %(self.name,time.strftime("%Y%m%d%H%M%S", time.localtime())) log_cm = vagrant.make_file_cm(filename) self.logger.info("Logging creation of %s to %s." % (self.name,filename)) except Exception, e: self.logger.error('Failed to open file', exc_info=True) return False pathName=self.name.rsplit("_",1)[0] # Name is something like VMNAME_1, split _1 away! # copy to tmpfolder (already checked that it exist, need to check if vm folder exists) paths=Util.create_folder_path_list(self.vagrantFolders, [pathName]) pathTmp=os.path.join(self.tmpFolder,self.name) if not Util.check_folders(paths, self.logger, False, True, True): return False if not Util.check_folder(pathTmp, self.logger, True): return False # Copy Vagrantfile in place pathVagrantFileOld=os.path.join(pathTmp,"%s.vagrant"%(self.name)) pathVagrantFileNew=os.path.join(pathTmp,"Vagrantfile") if not Util.copy_folders(paths,pathTmp,self.logger, True): return False self.pathFolder=pathTmp for credFile in self.credFiles: credFilesOld = Util.create_folder_path_list(self.vagrantFolders, [credFile]) pathCredFileNew = os.path.join(pathTmp,credFile) for credFileOld in credFilesOld: if Util.check_file_exists(credFileOld): if not Util.copy_file(credFileOld,pathCredFileNew,self.logger): return False basicFileFoldersOld=Util.create_folder_path_list(self.vagrantFolders, [self.basicFilesFolder]) pathBasicFileFolderNew=os.path.join(pathTmp,self.basicFilesFolder) if not Util.copy_folders(basicFileFoldersOld,pathBasicFileFolderNew,self.logger, True): return False # digital ocean needs a random name, otherwise we always get problems with multiple measurements if Util.check_file_exists(pathVagrantFileNew): self.logger.error("'%s' does already exist." %(pathVagrantFileNew)) return False try: file_old = open(pathVagrantFileOld, "r") file_new = open(pathVagrantFileNew, "w") for line in file_old: if re.match(r'^\s*HOSTNAME\s+=\s+("[^"]+"|\'[^\']+\')\s*$',line) != None: split_res = re.search(r'("[^"]+"|\'[^\']+\')',line) if split_res != None: if self.provider == "digital_ocean": # allowed are numbers, letters, hyphens and dots random_string = Util.get_random_string(10) file_new.write("HOSTNAME = \"%s-%s\"\n" %(split_res.group()[1:-1], random_string)) self.name = "%s-%s" % (split_res.group()[1:-1], random_string) else: self.name = "%s" % (split_res.group()[1:-1]) file_new.write(line) else: self.logger.warning("Could not parse hostname out of '%s'. " "Using the default. Errors can occur." % (line)) file_new.write(line) else: file_new.write(line) file_new.flush() file_new.close() file_old.close() except Exception,e: self.logger.error("An error occured while copying '%s' to '%s'." % (pathVagrantFileOld, pathVagrantFileNew), exc_info=True) # else: # if not Util.copy_file(pathVagrantFileOld,pathVagrantFileNew,self.logger): # return False self.pathVagrantfile=pathVagrantFileNew Util.clear_vagrant_files(pathTmp,self.logger) # Create VM try: vm = vagrant.Vagrant(root=pathTmp, out_cm=log_cm, err_cm=log_cm) self.vm=vm vm.up(provider=self.provider) # with settings(host_string= vm.user_hostname_port(), # key_filename = vm.keyfile(), # disable_known_hosts = True): # run("uname -a") except Exception, e: self.logger.error('Failed while creating vm %s.' %(self.name), exc_info=True) self.logger.info('Since creation failed, trying to destroy vm %s.' %(self.name), exc_info=True) #if not self.vm.destroy(): # self.logger.error('Can not destroy %s.' %(self.name), exc_info=True) ## vm.destroy() seems to be always returning false at this stage (opentsack), but destroying works fine -> Ignore it. self.destroy() return False self.logger.info("END Creating %s." %(self.name)) self.logger.info("GET IP of %s." %(self.name)) self.ip = self.get_ip() # the IP Part is needed, because on OpenStack the 'internal' IP differs from the 'external' (SSH) IP if self.ip == None: self.logger.error('Failed getting IP while creating vm %s.' %(self.name), exc_info=True) self.logger.info('Since creation failed, trying to destroy vm %s.' %(self.name), exc_info=True) self.destroy() return False self.created=True return True # Return the output def run_with_output (self,disableKnownHosts,command,warn_only=False,quiet=False): with hide('output','running', 'warnings', 'stdout', 'stderr'),\ settings(host_string = self.vm.user_hostname_port(), key_filename = self.vm.keyfile(), disable_known_hosts = disableKnownHosts, warn_only = warn_only): result = run(command,warn_only=warn_only, quiet=quiet) return result # Only return true/false def run_without_output (self,disableKnownHosts,command,warn_only=False,quiet=False,test=False): result = self.run_with_output (disableKnownHosts,command,warn_only,quiet) if result.return_code == 0 or (warn_only and result.return_code == 255) or (test and result.return_code == -1): return True else: self.logger.error("Command '%s' on %s returned %s." %(command, self.vm.user_hostname_port(), result.return_code)) return False def get_ip(self): head_str = " | head -n1" if self.provider in ["virtualbox", "digital_ocean"]: # virtualbox uses second network interface for vm-interconnections head_str = " | head -n4 | tail -n1" result = self.run_with_output (True,'sudo ifconfig | grep -E -o "(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)"%s' % (head_str),True, True) if result.return_code == 0: return result.stdout else: self.logger.error("Can't get IP on %s, command returned %s." %(self.vm.user_hostname_port(), result.return_code)) return None def get_hostname(self): result = self.run_with_output (True,'hostname',True, True) if result.return_code == 0: return result.stdout else: self.logger.error("Can't get hostname on %s, command returned %s." %(self.vm.user_hostname_port(), result.return_code)) return None
{ "content_hash": "6b12a13f4d565604e1545589262fe6c7", "timestamp": "", "source": "github", "line_count": 215, "max_line_length": 260, "avg_line_length": 46.58139534883721, "alnum_prop": 0.5649525711432851, "repo_name": "TSDBBench/Overlord", "id": "88c9b672abce7df290eb568a96c20f224dbcc162", "size": "10063", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "Vm.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "C", "bytes": "2418" }, { "name": "HTML", "bytes": "4489" }, { "name": "Python", "bytes": "578202" }, { "name": "Ruby", "bytes": "107217" }, { "name": "Shell", "bytes": "2134" } ], "symlink_target": "" }
from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ("site", "0029_auto_20210120_0934"), ] operations = [ migrations.AddField( model_name="sitesettings", name="fulfillment_allow_unpaid", field=models.BooleanField(default=True), ), migrations.AddField( model_name="sitesettings", name="fulfillment_auto_approve", field=models.BooleanField(default=True), ), ]
{ "content_hash": "8d252047a4a85a212e527f6c1ddb708b", "timestamp": "", "source": "github", "line_count": 21, "max_line_length": 52, "avg_line_length": 25.476190476190474, "alnum_prop": 0.5813084112149532, "repo_name": "mociepka/saleor", "id": "a7216c810f18f32c4475c406bd6316b6b3f2af28", "size": "584", "binary": false, "copies": "3", "ref": "refs/heads/master", "path": "saleor/site/migrations/0030_auto_20210722_1141.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "Dockerfile", "bytes": "2228" }, { "name": "HTML", "bytes": "249248" }, { "name": "Procfile", "bytes": "290" }, { "name": "Python", "bytes": "12686831" }, { "name": "Shell", "bytes": "439" } ], "symlink_target": "" }
""" Event pub/sub routines. """ import inspect from .enum import EnumType, EnumBase from .errors import prepare_for_reraise, reraise class EventHook: """This type allows to implement event pattern. Allowed operations on EventHook objects: * hook.subscribe(handler) # subscribe * hook.unsubscribe(handler) # unsubscribe (requires O(handlerCount)!) * hook(...) # invokes all event handlers * hook.trigger(...) # another way to raise the event * hook.safe_trigger(...) # definitely invokes all event handlers and raises # the first thrown exception (if any) """ def __init__(self, handlers=None): """Constructor.""" self.handlers = handlers if handlers is not None else [] def subscribe(self, handler): """Adds a new event handler.""" assert callable(handler), "Invalid handler %s" % handler self.handlers.append(handler) def unsubscribe(self, handler): """Removes an event handler.""" self.handlers.remove(handler) def safe_trigger(self, *args): """*Safely* triggers the event by invoking all its handlers, even if few of them raise an exception. If a set of exceptions is raised during handler invocation sequence, this method rethrows the first one. :param args: the arguments to invoke event handlers with. """ error = None # iterate over a copy of the original list because some event handlers # may mutate the list for handler in list(self.handlers): try: handler(*args) except BaseException as e: if error is None: prepare_for_reraise(e) error = e if error is not None: reraise(error) def trigger(self, *args): """Triggers the event by invoking all its handlers with provided arguments. .. note:: If one of event handlers raises an exception, other handlers won't be invoked by this method. :param args: the arguments to invoke event handlers with. """ for handler in list(self.handlers): handler(*args) def __call__(self, *args): """A shortcut to trigger method. .. note:: If one of event handlers raises an exception, other handlers won't be invoked by this method. :param args: the arguments to invoke event handlers with. """ self.trigger(*args) def __contains__(self, item): """Checks whether this set contains the specified event handler.""" return item in self.handlers def __iter__(self): """Iterates through all registered event handlers.""" for handler in self.handlers: yield handler def __str__(self): """Gets the string representation of this object.""" return "EventHook" + repr(tuple(self.handlers)) def __repr__(self): """Gets the ``repr`` representation of this object.""" return self.__str__() class SinkingEventHook(EventHook): """An implementation of EventHook that actually does nothing. This type allows to implement a simple performance optimization for ConstFuture, ErrorFuture and similar classes, since they never raise their events. """ def subscribe(self, handler): """Does nothing.""" return self def unsubscribe(self, handler): """Does nothing.""" return self def safe_trigger(self, *args): """Does nothing.""" return def trigger(self, *args): """Does nothing.""" return def __call__(self, *args): """Does nothing.""" return def __contains__(self, item): """Always returns False.""" return False def __iter__(self): """Returns empty generator.""" return iter([]) def __str__(self): """Gets the string representation of this object.""" return "SinkingEventHook()" sinking_event_hook = SinkingEventHook() globals()["sinking_event_hook"] = sinking_event_hook class EventInterceptor: """A context object helping to temporarily intercept a set of events on an object exposing a set of event hooks. """ def __init__(self, source, **events): """ Constructor. :param source: the object exposing a set of event hook properies :param events: a set of event_hook_name=event_handler pairs specifying which events to intercept. """ self.source = source self.events = events def __enter__(self): """Starts event interception.""" source = self.source for name, handler in self.events.items(): hook = getattr(source, name) hook.subscribe(handler) def __exit__(self, typ, value, traceback): """Stops event interception.""" source = self.source for name, handler in self.events.items(): hook = getattr(source, name) hook.unsubscribe(handler) class EventHub: """Provides named event hooks on demand. Use properties (or keys) of this object to access named event hooks created on demand (i.e. on the first access attempt). """ def __init__(self, source=None): """Constructor. :param source: ``dict`` with initial set of named event hooks. """ if source is not None: self.__dict__ = source def on(self, event, handler): """Attaches the handler to the specified event. @param event: event to attach the handler to. Any object can be passed as event, but string is preferable. If qcore.EnumBase instance is passed, its name is used as event key. @param handler: event handler. @return: self, so calls like this can be chained together. """ event_hook = self.get_or_create(event) event_hook.subscribe(handler) return self def off(self, event, handler): """Detaches the handler from the specified event. @param event: event to detach the handler to. Any object can be passed as event, but string is preferable. If qcore.EnumBase instance is passed, its name is used as event key. @param handler: event handler. @return: self, so calls like this can be chained together. """ event_hook = self.get_or_create(event) event_hook.unsubscribe(handler) return self def trigger(self, event, *args): """Triggers the specified event by invoking EventHook.trigger under the hood. @param event: event to trigger. Any object can be passed as event, but string is preferable. If qcore.EnumBase instance is passed, its name is used as event key. @param args: event arguments. @return: self, so calls like this can be chained together. """ event_hook = self.get_or_create(event) event_hook.trigger(*args) return self def safe_trigger(self, event, *args): """Safely triggers the specified event by invoking EventHook.safe_trigger under the hood. @param event: event to trigger. Any object can be passed as event, but string is preferable. If qcore.EnumBase instance is passed, its name is used as event key. @param args: event arguments. @return: self, so calls like this can be chained together. """ event_hook = self.get_or_create(event) event_hook.safe_trigger(*args) return self def get_or_create(self, event): """Gets or creates a new event hook for the specified event (key). This method treats qcore.EnumBase-typed event keys specially: enum_member.name is used as key instead of enum instance in case such a key is passed. Note that on/off/trigger/safe_trigger methods rely on this method, so you can pass enum members there as well. """ if isinstance(event, EnumBase): event = event.short_name return self.__dict__.setdefault(event, EventHook()) def __getattr__(self, key): """Gets or creates a new event hook with the specified name. Calls get_or_create under the hood. Specified key must start with ``on_`` prefix; this prefix is trimmed when key is passed to self.get_or_create. """ if key.startswith("on_"): return self.get_or_create(key[3:]) else: raise AttributeError(key) def __contains__(self, item): """Checks if there is an event hook with the specified name.""" return item in self.__dict__ def __len__(self): """Gets the count of created event hooks.""" return len(self.__dict__) def __getitem__(self, item): """Gets the event hook with the specified name.""" return self.__dict__[item] def __setitem__(self, key, value): """Sets the event hook by its name.""" self.__dict__[key] = value def __delitem__(self, key): """Removes the event hook with the specified name.""" del self.__dict__[key] def __iter__(self): """Iterates over all (name, event_hook) pairs.""" return iter(self.__dict__.items()) def __repr__(self): """Gets the ``repr`` representation of this object.""" return "%s(%r)" % (self.__class__.__name__, self.__dict__) # Needed bcz of a six bug: https://github.com/benjaminp/six/issues/252 @classmethod def __prepare__(cls, name, bases, **kwargs): return {} class EnumBasedEventHubType(type): """Metaclass for enum-based event hubs. Asserts that all enum members are defined in class and vice versa. """ def __init__(cls, what, bases=None, dict=None): super().__init__(what, bases, dict) if cls.__name__ == "NewBase" and cls.__module__ == "six" and not dict: # some versions of six generate an intermediate class that is created without a # __based_on__ return assert dict is not None and "__based_on__" in dict, ( "__based_on__ = [EnumA, EnumB] class member " "must be used to subclass EnumBasedEventHub" ) based_on = cls.__based_on__ if isinstance(based_on, EnumType): based_on = [based_on] cls_member_names = set() for k, v in inspect.getmembers(cls): if not k.startswith("on_"): continue if not isinstance(v, EventHook): continue cls_member_names.add(k[3:]) enum_members = {} for enum_type in based_on: for member in enum_type.get_members(): name = member.short_name assert ( name not in enum_members ), "Two enum members share the same name: %r and %r " % ( member, enum_members[name], ) enum_members[name] = member enum_member_names = set(enum_members.keys()) for name in enum_member_names: assert name in cls_member_names, ( "Member %r is declared in one of enums, " + "but %r is not declared in class." ) % (name, "on_" + name) for name in cls_member_names: assert name in enum_member_names, ( "Member %r is declared in class, " + "but %r is not declared in any of enum(s)." ) % ("on_" + name, name) # Members are removed from class, since EventHub anyway creates # similar instance members delattr(cls, "on_" + name) # Needed bcz of a six bug: https://github.com/benjaminp/six/issues/252 @classmethod def __prepare__(cls, name, bases, **kwargs): return {} class EnumBasedEventHub(EventHub, metaclass=EnumBasedEventHubType): __based_on__ = [] hub = EventHub() # Default global event hub
{ "content_hash": "2bd20d05f5628f87ccf6be401a82e26b", "timestamp": "", "source": "github", "line_count": 387, "max_line_length": 91, "avg_line_length": 31.82170542635659, "alnum_prop": 0.5821356069833536, "repo_name": "quora/qcore", "id": "8bd33ff39dda0892e5d98a45f85676ff92b0c05d", "size": "12889", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "qcore/events.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Cython", "bytes": "7403" }, { "name": "Python", "bytes": "211611" } ], "symlink_target": "" }
"""Spanish dictionary""" es = { "LANGUAGE": "Español", # Client notifications "config-cleared-notification": "Ajustes limpiados. Los cambios serán guardados cuando almacenes una configuración válida.", "relative-config-notification": "Cargados los archivo(s) de configuración relativa: {}", "connection-attempt-notification": "Intentando conectarse a {}:{}", # Port, IP "reconnection-attempt-notification": "Se perdió la conexión con el servidor, intentando reconectar", "disconnection-notification": "Desconectado del servidor", "connection-failed-notification": "La conexión con el servidor falló", "connected-successful-notification": "Conectado al servidor exitosamente", "retrying-notification": "%s, Reintentando en %d segundos...", # Seconds "reachout-successful-notification": "Se alcanzó {} ({}) satisfactoriamente", "rewind-notification": "Rebobinado debido a diferencia de tiempo con {}", # User "fastforward-notification": "Adelantado debido a diferencia de tiempo con {}", # User "slowdown-notification": "Ralentizando debido a diferencia de tiempo con {}", # User "revert-notification": "Revirtiendo a la velocidad normal", "pause-notification": "{} pausado", # User "unpause-notification": "{} resumido", # User "seek-notification": "{} saltó desde {} hasta {}", # User, from time, to time "current-offset-notification": "Compensación actual: {} segundos", # Offset "media-directory-list-updated-notification": "Se han actualizado los directorios multimedia de Syncplay.", "room-join-notification": "{} se unió al canal: '{}'", # User "left-notification": "{} se fue", # User "left-paused-notification": "{} se fue, {} pausó", # User who left, User who paused "playing-notification": "{} está reproduciendo '{}' ({})", # User, file, duration "playing-notification/room-addendum": " en la sala: '{}'", # Room "not-all-ready": "No están listos: {}", # Usernames "all-users-ready": "Todos están listos ({} users)", # Number of ready users "ready-to-unpause-notification": "Se te ha establecido como listo - despausa nuevamente para resumir", "set-as-ready-notification": "Se te ha establecido como listo", "set-as-not-ready-notification": "Se te ha establecido como no-listo", "autoplaying-notification": "Reproduciendo automáticamente en {}...", # Number of seconds until playback will start "identifying-as-controller-notification": "Autentificando como el operador de la sala, con contraseña '{}'...", "failed-to-identify-as-controller-notification": "{} falló la autentificación como operador de la sala.", "authenticated-as-controller-notification": "{} autentificado como operador de la sala", "created-controlled-room-notification": "Sala administrada '{}' creada con contraseña '{}'. Por favor guarda esta información para referencias futuras!\n\nIn managed rooms everyone is kept in sync with the room operator(s) who are the only ones who can pause, unpause, seek, and change the playlist.\n\nYou should ask regular viewers to join the room '{}' but the room operators can join the room '{}' to automatically authenticate themselves.", # RoomName, operatorPassword, roomName, roomName:operatorPassword # TODO: Translate "file-different-notification": "El archivo que reproduces parece ser diferente al archivo de {}", # User "file-differences-notification": "Tu archivo difiere de la(s) siguiente(s) forma(s): {}", # Differences "room-file-differences": "Diferencias de archivo: {}", # File differences (filename, size, and/or duration) "file-difference-filename": "nombre", "file-difference-filesize": "tamaño", "file-difference-duration": "duración", "alone-in-the-room": "Estás solo en la sala", "different-filesize-notification": " (el tamaño de su archivo difiere con el tuyo!)", "userlist-playing-notification": "{} está reproduciendo:", # Username "file-played-by-notification": "Archivo: {} está siendo reproducido por:", # File "no-file-played-notification": "{} está ahora reproduciendo un archivo", # Username "notplaying-notification": "Personas que no reproducen algún archivo:", "userlist-room-notification": "En sala '{}':", # Room "userlist-file-notification": "Archivo", "controller-userlist-userflag": "Operador", "ready-userlist-userflag": "Listo", "update-check-failed-notification": "No se pudo determinar automáticamente que Syncplay {} esté actualizado. ¿Te gustaría visitar https://syncplay.pl/ para buscar actualizaciones manualmente?", # Syncplay version "syncplay-uptodate-notification": "Syncplay está actualizado", "syncplay-updateavailable-notification": "Una nueva versión de Syncplay está disponible. ¿Te gustaría visitar la página del lanzamiento?", "mplayer-file-required-notification": "Al utilizar Syncplay con mplayer se debe proveer un archivo al inicio.", "mplayer-file-required-notification/example": "Ejemplo de uso: syncplay [opciones] [url|ubicación/]nombreDelArchivo", "mplayer2-required": "Syncplay no es compatible con MPlayer 1.x, por favor utiliza mplayer2 o mpv", "unrecognized-command-notification": "Comando no reconocido", "commandlist-notification": "Comandos disponibles:", "commandlist-notification/room": "\tr [nombre] - cambiar de sala", "commandlist-notification/list": "\tl - mostrar lista de usuarios", "commandlist-notification/undo": "\tu - deshacer última búsqueda", "commandlist-notification/pause": "\tp - activar pausa", "commandlist-notification/seek": "\t[s][+-]tiempo - ir al tiempo definido, si no se especifica + o -, será el tiempo absoluto en segundos o min:sec", "commandlist-notification/help": "\th - esta ayuda", "commandlist-notification/toggle": "\tt - activa/inactiva señal que estás listo para ver", "commandlist-notification/create": "\tc [nombre] - crear sala administrada usando el nombre de la sala actual", "commandlist-notification/auth": "\ta [contraseña] - autentificar como operador de la sala con la contraseña de operador", "commandlist-notification/chat": "\tch [mensaje] - enviar un mensaje en la sala", "commandList-notification/queue": "\tqa [file/url] - add file or url to bottom of playlist", # TO DO: Translate "commandList-notification/playlist": "\tql - show the current playlist", # TO DO: Translate "commandList-notification/select": "\tqs [index] - select given entry in the playlist", # TO DO: Translate "commandList-notification/delete": "\tqd [index] - delete the given entry from the playlist", # TO DO: Translate "syncplay-version-notification": "Versión de Syncplay: {}", # syncplay.version "more-info-notification": "Más información disponible en: {}", # projectURL "gui-data-cleared-notification": "Syncplay limpió la ruta y el estado de la ventana utilizado por la GUI.", "language-changed-msgbox-label": "El lenguaje se modificará cuando ejecutes Syncplay.", "promptforupdate-label": "¿Está bien si Syncplay comprueba por actualizaciones automáticamente y de vez en cuando?", "media-player-latency-warning": "Advertencia: El reproductor multimedia tardó {} segundos en responder. Si experimentas problemas de sincronización, cierra otros programas para liberar recursos del sistema; si esto no funciona, intenta con otro reproductor multimedia.", # Seconds to respond "mpv-unresponsive-error": "mpv no ha respondido por {} segundos. Al aparecer no está funcionando correctamente. Por favor reinicia Syncplay.", # Seconds to respond # Client prompts "enter-to-exit-prompt": "Presiona intro para salir\n", # Client errors "missing-arguments-error": "Están faltando algunos argumentos necesarios. Por favor revisa --help", "server-timeout-error": "La conexión con el servidor ha caducado", "mpc-slave-error": "No se logró iniciar MPC en modo esclavo!", "mpc-version-insufficient-error": "La versión de MPC no es suficiente, por favor utiliza `mpc-hc` >= `{}`", "mpc-be-version-insufficient-error": "La versión de MPC no es suficiente, por favor utiliza `mpc-be` >= `{}`", "mpv-version-error": "Syncplay no es compatible con esta versión de mpv. Por favor utiliza una versión diferente de mpv (p.ej. Git HEAD).", "mpv-failed-advice": "The reason mpv cannot start may be due to the use of unsupported command line arguments or an unsupported version of mpv.", # TODO: Translate "player-file-open-error": "El reproductor falló al abrir el archivo", "player-path-error": "La ruta del reproductor no está definida correctamente. Los reproductores soportados son: mpv, mpv.net, VLC, MPC-HC, MPC-BE, mplayer2, y IINA", "hostname-empty-error": "El nombre del host no puede ser vacío", "empty-error": "{} no puede ser vacío", # Configuration "media-player-error": "Error del reproductor multimedia: \"{}\"", # Error line "unable-import-gui-error": "No se lograron importar las librerías GUI. Si no tienes instalado PySide, entonces tendrás que instalarlo para que funcione el GUI.", "unable-import-twisted-error": "No se logró importar Twisted. Por favor instala Twisted v16.4.0 o posterior.", "arguments-missing-error": "Están faltando algunos argumentos necesarios. Por favor revisa --help", "unable-to-start-client-error": "No se logró iniciar el cliente", "player-path-config-error": "La ruta del reproductor no está definida correctamente. Los reproductores soportados son: mpv, mpv.net, VLC, MPC-HC, MPC-BE, mplayer2 y IINA.", "no-file-path-config-error": "El archivo debe ser seleccionado antes de iniciar el reproductor", "no-hostname-config-error": "El nombre del host no puede ser vacío", "invalid-port-config-error": "El puerto debe ser válido", "empty-value-config-error": "{} no puede ser vacío", # Config option "not-json-error": "No es una cadena de caracteres JSON válida\n", "hello-arguments-error": "Not enough Hello arguments\n", # DO NOT TRANSLATE "version-mismatch-error": "No coinciden las versiones del cliente y servidor\n", "vlc-failed-connection": "Falló la conexión con VLC. Si no has instalado syncplay.lua y estás usando la última versión de VLC, por favor revisa https://syncplay.pl/LUA/ para obtener instrucciones. Syncplay and VLC 4 are not currently compatible, so either use VLC 3 or an alternative such as mpv.", # TO DO: TRANSLATE "vlc-failed-noscript": "VLC ha reportado que la interfaz syncplay.lua no se ha instalado. Por favor revisa https://syncplay.pl/LUA/ para obtener instrucciones.", "vlc-failed-versioncheck": "Esta versión de VLC no está soportada por Syncplay.", "vlc-initial-warning": 'VLC does not always provide accurate position information to Syncplay, especially for .mp4 and .avi files. If you experience problems with erroneous seeking then please try an alternative media player such as <a href="https://mpv.io/">mpv</a> (or <a href="https://github.com/stax76/mpv.net/">mpv.net</a> for Windows users).', # TODO: Translatef "feature-sharedPlaylists": "listas de reproducción compartidas", # used for not-supported-by-server-error "feature-chat": "chat", # used for not-supported-by-server-error "feature-readiness": "preparación", # used for not-supported-by-server-error "feature-managedRooms": "salas administradas", # used for not-supported-by-server-error "not-supported-by-server-error": "La característica {} no está soportada por este servidor..", # feature "shared-playlists-not-supported-by-server-error": "El servidor no admite la función de listas de reproducción compartidas. Para asegurarse de que funciona correctamente, se requiere un servidor que ejecute Syncplay {}+, pero el servidor está ejecutando Syncplay {}.", # minVersion, serverVersion "shared-playlists-disabled-by-server-error": "La función de lista de reproducción compartida no está habilitada en la configuración del servidor. Para utilizar esta función, debes conectarte a un servidor distinto.", "invalid-seek-value": "Valor de búsqueda inválido", "invalid-offset-value": "Valor de desplazamiento inválido", "switch-file-not-found-error": "No se pudo cambiar el archivo '{0}'. Syncplay busca en los directorios de medios especificados.", # File not found "folder-search-timeout-error": "Se anuló la búsqueda de medios en el directorio de medios, ya que tardó demasiado buscando en '{}'. Esto ocurrirá si seleccionas una carpeta con demasiadas subcarpetas en tu lista de carpetas de medios para buscar. Para que el cambio automático de archivos vuelva a funcionar, selecciona Archivo->Establecer directorios de medios en la barra de menú y elimina este directorio o reemplázalo con una subcarpeta apropiada. Si la carpeta está bien, puedes volver a reactivarlo seleccionando Archivo->Establecer directorios de medios y presionando 'OK'.", # Folder "folder-search-first-file-timeout-error": "Se anuló la búsqueda de medios en '{}', ya que tardó demasiado buscando en acceder al directorio. Esto podría ocurrir si se trata de una unidad de red, o si tienes configurada la unidad para centrifugar luego de cierto período de inactividad. Para que el cambio automático de archivos vuelva a funcionar, por favor dirígete a Archivo->Establecer directorios de medios y elimina el directorio o resuelve el problema (p.ej. cambiando la configuración de ahorro de energía).", # Folder "added-file-not-in-media-directory-error": "Has cargado un archivo en '{}' el cual no es un directorio de medios conocido. Puedes agregarlo como un directorio de medios seleccionado Archivo->Establecer directorios de medios en la barra de menú.", # Folder "no-media-directories-error": "No se han establecido directorios de medios. Para que las funciones de lista de reproducción compartida y cambio de archivos funcionen correctamente, selecciona Archivo->Establecer directorios de medios y especifica dónde debe buscar Syncplay para encontrar archivos multimedia.", "cannot-find-directory-error": "No se encontró el directorio de medios '{}'.Para actualizar tu lista de directorios de medios, seleccciona Archivo->Establecer directorios de medios desde la barra de menú y especifica dónde debe buscar Syncplay para encontrar archivos multimedia.", "failed-to-load-server-list-error": "Error al cargar la lista de servidor públicos. Por favor visita https://www.syncplay.pl/ en tu navegador.", # Client arguments "argument-description": 'Solución para sincronizar la reproducción de múltiples instancias de reproductores de medios, a través de la red.', "argument-epilog": 'Si no se especifican opciones, se utilizarán los valores de _config', "nogui-argument": 'no mostrar GUI', "host-argument": 'dirección del servidor', "name-argument": 'nombre de usuario deseado', "debug-argument": 'modo debug', "force-gui-prompt-argument": 'hacer que aparezca el aviso de configuración', "no-store-argument": 'no guardar valores en .syncplay', "room-argument": 'sala por defecto', "password-argument": 'contraseña del servidor', "player-path-argument": 'ruta al ejecutable de tu reproductor', "file-argument": 'archivo a reproducir', "args-argument": 'opciones del reproductor, si necesitas pasar opciones que empiezan con -, pásalas utilizando \'--\'', "clear-gui-data-argument": 'restablece ruta y los datos del estado de la ventana GUI almacenados como QSettings', "language-argument": 'lenguaje para los mensajes de Syncplay (de/en/ru/it/es/pt_BR/pt_PT/tr)', "version-argument": 'imprime tu versión', "version-message": "Estás usando la versión de Syncplay {} ({})", "load-playlist-from-file-argument": "loads playlist from text file (one entry per line)", # TODO: Translate # Client labels "config-window-title": "Configuración de Syncplay", "connection-group-title": "Configuración de conexión", "host-label": "Dirección del servidor: ", "name-label": "Nombre de usuario (opcional):", "password-label": "Contraseña del servidor (si corresponde):", "room-label": "Sala por defecto: ", "roomlist-msgbox-label": "Edit room list (one per line)", # TODO: Translate "media-setting-title": "Configuración del reproductor multimedia", "executable-path-label": "Ruta al reproductor multimedia:", "media-path-label": "Ruta al video (opcional):", "player-arguments-label": "Argumentos del reproductor (si corresponde):", "browse-label": "Visualizar", "update-server-list-label": "Actualizar lista", "more-title": "Mostrar más configuraciones", "never-rewind-value": "Nunca", "seconds-suffix": " segs", "privacy-sendraw-option": "Enviar crudo", "privacy-sendhashed-option": "Enviar \"hasheado\"", "privacy-dontsend-option": "No enviar", "filename-privacy-label": "Información del nombre de archivo:", "filesize-privacy-label": "Información del tamaño de archivo:", "checkforupdatesautomatically-label": "Buscar actualizaciones de Syncplay automáticamente", "autosavejoinstolist-label": "Add rooms you join to the room list", # TO DO: Translate "slowondesync-label": "Ralentizar si hay una desincronización menor (no soportado en MPC-HC/BE)", "rewindondesync-label": "Rebobinar si hay una desincronización mayor (recomendado)", "fastforwardondesync-label": "Avanzar rápidamente si hay un retraso (recomendado)", "dontslowdownwithme-label": "Nunca ralentizar ni rebobinar a otros (experimental)", "pausing-title": "Pausando", "pauseonleave-label": "Pausar cuando un usuario se va (p.ej. si se desconectan)", "readiness-title": "Estado de preparación inicial", "readyatstart-label": "Establecerme como \"listo-para-ver\" por defecto", "forceguiprompt-label": "No mostrar siempre la ventana de configuración de Syncplay", # (Inverted) "showosd-label": "Activar mensajes OSD", "showosdwarnings-label": "Incluir advertencias (p.ej. cuando los archivos son distintos, los usuarios no están listos)", "showsameroomosd-label": "Incluir eventos en tu sala", "shownoncontrollerosd-label": "Incluir eventos de no-operadores en salas administradas", "showdifferentroomosd-label": "Incluir eventos en otras salas", "showslowdownosd-label": "Incluir notificaciones de ralentización/reversión", "language-label": "Lenguaje:", "automatic-language": "Predeterminado ({})", # Default language "showdurationnotification-label": "Advertir sobre discrepancias en la duración de los medios", "basics-label": "Básicos", "readiness-label": "Reproducir/Pausar", "misc-label": "Misc.", "core-behaviour-title": "Comportamiento de la sala central", "syncplay-internals-title": "Internos de Syncplay", "syncplay-mediasearchdirectories-title": "Directorios para buscar medios", "syncplay-mediasearchdirectories-label": "Directorios para buscar medios (una ruta por línea)", "sync-label": "Sincronizar", "sync-otherslagging-title": "Si otros se están quedando atrás...", "sync-youlaggging-title": "Si tú te estás quedando atrás...", "messages-label": "Mensajes", "messages-osd-title": "Configuraciones de visualización en pantalla", "messages-other-title": "Otras configuraciones de visualización", "chat-label": "Chat", "privacy-label": "Privacidad", # Currently unused, but will be brought back if more space is needed in Misc tab "privacy-title": "Configuración de privacidad", "unpause-title": "Si presionas reproducir, definir como listo y:", "unpause-ifalreadyready-option": "Despausar si ya está definido como listo", "unpause-ifothersready-option": "Despausar si ya está listo u otros en la sala están listos (predeterminado)", "unpause-ifminusersready-option": "Despausar si ya está listo, o si todos los demás están listos y el mín. de usuarios están listos", "unpause-always": "Siempre despausar", "syncplay-trusteddomains-title": "Dominios de confianza (para servicios de transmisión y contenido alojado)", "chat-title": "Entrada de mensaje de chat", "chatinputenabled-label": "Habilitar entrada de chat a través de mpv", "chatdirectinput-label": "Permitir entrada de chat instantánea (omitir tener que presionar Intro para chatear)", "chatinputfont-label": "Fuente de entrada de chat", "chatfont-label": "Establecer fuente", "chatcolour-label": "Establecer color", "chatinputposition-label": "Posición del área de entrada del mensaje en mpv", "chat-top-option": "Arriba", "chat-middle-option": "Medio", "chat-bottom-option": "Fondo", "chatoutputheader-label": "Salida de mensaje de chat", "chatoutputfont-label": "Fuente de salida de chat", "chatoutputenabled-label": "Habilitar salida de chat en el reproductor (solo mpv por ahora)", "chatoutputposition-label": "Modo de salida", "chat-chatroom-option": "Estilo de sala de chat", "chat-scrolling-option": "Estilo de desplazamiento", "mpv-key-tab-hint": "[TAB] para alternar acceso a los accesos directos de las teclas de la fila del alfabeto", "mpv-key-hint": "[INTRO] para enviar mensaje. [ESC] para salir del modo de chat.", "alphakey-mode-warning-first-line": "Puedes usar temporalmente los enlaces de mpv con las teclas a-z.", "alphakey-mode-warning-second-line": "Presiona [TAB] para retornar al modo de chat de Syncplay.", "help-label": "Ayuda", "reset-label": "Restaurar valores predeterminados", "run-label": "Ejecutar Syncplay", "storeandrun-label": "Almacenar la configuración y ejecutar Syncplay", "contact-label": "No dudes en enviar un correo electrónico a <a href=\"mailto:[email protected]\"><nobr>[email protected]</nobr></a>, chatea a través del canal de IRC <a href=\"https://webchat.freenode.net/?channels=#syncplay\"><nobr>#Syncplay</nobr></a> en irc.freenode.net, <a href=\"https://github.com/Uriziel/syncplay/issues\"><nobr>reportar un problema</nobr></a> vía GitHub, <a href=\"https://www.facebook.com/SyncplaySoftware\"><nobr>danos \"me gusta\" en Facebook</nobr></a>, <a href=\"https://twitter.com/Syncplay/\"><nobr>síguenos en Twitter</nobr></a>, o visita <a href=\"https://syncplay.pl/\"><nobr>https://syncplay.pl/</nobr></a>. No utilices Syncplay para enviar información sensible.", "joinroom-label": "Unirse a la sala", "joinroom-menu-label": "Unirse a la sala {}", "seektime-menu-label": "Buscar tiempo", "undoseek-menu-label": "Deshacer búsqueda", "play-menu-label": "Reproducir", "pause-menu-label": "Pausar", "playbackbuttons-menu-label": "Mostrar botones de reproducción", "autoplay-menu-label": "Mostrar botón de auto-reproducción", "autoplay-guipushbuttonlabel": "Reproducir cuando todos estén listos", "autoplay-minimum-label": "Mín. de usuarios:", "sendmessage-label": "Enviar", "ready-guipushbuttonlabel": "¡Estoy listo para ver!", "roomuser-heading-label": "Sala / Usuario", "size-heading-label": "Tamaño", "duration-heading-label": "Duración", "filename-heading-label": "Nombre de archivo", "notifications-heading-label": "Notificaciones", "userlist-heading-label": "Lista de quién reproduce qué", "browseformedia-label": "Buscar archivos multimedia", "file-menu-label": "&Archivo", # & precedes shortcut key "openmedia-menu-label": "A&brir archivo multimedia", "openstreamurl-menu-label": "Abrir URL de &flujo de medios", "setmediadirectories-menu-label": "&Establecer directorios de medios", "loadplaylistfromfile-menu-label": "&Load playlist from file", # TODO: Translate "saveplaylisttofile-menu-label": "&Save playlist to file", # TODO: Translate "exit-menu-label": "&Salir", "advanced-menu-label": "A&vanzado", "window-menu-label": "&Ventana", "setoffset-menu-label": "Establecer &compensación", "createcontrolledroom-menu-label": "C&rear sala administrada", "identifyascontroller-menu-label": "&Identificar como operador de sala", "settrusteddomains-menu-label": "Es&tablecer dominios de confianza", "addtrusteddomain-menu-label": "Agregar {} como dominio de confianza", # Domain "edit-menu-label": "&Edición", "cut-menu-label": "Cor&tar", "copy-menu-label": "&Copiar", "paste-menu-label": "&Pegar", "selectall-menu-label": "&Seleccionar todo", "playback-menu-label": "Re&producción", "help-menu-label": "A&yuda", "userguide-menu-label": "Abrir &guía de usuario", "update-menu-label": "Buscar actuali&zaciones", "startTLS-initiated": "Intentando conexión segura", "startTLS-secure-connection-ok": "Conexión segura establecida ({})", "startTLS-server-certificate-invalid": 'Falló la conexión segura. El servidor utiliza un certificado inválido. Esta comunicación podría ser interceptada por un tercero. Para más detalles y solución de problemas, consulta <a href="https://syncplay.pl/trouble">aquí</a>.', "startTLS-server-certificate-invalid-DNS-ID": "Syncplay does not trust this server because it uses a certificate that is not valid for its hostname.", # TODO: Translate "startTLS-not-supported-client": "Este cliente no soporta TLS", "startTLS-not-supported-server": "Este servidor no soporta TLS", # TLS certificate dialog "tls-information-title": "Detalles del certificado", "tls-dialog-status-label": "<strong>Syncplay está utilizando una conexión cifrada con {}.</strong>", "tls-dialog-desc-label": "El cifrado con un certificado digital, mantiene la información privada cuando se envía hacia o desde<br/>el servidor {}.", "tls-dialog-connection-label": "Información cifrada utilizando \"Transport Layer Security\" (TLS), versión {} con la<br/>suite de cifrado: {}.", "tls-dialog-certificate-label": "Certificado emitido por {} válido hasta {}.", # About dialog "about-menu-label": "Acerca de Sy&ncplay", "about-dialog-title": "Acerca de Syncplay", "about-dialog-release": "Versión {} lanzamiento {}", "about-dialog-license-text": "Licenciado bajo la Licencia Apache Versión 2.0", "about-dialog-license-button": "Licencia", "about-dialog-dependencies": "Dependencias", "setoffset-msgbox-label": "Establecer compensación", "offsetinfo-msgbox-label": "Compensación (consulta https://syncplay.pl/guide/ para obtener instrucciones de uso):", "promptforstreamurl-msgbox-label": "Abrir URL de flujo de medios", "promptforstreamurlinfo-msgbox-label": "Publicar URL", "addfolder-label": "Agregar carpeta", "adduris-msgbox-label": "Agregar URLs a la lista de reproducción (una por línea)", "editplaylist-msgbox-label": "Establecer lista de reproducción (una por línea)", "trusteddomains-msgbox-label": "Dominios con los cuales está bien intercambiar automáticamente (uno por línea)", "createcontrolledroom-msgbox-label": "Crear sala administrada", "controlledroominfo-msgbox-label": "Ingresa el nombre de la sala administrada\r\n(consulta https://syncplay.pl/guide/ para obtener instrucciones de uso):", "identifyascontroller-msgbox-label": "Identificar como operador de la sala", "identifyinfo-msgbox-label": "Ingresa la contraseña de operador para esta sala\r\n(consulta https://syncplay.pl/guide/ para obtener instrucciones de uso):", "public-server-msgbox-label": "Selecciona el servidor público para esta sesión de visualización", "megabyte-suffix": " MB", # Tooltips "host-tooltip": "Nombre de host o IP para conectarse, opcionalmente incluyendo puerto (p.ej. syncplay.pl:8999). Sólo sincronizado con personas en el mismo servidor/puerto.", "name-tooltip": "Apodo por el que se te conocerá. No hay registro, por lo que puedes cambiarlo fácilmente más tarde. Si no se especifica, se genera un nombre aleatorio.", "password-tooltip": "Las contraseñas son sólo necesarias para conectarse a servidores privados.", "room-tooltip": "La sala para unirse en la conexión puede ser casi cualquier cosa, pero sólo se sincronizará con las personas en la misma sala.", "edit-rooms-tooltip": "Edit room list.", # TO DO: Translate "executable-path-tooltip": "Ubicación de tu reproductor multimedia compatible elegido (mpv, mpv.net, VLC, MPC-HC/BE, mplayer2 o IINA).", "media-path-tooltip": "Ubicación del video o flujo que se abrirá. Necesario para mplayer2.", "player-arguments-tooltip": "Arguementos de línea de comandos adicionales / parámetros para pasar a este reproductor multimedia.", "mediasearcdirectories-arguments-tooltip": "Directorios donde Syncplay buscará archivos de medios, p.ej. cuando estás usando la función \"clic para cambiar\". Syncplay buscará recursivamente a través de las subcarpetas.", "more-tooltip": "Mostrar configuraciones usadas con menos frecuencia.", "filename-privacy-tooltip": "Modo de privacidad para enviar el nombre del archivo que se está reproduciendo actualmente al servidor.", "filesize-privacy-tooltip": "Modo de privacidad para enviar el tamaño del archivo que se está reproduciendo actualmente al servidor.", "privacy-sendraw-tooltip": "Enviar esta información sin ofuscación. Ésta es la opción predeterminada en la mayoría de las funciones.", "privacy-sendhashed-tooltip": "Enviar una versión \"hasheada\" de la información, para que sea menos visible para otros clientes.", "privacy-dontsend-tooltip": "No enviar esta información al servidor. Esto proporciona la máxima privacidad.", "checkforupdatesautomatically-tooltip": "Regularmente verificar con el sitio Web de Syncplay para ver si hay una nueva versión de Syncplay disponible.", "autosavejoinstolist-tooltip": "When you join a room in a server, automatically remember the room name in the list of rooms to join.", # TO DO: Translate "slowondesync-tooltip": "Reducir la velocidad de reproducción temporalmente cuando sea necesario, para volver a sincronizar con otros espectadores. No soportado en MPC-HC/BE.", "dontslowdownwithme-tooltip": "Significa que otros no se ralentizan ni rebobinan si la reproducción se retrasa. Útil para operadores de la sala.", "pauseonleave-tooltip": "Pausa la reproducción si te desconectas o alguien sale de tu sala.", "readyatstart-tooltip": "Establecerte como 'listo' al inicio (de lo contrario, se te establecerá como 'no-listo' hasta que cambies tu estado de preparación)", "forceguiprompt-tooltip": "El diálogo de configuración no es mostrado cuando se abre un archivo con Syncplay.", # (Inverted) "nostore-tooltip": "Ejecutar Syncplay con la configuración dada, pero no guardar los cambios permanentemente.", # (Inverted) "rewindondesync-tooltip": "Retroceder cuando sea necesario para volver a sincronizar. ¡Deshabilitar esta opción puede resultar en desincronizaciones importantes!", "fastforwardondesync-tooltip": "Saltar hacia adelante cuando no está sincronizado con el operador de la sala (o tu posición ficticia 'Nunca ralentizar o rebobinar a otros' está activada).", "showosd-tooltip": "Envía mensajes de Syncplay al reproductor multimedia OSD.", "showosdwarnings-tooltip": "Mostrar advertencias si se está reproduciendo un archivo diferente, solo en la sala, usuarios no están listos, etc.", "showsameroomosd-tooltip": "Mostrar notificaciones de OSD para eventos relacionados con la sala en la que está el usuario.", "shownoncontrollerosd-tooltip": "Mostrar notificaciones de OSD para eventos relacionados con no-operadores que están en salas administradas.", "showdifferentroomosd-tooltip": "Mostrar notificaciones de OSD para eventos relacionados la sala en la que no está el usuario.", "showslowdownosd-tooltip": "Mostrar notificaciones de desaceleración / diferencia de la reversión.", "showdurationnotification-tooltip": "Útil cuando falta un segmento de un archivo de varias partes, pero puede dar lugar a falsos positivos.", "language-tooltip": "Idioma a ser utilizado por Syncplay.", "unpause-always-tooltip": "Si presionas despausar siempre te pone como listo y despausa, en lugar de simplemente ponerte como listo.", "unpause-ifalreadyready-tooltip": "Si presionas despausar cuando no estás listo, te pondrá como listo - presiona despausar nuevamente para despausar.", "unpause-ifothersready-tooltip": "Si presionas despausar cuando no estás listo, sólo se despausará si los otros están listos.", "unpause-ifminusersready-tooltip": "Si presionas despausar cuando no estás listo, sólo se despausará si los otros están listos y se cumple con el mínimo requerido de usuarios.", "trusteddomains-arguments-tooltip": "Dominios con los cuales está bien intercambiar automáticamente, cuando las listas de reproducción compartidas están activas.", "chatinputenabled-tooltip": "Activa la entrada de chat en mpv (presiona intro para chatear, intro para enviar, escape para cancelar)", "chatdirectinput-tooltip": "Omitir tener que presionar 'intro' para ir al modo de entrada de chat en mpv. Presiona TAB en mpv para desactivar temporalmente esta función.", "font-label-tooltip": "Fuente utilizada cuando se ingresan mensajes de chat en mpv. Sólo del lado del cliente, por lo que no afecta lo que otros ven.", "set-input-font-tooltip": "Familia de fuentes utilizada cuando se ingresan mensajes de chat en mpv. Sólo del lado del cliente, por lo que no afecta lo que otros ven.", "set-input-colour-tooltip": "Color de fuente utilizado cuando se ingresan mensajes de chat en mpv. Sólo del lado del cliente, por lo que no afecta lo que otros ven.", "chatinputposition-tooltip": "Ubicación en mpv donde aparecerán los mensajes de chat cuando se presione intro y se escriba.", "chatinputposition-top-tooltip": "Colocar la entrada del chat en la parte superior de la ventana de mpv.", "chatinputposition-middle-tooltip": "Colocar la entrada del chat en el centro muerto de la ventana de mpv.", "chatinputposition-bottom-tooltip": "Colocar la entrada del chat en la parte inferior de la ventana de mpv.", "chatoutputenabled-tooltip": "Mostrar mensajes de chat en OSD (si está soportado por el reproductor multimedia).", "font-output-label-tooltip": "Fuente de salida del chat.", "set-output-font-tooltip": "Fuente utilizada para mostrar mensajes de chat.", "chatoutputmode-tooltip": "Cómo se muestran los mensajes de chat.", "chatoutputmode-chatroom-tooltip": "Mostrar nuevas líneas de chat directamente debajo de la línea anterior.", "chatoutputmode-scrolling-tooltip": "Desplazar el texto del chat de derecha a izquierda.", "help-tooltip": "Abrir la guía de usuario de Syncplay.pl.", "reset-tooltip": "Restablecer todas las configuraciones a la configuración predeterminada.", "update-server-list-tooltip": "Conectar a syncplay.pl para actualizar la lista de servidores públicos.", "sslconnection-tooltip": "Conectado de forma segura al servidor. Haga clic para obtener los detalles del certificado.", "joinroom-tooltip": "Abandonar la sala actual y unirse a la sala especificada.", "seektime-msgbox-label": "Saltar al tiempo especificado (en segundos / min:seg). Usar +/- para una búsqueda relativa.", "ready-tooltip": "Indica si estás listo para ver.", "autoplay-tooltip": "Reproducir automáticamente cuando todos los usuarios que tienen indicador de preparación están listos, y se ha alcanzado el mínimo requerido de usuarios.", "switch-to-file-tooltip": "Hacer doble clic para cambiar a {}", # Filename "sendmessage-tooltip": "Enviar mensaje a la sala", # In-userlist notes (GUI) "differentsize-note": "¡Tamaño diferente!", "differentsizeandduration-note": "¡Tamaño y duración diferentes!", "differentduration-note": "¡Duración diferente!", "nofile-note": "(No se está reproduciendo ningún archivo)", # Server messages to client "new-syncplay-available-motd-message": "Estás usando Syncplay {} pero hay una versión más nueva disponible en https://syncplay.pl", # ClientVersion # Server notifications "welcome-server-notification": "Bienvenido al servidor de Syncplay, ver. {0}", # version "client-connected-room-server-notification": "{0}({2}) conectado a la sala '{1}'", # username, host, room "client-left-server-notification": "{0} abandonó el servidor", # name "no-salt-notification": "IMPORTANTE: Para permitir que las contraseñas del operador de la sala, generadas por esta instancia del servidor, sigan funcionando cuando se reinicie el servidor, por favor en el futuro agregar el siguiente argumento de línea de comandos al ejecutar el servidor de Syncplay: --salt {}", # Salt # Server arguments "server-argument-description": 'Solución para sincronizar la reproducción de múltiples instancias de MPlayer y MPC-HC/BE a través de la red. Instancia del servidor', "server-argument-epilog": 'Si no se especifican opciones, serán utilizados los valores de _config', "server-port-argument": 'puerto TCP del servidor', "server-password-argument": 'contraseña del servidor', "server-isolate-room-argument": '¿las salas deberían estar aisladas?', "server-salt-argument": "cadena aleatoria utilizada para generar contraseñas de salas administradas", "server-disable-ready-argument": "deshabilitar la función de preparación", "server-motd-argument": "ruta al archivo del cual se obtendrá el texto motd", "server-chat-argument": "¿Debería deshabilitarse el chat?", "server-chat-maxchars-argument": "Número máximo de caracteres en un mensaje de chat (el valor predeterminado es {})", # Default number of characters "server-maxusernamelength-argument": "Número máximo de caracteres para el nombre de usuario (el valor predeterminado es {})", "server-stats-db-file-argument": "Habilitar estadísticas del servidor utilizando el archivo db SQLite proporcionado", "server-startTLS-argument": "Habilitar conexiones TLS usando los archivos de certificado en la ruta provista", "server-messed-up-motd-unescaped-placeholders": "El mensaje del dia contiene marcadores de posición sin escapar. Todos los signos $ deberían ser dobles ($$).", "server-messed-up-motd-too-long": "El mensaje del día es muy largo - máximo de {} caracteres, se recibieron {}.", # Server errors "unknown-command-server-error": "Comando desconocido {}", # message "not-json-server-error": "No es una cadena JSON válida {}", # message "line-decode-server-error": "No es una cadena utf-8", "not-known-server-error": "Debes ser reconocido por el servidor antes de enviar este comando", "client-drop-server-error": "Caída del cliente: {} -- {}", # host, error "password-required-server-error": "Contraseña requerida", "wrong-password-server-error": "Contraseña ingresada incorrecta", "hello-server-error": "Not enough Hello arguments", # DO NOT TRANSLATE # Playlists "playlist-selection-changed-notification": "{} cambió la selección de la lista de reproducción", # Username "playlist-contents-changed-notification": "{} actualizó la lista de reproducción", # Username "cannot-find-file-for-playlist-switch-error": "¡No se encontró el archivo {} en el directorio de medios para intercambiar en la lista de reproducción!", # Filename "cannot-add-duplicate-error": "No se pudo agregar una segunda entrada para '{}' a la lista de reproducción ya que no se admiten duplicados.", # Filename "cannot-add-unsafe-path-error": "No se pudo cargar automáticamente {} porque no es un dominio de confianza. Puedes intercambiar la URL manualmente dándole doble clic en la lista de reproducción, y agregar dominios de confianza vía Archivo->Avanzado->Establecer dominios de confianza. Si haces doble clic en una URL entonces puedes agregar su dominio como un dominio de confianza, desde el menú de contexto.", # Filename "sharedplaylistenabled-label": "Activar listas de reproducción compartidas", "removefromplaylist-menu-label": "Remover de la lista de reproducción", "shuffleremainingplaylist-menu-label": "Mezclar el resto de la lista de reproducción", "shuffleentireplaylist-menu-label": "Mezclar toda la lista de reproducción", "undoplaylist-menu-label": "Deshacer el último cambio a la lista de reproducción", "addfilestoplaylist-menu-label": "Agregar archivo(s) al final de la lista de reproducción", "addurlstoplaylist-menu-label": "Agregar URL(s) al final de la lista de reproducción", "editplaylist-menu-label": "Editar lista de reproducción", "open-containing-folder": "Abrir directorio que contiene este archivo", "addyourfiletoplaylist-menu-label": "Agregar tu archivo a la lista de reproducción", "addotherusersfiletoplaylist-menu-label": "Agregar el archivo de {} a la lista de reproducción", # [Username] "addyourstreamstoplaylist-menu-label": "Agregar tu flujo a la lista de reproducción", "addotherusersstreamstoplaylist-menu-label": "Agregar el flujo de {} a la lista de reproducción", # [Username] "openusersstream-menu-label": "Abrir el flujo de {}", # [username]'s "openusersfile-menu-label": "Abrir el archivo de {}", # [username]'s "playlist-instruction-item-message": "Desplazar aquí el archivo para agregarlo a la lista de reproducción compartida.", "sharedplaylistenabled-tooltip": "Los operadores de la sala pueden agregar archivos a una lista de reproducción sincronizada, para que visualizar la misma cosa sea más sencillo para todos. Configurar directorios multimedia en 'Misc'.", "playlist-empty-error": "Playlist is currently empty.", # TO DO: Translate "playlist-invalid-index-error": "Invalid playlist index", # TO DO: Translate }
{ "content_hash": "127f31a217e9640f25c52f51e6d36f06", "timestamp": "", "source": "github", "line_count": 519, "max_line_length": 701, "avg_line_length": 80.4393063583815, "alnum_prop": 0.7325620389000671, "repo_name": "alby128/syncplay", "id": "60ca7419ee64d6a4b60329abf0385df20a209293", "size": "42160", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "syncplay/messages_es.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Lua", "bytes": "51824" }, { "name": "Makefile", "bytes": "3693" }, { "name": "Python", "bytes": "602477" }, { "name": "Shell", "bytes": "192" } ], "symlink_target": "" }
import lib.requests as requests import conf.config as conf base = conf.read_config(conf.path, 'API', 'baseUrl') class AddImg(object): def __addImg(self,data): api = conf.read_config(conf.path, 'API', 'addImgApi') url = base + api s = requests.session() result = s.post(url,data) s.keep_alive = False return result.text def callService(self,data): return self.__addImg(data) class GetImg(object): def __getImg(self,imgId): api = conf.read_config(conf.path, 'API', 'getImgApi') url = base + api + '?image_id=' + imgId s = requests.session() result = s.post(url) s.keep_alive = False if result.text != u"null": return result.json()['THUMBNAIL'] else: return "" def callService(self,imgId): return self.__getImg(imgId)
{ "content_hash": "c4569105e198506da0d703c29cafea02", "timestamp": "", "source": "github", "line_count": 31, "max_line_length": 61, "avg_line_length": 30.258064516129032, "alnum_prop": 0.5415778251599147, "repo_name": "HH890612/MiliCloud", "id": "0edc916f2c9bfd851ccc12b7c0e14b3b92ab6721", "size": "963", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "service/thumbnailservice.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "938973" } ], "symlink_target": "" }
""" Contains view context classes. Context is our own concept. It's part of the View abstract layer in MTV paradigm. Data flow looks like this: Urls -> Context -> View. So, by concept, View receives context directly without accessing url args. It stands between urls and view functions. Every context class is used via objects composition. Code example to create tagged category: >>> from django.http import HttpRequest >>> url_kwargs = {'slug': 'my-page'} >>> Category(url_kwargs, request=HttpRequest()) | TaggedCategory() """ import typing from abc import ABC, abstractmethod from collections import defaultdict from functools import lru_cache, partial from django import http from django.conf import settings from django.core.paginator import Paginator, InvalidPage from django.db.models import QuerySet from django_user_agents.utils import get_user_agent from catalog.models import ProductQuerySet, Tag, TagQuerySet from images.models import Image from pages.models import ModelPage class SortingOption: def __init__(self, index=0): options = settings.CATEGORY_SORTING_OPTIONS[index] self.label = options['label'] self.field = options['field'] self.direction = options['direction'] @property def directed_field(self): return self.direction + self.field class PaginatorLinks: def __init__(self, number, path, paginated: Paginator): self.paginated = paginated self.number = number self.path = path self.index = number - 1 self.neighbor_bounds = settings.PAGINATION_NEIGHBORS // 2 self.neighbor_range = list(self.paginated.page_range) def page(self): try: return self.paginated.page(self.number) except InvalidPage: raise http.Http404('Page does not exist') def showed_number(self): return self.index * self.paginated.per_page + self.page().object_list.count() def _url(self, number): self.paginated.validate_number(number) return self.path if number == 1 else f'{self.path}?page={number}' def prev_numbers(self): return self.neighbor_range[:self.index][-self.neighbor_bounds:] def next_numbers(self): return self.neighbor_range[self.index + 1:][:self.neighbor_bounds] def number_url_map(self): numbers = self.prev_numbers() + self.next_numbers() return {number: self._url(number) for number in numbers} @lru_cache(maxsize=64) def prepare_tile_products( products: ProductQuerySet, product_pages: QuerySet, tags: TagQuerySet=None ): assert isinstance(products, ProductQuerySet) brands = ( tags .filter_by_products(products) .get_brands(products) ) if tags else defaultdict(lambda: None) return [ (product, brands.get(product)) for product in products ] class ObjectsComposition: super: 'ObjectsComposition' = None def __or__(self, other: 'ObjectsComposition'): other.super = self return other # @todo #550:120m Move context realization to pure to objects composition. # Discussed some thoughts with Artemiy via call. # Artemiy will do it. # For example SortedCategory should # consist of separated SortedList and Category classes/objects. class AbstractContext(ObjectsComposition, ABC): super: 'AbstractContext' = None def __init__( # Ignore PyDocStyleBear self, url_kwargs: typing.Dict[str, str]=None, request: http.HttpRequest=None ): """ :param url_kwargs: Came from `urls` module. :param request: Came from `urls` module """ self.url_kwargs_ = url_kwargs or {} self.request_ = request @property def url_kwargs(self) -> typing.Dict[str, str]: return self.url_kwargs_ or getattr(self.super, 'url_kwargs', {}) @property def request(self) -> http.HttpRequest: return self.request_ or self.super.request @abstractmethod def get_context_data(self) -> typing.Dict[str, typing.Any]: ... class AbstractPageContext(AbstractContext, ABC): super: 'AbstractPageContext' = None def __init__( # Ignore PyDocStyleBear self, url_kwargs: typing.Dict[str, str]=None, request: http.HttpRequest=None, page: ModelPage=None ): """ :param url_kwargs: Came from `urls` module. :param request: Came from `urls` module """ self.page_ = page super().__init__(url_kwargs, request) @property @lru_cache(maxsize=1) def page(self): return ( self.page_ if self.page_ is not None else getattr(self.super, 'page', None) ) class AbstractProductsListContext(AbstractPageContext, ABC): super: 'AbstractProductsListContext' = None def __init__( # Ignore PyDocStyleBear self, url_kwargs: typing.Dict[str, str]=None, request: http.HttpRequest=None, # parent class requires it page: ModelPage=None, products: ProductQuerySet=None, product_pages: QuerySet=None, ): """ :param url_kwargs: Came from `urls` module. :param request: Came from `urls` module. :param products: Every project provides products from DB. """ super().__init__(url_kwargs, request, page) assert(isinstance(products, ProductQuerySet) or products is None) self.products_ = products self.product_pages_ = product_pages @property def product_pages(self) -> QuerySet: return ( self.product_pages_ if self.product_pages_ is not None else self.super.product_pages ) @property def products(self) -> ProductQuerySet: if self.super: return self.super.products elif isinstance(self.products_, ProductQuerySet): return self.products_ else: raise NotImplementedError('Set products queryset') class ProductImages(AbstractProductsListContext): @property def images(self) -> typing.Dict[int, Image]: raise NotImplemented() def get_context_data(self): return { 'product_images': self.images, **( self.super.get_context_data() if self.super else {} ), } class Category(AbstractProductsListContext): # this list is synced with templates. # See templates/catalog/category_navigation.html at SE project for example. PRODUCT_LIST_VIEW_TYPES = ['tile', 'list'] @property def products(self) -> ProductQuerySet: # code like this breaks isolation, # it'll be fixed at #183 products = self.products_ or super().products return products.active().filter_descendants(self.page.model) def get_context_data(self): """Add sorting options and view_types in context.""" view_type = self.request.session.get('view_type', 'tile') assert view_type in self.PRODUCT_LIST_VIEW_TYPES return { 'products_data': [], # empty for optimization # can be `tile` or `list`. Defines products list layout. 'view_type': view_type, } class TaggedCategory(AbstractProductsListContext): def __init__( # Ignore PyDocStyleBear self, url_kwargs: typing.Dict[str, str]=None, request: http.HttpRequest=None, page: ModelPage=None, products: ProductQuerySet=None, product_pages: QuerySet=None, tags: TagQuerySet=None ): """ :param url_kwargs: Came from `urls` module. :param request: Came from `urls` module. :param products: Every project provides products from DB. :param tags: Every project provides tags from DB. """ super().__init__(url_kwargs, request, page, products, product_pages) # it's not good. Arg should not be default. # That's how we'll prevent assertion. # But we'll throw away inheritance in se#567. assert isinstance(tags, QuerySet), 'tags is required arg' self.all_tags = tags def get_sorting_index(self): return int(self.url_kwargs.get('sorting', 0)) def get_undirected_sorting_options(self) -> typing.List[str]: sorting_option = SortingOption(index=self.get_sorting_index()) return [sorting_option.field] @property def tags(self) -> typing.Optional[TagQuerySet]: request_tags = self.url_kwargs.get('tags') if not request_tags: return None slugs = Tag.parse_url_tags(request_tags) tags = self.all_tags.filter(slug__in=slugs) if not tags: raise http.Http404('No such tag.') return tags @property def products(self): products = self.super.products tags = self.tags if tags: products = ( products .filter(tags__in=tags) # See the ProductQuerySet.tagged # for detail about `distinct` and `order_by` above .distinct(*self.get_undirected_sorting_options()) .order_by(*self.get_undirected_sorting_options()) ) return products def get_context_data(self): context = self.super.get_context_data() tags = self.tags group_tags_pairs = ( self.all_tags .filter_by_products(self.products) .group_tags() ) return { **context, 'tags': tags, 'group_tags_pairs': group_tags_pairs.items(), 'products_data': [], # empty for optimization } class DBTemplate(AbstractPageContext): """Processes some page data fields as templates with their own context.""" @property @lru_cache(maxsize=1) def page(self): page = self.super.page context = self.get_super_context_data_cached() def template_context(page, tag_titles, tags): return { 'page': page, 'tag_titles': tag_titles, 'tags': tags, } tags = context['tags'] if tags: tag_titles = tags.as_title() page.get_template_render_context = partial( template_context, page, tag_titles, tags ) return page @lru_cache(maxsize=1) def get_super_context_data_cached(self): return self.super.get_context_data() @lru_cache(maxsize=1) def get_context_data(self): return { **self.get_super_context_data_cached(), 'page': self.page, } class SortingCategory(AbstractProductsListContext): def get_sorting_index(self): return int(self.url_kwargs.get('sorting', 0)) def get_sorting_options(self) -> typing.List[str]: sorting_index = int(self.url_kwargs.get('sorting', 0)) sorting_option = SortingOption(index=sorting_index) return [sorting_option.directed_field] @property def products(self) -> ProductQuerySet: return self.super.products.order_by(*self.get_sorting_options()) def get_context_data(self): context = self.super.get_context_data() return { **context, 'products_data': [], # empty for optimization 'sort': self.get_sorting_index(), } class PaginationCategory(AbstractProductsListContext): def get_products_count(self): """Calculate max products list size from request. List size depends on device type.""" mobile_view = get_user_agent(self.request).is_mobile return settings.PRODUCTS_ON_PAGE_MOB if mobile_view else settings.PRODUCTS_ON_PAGE_PC def get_paginated_page_or_404(self, per_page, page_number) -> Paginator: try: return Paginator(self.all_products, per_page).page(page_number) except InvalidPage: raise http.Http404('Page does not exist') @property def products_on_page(self): return int(self.request.GET.get( 'step', self.get_products_count(), )) @property def page_number(self): return int(self.request.GET.get('page', 1)) @property def all_products(self) -> ProductQuerySet: return self.super.products @property def products(self) -> ProductQuerySet: """Only products for current page.""" paginated_page = self.get_paginated_page_or_404( self.products_on_page, self.page_number ) # it's queryset, but it's sliced products: ProductQuerySet = paginated_page.object_list return products @property def product_pages(self): return self.super.product_pages.filter(shopelectro_product__in=self.products) @property def products_count(self): return (self.page_number - 1) * self.products_on_page + self.products.count() def check_pagination_args(self): if ( self.page_number < 1 or self.products_on_page not in settings.CATEGORY_STEP_MULTIPLIERS ): raise http.Http404('Page does not exist.') # Ignore CPDBear def get_context_data(self): context = self.super.get_context_data() self.check_pagination_args() # @todo #187:30m Uncomment the if_404 check for empty products list. # To do it fix stb tests to cover this case. # if not self.products: # raise http.Http404('Page without products does not exist.') paginated = PaginatorLinks( self.page_number, self.request.path, Paginator(self.all_products, self.products_on_page) ) paginated_page = paginated.page() total_products = self.all_products.count() return { **context, 'products': self.products, 'total_products': total_products, 'products_count': self.products_count, 'paginated': paginated, 'paginated_page': paginated_page, 'sorting_options': settings.CATEGORY_SORTING_OPTIONS.values(), 'limits': settings.CATEGORY_STEP_MULTIPLIERS, } class ProductBrands(AbstractProductsListContext): @property def tags(self): return self.super.super.super.tags @property def brands(self): assert isinstance(self.products, ProductQuerySet) brands = ( self.tags .filter_by_products(self.products) .get_brands(self.products) ) if self.tags else defaultdict(lambda: None) return { product.id: brands.get(product) for product in self.products } def get_context_data(self): return { 'product_brands': self.brands, **( self.super.get_context_data() if self.super else {} ), }
{ "content_hash": "ecb6469d0cf46b4db680a943414bb010", "timestamp": "", "source": "github", "line_count": 501, "max_line_length": 94, "avg_line_length": 29.99201596806387, "alnum_prop": 0.6130041261812857, "repo_name": "fidals/refarm-site", "id": "a2ab2545b5c0914f268e7c839e96396e44b6d5a5", "size": "15026", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "catalog/context.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "64305" }, { "name": "HTML", "bytes": "28723" }, { "name": "JavaScript", "bytes": "31422" }, { "name": "Python", "bytes": "296885" } ], "symlink_target": "" }
try: import smbus except ImportError: raise ImportError("Error : python-smbus not found.\nInstall with 'sudo apt-get install python-smbus'") import re """ ================================================ ABElectronics Python Helper Functions Version 1.1 Created 20/01/2015 Python 2 only Requires python 2 smbus to be installed with: sudo apt-get install python-smbus This file contains functions to load puthon smbus into an instance variable. The bus object can then be used by multiple devices without conflicts. ================================================ """ class i2c_core: @staticmethod def get_smbus(): # detect i2C port number and assign to i2c_bus i2c_bus = 0 for line in open('/proc/cpuinfo').readlines(): m = re.match('(.*?)\s*:\s*(.*)', line) if m: (name, value) = (m.group(1), m.group(2)) # Banana Pi / Pro / R1 if name == "Hardware": if value[-4:] in ('sun7i'): i2c_bus = 2 return 2 break # Raspberry Pi elif name == "Revision": if value[-4:] in ('0002', '0003'): i2c_bus = 0 return 0 else: i2c_bus = 1 return 1 break try: return smbus.SMBus(i2c_bus) except IOError: print ("Could not open the i2c bus.") print ("Please check that i2c is enabled and python-smbus and i2c-tools are installed.") result = self._bus.read_byte_data(address, reg) return result except IOError as err: return err def __init__(self, address, busnum=-1, debug=False): self.address = address self.bus = smbus.SMBus(busnum if busnum >= 0 else i2c_core.get_smbus()) self.debug = debug if self.debug==True: print self.bus # Read def read_byte(self, adr): return self.bus.read_byte_data(self.address, adr) # Read a single byte def read(self): return self.bus.read_byte(self.address) # Read a block of data def read_block_data(self, cmd): return self.bus.read_block_data(self.address, cmd) # Read a word of data def read_word_data(self, cmd): return self.bus.read_word_data(self.address, cmd) # Read a block of ranged data def read_block(self, start, length): return self.bus.read_i2c_block_data(self.address, start, length) # Reads a unsigned 16-bit value from the I2C device # def read_word_U16(self, adr, little_endian=True): result = self.bus.read_byte_data(self.address, adr) if not little_endian: result = ((result << 8) & 0xFF00) + (result >> 8) return result # Reads a signed 16-bit value from the I2C device def read_word_S16(self, adr, little_endian=True): val = self.read_word_U16(adr,little_endian) if (val >= 32768): return -((65535 - val) + 1) else: return val def read_word(self, reg): high = self.read_byte(reg) low = self.read_byte(reg+1) val = (high << 8) + low return val def read_word_2c(self, reg): val = self.read_word(reg) if (val >= 0x8000): return -((65535 - val) + 1) else: return val # Write a single command def write_cmd(self, cmd): self.bus.write_byte(self.address, cmd) # Writes an 8-bit value to the specified register/address def write_8(self, reg, value): self.bus.write_byte_data(self.address, reg, value) # Writes a 16-bit value to the specified register/address pair def write_16(self, reg, value): self.bus.write_word_data(self.address, reg, value) # Write a block of data def write_block_data(self, cmd, data): self.bus.write_block_data(self.address, cmd, data) # Writes an array of bytes using I2C format def writeList(self, reg, list): self.bus.write_i2c_block_data(self.address, reg, list)
{ "content_hash": "2351ec80a01973285574000b944a118c", "timestamp": "", "source": "github", "line_count": 129, "max_line_length": 106, "avg_line_length": 28.294573643410853, "alnum_prop": 0.6389041095890411, "repo_name": "CaptainStouf/python_libs", "id": "d88fa5440889a5c6a255f9442e73b44c61c9b7eb", "size": "3695", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "i2c/i2c_core.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "42017" } ], "symlink_target": "" }
import telnetlib import time from .adapter import Adapter class TelnetAdapter(Adapter): """ Adapter class for using the Python telnetlib package to allow communication to instruments :param host: host address of the instrument :param port: TCPIP port :param query_delay: delay in seconds between write and read in the ask method :param preprocess_reply: optional callable used to preprocess strings received from the instrument. The callable returns the processed string. :param kwargs: Valid keyword arguments for telnetlib.Telnet, currently this is only 'timeout' """ def __init__(self, host, port=0, query_delay=0, preprocess_reply=None, **kwargs): super().__init__(preprocess_reply=preprocess_reply) self.query_delay = query_delay safe_keywords = ['timeout'] for kw in kwargs: if kw not in safe_keywords: raise TypeError( f"TelnetAdapter: unexpected keyword argument '{kw}', " f"allowed are: {str(safe_keywords)}") self.connection = telnetlib.Telnet(host, port, **kwargs) def write(self, command): """ Writes a command to the instrument :param command: command string to be sent to the instrument """ self.connection.write(command.encode()) def read(self): """ Read something even with blocking the I/O. After something is received check again to obtain a full reply. :returns: String ASCII response of the instrument. """ return self.connection.read_some().decode() + \ self.connection.read_very_eager().decode() def ask(self, command): """ Writes a command to the instrument and returns the resulting ASCII response :param command: command string to be sent to the instrument :returns: String ASCII response of the instrument """ self.write(command) time.sleep(self.query_delay) return self.read() def __repr__(self): return "<TelnetAdapter(host=%s, port=%d)>" % (self.connection.host, self.connection.port)
{ "content_hash": "54d072789794dde7e09e1179d8fa91ba", "timestamp": "", "source": "github", "line_count": 61, "max_line_length": 97, "avg_line_length": 35.85245901639344, "alnum_prop": 0.6360310928212163, "repo_name": "ralph-group/pymeasure", "id": "9efaa5e27921e385bf8dd10d84d401fba1354bc1", "size": "3344", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "pymeasure/adapters/telnet.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "689774" } ], "symlink_target": "" }
from __future__ import print_function # This *must* be the first line import pytest import os import subprocess from pyethereum import tester, utils, transactions, blocks, processblock, rlp import serpent from solc import solc class TestMul7(object): OWNER = {'address': tester.a0, 'key': tester.k0} MANAGER1 = {'address': tester.a1, 'key': tester.k1} USER1 = {'address': tester.a2, 'key': tester.k2} # Contracts mul7 = 'mul7.sol' mul7se = 'mul7.se' # Setup def setup_class(self): self.state = tester.state() # Create test blockchain # Solidity version _, self.mul7_evm = solc(self.mul7) # Compile print('>>> Solidity evm: {}'.format(self.mul7_evm)) self.addr = self.state.contract(self.mul7_evm, OWNER['key'], 0) print('>>> Solidity contract address: {}'.format(self.addr)) #self.mul7_evm = '0x{}'.format(self.mul7_evm) self.mul7_decoded = self.mul7_evm.decode('hex') print('>>> Solidity decode-hex: {}'.format(self.mul7_evm.decode('hex'))) #self.state.evm(self.mul7_evm, sender=self.OWNER, endowment=0) self.state.evm(self.mul7_decoded, sender=self.OWNER, endowment=0) # Serpent version #self.mul7se_evm = self.state.abi_contract(self.mul7se) self.mul7se_evm = serpent.compile(open(self.mul7se).read()) self.mul7se_rlp_decode = rlp.decode(self.mul7se_evm) print('>>> Serpent compile: {}'.format(self.mul7se_evm)) #print('>>> Serpent rlp-decode: {}'.format(self.mul7se_rlp_decode)) #self.state.evm(self.mul7_evm, sender=self.OWNER, endowment=0) #self.state.mine(n=1, coinbase=self.OWNER) #self.snapshot = self.state.snapshot() def setup_method(self, method): #self.state.revert(self.snapshot) pass # Tests def test_mul7(self): #ans = self.mul7.register(self.OWNER['address']) assert False
{ "content_hash": "c17e5e08d73748407d8c481ddd55e54f", "timestamp": "", "source": "github", "line_count": 56, "max_line_length": 80, "avg_line_length": 34.67857142857143, "alnum_prop": 0.631307929969104, "repo_name": "joelcan/tools-eth-contract-dev", "id": "cedc1b276580b2396ef44f37b7f72502403cacf2", "size": "1942", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "test_mul7.py", "mode": "33261", "license": "mit", "language": [ { "name": "HTML", "bytes": "1657" }, { "name": "Python", "bytes": "513392" }, { "name": "Shell", "bytes": "1202" } ], "symlink_target": "" }
from django.contrib import admin from .models import ( InvoiceSettings, TimeCode, ) class InvoiceSettingsAdmin(admin.ModelAdmin): pass admin.site.register(InvoiceSettings, InvoiceSettingsAdmin) class TimeCodeAdmin(admin.ModelAdmin): pass admin.site.register(TimeCode, TimeCodeAdmin)
{ "content_hash": "6bd1ffd808b4861f248950552b9794e4", "timestamp": "", "source": "github", "line_count": 18, "max_line_length": 58, "avg_line_length": 17, "alnum_prop": 0.7777777777777778, "repo_name": "pkimber/invoice", "id": "6a85f05e74d5d8a2824f7ded1e6669fc758f4de4", "size": "332", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "invoice/admin.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "HTML", "bytes": "44415" }, { "name": "Python", "bytes": "202112" }, { "name": "Shell", "bytes": "808" } ], "symlink_target": "" }
from typing import Any, List import logging from pajbot.managers.adminlog import AdminLogManager from pajbot.managers.db import DBManager from pajbot.managers.handler import HandlerManager from pajbot.models.command import Command, CommandExample from pajbot.modules.base import BaseModule log = logging.getLogger(__name__) class BanphraseModule(BaseModule): ID = __name__.split(".")[-1] NAME = "Banphrases" DESCRIPTION = "Looks at each message for banned phrases, and takes actions accordingly" ENABLED_DEFAULT = True CATEGORY = "Moderation" SETTINGS: List[Any] = [] def is_message_bad(self, source, msg_raw, _event): res = self.bot.banphrase_manager.check_message(msg_raw, source) if res is not False: self.bot.banphrase_manager.punish(source, res) return True return False # message was ok def enable(self, bot): HandlerManager.add_handler("on_message", self.on_message, priority=150, run_if_propagation_stopped=True) def disable(self, bot): HandlerManager.remove_handler("on_message", self.on_message) def on_message(self, source, message, whisper, event, **rest): if whisper: return if source.level >= 500 or source.moderator: return if self.is_message_bad(source, message, event): # we matched a filter. # return False so no more code is run for this message return False @staticmethod def add_banphrase(bot, source, message, **rest): """Method for creating and editing banphrases. Usage: !add banphrase BANPHRASE [options] Multiple options available: --length LENGTH --perma/--no-perma """ if message: options, phrase = bot.banphrase_manager.parse_banphrase_arguments(message) if options is False: bot.whisper(source, "Invalid banphrase") return False options["added_by"] = source.id options["edited_by"] = source.id banphrase, new_banphrase = bot.banphrase_manager.create_banphrase(phrase, **options) if new_banphrase is True: bot.whisper(source, f"Added your banphrase (ID: {banphrase.id})") AdminLogManager.post("Banphrase added", source, banphrase.id, banphrase.phrase) return True banphrase.set(**options) banphrase.data.set(edited_by=options["edited_by"]) DBManager.session_add_expunge(banphrase) bot.banphrase_manager.commit() bot.whisper( source, f"Updated your banphrase (ID: {banphrase.id}) with ({', '.join([key for key in options if key != 'added_by'])})", ) AdminLogManager.post("Banphrase edited", source, banphrase.id, banphrase.phrase) @staticmethod def remove_banphrase(bot, source, message, **rest): if not message: bot.whisper(source, "Usage: !remove banphrase (BANPHRASE_ID)") return False banphrase_id = None try: banphrase_id = int(message) except ValueError: pass banphrase = bot.banphrase_manager.find_match(message=message, banphrase_id=banphrase_id) if banphrase is None: bot.whisper(source, "No banphrase with the given parameters found") return False AdminLogManager.post("Banphrase removed", source, banphrase.id, banphrase.phrase) bot.whisper(source, f"Successfully removed banphrase with id {banphrase.id}") bot.banphrase_manager.remove_banphrase(banphrase) def load_commands(self, **options): self.commands["add"] = Command.multiaction_command( level=100, delay_all=0, delay_user=0, default=None, command="add", commands={ "banphrase": Command.raw_command( self.add_banphrase, level=500, description="Add a banphrase!", delay_all=0, delay_user=0, examples=[ CommandExample( None, "Create a banphrase", chat="user:!add banphrase testman123\n" "bot>user:Inserted your banphrase (ID: 83)", description="This creates a banphrase with the default settings. Whenever a non-moderator types testman123 in chat they will be timed out for 300 seconds and notified through a whisper that they said something they shouldn't have said", ).parse(), CommandExample( None, "Create a banphrase that permabans people", chat="user:!add banphrase testman123 --perma\n" "bot>user:Inserted your banphrase (ID: 83)", description="This creates a banphrase that permabans the user who types testman123 in chat. The user will be notified through a whisper that they said something they shouldn't have said", ).parse(), CommandExample( None, "Change the default timeout length for a banphrase", chat="user:!add banphrase testman123 --time 123\n" "bot>user:Updated the given banphrase (ID: 83) with (time, extra_args)", description="Changes the default timeout length to a custom time of 123 seconds", ).parse(), CommandExample( None, "Make it so a banphrase cannot be triggered by subs", chat="user:!add banphrase testman123 --subimmunity\n" "bot>user:Updated the given banphrase (ID: 83) with (sub_immunity)", description="Changes a command so that the banphrase can only be triggered by people who are not subscribed to the channel.", ).parse(), ], ) }, ) self.commands["remove"] = Command.multiaction_command( level=100, delay_all=0, delay_user=0, default=None, command="remove", commands={ "banphrase": Command.raw_command( self.remove_banphrase, level=500, delay_all=0, delay_user=0, description="Remove a banphrase!", examples=[ CommandExample( None, "Remove a banphrase", chat="user:!remove banphrase KeepoKeepo\n" "bot>user:Successfully removed banphrase with id 33", description="Removes a banphrase with the trigger KeepoKeepo.", ).parse(), CommandExample( None, "Remove a banphrase with the given ID.", chat="user:!remove banphrase 25\n" "bot>user:Successfully removed banphrase with id 25", description="Removes a banphrase with id 25", ).parse(), ], ) }, )
{ "content_hash": "30cbb28437f7a29ebdb82044e9f5b52b", "timestamp": "", "source": "github", "line_count": 182, "max_line_length": 264, "avg_line_length": 42.15934065934066, "alnum_prop": 0.53864199139841, "repo_name": "pajlada/tyggbot", "id": "9d86fe4e4213f7d1f73e9aa2ff1861e624383629", "size": "7673", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "pajbot/modules/banphrase.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "8495" }, { "name": "HTML", "bytes": "114111" }, { "name": "JavaScript", "bytes": "163746" }, { "name": "Mako", "bytes": "494" }, { "name": "Python", "bytes": "727982" }, { "name": "Shell", "bytes": "544" } ], "symlink_target": "" }
import time from urllib import urlencode from threading import current_thread, RLock from django.conf import settings from graphite.http_pool import http from graphite.readers import FetchInProgress from graphite.logger import log from graphite.util import unpickle from graphite.worker_pool.pool import pool_apply from graphite.readers.utils import BaseReader class InFlight(object): """This object is used to cache sub-requests within a single request.""" def __init__(self, store, requestContext): # Make sure we add our data to requestContext. if requestContext is None: requestContext = {} for k in ['inflight_requests', 'inflight_locks']: if k not in requestContext: requestContext[k] = {} self.lock = store.lock self.requests = requestContext['inflight_requests'] self.locks = requestContext['inflight_locks'] def start_request(self, url, request): with self.lock: self.requests[url] = request def get_request_lock(self, url): with self.lock: lock = self.locks.get(url, None) if not lock: self.locks[url] = lock = RLock() return lock def get_request(self, url): with self.lock: return self.requests.get(url, None) class RemoteReader(BaseReader): __slots__ = ( 'store', 'metric_path', 'intervals', 'bulk_query', 'connection') def __init__(self, store, node_info, bulk_query=None): self.store = store self.metric_path = node_info.get( 'path') or node_info.get('metric_path') self.intervals = node_info['intervals'] self.bulk_query = set(bulk_query) or ( [self.metric_path] if self.metric_path else [] ) self.connection = None def __repr__(self): return '<RemoteReader[%x]: %s>' % (id(self), self.store.host) @staticmethod def _log(msg, logger): logger(('thread %s at %fs ' % (current_thread().name, time.time())) + msg) @classmethod def log_debug(cls, msg): if settings.DEBUG: cls._log(msg, log.info) @classmethod def log_error(cls, msg): cls._log(msg, log.exception) def get_intervals(self): return self.intervals def fetch(self, startTime, endTime, now=None, requestContext=None): seriesList = self.fetch_list(startTime, endTime, now, requestContext) def _fetch(seriesList): if seriesList is None: return None for series in seriesList: if series['name'] == self.metric_path: time_info = ( series['start'], series['end'], series['step']) return (time_info, series['values']) return None if isinstance(seriesList, FetchInProgress): return FetchInProgress(lambda: _fetch(seriesList.waitForResults())) return _fetch(seriesList) def fetch_list(self, startTime, endTime, now=None, requestContext=None): t = time.time() in_flight = InFlight(self.store, requestContext) query_params = [ ('format', 'pickle'), ('local', '1'), ('noCache', '1'), ('from', str(int(startTime))), ('until', str(int(endTime))) ] if not self.bulk_query: return [] for target in self.bulk_query: query_params.append(('target', target)) if now is not None: query_params.append(('now', str(int(now)))) query_string = urlencode(query_params) urlpath = '/render/' url = "%s://%s%s" % ('https' if settings.INTRACLUSTER_HTTPS else 'http', self.store.host, urlpath) url_full = "%s?%s" % (url, query_string) headers = requestContext.get('forwardHeaders') if requestContext else None lock = in_flight.get_request_lock(url_full) with lock: request = in_flight.get_request(url_full) if request: log.debug("RemoteReader:: Returning cached FetchInProgress %s" % url_full) return request data = self._fetch_list_locked(url, query_string, query_params, headers) in_flight.start_request(url_full, data) log.debug( "RemoteReader:: Returning %s in %fs" % (url_full, time.time() - t)) return data def _fetch_list_locked(self, url, query_string, query_params, headers): url_full = "%s?%s" % (url, query_string) jobs = [(self._fetch, url, query_string, query_params, headers)] q = pool_apply(self.store.finder.worker_pool(), jobs) log.debug('RemoteReader:: Storing FetchInProgress for %s' % url_full) return FetchInProgress(_Results(q)) def _fetch(self, url, query_string, query_params, headers): url_full = "%s?%s" % (url, query_string) log.debug( "RemoteReader:: Starting to execute _fetch %s" % url_full) try: log.debug("ReadResult:: Requesting %s" % url_full) result = http.request( 'POST' if settings.REMOTE_STORE_USE_POST else 'GET', url, fields=query_params, headers=headers, timeout=settings.REMOTE_FETCH_TIMEOUT, ) if result.status != 200: self.store.fail() self.log_error("ReadResult:: Error response %d from %s" % (result.status, url_full)) data = [] else: data = unpickle.loads(result.data) except Exception as err: self.store.fail() self.log_error("ReadResult:: Error requesting %s: %s" % (url_full, err)) data = [] log.debug("RemoteReader:: Completed _fetch %s" % url_full) return data class _Results(object): def __init__(self, queue): self.lock = RLock() self.results = None self.queue = queue def __call__(self): with self.lock: return self.read_locked() def read_locked(self): if self.results is not None: log.debug( 'RemoteReader:: retrieve completed (cached) %s' % (', '.join([result['path'] for result in self.results])), ) return self.results # otherwise we get it from the queue and keep it for later results = self.queue.get(block=True) for i in range(len(results)): results[i]['path'] = results[i]['name'] if not results: log.debug('RemoteReader:: retrieve has received no results') self.results = results or [] log.debug( 'RemoteReader:: retrieve completed %s' % (', '.join([result['path'] for result in results])), ) return self.results
{ "content_hash": "0821f7fe78c9b411ca15b4620212adf2", "timestamp": "", "source": "github", "line_count": 222, "max_line_length": 100, "avg_line_length": 31.815315315315317, "alnum_prop": 0.5571286988531785, "repo_name": "brutasse/graphite-web", "id": "9509d717eacd5ad2c985b32b67d76524ef6621c3", "size": "7063", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "webapp/graphite/readers/remote.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "CSS", "bytes": "150191" }, { "name": "HTML", "bytes": "21170" }, { "name": "JavaScript", "bytes": "1681705" }, { "name": "Perl 6", "bytes": "857" }, { "name": "Python", "bytes": "1068379" }, { "name": "Ruby", "bytes": "1950" }, { "name": "Shell", "bytes": "1113" } ], "symlink_target": "" }
"""Built-in volume type properties.""" from oslo_config import cfg from oslo_db import exception as db_exc import six from cinder import context from cinder import db from cinder import exception from cinder.i18n import _, _LE from cinder.openstack.common import log as logging CONF = cfg.CONF LOG = logging.getLogger(__name__) def create(context, name, extra_specs=None, is_public=True, projects=None, description=None): """Creates volume types.""" extra_specs = extra_specs or {} projects = projects or [] try: type_ref = db.volume_type_create(context, dict(name=name, extra_specs=extra_specs, is_public=is_public, description=description), projects=projects) except db_exc.DBError as e: LOG.exception(_LE('DB error: %s') % six.text_type(e)) raise exception.VolumeTypeCreateFailed(name=name, extra_specs=extra_specs) return type_ref def update(context, id, description): """Update volume type by id.""" if id is None: msg = _("id cannot be None") raise exception.InvalidVolumeType(reason=msg) try: type_updated = db.volume_type_update(context, id, dict(description=description)) except db_exc.DBError as e: LOG.exception(_LE('DB error: %s') % six.text_type(e)) raise exception.VolumeTypeUpdateFailed(id=id) return type_updated def destroy(context, id): """Marks volume types as deleted.""" if id is None: msg = _("id cannot be None") raise exception.InvalidVolumeType(reason=msg) else: db.volume_type_destroy(context, id) def get_all_types(context, inactive=0, search_opts=None): """Get all non-deleted volume_types. Pass true as argument if you want deleted volume types returned also. """ search_opts = search_opts or {} filters = {} if 'is_public' in search_opts: filters['is_public'] = search_opts['is_public'] del search_opts['is_public'] vol_types = db.volume_type_get_all(context, inactive, filters=filters) if search_opts: LOG.debug("Searching by: %s" % search_opts) def _check_extra_specs_match(vol_type, searchdict): for k, v in searchdict.iteritems(): if (k not in vol_type['extra_specs'].keys() or vol_type['extra_specs'][k] != v): return False return True # search_option to filter_name mapping. filter_mapping = {'extra_specs': _check_extra_specs_match} result = {} for type_name, type_args in vol_types.iteritems(): # go over all filters in the list for opt, values in search_opts.iteritems(): try: filter_func = filter_mapping[opt] except KeyError: # no such filter - ignore it, go to next filter continue else: if filter_func(type_args, values): result[type_name] = type_args break vol_types = result return vol_types def get_volume_type(ctxt, id, expected_fields=None): """Retrieves single volume type by id.""" if id is None: msg = _("id cannot be None") raise exception.InvalidVolumeType(reason=msg) if ctxt is None: ctxt = context.get_admin_context() return db.volume_type_get(ctxt, id, expected_fields=expected_fields) def get_volume_type_by_name(context, name): """Retrieves single volume type by name.""" if name is None: msg = _("name cannot be None") raise exception.InvalidVolumeType(reason=msg) return db.volume_type_get_by_name(context, name) def get_default_volume_type(): """Get the default volume type.""" name = CONF.default_volume_type vol_type = {} if name is not None: ctxt = context.get_admin_context() try: vol_type = get_volume_type_by_name(ctxt, name) except exception.VolumeTypeNotFoundByName as e: # Couldn't find volume type with the name in default_volume_type # flag, record this issue and move on # TODO(zhiteng) consider add notification to warn admin LOG.exception(_LE('Default volume type is not found,' 'please check default_volume_type config: %s') % six.text_type(e)) return vol_type def get_volume_type_extra_specs(volume_type_id, key=False): volume_type = get_volume_type(context.get_admin_context(), volume_type_id) extra_specs = volume_type['extra_specs'] if key: if extra_specs.get(key): return extra_specs.get(key) else: return False else: return extra_specs def add_volume_type_access(context, volume_type_id, project_id): """Add access to volume type for project_id.""" if volume_type_id is None: msg = _("volume_type_id cannot be None") raise exception.InvalidVolumeType(reason=msg) return db.volume_type_access_add(context, volume_type_id, project_id) def remove_volume_type_access(context, volume_type_id, project_id): """Remove access to volume type for project_id.""" if volume_type_id is None: msg = _("volume_type_id cannot be None") raise exception.InvalidVolumeType(reason=msg) return db.volume_type_access_remove(context, volume_type_id, project_id) def is_encrypted(context, volume_type_id): if volume_type_id is None: return False encryption = db.volume_type_encryption_get(context, volume_type_id) return encryption is not None def get_volume_type_encryption(context, volume_type_id): if volume_type_id is None: return None encryption = db.volume_type_encryption_get(context, volume_type_id) return encryption def get_volume_type_qos_specs(volume_type_id): ctxt = context.get_admin_context() res = db.volume_type_qos_specs_get(ctxt, volume_type_id) return res def volume_types_diff(context, vol_type_id1, vol_type_id2): """Returns a 'diff' of two volume types and whether they are equal. Returns a tuple of (diff, equal), where 'equal' is a boolean indicating whether there is any difference, and 'diff' is a dictionary with the following format: {'extra_specs': {'key1': (value_in_1st_vol_type, value_in_2nd_vol_type), 'key2': (value_in_1st_vol_type, value_in_2nd_vol_type), ...} 'qos_specs': {'key1': (value_in_1st_vol_type, value_in_2nd_vol_type), 'key2': (value_in_1st_vol_type, value_in_2nd_vol_type), ...} 'encryption': {'cipher': (value_in_1st_vol_type, value_in_2nd_vol_type), {'key_size': (value_in_1st_vol_type, value_in_2nd_vol_type), ...} """ def _fix_qos_specs(qos_specs): if qos_specs: qos_specs.pop('id', None) qos_specs.pop('name', None) qos_specs.update(qos_specs.pop('specs', {})) def _fix_encryption_specs(encryption): if encryption: encryption = dict(encryption) for param in ['volume_type_id', 'created_at', 'updated_at', 'deleted_at']: encryption.pop(param, None) return encryption def _dict_diff(dict1, dict2): res = {} equal = True if dict1 is None: dict1 = {} if dict2 is None: dict2 = {} for k, v in dict1.iteritems(): res[k] = (v, dict2.get(k)) if k not in dict2 or res[k][0] != res[k][1]: equal = False for k, v in dict2.iteritems(): res[k] = (dict1.get(k), v) if k not in dict1 or res[k][0] != res[k][1]: equal = False return (res, equal) all_equal = True diff = {} vol_type_data = [] for vol_type_id in (vol_type_id1, vol_type_id2): if vol_type_id is None: specs = {'extra_specs': None, 'qos_specs': None, 'encryption': None} else: specs = {} vol_type = get_volume_type(context, vol_type_id) specs['extra_specs'] = vol_type.get('extra_specs') qos_specs = get_volume_type_qos_specs(vol_type_id) specs['qos_specs'] = qos_specs.get('qos_specs') _fix_qos_specs(specs['qos_specs']) specs['encryption'] = get_volume_type_encryption(context, vol_type_id) specs['encryption'] = _fix_encryption_specs(specs['encryption']) vol_type_data.append(specs) diff['extra_specs'], equal = _dict_diff(vol_type_data[0]['extra_specs'], vol_type_data[1]['extra_specs']) if not equal: all_equal = False diff['qos_specs'], equal = _dict_diff(vol_type_data[0]['qos_specs'], vol_type_data[1]['qos_specs']) if not equal: all_equal = False diff['encryption'], equal = _dict_diff(vol_type_data[0]['encryption'], vol_type_data[1]['encryption']) if not equal: all_equal = False return (diff, all_equal)
{ "content_hash": "f8b6ad35755699212e2376cd235d8157", "timestamp": "", "source": "github", "line_count": 284, "max_line_length": 79, "avg_line_length": 34.61267605633803, "alnum_prop": 0.5552390640895218, "repo_name": "Akrog/cinder", "id": "8624a10f4d367568de18c44959fe0d1f23f017cc", "size": "10692", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "cinder/volume/volume_types.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "ApacheConf", "bytes": "3555" }, { "name": "Gettext Catalog", "bytes": "483634" }, { "name": "Python", "bytes": "11055908" }, { "name": "Shell", "bytes": "8111" } ], "symlink_target": "" }
from dirbalak import repomirrorcache from upseto import gitwrapper import collections import logging Dependency = collections.namedtuple( "Dependency", "gitURL hash requiringURL requiringURLHash type masterHash broken") class Traverse: def __init__(self, visitMasterBranchOfEachDependency=True): self._visitMasterBranchOfEachDependency = visitMasterBranchOfEachDependency self._visitedTuples = set() self._dependencies = [] def dependencies(self): return self._dependencies def traverse(self, gitURL, hash): mirror = repomirrorcache.get(gitURL) hash = mirror.branchName(hash) self._traverse(gitURL, hash, None, None, 'root') def _traverse(self, gitURL, hash, requiringURL, requiringURLHash, type): try: tuple = gitURL, hash, requiringURL, requiringURLHash if tuple in self._visitedTuples: return self._visitedTuples.add(tuple) mirror = repomirrorcache.get(gitURL) masterHash = mirror.hash('origin/master') hash = mirror.branchName(hash) broken = not mirror.hashExists(hash) dep = Dependency( gitURL=gitURL, hash=hash, requiringURL=requiringURL, requiringURLHash=requiringURLHash, type=type, masterHash=masterHash, broken=broken) self._dependencies.append(dep) if not broken: upsetoManifest = mirror.upsetoManifest(hash) solventManifest = mirror.solventManifest(hash) basenameForBuild = self._basenameForBuild(mirror, hash) for requirement in upsetoManifest.requirements(): self._traverse(requirement['originURL'], requirement['hash'], gitURL, hash, 'upseto') for requirement in solventManifest.requirements(): basename = gitwrapper.originURLBasename(requirement['originURL']) type = 'dirbalak_build_rootfs' if basename == basenameForBuild else 'solvent' self._traverse(requirement['originURL'], requirement['hash'], gitURL, hash, type) if self._visitMasterBranchOfEachDependency: self._traverse(gitURL, 'origin/master', None, None, 'master') except: logging.error( "Exception while handling '%(gitURL)s'/%(hash)s " "('%(type)s' dependency of '%(requiringURL)s'/%(requiringURLHash)s)", dict( gitURL=gitURL, hash=hash, requiringURL=requiringURL, requiringURLHash=requiringURLHash, type=type)) raise def _basenameForBuild(self, mirror, hash): try: return mirror.dirbalakManifest(hash).buildRootFSRepositoryBasename() except KeyError: return None
{ "content_hash": "beaa02a68cb7982743fe25fb0aa98b65", "timestamp": "", "source": "github", "line_count": 67, "max_line_length": 107, "avg_line_length": 42.656716417910445, "alnum_prop": 0.6273617914625612, "repo_name": "Stratoscale/dirbalak", "id": "d9f0dd5eee34f3be81e469520b3eec00bcc550c1", "size": "2858", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "py/dirbalak/traverse.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "CSS", "bytes": "340" }, { "name": "HTML", "bytes": "21593" }, { "name": "JavaScript", "bytes": "4477" }, { "name": "Makefile", "bytes": "2024" }, { "name": "Python", "bytes": "120641" }, { "name": "Shell", "bytes": "42" } ], "symlink_target": "" }
from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('tracker', '0012_auto_20160221_1400'), ] operations = [ migrations.AlterField( model_name='system', name='color_code', field=models.CharField(max_length=10), ), ]
{ "content_hash": "7b0db8236b3795149d79d0c97be79cfa", "timestamp": "", "source": "github", "line_count": 18, "max_line_length": 50, "avg_line_length": 21.22222222222222, "alnum_prop": 0.5916230366492147, "repo_name": "paftree/WHturk", "id": "08ccf9cc561fdd42c87501b60fbdcb0c0e42d602", "size": "454", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "tracker/migrations/0013_auto_20160221_1403.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "412079" }, { "name": "HTML", "bytes": "36344" }, { "name": "JavaScript", "bytes": "1526712" }, { "name": "Python", "bytes": "48695" }, { "name": "Shell", "bytes": "42" } ], "symlink_target": "" }
"""Tests for `imawurk` package.""" import pytest from click.testing import CliRunner from imawurk import imawurk from imawurk import cli @pytest.fixture def response(): """Sample pytest fixture. See more at: http://doc.pytest.org/en/latest/fixture.html """ # import requests # return requests.get('https://github.com/audreyr/cookiecutter-pypackage') def test_content(response): """Sample pytest test function with the pytest fixture as an argument.""" # from bs4 import BeautifulSoup # assert 'GitHub' in BeautifulSoup(response.content).title.string def test_command_line_interface(): """Test the CLI.""" runner = CliRunner() result = runner.invoke(cli.main) assert result.exit_code == 0 assert 'imawurk.cli.main' in result.output help_result = runner.invoke(cli.main, ['--help']) assert help_result.exit_code == 0 assert '--help Show this message and exit.' in help_result.output
{ "content_hash": "e31fe3a6cb45ebfcde18ed954efca9a6", "timestamp": "", "source": "github", "line_count": 35, "max_line_length": 78, "avg_line_length": 27.314285714285713, "alnum_prop": 0.696652719665272, "repo_name": "gityom/imawurk", "id": "35109761866d31af5b7fe6867aaa3181ce530260", "size": "1003", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "tests/test_imawurk.py", "mode": "33188", "license": "mit", "language": [ { "name": "Makefile", "bytes": "2269" }, { "name": "Python", "bytes": "3336" } ], "symlink_target": "" }
from django.apps import AppConfig class ImraisingConfig(AppConfig): name = 'imraising' verbose_name = 'Imraising Application' def ready(self): import imraising.signals
{ "content_hash": "cf5cc34959e80b7c9efabb3a3d163437", "timestamp": "", "source": "github", "line_count": 9, "max_line_length": 42, "avg_line_length": 21.555555555555557, "alnum_prop": 0.7010309278350515, "repo_name": "google/mirandum", "id": "994056232ab52842a4c5e554e01eb5c2650c3546", "size": "808", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "alerts/imraising/apps.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "CSS", "bytes": "9472" }, { "name": "Elixir", "bytes": "574" }, { "name": "HTML", "bytes": "122101" }, { "name": "JavaScript", "bytes": "19438" }, { "name": "Jinja", "bytes": "4124" }, { "name": "Python", "bytes": "398732" }, { "name": "Shell", "bytes": "3296" } ], "symlink_target": "" }
"""ML-ENSEMBLE :author: Sebastian Flennerhag :copyright: 2017-2018 :licence: MIT Blend indexing. """ from __future__ import division from numbers import Integral import numpy as np from ._checks import check_partial_index from .base import BaseIndex class BlendIndex(BaseIndex): """Indexer that generates two non-overlapping subsets of ``X``. Iterator that generates one training fold and one test fold that are non-overlapping and that may or may not partition all of X depending on the user's specification. BlendIndex creates a singleton generator (has on iteration) that yields two tuples of ``(start, stop)`` integers that can be used for numpy array slicing (i.e. ``X[stop:start]``). If a full array index is desired this can easily be achieved with:: for train_tup, test_tup in self.generate(): train_slice = numpy.hstack([numpy.arange(t0, t1) for t0, t1 in train_tup]) test_slice = numpy.hstack([numpy.arange(t0, t1) for t0, t1 in test_tup]) Parameters ---------- test_size : int or float (default = 0.5) Size of the test set. If ``float``, assumed to be proportion of full data set. train_size : int or float, optional Size of test set. If not specified (i.e. ``train_size = None``, train_size is equal to ``n_samples - test_size``. If ``float``, assumed to be a proportion of full data set. If ``train_size`` + ``test_size`` amount to less than the observations in the full data set, a subset of specified size will be used. X : array-like of shape [n_samples,] , optional the training set to partition. The training label array is also, accepted, as only the first dimension is used. If ``X`` is not passed at instantiation, the ``fit`` method must be called before ``generate``, or ``X`` must be passed as an argument of ``generate``. raise_on_exception : bool (default = True) whether to warn on suspicious slices or raise an error. See Also -------- :class:`FoldIndex`, :class:`SubsetIndex` Examples -------- Selecting an absolute test size, with train size as the remainder >>> import numpy as np >>> from mlens.index import BlendIndex >>> X = np.arange(8) >>> idx = BlendIndex(3, rebase=True) >>> print('Test size: 3') >>> for tri, tei in idx.generate(X): ... print('TEST (idx | array): (%i, %i) | %r ' % (tei[0], tei[1], ... X[tei[0]:tei[1]])) ... print('TRAIN (idx | array): (%i, %i) | %r ' % (tri[0], tri[1], ... X[tri[0]:tri[1]])) Test size: 3 TEST (idx | array): (5, 8) | array([5, 6, 7]) TRAIN (idx | array): (0, 5) | array([0, 1, 2, 3, 4]) Selecting a test and train size less than the total >>> import numpy as np >>> from mlens.index import BlendIndex >>> X = np.arange(8) >>> idx = BlendIndex(3, 4, X) >>> print('Test size: 3') >>> print('Train size: 4') >>> for tri, tei in idx.generate(X): ... print('TEST (idx | array): (%i, %i) | %r ' % (tei[0], tei[1], ... X[tei[0]:tei[1]])) ... print('TRAIN (idx | array): (%i, %i) | %r ' % (tri[0], tri[1], ... X[tri[0]:tri[1]])) Test size: 3 Train size: 4 TEST (idx | array): (4, 7) | array([4, 5, 6]) TRAIN (idx | array): (0, 4) | array([0, 1, 2, 3]) Selecting a percentage of observations as test and train set >>> import numpy as np >>> from mlens.index import BlendIndex >>> X = np.arange(8) >>> idx = BlendIndex(0.25, 0.45, X) >>> print('Test size: 25% * 8 = 2') >>> print('Train size: 45% * 8 < 4 -> 3') >>> for tri, tei in idx.generate(X): ... print('TEST (idx | array): (%i, %i) | %r ' % (tei[0], tei[1], ... X[tei[0]:tei[1]])) ... print('TRAIN (idx | array): (%i, %i) | %r ' % (tri[0], tri[1], ... X[tri[0]:tri[1]])) Test size: 25% * 8 = 2 Train size: 50% * 8 < 4 -> TEST (idx | array): (3, 5) | array([[3, 4]]) TRAIN (idx | array): (0, 3) | array([[0, 1, 2]]) Rebasing the test set to be 0-indexed >>> import numpy as np >>> from mlens.index import BlendIndex >>> X = np.arange(8) >>> idx = BlendIndex(3, rebase=True) >>> print('Test size: 3') >>> for tri, tei in idx.generate(X): ... print('TEST tuple: (%i, %i) | array: %r' % (tei[0], tei[1], ... np.arange(tei[0], ... tei[1]))) Test size: 3 TEST tuple: (0, 3) | array: array([0, 1, 2]) """ def __init__(self, test_size=0.5, train_size=None, X=None, raise_on_exception=True): super(BlendIndex, self).__init__() self.n_train = None self.n_test = None self.test_size = test_size self.train_size = train_size self.raise_on_exception = raise_on_exception if X is not None: self.fit(X) def fit(self, X, y=None, job=None): """Method for storing array data. Parameters ---------- X : array-like of shape [n_samples, optional] array to _collect dimension data from. y : None for compatibility job : None for compatibility Returns ------- instance : indexer with stores sample size data. """ self.n_samples = X.shape[0] # Get number of test samples if isinstance(self.test_size, Integral): self.n_test = self.test_size else: self.n_test = int(np.floor(self.test_size * self.n_samples)) # Get number of train samples if self.train_size is None: # Partition X - we coerce a positive value here: # if n_test is oversampled will get at final check self.n_train = int(np.floor(np.abs(self.n_samples - self.n_test))) elif isinstance(self.train_size, Integral): self.n_train = self.train_size else: self.n_train = int(np.floor(self.train_size * self.n_samples)) check_partial_index(self.n_samples, self.test_size, self.train_size, self.n_test, self.n_train) self.n_test_samples = self.n_test self.__fitted__ = True return self def _gen_indices(self): """Return train and test set index generator.""" # Blended train set is from 0 to n, with test set from n to N # There is no iteration. yield (0, self.n_train), (self.n_train, self.n_train + self.n_test)
{ "content_hash": "727f3c564457aef5d37ea59d5082a562", "timestamp": "", "source": "github", "line_count": 200, "max_line_length": 79, "avg_line_length": 35.46, "alnum_prop": 0.5190355329949239, "repo_name": "flennerhag/mlens", "id": "4ff7901c688487ce618e10b96ec527c0d6e90402", "size": "7092", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "mlens/index/blend.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "933041" }, { "name": "Shell", "bytes": "238" } ], "symlink_target": "" }
from django.db import models class Portal(models.Model): TYPE_CHOICES = ( ("CKAN", "CKAN"), ) name = models.CharField(max_length=100) type = models.CharField(max_length=8, choices=TYPE_CHOICES) url = models.URLField() def __str__(self): return self.name
{ "content_hash": "03473fe6ed4d643bd0423058d1163372", "timestamp": "", "source": "github", "line_count": 14, "max_line_length": 63, "avg_line_length": 21.285714285714285, "alnum_prop": 0.6174496644295302, "repo_name": "bellisk/opendata-multisearch", "id": "c1404f3ceac86c3c0b44181489b38641eb158c65", "size": "298", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "ord_hackday/search/models.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "1521" }, { "name": "HTML", "bytes": "36674" }, { "name": "Python", "bytes": "10919" } ], "symlink_target": "" }
from django.conf.urls import patterns, url urlpatterns = patterns('pythonMDA.apps.home.views', url(r'^$', 'index_view', name='vista_principal',), )
{ "content_hash": "caa2729ea10befe08bdc5f7f11aa572a", "timestamp": "", "source": "github", "line_count": 6, "max_line_length": 62, "avg_line_length": 30.666666666666668, "alnum_prop": 0.5815217391304348, "repo_name": "caballerojavier13/python-mda", "id": "64b238e8e1065a6340efa33f825c5978c1e67c4b", "size": "184", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "pythonMDA/apps/home/urls.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "CSS", "bytes": "8294" }, { "name": "JavaScript", "bytes": "10059" }, { "name": "Python", "bytes": "20862" } ], "symlink_target": "" }
import json import os from datetime import datetime from dotenv import load_dotenv from flask import Flask, jsonify, make_response, render_template, request, url_for load_dotenv() # set token value in order to validate posts SECRET = os.getenv("TOKEN") QUEUE_PATH = os.getenv("QUEUE_PATH", "cache/queue.json") # Load JSON message store if available # (saved to a disk volume, preserves status across restarts) try: QUEUE = json.load(open(QUEUE_PATH, "r")) except (ValueError, FileNotFoundError): QUEUE = {} # Instantiate app app = Flask(__name__) @app.route("/", methods=["GET", "POST"], defaults={"handle": None}) @app.route("/<handle>", methods=["GET", "POST", "DELETE"]) def api_endpoint(handle): if request.method == "POST": args = request.get_json() if not handle: handle = args["handle"] status = args["status"] token = args["token"] color = args["color"] stamp = str(datetime.now()) if (token == SECRET) or (SECRET is None): # check that token is valid content = { "link": url_for("api_request", handle=handle), "handle": handle, "status": status, "color": color, "at": stamp, "client_ip": request.remote_addr, } QUEUE[handle] = content with open(QUEUE_PATH, "w") as fh: json.dump(QUEUE, fh) return jsonify(QUEUE[handle]), 201 else: return "invalid token", 403 if request.method == "GET": if not handle: lst = [item for item in QUEUE.values()] return jsonify(lst) try: return jsonify(QUEUE[handle]), 201 except KeyError: no_status = {"handle": handle, "status": "No such handle"} return jsonify(no_status), 404 if request.method == "DELETE": QUEUE.pop(handle, None) with open(QUEUE_PATH, "w") as fh: json.dump(QUEUE, fh) return jsonify({handle: "Deleted"}), 204 # Little web UI # Log monitor page @app.route("/view") def index(): stamp = str(datetime.now()) freight = render_template("statuslist.html", queue=QUEUE, dt=stamp) v = make_response(freight) return v # view only one handle status @app.route("/view/n/<handle>") def nick_view(handle): stamp = str(datetime.now()) handle_queue = {} handle_queue[handle] = QUEUE[handle] freight = render_template( "filtered_status.html", queue=handle_queue, dt=stamp, handle=handle ) v = make_response(freight) return v # view only one color status @app.route("/view/c/<color>") def color_view(color): stamp = str(datetime.now()) color_queue = {} for alias, content in QUEUE.items(): if color in content["color"]: color_queue[alias] = content freight = render_template( "filtered_status.html", queue=color_queue, dt=stamp, handle=color ) v = make_response(freight) return v if __name__ == "__main__": app.run(debug=True, host="0.0.0.0", port=5001)
{ "content_hash": "ab66f4a2f65f0dcde3ba315a8eda44d7", "timestamp": "", "source": "github", "line_count": 107, "max_line_length": 82, "avg_line_length": 29.214953271028037, "alnum_prop": 0.5863723608445297, "repo_name": "tym-oao/algoth", "id": "eeaba00abbe355b9a790c6722483e172c2a3b29a", "size": "3165", "binary": false, "copies": "1", "ref": "refs/heads/trunk", "path": "algoth.py", "mode": "33188", "license": "mit", "language": [ { "name": "Dockerfile", "bytes": "337" }, { "name": "HTML", "bytes": "3716" }, { "name": "Python", "bytes": "3165" } ], "symlink_target": "" }
import uuid from db.common import Base from db.specific_event import SpecificEvent from db.event import Event from db.player import Player from db.team import Team class Faceoff(Base, SpecificEvent): __tablename__ = 'faceoffs' __autoload__ = True HUMAN_READABLE = 'faceoff' STANDARD_ATTRS = [ "team_id", "player_id", "zone", "faceoff_lost_team_id", "faceoff_lost_player_id", "faceoff_lost_zone" ] def __init__(self, event_id, data_dict): self.faceoff_id = uuid.uuid4().urn self.event_id = event_id for attr in self.STANDARD_ATTRS: if attr in data_dict: setattr(self, attr, data_dict[attr]) else: setattr(self, attr, None) def __str__(self): won_plr = Player.find_by_id(self.player_id) lost_plr = Player.find_by_id(self.faceoff_lost_player_id) won_team = Team.find_by_id(self.team_id) lost_team = Team.find_by_id(self.faceoff_lost_team_id) event = Event.find_by_id(self.event_id) return "Faceoff: %s (%s) won vs. %s (%s) in %s. zone - %s" % ( won_plr.name, won_team.abbr, lost_plr.name, lost_team.abbr, self.zone.lower(), event)
{ "content_hash": "77f5f311250b7b6331040639dacc1664", "timestamp": "", "source": "github", "line_count": 39, "max_line_length": 70, "avg_line_length": 31.871794871794872, "alnum_prop": 0.5905068382944489, "repo_name": "leaffan/pynhldb", "id": "a20e470aa0b4a82a9a375f5b348ece698d483e47", "size": "1290", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "db/faceoff.py", "mode": "33188", "license": "mit", "language": [ { "name": "PLpgSQL", "bytes": "80868" }, { "name": "Python", "bytes": "479953" } ], "symlink_target": "" }
import os import setuptools def read(fname): return open(os.path.join(os.path.dirname(__file__), fname)).read() with open('test-requirements.txt') as f: test_required = f.read().splitlines() setuptools.setup( # Do not use underscores in the plugin name. name='cloudify-deployment-proxy-plugin', version='0.1', author='Gigaspaces.com', author_email='Gigaspaces.com', description='plugin that defines dependencies between deployments', # This must correspond to the actual packages in the plugin. packages=[ 'deployments', ], license='LICENSE', install_requires=[ 'cloudify-plugins-common==3.2', ], test_requires=test_required, )
{ "content_hash": "37a6c94773b94645837971ec78823689", "timestamp": "", "source": "github", "line_count": 31, "max_line_length": 71, "avg_line_length": 22.967741935483872, "alnum_prop": 0.6657303370786517, "repo_name": "denismakogon/cloudify-deployment-proxy-plugin", "id": "6e137acee411f5987585d74c5936e3bd71f76b81", "size": "1347", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "setup.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Python", "bytes": "6898" } ], "symlink_target": "" }
""" Tests are comprised of Python scripts. Files whose names begin with an underscore will *not* be executed as test scripts. Test scripts drive the browser with Selenium WebDriver by importing and using SST actions. The standard set of actions are imported by starting the test scripts with:: from sst.actions import * Actions that work on page elements take either an element id or an element object as their first argument. If the element you are working with doesn't have a specific id you can get the element object with the `get_element` action. `get_element` allows you to find an element by its id, tag, text, class or other attributes. See the `get_element` documentation. """ import os import re import time from datetime import datetime from pdb import set_trace as debug from textwrap import TextWrapper from urlparse import urljoin, urlparse from unittest2 import SkipTest from selenium import webdriver from selenium.webdriver.common import keys from selenium.webdriver.remote.webelement import WebElement from selenium.common.exceptions import ( NoSuchElementException, NoSuchAttributeException, InvalidElementStateException, WebDriverException, NoSuchWindowException, NoSuchFrameException) from sst import config from sst import bmobproxy __all__ = [ 'accept_alert', 'add_cleanup', 'assert_attribute', 'assert_button', 'assert_checkbox', 'assert_checkbox_value', 'assert_css_property', 'assert_displayed', 'assert_dropdown', 'assert_dropdown_value', 'assert_element', 'assert_equal', 'assert_link', 'assert_not_equal', 'assert_radio', 'assert_radio_value', 'assert_table_has_rows', 'assert_table_headers', 'assert_table_row_contains_text', 'assert_text', 'assert_text_contains', 'assert_textfield', 'assert_title', 'assert_title_contains', 'assert_url', 'assert_url_contains', 'check_flags', 'click_link', 'clear_cookies', 'close_window', 'debug', 'dismiss_alert', 'end_test', 'click_button', 'click_element', 'execute_script', 'exists_element', 'fails', 'get_argument', 'get_base_url', 'get_cookies', 'get_current_url', 'get_element', 'get_element_source', 'get_element_by_css', 'get_element_by_xpath', 'get_elements', 'get_elements_by_css', 'get_elements_by_xpath', 'get_link_url', 'get_page_source', 'go_back', 'go_to', 'refresh', 'reset_base_url', 'run_test', 'set_base_url', 'set_checkbox_value', 'set_dropdown_value', 'set_radio_value', 'set_wait_timeout', 'simulate_keys', 'skip', 'sleep', 'start', 'stop', 'switch_to_frame', 'switch_to_window', 'take_screenshot', 'toggle_checkbox', 'wait_for', 'wait_for_and_refresh', 'write_textfield', ] browser = None browsermob_proxy = None _check_flags = True _test = None BASE_URL = 'http://localhost:8000/' __DEFAULT_BASE_URL__ = BASE_URL VERBOSE = True class EndTest(StandardError): pass debug.__doc__ = """Start the debugger, a shortcut for `pdb.set_trace()`.""" class _Sentinel(object): def __repr__(self): return 'default' _sentinel = _Sentinel() def _raise(msg): _print(msg) raise AssertionError(msg) def set_base_url(url): """Set the url used for relative arguments to the `go_to` action.""" global BASE_URL if not url.startswith('http') and not url.startswith('file'): url = 'http://' + url _print('Setting base url to: %r' % url) BASE_URL = url def get_base_url(): """Return the base url used by `go_to`.""" return BASE_URL def reset_base_url(): """ Restore the base url to the default. This is called automatically for you when a test script completes.""" global BASE_URL BASE_URL = __DEFAULT_BASE_URL__ def end_test(): """ If called it ends the test. Can be used conditionally to exit a test under certain conditions.""" raise EndTest def skip(reason=''): """ Skip the test. Unlike `end_test` a skipped test will be reported as a skip rather than a pass.""" raise SkipTest(reason) def _print(text): if VERBOSE: ''' text_wrapper = TextWrapper( width=160, break_long_words=False, initial_indent=(' ' * 4), subsequent_indent=(' ' * 8), ) print text_wrapper.fill(text) ''' ct = time.time() msecs = (ct - long(ct)) * 1000 print "%s -- %s" % ("%s,%03d" % (time.strftime("%Y-%m-%d %H:%M:%S", ), msecs), text) def start(browser_type=None, browser_version='', browser_platform='ANY', session_name='', javascript_disabled=False, assume_trusted_cert_issuer=False, webdriver_remote=None): """ Starts Browser with a new session. Called for you at the start of each test script.""" global browser global browsermob_proxy if browser_type is None: browser_type = config.browser_type _print('') _print('Starting browser: %s' % browser_type) if webdriver_remote is None: if browser_type == 'Firefox': # profile features are FF only profile = getattr(webdriver, '%sProfile' % browser_type)() profile.set_preference('intl.accept_languages', 'en') if config.browsermob_enabled: # proxy integration is currently FF only browsermob_proxy = bmobproxy.BrowserMobProxy( 'localhost', 8080) selenium_proxy = webdriver.Proxy( {'httpProxy': browsermob_proxy.url}) profile.set_proxy(selenium_proxy) if assume_trusted_cert_issuer: profile.set_preference( 'webdriver_assume_untrusted_issuer', False) profile.setPreference( 'capability.policy.default.Window.QueryInterface', 'allAccess') profile.setPreference( 'capability.policy.default.Window.frameElement.get', 'allAccess') if javascript_disabled: profile.set_preference('javascript.enabled', False) browser = getattr(webdriver, browser_type)(profile) else: browser = getattr(webdriver, browser_type)() else: desired_capabilities = {"browserName": browser_type.lower(), "platform": browser_platform.upper(), "version": browser_version, "javascriptEnabled": not javascript_disabled, "name": session_name} browser = webdriver.Remote(desired_capabilities=desired_capabilities, command_executor=webdriver_remote) def stop(): """ Stops Firefox and ends the browser session. Called automatically for you at the end of each test script.""" global browser global browsermob_proxy _print('Stopping browser') # quit calls close() and does cleanup browser.quit() browser = None if browsermob_proxy is not None: _print('Closing http proxy') browsermob_proxy.close() browsermob_proxy = None def refresh(wait=True): """ Refresh the current page. By default this action will wait until a page with a body element is available after the click. You can switch off this behaviour by passing `wait=False`.""" if browsermob_proxy is not None: _print('Capturing http traffic...') browsermob_proxy.new_har() _print('Refreshing current page') browser.refresh() if wait: _waitforbody() if browsermob_proxy is not None: _print('Saving HAR output') _make_results_dir() browsermob_proxy.save_har(_make_useable_har_name()) def take_screenshot(filename='screenshot.png'): """ Takes a screenshot of the browser window. Called automatically on failures when running in `-s` mode.""" _print('Capturing Screenshot') _make_results_dir() screenshot_file = os.path.join(config.results_directory, filename) browser.get_screenshot_as_file(screenshot_file) def _make_results_dir(): """ Make results directory if it does not exist.""" try: os.makedirs(config.results_directory) except OSError: pass # already exists def sleep(secs): """ Delay execution for a given number of seconds. The argument may be a floating point number for subsecond precision.""" _print('Sleeping %s secs' % secs) time.sleep(secs) def _fix_url(url): parsed = urlparse(url) if not parsed.scheme: url = urljoin(BASE_URL, url) return url def _add_trailing_slash(url): if not url.endswith('/'): url += '/' return url def get_argument(name, default=_sentinel): """ Get an argument from the one the test was called with. A test is called with arguments when it is executed by the `run_test`. You can optionally provide a default value that will be used if the argument is not set. If you don't provide a default value and the argument is missing an exception will be raised.""" args = config.__args__ value = args.get(name, default) if value is _sentinel: raise LookupError(name) return value def run_test(name, **kwargs): """ Execute a named test, with the specified arguments. Arguments can be retrieved by the test with `get_argument`. The `name` is the test file name without the '.py'. You can specify tests in an alternative directory with relative path syntax. e.g.:: run_test('subdir/foo', spam='eggs') Tests can return a result by setting the name `RESULT` in the test. Tests are executed with the same browser (and browser session) as the test calling `test_run`. This includes whether or not Javascript is enabled. Before the test is called the timeout and base url are reset, but will be restored to their orginal value when `run_test` returns.""" # delayed import to workaround circular imports from sst import context _print('Executing test: %s' % name) return context.run_test(name, kwargs) def _make_useable_har_name(stem=''): now = datetime.now() timestamped_base = 'har-%s' % now.strftime('%Y-%m-%d_%H-%M-%S-%f') if stem: slug_name = ''.join(x for x in stem if x.isalnum()) out_name = '%s-%s.har' % (timestamped_base, slug_name) else: out_name = '%s.har' % timestamped_base file_name = os.path.join(config.results_directory, out_name) return file_name def go_to(url='', wait=True): """ Go to a specific URL. If the url provided is a relative url it will be added to the base url. You can change the base url for the test with `set_base_url`. By default this action will wait until a page with a body element is available after the click. You can switch off this behaviour by passing `wait=False`.""" if browser is None: start() url = _fix_url(url) if browsermob_proxy is not None: _print('Capturing http traffic...') browsermob_proxy.new_har() _print('Going to... %s' % url) browser.get(url) if wait: _waitforbody() if browsermob_proxy is not None: _print('Saving HAR output') _make_results_dir() browsermob_proxy.save_har(_make_useable_har_name(url)) def go_back(wait=True): """ Go one step backward in the browser history. By default this action will wait until a page with a body element is available after the click. You can switch off this behaviour by passing `wait=False`.""" if browsermob_proxy is not None: _print('Capturing http traffic...') browsermob_proxy.new_har() _print('Going back one step in browser history') browser.back() if wait: _waitforbody() if browsermob_proxy is not None: _print('Saving HAR output') _make_results_dir() browsermob_proxy.save_har(_make_useable_har_name()) def assert_checkbox(id_or_elem): """ Assert that the element is a checkbox. Takes an id or an element object. Raises a failure exception if the element specified doesn't exist or isn't a checkbox.""" elem = _get_elem(id_or_elem) _elem_is_type(elem, id_or_elem, 'checkbox') return elem def assert_checkbox_value(id_or_elem, value): """ Assert checkbox value. Takes an element id or object plus either True or False. Raises a failure exception if the element specified doesn't exist or isn't a checkbox.""" checkbox = assert_checkbox(id_or_elem) real = checkbox.is_selected() msg = 'Checkbox: %r - Has Value: %r' % (_get_text(checkbox), real) if real != value: _raise(msg) def toggle_checkbox(id_or_elem): """ Toggle the checkbox value. Takes an element id or object. Raises a failure exception if the element specified doesn't exist or isn't a checkbox.""" checkbox = assert_checkbox(id_or_elem) _print('Toggling checkbox: %r' % _get_text(checkbox)) before = checkbox.is_selected() checkbox.click() after = checkbox.is_selected() msg = 'Checkbox: %r - was not toggled, value remains: %r' \ % (_get_text(checkbox), before) if before == after: _raise(msg) def set_checkbox_value(id_or_elem, new_value): """ Set a checkbox to a specific value, either True or False. Raises a failure exception if the element specified doesn't exist or isn't a checkbox.""" checkbox = assert_checkbox(id_or_elem) _print('Setting checkbox %r to %r' % (_get_text(checkbox), new_value)) # There is no method to 'unset' a checkbox in the browser object current_value = checkbox.is_selected() if new_value != current_value: toggle_checkbox(id_or_elem) def _make_keycode(key_to_make): """ Take a key and return a keycode""" k = keys.Keys() keycode = k.__getattribute__(key_to_make.upper()) return keycode def simulate_keys(id_or_elem, key_to_press): """ Simulate key sent to specified element. (available keys located in `selenium/webdriver/common/keys.py`) e.g.:: simulate_keys('text_1', 'BACK_SPACE') """ key_element = _get_elem(id_or_elem) _print('Simulating keypress on %r with %r key' \ % (_get_text(key_element), key_to_press)) key_code = _make_keycode(key_to_press) key_element.send_keys(key_code) _textfields = ( 'text', 'password', 'textarea', 'email', 'url', 'search', 'number', 'file') def assert_textfield(id_or_elem): """ Assert that the element is a textfield, textarea or password box. Takes an id or an element object. Raises a failure exception if the element specified doesn't exist or isn't a textfield.""" elem = _get_elem(id_or_elem) _elem_is_type(elem, id_or_elem, *_textfields) # see _textfields tuple return elem def write_textfield(id_or_elem, new_text, check=True, clear=True): """ Set the specified text into the textfield. If the text fails to write (the textfield contents after writing are different to the specified text) this function will fail. You can switch off the checking by passing `check=False`. The field is cleared before written to. You can switch this off by passing `clear=False`.""" textfield = assert_textfield(id_or_elem) _print('Writing to textfield %r with text %r' % (_get_text(textfield), new_text)) # clear field like this, don't use clear() if clear: textfield.send_keys(keys.Keys().CONTROL, 'a') textfield.send_keys(keys.Keys().DELETE) if isinstance(new_text, unicode): textfield.send_keys(new_text) else: textfield.send_keys(str(new_text)) if not check: return _print('Check text wrote correctly') current_text = textfield.get_attribute('value') if current_text != new_text: msg = 'Textfield: %r - did not write. Text was: %r' \ % (_get_text(textfield), current_text) _raise(msg) def assert_link(id_or_elem): """ Assert that the element is a link. Raises a failure exception if the element specified doesn't exist or isn't a link""" link = _get_elem(id_or_elem) href = link.get_attribute('href') if href is None: msg = 'The text %r is not part of a Link or a Link ID' \ % _get_text(link) _raise(msg) return link def get_link_url(id_or_elem): """Return the URL from a link.""" _print('Getting url from link %r' % id_or_elem) link = assert_link(id_or_elem) link_url = link.get_attribute('href') return link_url def get_current_url(): """Gets the URL of the current page.""" return browser.current_url def click_link(id_or_elem, check=False, wait=True): """ Click the specified link. As some links do redirects the location you end up at is not checked by default. If you pass in `check=True` then this action asserts that the resulting url is the link url. By default this action will wait until a page with a body element is available after the click. You can switch off this behaviour by passing `wait=False`.""" link = assert_link(id_or_elem) link_url = link.get_attribute('href') if browsermob_proxy is not None: _print('Capturing http traffic...') browsermob_proxy.new_har() _print('Clicking link %r' % _get_text(link)) link.click() if wait: _waitforbody() if browsermob_proxy is not None: _print('Saving HAR output') _make_results_dir() browsermob_proxy.save_har(_make_useable_har_name()) # some links do redirects - so we # don't check by default if check: assert_url(link_url) def assert_displayed(id_or_elem): """ Assert that the element is displayed. Takes an id or an element object. Raises a failure exception if the element specified doesn't exist or isn't displayed. Returns the element if it is displayed.""" element = _get_elem(id_or_elem) if not element.is_displayed(): message = 'Element is not displayed' _raise(message) return element def click_element(id_or_elem, wait=True): """ Click on an element of any kind not specific to links or buttons. By default this action will wait until a page with a body element is available after the click. You can switch off this behaviour by passing `wait=False`.""" elem = _get_elem(id_or_elem) if browsermob_proxy is not None: _print('Capturing http traffic...') browsermob_proxy.new_har() _print('Clicking element %r' % _get_text(elem)) elem.click() if wait: _waitforbody() if browsermob_proxy is not None: _print('Saving HAR output') _make_results_dir() browsermob_proxy.save_har(_make_useable_har_name()) def assert_title(title): """Assert the page title is as specified.""" real_title = browser.title msg = 'Title is: %r. Should be: %r' % (real_title, title) if real_title != title: _raise(msg) def assert_title_contains(text, regex=False): """ Assert the page title contains the specified text. set `regex=True` to use a regex pattern.""" real_title = browser.title msg = 'Title is: %r. Does not contain %r' % (real_title, text) if regex: if not re.search(text, real_title): _raise(msg) else: if not text in real_title: _raise(msg) def assert_url(url): """ Assert the current url is as specified. Can be an absolute url or relative to the base url.""" url = _fix_url(url) url = _add_trailing_slash(url) real_url = browser.current_url real_url = _add_trailing_slash(real_url) msg = 'Url is: %r. Should be: %r' % (real_url, url) if url != real_url: _raise(msg) def assert_url_contains(text, regex=False): """ Assert the current url contains the specified text. set `regex=True` to use a regex pattern.""" real_url = browser.current_url msg = 'Url is %r. Does not contain %r' % (real_url, text) if regex: if not re.search(text, real_url): _raise(msg) else: if text not in real_url: _raise(msg) _TIMEOUT = 10 _POLL = 0.1 def set_wait_timeout(timeout, poll=None): """ Set the timeout, in seconds, used by `wait_for`. The default at the start of a test is always 10 seconds. The optional second argument, is how long (in seconds) `wait_for` should wait in between checking its condition (the poll frequency). The default at the start of a test is always 0.1 seconds.""" global _TIMEOUT global _POLL _TIMEOUT = timeout msg = 'Setting wait timeout to %rs' % timeout if poll is not None: msg += ('. Setting poll time to %rs' % poll) _POLL = poll _print(msg) def _get_name(obj): try: return obj.__name__ except: return repr(obj) def _wait_for(condition, refresh, timeout, poll, *args, **kwargs): global VERBOSE _print('Waiting for %r' % _get_name(condition)) original = VERBOSE VERBOSE = False try: max_time = time.time() + timeout msg = _get_name(condition) while True: #refresh the page if requested if refresh: refresh() e = None try: result = condition(*args, **kwargs) except AssertionError as e: pass else: if result != False: break if time.time() > max_time: error = 'Timed out waiting for: %s' % msg if e: error += '\nError during wait: %s' % e _raise(error) time.sleep(poll) finally: VERBOSE = original def wait_for(condition, *args, **kwargs): """ Wait for an action to pass. Useful for checking the results of actions that may take some time to complete. This action takes a condition function and any arguments it should be called with. The condition function can either be an action or a function that returns True for success and False for failure. For example:: wait_for(assert_title, 'Some page title') If the specified condition does not become true within 10 seconds then `wait_for` fails. You can set the timeout for `wait_for` by calling `set_wait_timeout`.""" _wait_for(condition, False, _TIMEOUT, _POLL, *args, **kwargs) def wait_for_and_refresh(condition, *args, **kwargs): """ Wait for an action to pass. Useful for checking the results of actions that may take some time to complete. The difference to wait_for() is, that wait_for_and_refresh() refresh the current page with refresh() after every condition check. This action takes a condition function and any arguments it should be called with. The condition function can either be an action or a function that returns True for success and False for failure. For example:: wait_for_and_refresh(assert_title, 'Some page title') If the specified condition does not become true within 10 seconds then `wait_for_and_refresh` fails. You can set the timeout for `wait_for_and_refresh` by calling `set_wait_timeout`. """ _wait_for(condition, True, _TIMEOUT, _POLL, *args, **kwargs) def fails(action, *args, **kwargs): """ This action is particularly useful for *testing* other actions, by checking that they fail when they should do. `fails` takes a function (usually an action) and any arguments and keyword arguments to call the function with. If calling the function raises an AssertionError then `fails` succeeds. If the function does *not* raise an AssertionError then this action raises the appropriate failure exception. Alll other exceptions will be propagated normally.""" _print('Trying action failure: %s' % _get_name(action)) try: action(*args, **kwargs) except AssertionError: return msg = 'Action %r did not fail' % _get_name(action) _raise(msg) def _get_elem(id_or_elem): if isinstance(id_or_elem, WebElement): return id_or_elem try: return browser.find_element_by_id(id_or_elem) except (NoSuchElementException, WebDriverException): msg = 'Element with id: %r does not exist' % id_or_elem _raise(msg) # Takes an optional 2nd input type for cases like textfield & password # where types are similar def _elem_is_type(elem, name, *elem_types): try: result = elem.get_attribute('type') except NoSuchAttributeException: msg = 'Element has no type attribute' _raise(msg) if not result in elem_types: msg = 'Element %r is not one of %r' % (name, elem_types) _raise(msg) def assert_dropdown(id_or_elem): """Assert the specified element is a select drop-list.""" elem = _get_elem(id_or_elem) _elem_is_type(elem, id_or_elem, 'select-one') return elem def set_dropdown_value(id_or_elem, text=None, value=None): """Set the select drop-list to a text or value specified.""" elem = assert_dropdown(id_or_elem) _print('Setting %r option list to %r' % (_get_text(elem), text or value)) if text and not value: for element in elem.find_elements_by_tag_name('option'): if element.text == text: element.click() return msg = 'The following option could not be found in the list: %r' % text elif value and not text: for element in elem.find_elements_by_tag_name('option'): if element.get_attribute("value") == value: element.click() return msg = 'The following option could not be found in the list: %r' % value else: msg = 'Use set_dropdown_value() with either text or value!' _raise(msg) def assert_dropdown_value(id_or_elem, text_in): """Assert the specified select drop-list is set to the specified value.""" elem = assert_dropdown(id_or_elem) # Because there is no way to connect the current # text of a select element we have to use 'value' current = elem.get_attribute('value') for element in elem.find_elements_by_tag_name('option'): if text_in == element.text and \ current == element.get_attribute('value'): return msg = 'The option is not currently set to: %r' % text_in _raise(msg) def assert_radio(id_or_elem): """ Assert the specified element is a radio button. Takes an id or an element object. Raises a failure exception if the element specified doesn't exist or isn't a radio button""" elem = _get_elem(id_or_elem) _elem_is_type(elem, id_or_elem, 'radio') return elem def assert_radio_value(id_or_elem, value): """ Assert the specified element is a radio button with the specified value; True for selected and False for unselected. Takes an id or an element object. Raises a failure exception if the element specified doesn't exist or isn't a radio button""" elem = assert_radio(id_or_elem) selected = elem.is_selected() msg = 'Radio %r should be set to: %s.' % (_get_text(elem), value) if value != selected: _raise(msg) def set_radio_value(id_or_elem): """Select the specified radio button.""" elem = assert_radio(id_or_elem) _print('Selecting radio button item %r' % _get_text(elem)) elem.click() def _get_text(elem): text = None try: text = elem.text except InvalidElementStateException: pass if text: # Note that some elements (like textfields) return empty string # for text and we still need to call value return text try: text = elem.get_attribute('value') except InvalidElementStateException: pass return text def assert_text(id_or_elem, text): """ Assert the specified element text is as specified. Raises a failure exception if the element specified doesn't exist or isn't as specified""" elem = _get_elem(id_or_elem) real = _get_text(elem) if real is None: msg = 'Element %r has no text attribute' % _get_text(elem) _raise(msg) if real != text: msg = 'Element text should be %r. It is %r.' % (text, real) _raise(msg) def assert_text_contains(id_or_elem, text, regex=False): """ Assert the specified element contains the specified text. set `regex=True` to use a regex pattern.""" elem = _get_elem(id_or_elem) real = _get_text(elem) if real is None: msg = 'Element %r has no text attribute' % _get_text(elem) _raise(msg) msg = 'Element text is %r. Does not contain %r' % (real, text) if regex: if not re.search(text, real): _raise(msg) else: if text not in real: _raise(msg) def _check_text(elem, text): return _get_text(elem) == text def _match_text(elem, regex): text = _get_text(elem) or '' return bool(re.search(regex, text)) def get_elements(tag=None, css_class=None, id=None, text=None, text_regex=None, **kwargs): """ This function will find and return all matching elements by any of several attributes. If the elements cannot be found from the attributes you provide, the call will fail with an exception. You can specify as many or as few attributes as you like. `text_regex` finds elements by doing a regular expression search against the text of elements. It cannot be used in conjunction with the `text` argument and cannot be the *only* argument to find elements.""" if text and text_regex: raise TypeError("You can't use text and text_regex arguments") selector_string = '' if tag: selector_string = tag if css_class: css_class_selector = css_class.strip().replace(' ', '.') selector_string += ('.%s' % css_class_selector) if id: selector_string += ('#%s' % id) selector_string += ''.join(['[%s=%r]' % (key, value) for key, value in kwargs.items()]) try: if text and not selector_string: elems = browser.find_elements_by_xpath('//*[text() = %r]' % text) else: if not selector_string: msg = 'Could not identify element: no arguments provided' _raise(msg) elems = browser.find_elements_by_css_selector(selector_string) except (WebDriverException, NoSuchElementException) as e: msg = 'Element not found: %s' % e _raise(msg) if text: # if text was specified, filter elements elems = [element for element in elems if _check_text(element, text)] elif text_regex: elems = [elem for elem in elems if _match_text(elem, text_regex)] if not elems: msg = 'Could not identify elements: 0 elements found' _raise(msg) return elems def get_element(tag=None, css_class=None, id=None, text=None, text_regex=None, **kwargs): """ This function will find and return an element by any of several attributes. If the element cannot be found from the attributes you provide, or the attributes match more than one element, the call will fail with an exception. Finding elements is useful for checking that the element exists, and also for passing to other actions that work with element objects. You can specify as many or as few attributes as you like, so long as they uniquely identify one element. `text_regex` finds elements by doing a regular expression search against the text of elements. It cannot be used in conjunction with the `text` argument and cannot be the *only* argument to find elements.""" elems = get_elements(tag=tag, css_class=css_class, id=id, text=text, text_regex=text_regex, **kwargs) if len(elems) != 1: msg = 'Could not identify element: %s elements found' % len(elems) _raise(msg) return elems[0] def exists_element(tag=None, css_class=None, id=None, text=None, text_regex=None, **kwargs): """ This function will find if an element exists by any of several attributes. It returns True if the element is found or False if it can't be found. You can specify as many or as few attributes as you like.""" try: get_elements(tag=tag, css_class=css_class, id=id, text=text, text_regex=text_regex, **kwargs) return True except AssertionError: return False def assert_element(tag=None, css_class=None, id=None, text=None, text_regex=None, **kwargs): """ Assert an element exists by any of several attributes. You can specify as many or as few attributes as you like.""" try: elems = get_elements(tag=tag, css_class=css_class, id=id, text=text, text_regex=text_regex, **kwargs) return elems except AssertionError: msg = 'Could not assert element exists' _raise(msg) def assert_button(id_or_elem): """ Assert that the specified element is a button. Takes an id or an element object. Raises a failure exception if the element specified doesn't exist or isn't a button""" elem = _get_elem(id_or_elem) if elem.tag_name == 'button': return elem if elem.get_attribute('type') == 'button': return elem _elem_is_type(elem, id_or_elem, 'submit') return elem def click_button(id_or_elem, wait=True): """ Click the specified button. By default this action will wait until a page with a body element is available after the click. You can switch off this behaviour by passing `wait=False`.""" button = assert_button(id_or_elem) if browsermob_proxy is not None: _print('Capturing http traffic...') browsermob_proxy.new_har() _print('Clicking button %r' % _get_text(button)) button.click() if wait: _waitforbody() if browsermob_proxy is not None: _print('Saving HAR output') _make_results_dir() browsermob_proxy.save_har(_make_useable_har_name()) def get_elements_by_css(selector): """Find all elements that match a css selector.""" try: return browser.find_elements_by_css_selector(selector) except (WebDriverException, NoSuchElementException) as e: msg = 'Element not found: %s' % e _raise(msg) def get_element_by_css(selector): """Find an element by css selector.""" elements = get_elements_by_css(selector) if len(elements) != 1: msg = 'Could not identify element: %s elements found' % len(elements) _raise(msg) return elements[0] def get_elements_by_xpath(selector): """Find all elements that match an xpath.""" try: return browser.find_elements_by_xpath(selector) except (WebDriverException, NoSuchElementException) as e: msg = 'Element not found: %s' % e _raise(msg) def get_element_by_xpath(selector): """Find an element by xpath.""" elements = get_elements_by_xpath(selector) if len(elements) != 1: msg = 'Could not identify element: %s elements found' % len(elements) _raise(msg) return elements[0] def _waitforbody(): wait_for(get_element, tag='body') def get_page_source(): """Gets the source of the current page.""" return browser.page_source def close_window(): """ Closes the current window """ _print('Closing the current window') browser.close() def switch_to_window(index_or_name=None): """ Switch focus to the specified window (by index or name). if no window is given, switch focus to the default window.""" if index_or_name is None: _print('Switching to default window') browser.switch_to_window('') elif isinstance(index_or_name, int): index = index_or_name window_handles = browser.window_handles if index >= len(window_handles): msg = 'Index %r is greater than available windows.' % index _raise(msg) window = window_handles[index] try: _print('Switching to window: %r' % window) browser.switch_to_window(window) except NoSuchWindowException: msg = 'Could not find window: %r' % window _raise(msg) else: name = index_or_name try: _print('Switching to window: %r' % name) browser.switch_to_window(name) except NoSuchWindowException: msg = 'Could not find window: %r' % name _raise(msg) def switch_to_frame(index_or_name=None): """ Switch focus to the specified frame (by index or name). if no frame is given, switch focus to the default content frame.""" if index_or_name is None: _print('Switching to default content frame') browser.switch_to_default_content() else: _print('Switching to frame: %r' % index_or_name) try: browser.switch_to_frame(index_or_name) except NoSuchFrameException: msg = 'Could not find frame: %r' % index_or_name _raise(msg) def _alert_action(action, expected_text=None, text_to_write=None): """ Accept or dismiss a JavaScript alert, confirmation or prompt. Optionally, it takes the expected text of the Popup box to check it, and the text to write in the prompt.""" wait_for(browser.switch_to_alert) alert = browser.switch_to_alert() alert_text = alert.text # XXX workaround because Selenium sometimes returns the value in a # dictionary. See http://code.google.com/p/selenium/issues/detail?id=2955 if isinstance(alert_text, dict): alert_text = alert_text['text'] if expected_text and expected_text != alert_text: error_message = 'Element text should be %r. It is %r.' \ % (expected_text, alert_text) _raise(error_message) if text_to_write: alert.send_keys(text_to_write) if action == 'accept': alert.accept() elif action == 'dismiss': alert.dismiss() else: _raise('%r is an unknown action for an alert' % action) def accept_alert(expected_text=None, text_to_write=None): """ Accept a JavaScript alert, confirmation or prompt. Optionally, it takes the expected text of the Popup box to check it, and the text to write in the prompt. Note that the action that opens the alert should not wait for a page with a body element. This means that you should call functions like click_element with the argument wait=Fase.""" _print('Accepting Alert') _alert_action('accept', expected_text, text_to_write) def dismiss_alert(expected_text=None, text_to_write=None): """ Dismiss a JavaScript alert. Optionally, it takes the expected text of the Popup box to check it., and the text to write in the prompt. Note that the action that opens the alert should not wait for a page with a body element. This means that you should call functions like click_element with the argument wait=Fase.""" _print('Dismissing Alert') _alert_action('dismiss', expected_text, text_to_write) def assert_table_headers(id_or_elem, headers): """ Assert table `id_or_elem` has headers (<th> tags) where the text matches the sequence `headers`. """ _print('Checking headers for %r' % (id_or_elem,)) elem = _get_elem(id_or_elem) if not elem.tag_name == 'table': _raise('Element %r is not a table.' % (id_or_elem,)) header_elems = elem.find_elements_by_tag_name('th') header_text = [_get_text(elem) for elem in header_elems] if not header_text == headers: msg = ('Expected headers:%r. Actual headers%r\n' % (headers, header_text)) _raise(msg) def assert_table_has_rows(id_or_elem, num_rows): """ Assert the specified table has the specified number of rows (<tr> tags inside the <tbody>). """ _print('Checking table %r has %s rows' % (id_or_elem, num_rows)) elem = _get_elem(id_or_elem) if not elem.tag_name == 'table': _raise('Element %r is not a table.' % (id_or_elem,)) body = elem.find_elements_by_tag_name('tbody') if not body: _raise('Table %r has no tbody.' % (id_or_elem,)) rows = body[0].find_elements_by_tag_name('tr') if not len(rows) == num_rows: msg = 'Expected %s rows. Found %s.' % (num_rows, len(rows)) _raise(msg) def assert_table_row_contains_text(id_or_elem, row, contents, regex=False): """ Assert the specified row (starting from 0) in the specified table contains the specified contents. contents should be a sequence of strings, where each string is the same as the text of the corresponding column. If `regex` is True (the default is False) then each cell is checked with a regular expression search. The row will be looked for inside the <tbody>, to check headers use `assert_table_headers`. """ _print('Checking the contents of table %r, row %s.' % (id_or_elem, row)) elem = _get_elem(id_or_elem) if not elem.tag_name == 'table': _raise('Element %r is not a table.' % (id_or_elem,)) body = elem.find_elements_by_tag_name('tbody') if not body: _raise('Table %r has no tbody.' % (id_or_elem,)) rows = body[0].find_elements_by_tag_name('tr') if len(rows) <= row: msg = 'Asked to fetch row %s. Highest row is %s' % (row, len(rows) - 1) _raise(msg) columns = rows[row].find_elements_by_tag_name('td') cells = [_get_text(elem) for elem in columns] if not regex: success = cells == contents elif len(contents) != len(cells): success = False else: success = all(re.search(expected, actual) for expected, actual in zip(contents, cells)) if not success: msg = ('Expected row contents: %r. Actual contents: %r' % (contents, cells)) _raise(msg) def assert_attribute(id_or_elem, attribute, value, regex=False): """ assert that the specified `attribute` on the element is equal to the `value`. If `regex` is True (default is False) then the value will be compared to the attribute using a regular expression search. """ elem = _get_elem(id_or_elem) _print('Checking attribute %r of %r' % (attribute, _get_text(elem))) actual = elem.get_attribute(attribute) if not regex: success = value == actual else: success = actual is not None and re.search(value, actual) if not success: msg = 'Expected attribute: %r. Actual attribute: %r' % (value, actual) _raise(msg) def assert_css_property(id_or_elem, property, value, regex=False): """ assert that the specified `css property` on the element is equal to the `value`. If `regex` is True (default is False) then the value will be compared to the property using a regular expression search. """ elem = _get_elem(id_or_elem) _print('Checking css property %r: %s of %r' % (property, value, _get_text(elem))) actual = elem.value_of_css_property(property) if not regex: success = value == actual else: success = actual is not None and re.search(value, actual) if not success: msg = 'Expected property: %r. Actual property: %r' % (value, actual) _raise(msg) def check_flags(*args): """ A test will only run if all the flags passed to this action were supplied at the command line. If a required flag is missing the test is skipped. Flags are case-insensitive. """ if not _check_flags: # Flag checking disabled return missing = set(arg.lower() for arg in args) - set(config.flags) if missing: _msg = 'Flags required but not used: %s' % ', '.join(missing) skip(_msg) def assert_equal(first, second): """Assert two objects are equal.""" if _test is None: assert first == second else: _test.assertEqual(first, second) def assert_not_equal(first, second): """Assert two objects are not equal.""" if _test is None: assert first != second else: _test.assertNotEqual(first, second) def add_cleanup(func, *args, **kwargs): """ Add a function, with arguments, to be called when the test is completed. Functions added are called on a LIFO basis and are called on test failure or success. They allow a test to clean up after itself. """ _test.addCleanup(func, *args, **kwargs) def get_cookies(): """Gets the cookies of current session (set of dicts).""" return browser.get_cookies() def clear_cookies(): """Clear the cookies of current session.""" _print('Clearing browser session cookies') browser.delete_all_cookies() def execute_script(script, *args): """ Executes JavaScript in the context of the currently selected frame or window. Within the script, use `document` to refer to the current document. For example:: execute_script('document.title = "New Title"') args will be made available to the script if given. """ _print('Executing script') browser.execute_script(script, *args) def get_element_source(id_or_elem): """Gets the innerHTML source of an element.""" elem = _get_elem(id_or_elem) return elem.get_attribute('innerHTML')
{ "content_hash": "34e89e4051c6ff4ba21fe1f0850f2b72", "timestamp": "", "source": "github", "line_count": 1434, "max_line_length": 94, "avg_line_length": 31.96792189679219, "alnum_prop": 0.6330657475677326, "repo_name": "ktan2020/legacy-automation", "id": "aae07a3a93cc49d9e2629c34a31a6fe2e3ac4e30", "size": "46578", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "win/Lib/site-packages/sst/actions.py", "mode": "33261", "license": "mit", "language": [ { "name": "ActionScript", "bytes": "913" }, { "name": "Ada", "bytes": "289" }, { "name": "Assembly", "bytes": "687" }, { "name": "Boo", "bytes": "540" }, { "name": "C", "bytes": "40116" }, { "name": "C#", "bytes": "474" }, { "name": "C++", "bytes": "393" }, { "name": "CSS", "bytes": "70883" }, { "name": "ColdFusion", "bytes": "1012" }, { "name": "Common Lisp", "bytes": "1034" }, { "name": "D", "bytes": "1858" }, { "name": "Eiffel", "bytes": "426" }, { "name": "Erlang", "bytes": "9243" }, { "name": "FORTRAN", "bytes": "1810" }, { "name": "Forth", "bytes": "182" }, { "name": "Groovy", "bytes": "2366" }, { "name": "Haskell", "bytes": "816" }, { "name": "Haxe", "bytes": "455" }, { "name": "Java", "bytes": "1155" }, { "name": "JavaScript", "bytes": "69444" }, { "name": "Lua", "bytes": "795" }, { "name": "Matlab", "bytes": "1278" }, { "name": "OCaml", "bytes": "350" }, { "name": "Objective-C++", "bytes": "885" }, { "name": "PHP", "bytes": "1411" }, { "name": "Pascal", "bytes": "388" }, { "name": "Perl", "bytes": "252651" }, { "name": "Pike", "bytes": "589" }, { "name": "Python", "bytes": "42085780" }, { "name": "R", "bytes": "1156" }, { "name": "Ruby", "bytes": "480" }, { "name": "Scheme", "bytes": "282" }, { "name": "Shell", "bytes": "30518" }, { "name": "Smalltalk", "bytes": "926" }, { "name": "Squirrel", "bytes": "697" }, { "name": "Stata", "bytes": "302" }, { "name": "SystemVerilog", "bytes": "3145" }, { "name": "Tcl", "bytes": "1039" }, { "name": "TeX", "bytes": "1746" }, { "name": "VHDL", "bytes": "985" }, { "name": "Vala", "bytes": "664" }, { "name": "Verilog", "bytes": "439" }, { "name": "Visual Basic", "bytes": "2142" }, { "name": "XSLT", "bytes": "152770" }, { "name": "ooc", "bytes": "890" }, { "name": "xBase", "bytes": "769" } ], "symlink_target": "" }
class Node( object ): def __init__( self, attr, attrs, dataSet ): self.falsePath = None # Destination Node for False self.truePath = None # Destination Node for True self.attribute = attr # Name of Attribute self.attributes = attrs # Remaining possible attributes self.dataSet = dataSet # Subset of data from previous decision def nextNode( self, testPassed ): return self.truePath if testPassed else self.falsePath def newFalsePath( self, attr, dataSubset ): falsePathAttributes = self.attributes[:] falsePathAttributes.remove( attr ) #print( "New False Path:", falsePathAttributes ) self.falsePath = Node( attr, falsePathAttributes, dataSubset ) def newTruePath( self, attr, dataSubset ): truePathAttributes = self.attributes[:] truePathAttributes.remove( attr ) #print( "New True Path:", truePathAttributes ) self.truePath = Node( attr, truePathAttributes, dataSubset ) def subsetWithLabel( self, attr_index, label ): return list( filter( lambda row: row[ attr_index ] == label, self.dataSet ) ) def resultsOfSet( self, S ): no = len( list( filter( lambda row: row[-1] is False, S ) ) ) return ( len( S ) - no, no ) def makePrediction( self, indexOfAttr, pathBool ): subset = self.subsetWithLabel( indexOfAttr, pathBool ) ratio = self.resultsOfSet( subset ) return ratio[0] > ratio[1] # Trues > Falses class DecisionTree( object ): def __init__( self, attrs ): self.root = None self.attributes = attrs return def newRoot( self, attr, attrs, data ): self.root = Node( attr, attrs, data ) return def getRoot( self ): return self.root def printNode( self, node, depth, pathBool, output_file ): output = "| " * depth + node.attribute + " = " + ("1" if pathBool else "0") + " : " if pathBool: output += ( "1\n" if node.makePrediction( self.attributes.index( node.attribute ), True ) else "0\n" if node.truePath is None else "\n" ) else: output += ( "1\n" if node.makePrediction( self.attributes.index( node.attribute ), False ) else "0\n" if node.falsePath is None else "\n" ) output_file.write( output ) def preorderTraversal( self, node, depth, output_file ): if node is None: return self.printNode( node, depth, False, output_file ) self.preorderTraversal( node.falsePath, depth + 1, output_file ) self.printNode( node, depth, True, output_file ) self.preorderTraversal( node.truePath , depth + 1, output_file ) def printTree( self, filename ): with open( filename, 'w+' ) as output_file: self.preorderTraversal( self.root, 0, output_file ) def getLastNodeFromDecisions( self, decisionDict ): node = self.root nextNode = node.nextNode( decisionDict[ node.attribute ] ) while nextNode is not None: node = nextNode nextNode = node.nextNode( decisionDict[ node.attribute ] ) return node def dataSetFromDecisions( self, decisionDict ): return self.getLastNodeFromDecisions( decisionDict ).dataSet def indexOfAttribute( self, attr ): return self.attributes.index( attr ) def makePrediction( self ): node = self.getLastNodeFromDecisions( self, decisionDict ) return node.makePrediction( self.indexOfAttribute( node.attribute ), decisionDict[ node.attribute ] )
{ "content_hash": "9ebbab1959600ae9e44fb7a91e8d468f", "timestamp": "", "source": "github", "line_count": 91, "max_line_length": 142, "avg_line_length": 35.43956043956044, "alnum_prop": 0.7007751937984497, "repo_name": "CKPalk/MachineLearning", "id": "e103d872a5cac8663113a0738ed1d4d68f32b520", "size": "3228", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "Assignment1/Assignment1_EC/DecisionTree.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "52712" } ], "symlink_target": "" }
from f5.bigip import ManagementRoot from f5.bigip.resource import OrganizingCollection from f5.bigip.tm.analytics.dos_vis_common import Generate_Report from f5.bigip.tm.analytics.dos_vis_common import Report_Results from f5.sdk_exception import MissingRequiredCreationParameter from f5.sdk_exception import UnsupportedOperation import mock import pytest from six import iterkeys @pytest.fixture def FakeGenerateReport(): fake_analytics = mock.MagicMock() fake_genrep = Generate_Report(fake_analytics) fake_genrep._meta_data['bigip'].tmos_version = '13.1.0' return fake_genrep @pytest.fixture def FakeReportResults(): fake_analytics = mock.MagicMock() fake_repres = Report_Results(fake_analytics) return fake_repres class TestDosVisCommonOC(object): def test_collection(self, fakeicontrolsession): b = ManagementRoot('192.168.1.1', 'admin', 'admin') t1 = b.tm.analytics.dos_vis_common assert isinstance(t1, OrganizingCollection) assert hasattr(t1, 'generate_reports') assert hasattr(t1, 'report_results_s') class TestGenerateReport(object): def test_modify_raises(self, FakeGenerateReport): with pytest.raises(UnsupportedOperation): FakeGenerateReport.modify() def test_create_no_args(self, FakeGenerateReport): with pytest.raises(MissingRequiredCreationParameter): FakeGenerateReport.create() def test_create_two(self, fakeicontrolsession): b = ManagementRoot('192.168.1.1', 'admin', 'admin') t1 = b.tm.analytics.dos_vis_common.generate_reports.generate_report t2 = b.tm.analytics.dos_vis_common.generate_reports.generate_report assert t1 is t2 def test_collection(self, fakeicontrolsession): b = ManagementRoot('192.168.1.1', 'admin', 'admin') t = b.tm.analytics.dos_vis_common.generate_reports test_meta = t._meta_data['attribute_registry'] test_meta2 = t._meta_data['allowed_lazy_attributes'] kind = 'tm:analytics:dos-vis-common:generate-report:avrgeneratereporttaskitemstate' assert kind in list(iterkeys(test_meta)) assert Generate_Report in test_meta2 assert t._meta_data['object_has_stats'] is False class TestReportResults(object): def test_create_raises(self, FakeReportResults): with pytest.raises(UnsupportedOperation): FakeReportResults.create() def test_modify_raises(self, FakeReportResults): with pytest.raises(UnsupportedOperation): FakeReportResults.modify() def test_collection(self, fakeicontrolsession): b = ManagementRoot('192.168.1.1', 'admin', 'admin') t = b.tm.analytics.dos_vis_common.report_results_s test_meta = t._meta_data['attribute_registry'] test_meta2 = t._meta_data['allowed_lazy_attributes'] kind = 'tm:analytics:dos-vis-common:report-results:avrreportresultitemstate' assert kind in list(iterkeys(test_meta)) assert Report_Results in test_meta2 assert t._meta_data['object_has_stats'] is False
{ "content_hash": "2da6dba131eb6a85dc8cc45c39cda702", "timestamp": "", "source": "github", "line_count": 81, "max_line_length": 91, "avg_line_length": 38.111111111111114, "alnum_prop": 0.7058632977000324, "repo_name": "F5Networks/f5-common-python", "id": "d39bc4b7aec9047b6724d025f5c54216daae68b1", "size": "3669", "binary": false, "copies": "1", "ref": "refs/heads/development", "path": "f5/bigip/tm/analytics/test/unit/test_dos_vis_common.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Dockerfile", "bytes": "713" }, { "name": "Groovy", "bytes": "4321" }, { "name": "Python", "bytes": "2705690" }, { "name": "Shell", "bytes": "6398" } ], "symlink_target": "" }
import os from ._compat import itervalues from ._globals import GLOBAL_LOCKER, THREAD_LOCAL from ._load import OrderedDict from .helpers._internals import Cursor class ConnectionPool(object): POOLS = {} check_active_connection = True def __init__(self): _iid_ = str(id(self)) self._connection_thname_ = '_pydal_connection_' + _iid_ + '_' self._cursors_thname_ = '_pydal_cursors_' + _iid_ + '_' @property def _pid_(self): return str(os.getpid()) @property def _connection_uname_(self): return self._connection_thname_ + self._pid_ @property def _cursors_uname_(self): return self._cursors_thname_ + self._pid_ @staticmethod def set_folder(folder): THREAD_LOCAL._pydal_folder_ = folder @property def connection(self): return getattr(THREAD_LOCAL, self._connection_uname_) @connection.setter def connection(self, val): setattr(THREAD_LOCAL, self._connection_uname_, val) self._clean_cursors() if val is not None: self._build_cursor() def _clean_cursors(self): setattr(THREAD_LOCAL, self._cursors_uname_, OrderedDict()) @property def cursors(self): return getattr(THREAD_LOCAL, self._cursors_uname_) def _build_cursor(self): rv = Cursor(self.connection) self.cursors[id(rv.cursor)] = rv return rv def _get_or_build_free_cursor(self): for handler in itervalues(self.cursors): if handler.available: return handler return self._build_cursor() @property def cursor(self): return self._get_or_build_free_cursor().cursor def lock_cursor(self, cursor): self.cursors[id(cursor)].lock() def release_cursor(self, cursor): self.cursors[id(cursor)].release() def close_cursor(self, cursor): cursor.close() del self.cursors[id(cursor)] def close(self, action='commit', really=True): #: if we have an action (commit, rollback), try to execute it succeeded = True if action: try: if callable(action): action(self) else: getattr(self, action)() except: #: connection had some problems, we want to drop it succeeded = False #: if we have pools, we should recycle the connection (but only when # we succeded in `action`, if any and `len(pool)` is good) if self.pool_size and succeeded: GLOBAL_LOCKER.acquire() pool = ConnectionPool.POOLS[self.uri] if len(pool) < self.pool_size: pool.append(self.connection) really = False GLOBAL_LOCKER.release() #: closing the connection when we `really` want to, in particular: # - when we had an exception running `action` # - when we don't have pools # - when we have pools but they're full if really: try: self.close_connection() except: pass #: always unset `connection` attribute self.connection = None @staticmethod def close_all_instances(action): """ to close cleanly databases in a multithreaded environment """ dbs = getattr(THREAD_LOCAL, '_pydal_db_instances_', {}).items() for db_uid, db_group in dbs: for db in db_group: if hasattr(db, '_adapter'): db._adapter.close(action) getattr(THREAD_LOCAL, '_pydal_db_instances_', {}).clear() getattr(THREAD_LOCAL, '_pydal_db_instances_zombie_', {}).clear() if callable(action): action(None) return def _find_work_folder(self): self.folder = getattr(THREAD_LOCAL, '_pydal_folder_', '') def after_connection_hook(self): """Hook for the after_connection parameter""" if callable(self._after_connection): self._after_connection(self) self.after_connection() def after_connection(self): #this it is supposed to be overloaded by adapters pass def reconnect(self): """ Defines: `self.connection` and `self.cursor` if `self.pool_size>0` it will try pull the connection from the pool if the connection is not active (closed by db server) it will loop if not `self.pool_size` or no active connections in pool makes a new one """ if getattr(THREAD_LOCAL, self._connection_uname_, None) is not None: return if not self.pool_size: self.connection = self.connector() self.after_connection_hook() else: uri = self.uri POOLS = ConnectionPool.POOLS while True: GLOBAL_LOCKER.acquire() if uri not in POOLS: POOLS[uri] = [] if POOLS[uri]: self.connection = POOLS[uri].pop() GLOBAL_LOCKER.release() try: if self.check_active_connection: self.test_connection() break except: pass else: GLOBAL_LOCKER.release() self.connection = self.connector() self.after_connection_hook() break
{ "content_hash": "93afa913dbc1e0ab792542a161869497", "timestamp": "", "source": "github", "line_count": 169, "max_line_length": 80, "avg_line_length": 32.857988165680474, "alnum_prop": 0.5515937331172339, "repo_name": "niphlod/pydal", "id": "b36a5969df72b74d0273ce502c69f4779a393819", "size": "5577", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "pydal/connection.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "Python", "bytes": "820628" } ], "symlink_target": "" }
from setuptools import setup import os def get_version(version_tuple): if not isinstance(version_tuple[-1], int): return '.'.join(map(str, version_tuple[:-1])) + version_tuple[-1] return '.'.join(map(str, version_tuple)) init = os.path.join(os.path.dirname(__file__), 'hupwatch', '__init__.py') version_line = list(filter(lambda l: l.startswith('VERSION'), open(init)))[0] VERSION = get_version(eval(version_line.split('=')[-1])) INSTALL_REQUIRES = [] try: from pypandoc import convert def read_md(f): return convert(f, 'rst') except ImportError: print( "warning: pypandoc module not found, could not convert Markdown to RST" ) def read_md(f): return open(f, 'r').read() # noqa README = os.path.join(os.path.dirname(__file__), 'README.md') setup( name='hupwatch', version=VERSION, author='Michał Jaworski', author_email='[email protected]', description='Simple process supervision agnostic utility for graceful reloading of services', # noqa long_description=read_md(README), packages=['hupwatch'], url='https://github.com/swistakm/hupwatch', include_package_data=True, install_requires=[], zip_safe=False, license="BSD", classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Intended Audience :: System Administrators', 'Operating System :: POSIX', 'Topic :: System :: Systems Administration', 'Programming Language :: Python', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'License :: OSI Approved :: BSD License', ], entry_points={ 'console_scripts': [ 'hupwatch = hupwatch.command:main' ] } )
{ "content_hash": "2172212b071baf681b37ee1dd1b88169", "timestamp": "", "source": "github", "line_count": 71, "max_line_length": 105, "avg_line_length": 26.112676056338028, "alnum_prop": 0.6175836030204962, "repo_name": "swistakm/hupwatch", "id": "d591f160b4ba347d2ab9a256308dc262a69e19e1", "size": "1879", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "setup.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "Python", "bytes": "10465" } ], "symlink_target": "" }
from osgeo import ogr class Point(object): """ Wrapper for ogr point """ def __init__(self, lat, lng): """ Coordinates are in degrees """ self.point = ogr.Geometry(ogr.wkbPoint) self.point.AddPoint(lng, lat) def getOgr(self): return self.point ogr = property(getOgr) class Country(object): """ Wrapper for ogr country shape. Not meant to be instantiated directly. """ def __init__(self, shape): self.shape = shape def getIso(self): return self.shape.GetField('ISO2') iso = property(getIso) def __str__(self): return self.shape.GetField('NAME') def contains(self, point): return self.shape.geometry().Contains(point.ogr) class CountryChecker(object): """ Loads a country shape file, checks coordinates for country location. """ def __init__(self, country_file): driver = ogr.GetDriverByName('ESRI Shapefile') self.countryFile = driver.Open(country_file) self.layer = self.countryFile.GetLayer() def getCountry(self, point): """ Checks given gps-incoming coordinates for country. Output is either country shape index or None """ for i in range(self.layer.GetFeatureCount()): country = self.layer.GetFeature(i) if country.geometry().Contains(point.ogr): return Country(country) # nothing found return None
{ "content_hash": "e1305577af736ecde8da232faa5c837d", "timestamp": "", "source": "github", "line_count": 49, "max_line_length": 81, "avg_line_length": 29.591836734693878, "alnum_prop": 0.6186206896551724, "repo_name": "rmichnovicz/Sick-Slopes", "id": "06548990de94ac88942dc35135440f91926140e7", "size": "1538", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "countries.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "1021" }, { "name": "HTML", "bytes": "7022" }, { "name": "JavaScript", "bytes": "22890" }, { "name": "Jupyter Notebook", "bytes": "686034" }, { "name": "Python", "bytes": "48162" } ], "symlink_target": "" }
import cStringIO import urllib import numpy as np import pylru import utilities from PIL import Image def fetch_image_from_url(url): """ Returns a pil image from given url :rtype Image.Image: """ if utilities.url_exists(url): img_stream = cStringIO.StringIO(urllib.urlopen(url).read()) pil_image = Image.open(img_stream) return pil_image return Image.new("RGB", size=(256, 266), color='black') class ImageValue: """ An image class that has the ability to provide raster image at any resolution. In either array or pil Image format. """ def get_pil_image(self, resolution): """ Returns a pil Image at requested resolution. :rtype: Image.Image """ raise NotImplementedError('This is an interface') def get_np_array(self, resolution): raise NotImplementedError('This is an interface') def is_set(self): raise NotImplementedError('This is an interface') def get_pil_image_at_full_resolution(self): raise NotImplementedError('This is an interface') def get_pil_image_at_full_resolution_proper_shape(self): pass image_cache_size = 1000 pil_image_cache = pylru.lrucache(image_cache_size) proper_shape_image_cache = pylru.lrucache(image_cache_size) class JpgWebImage(ImageValue): """ A lazily fetched web image. """ def __init__(self, url): """ Given url is stored. When asked to render it fetches the image. :type _pil_image: Image.Image """ self.url = url if url in pil_image_cache: self._pil_image = pil_image_cache[url] else: self._pil_image = None if url in proper_shape_image_cache: self._proper_shape_image = proper_shape_image_cache[url] else: self._proper_shape_image = None self.cache = pylru.lrucache(10) @property def pil_image(self): if self._pil_image is None: self._pil_image = fetch_image_from_url(self.url) pil_image_cache[self.url] = self._pil_image return self._pil_image def get_pil_image_at_full_resolution(self): return self.pil_image def get_pil_image_at_full_resolution_proper_shape(self): if self._proper_shape_image is None: self._proper_shape_image = utilities.reshape_proper_pil_image(self.get_pil_image_at_full_resolution()) proper_shape_image_cache[self.url] = self._proper_shape_image return self._proper_shape_image def get_pil_image(self, resolution): """ Returns a pil Image at requested resolution. :rtype: Image.Image """ return self.pil_image.resize((resolution, resolution)) def get_np_array(self, resolution): """Convert to numpy array. Drop alpha""" cache_key = str(resolution) if cache_key in self.cache: return self.cache[cache_key] pil_image = self.get_pil_image_at_full_resolution() im_array = np.array(pil_image, dtype=np.uint8) square_image = utilities.reshape_proper(im_array) return_value = np.array(Image.fromarray(square_image).resize((resolution, resolution)), dtype=np.uint8) self.cache[cache_key] = return_value return return_value def is_set(self): return True def __eq__(self, other): return self.url == other.url def __ne__(self, other): return not self == other def __repr__(self): return 'JpegWebImage({})'.format(self.url)
{ "content_hash": "a233c9eaaff88f8b2f946a68127dd231", "timestamp": "", "source": "github", "line_count": 123, "max_line_length": 119, "avg_line_length": 29.203252032520325, "alnum_prop": 0.6227728285077951, "repo_name": "abhishekraok/GraphMap", "id": "516064dd8435d5b5002cb9410d3db081e99ef6c1", "size": "3592", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "graphmap/imagevalue.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Batchfile", "bytes": "61" }, { "name": "Jupyter Notebook", "bytes": "863859" }, { "name": "Protocol Buffer", "bytes": "358" }, { "name": "Python", "bytes": "166698" }, { "name": "Shell", "bytes": "61" } ], "symlink_target": "" }
from setuptools import setup from querycount import __version__ url = "https://github.com/bradmontgomery/django-querycount/tarball/{0}".format(__version__) setup( name="django-querycount", version=__version__, author="Brad Montgomery", author_email="[email protected]", description=("Middleware that Prints the number of DB queries to the runserver console."), install_requires=[], license="MIT", keywords="django querycount database performance", url=url, packages=[ "querycount", ], long_description="this project gives you a middleware that" "prints DB query counts in Django's runserver console output.", classifiers=[ 'Development Status :: 4 - Beta', 'Environment :: Web Environment', 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Framework :: Django', "Topic :: Utilities", ], )
{ "content_hash": "9287912a0ec209f06b12e049bd3e6264", "timestamp": "", "source": "github", "line_count": 31, "max_line_length": 94, "avg_line_length": 33.225806451612904, "alnum_prop": 0.6485436893203883, "repo_name": "bradmontgomery/django-querycount", "id": "68112dabfd5ca3b2a5b143f836de176cee979826", "size": "1030", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "setup.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "13839" } ], "symlink_target": "" }
import logging import pytest import salt.cache from tests.pytests.functional.cache.helpers import run_common_cache_tests log = logging.getLogger(__name__) @pytest.fixture def cache(minion_opts): opts = minion_opts.copy() opts["memcache_expire_seconds"] = 42 cache = salt.cache.factory(opts) return cache def test_caching(subtests, cache): run_common_cache_tests(subtests, cache)
{ "content_hash": "6f832c0fac08e30bfd691e3128ddedaa", "timestamp": "", "source": "github", "line_count": 20, "max_line_length": 73, "avg_line_length": 20.3, "alnum_prop": 0.7315270935960592, "repo_name": "saltstack/salt", "id": "30bc5fec26b50f29c016b78c821997fdd401684a", "size": "406", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "tests/pytests/functional/cache/test_memcache.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Batchfile", "bytes": "14911" }, { "name": "C", "bytes": "1571" }, { "name": "Cython", "bytes": "1458" }, { "name": "Dockerfile", "bytes": "184" }, { "name": "Groovy", "bytes": "12318" }, { "name": "HCL", "bytes": "257" }, { "name": "HTML", "bytes": "8031" }, { "name": "Jinja", "bytes": "45598" }, { "name": "Makefile", "bytes": "713" }, { "name": "NSIS", "bytes": "76572" }, { "name": "PowerShell", "bytes": "75891" }, { "name": "Python", "bytes": "41444811" }, { "name": "Rich Text Format", "bytes": "6242" }, { "name": "Roff", "bytes": "191" }, { "name": "Ruby", "bytes": "961" }, { "name": "SaltStack", "bytes": "35856" }, { "name": "Scheme", "bytes": "895" }, { "name": "Scilab", "bytes": "1147" }, { "name": "Shell", "bytes": "524917" } ], "symlink_target": "" }
from django.conf import settings from django.conf.urls import url, include from django.conf.urls.static import static from django.contrib.staticfiles.urls import staticfiles_urlpatterns from ratelimitbackend import admin from ratelimitbackend.views import login admin.autodiscover() from . import views from .profiles.forms import AuthForm urlpatterns = [ url(r'^admin/rq/', include('django_rq_dashboard.urls')), url(r'^admin/', include(admin.site.urls)), url(r'^subscriber/', include('django_push.subscriber.urls')), url(r'^health/$', views.health, name='health'), url(r'^robots.txt$', views.robots), url(r'^humans.txt$', views.humans), url(r'^favicon.ico$', views.favicon), url(r'^apple-touch-icon-precomposed.png$', views.touch_icon), url(r'^apple-touch-icon.png$', views.touch_icon), url(r'^', include('feedhq.reader.urls', namespace='reader')), url(r'^accounts/', include('feedhq.profiles.urls')), url(r'^', include('feedhq.feeds.urls', namespace='feeds')), url(r'^login/$', login, {'authentication_form': AuthForm}, name='login'), url(r'^logout/$', views.logout, name='logout'), ] urlpatterns += staticfiles_urlpatterns() urlpatterns += static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
{ "content_hash": "41bd8738664c8df0364bba0c3c45d472", "timestamp": "", "source": "github", "line_count": 32, "max_line_length": 77, "avg_line_length": 39.5625, "alnum_prop": 0.7045813586097947, "repo_name": "rmoorman/feedhq", "id": "5d3e14cf1dd421799bdc87afbc22a863d6bfdd1d", "size": "1290", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "feedhq/urls.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "CSS", "bytes": "48727" }, { "name": "HTML", "bytes": "49008" }, { "name": "JavaScript", "bytes": "8882" }, { "name": "Makefile", "bytes": "1501" }, { "name": "Python", "bytes": "403391" }, { "name": "Ruby", "bytes": "656" }, { "name": "Shell", "bytes": "278" } ], "symlink_target": "" }
import requests from bs4 import BeautifulSoup import json import urllib headers = {'user-agent': 'Mozilla/5.0 (X11; Linux x86_64; rv:50.0) Gecko/20100101 Firefox/50.0'} queries = ["Happy human face", "Sad human face", "Angry human face", "Disgusted human face", "Surprised human face", "Fearful human face", "Счастливое лицо", "Печальное лицо", "Злое лицо", "Лицо отвращение", "Удивленное лицо", "Испуганное лицо" ] class ImagesUrlFetcher (object): def generateRequest(self, query, from_, num): pass def getLinks(self, query, count): pass class GoogleImagesUrlFetcher(ImagesUrlFetcher): request = "https://www.google.ru/search?async=_id:rg_s,_pms:s&ei=35miWKGKF8KKsAGipoCABQ&yv=2&q={query}&start={start}&asearch=ichunk&newwindow=1&tbm=isch&ijn=3" num_per_request = 100 def generateRequest(self, query, from_, num=0): return self.request.format(query=query, start=from_, yv=from_//self.num_per_request) def getLinks(self, query, count): links = set() q = urllib.parse.quote_plus(query) for i in range(count // self.num_per_request): r = self.request.format(query=q, start=i * self.num_per_request, yv=i) response = requests.get(r, headers=headers) if response.status_code == 200: soup = BeautifulSoup(response.json()[1][1], 'html.parser') divs = soup.find_all('div', class_ = 'rg_meta') links.update(map(lambda div: json.loads(div.text)['ou'], divs)) return links class YandexImagesUrlFetcher(ImagesUrlFetcher): request = "https://yandex.ru/images/search?text={query}&p={p}" num_per_request = 30 def generateRequest(self, query, from_, num=0): return self.request.format(query=query, p=from_) def getLinks(self, query, count): links = set() q = urllib.parse.quote_plus(query) for i in range(count // self.num_per_request): print(i) r = self.generateRequest(q, i) response = requests.get(r, headers=headers) if response.status_code == 200: soup = BeautifulSoup(response.text, 'html.parser') divs = soup.find_all('div', class_='serp-item') links.update(map(lambda div: json.loads(div.attrs['data-bem'])['serp-item']['img_href'], divs)) print (len(links)) return links class BingImagesUrlFetcher(ImagesUrlFetcher): request = "http://www.bing.com/images/async?q={query}&first={start}&count=100" num_per_request = 100 def generateRequest(self, query, from_, num=0 ): return self.request.format(query=query, start = from_) def getLinks(self, query, count): links = set() q = urllib.parse.quote_plus(query) for i in range(count // self.num_per_request): print (i) r = self.generateRequest(q, i*self.num_per_request) response = requests.get(r, headers=headers) if response.status_code == 200: soup = BeautifulSoup(response.text, 'html.parser') a = soup.find_all('a', class_='iusc') links.update(map(lambda div: json.loads(div.attrs['m'])['murl'], a)) return links if __name__ == '__main__': count = 1000 giuf = GoogleImagesUrlFetcher() yiuf = YandexImagesUrlFetcher() biuf = BingImagesUrlFetcher() for query in queries: links = set() with open (query+".urls", "w") as fout: print (query) links.update(yiuf.getLinks (query, count)) print (len(links)) links.update (giuf.getLinks(query, count)) print (len(links)) links.update (biuf.getLinks(query, count)) print (len(links)) for link in links: fout.write(link) fout.write("\n")
{ "content_hash": "95ed7d0858de310e2245f96a001bc629", "timestamp": "", "source": "github", "line_count": 100, "max_line_length": 163, "avg_line_length": 39.04, "alnum_prop": 0.6004098360655737, "repo_name": "mkeyran/EmotionRecognizer", "id": "3cb3f8260248bf7e82afe37f87ebd41a871759e7", "size": "4029", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "image_link_extractor.py", "mode": "33188", "license": "mit", "language": [ { "name": "Jupyter Notebook", "bytes": "2663" }, { "name": "Python", "bytes": "51983" } ], "symlink_target": "" }
import factory from .base import BaseUserFactory from libs.core.models.users.admin import AdminUser class AdminProfileFactory(factory.Factory): class Meta: model = dict first_name = factory.Faker('first_name') last_name = factory.Faker('last_name') class AdminUserFactory(BaseUserFactory): class Meta: model = AdminUser profile = factory.SubFactory(AdminProfileFactory)
{ "content_hash": "7781ec20017a67819ab9bfec61fe1197", "timestamp": "", "source": "github", "line_count": 20, "max_line_length": 53, "avg_line_length": 20.7, "alnum_prop": 0.7270531400966184, "repo_name": "thnee/django-template", "id": "2fb1afa6fd4a0ab336d16f92eb5090562016e5e8", "size": "415", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "project_name/libs/core/factories/users/admin.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "17169" } ], "symlink_target": "" }
"""Adds accounts to the specified multi-client account, in a single batch.""" from __future__ import absolute_import from __future__ import print_function import json import sys from shopping.content import common from six.moves import range # Number of accounts to insert. BATCH_SIZE = 5 def main(argv): # Authenticate and construct service. service, config, _ = common.init(argv, __doc__) merchant_id = config['merchantId'] common.check_mca(config, True) account_names = [ 'account%s' % common.get_unique_id() for i in range(BATCH_SIZE) ] batch = { 'entries': [{ 'batchId': i, 'merchantId': merchant_id, 'method': 'insert', 'account': { 'name': v, 'websiteUrl': 'https://%s.example.com/' % v, }, } for i, v in enumerate(account_names)], } request = service.accounts().custombatch(body=batch) result = request.execute() if result['kind'] == 'content#accountsCustomBatchResponse': for entry in result['entries']: account = entry.get('account') errors = entry.get('errors') if account: print('Account %s with name "%s" was created.' % (account['id'], account['name'])) elif errors: print('Errors for batch entry %d:' % entry['batchId']) print(json.dumps(errors, sort_keys=True, indent=2, separators=(',', ': '))) else: print('There was an error. Response: %s' % result) if __name__ == '__main__': main(sys.argv)
{ "content_hash": "328fa38ef07e74926387bea1b661c1ea", "timestamp": "", "source": "github", "line_count": 55, "max_line_length": 77, "avg_line_length": 27.963636363636365, "alnum_prop": 0.5929778933680104, "repo_name": "googleads/googleads-shopping-samples", "id": "a7ee50fc38b79e2c5c6873ef5de59e3509e47405", "size": "2155", "binary": false, "copies": "1", "ref": "refs/heads/main", "path": "python/shopping/content/accounts/insert_batch.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "C#", "bytes": "109971" }, { "name": "Go", "bytes": "62736" }, { "name": "Java", "bytes": "147661" }, { "name": "PHP", "bytes": "83914" }, { "name": "Python", "bytes": "132074" }, { "name": "Ruby", "bytes": "123581" } ], "symlink_target": "" }
import optparse from collections import defaultdict import numpy as np def silk_output_parser(input_file_name,output_file_name,id1,id2): input_read = open(input_file_name,'rU') #read input file train = open(output_file_name,'w') #write on output file #write the headers train.write(id1) train.write(',') train.write(id2) train.write('\n') k = 0 #counter #file to parse #<http://dbpedia.org/resource/Where_Are_My_Children%3F> <http://www.w3.org/2002/07/owl#sameAs> <http://data.linkedmdb.org/resource/film/236> for line in input_read.readlines(): #iterate through the lines of the file line = line.split(' ') #split when there's a space if line[0] == 'End': #we need to pass to the next configuration k += 1 continue ID1_whole = line[0] #<http://dbpedia.org/resource/Where_Are_My_Children%3F>, first element of the list ID2_whole = line[-2] #<http://data.linkedmdb.org/resource/film/236> , second last element of the list #ID1_whole = ID1_whole.split('/') #ID2_whole = ID2_whole.split('/') ID1 = ID1_whole.strip('<').strip('>') ID2 = ID2_whole.strip('<').strip('>') train.write(ID1) train.write(',') train.write(ID2) train.write('\n') train.close() #execute as a script if __name__ == '__main__': parser = optparse.OptionParser() parser.add_option('-i','--input', dest = 'input_file_name', help = 'input_file_name') parser.add_option('-o','--output', dest = 'output_file_name', help = 'output_file_name') parser.add_option('-u','--id1', dest = 'id1', help = 'id1') parser.add_option('-k','--id2', dest = 'id2', help = 'id2') (options, args) = parser.parse_args() if options.input_file_name is None: options.input_file_name = raw_input('Enter input file name:') if options.output_file_name is None: options.output_file_name = raw_input('Enter output file name:') if options.id1 is None: options.id1 = raw_input('Enter identifier of the first column (e.g. FFIEC_ID):') if options.id2 is None: options.id2 = raw_input('Enter identifier of the second column (e.g. SEC_ID):') input_file_name = options.input_file_name output_file_name = options.output_file_name id1 = options.id1 id2 = options.id2 silk_output_parser(input_file_name,output_file_name,id1,id2)
{ "content_hash": "210f69e72263a51fbcb80df0501b0514", "timestamp": "", "source": "github", "line_count": 76, "max_line_length": 149, "avg_line_length": 31.81578947368421, "alnum_prop": 0.6286186931348222, "repo_name": "enricopal/STEM", "id": "82e36d23da46b455f3c889fd6c60dd7927278ed4", "size": "2418", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "src/parser/silk_output_parser.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "HTML", "bytes": "847" }, { "name": "Java", "bytes": "636761" }, { "name": "Python", "bytes": "149144" }, { "name": "R", "bytes": "11363" }, { "name": "Shell", "bytes": "7880" } ], "symlink_target": "" }
import importlib import pretend import pytest from fenrir.utils import resolve_app def test_resolve_app_resolves(monkeypatch): app = pretend.stub() module = pretend.stub(myapp=app) monkeypatch.setattr(importlib, "import_module", lambda x: module) assert resolve_app("example:myapp") is app def test_resolve_app_resolves_default(monkeypatch): app = pretend.stub() module = pretend.stub(app=app) monkeypatch.setattr(importlib, "import_module", lambda x: module) assert resolve_app("example") is app def test_resolve_app_valid(): with pytest.raises(ValueError): resolve_app("foo:bar:wat")
{ "content_hash": "9f91679dc14dcae805efecbf5e02ac41", "timestamp": "", "source": "github", "line_count": 27, "max_line_length": 69, "avg_line_length": 23.703703703703702, "alnum_prop": 0.715625, "repo_name": "dstufft/fenrir", "id": "f194843a56b282675f45453481335490759a0537", "size": "1181", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "tests/test_utils.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "C", "bytes": "72668" }, { "name": "Python", "bytes": "96151" }, { "name": "Ragel in Ruby Host", "bytes": "9587" } ], "symlink_target": "" }
""" Testing report generation """ from __future__ import absolute_import from bigmler.tests.world import (world, common_setup_module, common_teardown_module, teardown_class) import bigmler.tests.basic_tst_prediction_steps as test_pred def setup_module(): """Setup for the module """ common_setup_module() def teardown_module(): """Teardown for the module """ common_teardown_module() class TestReport(object): def teardown(self): """Calling generic teardown for every method """ print "\nEnd of tests in: %s\n-------------------\n" % __name__ teardown_class() def setup(self): """ Debug information """ print "\n-------------------\nTests in: %s\n" % __name__ def test_scenario1(self): """ Scenario: Successfully generating reports in Gazibit: Given I create BigML resources and share them uploading train "<data>" file to evaluate and log evaluation and reports in "<output>" And I check that the source has been created And I check that the dataset has been created and shared And I check that the model has been created and shared Then I check that the evaluation has been created and shared And I check that the Gazibit report has been created And I check that the Gazibit shared report has been created Examples: | data | output | | ../data/iris.csv | ./scenario_rpt_1/evaluation | """ print self.test_scenario1.__doc__ examples = [ ['data/iris.csv', 'scenario_rpt_1/evaluation']] for example in examples: print "\nTesting with:\n", example test_pred.i_create_all_resources_to_evaluate_and_report(self, data=example[0], output=example[1]) test_pred.i_check_create_source(self) test_pred.i_check_create_dataset_shared(self) test_pred.i_check_create_model_shared(self) test_pred.i_check_create_evaluation_shared(self) test_pred.i_check_gazibit_reports(self, shared=None) test_pred.i_check_gazibit_reports(self, shared='shared ')
{ "content_hash": "951a9de027631b90dd86923707b9cb38", "timestamp": "", "source": "github", "line_count": 66, "max_line_length": 148, "avg_line_length": 35.46969696969697, "alnum_prop": 0.5779581375480564, "repo_name": "brokendata/bigmler", "id": "11d3943c1b25f92b2633b9ea775eef53b2cf2926", "size": "2960", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "bigmler/tests/test_16_reports.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "HTML", "bytes": "25598" }, { "name": "Python", "bytes": "965199" } ], "symlink_target": "" }
""" DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ from urllib.request import urlretrieve from os.path import isfile, isdir from tqdm import tqdm import problem_unittests as tests import tarfile import ipdb import matplotlib ipdb.set_trace() matplotlib.use('Agg') import matplotlib.pyplot as plt cifar10_dataset_folder_path = 'cifar-10-batches-py' class DLProgress(tqdm): last_block = 0 def hook(self, block_num=1, block_size=1, total_size=None): self.total = total_size self.update((block_num - self.last_block) * block_size) self.last_block = block_num if not isfile('cifar-10-python.tar.gz'): with DLProgress(unit='B', unit_scale=True, miniters=1, desc='CIFAR-10 Dataset') as pbar: urlretrieve( 'https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz', 'cifar-10-python.tar.gz', pbar.hook) if not isdir(cifar10_dataset_folder_path): with tarfile.open('cifar-10-python.tar.gz') as tar: tar.extractall() tar.close() tests.test_folder_path(cifar10_dataset_folder_path) # ## Explore the Data # The dataset is broken into batches to prevent your machine from running out of memory. The CIFAR-10 dataset consists of 5 batches, named `data_batch_1`, `data_batch_2`, etc.. Each batch contains the labels and images that are one of the following: # * airplane # * automobile # * bird # * cat # * deer # * dog # * frog # * horse # * ship # * truck # # Understanding a dataset is part of making predictions on the data. Play around with the code cell below by changing the `batch_id` and `sample_id`. The `batch_id` is the id for a batch (1-5). The `sample_id` is the id for a image and label pair in the batch. # # Ask yourself "What are all possible labels?", "What is the range of values for the image data?", "Are the labels in order or random?". Answers to questions like these will help you preprocess the data and end up with better predictions. # In[3]: #get_ipython().magic(u'matplotlib inline') #get_ipython().magic(u"config InlineBackend.figure_format = 'retina'") import helper import numpy as np # Explore the dataset batch_id = 1 sample_id = 5 helper.display_stats(cifar10_dataset_folder_path, batch_id, sample_id) # ## Implement Preprocess Functions # ### Normalize # In the cell below, implement the `normalize` function to take in image data, `x`, and return it as a normalized Numpy array. The values should be in the range of 0 to 1, inclusive. The return object should be the same shape as `x`. # In[6]: def normalize(x): """ Normalize a list of sample image data in the range of 0 to 1 : x: List of image data. The image shape is (32, 32, 3) : return: Numpy array of normalize data """ if 1: xmin = np.min(x.reshape(-1,1)) xmax = np.max(x.reshape(-1,1)) else: xmin = 0 xmax = 255 new_x = (x - xmin)/(xmax-xmin) return new_x """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_normalize(normalize) # ### One-hot encode # Just like the previous code cell, you'll be implementing a function for preprocessing. This time, you'll implement the `one_hot_encode` function. The input, `x`, are a list of labels. Implement the function to return the list of labels as One-Hot encoded Numpy array. The possible values for labels are 0 to 9. The one-hot encoding function should return the same encoding for each value between each call to `one_hot_encode`. Make sure to save the map of encodings outside the function. # # Hint: Don't reinvent the wheel. # In[8]: def one_hot_encode(x): """ One hot encode a list of sample labels. Return a one-hot encoded vector for each label. : x: List of sample Labels : return: Numpy array of one-hot encoded labels """ nClasses = 10 one_hot_labels = np.zeros((len(x),nClasses), dtype=np.int32) for i,item in enumerate(x): one_hot_labels[i][item] = 1 return one_hot_labels """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_one_hot_encode(one_hot_encode) # ### Randomize Data # As you saw from exploring the data above, the order of the samples are randomized. It doesn't hurt to randomize it again, but you don't need to for this dataset. # ## Preprocess all the data and save it # Running the code cell below will preprocess all the CIFAR-10 data and save it to file. The code below also uses 10% of the training data for validation. # In[9]: """ DON'T MODIFY ANYTHING IN THIS CELL """ # Preprocess Training, Validation, and Testing Data helper.preprocess_and_save_data(cifar10_dataset_folder_path, normalize, one_hot_encode) # # Check Point # This is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. # In[10]: """ DON'T MODIFY ANYTHING IN THIS CELL """ import pickle import problem_unittests as tests import helper # Load the Preprocessed Validation data valid_features, valid_labels = pickle.load(open('preprocess_validation.p', mode='rb')) # ## Build the network # For the neural network, you'll build each layer into a function. Most of the code you've seen has been outside of functions. To test your code more thoroughly, we require that you put each layer in a function. This allows us to give you better feedback and test for simple mistakes using our unittests before you submit your project. # # >**Note:** If you're finding it hard to dedicate enough time for this course each week, we've provided a small shortcut to this part of the project. In the next couple of problems, you'll have the option to use classes from the [TensorFlow Layers](https://www.tensorflow.org/api_docs/python/tf/layers) or [TensorFlow Layers (contrib)](https://www.tensorflow.org/api_guides/python/contrib.layers) packages to build each layer, except the layers you build in the "Convolutional and Max Pooling Layer" section. TF Layers is similar to Keras's and TFLearn's abstraction to layers, so it's easy to pickup. # # >However, if you would like to get the most out of this course, try to solve all the problems _without_ using anything from the TF Layers packages. You **can** still use classes from other packages that happen to have the same name as ones you find in TF Layers! For example, instead of using the TF Layers version of the `conv2d` class, [tf.layers.conv2d](https://www.tensorflow.org/api_docs/python/tf/layers/conv2d), you would want to use the TF Neural Network version of `conv2d`, [tf.nn.conv2d](https://www.tensorflow.org/api_docs/python/tf/nn/conv2d). # # Let's begin! # # ### Input # The neural network needs to read the image data, one-hot encoded labels, and dropout keep probability. Implement the following functions # * Implement `neural_net_image_input` # * Return a [TF Placeholder](https://www.tensorflow.org/api_docs/python/tf/placeholder) # * Set the shape using `image_shape` with batch size set to `None`. # * Name the TensorFlow placeholder "x" using the TensorFlow `name` parameter in the [TF Placeholder](https://www.tensorflow.org/api_docs/python/tf/placeholder). # * Implement `neural_net_label_input` # * Return a [TF Placeholder](https://www.tensorflow.org/api_docs/python/tf/placeholder) # * Set the shape using `n_classes` with batch size set to `None`. # * Name the TensorFlow placeholder "y" using the TensorFlow `name` parameter in the [TF Placeholder](https://www.tensorflow.org/api_docs/python/tf/placeholder). # * Implement `neural_net_keep_prob_input` # * Return a [TF Placeholder](https://www.tensorflow.org/api_docs/python/tf/placeholder) for dropout keep probability. # * Name the TensorFlow placeholder "keep_prob" using the TensorFlow `name` parameter in the [TF Placeholder](https://www.tensorflow.org/api_docs/python/tf/placeholder). # # These names will be used at the end of the project to load your saved model. # # Note: `None` for shapes in TensorFlow allow for a dynamic size. # In[11]: import tensorflow as tf def neural_net_image_input(image_shape): """ Return a Tensor for a bach of image input : image_shape: Shape of the images : return: Tensor for image input. """ # TODO: Implement Function input_holder = tf.placeholder(tf.float32,shape=(None,image_shape[0],image_shape[1],image_shape[2]), name = 'x') return input_holder def neural_net_label_input(n_classes): """ Return a Tensor for a batch of label input : n_classes: Number of classes : return: Tensor for label input. """ label_holder = tf.placeholder(tf.float32, shape=(None,n_classes), name ='y')# TODO: Implement Function return label_holder def neural_net_keep_prob_input(): """ Return a Tensor for keep probability : return: Tensor for keep probability. """ # TODO: Implement Function keep_prob = tf.placeholder(tf.float32, name='keep_prob') return keep_prob """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tf.reset_default_graph() tests.test_nn_image_inputs(neural_net_image_input) tests.test_nn_label_inputs(neural_net_label_input) tests.test_nn_keep_prob_inputs(neural_net_keep_prob_input) # In[28]: dd = tf.placeholder(tf.float32,shape=(1)) dd.get_shape() # ### Convolution and Max Pooling Layer # Convolution layers have a lot of success with images. For this code cell, you should implement the function `conv2d_maxpool` to apply convolution then max pooling: # * Create the weight and bias using `conv_ksize`, `conv_num_outputs` and the shape of `x_tensor`. # * Apply a convolution to `x_tensor` using weight and `conv_strides`. # * We recommend you use same padding, but you're welcome to use any padding. # * Add bias # * Add a nonlinear activation to the convolution. # * Apply Max Pooling using `pool_ksize` and `pool_strides`. # * We recommend you use same padding, but you're welcome to use any padding. # # **Note:** You **can't** use [TensorFlow Layers](https://www.tensorflow.org/api_docs/python/tf/layers) or [TensorFlow Layers (contrib)](https://www.tensorflow.org/api_guides/python/contrib.layers) for **this** layer, but you can still use TensorFlow's [Neural Network](https://www.tensorflow.org/api_docs/python/tf/nn) package. You may still use the shortcut option for all the **other** layers. # In[32]: get_ipython().magic(u'pdb') # In[12]: def conv2d_maxpool(x_tensor, conv_num_outputs, conv_ksize, conv_strides, pool_ksize, pool_strides): """ Apply convolution then max pooling to x_tensor :param x_tensor: TensorFlow Tensor :param conv_num_outputs: Number of outputs for the convolutional layer :param conv_ksize: kernal size 2-D Tuple for the convolutional layer :param conv_strides: Stride 2-D Tuple for convolution :param pool_ksize: kernal size 2-D Tuple for pool :param pool_strides: Stride 2-D Tuple for pool : return: A tensor that represents convolution and max pooling of x_tensor """ # TODO: Implement Function num_inputs = x_tensor.get_shape().as_list()[-1] weight_vals = tf.truncated_normal([conv_ksize[0], conv_ksize[1], num_inputs, conv_num_outputs]) bias_vals = tf.zeros(shape=(conv_num_outputs)) W = tf.Variable(weight_vals, dtype=tf.float32) bias = tf.Variable(bias_vals,dtype=tf.float32) conv_1 = tf.nn.conv2d(x_tensor, W, [1, conv_strides[0], conv_strides[1], 1], padding='SAME') x = tf.nn.relu(conv_1 + bias) x = tf.nn.max_pool(x,[1,pool_ksize[0],pool_ksize[1],1], [1,pool_strides[0],pool_strides[1],1], padding='VALID') return x """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_con_pool(conv2d_maxpool) # ### Flatten Layer # Implement the `flatten` function to change the dimension of `x_tensor` from a 4-D tensor to a 2-D tensor. The output should be the shape (*Batch Size*, *Flattened Image Size*). Shortcut option: you can use classes from the [TensorFlow Layers](https://www.tensorflow.org/api_docs/python/tf/layers) or [TensorFlow Layers (contrib)](https://www.tensorflow.org/api_guides/python/contrib.layers) packages for this layer. For more of a challenge, only use other TensorFlow packages. # In[13]: get_ipython().magic(u'pdb') # In[ ]: from functools import reduce import pdb def flatten(x_tensor): """ Flatten x_tensor to (Batch Size, Flattened Image Size) : x_tensor: A tensor of size (Batch Size, ...), where ... are the image dimensions. : return: A tensor of size (Batch Size, Flattened Image Size). """ # TODO: Implement Function input_shape = x_tensor.get_shape().as_list()[1:] n_input_elems = reduce((lambda x, y: x*y),input_shape) #pdb.set_trace() new_tensor = tf.reshape(x_tensor,(-1,n_input_elems)) return new_tensor """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_flatten(flatten) # ### Fully-Connected Layer # Implement the `fully_conn` function to apply a fully connected layer to `x_tensor` with the shape (*Batch Size*, *num_outputs*). Shortcut option: you can use classes from the [TensorFlow Layers](https://www.tensorflow.org/api_docs/python/tf/layers) or [TensorFlow Layers (contrib)](https://www.tensorflow.org/api_guides/python/contrib.layers) packages for this layer. For more of a challenge, only use other TensorFlow packages. # In[8]: from functools import reduce def fully_conn(x_tensor, num_outputs): """ Apply a fully connected layer to x_tensor using weight and bias : x_tensor: A 2-D tensor where the first dimension is batch size. : num_outputs: The number of output that the new tensor should be. : return: A 2-D tensor where the second dimension is num_outputs. """ # TODO: Implement Function input_shape = x_tensor.get_shape().as_list()[1:] n_input_elems = reduce((lambda x, y: x*y),input_shape) W_vals = tf.truncated_normal([n_input_elems,num_outputs]) b_vals = tf.zeros((num_outputs),dtype=tf.float32) W = tf.Variable(W_vals) b = tf.Variable(b_vals) # reshape the x_tensor x_tensor = tf.reshape(x_tensor,shape=(-1,n_input_elems)) x = tf.matmul(x_tensor,W) + b x = tf.nn.relu(x) return x """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_fully_conn(fully_conn) # ### Output Layer # Implement the `output` function to apply a fully connected layer to `x_tensor` with the shape (*Batch Size*, *num_outputs*). Shortcut option: you can use classes from the [TensorFlow Layers](https://www.tensorflow.org/api_docs/python/tf/layers) or [TensorFlow Layers (contrib)](https://www.tensorflow.org/api_guides/python/contrib.layers) packages for this layer. For more of a challenge, only use other TensorFlow packages. # # **Note:** Activation, softmax, or cross entropy should **not** be applied to this. # In[1]: import tensorflow as tf # In[6]: def output(x_tensor, num_outputs): """ Apply a output layer to x_tensor using weight and bias : x_tensor: A 2-D tensor where the first dimension is batch size. : num_outputs: The number of output that the new tensor should be. : return: A 2-D tensor where the second dimension is num_outputs. """ input_shape = x_tensor.get_shape().as_list()[1:] n_input_elems = reduce((lambda x, y: x*y),input_shape) W_vals = tf.truncated_normal([n_input_elems,num_outputs]) b_vals = tf.zeros((num_outputs),dtype=tf.float32) W = tf.Variable(W_vals) b = tf.Variable(b_vals) # reshape the x_tensor x_tensor = tf.reshape(x_tensor,shape=(-1,n_input_elems)) x = tf.matmul(x_tensor,W) + b return x """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_output(output) # ### Create Convolutional Model # Implement the function `conv_net` to create a convolutional neural network model. The function takes in a batch of images, `x`, and outputs logits. Use the layers you created above to create this model: # # * Apply 1, 2, or 3 Convolution and Max Pool layers # * Apply a Flatten Layer # * Apply 1, 2, or 3 Fully Connected Layers # * Apply an Output Layer # * Return the output # * Apply [TensorFlow's Dropout](https://www.tensorflow.org/api_docs/python/tf/nn/dropout) to one or more layers in the model using `keep_prob`. # In[ ]: conv_ksize = (3,3) conv_strides = (1,1) pool_ksize = (2,2) pool_strides = (1,1) num_outputs = 1024 num_classes = 10 def conv_net(x, keep_prob): """ Create a convolutional neural network model : x: Placeholder tensor that holds image data. : keep_prob: Placeholder tensor that hold dropout keep probability. : return: Tensor that represents logits """ # TODO: Apply 1, 2, or 3 Convolution and Max Pool layers # Play around with different number of outputs, kernel size and stride # Function Definition from Above: # conv2d_maxpool(x_tensor, conv_num_outputs, conv_ksize, conv_strides, pool_ksize, pool_strides) conv_num_outputs = 64 x = conv2d_maxpool(x, conv_num_outputs, conv_ksize, conv_strides, pool_ksize, pool_strides) conv_num_outputs = 128 x = conv2d_maxpool(x, conv_num_outputs, conv_ksize, conv_strides, pool_ksize, pool_strides) conv_num_outputs = 256 x = conv2d_maxpool(x, conv_num_outputs, conv_ksize, conv_strides, pool_ksize, pool_strides) # TODO: Apply a Flatten Layer # Function Definition from Above: # flatten(x_tensor) x = flatten(x) # TODO: Apply 1, 2, or 3 Fully Connected Layers # Play around with different number of outputs # Function Definition from Above: # fully_conn(x_tensor, num_outputs) x = fully_conn(x, num_outputs) # TODO: Apply an Output Layer # Set this to the number of classes # Function Definition from Above: # output(x_tensor, num_outputs) x = output(x,num_classes) # TODO: return output return x """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ ############################## ## Build the Neural Network ## ############################## # Remove previous weights, bias, inputs, etc.. tf.reset_default_graph() # Inputs x = neural_net_image_input((32, 32, 3)) y = neural_net_label_input(10) keep_prob = neural_net_keep_prob_input() # Model logits = conv_net(x, keep_prob) # Name logits Tensor, so that is can be loaded from disk after training logits = tf.identity(logits, name='logits') # Loss and Optimizer cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=y)) optimizer = tf.train.AdamOptimizer().minimize(cost) # Accuracy correct_pred = tf.equal(tf.argmax(logits, 1), tf.argmax(y, 1)) accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32), name='accuracy') tests.test_conv_net(conv_net) # ## Train the Neural Network # ### Single Optimization # Implement the function `train_neural_network` to do a single optimization. The optimization should use `optimizer` to optimize in `session` with a `feed_dict` of the following: # * `x` for image input # * `y` for labels # * `keep_prob` for keep probability for dropout # # This function will be called for each batch, so `tf.global_variables_initializer()` has already been called. # # Note: Nothing needs to be returned. This function is only optimizing the neural network. # In[ ]: def train_neural_network(session, optimizer, keep_probability, feature_batch, label_batch): """ Optimize the session on a batch of images and labels : session: Current TensorFlow session : optimizer: TensorFlow optimizer function : keep_probability: keep probability : feature_batch: Batch of Numpy image data : label_batch: Batch of Numpy label data """ # TODO: Implement Function pass """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_train_nn(train_neural_network) # ### Show Stats # Implement the function `print_stats` to print loss and validation accuracy. Use the global variables `valid_features` and `valid_labels` to calculate validation accuracy. Use a keep probability of `1.0` to calculate the loss and validation accuracy. # In[ ]: def print_stats(session, feature_batch, label_batch, cost, accuracy): """ Print information about loss and validation accuracy : session: Current TensorFlow session : feature_batch: Batch of Numpy image data : label_batch: Batch of Numpy label data : cost: TensorFlow cost function : accuracy: TensorFlow accuracy function """ # TODO: Implement Function pass # ### Hyperparameters # Tune the following parameters: # * Set `epochs` to the number of iterations until the network stops learning or start overfitting # * Set `batch_size` to the highest number that your machine has memory for. Most people set them to common sizes of memory: # * 64 # * 128 # * 256 # * ... # * Set `keep_probability` to the probability of keeping a node using dropout # In[ ]: # TODO: Tune Parameters epochs = None batch_size = None keep_probability = None # ### Train on a Single CIFAR-10 Batch # Instead of training the neural network on all the CIFAR-10 batches of data, let's use a single batch. This should save time while you iterate on the model to get a better accuracy. Once the final validation accuracy is 50% or greater, run the model on all the data in the next section. # In[ ]: """ DON'T MODIFY ANYTHING IN THIS CELL """ print('Checking the Training on a Single Batch...') with tf.Session() as sess: # Initializing the variables sess.run(tf.global_variables_initializer()) # Training cycle for epoch in range(epochs): batch_i = 1 for batch_features, batch_labels in helper.load_preprocess_training_batch(batch_i, batch_size): train_neural_network(sess, optimizer, keep_probability, batch_features, batch_labels) print('Epoch {:>2}, CIFAR-10 Batch {}: '.format(epoch + 1, batch_i), end='') print_stats(sess, batch_features, batch_labels, cost, accuracy) # ### Fully Train the Model # Now that you got a good accuracy with a single CIFAR-10 batch, try it with all five batches. # In[ ]: """ DON'T MODIFY ANYTHING IN THIS CELL """ save_model_path = './image_classification' print('Training...') with tf.Session() as sess: # Initializing the variables sess.run(tf.global_variables_initializer()) # Training cycle for epoch in range(epochs): # Loop over all batches n_batches = 5 for batch_i in range(1, n_batches + 1): for batch_features, batch_labels in helper.load_preprocess_training_batch(batch_i, batch_size): train_neural_network(sess, optimizer, keep_probability, batch_features, batch_labels) print('Epoch {:>2}, CIFAR-10 Batch {}: '.format(epoch + 1, batch_i), end='') print_stats(sess, batch_features, batch_labels, cost, accuracy) # Save Model saver = tf.train.Saver() save_path = saver.save(sess, save_model_path) # # Checkpoint # The model has been saved to disk. # ## Test Model # Test your model against the test dataset. This will be your final accuracy. You should have an accuracy greater than 50%. If you don't, keep tweaking the model architecture and parameters. # In[ ]: """ DON'T MODIFY ANYTHING IN THIS CELL """ get_ipython().magic(u'matplotlib inline') get_ipython().magic(u"config InlineBackend.figure_format = 'retina'") import tensorflow as tf import pickle import helper import random # Set batch size if not already set try: if batch_size: pass except NameError: batch_size = 64 save_model_path = './image_classification' n_samples = 4 top_n_predictions = 3 def test_model(): """ Test the saved model against the test dataset """ test_features, test_labels = pickle.load(open('preprocess_training.p', mode='rb')) loaded_graph = tf.Graph() with tf.Session(graph=loaded_graph) as sess: # Load model loader = tf.train.import_meta_graph(save_model_path + '.meta') loader.restore(sess, save_model_path) # Get Tensors from loaded model loaded_x = loaded_graph.get_tensor_by_name('x:0') loaded_y = loaded_graph.get_tensor_by_name('y:0') loaded_keep_prob = loaded_graph.get_tensor_by_name('keep_prob:0') loaded_logits = loaded_graph.get_tensor_by_name('logits:0') loaded_acc = loaded_graph.get_tensor_by_name('accuracy:0') # Get accuracy in batches for memory limitations test_batch_acc_total = 0 test_batch_count = 0 for train_feature_batch, train_label_batch in helper.batch_features_labels(test_features, test_labels, batch_size): test_batch_acc_total += sess.run( loaded_acc, feed_dict={loaded_x: train_feature_batch, loaded_y: train_label_batch, loaded_keep_prob: 1.0}) test_batch_count += 1 print('Testing Accuracy: {}\n'.format(test_batch_acc_total/test_batch_count)) # Print Random Samples random_test_features, random_test_labels = tuple(zip(*random.sample(list(zip(test_features, test_labels)), n_samples))) random_test_predictions = sess.run( tf.nn.top_k(tf.nn.softmax(loaded_logits), top_n_predictions), feed_dict={loaded_x: random_test_features, loaded_y: random_test_labels, loaded_keep_prob: 1.0}) helper.display_image_predictions(random_test_features, random_test_labels, random_test_predictions) test_model() # ## Why 50-70% Accuracy? # You might be wondering why you can't get an accuracy any higher. First things first, 50% isn't bad for a simple CNN. Pure guessing would get you 10% accuracy. However, you might notice people are getting scores [well above 70%](http://rodrigob.github.io/are_we_there_yet/build/classification_datasets_results.html#43494641522d3130). That's because we haven't taught you all there is to know about neural networks. We still need to cover a few more techniques. # ## Submitting This Project # When submitting this project, make sure to run all the cells before saving the notebook. Save the notebook file as "dlnd_image_classification.ipynb" and save it as a HTML file under "File" -> "Download as". Include the "helper.py" and "problem_unittests.py" files in your submission.
{ "content_hash": "84009d4d486f2271e6f2fe0660852c3b", "timestamp": "", "source": "github", "line_count": 675, "max_line_length": 603, "avg_line_length": 39.06666666666667, "alnum_prop": 0.6992036405005688, "repo_name": "kitu2007/dl_class", "id": "0df4a2a8be589dcd0ca6356c937a8b739e7cdf5e", "size": "27124", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "image-classification/dlnd_image_classification.py", "mode": "33188", "license": "mit", "language": [ { "name": "Jupyter Notebook", "bytes": "25401453" }, { "name": "Python", "bytes": "178729" } ], "symlink_target": "" }
from unittest import TestCase import pandas as pd import numpy as np import pandas_validator as pv class DataFrameValidatorFixture(pv.DataFrameValidator): """Fixture for testing the validation of column type.""" integer_field = pv.IntegerColumnValidator('i') float_field = pv.FloatColumnValidator('f') class DataFrameValidatorTest(TestCase): """Testing the validation of column type.""" def setUp(self): self.validator = DataFrameValidatorFixture() def test_valid(self): df = pd.DataFrame({'i': [0, 1], 'f': [0., 1.]}) self.assertTrue(self.validator.is_valid(df)) def test_invalid_when_given_integer_series_to_float_column_validator(self): df = pd.DataFrame({'i': [0, 1], 'f': [0, 1]}) self.assertFalse(self.validator.is_valid(df)) class DataFrameValidatorFixtureWithSize(pv.DataFrameValidator): """Fixture for testing the validation of column and row number.""" row_num = 3 column_num = 2 class DataFrameValidatorSizeTest(TestCase): """Testing the validation of column and row number.""" def setUp(self): self.validator = DataFrameValidatorFixtureWithSize() def test_valid_when_matches_row_numbers(self): df = pd.DataFrame({'x': [0, 1, 2], 'y': [1., 2., 3.]}) self.assertTrue(self.validator.is_valid(df)) def test_invalid_when_not_matches_row_numbers(self): df = pd.DataFrame({'x': [0, 1], 'y': [1., 2.]}) self.assertFalse(self.validator.is_valid(df)) def test_invalid_when_not_matches_column_numbers(self): df = pd.DataFrame({'x': [0, 1, 2], 'y': [1., 2., 3.], 'z': [1, 2, 3]}) self.assertFalse(self.validator.is_valid(df)) class DataFrameValidatorFixtureWithIndex(pv.DataFrameValidator): """Fixture for testing the validation of index validator.""" index = pv.IndexValidator(size=3, type=np.int64) class DataFrameValidatorIndexTest(TestCase): """Testing the validation of index size and type.""" def setUp(self): self.validator = DataFrameValidatorFixtureWithIndex() def test_valid_when_matches_index_size_and_type(self): df = pd.DataFrame([0, 1, 2]) self.assertTrue(self.validator.is_valid(df)) def test_invalid_when_not_matches_index_size(self): df = pd.DataFrame([0, 1, 2, 3]) self.assertFalse(self.validator.is_valid(df)) def test_invalid_when_not_matches_index_type(self): df = pd.DataFrame([0, 1, 2], index=['a', 'b', 'c']) self.assertFalse(self.validator.is_valid(df)) class DataFrameValidatorFixtureWithColumns(pv.DataFrameValidator): """Fixture for testing the validation of columns validator.""" columns = pv.ColumnsValidator(size=2, type=np.object_) class DataFrameValidatorColumnsIndexTest(TestCase): """Testing the validation of columns size and type""" def setUp(self): self.validator = DataFrameValidatorFixtureWithColumns() def test_valid_when_matches_columns_size_and_type(self): df = pd.DataFrame({'x': [0, 1, 2], 'y': [1., 2., 3.]}) self.assertTrue(self.validator.is_valid(df)) def test_invalid_when_not_matches_columns_size(self): df = pd.DataFrame({'x': [0, 1, 2], 'y': [1., 2., 3.], 'z': [1, 2, 3]}) self.assertFalse(self.validator.is_valid(df)) def test_invalid_when_not_matches_columns_type(self): df = pd.DataFrame([[0, 1, 2], [1., 2., 3.]]) self.assertFalse(self.validator.is_valid(df))
{ "content_hash": "1d9a90a77b83e5f0cc2fedd840609ccc", "timestamp": "", "source": "github", "line_count": 95, "max_line_length": 79, "avg_line_length": 36.50526315789474, "alnum_prop": 0.6594579008073818, "repo_name": "c-bata/pandas-validator", "id": "52111521c38284b2af8d09790799edc0205e4afa", "size": "3468", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "pandas_validator/validators/test/test_dataframe.py", "mode": "33188", "license": "mit", "language": [ { "name": "Jupyter Notebook", "bytes": "8355" }, { "name": "Python", "bytes": "19230" } ], "symlink_target": "" }
from enum import auto from typing import Union from fastapi import FastAPI from fastapi_utils.enums import StrEnum from fastapi_utils.tasks import repeat_every from panoptes.utils.config.client import get_config from pydantic import BaseModel from panoptes.pocs.sensor.power import PowerBoard class RelayAction(StrEnum): turn_on = auto() turn_off = auto() class RelayCommand(BaseModel): relay: Union[str, int] command: RelayAction app = FastAPI() power_board: PowerBoard read_interval = get_config('environment.power.read_interval', default=60) @app.on_event('startup') async def startup(): global power_board power_board = PowerBoard(**get_config('environment.power', {})) @app.on_event('startup') @repeat_every(seconds=60, wait_first=True) def record_readings(): """Record the current readings in the db.""" global power_board return power_board.record(collection_name='power') @app.get('/') async def root(): """Returns the power board status.""" global power_board return power_board.status @app.get('/readings') async def readings(): """Return the current readings as a dict.""" global power_board return power_board.to_dataframe().to_dict() @app.post('/control') def control_relay(relay_command: RelayCommand): """Control a relay via a POST request.""" return do_command(relay_command) @app.get('/relay/{relay}/control/{command}') def control_relay_url(relay: Union[int, str], command: str = 'turn_on'): """Control a relay via a GET request""" return do_command(RelayCommand(relay=relay, command=command)) def do_command(relay_command: RelayCommand): """Control a relay. This function performs the actual relay control and is used by both request types. """ global power_board relay_id = relay_command.relay try: relay = power_board.relay_labels[relay_id] except KeyError: relay = power_board.relays[relay_id] command_func = getattr(relay, relay_command.command) # Perform function. command_func() return relay_command
{ "content_hash": "eef23a35e6f33cdcfb0605dcb17b3cc5", "timestamp": "", "source": "github", "line_count": 84, "max_line_length": 79, "avg_line_length": 24.86904761904762, "alnum_prop": 0.7027285782671134, "repo_name": "panoptes/POCS", "id": "38b22acb374bf59810dc019221d662e2190ab448", "size": "2089", "binary": false, "copies": "1", "ref": "refs/heads/develop", "path": "src/panoptes/pocs/utils/service/power.py", "mode": "33188", "license": "mit", "language": [ { "name": "C++", "bytes": "5689" }, { "name": "JavaScript", "bytes": "18198" }, { "name": "Python", "bytes": "837393" }, { "name": "Shell", "bytes": "9960" } ], "symlink_target": "" }
from test_framework.test_framework import BitcoinTestFramework from test_framework.util import * def get_unspent(listunspent, amount): for utx in listunspent: if utx['amount'] == amount: return utx raise AssertionError('Could not find unspent with amount={}'.format(amount)) class RawTransactionsTest(BitcoinTestFramework): def __init__(self): super().__init__() self.setup_clean_chain = True self.num_nodes = 4 def setup_network(self, split=False): self.nodes = start_nodes(self.num_nodes, self.options.tmpdir) connect_nodes_bi(self.nodes,0,1) connect_nodes_bi(self.nodes,1,2) connect_nodes_bi(self.nodes,0,2) connect_nodes_bi(self.nodes,0,3) self.is_network_split=False self.sync_all() def run_test(self): print("Mining blocks...") min_relay_tx_fee = self.nodes[0].getnetworkinfo()['relayfee'] # This test is not meant to test fee estimation and we'd like # to be sure all txs are sent at a consistent desired feerate for node in self.nodes: node.settxfee(min_relay_tx_fee) # if the fee's positive delta is higher than this value tests will fail, # neg. delta always fail the tests. # The size of the signature of every input may be at most 2 bytes larger # than a minimum sized signature. # = 2 bytes * minRelayTxFeePerByte feeTolerance = 2 * min_relay_tx_fee/1000 self.nodes[2].generate(1) self.sync_all() self.nodes[0].generate(121) self.sync_all() watchonly_address = self.nodes[0].getnewaddress() watchonly_pubkey = self.nodes[0].validateaddress(watchonly_address)["pubkey"] watchonly_amount = Decimal(200) self.nodes[3].importpubkey(watchonly_pubkey, "", True) watchonly_txid = self.nodes[0].sendtoaddress(watchonly_address, watchonly_amount) self.nodes[0].sendtoaddress(self.nodes[3].getnewaddress(), watchonly_amount / 10) self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(), 1.5) self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(), 1.0) self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(), 5.0) self.nodes[0].generate(1) self.sync_all() ############### # simple test # ############### inputs = [ ] outputs = { self.nodes[0].getnewaddress() : 1.0 } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) assert(len(dec_tx['vin']) > 0) #test that we have enough inputs ############################## # simple test with two coins # ############################## inputs = [ ] outputs = { self.nodes[0].getnewaddress() : 2.2 } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) assert(len(dec_tx['vin']) > 0) #test if we have enough inputs ############################## # simple test with two coins # ############################## inputs = [ ] outputs = { self.nodes[0].getnewaddress() : 2.6 } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) assert(len(dec_tx['vin']) > 0) assert_equal(dec_tx['vin'][0]['scriptSig']['hex'], '') ################################ # simple test with two outputs # ################################ inputs = [ ] outputs = { self.nodes[0].getnewaddress() : 2.6, self.nodes[1].getnewaddress() : 2.5 } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) totalOut = 0 for out in dec_tx['vout']: totalOut += out['value'] assert(len(dec_tx['vin']) > 0) assert_equal(dec_tx['vin'][0]['scriptSig']['hex'], '') ######################################################################### # test a fundrawtransaction with a VIN greater than the required amount # ######################################################################### utx = get_unspent(self.nodes[2].listunspent(), 5) inputs = [ {'txid' : utx['txid'], 'vout' : utx['vout']}] outputs = { self.nodes[0].getnewaddress() : 1.0 } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) assert_equal(utx['txid'], dec_tx['vin'][0]['txid']) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) totalOut = 0 for out in dec_tx['vout']: totalOut += out['value'] assert_equal(fee + totalOut, utx['amount']) #compare vin total and totalout+fee ##################################################################### # test a fundrawtransaction with which will not get a change output # ##################################################################### utx = get_unspent(self.nodes[2].listunspent(), 5) inputs = [ {'txid' : utx['txid'], 'vout' : utx['vout']}] outputs = { self.nodes[0].getnewaddress() : Decimal(5.0) - fee - feeTolerance } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) assert_equal(utx['txid'], dec_tx['vin'][0]['txid']) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) totalOut = 0 for out in dec_tx['vout']: totalOut += out['value'] assert_equal(rawtxfund['changepos'], -1) assert_equal(fee + totalOut, utx['amount']) #compare vin total and totalout+fee #################################################### # test a fundrawtransaction with an invalid option # #################################################### utx = get_unspent(self.nodes[2].listunspent(), 5) inputs = [ {'txid' : utx['txid'], 'vout' : utx['vout']} ] outputs = { self.nodes[0].getnewaddress() : Decimal(4.0) } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) assert_equal(utx['txid'], dec_tx['vin'][0]['txid']) try: self.nodes[2].fundrawtransaction(rawtx, {'foo': 'bar'}) raise AssertionError("Accepted invalid option foo") except JSONRPCException as e: assert("Unexpected key foo" in e.error['message']) ############################################################ # test a fundrawtransaction with an invalid change address # ############################################################ utx = get_unspent(self.nodes[2].listunspent(), 5) inputs = [ {'txid' : utx['txid'], 'vout' : utx['vout']} ] outputs = { self.nodes[0].getnewaddress() : Decimal(4.0) } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) assert_equal(utx['txid'], dec_tx['vin'][0]['txid']) try: self.nodes[2].fundrawtransaction(rawtx, {'changeAddress': 'foobar'}) raise AssertionError("Accepted invalid precious address") except JSONRPCException as e: assert("changeAddress must be a valid precious address" in e.error['message']) ############################################################ # test a fundrawtransaction with a provided change address # ############################################################ utx = get_unspent(self.nodes[2].listunspent(), 5) inputs = [ {'txid' : utx['txid'], 'vout' : utx['vout']} ] outputs = { self.nodes[0].getnewaddress() : Decimal(4.0) } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) assert_equal(utx['txid'], dec_tx['vin'][0]['txid']) change = self.nodes[2].getnewaddress() try: rawtxfund = self.nodes[2].fundrawtransaction(rawtx, {'changeAddress': change, 'changePosition': 2}) except JSONRPCException as e: assert('changePosition out of bounds' == e.error['message']) else: assert(False) rawtxfund = self.nodes[2].fundrawtransaction(rawtx, {'changeAddress': change, 'changePosition': 0}) dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) out = dec_tx['vout'][0]; assert_equal(change, out['scriptPubKey']['addresses'][0]) ######################################################################### # test a fundrawtransaction with a VIN smaller than the required amount # ######################################################################### utx = get_unspent(self.nodes[2].listunspent(), 1) inputs = [ {'txid' : utx['txid'], 'vout' : utx['vout']}] outputs = { self.nodes[0].getnewaddress() : 1.0 } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) # 4-byte version + 1-byte vin count + 36-byte prevout then script_len rawtx = rawtx[:82] + "0100" + rawtx[84:] dec_tx = self.nodes[2].decoderawtransaction(rawtx) assert_equal(utx['txid'], dec_tx['vin'][0]['txid']) assert_equal("00", dec_tx['vin'][0]['scriptSig']['hex']) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) totalOut = 0 matchingOuts = 0 for i, out in enumerate(dec_tx['vout']): totalOut += out['value'] if out['scriptPubKey']['addresses'][0] in outputs: matchingOuts+=1 else: assert_equal(i, rawtxfund['changepos']) assert_equal(utx['txid'], dec_tx['vin'][0]['txid']) assert_equal("00", dec_tx['vin'][0]['scriptSig']['hex']) assert_equal(matchingOuts, 1) assert_equal(len(dec_tx['vout']), 2) ########################################### # test a fundrawtransaction with two VINs # ########################################### utx = get_unspent(self.nodes[2].listunspent(), 1) utx2 = get_unspent(self.nodes[2].listunspent(), 5) inputs = [ {'txid' : utx['txid'], 'vout' : utx['vout']},{'txid' : utx2['txid'], 'vout' : utx2['vout']} ] outputs = { self.nodes[0].getnewaddress() : 6.0 } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) assert_equal(utx['txid'], dec_tx['vin'][0]['txid']) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) totalOut = 0 matchingOuts = 0 for out in dec_tx['vout']: totalOut += out['value'] if out['scriptPubKey']['addresses'][0] in outputs: matchingOuts+=1 assert_equal(matchingOuts, 1) assert_equal(len(dec_tx['vout']), 2) matchingIns = 0 for vinOut in dec_tx['vin']: for vinIn in inputs: if vinIn['txid'] == vinOut['txid']: matchingIns+=1 assert_equal(matchingIns, 2) #we now must see two vins identical to vins given as params ######################################################### # test a fundrawtransaction with two VINs and two vOUTs # ######################################################### utx = get_unspent(self.nodes[2].listunspent(), 1) utx2 = get_unspent(self.nodes[2].listunspent(), 5) inputs = [ {'txid' : utx['txid'], 'vout' : utx['vout']},{'txid' : utx2['txid'], 'vout' : utx2['vout']} ] outputs = { self.nodes[0].getnewaddress() : 6.0, self.nodes[0].getnewaddress() : 1.0 } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) assert_equal(utx['txid'], dec_tx['vin'][0]['txid']) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) totalOut = 0 matchingOuts = 0 for out in dec_tx['vout']: totalOut += out['value'] if out['scriptPubKey']['addresses'][0] in outputs: matchingOuts+=1 assert_equal(matchingOuts, 2) assert_equal(len(dec_tx['vout']), 3) ############################################## # test a fundrawtransaction with invalid vin # ############################################## listunspent = self.nodes[2].listunspent() inputs = [ {'txid' : "1c7f966dab21119bac53213a2bc7532bff1fa844c124fd750a7d0b1332440bd1", 'vout' : 0} ] #invalid vin! outputs = { self.nodes[0].getnewaddress() : 1.0} rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) try: rawtxfund = self.nodes[2].fundrawtransaction(rawtx) raise AssertionError("Spent more than available") except JSONRPCException as e: assert("Insufficient" in e.error['message']) ############################################################ #compare fee of a standard pubkeyhash transaction inputs = [] outputs = {self.nodes[1].getnewaddress():1.1} rawTx = self.nodes[0].createrawtransaction(inputs, outputs) fundedTx = self.nodes[0].fundrawtransaction(rawTx) #create same transaction over sendtoaddress txId = self.nodes[0].sendtoaddress(self.nodes[1].getnewaddress(), 1.1) signedFee = self.nodes[0].getrawmempool(True)[txId]['fee'] #compare fee feeDelta = Decimal(fundedTx['fee']) - Decimal(signedFee) assert(feeDelta >= 0 and feeDelta <= feeTolerance) ############################################################ ############################################################ #compare fee of a standard pubkeyhash transaction with multiple outputs inputs = [] outputs = {self.nodes[1].getnewaddress():1.1,self.nodes[1].getnewaddress():1.2,self.nodes[1].getnewaddress():0.1,self.nodes[1].getnewaddress():1.3,self.nodes[1].getnewaddress():0.2,self.nodes[1].getnewaddress():0.3} rawTx = self.nodes[0].createrawtransaction(inputs, outputs) fundedTx = self.nodes[0].fundrawtransaction(rawTx) #create same transaction over sendtoaddress txId = self.nodes[0].sendmany("", outputs) signedFee = self.nodes[0].getrawmempool(True)[txId]['fee'] #compare fee feeDelta = Decimal(fundedTx['fee']) - Decimal(signedFee) assert(feeDelta >= 0 and feeDelta <= feeTolerance) ############################################################ ############################################################ #compare fee of a 2of2 multisig p2sh transaction # create 2of2 addr addr1 = self.nodes[1].getnewaddress() addr2 = self.nodes[1].getnewaddress() addr1Obj = self.nodes[1].validateaddress(addr1) addr2Obj = self.nodes[1].validateaddress(addr2) mSigObj = self.nodes[1].addmultisigaddress(2, [addr1Obj['pubkey'], addr2Obj['pubkey']]) inputs = [] outputs = {mSigObj:1.1} rawTx = self.nodes[0].createrawtransaction(inputs, outputs) fundedTx = self.nodes[0].fundrawtransaction(rawTx) #create same transaction over sendtoaddress txId = self.nodes[0].sendtoaddress(mSigObj, 1.1) signedFee = self.nodes[0].getrawmempool(True)[txId]['fee'] #compare fee feeDelta = Decimal(fundedTx['fee']) - Decimal(signedFee) assert(feeDelta >= 0 and feeDelta <= feeTolerance) ############################################################ ############################################################ #compare fee of a standard pubkeyhash transaction # create 4of5 addr addr1 = self.nodes[1].getnewaddress() addr2 = self.nodes[1].getnewaddress() addr3 = self.nodes[1].getnewaddress() addr4 = self.nodes[1].getnewaddress() addr5 = self.nodes[1].getnewaddress() addr1Obj = self.nodes[1].validateaddress(addr1) addr2Obj = self.nodes[1].validateaddress(addr2) addr3Obj = self.nodes[1].validateaddress(addr3) addr4Obj = self.nodes[1].validateaddress(addr4) addr5Obj = self.nodes[1].validateaddress(addr5) mSigObj = self.nodes[1].addmultisigaddress(4, [addr1Obj['pubkey'], addr2Obj['pubkey'], addr3Obj['pubkey'], addr4Obj['pubkey'], addr5Obj['pubkey']]) inputs = [] outputs = {mSigObj:1.1} rawTx = self.nodes[0].createrawtransaction(inputs, outputs) fundedTx = self.nodes[0].fundrawtransaction(rawTx) #create same transaction over sendtoaddress txId = self.nodes[0].sendtoaddress(mSigObj, 1.1) signedFee = self.nodes[0].getrawmempool(True)[txId]['fee'] #compare fee feeDelta = Decimal(fundedTx['fee']) - Decimal(signedFee) assert(feeDelta >= 0 and feeDelta <= feeTolerance) ############################################################ ############################################################ # spend a 2of2 multisig transaction over fundraw # create 2of2 addr addr1 = self.nodes[2].getnewaddress() addr2 = self.nodes[2].getnewaddress() addr1Obj = self.nodes[2].validateaddress(addr1) addr2Obj = self.nodes[2].validateaddress(addr2) mSigObj = self.nodes[2].addmultisigaddress(2, [addr1Obj['pubkey'], addr2Obj['pubkey']]) # send 1.2 BTC to msig addr txId = self.nodes[0].sendtoaddress(mSigObj, 1.2) self.sync_all() self.nodes[1].generate(1) self.sync_all() oldBalance = self.nodes[1].getbalance() inputs = [] outputs = {self.nodes[1].getnewaddress():1.1} rawTx = self.nodes[2].createrawtransaction(inputs, outputs) fundedTx = self.nodes[2].fundrawtransaction(rawTx) signedTx = self.nodes[2].signrawtransaction(fundedTx['hex']) txId = self.nodes[2].sendrawtransaction(signedTx['hex']) self.sync_all() self.nodes[1].generate(1) self.sync_all() # make sure funds are received at node1 assert_equal(oldBalance+Decimal('1.10000000'), self.nodes[1].getbalance()) ############################################################ # locked wallet test self.nodes[1].encryptwallet("test") self.nodes.pop(1) stop_nodes(self.nodes) self.nodes = start_nodes(self.num_nodes, self.options.tmpdir) # This test is not meant to test fee estimation and we'd like # to be sure all txs are sent at a consistent desired feerate for node in self.nodes: node.settxfee(min_relay_tx_fee) connect_nodes_bi(self.nodes,0,1) connect_nodes_bi(self.nodes,1,2) connect_nodes_bi(self.nodes,0,2) connect_nodes_bi(self.nodes,0,3) self.is_network_split=False self.sync_all() # drain the keypool self.nodes[1].getnewaddress() inputs = [] outputs = {self.nodes[0].getnewaddress():1.1} rawTx = self.nodes[1].createrawtransaction(inputs, outputs) # fund a transaction that requires a new key for the change output # creating the key must be impossible because the wallet is locked try: fundedTx = self.nodes[1].fundrawtransaction(rawTx) raise AssertionError("Wallet unlocked without passphrase") except JSONRPCException as e: assert('Keypool ran out' in e.error['message']) #refill the keypool self.nodes[1].walletpassphrase("test", 100) self.nodes[1].walletlock() try: self.nodes[1].sendtoaddress(self.nodes[0].getnewaddress(), 1.2) raise AssertionError("Wallet unlocked without passphrase") except JSONRPCException as e: assert('walletpassphrase' in e.error['message']) oldBalance = self.nodes[0].getbalance() inputs = [] outputs = {self.nodes[0].getnewaddress():1.1} rawTx = self.nodes[1].createrawtransaction(inputs, outputs) fundedTx = self.nodes[1].fundrawtransaction(rawTx) #now we need to unlock self.nodes[1].walletpassphrase("test", 100) signedTx = self.nodes[1].signrawtransaction(fundedTx['hex']) txId = self.nodes[1].sendrawtransaction(signedTx['hex']) self.nodes[1].generate(1) self.sync_all() # make sure funds are received at node1 assert_equal(oldBalance+Decimal('51.10000000'), self.nodes[0].getbalance()) ############################################### # multiple (~19) inputs tx test | Compare fee # ############################################### #empty node1, send some small coins from node0 to node1 self.nodes[1].sendtoaddress(self.nodes[0].getnewaddress(), self.nodes[1].getbalance(), "", "", True) self.sync_all() self.nodes[0].generate(1) self.sync_all() for i in range(0,20): self.nodes[0].sendtoaddress(self.nodes[1].getnewaddress(), 0.01) self.nodes[0].generate(1) self.sync_all() #fund a tx with ~20 small inputs inputs = [] outputs = {self.nodes[0].getnewaddress():0.15,self.nodes[0].getnewaddress():0.04} rawTx = self.nodes[1].createrawtransaction(inputs, outputs) fundedTx = self.nodes[1].fundrawtransaction(rawTx) #create same transaction over sendtoaddress txId = self.nodes[1].sendmany("", outputs) signedFee = self.nodes[1].getrawmempool(True)[txId]['fee'] #compare fee feeDelta = Decimal(fundedTx['fee']) - Decimal(signedFee) assert(feeDelta >= 0 and feeDelta <= feeTolerance*19) #~19 inputs ############################################# # multiple (~19) inputs tx test | sign/send # ############################################# #again, empty node1, send some small coins from node0 to node1 self.nodes[1].sendtoaddress(self.nodes[0].getnewaddress(), self.nodes[1].getbalance(), "", "", True) self.sync_all() self.nodes[0].generate(1) self.sync_all() for i in range(0,20): self.nodes[0].sendtoaddress(self.nodes[1].getnewaddress(), 0.01) self.nodes[0].generate(1) self.sync_all() #fund a tx with ~20 small inputs oldBalance = self.nodes[0].getbalance() inputs = [] outputs = {self.nodes[0].getnewaddress():0.15,self.nodes[0].getnewaddress():0.04} rawTx = self.nodes[1].createrawtransaction(inputs, outputs) fundedTx = self.nodes[1].fundrawtransaction(rawTx) fundedAndSignedTx = self.nodes[1].signrawtransaction(fundedTx['hex']) txId = self.nodes[1].sendrawtransaction(fundedAndSignedTx['hex']) self.sync_all() self.nodes[0].generate(1) self.sync_all() assert_equal(oldBalance+Decimal('50.19000000'), self.nodes[0].getbalance()) #0.19+block reward ##################################################### # test fundrawtransaction with OP_RETURN and no vin # ##################################################### rawtx = "0100000000010000000000000000066a047465737400000000" dec_tx = self.nodes[2].decoderawtransaction(rawtx) assert_equal(len(dec_tx['vin']), 0) assert_equal(len(dec_tx['vout']), 1) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) assert_greater_than(len(dec_tx['vin']), 0) # at least one vin assert_equal(len(dec_tx['vout']), 2) # one change output added ################################################## # test a fundrawtransaction using only watchonly # ################################################## inputs = [] outputs = {self.nodes[2].getnewaddress() : watchonly_amount / 2} rawtx = self.nodes[3].createrawtransaction(inputs, outputs) result = self.nodes[3].fundrawtransaction(rawtx, {'includeWatching': True }) res_dec = self.nodes[0].decoderawtransaction(result["hex"]) assert_equal(len(res_dec["vin"]), 1) assert_equal(res_dec["vin"][0]["txid"], watchonly_txid) assert("fee" in result.keys()) assert_greater_than(result["changepos"], -1) ############################################################### # test fundrawtransaction using the entirety of watched funds # ############################################################### inputs = [] outputs = {self.nodes[2].getnewaddress() : watchonly_amount} rawtx = self.nodes[3].createrawtransaction(inputs, outputs) # Backward compatibility test (2nd param is includeWatching) result = self.nodes[3].fundrawtransaction(rawtx, True) res_dec = self.nodes[0].decoderawtransaction(result["hex"]) assert_equal(len(res_dec["vin"]), 2) assert(res_dec["vin"][0]["txid"] == watchonly_txid or res_dec["vin"][1]["txid"] == watchonly_txid) assert_greater_than(result["fee"], 0) assert_greater_than(result["changepos"], -1) assert_equal(result["fee"] + res_dec["vout"][result["changepos"]]["value"], watchonly_amount / 10) signedtx = self.nodes[3].signrawtransaction(result["hex"]) assert(not signedtx["complete"]) signedtx = self.nodes[0].signrawtransaction(signedtx["hex"]) assert(signedtx["complete"]) self.nodes[0].sendrawtransaction(signedtx["hex"]) self.nodes[0].generate(1) self.sync_all() ####################### # Test feeRate option # ####################### # Make sure there is exactly one input so coin selection can't skew the result assert_equal(len(self.nodes[3].listunspent(1)), 1) inputs = [] outputs = {self.nodes[2].getnewaddress() : 1} rawtx = self.nodes[3].createrawtransaction(inputs, outputs) result = self.nodes[3].fundrawtransaction(rawtx) # uses min_relay_tx_fee (set by settxfee) result2 = self.nodes[3].fundrawtransaction(rawtx, {"feeRate": 2*min_relay_tx_fee}) result3 = self.nodes[3].fundrawtransaction(rawtx, {"feeRate": 10*min_relay_tx_fee}) result_fee_rate = result['fee'] * 1000 / count_bytes(result['hex']) assert_fee_amount(result2['fee'], count_bytes(result2['hex']), 2 * result_fee_rate) assert_fee_amount(result3['fee'], count_bytes(result3['hex']), 10 * result_fee_rate) if __name__ == '__main__': RawTransactionsTest().main()
{ "content_hash": "b72639ad0e619a1ef4c7cb697fba1a82", "timestamp": "", "source": "github", "line_count": 659, "max_line_length": 223, "avg_line_length": 42.78907435508346, "alnum_prop": 0.5523441378821193, "repo_name": "precious-project/precious", "id": "395a880fe3c8400d5a34c4756f40d02404281251", "size": "28413", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "qa/rpc-tests/fundrawtransaction.py", "mode": "33261", "license": "mit", "language": [ { "name": "Assembly", "bytes": "28456" }, { "name": "C", "bytes": "702574" }, { "name": "C++", "bytes": "4591049" }, { "name": "CSS", "bytes": "1127" }, { "name": "HTML", "bytes": "50621" }, { "name": "Java", "bytes": "30290" }, { "name": "M4", "bytes": "185597" }, { "name": "Makefile", "bytes": "105228" }, { "name": "Objective-C", "bytes": "3892" }, { "name": "Objective-C++", "bytes": "7232" }, { "name": "Protocol Buffer", "bytes": "2329" }, { "name": "Python", "bytes": "1030158" }, { "name": "QMake", "bytes": "2020" }, { "name": "Roff", "bytes": "30558" }, { "name": "Shell", "bytes": "47200" } ], "symlink_target": "" }
import serial import time import Reactive import plot from math import sqrt serial = serial.Serial('/dev/ttyS0') IPLOT=True TURNING_TOWARDS_HOME = False ANGLE_THRESH = 3 ANGLE_PRECISE_THRESH = 20 ANGLE_CAREFUL_THRESH = 10 DIST_THRESH = 8 DIST_NEAR = 60 DEFAULT_SPEED_ACTIVE = 0.05 DEFAULT_SPEED_HOME = 0.05 EXPLORE_FOR = 30 class Robot: def __init__(self): global serial self.serial = serial self.reactive = Reactive.Reactive(self.serial); if IPLOT: self.ip = plot.InteractivePlot() def start(self): global TURNING_TOWARDS_HOME global ANGLE_THRESH global DIST_THRESH global DIST_NEAR global ANGLE_PRECISE_THRESH global DEFAULT_SPEED_ACTIVE global DEFAULT_SPEED_HOME global EXPLORE_FOR self.starttime = time.time() prevDistToHome = 100000 suggestAction = 0 perceive_speed = DEFAULT_SPEED_ACTIVE while(True): print print extra_sleep = 0 self.reactive.sensors.updateModel() if IPLOT: self.ip.update(robot.reactive.sensors.historyPosX, robot.reactive.sensors.historyPosY) if TURNING_TOWARDS_HOME: #self.serial.write('D,0,0\n') #self.serial.readline() #time.sleep(0.1) self.reactive.sensors.updateModel() self.reactive.sensors.updatePos() angle = (180-robot.reactive.sensors.getAngleToHome())%360 other_angle = 360-angle print "Turning towards home angle is " + str(angle) + " other one is " + str(other_angle) distToHome = self.reactive.sensors.getDistanceFromHome() if distToHome < DIST_NEAR and distToHome > prevDistToHome: print "Home!!!" self.serial.write('D,0,0\n') self.serial.readline() return if angle > ANGLE_THRESH and other_angle > ANGLE_THRESH: if angle < ANGLE_PRECISE_THRESH or other_angle < ANGLE_PRECISE_THRESH: turnSpeed = 1 elif angle < ANGLE_CAREFUL_THRESH or other_angle < ANGLE_CAREFUL_THRESH: turnSpeed = 2 else: turnSpeed = -1 if angle > 180: print "Suggesting left" suggestAction = ("turnRight", turnSpeed) else: print "Suggesting right" suggestAction = ("turnLeft", turnSpeed) else: print "Going home!" if distToHome > DIST_THRESH: if distToHome < DIST_NEAR: speed = 2 else: speed = 5 suggestAction = ("goStraight", speed) extra_sleep += 0.1 else: print "Home!!!" self.serial.write('D,0,0\n') self.serial.readline() return prevDistToHome = distToHome self.reactive.act(suggestAction) time.sleep(perceive_speed + extra_sleep) print "Distance from home " + str(self.reactive.sensors.getDistanceFromHome()) print "Angle from home " + str(self.reactive.sensors.getAngleFromHome()) if not TURNING_TOWARDS_HOME and (time.time() - self.starttime) > EXPLORE_FOR: self.serial.write('D,0,0\n') self.serial.readline() # plot.plotPath(robot.reactive.sensors.historyPosX, robot.reactive.sensors.historyPosY) TURNING_TOWARDS_HOME = True perceive_speed = DEFAULT_SPEED_HOME #self.distToHome = self.reactive.sensors.getDistanceFromHome() def stop(self): self.serial.write('D,0,0\n') self.serial.readall() def stop(): serial.write('D,0,0\n') serial.readall() robot = Robot()
{ "content_hash": "961cf6d6ced7607dbe10d676f569ad7c", "timestamp": "", "source": "github", "line_count": 118, "max_line_length": 105, "avg_line_length": 35.559322033898304, "alnum_prop": 0.5238322211630124, "repo_name": "XapaJIaMnu/iar", "id": "1b2ce7a1d5b5ddb26cba9f487db68e0b33d02290", "size": "4272", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "task2.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "Python", "bytes": "107221" }, { "name": "Shell", "bytes": "36" } ], "symlink_target": "" }
"""Paster""" from os.path import dirname, exists import promus.util as util def paste(prs, name): "Paste a template to current location. " tmp = dirname(__file__) if exists('%s/%s' % (tmp, name)): util.exec_cmd('cp -r %s/%s/* ./' % (tmp, name), True) else: prs.dismiss("PASTE>> no template found...", 1) prs.dismiss("PASTE>> done...", 0)
{ "content_hash": "c91c028a4e3e2666f42a5ff984b0d8ce", "timestamp": "", "source": "github", "line_count": 14, "max_line_length": 61, "avg_line_length": 26.928571428571427, "alnum_prop": 0.5729442970822282, "repo_name": "jmlopez-rod/promus", "id": "04f76ebb9b803ab626c171a09af5bb5fc11fad7d", "size": "377", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "promus/paster/__init__.py", "mode": "33261", "license": "bsd-3-clause", "language": [ { "name": "Python", "bytes": "99855" }, { "name": "Shell", "bytes": "1600" }, { "name": "TeX", "bytes": "1429" } ], "symlink_target": "" }
"""Script to automatically roll dependencies in the libyuv DEPS file.""" import argparse import base64 import collections import logging import os import re import subprocess import sys import urllib2 # Skip these dependencies (list without solution name prefix). DONT_AUTOROLL_THESE = [ 'src/third_party/gflags/src', ] LIBYUV_URL = 'https://chromium.googlesource.com/libyuv/libyuv' CHROMIUM_SRC_URL = 'https://chromium.googlesource.com/chromium/src' CHROMIUM_COMMIT_TEMPLATE = CHROMIUM_SRC_URL + '/+/%s' CHROMIUM_LOG_TEMPLATE = CHROMIUM_SRC_URL + '/+log/%s' CHROMIUM_FILE_TEMPLATE = CHROMIUM_SRC_URL + '/+/%s/%s' COMMIT_POSITION_RE = re.compile('^Cr-Commit-Position: .*#([0-9]+).*$') CLANG_REVISION_RE = re.compile(r'^CLANG_REVISION = \'([0-9a-z]+)\'$') ROLL_BRANCH_NAME = 'roll_chromium_revision' SCRIPT_DIR = os.path.dirname(os.path.abspath(__file__)) CHECKOUT_SRC_DIR = os.path.realpath(os.path.join(SCRIPT_DIR, os.pardir, os.pardir)) CHECKOUT_ROOT_DIR = os.path.realpath(os.path.join(CHECKOUT_SRC_DIR, os.pardir)) sys.path.append(os.path.join(CHECKOUT_SRC_DIR, 'build')) import find_depot_tools find_depot_tools.add_depot_tools_to_path() CLANG_UPDATE_SCRIPT_URL_PATH = 'tools/clang/scripts/update.py' CLANG_UPDATE_SCRIPT_LOCAL_PATH = os.path.join(CHECKOUT_SRC_DIR, 'tools', 'clang', 'scripts', 'update.py') DepsEntry = collections.namedtuple('DepsEntry', 'path url revision') ChangedDep = collections.namedtuple('ChangedDep', 'path url current_rev new_rev') class RollError(Exception): pass def VarLookup(local_scope): return lambda var_name: local_scope['vars'][var_name] def ParseDepsDict(deps_content): local_scope = {} global_scope = { 'Var': VarLookup(local_scope), 'deps_os': {}, } exec(deps_content, global_scope, local_scope) return local_scope def ParseLocalDepsFile(filename): with open(filename, 'rb') as f: deps_content = f.read() return ParseDepsDict(deps_content) def ParseRemoteCrDepsFile(revision): deps_content = ReadRemoteCrFile('DEPS', revision) return ParseDepsDict(deps_content) def ParseCommitPosition(commit_message): for line in reversed(commit_message.splitlines()): m = COMMIT_POSITION_RE.match(line.strip()) if m: return int(m.group(1)) logging.error('Failed to parse commit position id from:\n%s\n', commit_message) sys.exit(-1) def _RunCommand(command, working_dir=None, ignore_exit_code=False, extra_env=None): """Runs a command and returns the output from that command. If the command fails (exit code != 0), the function will exit the process. Returns: A tuple containing the stdout and stderr outputs as strings. """ working_dir = working_dir or CHECKOUT_SRC_DIR logging.debug('CMD: %s CWD: %s', ' '.join(command), working_dir) env = os.environ.copy() if extra_env: assert all(isinstance(value, str) for value in extra_env.values()) logging.debug('extra env: %s', extra_env) env.update(extra_env) p = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, env=env, cwd=working_dir, universal_newlines=True) std_output = p.stdout.read() err_output = p.stderr.read() p.wait() p.stdout.close() p.stderr.close() if not ignore_exit_code and p.returncode != 0: logging.error('Command failed: %s\n' 'stdout:\n%s\n' 'stderr:\n%s\n', ' '.join(command), std_output, err_output) sys.exit(p.returncode) return std_output, err_output def _GetBranches(): """Returns a tuple of active,branches. The 'active' is the name of the currently active branch and 'branches' is a list of all branches. """ lines = _RunCommand(['git', 'branch'])[0].split('\n') branches = [] active = '' for line in lines: if '*' in line: # The assumption is that the first char will always be the '*'. active = line[1:].strip() branches.append(active) else: branch = line.strip() if branch: branches.append(branch) return active, branches def _ReadGitilesContent(url): # Download and decode BASE64 content until # https://code.google.com/p/gitiles/issues/detail?id=7 is fixed. base64_content = ReadUrlContent(url + '?format=TEXT') return base64.b64decode(base64_content[0]) def ReadRemoteCrFile(path_below_src, revision): """Reads a remote Chromium file of a specific revision. Returns a string.""" return _ReadGitilesContent(CHROMIUM_FILE_TEMPLATE % (revision, path_below_src)) def ReadRemoteCrCommit(revision): """Reads a remote Chromium commit message. Returns a string.""" return _ReadGitilesContent(CHROMIUM_COMMIT_TEMPLATE % revision) def ReadUrlContent(url): """Connect to a remote host and read the contents. Returns a list of lines.""" conn = urllib2.urlopen(url) try: return conn.readlines() except IOError as e: logging.exception('Error connecting to %s. Error: %s', url, e) raise finally: conn.close() def GetMatchingDepsEntries(depsentry_dict, dir_path): """Gets all deps entries matching the provided path. This list may contain more than one DepsEntry object. Example: dir_path='src/testing' would give results containing both 'src/testing/gtest' and 'src/testing/gmock' deps entries for Chromium's DEPS. Example 2: dir_path='src/build' should return 'src/build' but not 'src/buildtools'. Returns: A list of DepsEntry objects. """ result = [] for path, depsentry in depsentry_dict.iteritems(): if path == dir_path: result.append(depsentry) else: parts = path.split('/') if all(part == parts[i] for i, part in enumerate(dir_path.split('/'))): result.append(depsentry) return result def BuildDepsentryDict(deps_dict): """Builds a dict of paths to DepsEntry objects from a raw parsed deps dict.""" result = {} def AddDepsEntries(deps_subdict): for path, deps_url_spec in deps_subdict.iteritems(): # The deps url is either an URL and a condition, or just the URL. if isinstance(deps_url_spec, dict): if deps_url_spec.get('dep_type') == 'cipd': continue deps_url = deps_url_spec['url'] else: deps_url = deps_url_spec if not result.has_key(path): url, revision = deps_url.split('@') if deps_url else (None, None) result[path] = DepsEntry(path, url, revision) AddDepsEntries(deps_dict['deps']) for deps_os in ['win', 'mac', 'unix', 'android', 'ios', 'unix']: AddDepsEntries(deps_dict.get('deps_os', {}).get(deps_os, {})) return result def CalculateChangedDeps(libyuv_deps, new_cr_deps): """ Calculate changed deps entries based on entries defined in the libyuv DEPS file: - If a shared dependency with the Chromium DEPS file: roll it to the same revision as Chromium (i.e. entry in the new_cr_deps dict) - If it's a Chromium sub-directory, roll it to the HEAD revision (notice this means it may be ahead of the chromium_revision, but generally these should be close). - If it's another DEPS entry (not shared with Chromium), roll it to HEAD unless it's configured to be skipped. Returns: A list of ChangedDep objects representing the changed deps. """ result = [] libyuv_entries = BuildDepsentryDict(libyuv_deps) new_cr_entries = BuildDepsentryDict(new_cr_deps) for path, libyuv_deps_entry in libyuv_entries.iteritems(): if path in DONT_AUTOROLL_THESE: continue cr_deps_entry = new_cr_entries.get(path) if cr_deps_entry: # Use the revision from Chromium's DEPS file. new_rev = cr_deps_entry.revision assert libyuv_deps_entry.url == cr_deps_entry.url, ( 'Libyuv DEPS entry %s has a different URL (%s) than Chromium (%s).' % (path, libyuv_deps_entry.url, cr_deps_entry.url)) else: # Use the HEAD of the deps repo. stdout, _ = _RunCommand(['git', 'ls-remote', libyuv_deps_entry.url, 'HEAD']) new_rev = stdout.strip().split('\t')[0] # Check if an update is necessary. if libyuv_deps_entry.revision != new_rev: logging.debug('Roll dependency %s to %s', path, new_rev) result.append(ChangedDep(path, libyuv_deps_entry.url, libyuv_deps_entry.revision, new_rev)) return sorted(result) def CalculateChangedClang(new_cr_rev): def GetClangRev(lines): for line in lines: match = CLANG_REVISION_RE.match(line) if match: return match.group(1) raise RollError('Could not parse Clang revision!') with open(CLANG_UPDATE_SCRIPT_LOCAL_PATH, 'rb') as f: current_lines = f.readlines() current_rev = GetClangRev(current_lines) new_clang_update_py = ReadRemoteCrFile(CLANG_UPDATE_SCRIPT_URL_PATH, new_cr_rev).splitlines() new_rev = GetClangRev(new_clang_update_py) return ChangedDep(CLANG_UPDATE_SCRIPT_LOCAL_PATH, None, current_rev, new_rev) def GenerateCommitMessage(current_cr_rev, new_cr_rev, current_commit_pos, new_commit_pos, changed_deps_list, clang_change): current_cr_rev = current_cr_rev[0:10] new_cr_rev = new_cr_rev[0:10] rev_interval = '%s..%s' % (current_cr_rev, new_cr_rev) git_number_interval = '%s:%s' % (current_commit_pos, new_commit_pos) commit_msg = ['Roll chromium_revision %s (%s)\n' % (rev_interval, git_number_interval)] commit_msg.append('Change log: %s' % (CHROMIUM_LOG_TEMPLATE % rev_interval)) commit_msg.append('Full diff: %s\n' % (CHROMIUM_COMMIT_TEMPLATE % rev_interval)) if changed_deps_list: commit_msg.append('Changed dependencies:') for c in changed_deps_list: commit_msg.append('* %s: %s/+log/%s..%s' % (c.path, c.url, c.current_rev[0:10], c.new_rev[0:10])) change_url = CHROMIUM_FILE_TEMPLATE % (rev_interval, 'DEPS') commit_msg.append('DEPS diff: %s\n' % change_url) else: commit_msg.append('No dependencies changed.') if clang_change.current_rev != clang_change.new_rev: commit_msg.append('Clang version changed %s:%s' % (clang_change.current_rev, clang_change.new_rev)) change_url = CHROMIUM_FILE_TEMPLATE % (rev_interval, CLANG_UPDATE_SCRIPT_URL_PATH) commit_msg.append('Details: %s\n' % change_url) else: commit_msg.append('No update to Clang.\n') # TBR needs to be non-empty for Gerrit to process it. git_author = _RunCommand(['git', 'config', 'user.email'], working_dir=CHECKOUT_SRC_DIR)[0].strip() commit_msg.append('TBR=%s' % git_author) commit_msg.append('BUG=None') return '\n'.join(commit_msg) def UpdateDepsFile(deps_filename, old_cr_revision, new_cr_revision, changed_deps): """Update the DEPS file with the new revision.""" # Update the chromium_revision variable. with open(deps_filename, 'rb') as deps_file: deps_content = deps_file.read() deps_content = deps_content.replace(old_cr_revision, new_cr_revision) with open(deps_filename, 'wb') as deps_file: deps_file.write(deps_content) # Update each individual DEPS entry. for dep in changed_deps: local_dep_dir = os.path.join(CHECKOUT_ROOT_DIR, dep.path) if not os.path.isdir(local_dep_dir): raise RollError( 'Cannot find local directory %s. Make sure the .gclient file\n' 'contains all platforms in the target_os list, i.e.\n' 'target_os = ["android", "unix", "mac", "ios", "win"];\n' 'Then run "gclient sync" again.' % local_dep_dir) _RunCommand( ['gclient', 'setdep', '--revision', '%s@%s' % (dep.path, dep.new_rev)], working_dir=CHECKOUT_SRC_DIR) def _IsTreeClean(): stdout, _ = _RunCommand(['git', 'status', '--porcelain']) if len(stdout) == 0: return True logging.error('Dirty/unversioned files:\n%s', stdout) return False def _EnsureUpdatedMasterBranch(dry_run): current_branch = _RunCommand( ['git', 'rev-parse', '--abbrev-ref', 'HEAD'])[0].splitlines()[0] if current_branch != 'master': logging.error('Please checkout the master branch and re-run this script.') if not dry_run: sys.exit(-1) logging.info('Updating master branch...') _RunCommand(['git', 'pull']) def _CreateRollBranch(dry_run): logging.info('Creating roll branch: %s', ROLL_BRANCH_NAME) if not dry_run: _RunCommand(['git', 'checkout', '-b', ROLL_BRANCH_NAME]) def _RemovePreviousRollBranch(dry_run): active_branch, branches = _GetBranches() if active_branch == ROLL_BRANCH_NAME: active_branch = 'master' if ROLL_BRANCH_NAME in branches: logging.info('Removing previous roll branch (%s)', ROLL_BRANCH_NAME) if not dry_run: _RunCommand(['git', 'checkout', active_branch]) _RunCommand(['git', 'branch', '-D', ROLL_BRANCH_NAME]) def _LocalCommit(commit_msg, dry_run): logging.info('Committing changes locally.') if not dry_run: _RunCommand(['git', 'add', '--update', '.']) _RunCommand(['git', 'commit', '-m', commit_msg]) def ChooseCQMode(skip_cq, cq_over, current_commit_pos, new_commit_pos): if skip_cq: return 0 if (new_commit_pos - current_commit_pos) < cq_over: return 1 return 2 def _UploadCL(commit_queue_mode): """Upload the committed changes as a changelist to Gerrit. commit_queue_mode: - 2: Submit to commit queue. - 1: Run trybots but do not submit to CQ. - 0: Skip CQ, upload only. """ cmd = ['git', 'cl', 'upload', '--force', '--bypass-hooks', '--send-mail'] if commit_queue_mode >= 2: logging.info('Sending the CL to the CQ...') cmd.extend(['--use-commit-queue']) elif commit_queue_mode >= 1: logging.info('Starting CQ dry run...') cmd.extend(['--cq-dry-run']) extra_env = { 'EDITOR': 'true', 'SKIP_GCE_AUTH_FOR_GIT': '1', } stdout, stderr = _RunCommand(cmd, extra_env=extra_env) logging.debug('Output from "git cl upload":\nstdout:\n%s\n\nstderr:\n%s', stdout, stderr) def main(): p = argparse.ArgumentParser() p.add_argument('--clean', action='store_true', default=False, help='Removes any previous local roll branch.') p.add_argument('-r', '--revision', help=('Chromium Git revision to roll to. Defaults to the ' 'Chromium HEAD revision if omitted.')) p.add_argument('--dry-run', action='store_true', default=False, help=('Calculate changes and modify DEPS, but don\'t create ' 'any local branch, commit, upload CL or send any ' 'tryjobs.')) p.add_argument('-i', '--ignore-unclean-workdir', action='store_true', default=False, help=('Ignore if the current branch is not master or if there ' 'are uncommitted changes (default: %(default)s).')) grp = p.add_mutually_exclusive_group() grp.add_argument('--skip-cq', action='store_true', default=False, help='Skip sending the CL to the CQ (default: %(default)s)') grp.add_argument('--cq-over', type=int, default=1, help=('Commit queue dry run if the revision difference ' 'is below this number (default: %(default)s)')) p.add_argument('-v', '--verbose', action='store_true', default=False, help='Be extra verbose in printing of log messages.') opts = p.parse_args() if opts.verbose: logging.basicConfig(level=logging.DEBUG) else: logging.basicConfig(level=logging.INFO) if not opts.ignore_unclean_workdir and not _IsTreeClean(): logging.error('Please clean your local checkout first.') return 1 if opts.clean: _RemovePreviousRollBranch(opts.dry_run) if not opts.ignore_unclean_workdir: _EnsureUpdatedMasterBranch(opts.dry_run) new_cr_rev = opts.revision if not new_cr_rev: stdout, _ = _RunCommand(['git', 'ls-remote', CHROMIUM_SRC_URL, 'HEAD']) head_rev = stdout.strip().split('\t')[0] logging.info('No revision specified. Using HEAD: %s', head_rev) new_cr_rev = head_rev deps_filename = os.path.join(CHECKOUT_SRC_DIR, 'DEPS') libyuv_deps = ParseLocalDepsFile(deps_filename) current_cr_rev = libyuv_deps['vars']['chromium_revision'] current_commit_pos = ParseCommitPosition(ReadRemoteCrCommit(current_cr_rev)) new_commit_pos = ParseCommitPosition(ReadRemoteCrCommit(new_cr_rev)) new_cr_deps = ParseRemoteCrDepsFile(new_cr_rev) changed_deps = CalculateChangedDeps(libyuv_deps, new_cr_deps) clang_change = CalculateChangedClang(new_cr_rev) commit_msg = GenerateCommitMessage(current_cr_rev, new_cr_rev, current_commit_pos, new_commit_pos, changed_deps, clang_change) logging.debug('Commit message:\n%s', commit_msg) _CreateRollBranch(opts.dry_run) UpdateDepsFile(deps_filename, current_cr_rev, new_cr_rev, changed_deps) _LocalCommit(commit_msg, opts.dry_run) commit_queue_mode = ChooseCQMode(opts.skip_cq, opts.cq_over, current_commit_pos, new_commit_pos) logging.info('Uploading CL...') if not opts.dry_run: _UploadCL(commit_queue_mode) return 0 if __name__ == '__main__': sys.exit(main())
{ "content_hash": "8389930e6a526507745718faea83f82a", "timestamp": "", "source": "github", "line_count": 493, "max_line_length": 80, "avg_line_length": 35.8316430020284, "alnum_prop": 0.6393433342768186, "repo_name": "endlessm/chromium-browser", "id": "2b95e302cdbf9f552717ee1f5bb5cdd6dcd7bbc4", "size": "18230", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "third_party/libyuv/tools_libyuv/autoroller/roll_deps.py", "mode": "33261", "license": "bsd-3-clause", "language": [], "symlink_target": "" }
""" Django app """ from django.apps import AppConfig from django.conf import settings from django.core.exceptions import ImproperlyConfigured class RootConfig(AppConfig): """AppConfig for this project""" name = 'main' def ready(self): missing_settings = [ setting_name for setting_name in settings.MANDATORY_SETTINGS if getattr(settings, setting_name, None) in (None, '') ] if missing_settings: raise ImproperlyConfigured( 'The following settings are missing: {}'.format(', '.join(missing_settings)) )
{ "content_hash": "6b66392a4106399563339c9d548e54c5", "timestamp": "", "source": "github", "line_count": 22, "max_line_length": 92, "avg_line_length": 27.545454545454547, "alnum_prop": 0.6353135313531353, "repo_name": "mitodl/cookiecutter-djangoapp", "id": "5ab6467da749dd11f65dfaffdedbc1a7acf553b1", "size": "606", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "{{ cookiecutter.project_name }}/main/apps.py", "mode": "33188", "license": "bsd-2-clause", "language": [ { "name": "CSS", "bytes": "148" }, { "name": "Dockerfile", "bytes": "1045" }, { "name": "HTML", "bytes": "4070" }, { "name": "JavaScript", "bytes": "35669" }, { "name": "Python", "bytes": "46923" }, { "name": "Shell", "bytes": "9859" } ], "symlink_target": "" }
""" Client side of the compute RPC API. """ from oslo.config import cfg from oslo import messaging from nova import block_device from nova import exception from nova.objects import base as objects_base from nova.openstack.common.gettextutils import _ from nova.openstack.common import jsonutils from nova import rpc rpcapi_opts = [ cfg.StrOpt('compute_topic', default='compute', help='The topic compute nodes listen on'), ] CONF = cfg.CONF CONF.register_opts(rpcapi_opts) rpcapi_cap_opt = cfg.StrOpt('compute', help='Set a version cap for messages sent to compute services. If you ' 'plan to do a live upgrade from havana to icehouse, you should ' 'set this option to "icehouse-compat" before beginning the live ' 'upgrade procedure.') CONF.register_opt(rpcapi_cap_opt, 'upgrade_levels') def _compute_host(host, instance): '''Get the destination host for a message. :param host: explicit host to send the message to. :param instance: If an explicit host was not specified, use instance['host'] :returns: A host ''' if host: return host if not instance: raise exception.NovaException(_('No compute host specified')) if not instance['host']: raise exception.NovaException(_('Unable to find host for ' 'Instance %s') % instance['uuid']) return instance['host'] class ComputeAPI(object): '''Client side of the compute rpc API. API version history: 1.0 - Initial version. 1.1 - Adds get_host_uptime() 1.2 - Adds check_can_live_migrate_[destination|source] 1.3 - Adds change_instance_metadata() 1.4 - Remove instance_uuid, add instance argument to reboot_instance() 1.5 - Remove instance_uuid, add instance argument to pause_instance(), unpause_instance() 1.6 - Remove instance_uuid, add instance argument to suspend_instance() 1.7 - Remove instance_uuid, add instance argument to get_console_output() 1.8 - Remove instance_uuid, add instance argument to add_fixed_ip_to_instance() 1.9 - Remove instance_uuid, add instance argument to attach_volume() 1.10 - Remove instance_id, add instance argument to check_can_live_migrate_destination() 1.11 - Remove instance_id, add instance argument to check_can_live_migrate_source() 1.12 - Remove instance_uuid, add instance argument to confirm_resize() 1.13 - Remove instance_uuid, add instance argument to detach_volume() 1.14 - Remove instance_uuid, add instance argument to finish_resize() 1.15 - Remove instance_uuid, add instance argument to finish_revert_resize() 1.16 - Remove instance_uuid, add instance argument to get_diagnostics() 1.17 - Remove instance_uuid, add instance argument to get_vnc_console() 1.18 - Remove instance_uuid, add instance argument to inject_file() 1.19 - Remove instance_uuid, add instance argument to inject_network_info() 1.20 - Remove instance_id, add instance argument to post_live_migration_at_destination() 1.21 - Remove instance_uuid, add instance argument to power_off_instance() and stop_instance() 1.22 - Remove instance_uuid, add instance argument to power_on_instance() and start_instance() 1.23 - Remove instance_id, add instance argument to pre_live_migration() 1.24 - Remove instance_uuid, add instance argument to rebuild_instance() 1.25 - Remove instance_uuid, add instance argument to remove_fixed_ip_from_instance() 1.26 - Remove instance_id, add instance argument to remove_volume_connection() 1.27 - Remove instance_uuid, add instance argument to rescue_instance() 1.28 - Remove instance_uuid, add instance argument to reset_network() 1.29 - Remove instance_uuid, add instance argument to resize_instance() 1.30 - Remove instance_uuid, add instance argument to resume_instance() 1.31 - Remove instance_uuid, add instance argument to revert_resize() 1.32 - Remove instance_id, add instance argument to rollback_live_migration_at_destination() 1.33 - Remove instance_uuid, add instance argument to set_admin_password() 1.34 - Remove instance_uuid, add instance argument to snapshot_instance() 1.35 - Remove instance_uuid, add instance argument to unrescue_instance() 1.36 - Remove instance_uuid, add instance argument to change_instance_metadata() 1.37 - Remove instance_uuid, add instance argument to terminate_instance() 1.38 - Changes to prep_resize(): - remove instance_uuid, add instance - remove instance_type_id, add instance_type - remove topic, it was unused 1.39 - Remove instance_uuid, add instance argument to run_instance() 1.40 - Remove instance_id, add instance argument to live_migration() 1.41 - Adds refresh_instance_security_rules() 1.42 - Add reservations arg to prep_resize(), resize_instance(), finish_resize(), confirm_resize(), revert_resize() and finish_revert_resize() 1.43 - Add migrate_data to live_migration() 1.44 - Adds reserve_block_device_name() 2.0 - Remove 1.x backwards compat 2.1 - Adds orig_sys_metadata to rebuild_instance() 2.2 - Adds slave_info parameter to add_aggregate_host() and remove_aggregate_host() 2.3 - Adds volume_id to reserve_block_device_name() 2.4 - Add bdms to terminate_instance 2.5 - Add block device and network info to reboot_instance 2.6 - Remove migration_id, add migration to resize_instance 2.7 - Remove migration_id, add migration to confirm_resize 2.8 - Remove migration_id, add migration to finish_resize 2.9 - Add publish_service_capabilities() 2.10 - Adds filter_properties and request_spec to prep_resize() 2.11 - Adds soft_delete_instance() and restore_instance() 2.12 - Remove migration_id, add migration to revert_resize 2.13 - Remove migration_id, add migration to finish_revert_resize 2.14 - Remove aggregate_id, add aggregate to add_aggregate_host 2.15 - Remove aggregate_id, add aggregate to remove_aggregate_host 2.16 - Add instance_type to resize_instance 2.17 - Add get_backdoor_port() 2.18 - Add bdms to rebuild_instance 2.19 - Add node to run_instance 2.20 - Add node to prep_resize 2.21 - Add migrate_data dict param to pre_live_migration() 2.22 - Add recreate, on_shared_storage and host arguments to rebuild_instance() 2.23 - Remove network_info from reboot_instance 2.24 - Added get_spice_console method 2.25 - Add attach_interface() and detach_interface() 2.26 - Add validate_console_port to ensure the service connects to vnc on the correct port 2.27 - Adds 'reservations' to terminate_instance() and soft_delete_instance() ... Grizzly supports message version 2.27. So, any changes to existing methods in 2.x after that point should be done such that they can handle the version_cap being set to 2.27. 2.28 - Adds check_instance_shared_storage() 2.29 - Made start_instance() and stop_instance() take new-world instance objects 2.30 - Adds live_snapshot_instance() 2.31 - Adds shelve_instance(), shelve_offload_instance, and unshelve_instance() 2.32 - Make reboot_instance take a new world instance object 2.33 - Made suspend_instance() and resume_instance() take new-world instance objects 2.34 - Added swap_volume() 2.35 - Made terminate_instance() and soft_delete_instance() take new-world instance objects 2.36 - Made pause_instance() and unpause_instance() take new-world instance objects 2.37 - Added the legacy_bdm_in_spec parameter to run_instance 2.38 - Made check_can_live_migrate_[destination|source] take new-world instance objects 2.39 - Made revert_resize() and confirm_resize() take new-world instance objects 2.40 - Made reset_network() take new-world instance object 2.41 - Make inject_network_info take new-world instance object 2.42 - Splits snapshot_instance() into snapshot_instance() and backup_instance() and makes them take new-world instance objects. 2.43 - Made prep_resize() take new-world instance object 2.44 - Add volume_snapshot_create(), volume_snapshot_delete() 2.45 - Made resize_instance() take new-world objects 2.46 - Made finish_resize() take new-world objects 2.47 - Made finish_revert_resize() take new-world objects ... Havana supports message version 2.47. So, any changes to existing methods in 2.x after that point should be done such that they can handle the version_cap being set to 2.47. 2.48 - Make add_aggregate_host() and remove_aggregate_host() take new-world objects ... - Remove live_snapshot() that was never actually used 3.0 - Remove 2.x compatibility 3.1 - Update get_spice_console() to take an instance object 3.2 - Update get_vnc_console() to take an instance object 3.3 - Update validate_console_port() to take an instance object 3.4 - Update rebuild_instance() to take an instance object 3.5 - Pass preserve_ephemeral flag to rebuild_instance() 3.6 - Make volume_snapshot_{create,delete} use new-world objects 3.7 - Update change_instance_metadata() to take an instance object 3.8 - Update set_admin_password() to take an instance object 3.9 - Update rescue_instance() to take an instance object 3.10 - Added get_rdp_console method 3.11 - Update unrescue_instance() to take an object 3.12 - Update add_fixed_ip_to_instance() to take an object 3.13 - Update remove_fixed_ip_from_instance() to take an object 3.14 - Update post_live_migration_at_destination() to take an object 3.15 - Adds filter_properties and node to unshelve_instance() 3.16 - Make reserve_block_device_name and attach_volume use new-world objects, and add disk_bus and device_type params to reserve_block_device_name, and bdm param to attach_volume 3.17 - Update attach_interface and detach_interface to take an object 3.18 - Update get_diagnostics() to take an instance object ... - Removed inject_file(), as it was unused. 3.19 - Update pre_live_migration to take instance object 3.20 - Make restore_instance take an instance object 3.21 - Made rebuild take new-world BDM objects 3.22 - Made terminate_instance take new-world BDM objects 3.23 - Added external_instance_event() 3.24 - Update rescue_instance() to take optional rescue_image_ref 3.25 - Make detach_volume take an object ''' VERSION_ALIASES = { 'grizzly': '2.27', 'havana': '2.47', # NOTE(russellb) 'icehouse-compat' is the version that is supported by # both havana and icehouse. Later, 'icehouse' will be added that lists # the maximum version supported by icehouse. 'icehouse-compat': '3.0', } def __init__(self): super(ComputeAPI, self).__init__() target = messaging.Target(topic=CONF.compute_topic, version='3.0') version_cap = self.VERSION_ALIASES.get(CONF.upgrade_levels.compute, CONF.upgrade_levels.compute) serializer = objects_base.NovaObjectSerializer() self.client = self.get_client(target, version_cap, serializer) # Cells overrides this def get_client(self, target, version_cap, serializer): return rpc.get_client(target, version_cap=version_cap, serializer=serializer) def _get_compat_version(self, current, havana_compat): if not self.client.can_send_version(current): return havana_compat return current def add_aggregate_host(self, ctxt, aggregate, host_param, host, slave_info=None): '''Add aggregate host. :param ctxt: request context :param aggregate_id: :param host_param: This value is placed in the message to be the 'host' parameter for the remote method. :param host: This is the host to send the message to. ''' if self.client.can_send_version('3.0'): version = '3.0' elif self.client.can_send_version('2.48'): version = '2.48' else: # NOTE(russellb) Havana compat version = '2.14' aggregate = jsonutils.to_primitive(aggregate) cctxt = self.client.prepare(server=host, version=version) cctxt.cast(ctxt, 'add_aggregate_host', aggregate=aggregate, host=host_param, slave_info=slave_info) def add_fixed_ip_to_instance(self, ctxt, instance, network_id): if self.client.can_send_version('3.12'): version = '3.12' else: # NOTE(russellb) Havana compat version = self._get_compat_version('3.0', '2.0') instance = jsonutils.to_primitive(instance) cctxt = self.client.prepare(server=_compute_host(None, instance), version=version) cctxt.cast(ctxt, 'add_fixed_ip_to_instance', instance=instance, network_id=network_id) def attach_interface(self, ctxt, instance, network_id, port_id, requested_ip): # NOTE(russellb) Havana compat if self.client.can_send_version('3.17'): version = '3.17' else: version = self._get_compat_version('3.0', '2.25') instance = jsonutils.to_primitive(instance) cctxt = self.client.prepare(server=_compute_host(None, instance), version=version) return cctxt.call(ctxt, 'attach_interface', instance=instance, network_id=network_id, port_id=port_id, requested_ip=requested_ip) def attach_volume(self, ctxt, instance, volume_id, mountpoint, bdm=None): # NOTE(ndipanov): Remove volume_id and mountpoint on the next major # version bump - they are not needed when using bdm objects. version = '3.16' kw = {'instance': instance, 'volume_id': volume_id, 'mountpoint': mountpoint, 'bdm': bdm} if not self.client.can_send_version(version): # NOTE(russellb) Havana compat version = self._get_compat_version('3.0', '2.0') kw['instance'] = jsonutils.to_primitive( objects_base.obj_to_primitive(instance)) del kw['bdm'] cctxt = self.client.prepare(server=_compute_host(None, instance), version=version) cctxt.cast(ctxt, 'attach_volume', **kw) def change_instance_metadata(self, ctxt, instance, diff): if self.client.can_send_version('3.7'): version = '3.7' else: # NOTE(russellb) Havana compat version = self._get_compat_version('3.0', '2.0') instance = jsonutils.to_primitive(instance) cctxt = self.client.prepare(server=_compute_host(None, instance), version=version) cctxt.cast(ctxt, 'change_instance_metadata', instance=instance, diff=diff) def check_can_live_migrate_destination(self, ctxt, instance, destination, block_migration, disk_over_commit): # NOTE(russellb) Havana compat version = self._get_compat_version('3.0', '2.38') cctxt = self.client.prepare(server=destination, version=version) return cctxt.call(ctxt, 'check_can_live_migrate_destination', instance=instance, block_migration=block_migration, disk_over_commit=disk_over_commit) def check_can_live_migrate_source(self, ctxt, instance, dest_check_data): # NOTE(russellb) Havana compat version = self._get_compat_version('3.0', '2.38') cctxt = self.client.prepare(server=_compute_host(None, instance), version=version) return cctxt.call(ctxt, 'check_can_live_migrate_source', instance=instance, dest_check_data=dest_check_data) def check_instance_shared_storage(self, ctxt, instance, data): # NOTE(russellb) Havana compat version = self._get_compat_version('3.0', '2.28') instance_p = jsonutils.to_primitive(instance) cctxt = self.client.prepare(server=_compute_host(None, instance), version=version) return cctxt.call(ctxt, 'check_instance_shared_storage', instance=instance_p, data=data) def confirm_resize(self, ctxt, instance, migration, host, reservations=None, cast=True): # NOTE(russellb) Havana compat version = self._get_compat_version('3.0', '2.39') cctxt = self.client.prepare(server=_compute_host(host, instance), version=version) rpc_method = cctxt.cast if cast else cctxt.call return rpc_method(ctxt, 'confirm_resize', instance=instance, migration=migration, reservations=reservations) def detach_interface(self, ctxt, instance, port_id): # NOTE(russellb) Havana compat if self.client.can_send_version('3.17'): version = '3.17' else: version = self._get_compat_version('3.0', '2.25') instance = jsonutils.to_primitive(instance) cctxt = self.client.prepare(server=_compute_host(None, instance), version=version) cctxt.cast(ctxt, 'detach_interface', instance=instance, port_id=port_id) def detach_volume(self, ctxt, instance, volume_id): if self.client.can_send_version('3.25'): version = '3.25' else: # NOTE(russellb) Havana compat version = self._get_compat_version('3.0', '2.0') instance = jsonutils.to_primitive(instance) cctxt = self.client.prepare(server=_compute_host(None, instance), version=version) cctxt.cast(ctxt, 'detach_volume', instance=instance, volume_id=volume_id) def finish_resize(self, ctxt, instance, migration, image, disk_info, host, reservations=None): # NOTE(russellb) Havana compat version = self._get_compat_version('3.0', '2.46') cctxt = self.client.prepare(server=host, version=version) cctxt.cast(ctxt, 'finish_resize', instance=instance, migration=migration, image=image, disk_info=disk_info, reservations=reservations) def finish_revert_resize(self, ctxt, instance, migration, host, reservations=None): # NOTE(russellb) Havana compat version = self._get_compat_version('3.0', '2.47') cctxt = self.client.prepare(server=host, version=version) cctxt.cast(ctxt, 'finish_revert_resize', instance=instance, migration=migration, reservations=reservations) def get_console_output(self, ctxt, instance, tail_length): # NOTE(russellb) Havana compat version = self._get_compat_version('3.0', '2.0') instance_p = jsonutils.to_primitive(instance) cctxt = self.client.prepare(server=_compute_host(None, instance), version=version) return cctxt.call(ctxt, 'get_console_output', instance=instance_p, tail_length=tail_length) def get_console_pool_info(self, ctxt, console_type, host): # NOTE(russellb) Havana compat version = self._get_compat_version('3.0', '2.0') cctxt = self.client.prepare(server=host, version=version) return cctxt.call(ctxt, 'get_console_pool_info', console_type=console_type) def get_console_topic(self, ctxt, host): # NOTE(russellb) Havana compat version = self._get_compat_version('3.0', '2.0') cctxt = self.client.prepare(server=host, version=version) return cctxt.call(ctxt, 'get_console_topic') def get_diagnostics(self, ctxt, instance): if self.client.can_send_version('3.18'): version = '3.18' else: # NOTE(russellb) Havana compat version = self._get_compat_version('3.0', '2.0') instance = jsonutils.to_primitive(instance) cctxt = self.client.prepare(server=_compute_host(None, instance), version=version) return cctxt.call(ctxt, 'get_diagnostics', instance=instance) def get_vnc_console(self, ctxt, instance, console_type): if self.client.can_send_version('3.2'): version = '3.2' else: # NOTE(russellb) Havana compat version = self._get_compat_version('3.0', '2.0') instance = jsonutils.to_primitive(instance) cctxt = self.client.prepare(server=_compute_host(None, instance), version=version) return cctxt.call(ctxt, 'get_vnc_console', instance=instance, console_type=console_type) def get_spice_console(self, ctxt, instance, console_type): if self.client.can_send_version('3.1'): version = '3.1' else: # NOTE(russellb) Havana compat version = self._get_compat_version('3.0', '2.24') instance = jsonutils.to_primitive(instance) cctxt = self.client.prepare(server=_compute_host(None, instance), version=version) return cctxt.call(ctxt, 'get_spice_console', instance=instance, console_type=console_type) def get_rdp_console(self, ctxt, instance, console_type): version = '3.10' cctxt = self.client.prepare(server=_compute_host(None, instance), version=version) return cctxt.call(ctxt, 'get_rdp_console', instance=instance, console_type=console_type) def validate_console_port(self, ctxt, instance, port, console_type): if self.client.can_send_version('3.3'): version = '3.3' else: # NOTE(russellb) Havana compat version = self._get_compat_version('3.0', '2.26') instance = jsonutils.to_primitive(instance) cctxt = self.client.prepare(server=_compute_host(None, instance), version=version) return cctxt.call(ctxt, 'validate_console_port', instance=instance, port=port, console_type=console_type) def host_maintenance_mode(self, ctxt, host_param, mode, host): '''Set host maintenance mode :param ctxt: request context :param host_param: This value is placed in the message to be the 'host' parameter for the remote method. :param mode: :param host: This is the host to send the message to. ''' # NOTE(russellb) Havana compat version = self._get_compat_version('3.0', '2.0') cctxt = self.client.prepare(server=host, version=version) return cctxt.call(ctxt, 'host_maintenance_mode', host=host_param, mode=mode) def host_power_action(self, ctxt, action, host): # NOTE(russellb) Havana compat version = self._get_compat_version('3.0', '2.0') cctxt = self.client.prepare(server=host, version=version) return cctxt.call(ctxt, 'host_power_action', action=action) def inject_network_info(self, ctxt, instance): # NOTE(russellb) Havana compat version = self._get_compat_version('3.0', '2.41') cctxt = self.client.prepare(server=_compute_host(None, instance), version=version) cctxt.cast(ctxt, 'inject_network_info', instance=instance) def live_migration(self, ctxt, instance, dest, block_migration, host, migrate_data=None): # NOTE(russellb) Havana compat version = self._get_compat_version('3.0', '2.0') instance_p = jsonutils.to_primitive(instance) cctxt = self.client.prepare(server=host, version=version) cctxt.cast(ctxt, 'live_migration', instance=instance_p, dest=dest, block_migration=block_migration, migrate_data=migrate_data) def pause_instance(self, ctxt, instance): # NOTE(russellb) Havana compat version = self._get_compat_version('3.0', '2.36') cctxt = self.client.prepare(server=_compute_host(None, instance), version=version) cctxt.cast(ctxt, 'pause_instance', instance=instance) def post_live_migration_at_destination(self, ctxt, instance, block_migration, host): if self.client.can_send_version('3.14'): version = '3.14' else: # NOTE(russellb) Havana compat version = self._get_compat_version('3.0', '2.0') instance = jsonutils.to_primitive(instance) cctxt = self.client.prepare(server=host, version=version) cctxt.cast(ctxt, 'post_live_migration_at_destination', instance=instance, block_migration=block_migration) def pre_live_migration(self, ctxt, instance, block_migration, disk, host, migrate_data=None): if self.client.can_send_version('3.19'): version = '3.19' else: # NOTE(russellb) Havana compat version = self._get_compat_version('3.0', '2.21') instance = jsonutils.to_primitive(instance) cctxt = self.client.prepare(server=host, version=version) return cctxt.call(ctxt, 'pre_live_migration', instance=instance, block_migration=block_migration, disk=disk, migrate_data=migrate_data) def prep_resize(self, ctxt, image, instance, instance_type, host, reservations=None, request_spec=None, filter_properties=None, node=None): # NOTE(russellb) Havana compat version = self._get_compat_version('3.0', '2.43') instance_type_p = jsonutils.to_primitive(instance_type) image_p = jsonutils.to_primitive(image) cctxt = self.client.prepare(server=host, version=version) cctxt.cast(ctxt, 'prep_resize', instance=instance, instance_type=instance_type_p, image=image_p, reservations=reservations, request_spec=request_spec, filter_properties=filter_properties, node=node) def reboot_instance(self, ctxt, instance, block_device_info, reboot_type): # NOTE(russellb) Havana compat version = self._get_compat_version('3.0', '2.32') cctxt = self.client.prepare(server=_compute_host(None, instance), version=version) cctxt.cast(ctxt, 'reboot_instance', instance=instance, block_device_info=block_device_info, reboot_type=reboot_type) def rebuild_instance(self, ctxt, instance, new_pass, injected_files, image_ref, orig_image_ref, orig_sys_metadata, bdms, recreate=False, on_shared_storage=False, host=None, preserve_ephemeral=False, kwargs=None): # NOTE(danms): kwargs is only here for cells compatibility, don't # actually send it to compute extra = {'preserve_ephemeral': preserve_ephemeral} if self.client.can_send_version('3.21'): version = '3.21' else: bdms = block_device.legacy_mapping(bdms) bdms = jsonutils.to_primitive(objects_base.obj_to_primitive(bdms)) if self.client.can_send_version('3.5'): version = '3.5' elif self.client.can_send_version('3.4'): version = '3.4' extra = {} else: # NOTE(russellb) Havana compat version = self._get_compat_version('3.0', '2.22') instance = jsonutils.to_primitive(instance) extra = {} cctxt = self.client.prepare(server=_compute_host(host, instance), version=version) cctxt.cast(ctxt, 'rebuild_instance', instance=instance, new_pass=new_pass, injected_files=injected_files, image_ref=image_ref, orig_image_ref=orig_image_ref, orig_sys_metadata=orig_sys_metadata, bdms=bdms, recreate=recreate, on_shared_storage=on_shared_storage, **extra) def refresh_provider_fw_rules(self, ctxt, host): # NOTE(russellb) Havana compat version = self._get_compat_version('3.0', '2.0') cctxt = self.client.prepare(server=host, version=version) cctxt.cast(ctxt, 'refresh_provider_fw_rules') def remove_aggregate_host(self, ctxt, aggregate, host_param, host, slave_info=None): '''Remove aggregate host. :param ctxt: request context :param aggregate_id: :param host_param: This value is placed in the message to be the 'host' parameter for the remote method. :param host: This is the host to send the message to. ''' if self.client.can_send_version('3.0'): version = '3.0' elif self.client.can_send_version('2.48'): version = '2.48' else: # NOTE(russellb) Havana compat version = '2.15' aggregate = jsonutils.to_primitive(aggregate) cctxt = self.client.prepare(server=host, version=version) cctxt.cast(ctxt, 'remove_aggregate_host', aggregate=aggregate, host=host_param, slave_info=slave_info) def remove_fixed_ip_from_instance(self, ctxt, instance, address): if self.client.can_send_version('3.13'): version = '3.13' else: # NOTE(russellb) Havana compat version = self._get_compat_version('3.0', '2.0') instance = jsonutils.to_primitive(instance) cctxt = self.client.prepare(server=_compute_host(None, instance), version=version) cctxt.cast(ctxt, 'remove_fixed_ip_from_instance', instance=instance, address=address) def remove_volume_connection(self, ctxt, instance, volume_id, host): # NOTE(russellb) Havana compat version = self._get_compat_version('3.0', '2.0') instance_p = jsonutils.to_primitive(instance) cctxt = self.client.prepare(server=host, version=version) return cctxt.call(ctxt, 'remove_volume_connection', instance=instance_p, volume_id=volume_id) def rescue_instance(self, ctxt, instance, rescue_password, rescue_image_ref=None): instance = jsonutils.to_primitive(instance) msg_args = {'rescue_password': rescue_password, 'instance': instance} if self.client.can_send_version('3.24'): version = '3.24' msg_args['rescue_image_ref'] = rescue_image_ref elif self.client.can_send_version('3.9'): version = '3.9' else: # NOTE(russellb) Havana compat version = self._get_compat_version('3.0', '2.44') cctxt = self.client.prepare(server=_compute_host(None, instance), version=version) cctxt.cast(ctxt, 'rescue_instance', **msg_args) def reset_network(self, ctxt, instance): # NOTE(russellb) Havana compat version = self._get_compat_version('3.0', '2.40') cctxt = self.client.prepare(server=_compute_host(None, instance), version=version) cctxt.cast(ctxt, 'reset_network', instance=instance) def resize_instance(self, ctxt, instance, migration, image, instance_type, reservations=None): # NOTE(russellb) Havana compat version = self._get_compat_version('3.0', '2.45') instance_type_p = jsonutils.to_primitive(instance_type) cctxt = self.client.prepare(server=_compute_host(None, instance), version=version) cctxt.cast(ctxt, 'resize_instance', instance=instance, migration=migration, image=image, reservations=reservations, instance_type=instance_type_p) def resume_instance(self, ctxt, instance): # NOTE(russellb) Havana compat version = self._get_compat_version('3.0', '2.33') cctxt = self.client.prepare(server=_compute_host(None, instance), version=version) cctxt.cast(ctxt, 'resume_instance', instance=instance) def revert_resize(self, ctxt, instance, migration, host, reservations=None): # NOTE(russellb) Havana compat version = self._get_compat_version('3.0', '2.39') cctxt = self.client.prepare(server=_compute_host(host, instance), version=version) cctxt.cast(ctxt, 'revert_resize', instance=instance, migration=migration, reservations=reservations) def rollback_live_migration_at_destination(self, ctxt, instance, host): # NOTE(russellb) Havana compat version = self._get_compat_version('3.0', '2.0') instance_p = jsonutils.to_primitive(instance) cctxt = self.client.prepare(server=host, version=version) cctxt.cast(ctxt, 'rollback_live_migration_at_destination', instance=instance_p) def run_instance(self, ctxt, instance, host, request_spec, filter_properties, requested_networks, injected_files, admin_password, is_first_time, node=None, legacy_bdm_in_spec=True): # NOTE(russellb) Havana compat version = self._get_compat_version('3.0', '2.37') instance_p = jsonutils.to_primitive(instance) msg_kwargs = {'instance': instance_p, 'request_spec': request_spec, 'filter_properties': filter_properties, 'requested_networks': requested_networks, 'injected_files': injected_files, 'admin_password': admin_password, 'is_first_time': is_first_time, 'node': node, 'legacy_bdm_in_spec': legacy_bdm_in_spec} cctxt = self.client.prepare(server=host, version=version) cctxt.cast(ctxt, 'run_instance', **msg_kwargs) def set_admin_password(self, ctxt, instance, new_pass): if self.client.can_send_version('3.8'): version = '3.8' else: # NOTE(russellb) Havana compat version = self._get_compat_version('3.0', '2.0') instance = jsonutils.to_primitive(instance) cctxt = self.client.prepare(server=_compute_host(None, instance), version=version) return cctxt.call(ctxt, 'set_admin_password', instance=instance, new_pass=new_pass) def set_host_enabled(self, ctxt, enabled, host): # NOTE(russellb) Havana compat version = self._get_compat_version('3.0', '2.0') cctxt = self.client.prepare(server=host, version=version) return cctxt.call(ctxt, 'set_host_enabled', enabled=enabled) def swap_volume(self, ctxt, instance, old_volume_id, new_volume_id): # NOTE(russellb) Havana compat version = self._get_compat_version('3.0', '2.34') cctxt = self.client.prepare(server=_compute_host(None, instance), version=version) cctxt.cast(ctxt, 'swap_volume', instance=instance, old_volume_id=old_volume_id, new_volume_id=new_volume_id) def get_host_uptime(self, ctxt, host): # NOTE(russellb) Havana compat version = self._get_compat_version('3.0', '2.0') cctxt = self.client.prepare(server=host, version=version) return cctxt.call(ctxt, 'get_host_uptime') def reserve_block_device_name(self, ctxt, instance, device, volume_id, disk_bus=None, device_type=None): version = '3.16' kw = {'instance': instance, 'device': device, 'volume_id': volume_id, 'disk_bus': disk_bus, 'device_type': device_type} if not self.client.can_send_version(version): # NOTE(russellb) Havana compat version = self._get_compat_version('3.0', '2.3') kw['instance'] = jsonutils.to_primitive( objects_base.obj_to_primitive(instance)) del kw['disk_bus'] del kw['device_type'] cctxt = self.client.prepare(server=_compute_host(None, instance), version=version) return cctxt.call(ctxt, 'reserve_block_device_name', **kw) def backup_instance(self, ctxt, instance, image_id, backup_type, rotation): # NOTE(russellb) Havana compat version = self._get_compat_version('3.0', '2.42') cctxt = self.client.prepare(server=_compute_host(None, instance), version=version) cctxt.cast(ctxt, 'backup_instance', instance=instance, image_id=image_id, backup_type=backup_type, rotation=rotation) def snapshot_instance(self, ctxt, instance, image_id): # NOTE(russellb) Havana compat version = self._get_compat_version('3.0', '2.42') cctxt = self.client.prepare(server=_compute_host(None, instance), version=version) cctxt.cast(ctxt, 'snapshot_instance', instance=instance, image_id=image_id) def start_instance(self, ctxt, instance): # NOTE(russellb) Havana compat version = self._get_compat_version('3.0', '2.29') cctxt = self.client.prepare(server=_compute_host(None, instance), version=version) cctxt.cast(ctxt, 'start_instance', instance=instance) def stop_instance(self, ctxt, instance, do_cast=True): # NOTE(russellb) Havana compat version = self._get_compat_version('3.0', '2.29') cctxt = self.client.prepare(server=_compute_host(None, instance), version=version) rpc_method = cctxt.cast if do_cast else cctxt.call return rpc_method(ctxt, 'stop_instance', instance=instance) def suspend_instance(self, ctxt, instance): # NOTE(russellb) Havana compat version = self._get_compat_version('3.0', '2.33') cctxt = self.client.prepare(server=_compute_host(None, instance), version=version) cctxt.cast(ctxt, 'suspend_instance', instance=instance) def terminate_instance(self, ctxt, instance, bdms, reservations=None): # NOTE(russellb) Havana compat if self.client.can_send_version('3.22'): version = '3.22' else: version = self._get_compat_version('3.0', '2.35') bdms = block_device.legacy_mapping(bdms) bdms = jsonutils.to_primitive(objects_base.obj_to_primitive(bdms)) cctxt = self.client.prepare(server=_compute_host(None, instance), version=version) cctxt.cast(ctxt, 'terminate_instance', instance=instance, bdms=bdms, reservations=reservations) def unpause_instance(self, ctxt, instance): # NOTE(russellb) Havana compat version = self._get_compat_version('3.0', '2.36') cctxt = self.client.prepare(server=_compute_host(None, instance), version=version) cctxt.cast(ctxt, 'unpause_instance', instance=instance) def unrescue_instance(self, ctxt, instance): if self.client.can_send_version('3.11'): version = '3.11' else: # NOTE(russellb) Havana compat version = self._get_compat_version('3.0', '2.0') instance = jsonutils.to_primitive(instance) cctxt = self.client.prepare(server=_compute_host(None, instance), version=version) cctxt.cast(ctxt, 'unrescue_instance', instance=instance) def soft_delete_instance(self, ctxt, instance, reservations=None): # NOTE(russellb) Havana compat version = self._get_compat_version('3.0', '2.35') cctxt = self.client.prepare(server=_compute_host(None, instance), version=version) cctxt.cast(ctxt, 'soft_delete_instance', instance=instance, reservations=reservations) def restore_instance(self, ctxt, instance): if self.client.can_send_version('3.18'): version = '3.20' else: # NOTE(russellb) Havana compat version = self._get_compat_version('3.0', '2.0') instance = jsonutils.to_primitive(instance) cctxt = self.client.prepare(server=_compute_host(None, instance), version=version) cctxt.cast(ctxt, 'restore_instance', instance=instance) def shelve_instance(self, ctxt, instance, image_id=None): # NOTE(russellb) Havana compat version = self._get_compat_version('3.0', '2.31') cctxt = self.client.prepare(server=_compute_host(None, instance), version=version) cctxt.cast(ctxt, 'shelve_instance', instance=instance, image_id=image_id) def shelve_offload_instance(self, ctxt, instance): # NOTE(russellb) Havana compat version = self._get_compat_version('3.0', '2.31') cctxt = self.client.prepare(server=_compute_host(None, instance), version=version) cctxt.cast(ctxt, 'shelve_offload_instance', instance=instance) def unshelve_instance(self, ctxt, instance, host, image=None, filter_properties=None, node=None): msg_kwargs = {'instance': instance, 'image': image} if self.client.can_send_version('3.15'): version = '3.15' msg_kwargs['filter_properties'] = filter_properties msg_kwargs['node'] = node else: # NOTE(russellb) Havana compat version = self._get_compat_version('3.0', '2.31') cctxt = self.client.prepare(server=host, version=version) cctxt.cast(ctxt, 'unshelve_instance', **msg_kwargs) def volume_snapshot_create(self, ctxt, instance, volume_id, create_info): version = '3.6' if not self.client.can_send_version(version): # NOTE(russellb) Havana compat version = self._get_compat_version('3.0', '2.44') instance = jsonutils.to_primitive( objects_base.obj_to_primitive(instance)) cctxt = self.client.prepare(server=_compute_host(None, instance), version=version) cctxt.cast(ctxt, 'volume_snapshot_create', instance=instance, volume_id=volume_id, create_info=create_info) def volume_snapshot_delete(self, ctxt, instance, volume_id, snapshot_id, delete_info): version = '3.6' if not self.client.can_send_version(version): # NOTE(russellb) Havana compat version = self._get_compat_version('3.0', '2.44') instance = jsonutils.to_primitive( objects_base.obj_to_primitive(instance)) cctxt = self.client.prepare(server=_compute_host(None, instance), version=version) cctxt.cast(ctxt, 'volume_snapshot_delete', instance=instance, volume_id=volume_id, snapshot_id=snapshot_id, delete_info=delete_info) def external_instance_event(self, ctxt, instances, events): cctxt = self.client.prepare( server=_compute_host(None, instances[0]), version='3.23') cctxt.cast(ctxt, 'external_instance_event', instances=instances, events=events) class SecurityGroupAPI(object): '''Client side of the security group rpc API. API version history: 1.0 - Initial version. 1.41 - Adds refresh_instance_security_rules() 2.0 - Remove 1.x backwards compat 3.0 - Identical to 2.x, but has to be bumped at the same time as the compute API since it's all together on the server side. ''' def __init__(self): super(SecurityGroupAPI, self).__init__() target = messaging.Target(topic=CONF.compute_topic, version='3.0') version_cap = ComputeAPI.VERSION_ALIASES.get( CONF.upgrade_levels.compute, CONF.upgrade_levels.compute) self.client = rpc.get_client(target, version_cap) def _get_compat_version(self, current, havana_compat): if not self.client.can_send_version(current): return havana_compat return current def refresh_security_group_rules(self, ctxt, security_group_id, host): # NOTE(russellb) Havana compat version = self._get_compat_version('3.0', '2.0') cctxt = self.client.prepare(server=host, version=version) cctxt.cast(ctxt, 'refresh_security_group_rules', security_group_id=security_group_id) def refresh_security_group_members(self, ctxt, security_group_id, host): # NOTE(russellb) Havana compat version = self._get_compat_version('3.0', '2.0') cctxt = self.client.prepare(server=host, version=version) cctxt.cast(ctxt, 'refresh_security_group_members', security_group_id=security_group_id) def refresh_instance_security_rules(self, ctxt, host, instance): # NOTE(russellb) Havana compat version = self._get_compat_version('3.0', '2.0') instance_p = jsonutils.to_primitive(instance) cctxt = self.client.prepare(server=_compute_host(None, instance), version=version) cctxt.cast(ctxt, 'refresh_instance_security_rules', instance=instance_p)
{ "content_hash": "8cf529536591a2be43de509dfb840281", "timestamp": "", "source": "github", "line_count": 1015, "max_line_length": 79, "avg_line_length": 46.63743842364532, "alnum_prop": 0.6004816528297103, "repo_name": "eharney/nova", "id": "c87e0c79f45ffa7d2f36193311ea26665f57422a", "size": "47943", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "nova/compute/rpcapi.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Python", "bytes": "13921563" }, { "name": "Shell", "bytes": "17451" } ], "symlink_target": "" }
from jingo import register from tower import ugettext_lazy as _lazy from fjord.feedback.config import CODE_TO_COUNTRY @register.filter def country_name(country, native=False, default=_lazy(u'Unknown')): """Convert a country code into a human readable country name""" if country in CODE_TO_COUNTRY: display_locale = 'native' if native else 'English' return CODE_TO_COUNTRY[country][display_locale] else: return default
{ "content_hash": "3e6567f34bc15bebc2463c2659350544", "timestamp": "", "source": "github", "line_count": 14, "max_line_length": 67, "avg_line_length": 32.642857142857146, "alnum_prop": 0.7199124726477024, "repo_name": "DESHRAJ/fjord", "id": "ffa9ae7b23b8671d15cd1ca98c7fc5a1506692a0", "size": "457", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "fjord/feedback/helpers.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "CSS", "bytes": "168457" }, { "name": "JavaScript", "bytes": "299449" }, { "name": "Makefile", "bytes": "4594" }, { "name": "Python", "bytes": "709245" }, { "name": "Shell", "bytes": "13991" } ], "symlink_target": "" }
"""empty message Revision ID: 324666fdfa8a Revises: f18180ede802 Create Date: 2016-08-04 13:45:37.492317 """ # revision identifiers, used by Alembic. revision = '324666fdfa8a' down_revision = 'f18180ede802' from alembic import op import sqlalchemy as sa def upgrade(): ### commands auto generated by Alembic - please adjust! ### op.drop_constraint(u'prod_process_association_product_id_fkey', 'prod_process_association', type_='foreignkey') op.create_foreign_key(None, 'prod_process_association', 'product', ['product_id'], ['id'], ondelete='CASCADE') ### end Alembic commands ### def downgrade(): ### commands auto generated by Alembic - please adjust! ### op.drop_constraint(None, 'prod_process_association', type_='foreignkey') op.create_foreign_key(u'prod_process_association_product_id_fkey', 'prod_process_association', 'product', ['product_id'], ['id']) ### end Alembic commands ###
{ "content_hash": "b03b6beb8a9eca8cd6b3ae1b0e6f77fd", "timestamp": "", "source": "github", "line_count": 28, "max_line_length": 133, "avg_line_length": 33.214285714285715, "alnum_prop": 0.7043010752688172, "repo_name": "schinke/solid-fortnight-ba", "id": "70ac4b8866361736b8dccdec635e8aa522bb5941", "size": "930", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "flask/migrations/versions/324666fdfa8a_.py", "mode": "33188", "license": "mit", "language": [ { "name": "C", "bytes": "5939" }, { "name": "CSS", "bytes": "10234" }, { "name": "HTML", "bytes": "27364" }, { "name": "JavaScript", "bytes": "364749" }, { "name": "Mako", "bytes": "9299" }, { "name": "Python", "bytes": "8371284" }, { "name": "Shell", "bytes": "3284" } ], "symlink_target": "" }
__author__ = 'Mehmet Mert Yildiran, [email protected]' import rethinkdb as r # Rethinkdb Python driver # Memory class class Memory(object): def __init__(self, starting_time, ending_time, data): # Initialize the object self.starting_time = starting_time # Starting time attribute self.ending_time = ending_time # Ending time attribute self.data = data # Data attribute # Timestamp class class Timestamp(object): def __init__(self, starting_time, ending_time): # Initialize the object self.starting_time = starting_time # Starting time attribute self.ending_time = ending_time # Ending time attribute # Convert object to dictionary def makeit_dict(obj): if isinstance(obj, set): return list(obj) return obj.__dict__ class HearingMemoryUtil(): # Add a memory function @staticmethod def add_memory(data, starting_time, ending_time): conn = r.connect("localhost", 28015) r.db('test').table("hearing_memory").insert([ { "starting_time": starting_time.strftime("%Y-%m-%d %H:%M:%S.%f"), "ending_time": ending_time.strftime("%Y-%m-%d %H:%M:%S.%f"), "data": r.binary(data) } ]).run(conn) r.db('test').table("hearing_timestamps").insert([ { "starting_time": starting_time.strftime("%Y-%m-%d %H:%M:%S.%f"), "ending_time": ending_time.strftime("%Y-%m-%d %H:%M:%S.%f") } ]).run(conn) conn.close() # Get a memory function @staticmethod def get_memory(starting_time): conn = r.connect("localhost", 28015) cursor = r.db('test').table("hearing_memory").filter({'starting_time': starting_time}).run(conn) #r.db('test').table("hearing_memory").filter({'starting_time': starting_time}).delete().run(conn) conn.close() return cursor # Get timestamps function @staticmethod def get_timestamps(): conn = r.connect("localhost", 28015) cursor = r.db('test').table("hearing_timestamps").run(conn) r.db('test').table("hearing_timestamps").delete().run(conn) conn.close() return cursor
{ "content_hash": "2371485820a6080227481d7f4ed80efe", "timestamp": "", "source": "github", "line_count": 59, "max_line_length": 99, "avg_line_length": 33.220338983050844, "alnum_prop": 0.6811224489795918, "repo_name": "mertyildiran/Cerebrum", "id": "d64ba925f27bfdbf4b94051778f43f65ff19acf9", "size": "1960", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "cerebrum/hearing/utilities.py", "mode": "33188", "license": "mit", "language": [ { "name": "Julia", "bytes": "4184" }, { "name": "Python", "bytes": "109364" } ], "symlink_target": "" }
from django.urls import path from frequencia.calendario import views app_name = 'calendario' urlpatterns = [ #Feriados path('', views.feriados, name='feriados'), path('<int:ano>', views.feriados, name='feriados'), path('feriado/novo/', views.feriado_create, name='feriado_create'), path('feriado/remover/<int:pk>', views.feriado_remove, name='feriado_remove'), ]
{ "content_hash": "e9401241287662e5b9f6f5f1eead00c8", "timestamp": "", "source": "github", "line_count": 12, "max_line_length": 79, "avg_line_length": 30.75, "alnum_prop": 0.7235772357723578, "repo_name": "bczmufrn/frequencia", "id": "a2b5198fca2afb0aaa31f8f0ba27f7db6f7179a2", "size": "369", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "frequencia/calendario/urls.py", "mode": "33261", "license": "mit", "language": [ { "name": "CSS", "bytes": "28546" }, { "name": "HTML", "bytes": "182716" }, { "name": "JavaScript", "bytes": "67928" }, { "name": "Python", "bytes": "94322" } ], "symlink_target": "" }
from __future__ import print_function, division, absolute_import from struct import pack from ..message import BulkFrontendMessage class LoadBalanceRequest(BulkFrontendMessage): message_id = None LOADBALANCE_REQUEST = 80936960 def read_bytes(self): bytes_ = pack('!I', self.LOADBALANCE_REQUEST) return bytes_
{ "content_hash": "8f54517f4872720b734bd33b533aeb79", "timestamp": "", "source": "github", "line_count": 14, "max_line_length": 64, "avg_line_length": 24.428571428571427, "alnum_prop": 0.7222222222222222, "repo_name": "uber/vertica-python", "id": "c0988a8ca6511b16a502e444a6baa7ac754f83e4", "size": "2105", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "vertica_python/vertica/messages/frontend_messages/load_balance_request.py", "mode": "33261", "license": "apache-2.0", "language": [ { "name": "Python", "bytes": "209204" } ], "symlink_target": "" }
from django.core import serializers from django.conf import settings import os import itertools import json from information.models import PageData from urlocators.models import Page from workers.models import Job class Pull: ''' ''' @classmethod def set_job_id(cls, job_id): ''' ''' cls._job_id=job_id @classmethod def data_per_job(cls, fields_name=[]): ''' ''' pages_data=[] pages=Page.objects.filter(job=cls._job_id) for page in pages: page_data=PageData.objects.filter(page=page) if fields_name: page_data=page_data.filter(field_name__in=fields_name) if not page_data or page_data.count()==0:continue pages_data.append({'page_data':page_data, 'page_url':page.addr.url}) return pages_data @classmethod def data_per_urls(cls, seed_urls, chain_fields, data_fields): ''' params ------ seed_urls: the query roots urls urls_chain: target_fields name [that hold urls chain] values_field_name:fields name from the target values ''' pages_data=[] for seed in seed_urls: pages=Page.objects.filter(addr__url=seed) page_data=PageData.objects.filter(page__in=pages) page_dict={ 'seed':seed, 'page_data':page_data, 'index':0, 'chain_fields':chain_fields, 'data_fields':data_fields, } pages_data.append(page_dict) return pages_data class JsonPage: ''' ''' _base=[] _file_name='' _pages_json=[] _job_name=[] _to='file' #or redis @classmethod def set_export_format(cls, to): ''' ''' cls._to=to @classmethod def _file(cls): ''' ''' job_path=os.path.join(settings.DATA_ROOT, cls._job_name) if not os.path.exists(job_path):os.makedirs(job_path) file_path=os.path.join(job_path, cls._file_name) fd=open(file_path, 'w') json.dump(cls._pages_json, fd, indent=3) fd.close() @classmethod def _export(cls): ''' ''' if cls._to == 'file': cls._file() print('[=[<o>]=] Done saving file: {} [=[<o>]=]'.format(cls._file_name)) elif cls._to == 'api': raise NotImplemented('[-] EXPORT FORMAT TO BE IMPLEMENTED') else: raise TypeError('[-] Unkown export format') @classmethod def set_data(cls, base_data): ''' ''' cls._base=base_data @classmethod def set_job_name(cls, job_name): ''' ''' cls._job_name=job_name @classmethod def by_job(cls, file_name, fields_name=[]): ''' ''' cls._pages_json=[] cls._file_name=file_name for page_dict in cls._base: page_data=page_dict['page_data'] page_url=page_dict['page_url'] if fields_name: page={r.fields_name:r.field_value for r in page_data if r.fild_name in fields_name} else: page={r.field_name:r.field_value for r in page_data} page.update({'page_url':page_url}) cls._pages_json.append(page) cls._export() @classmethod def by_urls_chain(cls, file_name): ''' ''' cls._file_name=file_name cls._pages_json=cls._urls_chain(cls._base) cls._export() @classmethod def _urls_chain(cls, page_dict_list, chain_container=None): ''' ''' pages_list=[] for page_dict in page_dict_list: url=page_dict['seed'] page_data=page_dict.pop('page_data') index=page_dict['index'] chain_fields=page_dict.pop('chain_fields') data_fields=page_dict.pop('data_fields') chain_size=len(chain_fields) next_index=index+1 #if it is first iteraction if chain_container is None: #this guy will a class soon - for now repetition page_chain={ 'seed':url, 'index':index, 'nodes':[], 'data':[], 'chain_fields':chain_fields, 'data_fields':data_fields, } container=page_chain['nodes'] #add page chain dict to final chain result list pages_list.append(page_chain) else: container=chain_container #if is final chain field -> target data field if index >= chain_size: final_data=page_data.filter(field_name__in=data_fields) final_data=[{p.field_name:p.field_value} for p in final_data] final_chain={ 'seed':url, 'index':next_index, 'values':final_data, } container.append(final_chain) continue #building chain chain_field=chain_fields[index] next_datum=page_data.filter(field_name=chain_field) next_dicts=[] for next_data in next_datum: next_url=next_data.field_value next_page=Page.objects.get(addr__url__contains=next_url) next_page_data=PageData.objects.filter(page=next_page) next_chain={'seed':next_url, 'page_data':next_page_data, 'index':next_index, 'chain_fields':chain_fields, 'data_fields':data_fields, 'nodes':[], 'data':[]} if next_index >= chain_size: next_container=next_chain['data'] else: next_container=next_chain['nodes'] container.append(next_chain) cls._urls_chain([next_chain], next_container) return pages_list class Export: ''' ''' @classmethod def job_to_json(cls, job_id, file_name, fields_name=[]): ''' ''' job=Job.objects.get(id=job_id) Pull.set_job_id(job_id) data=Pull.data_per_job(fields_name) JsonPage.set_job_name(job.name) JsonPage.set_data(data) JsonPage.by_job(file_name) @classmethod def urlsChain_to_json(cls, job_id, file_name, urls, chain_fields, data_fields): ''' ''' if not file_name.endswith('.json'): file_name='.'.join([file_name, 'json']) job=Job.objects.get(id=job_id) data=Pull.data_per_urls(urls, chain_fields, data_fields) JsonPage.set_job_name(job.name) JsonPage.set_data(data) #testing JsonPage.by_urls_chain(file_name)
{ "content_hash": "9e01127277a5f9fcfd38fdc691e78d89", "timestamp": "", "source": "github", "line_count": 243, "max_line_length": 84, "avg_line_length": 29.43621399176955, "alnum_prop": 0.49657486369355514, "repo_name": "VulcanoAhab/delphi", "id": "62bbc29d74cdb74767aed35e67539ab5068104dd", "size": "7153", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "information/utils/export.py", "mode": "33188", "license": "mit", "language": [ { "name": "Batchfile", "bytes": "2786" }, { "name": "HTML", "bytes": "131" }, { "name": "Python", "bytes": "124776" }, { "name": "Shell", "bytes": "3298" } ], "symlink_target": "" }
import m5 from m5.objects import * from Caches import * def config_cache(options, system): if options.l2cache: system.l2 = L2Cache(size='2MB') system.tol2bus = Bus() system.l2.cpu_side = system.tol2bus.port system.l2.mem_side = system.membus.port system.l2.num_cpus = options.num_cpus for i in xrange(options.num_cpus): if options.caches: system.cpu[i].addPrivateSplitL1Caches(L1Cache(size = '32kB'), L1Cache(size = '64kB')) if options.l2cache: system.cpu[i].connectMemPorts(system.tol2bus) else: system.cpu[i].connectMemPorts(system.membus) return system
{ "content_hash": "e9d8c42af2950b4104804a187328dca0", "timestamp": "", "source": "github", "line_count": 22, "max_line_length": 73, "avg_line_length": 32.77272727272727, "alnum_prop": 0.5922330097087378, "repo_name": "liangwang/m5", "id": "075f6d235155025302490fe06ab38ad0fd449888", "size": "2336", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "configs/common/CacheConfig.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "C", "bytes": "490228" }, { "name": "C++", "bytes": "8617145" }, { "name": "Emacs Lisp", "bytes": "1969" }, { "name": "Python", "bytes": "2567844" }, { "name": "Shell", "bytes": "6722" }, { "name": "Visual Basic", "bytes": "2884" } ], "symlink_target": "" }
import pandas as pd import numpy as np import pyaf.HierarchicalForecastEngine as hautof import pyaf.Bench.TS_datasets as tsds import datetime #get_ipython().magic('matplotlib inline') def train_and_force_fail(b , error_message): try: df = b.mPastData; lEngine = hautof.cHierarchicalForecastEngine() lEngine.mOptions.mHierarchicalCombinationMethod = "TD"; lEngine.mOptions.set_active_autoregressions([]); lEngine H = b.mHorizon; lEngine.train(df , b.mTimeVar , b.mSignalVar, H, b.mHierarchy, None); raise Exception("NOT_OK") except Exception as e: # should fail print(str(e)); assert(str(e) == error_message) if(str(e) == "NOT_OK"): raise pass b1 = tsds.load_AU_hierarchical_dataset(); b1.mPastData['NSW'] = "BlaBla" train_and_force_fail(b1 , "PYAF_ERROR_HIERARCHY_BASE_SIGNAL_COLUMN_TYPE_NOT_ALLOWED 'NSW' 'object'")
{ "content_hash": "4097d18e66e6df49a020bcf03e8413b1", "timestamp": "", "source": "github", "line_count": 35, "max_line_length": 100, "avg_line_length": 27.82857142857143, "alnum_prop": 0.63347022587269, "repo_name": "antoinecarme/pyaf", "id": "c23ebfc660a269f25ef848c6a20227468b6d3a2b", "size": "974", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "tests/basic_checks/hierarchy_checks_base_column_bad_storage.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "Makefile", "bytes": "6773299" }, { "name": "Procfile", "bytes": "24" }, { "name": "Python", "bytes": "54209093" }, { "name": "R", "bytes": "807" }, { "name": "Shell", "bytes": "3619" } ], "symlink_target": "" }
from __future__ import absolute_import from chaco.label import Label from kiva import FILL from traits.trait_types import Bool, Float, Str from traits.traits import Property # ============= standard library imports ======================== # ============= local library imports ========================== class MarkerLabel(Label): rotate_angle = 0 zero_y = 0 xoffset = 10 indicator_width = 4 indicator_height = 10 visible = Bool(True) component_height = 100 x = Float y = Float data_y = Float vertical = False horizontal_line_visible = False label_with_intensity = False text = Property(depends_on='_text, label_with_intensity') _text = Str def _set_text(self, text): self._text =text def _get_text(self): if self.label_with_intensity: return '{:0.4f}'.format(self.data_y) else: return self._text def draw(self, gc, component_height): if not self.text: self.text = '' if self.bgcolor != "transparent": gc.set_fill_color(self.bgcolor_) #draw tag border with gc: if self.vertical: self.rotate_angle=90 width, height = self.get_bounding_box(gc) gc.translate_ctm(self.x, self.zero_y_vert-35-height) else: if self.horizontal_line_visible: self._draw_horizontal_line(gc) gc.translate_ctm(self.x+self.xoffset, self.y) self._draw_tag_border(gc) super(MarkerLabel, self).draw(gc) with gc: gc.translate_ctm(self.x - self.indicator_width / 2.0, self.zero_y) self._draw_index_indicator(gc, component_height) def _draw_horizontal_line(self, gc): with gc: # print self.x, self.y gc.set_stroke_color((0,0,0,1)) gc.set_line_width(2) oy = 7 if self.text else 4 y=self.y+oy gc.move_to(0, y) gc.line_to(self.x, y) gc.stroke_path() def _draw_index_indicator(self, gc, component_height): # gc.set_fill_color((1, 0, 0, 1)) w, h = self.indicator_width, self.indicator_height gc.draw_rect((0, 0, w, h), FILL) gc.draw_rect((0, component_height, w, h), FILL) def _draw_tag_border(self, gc): gc.set_stroke_color((0, 0, 0, 1)) gc.set_line_width(2) # gc.set_fill_color((1, 1, 1, 1)) bb_width, bb_height = self.get_bounding_box(gc) offset = 2 xoffset = self.xoffset gc.lines([(-xoffset, (bb_height + offset) / 2.0), (0, bb_height + 2 * offset), (bb_width + offset, bb_height + 2 * offset), (bb_width + offset, -offset), (0, -offset), (-xoffset, (bb_height + offset) / 2.0)]) gc.draw_path() # ============= EOF =============================================
{ "content_hash": "1e60d88e8638726fbe0d5e52641af21a", "timestamp": "", "source": "github", "line_count": 99, "max_line_length": 78, "avg_line_length": 30.383838383838384, "alnum_prop": 0.515625, "repo_name": "UManPychron/pychron", "id": "676697ddf3ecd00c1ba4c1e0c990eae357b5afff", "size": "3808", "binary": false, "copies": "1", "ref": "refs/heads/develop", "path": "pychron/spectrometer/graph/marker_label.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Batchfile", "bytes": "131" }, { "name": "C++", "bytes": "3706" }, { "name": "CSS", "bytes": "279" }, { "name": "Fortran", "bytes": "455875" }, { "name": "HTML", "bytes": "40346" }, { "name": "Mako", "bytes": "412" }, { "name": "Processing", "bytes": "11421" }, { "name": "Python", "bytes": "10234954" }, { "name": "Shell", "bytes": "10753" } ], "symlink_target": "" }
""" @created_at 2015-01-18 @author Exequiel Fuentes <[email protected]> """ import sys import datetime from lib.util import Options, SystemUtils from lib.doc import BagOfWords from lib.net import Network from lib.stats import FMetrics #import warnings #warnings.filterwarnings("ignore", category=DeprecationWarning) if __name__ == "__main__": try: # Parse options options = Options().parse(sys.argv[1:]) # Configure logging logger = SystemUtils().configure_log() # Define the classes classes = ["bioinformatics", "database", "network", "programming"] # Create bag of words bag_of_words = BagOfWords() vocabulary = bag_of_words.create_vocabulary() # Create inputs to the network net_inputs = bag_of_words.create_ann_inputs(vocabulary, classes, "acm") # Create the network network = Network(net_inputs, classes, options, logger) # Load the network from file if options.load: logger.info("Loading network from file...") network.load(options.load) else: # Fit the network start = datetime.datetime.now() network.fit() logger.info("Time training network: %f [sec]" % (datetime.datetime.now() - start).total_seconds()) # Show the errors if options.verbose == False: network.show_error() # Save the network after fit if options.save_as: network.save(options.save_as) # Show the network layer #if options.verbose: network.show_layer() logger.info("Testing the network using validation dataset from IEEE...") start = datetime.datetime.now() validation_dataset = bag_of_words.create_ann_inputs(vocabulary, classes, "ieee") logger.info("Time creating IEEE input: %f [sec]" %(datetime.datetime.now() - start).total_seconds()) validation_target = [] for i in xrange(len(validation_dataset)): validation_target.append(validation_dataset[i][1]) start = datetime.datetime.now() validation_pred = network.predict(validation_dataset) logger.info("Time predicting IEEE target: %f [sec]" % (datetime.datetime.now() - start).total_seconds()) logger.info("Classification performance: %.2f" % network.classification_performance(validation_pred, validation_target)) logger.info("Explained sum of squares: %.2f" % network.explained_sum_squares(validation_pred, validation_target)) logger.info("Mean squared error: %.2f" % network.mean_squared_error(validation_pred, validation_target)) # Create a metrics instance for showing a report in the console fmetrics = FMetrics(logger) # Create the report fmetrics.report(validation_target, validation_pred) # For keeping the plot network.show_plot() except Exception, err: error_msg = str(err) try: logger.error(error_msg, exc_info=True) except Exception, err: print(error_msg) print str(err) finally: sys.exit()
{ "content_hash": "f2e332bd72e0caaa3da8c2d6f783fead", "timestamp": "", "source": "github", "line_count": 95, "max_line_length": 128, "avg_line_length": 35.07368421052632, "alnum_prop": 0.5984393757503002, "repo_name": "efulet/text_classification", "id": "b5b97f2dd8350510cdd9e78155c49f13a71dbf51", "size": "3332", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "ftc/main.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "27688" } ], "symlink_target": "" }
""" Setuptools project configuration for rnglib. """ from os.path import exists from setuptools import setup long_desc = None if exists('README.md'): with open('README.md', 'r') as file: long_desc = file.read() setup(name='rnglib', version='1.3.10', author='Jim Dixon', author_email='[email protected]', long_description=long_desc, packages=['rnglib'], package_dir={'': 'src'}, py_modules=[], include_package_data=False, zip_safe=False, scripts=[], ext_modules=[], description='random number generator library', url='https://jddixon.github.io/rnglib', classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Natural Language :: English', 'Programming Language :: Python', 'Programming Language :: Python 2', 'Programming Language :: Python 2.7', 'Programming Language :: Python 3', 'Programming Language :: Python 3.5', 'Programming Language :: Python 3.6', 'Topic :: Software Development :: Libraries :: Python Modules', ],)
{ "content_hash": "19d5be492e29cefd6467b39aa4755a0b", "timestamp": "", "source": "github", "line_count": 37, "max_line_length": 73, "avg_line_length": 32.729729729729726, "alnum_prop": 0.5871180842279108, "repo_name": "jddixon/rnglib", "id": "362a98a29424ad96f85f9471926a55ff15152685", "size": "1249", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "setup.py", "mode": "33261", "license": "mit", "language": [ { "name": "CSS", "bytes": "6648" }, { "name": "Python", "bytes": "29045" }, { "name": "Shell", "bytes": "1597" } ], "symlink_target": "" }
import math from collections import Counter # ================================================== # Statistical tools # ================================================== # efficient combinatorial function to handle extremely large numbers def log_choose(n, k): r = 0.0 # swap for efficiency if k is more than half of n if k * 2 > n: k = n - k for d in xrange(1,k+1): r += math.log(n, 10) r -= math.log(d, 10) n -= 1 return r # return the genotype and log10 p-value def bayes_gt(ref, alt, is_dup): # probability of seeing an alt read with true genotype of of hom_ref, het, hom_alt respectively if is_dup: # specialized logic to handle non-destructive events such as duplications p_alt = [1e-2, 0.2, 1/3.0] else: p_alt = [1e-3, 0.5, 0.9] total = ref + alt log_combo = log_choose(total, alt) lp_homref = log_combo + alt * math.log(p_alt[0], 10) + ref * math.log(1 - p_alt[0], 10) lp_het = log_combo + alt * math.log(p_alt[1], 10) + ref * math.log(1 - p_alt[1], 10) lp_homalt = log_combo + alt * math.log(p_alt[2], 10) + ref * math.log(1 - p_alt[2], 10) return (lp_homref, lp_het, lp_homalt) # get the number of entries in the set def countRecords(myCounter): numRecords = sum(myCounter.values()) return numRecords # median is approx 50th percentile, except when it is between # two values in which case it's the mean of them. def median(myCounter): #length is the number of bases we're looking at numEntries = countRecords(myCounter) # the ordinal value of the middle element # if 2 middle elements, then non-integer limit = 0.5 * numEntries # a list of the values, sorted smallest to largest # note that this list contains unique elements only valueList = list(myCounter) valueList.sort() # number of entries we've gone through runEntries = 0 # index of the current value in valueList i = 0 # initiate v, in case list only has one element v = valueList[i] # move through the value list, iterating by number of # entries for each value while runEntries < limit: v = valueList[i] runEntries += myCounter[v] i += 1 if runEntries == limit: return (v + valueList[i]) / 2.0 else: return v # calculate upper median absolute deviation def upper_mad(myCounter, myMedian): residCounter = Counter() for x in myCounter: if x > myMedian: residCounter[abs(x - myMedian)] += myCounter[x] return median(residCounter) # sum of the entries def sumRecords(myCounter): mySum = 0.0 for c in myCounter: mySum += c * float(myCounter[c]) return mySum # calculate the arithmetic mean, given a counter and the # length of the feature (chromosome or genome) # for x percentile, x% of the elements in the set are # <= the output value def mean(myCounter): # the number of total entries in the set is the # sum of the occurrences for each value numRecords = countRecords(myCounter) # u holds the mean u = float() u = sumRecords(myCounter) / numRecords return u def stdev(myCounter): # the number of total entries in the set is the # sum of the occurrences for each value numRecords = countRecords(myCounter) # u holds the mean u = mean(myCounter) sumVar = 0.0 # stdev is sqrt(sum((x-u)^2)/#elements) for c in myCounter: sumVar += myCounter[c] * (c - u)**2 myVariance = float(sumVar) / numRecords stdev = myVariance**(0.5) return stdev
{ "content_hash": "45ead46f66173b1c7b15f41d19e05c63", "timestamp": "", "source": "github", "line_count": 122, "max_line_length": 99, "avg_line_length": 29.442622950819672, "alnum_prop": 0.6227728285077951, "repo_name": "hall-lab/svtyper", "id": "51cc3cdf5e370c95acf6ddaab3698445dd100387", "size": "3592", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "svtyper/statistics.py", "mode": "33188", "license": "mit", "language": [ { "name": "Makefile", "bytes": "504" }, { "name": "Python", "bytes": "228014" }, { "name": "R", "bytes": "1564" }, { "name": "Shell", "bytes": "611" } ], "symlink_target": "" }
def get_volume_of_cuboid(length, width, height): return length * width * height # PEP8: kata function name should use snake_case not mixedCase getVolumeOfCubiod = get_volume_of_cuboid
{ "content_hash": "aafa2bf29772b8bfa96f0939fd6b002d", "timestamp": "", "source": "github", "line_count": 6, "max_line_length": 62, "avg_line_length": 31.666666666666668, "alnum_prop": 0.7578947368421053, "repo_name": "the-zebulan/CodeWars", "id": "ea8f829caba29eedeab0465afb150380af5ca33f", "size": "190", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "katas/kyu_8/volume_of_a_cuboid.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "1203000" } ], "symlink_target": "" }
""" This script reads a text file with a list of species names and SMILES strings and converts it to an RMG dictionary. The text file should have one species per line, with the species name/identifier first, followed by the SMILES string. Comments marked with '!' are ignored. """ import argparse import re from rmgpy.species import Species from rmgpy.chemkin import saveSpeciesDictionary def main(inputPath, outputPath): species = [] with open(inputPath, 'r+b') as f: for line0 in f: line1 = line0.strip() if line1 and line1[0] != '!': # Parse line using regex match = re.match(r"([^\s!]+)\s+([^\s!]+)", line1.strip()) # Get label and SMILES string label = match.group(1) smiles = match.group(2) # Save in species dictionary spec = Species().fromSMILES(smiles) spec.label = label species.append(spec) # Write to dictionary file saveSpeciesDictionary(outputPath, species) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('inputPath', metavar='INPUT', type=str, nargs=1, help='The path of the SMILES input file') parser.add_argument('outputPath', metavar='OUTPUT', type=str, nargs=1, help='The path to save the output file') args = parser.parse_args() inputPath = args.inputPath[0] outputPath = args.outputPath[0] main(inputPath, outputPath)
{ "content_hash": "5ca45095bddaf77e1df426c02154f8ea", "timestamp": "", "source": "github", "line_count": 53, "max_line_length": 74, "avg_line_length": 28.77358490566038, "alnum_prop": 0.6177049180327869, "repo_name": "mliu49/RMG-stuff", "id": "f487c9a59471b5b3f0e7dd9ce7442915ec6dfbeb", "size": "1566", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "Scripts/smilesToDictionary.py", "mode": "33188", "license": "mit", "language": [ { "name": "Jupyter Notebook", "bytes": "1495757" }, { "name": "Python", "bytes": "18540" } ], "symlink_target": "" }
class jackstack: """stack that uses stacknodes""" def __init__(self): self.head = None def push(self, value): self.head = stacknode(value, self.head) def pop(self): result = self.head.value self.head = self.head.fwdNode return result class stacknode: """simple node with a value and pointer to the next node""" def __init__(self, value, nextNode): self.value = value self.fwdNode = nextNode
{ "content_hash": "378cb8826f7a63bea627741834fdaaef", "timestamp": "", "source": "github", "line_count": 19, "max_line_length": 63, "avg_line_length": 25.36842105263158, "alnum_prop": 0.5892116182572614, "repo_name": "sniboboof/data-structures", "id": "8defdcc8cbe4dd1831a1eb0a67730fb28a77181a", "size": "482", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "actualstack.py", "mode": "33188", "license": "mit", "language": [ { "name": "DOT", "bytes": "45356" }, { "name": "Python", "bytes": "40597" } ], "symlink_target": "" }
""" tf.Variable See https://www.tensorflow.org/api_docs/python/tf/Variable """ import tensorflow as tf W = tf.Variable(tf.random_uniform([1], -1.0, 1.0), name='weight') #See https://www.tensorflow.org/api_docs/python/tf/random_uniform b = tf.Variable(tf.zeros([1]), name='bias') #See https://www.tensorflow.org/api_docs/python/tf/zeros init_op=tf.global_variables_initializer() with tf.Session() as sess: sess.run(init_op) print(sess.run(W)) print(sess.run(b)) """ Parameter: 1. trainable: True for default, means the variable is also added to the graph collection GraphKeys.TRAINABLE_VARIABLES. """
{ "content_hash": "43f5b5160ec4c689477fca439b6d34a6", "timestamp": "", "source": "github", "line_count": 18, "max_line_length": 131, "avg_line_length": 34.05555555555556, "alnum_prop": 0.7177814029363785, "repo_name": "KarateJB/Python.Practice", "id": "dc99ee0493ee27e488f94b20c38aa91bf9b504ec", "size": "613", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "src/TensorFlow/venv/Lab/Tutorials/Basic/Variable.py", "mode": "33188", "license": "mit", "language": [ { "name": "Batchfile", "bytes": "1959" }, { "name": "C", "bytes": "3972" }, { "name": "CSS", "bytes": "601" }, { "name": "HTML", "bytes": "11362" }, { "name": "JavaScript", "bytes": "1955" }, { "name": "PowerShell", "bytes": "2988" }, { "name": "Python", "bytes": "1682392" } ], "symlink_target": "" }
import ast import re import sys import codecs from json import JSONEncoder from ast import * # Is it Python 3? python3 = hasattr(sys.version_info, 'major') and (sys.version_info.major == 3) class AstEncoder(JSONEncoder): def default(self, obj): if hasattr(obj, '__dict__'): dic = obj.__dict__ # workaround: decode strings if it's not Python3 code if not python3: for key in dic: if isinstance(dic[key], str): if key == 's': dic[key] = lines[dic['start']:dic['end']] else: dic[key] = dic[key].decode(enc) dic['type'] = obj.__class__.__name__ return dic else: return str(obj) enc = 'latin1' lines = '' def parse_dump(filename, output, end_mark): try: if python3: encoder = AstEncoder() else: encoder = AstEncoder(encoding=enc) tree = parse_file(filename) encoded = encoder.encode(tree) f = open(output, "w") f.write(encoded) f.close() finally: # write marker file to signal write end f = open(end_mark, "w") f.close() def parse_file(filename): global enc, lines enc, enc_len = detect_encoding(filename) f = codecs.open(filename, 'r', enc) lines = f.read() if enc == None: # This is a terrible hack lines = lines.decode("latin1").encode("latin1").decode("utf-8") enc = "latin1" # remove BOM lines = re.sub(u'\ufeff', ' ', lines) # replace the encoding decl by spaces to fool python parser # otherwise you get 'encoding decl in unicode string' syntax error # print('enc:', enc, 'enc_len', enc_len) if enc_len > 0: lines = re.sub('#.*coding\s*[:=]\s*[\w\d\-]+', '#' + ' ' * (enc_len - 1), lines) f.close() return parse_string(lines, filename) def parse_string(string, filename=None): tree = ast.parse(string) improve_ast(tree, string) if filename: tree.filename = filename return tree # short function for experiments def p(filename): parse_dump(filename, "json1", "end1") def detect_encoding(path): fin = open(path, 'rb') prefix = str(fin.read(80)) encs = re.findall('#.*coding\s*[:=]\s*([\w\d\-]+)', prefix) decl = re.findall('#.*coding\s*[:=]\s*[\w\d\-]+', prefix) if encs: enc1 = encs[0] enc_len = len(decl[0]) try: codecs.lookup(enc1) except LookupError: return None, enc_len return enc1, enc_len else: return None, -1 #------------------------------------------------------------- # improvements to the AST #------------------------------------------------------------- def improve_ast(node, s): build_index_map(s) improve_node(node, s) line_starts = [] # build global table 'idxmap' for lineno <-> index oonversion def build_index_map(s): global line_starts idx = 0 line_starts = [0] while idx < len(s): if s[idx] == '\n': line_starts.append(idx + 1) idx += 1 # convert (line, col) to offset index def map_idx(line, col): return line_starts[line - 1] + col # convert offset index into (line, col) def map_line_col(idx): line = 0 for start in line_starts: if idx < start: break line += 1 col = idx - line_starts[line - 1] return line, col def improve_node(node, s): if isinstance(node, list): for n in node: improve_node(n, s) elif isinstance(node, AST): find_start(node, s) find_end(node, s) if hasattr(node, 'start'): node.lineno, node.col_offset = map_line_col(node.start) add_missing_names(node, s) for f in node_fields(node): improve_node(f, s) def find_start(node, s): ret = None # default value if hasattr(node, 'start'): ret = node.start elif isinstance(node, list): if node != []: ret = find_start(node[0], s) elif isinstance(node, Module): if node.body != []: ret = find_start(node.body[0], s) elif isinstance(node, BinOp): leftstart = find_start(node.left, s) if leftstart is not None: ret = leftstart else: ret = map_idx(node.lineno, node.col_offset) elif hasattr(node, 'lineno'): if node.col_offset >= 0: ret = map_idx(node.lineno, node.col_offset) else: # special case for """ strings i = map_idx(node.lineno, node.col_offset) while i > 0 and i + 2 < len(s) and s[i:i + 3] != '"""' and s[i:i + 3] != "'''": i -= 1 ret = i else: return None if ret is None and hasattr(node, 'lineno'): raise TypeError("got None for node that has lineno", node) if isinstance(node, AST) and ret is not None: node.start = ret return ret def find_end(node, s): the_end = None if hasattr(node, 'end'): return node.end elif isinstance(node, list): if node != []: the_end = find_end(node[-1], s) elif isinstance(node, Module): if node.body != []: the_end = find_end(node.body[-1], s) elif isinstance(node, Expr): the_end = find_end(node.value, s) elif isinstance(node, Str): i = find_start(node, s) while s[i] != '"' and s[i] != "'": i += 1 if i + 2 < len(s) and s[i:i + 3] == '"""': q = '"""' i += 3 elif i + 2 < len(s) and s[i:i + 3] == "'''": q = "'''" i += 3 elif s[i] == '"': q = '"' i += 1 elif s[i] == "'": q = "'" i += 1 else: print("illegal quote:", i, s[i]) q = '' if q != '': the_end = end_seq(s, q, i) elif isinstance(node, Name): the_end = find_start(node, s) + len(node.id) elif isinstance(node, Attribute): the_end = end_seq(s, node.attr, find_end(node.value, s)) elif isinstance(node, FunctionDef) or (python3 and isinstance(node, AsyncFunctionDef)): the_end = find_end(node.body, s) elif isinstance(node, Lambda): the_end = find_end(node.body, s) elif isinstance(node, ClassDef): the_end = find_end(node.body, s) # print will be a Call in Python 3 elif not python3 and isinstance(node, Print): the_end = start_seq(s, '\n', find_start(node, s)) elif isinstance(node, Call): start = find_end(node.func, s) if start is not None: the_end = match_paren(s, '(', ')', start) elif isinstance(node, Yield): the_end = find_end(node.value, s) elif isinstance(node, Return): if node.value is not None: the_end = find_end(node.value, s) else: the_end = find_start(node, s) + len('return') elif (isinstance(node, For) or isinstance(node, While) or isinstance(node, If) or isinstance(node, IfExp)): if node.orelse != []: the_end = find_end(node.orelse, s) else: the_end = find_end(node.body, s) elif isinstance(node, Assign) or isinstance(node, AugAssign): the_end = find_end(node.value, s) elif isinstance(node, BinOp): the_end = find_end(node.right, s) elif isinstance(node, BoolOp): the_end = find_end(node.values[-1], s) elif isinstance(node, Compare): the_end = find_end(node.comparators[-1], s) elif isinstance(node, UnaryOp): the_end = find_end(node.operand, s) elif isinstance(node, Num): the_end = find_start(node, s) + len(str(node.n)) elif isinstance(node, List): the_end = match_paren(s, '[', ']', find_start(node, s)) elif isinstance(node, Subscript): the_end = match_paren(s, '[', ']', find_start(node, s)) elif isinstance(node, Tuple): if node.elts != []: the_end = find_end(node.elts[-1], s) elif isinstance(node, Dict): the_end = match_paren(s, '{', '}', find_start(node, s)) elif ((not python3 and isinstance(node, TryExcept)) or (python3 and isinstance(node, Try))): if node.orelse != []: the_end = find_end(node.orelse, s) elif node.handlers != []: the_end = find_end(node.handlers, s) else: the_end = find_end(node.body, s) elif isinstance(node, ExceptHandler): the_end = find_end(node.body, s) elif isinstance(node, Pass): the_end = find_start(node, s) + len('pass') elif isinstance(node, Break): the_end = find_start(node, s) + len('break') elif isinstance(node, Continue): the_end = find_start(node, s) + len('continue') elif isinstance(node, Global): the_end = start_seq(s, '\n', find_start(node, s)) elif isinstance(node, Import): the_end = find_start(node, s) + len('import') elif isinstance(node, ImportFrom): the_end = find_start(node, s) + len('from') else: # can't determine node end, set to 3 chars after start start = find_start(node, s) if start is not None: the_end = start + 3 if isinstance(node, AST) and the_end is not None: node.end = the_end return the_end def add_missing_names(node, s): if hasattr(node, 'extra_attr'): return if isinstance(node, list): for n in node: add_missing_names(n, s) elif isinstance(node, ClassDef): head = find_start(node, s) start = s.find("class", head) + len("class") if start is not None: node.name_node = str_to_name(s, start) node._fields += ('name_node',) elif isinstance(node, FunctionDef) or (python3 and isinstance(node, AsyncFunctionDef)): # skip to "def" because it may contain decorators like @property head = find_start(node, s) start = s.find("def", head) + len("def") if start is not None: node.name_node = str_to_name(s, start) node._fields += ('name_node',) # keyword_start = find_start(node, s) # node.keyword_node = str_to_name(s, keyword_start) # node._fields += ('keyword_node',) if node.args.vararg is not None: if len(node.args.args) > 0: vstart = find_end(node.args.args[-1], s) else: vstart = find_end(node.name_node, s) if vstart is not None: vname = str_to_name(s, vstart) node.vararg_name = vname else: node.vararg_name = None node._fields += ('vararg_name',) if node.args.kwarg is not None: if len(node.args.args) > 0: kstart = find_end(node.args.args[-1], s) else: kstart = find_end(node.vararg_name, s) if kstart: kname = str_to_name(s, kstart) node.kwarg_name = kname else: node.kwarg_name = None node._fields += ('kwarg_name',) elif isinstance(node, Attribute): start = find_end(node.value, s) if start is not None: name = str_to_name(s, start) node.attr_name = name node._fields = ('value', 'attr_name') # remove attr for node size accuracy elif isinstance(node, Compare): start = find_start(node, s) if start is not None: node.opsName = convert_ops(node.ops, s, start) node._fields += ('opsName',) elif (isinstance(node, BoolOp) or isinstance(node, BinOp) or isinstance(node, UnaryOp) or isinstance(node, AugAssign)): if hasattr(node, 'left'): start = find_end(node.left, s) else: start = find_start(node, s) if start is not None: ops = convert_ops([node.op], s, start) else: ops = [] if ops != []: node.op_node = ops[0] node._fields += ('op_node',) elif isinstance(node, Num): if isinstance(node.n, int) or (not python3 and isinstance(node.n, long)): num_type = 'int' node.n = str(node.n) elif isinstance(node.n, float): num_type = 'float' node.n = str(node.n) elif isinstance(node.n, complex): num_type = 'complex' node.real = node.n.real node.imag = node.n.imag node._fields += ('real', 'imag') else: num_type = 'unsupported' node.num_type = num_type node._fields += ('num_type',) node.extra_attr = True #------------------------------------------------------------- # utilities used by improve AST functions #------------------------------------------------------------- # find a sequence in a string s, returning the start point def start_seq(s, pat, start): try: return s.index(pat, start) except ValueError: return len(s) # find a sequence in a string s, returning the end point def end_seq(s, pat, start): try: return s.index(pat, start) + len(pat) except ValueError: return len(s) # find matching close paren from start def match_paren(s, open, close, start): while start < len(s) and s[start] != open: start += 1 if start >= len(s): return len(s) left = 1 i = start + 1 while left > 0 and i < len(s): if s[i] == open: left += 1 elif s[i] == close: left -= 1 i += 1 return i # convert string to Name def str_to_name(s, start): i = start while i < len(s) and not is_alpha(s[i]): i += 1 name_start = i ret = [] while i < len(s) and is_alpha(s[i]): ret.append(s[i]) i += 1 name_end = i id1 = ''.join(ret) if id1 == '': return None else: name = Name(id1, None) name.start = name_start name.end = name_end return name def convert_ops(ops, s, start): syms = [] for op in ops: if type(op) in ops_map: syms.append(ops_map[type(op)]) else: print("[WARNING] operator %s is missing from ops_map, " "please report the bug on GitHub" % op) i = start j = 0 ret = [] while i < len(s) and j < len(syms): oplen = len(syms[j]) if s[i:i + oplen] == syms[j]: op_node = Name(syms[j], None) op_node.start = i op_node.end = i + oplen ret.append(op_node) j += 1 i = op_node.end else: i += 1 return ret # lookup table for operators for convert_ops ops_map = { # compare: Eq: '==', NotEq: '!=', LtE: '<=', Lt: '<', GtE: '>=', Gt: '>', NotIn: 'not in', In: 'in', IsNot: 'is not', Is: 'is', # BoolOp Or: 'or', And: 'and', Not: 'not', Invert: '~', # bit operators BitOr: '|', BitAnd: '&', BitXor: '^', RShift: '>>', LShift: '<<', # BinOp Add: '+', Sub: '-', Mult: '*', Div: '/', FloorDiv: '//', Mod: '%', Pow: '**', # UnaryOp USub: '-', UAdd: '+', } if python3: ops_map[MatMult] = '@' # get list of fields from a node def node_fields(node): ret = [] for field in node._fields: if field != 'ctx' and hasattr(node, field): ret.append(getattr(node, field)) return ret # get full source text where the node is from def node_source(node): if hasattr(node, 'node_source'): return node.node_source else: return None # utility for getting exact source code part of the node def src(node): return node.node_source[node.start: node.end] def start(node): if hasattr(node, 'start'): return node.start else: return 0 def end(node): if hasattr(node, 'end'): return node.end else: return None def is_alpha(c): return (c == '_' or ('0' <= c <= '9') or ('a' <= c <= 'z') or ('A' <= c <= 'Z')) # p('/System/Library/Frameworks/Python.framework/Versions/2.5/lib/python2.5/lib-tk/Tix.py')
{ "content_hash": "2a06e6c78867c66c9642a0ab5f2097a8", "timestamp": "", "source": "github", "line_count": 634, "max_line_length": 91, "avg_line_length": 26.1198738170347, "alnum_prop": 0.5122584541062802, "repo_name": "lambdalab/pysonar2", "id": "67fb48014bc7e4330e5d24ee0ddfd86014d5f3b7", "size": "16560", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "src/main/resources/org/yinwang/pysonar/python/dump_python.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "CSS", "bytes": "920" }, { "name": "Java", "bytes": "413257" }, { "name": "JavaScript", "bytes": "1328" }, { "name": "Python", "bytes": "22786" } ], "symlink_target": "" }
from Tkinter import * def sel(): selection = "Value = " + str(var.get()) label.config(text = selection) root = Tk() var = DoubleVar() scale = Scale( root, variable = var, orient=HORIZONTAL ) scale.pack(anchor=CENTER) button = Button(root, text="Get Scale Value", command=sel) button.pack(anchor=CENTER) label = Label(root) label.pack() root.mainloop()
{ "content_hash": "3dbef21dce6bc00f0da774810cc46ab5", "timestamp": "", "source": "github", "line_count": 18, "max_line_length": 58, "avg_line_length": 20.11111111111111, "alnum_prop": 0.6906077348066298, "repo_name": "divir94/News-Analytics", "id": "b541460b59e1af52de93201dd35d6f084abd7e2f", "size": "362", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "Divir/Tkinter/slider_test.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Java", "bytes": "3253" }, { "name": "OpenEdge ABL", "bytes": "28" }, { "name": "Python", "bytes": "303113" }, { "name": "Shell", "bytes": "544" } ], "symlink_target": "" }
class AbstractTrade: """High-level class representing a trade from one coin to another. """ def __init__( self, sell_coin: str, buy_coin: str, reference_coin: str, reference_value: float, ) -> None: self._sell_coin = sell_coin self._buy_coin = buy_coin self._reference_coin = reference_coin self._reference_value = reference_value @property def sell_coin(self) -> str: return self._sell_coin @property def buy_coin(self) -> str: return self._buy_coin @property def reference_coin(self) -> str: return self._reference_coin @property def reference_value(self) -> float: return self._reference_value
{ "content_hash": "8ec00f1ea3352a016cff4bfbe55ee5b8", "timestamp": "", "source": "github", "line_count": 31, "max_line_length": 70, "avg_line_length": 24.322580645161292, "alnum_prop": 0.5822281167108754, "repo_name": "elsehow/moneybot", "id": "98830c10b469b8d51ef43286f475b4e1ce6a406f", "size": "780", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "moneybot/trade.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "Makefile", "bytes": "455" }, { "name": "Python", "bytes": "72870" }, { "name": "Shell", "bytes": "2251" } ], "symlink_target": "" }
import gspread from oauth2client.service_account import ServiceAccountCredentials # use creds to create a client to interact with the Google Drive API scope = ['https://spreadsheets.google.com/feeds'] creds = ServiceAccountCredentials.from_json_keyfile_name('Beautifulseodang-c0a5cc61a537.json', scope) client = gspread.authorize(creds) sheet = client.open("test").sheet1 list_of_hashes = sheet.get_all_records() print (list_of_hashes)
{ "content_hash": "85565be3029fd634b1728a948ccccc91", "timestamp": "", "source": "github", "line_count": 14, "max_line_length": 101, "avg_line_length": 31.428571428571427, "alnum_prop": 0.7931818181818182, "repo_name": "yeongseon/django_beautifulseodang", "id": "0ba96a49ee2a47b66e2d8e3cc64349fcbf227836", "size": "440", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "test_gspread.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "80794" }, { "name": "HTML", "bytes": "133381" }, { "name": "JavaScript", "bytes": "238909" }, { "name": "Python", "bytes": "28763" } ], "symlink_target": "" }
import theano import theano.tensor as T import numpy as np from lasagne.layers import Layer from lasagne.layers.recurrent import Gate import lasagne.nonlinearities import lasagne.init class Controller(Layer): r""" The base class :class:`Controller` represents a generic controller for the Neural Turing Machine. The controller is a neural network (feed-forward or recurrent) making the interface between the incoming layer (eg. an instance of :class:`lasagne.layers.InputLayer`) and the NTM. Parameters ---------- incoming: a :class:`lasagne.layers.Layer` instance The layer feeding into the Neural Turing Machine. memory_shape: tuple Shape of the NTM's memory. num_units: int Number of hidden units in the controller. num_reads: int Number of read heads in the Neural Turing Machine. hid_init: callable, Numpy array or Theano shared variable Initializer for the initial hidden state (:math:`h_{0}`). learn_init: bool If ``True``, initial hidden values are learned. """ def __init__(self, incoming, memory_shape, num_units, num_reads, hid_init=lasagne.init.GlorotUniform(), learn_init=False, **kwargs): super(Controller, self).__init__(incoming, **kwargs) self.hid_init = self.add_param(hid_init, (1, num_units), name='hid_init', regularizable=False, trainable=learn_init) self.memory_shape = memory_shape self.num_units = num_units self.num_reads = num_reads def step(self, input, reads, hidden, state, *args, **kwargs): raise NotImplementedError def get_output_shape_for(self, input_shape): return (input_shape[0], self.num_units) class DenseController(Controller): r""" A fully connected (feed-forward) controller for the NTM. .. math :: h_t = \sigma(x_{t} W_{x} + r_{t} W_{r} + b_{x} + b_{r}) Parameters ---------- incoming: a :class:`lasagne.layers.Layer` instance The layer feeding into the Neural Turing Machine. memory_shape: tuple Shape of the NTM's memory. num_units: int Number of hidden units in the controller. num_reads: int Number of read heads in the Neural Turing Machine. W_in_to_hid: callable, Numpy array or Theano shared variable If callable, initializer for the weights between the input and the hidden state. Otherwise a matrix with shape ``(num_inputs, num_units)`` (:math:`W_{x}`). b_in_to_hid: callable, Numpy array, Theano shared variable or ``None`` If callable, initializer for the biases between the input and the hidden state. If ``None``, the controller has no bias between the input and the hidden state. Otherwise a 1D array with shape ``(num_units,)`` (:math:`b_{x}`). W_reads_to_hid: callable, Numpy array or Theano shared variable If callable, initializer for the weights between the read vector and the hidden state. Otherwise a matrix with shape ``(num_reads * memory_shape[1], num_units)`` (:math:`W_{r}`). b_reads_to_hid: callable, Numpy array, Theano shared variable or ``None`` If callable, initializer for the biases between the read vector and the hidden state. If ``None``, the controller has no bias between the read vector and the hidden state. Otherwise a 1D array with shape ``(num_units,)`` (:math:`b_{r}`). nonlinearity: callable or ``None`` The nonlinearity that is applied to the controller. If ``None``, the controller will be linear (:math:`\sigma`). hid_init: callable, np.ndarray or theano.shared Initializer for the initial hidden state (:math:`h_{0}`). learn_init: bool If ``True``, initial hidden values are learned. """ def __init__(self, incoming, memory_shape, num_units, num_reads, W_in_to_hid=lasagne.init.GlorotUniform(), b_in_to_hid=lasagne.init.Constant(0.), W_reads_to_hid=lasagne.init.GlorotUniform(), b_reads_to_hid=lasagne.init.Constant(0.), nonlinearity=lasagne.nonlinearities.rectify, hid_init=lasagne.init.GlorotUniform(), learn_init=False, **kwargs): super(DenseController, self).__init__(incoming, memory_shape, num_units, num_reads, hid_init, learn_init, **kwargs) self.nonlinearity = (lasagne.nonlinearities.identity if nonlinearity is None else nonlinearity) def add_weight_and_bias_params(input_dim, W, b, name): return (self.add_param(W, (input_dim, self.num_units), name='W_{}'.format(name)), self.add_param(b, (self.num_units,), name='b_{}'.format(name)) if b is not None else None) num_inputs = int(np.prod(self.input_shape[2:])) # Inputs / Hidden parameters self.W_in_to_hid, self.b_in_to_hid = add_weight_and_bias_params(num_inputs, W_in_to_hid, b_in_to_hid, name='in_to_hid') # Read vectors / Hidden parameters self.W_reads_to_hid, self.b_reads_to_hid = add_weight_and_bias_params(self.num_reads * self.memory_shape[1], W_reads_to_hid, b_reads_to_hid, name='reads_to_hid') def step(self, input, reads, *args): if input.ndim > 2: input = input.flatten(2) if reads.ndim > 2: reads = reads.flatten(2) activation = T.dot(input, self.W_in_to_hid) + \ T.dot(reads, self.W_reads_to_hid) if self.b_in_to_hid is not None: activation += self.b_in_to_hid.dimshuffle('x', 0) if self.b_reads_to_hid is not None: activation += self.b_reads_to_hid.dimshuffle('x', 0) state = self.nonlinearity(activation) return state, state def outputs_info(self, batch_size): ones_vector = T.ones((batch_size, 1)) hid_init = T.dot(ones_vector, self.hid_init) hid_init = T.unbroadcast(hid_init, 0) return [hid_init, hid_init] class RecurrentController(Controller): r""" A "vanilla" recurrent controller for the NTM. .. math :: h_t = \sigma(x_{t} W_{x} + r_{t} W_{r} + h_{t-1} W_{h} + b_{x} + b_{r} + b_{h}) Parameters ---------- incoming: a :class:`lasagne.layers.Layer` instance The layer feeding into the Neural Turing Machine. memory_shape: tuple Shape of the NTM's memory. num_units: int Number of hidden units in the controller. num_reads: int Number of read heads in the Neural Turing Machine. W_in_to_hid: callable, Numpy array or Theano shared variable If callable, initializer for the weights between the input and the hidden state. Otherwise a matrix with shape ``(num_inputs, num_units)`` (:math:`W_{x}`). b_in_to_hid: callable, Numpy array, Theano shared variable or ``None`` If callable, initializer for the biases between the input and the hidden state. If ``None``, the controller has no bias between the input and the hidden state. Otherwise a 1D array with shape ``(num_units,)`` (:math:`b_{x}`). W_reads_to_hid: callable, Numpy array or Theano shared variable If callable, initializer for the weights between the read vector and the hidden state. Otherwise a matrix with shape ``(num_reads * memory_shape[1], num_units)`` (:math:`W_{r}`). b_reads_to_hid: callable, Numpy array, Theano shared variable or ``None`` If callable, initializer for the biases between the read vector and the hidden state. If ``None``, the controller has no bias between the read vector and the hidden state. Otherwise a 1D array with shape ``(num_units,)`` (:math:`b_{r}`). W_hid_to_hid: callable, Numpy array or Theano shared variable If callable, initializer for the weights in the hidden-to-hidden update. Otherwise a matrix with shape ``(num_units, num_units)`` (:math:`W_{h}`). b_hid_to_hid: callable, Numpy array, Theano shared variable or ``None`` If callable, initializer for the biases in the hidden-to-hidden update. If ``None``, the controller has no bias in the hidden-to-hidden update. Otherwise a 1D array with shape ``(num_units,)`` (:math:`b_{h}`). nonlinearity: callable or ``None`` The nonlinearity that is applied to the controller. If ``None``, the controller will be linear (:math:`\sigma`). hid_init: callable, np.ndarray or theano.shared Initializer for the initial hidden state (:math:`h_{0}`). learn_init: bool If ``True``, initial hidden values are learned. """ def __init__(self, incoming, memory_shape, num_units, num_reads, W_in_to_hid=lasagne.init.GlorotUniform(), b_in_to_hid=lasagne.init.Constant(0.), W_reads_to_hid=lasagne.init.GlorotUniform(), b_reads_to_hid=lasagne.init.Constant(0.), W_hid_to_hid=lasagne.init.GlorotUniform(), b_hid_to_hid=lasagne.init.Constant(0.), nonlinearity=lasagne.nonlinearities.rectify, hid_init=lasagne.init.GlorotUniform(), learn_init=False, **kwargs): super(RecurrentController, self).__init__(incoming, memory_shape, num_units, num_reads, hid_init, learn_init, **kwargs) self.nonlinearity = (lasagne.nonlinearities.identity if nonlinearity is None else nonlinearity) def add_weight_and_bias_params(input_dim, W, b, name): return (self.add_param(W, (input_dim, self.num_units), name='W_{}'.format(name)), self.add_param(b, (self.num_units,), name='b_{}'.format(name)) if b is not None else None) num_inputs = int(np.prod(self.input_shape[2:])) # Inputs / Hidden parameters self.W_in_to_hid, self.b_in_to_hid = add_weight_and_bias_params(num_inputs, W_in_to_hid, b_in_to_hid, name='in_to_hid') # Read vectors / Hidden parameters self.W_reads_to_hid, self.b_reads_to_hid = add_weight_and_bias_params(self.num_reads * self.memory_shape[1], W_reads_to_hid, b_reads_to_hid, name='reads_to_hid') # Hidden / Hidden parameters self.W_hid_to_hid, self.b_hid_to_hid = add_weight_and_bias_params(self.num_units, W_hid_to_hid, b_hid_to_hid, name='hid_to_hid') def step(self, input, reads, hidden, *args): if input.ndim > 2: input = input.flatten(2) if reads.ndim > 2: reads = reads.flatten(2) activation = T.dot(input, self.W_in_to_hid) + \ T.dot(reads, self.W_reads_to_hid) + \ T.dot(hidden, self.W_hid_to_hid) if self.b_in_to_hid is not None: activation += self.b_in_to_hid.dimshuffle('x', 0) if self.b_reads_to_hid is not None: activation += self.b_reads_to_hid.dimshuffle('x', 0) if self.b_hid_to_hid is not None: activation += self.b_hid_to_hid.dimshuffle('x', 0) state = self.nonlinearity(activation) return state, state def outputs_info(self, batch_size): ones_vector = T.ones((batch_size, 1)) hid_init = T.dot(ones_vector, self.hid_init) hid_init = T.unbroadcast(hid_init, 0) return [hid_init, hid_init] class LSTMController(Controller): r""" A LSTM recurrent controller for the NTM. .. math :: input-gate = \sigma(x_{t} Wi_{x} + r_{t} Wi_{r} + h_{t-1} Wi_{h} + bi_{x} + bi_{r} + bi_{h}) forget-gate = \sigma(x_{t} Wf_{x} + r_{t} Wf_{r} + h_{t-1} Wf_{h} + bf_{x} + bf_{r} + bf_{h}) output-gate = \sigma(x_{t} Wo_{x} + r_{t} Wo_{r} + h_{t-1} Wo_{h} + bo_{x} + bo_{r} + bo_{h}) candidate-cell-state = \tanh(x_{t} Wc_{x} + r_{t} Wc_{r} + h_{t-1} Wc_{h} + bc_{x} + bc_{r} + bc_{h}) cell-state_{t} = cell-state_{t-1} \odot forget-gate + candidate-cell-state \odot input-gate h_{t} = \tanh(cell-state_{t}) \odot output-gate Parameters ---------- incoming: a :class:`lasagne.layers.Layer` instance The layer feeding into the Neural Turing Machine. memory_shape: tuple Shape of the NTM's memory. num_units: int Number of hidden units in the controller. num_reads: int Number of read heads in the Neural Turing Machine. W_in_to_input: callable, Numpy array or Theano shared variable If callable, initializer for the weights between the input and the input gate. Otherwise a matrix with shape ``(num_inputs, num_units)`` (:math:`Wi_{x}`). b_in_to_input: callable, Numpy array, Theano shared variable or ``None`` If callable, initializer for the biases between the input and the input gate. If ``None``, the controller has no bias between the input and the input gate. Otherwise a 1D array with shape ``(num_units,)`` (:math:`bi_{x}`). W_reads_to_input: callable, Numpy array or Theano shared variable If callable, initializer for the weights between the read vector and the input gate. Otherwise a matrix with shape ``(num_reads * memory_shape[1], num_units)`` (:math:`Wi_{r}`). b_reads_to_input: callable, Numpy array, Theano shared variable or ``None`` If callable, initializer for the biases between the read vector and the input gate. If ``None``, the controller has no bias between the read vector and the input gate. Otherwise a 1D array with shape ``(num_units,)`` (:math:`bi_{r}`). W_hid_to_input: callable, Numpy array or Theano shared variable If callable, initializer for the weights between the hidden state and the input gate. Otherwise a matrix with shape ``(num_units, num_units)`` (:math:`Wi_{h}`). b_hid_to_input: callable, Numpy array, Theano shared variable or ``None`` If callable, initializer for the biases between the hidden state and the input gate. If ``None``, the controller has no bias between the hidden state and the input gate. Otherwise a 1D array with shape ``(num_units,)`` (:math:`bi_{h}`). W_in_to_forget: callable, Numpy array or Theano shared variable If callable, initializer for the weights between the input and the forget gate. Otherwise a matrix with shape ``(num_inputs, num_units)`` (:math:`Wf_{x}`). b_in_to_forget: callable, Numpy array, Theano shared variable or ``None`` If callable, initializer for the biases between the input and the forget gate. If ``None``, the controller has no bias between the input and the forget gate. Otherwise a 1D array with shape ``(num_units,)`` (:math:`bf_{x}`). W_reads_to_forget: callable, Numpy array or Theano shared variable If callable, initializer for the weights between the read vector and the forget gate. Otherwise a matrix with shape ``(num_reads * memory_shape[1], num_units)`` (:math:`Wf_{r}`). b_reads_to_forget: callable, Numpy array, Theano shared variable or ``None`` If callable, initializer for the biases between the read vector and the forget gate. If ``None``, the controller has no bias between the read vector and the forget gate. Otherwise a 1D array with shape ``(num_units,)`` (:math:`bf_{r}`). W_hid_to_forget: callable, Numpy array or Theano shared variable If callable, initializer for the weights between the hidden state and the forget gate. Otherwise a matrix with shape ``(num_units, num_units)`` (:math:`Wf_{h}`). b_hid_to_forget: callable, Numpy array, Theano shared variable or ``None`` If callable, initializer for the biases between the hidden state and the forget gate. If ``None``, the controller has no bias between the hidden state and the forget gate. Otherwise a 1D array with shape ``(num_units,)`` (:math:`bf_{h}`). W_in_to_output: callable, Numpy array or Theano shared variable If callable, initializer for the weights between the input and the output gate. Otherwise a matrix with shape ``(num_inputs, num_units)`` (:math:`Wo_{x}`). b_in_to_output: callable, Numpy array, Theano shared variable or ``None`` If callable, initializer for the biases between the input and the output gate. If ``None``, the controller has no bias between the input and the output gate. Otherwise a 1D array with shape ``(num_units,)`` (:math:`bo_{x}`). W_reads_to_output: callable, Numpy array or Theano shared variable If callable, initializer for the weights between the read vector and the output gate. Otherwise a matrix with shape ``(num_reads * memory_shape[1], num_units)`` (:math:`Wo_{r}`). b_reads_to_output: callable, Numpy array, Theano shared variable or ``None`` If callable, initializer for the biases between the read vector and the output gate. If ``None``, the controller has no bias between the read vector and the output gate. Otherwise a 1D array with shape ``(num_units,)`` (:math:`bo_{r}`). W_hid_to_output: callable, Numpy array or Theano shared variable If callable, initializer for the weights between the hidden state and the output gate. Otherwise a matrix with shape ``(num_units, num_units)`` (:math:`Wo_{h}`). b_hid_to_output: callable, Numpy array, Theano shared variable or ``None`` If callable, initializer for the biases between the hidden state and the output gate. If ``None``, the controller has no bias between the hidden state and the output gate. Otherwise a 1D array with shape ``(num_units,)`` (:math:`bo_{h}`). W_in_to_cell: callable, Numpy array or Theano shared variable If callable, initializer for the weights between the input and the cell state computation gate. Otherwise a matrix with shape ``(num_inputs, num_units)`` (:math:`Wc_{x}`). b_in_to_cell: callable, Numpy array, Theano shared variable or ``None`` If callable, initializer for the biases between the input and the cell state computation gate. If ``None``, the controller has no bias between the input and the cell state computation gate. Otherwise a 1D array with shape ``(num_units,)`` (:math:`bc_{x}`). W_reads_to_cell: callable, Numpy array or Theano shared variable If callable, initializer for the weights between the read vector and the cell state computation gate. Otherwise a matrix with shape ``(num_reads * memory_shape[1], num_units)`` (:math:`Wc_{r}`). b_reads_to_cell: callable, Numpy array, Theano shared variable or ``None`` If callable, initializer for the biases between the read vector and the cell state computation gate. If ``None``, the controller has no bias between the read vector and the cell state computation gate. Otherwise a 1D array with shape ``(num_units,)`` (:math:`bc_{r}`). W_hid_to_cell: callable, Numpy array or Theano shared variable If callable, initializer for the weights between the hidden state and the cell state computation gate. Otherwise a matrix with shape ``(num_units, num_units)`` (:math:`Wc_{h}`). b_hid_to_cell: callable, Numpy array, Theano shared variable or ``None`` If callable, initializer for the biases between the hidden state and the cell state computation gate. If ``None``, the controller has no bias between the hidden state and the cell state computation gate. Otherwise a 1D array with shape ``(num_units,)`` (:math:`bc_{h}`). hid_init: callable, np.ndarray or theano.shared Initializer for the initial hidden state (:math:`h_{0}`). cell_init: callable, np.ndarray or theano.shared Initializer for the initial cell state (:math:`cell-state_{0}`). learn_init: bool If ``True``, initial hidden values are learned. """ def __init__(self, incoming, memory_shape, num_units, num_reads, W_in_to_input=lasagne.init.GlorotUniform(), b_in_to_input=lasagne.init.Constant(0.), W_reads_to_input=lasagne.init.GlorotUniform(), b_reads_to_input=lasagne.init.Constant(0.), W_hid_to_input=lasagne.init.GlorotUniform(), b_hid_to_input=lasagne.init.Constant(0.), W_in_to_forget=lasagne.init.GlorotUniform(), b_in_to_forget=lasagne.init.Constant(0.), W_reads_to_forget=lasagne.init.GlorotUniform(), b_reads_to_forget=lasagne.init.Constant(0.), W_hid_to_forget=lasagne.init.GlorotUniform(), b_hid_to_forget=lasagne.init.Constant(0.), W_in_to_output=lasagne.init.GlorotUniform(), b_in_to_output=lasagne.init.Constant(0.), W_reads_to_output=lasagne.init.GlorotUniform(), b_reads_to_output=lasagne.init.Constant(0.), W_hid_to_output=lasagne.init.GlorotUniform(), b_hid_to_output=lasagne.init.Constant(0.), W_in_to_cell=lasagne.init.GlorotUniform(), b_in_to_cell=lasagne.init.Constant(0.), W_reads_to_cell=lasagne.init.GlorotUniform(), b_reads_to_cell=lasagne.init.Constant(0.), W_hid_to_cell=lasagne.init.GlorotUniform(), b_hid_to_cell=lasagne.init.Constant(0.), nonlinearity=lasagne.nonlinearities.rectify, hid_init=lasagne.init.GlorotUniform(), cell_init=lasagne.init.Constant(0.), learn_init=False, **kwargs): super(LSTMController, self).__init__(incoming, memory_shape, num_units, num_reads, hid_init, learn_init, **kwargs) self.nonlinearity = (lasagne.nonlinearities.identity if nonlinearity is None else nonlinearity) self.cell_init = self.add_param(cell_init, (1, num_units), name='cell_init', regularizable=False, trainable=learn_init) def add_weight_and_bias_params(input_dim, W, b, name): return (self.add_param(W, (input_dim, self.num_units), name='W_{}'.format(name)), self.add_param(b, (self.num_units,), name='b_{}'.format(name)) if b is not None else None) num_inputs = int(np.prod(self.input_shape[2:])) # Inputs / Input Gate parameters self.W_in_to_input, self.b_in_to_input = add_weight_and_bias_params(num_inputs, W_in_to_input, b_in_to_input, name='in_to_input') # Read vectors / Input Gate parameters self.W_reads_to_input, self.b_reads_to_input = add_weight_and_bias_params(self.num_reads * self.memory_shape[1], W_reads_to_input, b_reads_to_input, name='reads_to_input') # Hidden / Input Gate parameters self.W_hid_to_input, self.b_hid_to_input = add_weight_and_bias_params(self.num_units, W_hid_to_input, b_hid_to_input, name='hid_to_input') # Inputs / Forget Gate parameters self.W_in_to_forget, self.b_in_to_forget = add_weight_and_bias_params(num_inputs, W_in_to_forget, b_in_to_forget, name='in_to_forget') # Read vectors / Forget Gate parameters self.W_reads_to_forget, self.b_reads_to_forget = add_weight_and_bias_params(self.num_reads * self.memory_shape[1], W_reads_to_forget, b_reads_to_forget, name='reads_to_forget') # Hidden / Forget Gate parameters self.W_hid_to_forget, self.b_hid_to_forget = add_weight_and_bias_params(self.num_units, W_hid_to_forget, b_hid_to_forget, name='hid_to_forget') # Inputs / Output Gate parameters self.W_in_to_output, self.b_in_to_output = add_weight_and_bias_params(num_inputs, W_in_to_output, b_in_to_output, name='in_to_output') # Read vectors / Output Gate parameters self.W_reads_to_output, self.b_reads_to_output = add_weight_and_bias_params(self.num_reads * self.memory_shape[1], W_reads_to_output, b_reads_to_output, name='reads_to_output') # Hidden / Output Gate parameters self.W_hid_to_output, self.b_hid_to_output = add_weight_and_bias_params(self.num_units, W_hid_to_output, b_hid_to_output, name='hid_to_output') # Inputs / Cell State parameters self.W_in_to_cell, self.b_in_to_cell = add_weight_and_bias_params(num_inputs, W_in_to_cell, b_in_to_cell, name='in_to_cell') # Read vectors / Cell State parameters self.W_reads_to_cell, self.b_reads_to_cell = add_weight_and_bias_params(self.num_reads * self.memory_shape[1], W_reads_to_cell, b_reads_to_cell, name='reads_to_cell') # Hidden / Cell State parameters self.W_hid_to_cell, self.b_hid_to_cell = add_weight_and_bias_params(self.num_units, W_hid_to_cell, b_hid_to_cell, name='hid_to_cell') def step(self, input, reads, hidden, cell, *args): if input.ndim > 2: input = input.flatten(2) if reads.ndim > 2: reads = reads.flatten(2) # Input Gate output computation activation = T.dot(input, self.W_in_to_input) + \ T.dot(reads, self.W_reads_to_input) + \ T.dot(hidden, self.W_hid_to_input) if self.b_in_to_input is not None: activation += self.b_in_to_input.dimshuffle('x', 0) if self.b_reads_to_input is not None: activation += self.b_reads_to_input.dimshuffle('x', 0) if self.b_hid_to_input is not None: activation += self.b_hid_to_input.dimshuffle('x', 0) input_gate = lasagne.nonlinearities.sigmoid(activation) # Forget Gate output computation activation = T.dot(input, self.W_in_to_forget) + \ T.dot(reads, self.W_reads_to_forget) + \ T.dot(hidden, self.W_hid_to_forget) if self.b_in_to_forget is not None: activation += self.b_in_to_forget.dimshuffle('x', 0) if self.b_reads_to_forget is not None: activation += self.b_reads_to_forget.dimshuffle('x', 0) if self.b_hid_to_forget is not None: activation += self.b_hid_to_forget.dimshuffle('x', 0) forget_gate = lasagne.nonlinearities.sigmoid(activation) # Output Gate output computation activation = T.dot(input, self.W_in_to_output) + \ T.dot(reads, self.W_reads_to_output) + \ T.dot(hidden, self.W_hid_to_output) if self.b_in_to_output is not None: activation += self.b_in_to_output.dimshuffle('x', 0) if self.b_reads_to_output is not None: activation += self.b_reads_to_output.dimshuffle('x', 0) if self.b_hid_to_output is not None: activation += self.b_hid_to_output.dimshuffle('x', 0) output_gate = lasagne.nonlinearities.sigmoid(activation) # New candidate cell state computation activation = T.dot(input, self.W_in_to_cell) + \ T.dot(reads, self.W_reads_to_cell) + \ T.dot(hidden, self.W_hid_to_cell) if self.b_in_to_cell is not None: activation += self.b_in_to_cell.dimshuffle('x', 0) if self.b_reads_to_cell is not None: activation += self.b_reads_to_cell.dimshuffle('x', 0) if self.b_hid_to_cell is not None: activation += self.b_hid_to_cell.dimshuffle('x', 0) candidate_cell_state = lasagne.nonlinearities.tanh(activation) # New cell state and hidden state computation cell_state = cell * forget_gate + candidate_cell_state * input_gate state = lasagne.nonlinearities.tanh(cell_state) * output_gate return state, cell_state def outputs_info(self, batch_size): ones_vector = T.ones((batch_size, 1)) hid_init = T.dot(ones_vector, self.hid_init) hid_init = T.unbroadcast(hid_init, 0) cell_init = T.dot(ones_vector, self.cell_init) cell_init = T.unbroadcast(cell_init, 0) return [hid_init, cell_init] class GRUController(Controller): r""" A GRU recurrent controller for the NTM. .. math :: update-gate = \sigma(x_{t} Wz_{x} + r_{t} Wz_{r} + h_{t-1} Wz_{h} + bz_{x} + bz_{r} + bz_{h}) reset-gate = \sigma(x_{t} Wr_{x} + r_{t} Wr_{r} + h_{t-1} Wr_{h} + br_{x} + br_{r} + br_{h}) s = \tanh(x_{t} Ws_{x} + r_{t} Ws_{r} + (h_{t-1} \odot reset-gate) Ws_{h}) h_{t} = (1 - update-gate) \odot s + update-gate \odot h_{t-1} Parameters ---------- incoming: a :class:`lasagne.layers.Layer` instance The layer feeding into the Neural Turing Machine. memory_shape: tuple Shape of the NTM's memory. num_units: int Number of hidden units in the controller. num_reads: int Number of read heads in the Neural Turing Machine. W_in_to_input: callable, Numpy array or Theano shared variable If callable, initializer for the weights between the input and the update gate. Otherwise a matrix with shape ``(num_inputs, num_units)`` (:math:`Wz_{x}`). b_in_to_update: callable, Numpy array, Theano shared variable or ``None`` If callable, initializer for the biases between the input and the update gate. If ``None``, the controller has no bias between the input and the update gate. Otherwise a 1D array with shape ``(num_units,)`` (:math:`bz_{x}`). W_reads_to_update: callable, Numpy array or Theano shared variable If callable, initializer for the weights between the read vector and the update gate. Otherwise a matrix with shape ``(num_reads * memory_shape[1], num_units)`` (:math:`Wz_{r}`). b_reads_to_update: callable, Numpy array, Theano shared variable or ``None`` If callable, initializer for the biases between the read vector and the update gate. If ``None``, the controller has no bias between the read vector and the update gate. Otherwise a 1D array with shape ``(num_units,)`` (:math:`bz_{r}`). W_hid_to_update: callable, Numpy array or Theano shared variable If callable, initializer for the weights between the hidden state and the update gate. Otherwise a matrix with shape ``(num_units, num_units)`` (:math:`Wz_{h}`). b_hid_to_update: callable, Numpy array, Theano shared variable or ``None`` If callable, initializer for the biases between the hidden state and the update gate. If ``None``, the controller has no bias between the hidden state and the update gate. Otherwise a 1D array with shape ``(num_units,)`` (:math:`bz_{h}`). W_in_to_reset: callable, Numpy array or Theano shared variable If callable, initializer for the weights between the input and the reset gate. Otherwise a matrix with shape ``(num_inputs, num_units)`` (:math:`Wr_{x}`). b_in_to_reset: callable, Numpy array, Theano shared variable or ``None`` If callable, initializer for the biases between the input and the reset gate. If ``None``, the controller has no bias between the input and the reset gate. Otherwise a 1D array with shape ``(num_units,)`` (:math:`br_{x}`). W_reads_to_reset: callable, Numpy array or Theano shared variable If callable, initializer for the weights between the read vector and the reset gate. Otherwise a matrix with shape ``(num_reads * memory_shape[1], num_units)`` (:math:`Wr_{r}`). b_reads_to_reset: callable, Numpy array, Theano shared variable or ``None`` If callable, initializer for the biases between the read vector and the reset gate. If ``None``, the controller has no bias between the read vector and the reset gate. Otherwise a 1D array with shape ``(num_units,)`` (:math:`br_{r}`). W_hid_to_reset: callable, Numpy array or Theano shared variable If callable, initializer for the weights between the hidden state and the reset gate. Otherwise a matrix with shape ``(num_units, num_units)`` (:math:`Wr_{h}`). b_hid_to_reset: callable, Numpy array, Theano shared variable or ``None`` If callable, initializer for the biases between the hidden state and the reset gate. If ``None``, the controller has no bias between the hidden state and the reset gate. Otherwise a 1D array with shape ``(num_units,)`` (:math:`br_{h}`). W_in_to_hid: callable, Numpy array or Theano shared variable If callable, initializer for the weights between the input and the hidden gate. Otherwise a matrix with shape ``(num_inputs, num_units)`` (:math:`Ws_{x}`). b_in_to_hid: callable, Numpy array, Theano shared variable or ``None`` If callable, initializer for the biases between the input and the hidden gate. If ``None``, the controller has no bias between the input and the hidden gate. Otherwise a 1D array with shape ``(num_units,)`` (:math:`bs_{x}`). W_reads_to_hid: callable, Numpy array or Theano shared variable If callable, initializer for the weights between the read vector and the hidden gate. Otherwise a matrix with shape ``(num_reads * memory_shape[1], num_units)`` (:math:`Ws_{r}`). b_reads_to_hid: callable, Numpy array, Theano shared variable or ``None`` If callable, initializer for the biases between the read vector and the hidden gate. If ``None``, the controller has no bias between the read vector and the hidden gate. Otherwise a 1D array with shape ``(num_units,)`` (:math:`bs_{r}`). W_hid_to_hid: callable, Numpy array or Theano shared variable If callable, initializer for the weights between the hidden state and the hidden gate. Otherwise a matrix with shape ``(num_units, num_units)`` (:math:`Ws_{h}`). b_hid_to_hid: callable, Numpy array, Theano shared variable or ``None`` If callable, initializer for the biases between the hidden state and the hidden gate. If ``None``, the controller has no bias between the hidden state and the hidden gate. Otherwise a 1D array with shape ``(num_units,)`` (:math:`bs_{h}`). hid_init: callable, np.ndarray or theano.shared Initializer for the initial hidden state (:math:`h_{0}`). learn_init: bool If ``True``, initial hidden values are learned. """ def __init__(self, incoming, memory_shape, num_units, num_reads, W_in_to_update=lasagne.init.GlorotUniform(), b_in_to_update=lasagne.init.Constant(0.), W_reads_to_update=lasagne.init.GlorotUniform(), b_reads_to_update=lasagne.init.Constant(0.), W_hid_to_update=lasagne.init.GlorotUniform(), b_hid_to_update=lasagne.init.Constant(0.), W_in_to_reset=lasagne.init.GlorotUniform(), b_in_to_reset=lasagne.init.Constant(0.), W_reads_to_reset=lasagne.init.GlorotUniform(), b_reads_to_reset=lasagne.init.Constant(0.), W_hid_to_reset=lasagne.init.GlorotUniform(), b_hid_to_reset=lasagne.init.Constant(0.), W_in_to_hid=lasagne.init.GlorotUniform(), b_in_to_hid=lasagne.init.Constant(0.), W_reads_to_hid=lasagne.init.GlorotUniform(), b_reads_to_hid=lasagne.init.Constant(0.), W_hid_to_hid=lasagne.init.GlorotUniform(), b_hid_to_hid=lasagne.init.Constant(0.), nonlinearity=lasagne.nonlinearities.rectify, hid_init=lasagne.init.GlorotUniform(), learn_init=False, **kwargs): super(GRUController, self).__init__(incoming, memory_shape, num_units, num_reads, hid_init, learn_init, **kwargs) self.nonlinearity = (lasagne.nonlinearities.identity if nonlinearity is None else nonlinearity) def add_weight_and_bias_params(input_dim, W, b, name): return (self.add_param(W, (input_dim, self.num_units), name='W_{}'.format(name)), self.add_param(b, (self.num_units,), name='b_{}'.format(name)) if b is not None else None) num_inputs = int(np.prod(self.input_shape[2:])) # Inputs / Update Gate parameters self.W_in_to_update, self.b_in_to_update = add_weight_and_bias_params(num_inputs, W_in_to_update, b_in_to_update, name='in_to_update') # Read vectors / Update Gate parameters self.W_reads_to_update, self.b_reads_to_update = add_weight_and_bias_params(self.num_reads * self.memory_shape[1], W_reads_to_update, b_reads_to_update, name='reads_to_update') # Hidden / Update Gate parameters self.W_hid_to_update, self.b_hid_to_update = add_weight_and_bias_params(self.num_units, W_hid_to_update, b_hid_to_update, name='hid_to_update') # Inputs / Reset Gate parameters self.W_in_to_reset, self.b_in_to_reset = add_weight_and_bias_params(num_inputs, W_in_to_reset, b_in_to_reset, name='in_to_reset') # Read vectors / Reset Gate parameters self.W_reads_to_reset, self.b_reads_to_reset = add_weight_and_bias_params(self.num_reads * self.memory_shape[1], W_reads_to_reset, b_reads_to_reset, name='reads_to_reset') # Hidden / Reset Gate parameters self.W_hid_to_reset, self.b_hid_to_reset = add_weight_and_bias_params(self.num_units, W_hid_to_reset, b_hid_to_reset, name='hid_to_reset') # Inputs / Hidden Gate parameters self.W_in_to_hid, self.b_in_to_hid = add_weight_and_bias_params(num_inputs, W_in_to_hid, b_in_to_hid, name='in_to_hid') # Read vectors / Hidden Gate parameters self.W_reads_to_hid, self.b_reads_to_hid = add_weight_and_bias_params(self.num_reads * self.memory_shape[1], W_reads_to_hid, b_reads_to_hid, name='reads_to_hid') # Hidden / Hidden Gate parameters self.W_hid_to_hid, self.b_hid_to_hid = add_weight_and_bias_params(self.num_units, W_hid_to_hid, b_hid_to_hid, name='hid_to_hid') def step(self, input, reads, hidden, *args): if input.ndim > 2: input = input.flatten(2) if reads.ndim > 2: reads = reads.flatten(2) # Update Gate output computation activation = T.dot(input, self.W_in_to_update) + \ T.dot(reads, self.W_reads_to_update) + \ T.dot(hidden, self.W_hid_to_update) if self.b_in_to_update is not None: activation += self.b_in_to_update.dimshuffle('x', 0) if self.b_reads_to_update is not None: activation += self.b_reads_to_update.dimshuffle('x', 0) if self.b_hid_to_update is not None: activation += self.b_hid_to_update.dimshuffle('x', 0) update_gate = lasagne.nonlinearities.sigmoid(activation) # Reset Gate output computation activation = T.dot(input, self.W_in_to_reset) + \ T.dot(reads, self.W_reads_to_reset) + \ T.dot(hidden, self.W_hid_to_reset) if self.b_in_to_reset is not None: activation += self.b_in_to_reset.dimshuffle('x', 0) if self.b_reads_to_reset is not None: activation += self.b_reads_to_reset.dimshuffle('x', 0) if self.b_hid_to_reset is not None: activation += self.b_hid_to_reset.dimshuffle('x', 0) reset_gate = lasagne.nonlinearities.sigmoid(activation) # Hidden Gate output computation activation = T.dot(input, self.W_in_to_hid) + \ T.dot(reads, self.W_reads_to_hid) + \ T.dot((hidden * reset_gate), self.W_hid_to_hid) if self.b_in_to_hid is not None: activation += self.b_in_to_hid.dimshuffle('x', 0) if self.b_reads_to_hid is not None: activation += self.b_reads_to_hid.dimshuffle('x', 0) if self.b_hid_to_hid is not None: activation += self.b_hid_to_hid.dimshuffle('x', 0) hidden_gate = lasagne.nonlinearities.tanh(activation) # New hidden state computation ones = T.ones(update_gate.shape) state = (ones - update_gate) * hidden_gate + update_gate * hidden return state, state def outputs_info(self, batch_size): ones_vector = T.ones((batch_size, 1)) hid_init = T.dot(ones_vector, self.hid_init) hid_init = T.unbroadcast(hid_init, 0) return [hid_init, hid_init]
{ "content_hash": "389f41f53a01b8cbc4a8da9ab22cd98f", "timestamp": "", "source": "github", "line_count": 758, "max_line_length": 122, "avg_line_length": 55.098944591029024, "alnum_prop": 0.6092661319286484, "repo_name": "snipsco/ntm-lasagne", "id": "525eca495e65dd354bc619b9ab4ba13680861bc1", "size": "41765", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "ntm/controllers.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "102276" } ], "symlink_target": "" }
"""Helper functions for package setup. """ import ast import sys import subprocess import pkg_resources class SetupHelper(object): """ SetupHelper streamlines the population of setup() function calls with contents from __init__.py and README.md. """ def __init__(self, initfile="__init__.py", readmefile="README.md"): self.author, self.email, self.license = self.get_init(initfile) self.author = ", ".join(self.author) self.long_description = self.get_long_description(readmefile) def check_version(self, name, majorv=2, minorv=7): """Make sure the package runs on the supported Python version""" if sys.version_info.major == majorv and sys.version_info.minor != minorv: sys.stderr.write( "ERROR: %s is only for >= Python %d.%d but you are running %d.%d\n" % (name, majorv, minorv, sys.version_info.major, sys.version_info.minor) ) sys.exit(1) def get_init(self, filename="__init__.py"): """Get various info from the package without importing them""" with open(filename) as init_file: module = ast.parse(init_file.read()) itr = lambda x: ( ast.literal_eval(node.value) for node in ast.walk(module) if isinstance(node, ast.Assign) and node.targets[0].id == x ) try: return ( next(itr("__author__")), next(itr("__email__")), next(itr("__license__")), ) except StopIteration as stop_exception: raise ValueError( "One of author, email, license cannot be found in {}".format(filename) ) from stop_exception def missing_requirements(self, specifiers): """Find what's missing""" for specifier in specifiers: try: pkg_resources.require(specifier) except pkg_resources.DistributionNotFound: yield specifier def install_requirements(self, requires): """Install the listed requirements""" # Temporarily install dependencies required by setup.py before trying to import them. sys.path[0:0] = ["setup-requires"] pkg_resources.working_set.add_entry("setup-requires") to_install = list(self.missing_requirements(requires)) if to_install: cmd = [ sys.executable, "-m", "pip", "install", "-t", "setup-requires", ] + to_install subprocess.call(cmd) def get_long_description(self, filename="README.md"): """I really prefer Markdown to reStructuredText. PyPi does not.""" return open(filename).read()
{ "content_hash": "e96753c7e1bb8af7a5e16700b41b1458", "timestamp": "", "source": "github", "line_count": 80, "max_line_length": 93, "avg_line_length": 35.2125, "alnum_prop": 0.5686900958466453, "repo_name": "tanghaibao/goatools", "id": "fabadc9973325d107e06a92bbb3105eedc4f4fb8", "size": "2864", "binary": false, "copies": "1", "ref": "refs/heads/main", "path": "setup_helper.py", "mode": "33188", "license": "bsd-2-clause", "language": [ { "name": "Jupyter Notebook", "bytes": "316670" }, { "name": "Makefile", "bytes": "25213" }, { "name": "Python", "bytes": "146769147" }, { "name": "Shell", "bytes": "1107" } ], "symlink_target": "" }
from collections import OrderedDict import numpy as np from np_model_base import NNModelBase from utils import softmax, safe_macro_f1 __author__ = "Christopher Potts" __version__ = "CS224u, Stanford, Spring 2022" class RNNClassifier(NNModelBase): """ Simple Recurrent Neural Network for classification problems. The structure of the network is as follows: y /| b | W_hy | h_0 -- W_hh -- h_1 -- W_hh -- h_2 -- W_hh -- h_3 | | | | W_xh | W_xh | W_xh | | | x_1 x_2 x_3 where x_i are the inputs, h_j are the hidden units, and y is a one-hot vector indicating the true label for this sequence. The parameters are W_xh, W_hh, W_hy, and the bias b. The inputs x_i come from a user-supplied embedding space for the vocabulary. These can either be random or pretrained. The network equations in brief: h[t] = tanh(x[t].dot(W_xh) + h[t-1].dot(W_hh)) y = softmax(h[-1].dot(W_hy) + b) The network will work for any kind of classification task. Parameters ---------- vocab : list of str This should be the vocabulary. It needs to be aligned with `embedding` in the sense that the ith element of vocab should be represented by the ith row of `embedding`. Ignored if `use_embedding=False`. embedding : np.array or None Each row represents a word in `vocab`, as described above. use_embedding : bool If True, then incoming examples are presumed to be lists of elements of the vocabulary. If False, then they are presumed to be lists of vectors. In this case, the `embedding` and `embed_dim` arguments are ignored, since no embedding is needed and `embed_dim` is set by the nature of the incoming vectors. embed_dim : int Dimensionality for the initial embeddings. This is ignored if `embedding` is not None, as a specified value there determines this value. Also ignored if `use_embedding=False`. All of the above are set as attributes. In addition, `self.embed_dim` is set to the dimensionality of the input representations. """ def __init__(self, vocab, embedding=None, use_embedding=True, embed_dim=50, **kwargs): self.vocab = vocab self.vocab_lookup = dict(zip(self.vocab, range(len(self.vocab)))) self.use_embedding = use_embedding self._embed_dim = embed_dim if self.use_embedding: if embedding is None: embedding = self._define_embedding_matrix( len(self.vocab), embed_dim) self.embedding = embedding self._embed_dim = self.embedding.shape[1] super().__init__(**kwargs) self.params += ['embedding', 'embed_dim'] @property def embed_dim(self): return self._embed_dim @embed_dim.setter def embed_dim(self, value): self._embed_dim = value self.embedding = self._define_embedding_matrix( len(self.vocab), value) def fit(self, X, y): if not self.use_embedding: self._embed_dim = len(X[0][0]) return super().fit(X, y) def initialize_parameters(self): """ Attributes ---------- output_dim : int Set based on the length of the labels in `training_data`. This happens in `self.prepare_output_data`. W_xh : np.array Dense connections between the word representations and the hidden layers. Random initialization. W_hh : np.array Dense connections between the hidden representations. Random initialization. W_hy : np.array Dense connections from the final hidden layer to the output layer. Random initialization. b : np.array Output bias. Initialized to all 0. """ self.W_xh = self.weight_init(self.embed_dim, self.hidden_dim) self.W_hh = self.weight_init(self.hidden_dim, self.hidden_dim) self.W_hy = self.weight_init(self.hidden_dim, self.output_dim) self.b = np.zeros(self.output_dim) def forward_propagation(self, seq): """ Parameters ---------- seq : list Variable length sequence of elements in the vocabulary. Returns ---------- h : np.array Each row is for a hidden representation. The first row is an all-0 initial state. The others correspond to the inputs in seq. y : np.array The vector of predictions. """ h = np.zeros((len(seq)+1, self.hidden_dim)) for t in range(1, len(seq)+1): if self.use_embedding: word_rep = self.get_word_rep(seq[t-1]) else: word_rep = seq[t-1] h[t] = self.hidden_activation( word_rep.dot(self.W_xh) + h[t-1].dot(self.W_hh)) y = softmax(h[-1].dot(self.W_hy) + self.b) return h, y def backward_propagation(self, h, predictions, seq, labels): """ Parameters ---------- h : np.array, shape (m, self.hidden_dim) Matrix of hidden states. `m` is the shape of the current example (which is allowed to vary). predictions : np.array, dimension `len(self.classes)` Vector of predictions. seq : list of lists The original example. labels : np.array, dimension `len(self.classes)` One-hot vector giving the true label. Returns ------- tuple The matrices of derivatives (d_W_hy, d_b, d_W_hh, d_W_xh). """ # Output errors: y_err = predictions y_err[np.argmax(labels)] -= 1 h_err = y_err.dot(self.W_hy.T) * self.d_hidden_activation(h[-1]) d_W_hy = np.outer(h[-1], y_err) d_b = y_err # For accumulating the gradients through time: d_W_hh = np.zeros(self.W_hh.shape) d_W_xh = np.zeros(self.W_xh.shape) # Back-prop through time; the +1 is because the 0th # hidden state is the all-0s initial state. num_steps = len(seq)+1 for t in reversed(range(1, num_steps)): d_W_hh += np.outer(h[t], h_err) if self.use_embedding: word_rep = self.get_word_rep(seq[t-1]) else: word_rep = seq[t-1] d_W_xh += np.outer(word_rep, h_err) h_err = h_err.dot(self.W_hh.T) * self.d_hidden_activation(h[t]) return (d_W_hy, d_b, d_W_hh, d_W_xh) def update_parameters(self, gradients): d_W_hy, d_b, d_W_hh, d_W_xh = gradients self.W_hy -= self.eta * d_W_hy self.b -= self.eta * d_b self.W_hh -= self.eta * d_W_hh self.W_xh -= self.eta * d_W_xh def score(self, X, y): preds = self.predict(X) return safe_macro_f1(y, preds) def simple_example(): from sklearn.metrics import accuracy_score import utils utils.fix_random_seeds() vocab = ['a', 'b', '$UNK'] # No b before an a train = [ [list('ab'), 'good'], [list('aab'), 'good'], [list('abb'), 'good'], [list('aabb'), 'good'], [list('ba'), 'bad'], [list('baa'), 'bad'], [list('bba'), 'bad'], [list('bbaa'), 'bad'], [list('aba'), 'bad']] test = [ [list('baaa'), 'bad'], [list('abaa'), 'bad'], [list('bbaa'), 'bad'], [list('aaab'), 'good'], [list('aaabb'), 'good']] X_train, y_train = zip(*train) X_test, y_test = zip(*test) mod = RNNClassifier(vocab) print(mod) mod.fit(X_train, y_train) preds = mod.predict(X_test) print("\nPredictions:") for ex, pred, gold in zip(X_test, preds, y_test): score = "correct" if pred == gold else "incorrect" print("{0:>6} - predicted: {1:>4}; actual: {2:>4} - {3}".format( "".join(ex), pred, gold, score)) return accuracy_score(y_test, preds) if __name__ == '__main__': simple_example()
{ "content_hash": "fe32abf8d5e69f23b630e6a209633d52", "timestamp": "", "source": "github", "line_count": 263, "max_line_length": 75, "avg_line_length": 32.47148288973384, "alnum_prop": 0.534192037470726, "repo_name": "cgpotts/cs224u", "id": "9f5c206053528e475fee0195408922ab68817537", "size": "8540", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "np_rnn_classifier.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Jupyter Notebook", "bytes": "4297079" }, { "name": "Python", "bytes": "364552" } ], "symlink_target": "" }
import unittest from airflow import DAG, configuration, models from airflow.contrib.sensors.weekday_sensor import DayOfWeekSensor from airflow.contrib.utils.weekday import WeekDay from airflow.exceptions import AirflowSensorTimeout from airflow.models import DagBag, TaskFail from airflow.settings import Session from airflow.utils.timezone import datetime DEFAULT_DATE = datetime(2018, 12, 10) WEEKDAY_DATE = datetime(2018, 12, 20) WEEKEND_DATE = datetime(2018, 12, 22) TEST_DAG_ID = 'weekday_sensor_dag' DEV_NULL = '/dev/null' class DayOfWeekSensorTests(unittest.TestCase): def setUp(self): configuration.load_test_config() self.dagbag = DagBag( dag_folder=DEV_NULL, include_examples=True ) self.args = { 'owner': 'airflow', 'start_date': DEFAULT_DATE } dag = DAG(TEST_DAG_ID, default_args=self.args) self.dag = dag def tearDown(self): session = Session() session.query(models.TaskInstance).filter_by( dag_id=TEST_DAG_ID).delete() session.query(TaskFail).filter_by( dag_id=TEST_DAG_ID).delete() session.commit() session.close() def test_weekday_sensor_true(self): t = DayOfWeekSensor( task_id='weekday_sensor_check_true', week_day='Thursday', use_task_execution_day=True, dag=self.dag) t.run(start_date=WEEKDAY_DATE, end_date=WEEKDAY_DATE, ignore_ti_state=True) def test_weekday_sensor_false(self): t = DayOfWeekSensor( task_id='weekday_sensor_check_false', poke_interval=1, timeout=2, week_day='Tuesday', use_task_execution_day=True, dag=self.dag) with self.assertRaises(AirflowSensorTimeout): t.run(start_date=WEEKDAY_DATE, end_date=WEEKDAY_DATE, ignore_ti_state=True) def test_invalid_weekday_number(self): invalid_week_day = 'Thsday' with self.assertRaisesRegexp(AttributeError, 'Invalid Week Day passed: "{}"'.format( invalid_week_day)): DayOfWeekSensor( task_id='weekday_sensor_invalid_weekday_num', week_day=invalid_week_day, use_task_execution_day=True, dag=self.dag) def test_weekday_sensor_with_enum(self): week_day = WeekDay.THURSDAY t = DayOfWeekSensor( task_id='weekday_sensor_check_true', week_day=WeekDay.THURSDAY, use_task_execution_day=True, dag=self.dag) t.run(start_date=WEEKDAY_DATE, end_date=WEEKDAY_DATE, ignore_ti_state=True) self.assertEqual(t.week_day, week_day) def test_weekday_sensor_with_enum_set(self): week_day = {WeekDay.THURSDAY} t = DayOfWeekSensor( task_id='weekday_sensor_check_true', week_day=week_day, use_task_execution_day=True, dag=self.dag) t.run(start_date=WEEKDAY_DATE, end_date=WEEKDAY_DATE, ignore_ti_state=True) self.assertEqual(t.week_day, week_day) def test_weekday_sensor_with_enum_set_2_items(self): week_day = {WeekDay.THURSDAY, WeekDay.FRIDAY} t = DayOfWeekSensor( task_id='weekday_sensor_check_true', week_day=week_day, use_task_execution_day=True, dag=self.dag) t.run(start_date=WEEKDAY_DATE, end_date=WEEKDAY_DATE, ignore_ti_state=True) self.assertEqual(t.week_day, week_day) def test_weekday_sensor_with_string_set(self): week_day = {'Thursday'} t = DayOfWeekSensor( task_id='weekday_sensor_check_true', week_day=week_day, use_task_execution_day=True, dag=self.dag) t.run(start_date=WEEKDAY_DATE, end_date=WEEKDAY_DATE, ignore_ti_state=True) self.assertEqual(t.week_day, week_day) def test_weekday_sensor_with_string_set_2_items(self): week_day = {'Thursday', 'Friday'} t = DayOfWeekSensor( task_id='weekday_sensor_check_true', week_day=week_day, use_task_execution_day=True, dag=self.dag) t.run(start_date=WEEKDAY_DATE, end_date=WEEKDAY_DATE, ignore_ti_state=True) self.assertEqual(t.week_day, week_day) def test_weekday_sensor_with_invalid_type(self): invalid_week_day = ['Thsday'] with self.assertRaisesRegexp(TypeError, 'Unsupported Type for week_day parameter:' ' {}. It should be one of str, set or ' 'Weekday enum type'.format(type(invalid_week_day)) ): DayOfWeekSensor( task_id='weekday_sensor_check_true', week_day=invalid_week_day, use_task_execution_day=True, dag=self.dag) def test_weekday_sensor_timeout_with_set(self): t = DayOfWeekSensor( task_id='weekday_sensor_check_false', poke_interval=1, timeout=2, week_day={WeekDay.MONDAY, WeekDay.TUESDAY}, use_task_execution_day=True, dag=self.dag) with self.assertRaises(AirflowSensorTimeout): t.run(start_date=WEEKDAY_DATE, end_date=WEEKDAY_DATE, ignore_ti_state=True)
{ "content_hash": "53645a46e5dd218124fe4566f7bcc2e9", "timestamp": "", "source": "github", "line_count": 143, "max_line_length": 87, "avg_line_length": 38.41258741258741, "alnum_prop": 0.5876570180229382, "repo_name": "r39132/airflow", "id": "ac8a3354e6310445b55137d99be4174b9702bac3", "size": "6307", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "tests/contrib/sensors/test_weekday_sensor.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "CSS", "bytes": "12126" }, { "name": "Dockerfile", "bytes": "4111" }, { "name": "HTML", "bytes": "128531" }, { "name": "JavaScript", "bytes": "22118" }, { "name": "Mako", "bytes": "1284" }, { "name": "Python", "bytes": "5928206" }, { "name": "Shell", "bytes": "41869" } ], "symlink_target": "" }
from tastypie.resources import ModelResource from tastypie.constants import ALL from tastypie import fields from kvtags.models import * class TagResource(ModelResource): kv_pairs = fields.ToManyField('kvtags.api.KeyValueResource', 'kv_pairs', full=True) class Meta: queryset = Tag.objects.all() filtering = { "key": ALL } resource_name = 'tag' excludes = ['created', 'updated'] include_resource_uri = False class KeyValueResource(ModelResource): tag = fields.ForeignKey(TagResource, 'tag') class Meta: queryset = KeyValue.objects.all() filtering = { "tag": ALL, "key": ALL, "value": ALL } resource_name = 'tag-kv' include_resource_uri = False class TaggedItemResource(ModelResource): tag = fields.ForeignKey(TagResource, 'tag') class Meta: queryset = TaggedItem.objects.all() resource_name = 'tagged-item'
{ "content_hash": "3013284e60319eb8129f24df23cb8820", "timestamp": "", "source": "github", "line_count": 39, "max_line_length": 87, "avg_line_length": 25.41025641025641, "alnum_prop": 0.6185671039354188, "repo_name": "ozen/django-kvtags", "id": "029223c4fcbde71cf8c3b8ded6815bb47055c97a", "size": "991", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "kvtags/api.py", "mode": "33188", "license": "mit", "language": [ { "name": "HTML", "bytes": "860" }, { "name": "Python", "bytes": "30283" } ], "symlink_target": "" }
import os COV = None if os.environ.get('FLASK_COVERAGE'): import coverage COV = coverage.coverage(branch=True, include='app/*') COV.start() from app import create_app, db from app.models import Category, Item, User, Message from flask.ext.script import Manager, Shell from flask.ext.migrate import Migrate, MigrateCommand app = create_app(os.getenv('FLASK_CONFIG') or 'default') manager = Manager(app) migrate = Migrate(app, db) def make_shell_context(): return dict(app=app, db=db, Category=Category, Item=Item, User=User, Message=Message) manager.add_command("shell", Shell(make_context=make_shell_context)) manager.add_command('db', MigrateCommand) @manager.command def test(coverage=False): """Run the unit/integration tests. With coverage also functional tests""" path = os.path.dirname(os.path.abspath(__file__)) if coverage and not os.environ.get('FLASK_COVERAGE'): import sys os.environ['FLASK_COVERAGE'] = '1' os.execvp(sys.executable, [sys.executable] + sys.argv) import unittest tests_dir = os.path.join(path,"tests") tests = unittest.TestLoader().discover(tests_dir) unittest.TextTestRunner(verbosity=2).run(tests) if COV: COV.stop() COV.save() print('Coverage Summary:') COV.report() basedir = os.path.abspath(os.path.dirname(__file__)) covdir = os.path.join(basedir, 'tmp/coverage') COV.html_report(directory=covdir) print('HTML version: file://%s/index.html' % covdir) COV.erase() @manager.command def acceptance_test(): """Run the functional tests.""" import unittest path = os.path.dirname(os.path.abspath(__file__)) tests_dir = os.path.join(path,"tests/functional") tests = unittest.TestLoader().discover(tests_dir) unittest.TextTestRunner(verbosity=2).run(tests) @manager.command def deploy(): """Run deployment tasks.""" from flask.ext.migrate import upgrade # migrate database to latest revision upgrade() # create categories Category.insert_categories() if __name__ == '__main__': manager.run()
{ "content_hash": "ef19c1d9c3fd27a0ee6c8c95653868eb", "timestamp": "", "source": "github", "line_count": 74, "max_line_length": 75, "avg_line_length": 27.62162162162162, "alnum_prop": 0.7025440313111546, "repo_name": "rosariomgomez/tradyfit", "id": "f835d6b487798b46a9135a8e3be93abc283a76ff", "size": "2090", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "vagrant/tradyfit/manage.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "8440" }, { "name": "HTML", "bytes": "32116" }, { "name": "JavaScript", "bytes": "776" }, { "name": "Mako", "bytes": "412" }, { "name": "Python", "bytes": "170903" }, { "name": "Ruby", "bytes": "546" }, { "name": "Shell", "bytes": "564" } ], "symlink_target": "" }
"""Run the py->rst conversion and run all examples. Steps are: analyze example index file for example py filenames check for any filenames in example directory not included do py to rst conversion, writing into build directory run """ # ----------------------------------------------------------------------------- # Library imports # ----------------------------------------------------------------------------- # Stdlib imports import os from os.path import join as pjoin, abspath import sys import shutil from subprocess import check_call from glob import glob # Third-party imports # We must configure the mpl backend before making any further mpl imports import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt from matplotlib._pylab_helpers import Gcf # ----------------------------------------------------------------------------- # Function defintions # ----------------------------------------------------------------------------- # These global variables let show() be called by the scripts in the usual # manner, but when generating examples, we override it to write the figures to # files with a known name (derived from the script name) plus a counter figure_basename = None # We must change the show command to save instead def show(): allfm = Gcf.get_all_fig_managers() for fcount, fm in enumerate(allfm): fm.canvas.figure.savefig('%s_%02i.png' % (figure_basename, fcount + 1)) _mpl_show = plt.show plt.show = show # ----------------------------------------------------------------------------- # Main script # ----------------------------------------------------------------------------- # Where things are EG_INDEX_FNAME = abspath('examples_index.rst') EG_SRC_DIR = abspath('examples') # Work in examples directory os.chdir('examples_built') if not os.getcwd().endswith(pjoin('doc', 'examples_built')): raise OSError('This must be run from the doc directory') # Copy the py files; check they are in the examples list and warn if not eg_index_contents = open(EG_INDEX_FNAME, 'rt').read() # Here I am adding an extra step. The list of examples to be executed need # also to be added in the following file (valid_examples.txt). This helps # with debugging the examples and the documentation only a few examples at # the time. flist_name = pjoin(os.path.dirname(os.getcwd()), 'examples', 'valid_examples.txt') flist = open(flist_name, "r") validated_examples = flist.readlines() flist.close() # Parse "#" in lines validated_examples = [line.split("#", 1)[0] for line in validated_examples] # Remove leading and trailing white space from example names validated_examples = [line.strip() for line in validated_examples] # Remove blank lines validated_examples = list(filter(None, validated_examples)) for example in validated_examples: fullpath = pjoin(EG_SRC_DIR, example) if not example.endswith(".py"): print("%s not a python file, skipping." % example) continue elif not os.path.isfile(fullpath): print("Cannot find file, %s, skipping." % example) continue shutil.copyfile(fullpath, example) # Check that example file is included in the docs file_root = example[:-3] if file_root not in eg_index_contents: msg = "Example, %s, not in index file %s." msg = msg % (example, EG_INDEX_FNAME) print(msg) # Run the conversion from .py to rst file check_call('python ../../tools/ex2rst --project dipy --outdir . .', shell=True) # added the path so that scripts can import other scripts on the same directory sys.path.insert(0, os.getcwd()) # Execute each python script in the directory. if not os.path.isdir('fig'): os.mkdir('fig') use_xvfb = os.environ.get('TEST_WITH_XVFB', False) if use_xvfb: from xvfbwrapper import Xvfb display = Xvfb(width=1920, height=1080) display.start() for script in validated_examples: namespace = {} figure_basename = os.path.join('fig', os.path.splitext(script)[0]) print(script) exec(open(script).read(), namespace) plt.close('all') del namespace if use_xvfb: display.stop() # clean up stray images, pickles, npy files, etc for globber in ('*.nii.gz', '*.dpy', '*.npy', '*.pkl', '*.mat', '*.img', '*.hdr'): for fname in glob(globber): os.unlink(fname)
{ "content_hash": "6d0d7886b454803086c9d57e5f41afca", "timestamp": "", "source": "github", "line_count": 132, "max_line_length": 79, "avg_line_length": 33.15909090909091, "alnum_prop": 0.6154900616860863, "repo_name": "villalonreina/dipy", "id": "d34ab28ff7ce359d775f568201fcca1352ee9177", "size": "4399", "binary": false, "copies": "4", "ref": "refs/heads/master", "path": "tools/make_examples.py", "mode": "33261", "license": "bsd-3-clause", "language": [ { "name": "C", "bytes": "2932" }, { "name": "Makefile", "bytes": "3639" }, { "name": "Python", "bytes": "3100258" } ], "symlink_target": "" }
"""Grainbin tasks module.""" from celery.utils.log import get_task_logger from fm_server.celery_runner import app from .grainbin_update import process_grainbin_update LOGGER = get_task_logger("fm.grainbin.tasks") @app.task(name="grainbin.update") def grainbin_update(info): """Celery task for grainbin update messages.""" LOGGER.debug(f"Received grainbin update from {info['name']}") return_code = process_grainbin_update(info) if return_code is True: LOGGER.debug(f"Processed grainbin update from {info['name']}") else: LOGGER.error(f"Failed to process grainbin update from {info['name']}") return return_code
{ "content_hash": "f520de93c8764b9f01d3bd6a5b0efd4b", "timestamp": "", "source": "github", "line_count": 24, "max_line_length": 78, "avg_line_length": 27.5, "alnum_prop": 0.7090909090909091, "repo_name": "nstoik/farm_monitor", "id": "11dbfc0f4e04a20a0c0037d4aafff7c6ed1b13aa", "size": "660", "binary": false, "copies": "1", "ref": "refs/heads/main", "path": "server/fm_server/grainbin/tasks.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Dockerfile", "bytes": "18259" }, { "name": "HCL", "bytes": "1534" }, { "name": "HTML", "bytes": "611" }, { "name": "JavaScript", "bytes": "268" }, { "name": "Mako", "bytes": "494" }, { "name": "Python", "bytes": "242717" }, { "name": "Shell", "bytes": "2937" }, { "name": "TypeScript", "bytes": "18970" }, { "name": "Vue", "bytes": "14394" } ], "symlink_target": "" }
def post_save(sender, instance, created, **kwargs): """ Receives a signal just after the object is saved. """ if created: instance.at_first_save() def remove_attributes_on_delete(sender, instance, **kwargs): instance.db_attributes.all().delete()
{ "content_hash": "71d558a29b9478697ea36400654c8950", "timestamp": "", "source": "github", "line_count": 10, "max_line_length": 60, "avg_line_length": 27.6, "alnum_prop": 0.6594202898550725, "repo_name": "feend78/evennia", "id": "49a24570664b08c91c43c7a4433ce95f41ff3ed6", "size": "318", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "evennia/typeclasses/signals.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "CSS", "bytes": "42859" }, { "name": "Emacs Lisp", "bytes": "2734" }, { "name": "HTML", "bytes": "20118" }, { "name": "JavaScript", "bytes": "32388" }, { "name": "Python", "bytes": "2734770" }, { "name": "Shell", "bytes": "4237" } ], "symlink_target": "" }
"""Fake HPE client for testing LeftHand without installing the client.""" import sys import mock from cinder.tests.unit import fake_hpe_client_exceptions as hpeexceptions hpelefthand = mock.Mock() hpelefthand.version = "2.1.0" hpelefthand.exceptions = hpeexceptions sys.modules['hpelefthandclient'] = hpelefthand
{ "content_hash": "98f22378464cfa8a98f26b1743e839f6", "timestamp": "", "source": "github", "line_count": 13, "max_line_length": 73, "avg_line_length": 24.46153846153846, "alnum_prop": 0.789308176100629, "repo_name": "bswartz/cinder", "id": "2360de0977f75d0a0de6ebb79c71914e26ac2e44", "size": "988", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "cinder/tests/unit/fake_hpe_lefthand_client.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Python", "bytes": "16345375" }, { "name": "Shell", "bytes": "8187" } ], "symlink_target": "" }
DESCRIPTION = "PyAnalog - Weather forecasting with analogous past dates." DISTNAME = 'pyanalog' MAINTAINER = 'Francisco M. Alvarez' MAINTAINER_EMAIL = '[email protected]' URL = 'https://github.com/mogismog/PyAnalog' LICENSE = 'Apache v2 License' DOWNLOAD_URL = 'https://github.com/mogismog/PyAnalog' VERSION = '0.1 dev' def configuration(parent_package='', top_path=None): from numpy.distutils.misc_util import Configuration config = Configuration('pyanalog', parent_package, top_path) config.add_extension('fortran_analog', sources=['./pyanalog/analog/fortran_routines.f90', './pyanalog/analog/fortran_analog.pyf', ]) return config if __name__ == '__main__': from numpy.distutils.core import setup setup(maintainer=MAINTAINER, maintainer_email=MAINTAINER_EMAIL, description=DESCRIPTION, license=LICENSE, url=URL, version=VERSION, download_url=DOWNLOAD_URL, packages = ['pyanalog','pyanalog.analog'], author='Francisco Alvarez', author_email='[email protected]', install_requires=["numpy"], **configuration(top_path='').todict())
{ "content_hash": "0d057671ec3bb82d1004a99c8c227ebd", "timestamp": "", "source": "github", "line_count": 35, "max_line_length": 115, "avg_line_length": 35.542857142857144, "alnum_prop": 0.6463022508038585, "repo_name": "mogismog/PyAnalog", "id": "728d1cf1e343fdba5d301ab01cce4600a39ddbfa", "size": "1346", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "setup.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "FORTRAN", "bytes": "37287" }, { "name": "Python", "bytes": "18976" } ], "symlink_target": "" }
import datetime import time from gppylib.operations.segment_reconfigurer import SegmentReconfigurer, FTS_PROBE_QUERY from gppylib.test.unit.gp_unittest import GpTestCase import pg import pgdb import mock from mock import Mock, patch, call, MagicMock import contextlib class MyDbUrl: pass class SegmentReconfiguerTestCase(GpTestCase): db = 'database' host = 'mdw' port = 15432 user = 'postgres' passwd = 'passwd' timeout = 30 def setUp(self): self.conn = Mock(name='conn') self.logger = Mock() self.worker_pool = Mock() self.db_url = db_url = MyDbUrl() db_url.pgdb = self.db db_url.pghost = self.host db_url.pgport = self.port db_url.pguser = self.user db_url.pgpass = self.passwd self.connect = MagicMock() cm = contextlib.nested( patch('gppylib.db.dbconn.connect', new=self.connect), patch('gppylib.db.dbconn.DbURL', return_value=self.db_url), patch('pg.connect'), ) cm.__enter__() self.cm = cm def tearDown(self): self.cm.__exit__(None, None, None) def test_it_triggers_fts_probe(self): reconfigurer = SegmentReconfigurer(logger=self.logger, worker_pool=self.worker_pool, timeout=self.timeout) reconfigurer.reconfigure() pg.connect.assert_has_calls([ call(self.db, self.host, self.port, None, self.user, self.passwd), call().query(FTS_PROBE_QUERY), call().close(), ] ) def test_it_retries_the_connection(self): self.connect.configure_mock(side_effect=[pgdb.DatabaseError, pgdb.DatabaseError, self.conn]) reconfigurer = SegmentReconfigurer(logger=self.logger, worker_pool=self.worker_pool, timeout=self.timeout) reconfigurer.reconfigure() self.connect.assert_has_calls([call(self.db_url), call(self.db_url), call(self.db_url), ]) self.conn.close.assert_any_call() @patch('time.time') def test_it_gives_up_after_30_seconds(self, now_mock): start_datetime = datetime.datetime(2018, 5, 9, 16, 0, 0) start_time = time.mktime(start_datetime.timetuple()) now_mock.configure_mock(return_value=start_time) def fail_for_half_a_minute(): new_time = start_time for i in xrange(2): # leap forward 15 seconds new_time += self.timeout / 2 now_mock.configure_mock(return_value=new_time) yield pgdb.DatabaseError self.connect.configure_mock(side_effect=fail_for_half_a_minute()) reconfigurer = SegmentReconfigurer(logger=self.logger, worker_pool=self.worker_pool, timeout=self.timeout) with self.assertRaises(RuntimeError) as context: reconfigurer.reconfigure() self.assertEqual("Mirror promotion did not complete in {0} seconds.".format(self.timeout), context.exception.message) self.connect.assert_has_calls([call(self.db_url), call(self.db_url), ]) self.conn.close.assert_has_calls([])
{ "content_hash": "b556d0cb93d13e01a3649aea18b1b04d", "timestamp": "", "source": "github", "line_count": 94, "max_line_length": 129, "avg_line_length": 33.797872340425535, "alnum_prop": 0.6185080264400378, "repo_name": "jmcatamney/gpdb", "id": "7db1c70d0e7d40578faf43a0d5b3e736ea796cf7", "size": "3177", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "gpMgmt/bin/gppylib/operations/test/unit/test_unit_segment_reconfigurer.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Assembly", "bytes": "3724" }, { "name": "Awk", "bytes": "836" }, { "name": "Batchfile", "bytes": "12854" }, { "name": "C", "bytes": "42498841" }, { "name": "C++", "bytes": "14366259" }, { "name": "CMake", "bytes": "38452" }, { "name": "Csound Score", "bytes": "223" }, { "name": "DTrace", "bytes": "3873" }, { "name": "Dockerfile", "bytes": "11932" }, { "name": "Emacs Lisp", "bytes": "3488" }, { "name": "Fortran", "bytes": "14863" }, { "name": "GDB", "bytes": "576" }, { "name": "Gherkin", "bytes": "335208" }, { "name": "HTML", "bytes": "53484" }, { "name": "JavaScript", "bytes": "23969" }, { "name": "Lex", "bytes": "229556" }, { "name": "M4", "bytes": "111147" }, { "name": "Makefile", "bytes": "496239" }, { "name": "Objective-C", "bytes": "38376" }, { "name": "PLpgSQL", "bytes": "8009512" }, { "name": "Perl", "bytes": "798767" }, { "name": "PowerShell", "bytes": "422" }, { "name": "Python", "bytes": "3000118" }, { "name": "Raku", "bytes": "698" }, { "name": "Roff", "bytes": "32437" }, { "name": "Ruby", "bytes": "77585" }, { "name": "SCSS", "bytes": "339" }, { "name": "Shell", "bytes": "451713" }, { "name": "XS", "bytes": "6983" }, { "name": "Yacc", "bytes": "674092" }, { "name": "sed", "bytes": "1231" } ], "symlink_target": "" }
class SprinklerQueueElementControl( ): def __init__(self,redis_handle,io_control,alarm_queue,counter_devices): self.redis = redis self.alarm_queue = alarm_queue self.io_control = io_control self.counter_devices = counter_devices self.app_files = load_files.APP_FILES(redis_handle) self.redis_handle.hset("CONTROL_VARIBALES","MAX_FLOW_TIME",0) def check_for_excessive_flow_rate( self,*args ): flow_value = float( check_redis_value( "global_flow_sensor_corrected" ) ) max_flow = float( check_redis_value( "FLOW_CUT_OFF")) if max_flow == 0: return # feature is not turned on compact_data = self.redis.lindex( "QUEUES:SPRINKLER:IRRIGATION_CELL_QUEUE",0 ) json_string = base64.b64decode(compact_data) json_object = json.loads(json_string) run_time = int( json_object["run_time"]) elasped_time = int(json_object["elasped_time"]) schedule_step = int(json_object["step"]) step_number = json_object["step"] schedule_name = json_object["schedule_name"] if elasped_time < 3 : return # let flow stabilize if flow_value > max_flow: over_load_time = int(self.redis.hget("CONTROL_VARIBALES","MAX_FLOW_TIME")) +1 if over_load_time > 2: self.redis.hset("CONTROL_VARIABLES","SKIP_STATION","ON") self.alarm_queue.store_past_action_queue("IRRIGATION:FLOW_ABORT","RED", { "schedule_name":json_object["schedule_name"],"step_number":json_object["step"], "flow_value":flow_value,"max_flow":max_flow } ) self.redis.hset("CONTROL_VARIBALES","MAX_FLOW_TIME",0) else: self.redis.hset("CONTROL_VARIBALES","MAX_FLOW_TIME",over_load_time) else: self.redis.hset("CONTROL_VARIBALES","MAX_FLOW_TIME",0) def check_redis_value( self,key): value = redis.hget( "CONTROL_VARIABLES",key ) if value == None: value = 0 return value def check_current(self,*args): compact_data = self.redis.lindex( "QUEUES:SPRINKLER:IRRIGATION_CELL_QUEUE",0 ) json_string = base64.b64decode(compact_data) #print "json_string",json_string json_object = json.loads(json_string) temp = float( self.redis.hget( "CONTROL_VARIABLES","coil_current" )) print "check_current temp",temp if temp > 24: self.redis.hset("CONTROL_VARIABLES","SKIP_STATION","ON") self.clean_up_irrigation_cell( json_object ) self.alarm_queue.store_past_action_queue("IRRIGATION:CURRENT_ABORT","RED", { "schedule_name":json_object["schedule_name"],"step_number":json_object["step"] } ) return "RESET" else: return "DISABLE" def start(self, *args ): #print "start ------------------------------------------------->" self.redis.hset("CONTROL_VARIBALES","MAX_FLOW_TIME",0) compact_data = self.redis.lindex( "QUEUES:SPRINKLER:IRRIGATION_CELL_QUEUE",0 ) json_string = base64.b64decode(compact_data) json_object = json.loads(json_string) if self.check_redis_value("SUSPEND") == "ON": #self.log_start_step( schedule_name, json_object["step"]) #self.io_control.turn_off_io(json_object["io_setup"]) #self.io_control.disable_all_sprinklers() return # System is not processing commands right now #print "start --- #1" self.redis.hset("CONTROL_VARIABLES","SKIP_STATION","OFF") #print "made it here" run_time = int( json_object["run_time"]) elasped_time = int(json_object["elasped_time"]) schedule_step = int(json_object["step"]) step_number = json_object["step"] schedule_name = json_object["schedule_name"] #print "run_time",run_time if json_object["eto_enable"] == True: run_time = self.eto_update( run_time , json_object["io_setup"] ) #print "start ---#2 runtime",run_time if run_time == 0: self.clean_up_irrigation_cell(json_object) json_object["run_time"] = 0 self.alarm_queue.store_past_action_queue("IRRIGATION:START:ETO_RESTRICTION","YELLOW", json_object ) return "RESET" self.io_control.load_duration_counters( run_time ) #print "made it here" self.io_control.turn_on_master_valves() self.io_control.turn_on_io( json_object["io_setup"] ) station_by_pass = 0 elasped_time = 1 self.redis.hset( "CONTROL_VARIABLES","sprinkler_ctrl_mode","AUTO") self.redis.hset( "CONTROL_VARIABLES","schedule_name", schedule_name ) self.redis.hset( "CONTROL_VARIABLES","schedule_step_number", step_number ) self.redis.hset( "CONTROL_VARIABLES","schedule_step", schedule_step ) self.redis.hset( "CONTROL_VARIABLES","schedule_time_count", elasped_time ) self.redis.hset( "CONTROL_VARIABLES","schedule_time_max", run_time ) self.log_start_step( schedule_name, json_object["step"]) #print "current_log",self.current_log_object #print "flow_log", self.flow_log_object json_object["elasped_time"] = elasped_time json_object["run_time"] = run_time json_string = json.dumps( json_object ) compact_data = base64.b64encode(json_string) #print "start #end json string ",json_string self.redis.lset( "QUEUES:SPRINKLER:IRRIGATION_CELL_QUEUE", 0, compact_data ) return "DISABLE" def monitor( self, *args ): #print "monitor --------------->" # check to see if something is in the queue length = self.redis.llen( "QUEUES:SPRINKLER:IRRIGATION_CELL_QUEUE" ) #print "length",length if length == 0 : return "CONTINUE" compact_data = self.redis.lindex( "QUEUES:SPRINKLER:IRRIGATION_CELL_QUEUE",0 ) json_string = base64.b64decode(compact_data) json_object = json.loads(json_string) run_time = int( json_object["run_time"]) elasped_time = int(json_object["elasped_time"]) schedule_step = int(json_object["step"]) step_number = json_object["step"] schedule_name = json_object["schedule_name"] if (self.check_redis_value("SUSPEND") == "ON") : #self.io_control.turn_off_io(json_object["io_setup"]) #self.io_control.disable_all_sprinklers() return "HALT" # System is not processing commands right now elasped_time = elasped_time +1 self.log_sensors( schedule_name, schedule_step) if json_object["eto_enable"] == True: self.update_eto_queue_a( 1, json_object["io_setup"] ) if (elasped_time <= run_time ) and ( self.check_redis_value("SKIP_STATION") != "ON" ): self.io_control.turn_on_io( json_object["io_setup"] ) self.io_control.turn_on_master_valves() self.redis.hset( "CONTROL_VARIABLES","schedule_time_count", elasped_time ) json_object["elasped_time"] = elasped_time json_string = json.dumps( json_object ) compact_data = base64.b64encode(json_string) self.redis.lset( "QUEUES:SPRINKLER:IRRIGATION_CELL_QUEUE", 0, compact_data ) return_value = "RESET" else: #print "normal end" self.log_step_stop() self.clean_up_irrigation_cell(json_object) return_value = "DISABLE" #print "cell returnValue is ",return_value return return_value def clean_up_irrigation_cell( self ,json_object ): #print "made it to cleanup" self.redis.delete("QUEUES:SPRINKLER:IRRIGATION_CELL_QUEUE") self.redis.hset("CONTROL_VARIABLES", "schedule_name","offline" ) self.redis.hset("CONTROL_VARIABLES", "schedule_step_number",0 ) self.redis.hset("CONTROL_VARIABLES", "schedule_step",0 ) self.redis.hset("CONTROL_VARIABLES", "schedule_time_count",0 ) self.redis.hset( "CONTROL_VARIABLES","schedule_time_max",0 ) self.redis.hset( "CONTROL_VARIABLES","sprinkler_ctrl_mode","AUTO") self.redis.hset( "CONTROL_VARIABLES","SKIP_STATION","OFF") self.io_control.turn_off_io(json_object["io_setup"]) self.io_control.disable_all_sprinklers() self.io_control.clear_duration_counters() self.io_control.turn_off_master_valves() def log_sensors(self, schedule_name,step): if hasattr(self, 'current_log_object') == False: self.current_log_object = self.initialize_object( "current_log",schedule_name,step) if hasattr(self, 'flow_log_object') == False: self.flow_log_object = self.initialize_object( "flow_log",schedule_name,step ) coil_current = float( self.redis.hget( "CONTROL_VARIABLES","coil_current" )) self.log_coil_current ( coil_current ) for i in self.counter_devices.keys(): sensor_name = i flow_value = self.redis.lindex("QUEUES:SPRINKLER:FLOW:"+str(i),0) self.log_flow_rate( sensor_name, flow_value ) def log_flow_rate( self, sensor_name, flow_value ): if self.flow_log_object["fields"].has_key( sensor_name ) == False: self.initialize_field( self.flow_log_object, sensor_name ) temp = self.flow_log_object["fields"][ sensor_name ] temp["count"] = temp["count"]+1 temp["data"].append( flow_value) if flow_value > temp["max"] : temp["max"] = flow_value if flow_value < temp["min"] : temp["min"] = flow_value def log_coil_current ( self,coil_current ): if self.current_log_object["fields"].has_key( "coil_current" ) == False: self.initialize_field( self.current_log_object, "coil_current") temp = self.current_log_object["fields"]["coil_current"] temp["count"] = temp["count"]+1 temp["data"].append( coil_current ) if coil_current > temp["max"] : temp["max"] = coil_current if coil_current < temp["min"] : temp["min"] = coil_current def log_start_step( self, schedule_name, step): #print "made it log start step" self.current_log_object = self.initialize_object( "current_log",schedule_name,step) self.flow_log_object = self.initialize_object( "flow_log",schedule_name,step ) self.alarm_queue.store_event_queue( "start_step", { "schedule":schedule_name, "step":step } ) def log_step_stop( self ): if hasattr(self, 'flow_log_object') == False: return # case when eto abort obj = self.flow_log_object self.alarm_queue.store_past_action_queue("IRRIGATION:END","GREEN", { "schedule_name":obj["schedule_name"],"step_name":obj["step"] } ) self.store_object( self.current_log_object, "coil" ) self.store_object( self.flow_log_object, "flow" ) obj = {} obj["coil"] = self.current_log_object obj["flow"] = self.flow_log_object self.alarm_queue.store_event_queue( "irrigatation_store_object", obj ) self.current_log_object = None self.flow_log_object = None def store_object( self, obj ,queue_type ): if obj == None: return #self.add_limits(obj, queue_type ) self.compute_object_statistics( obj ) queue = "log_data:"+queue_type+":"+obj["schedule_name"]+":"+str(obj["step"]) json_string = json.dumps(obj) compact_data = base64.b64encode(json_string) self.redis.lpush( queue, json_string ) self.redis.ltrim( queue,0,100) def initialize_object( self, name,schedule_name,step ): obj = {} obj["name"] = name obj["time"] = time.time() obj["schedule_name"] = schedule_name obj["step"] = step obj["fields"] = {} return obj def initialize_field( self, obj ,field): if obj["fields"].has_key(field) == False: obj["fields"][field] = {} obj["fields"][field]["max"] = -1000000 obj["fields"][field]["min"] = 1000000 obj["fields"][field]["count"] = 0 obj["fields"][field]["data"] = [] def compute_object_statistics( self, obj ): #print "compute object statistics", obj for j in obj["fields"] : temp = obj["fields"][j] temp["total"] = 0 count = 0 for m in temp["data"]: m = float(m) count = count +1 if count > 5: temp["total"] = temp["total"] + m #print "count ",count if count > 5: temp["average"] = temp["total"]/(count -5) else: temp["average"] = 0 temp["std"] = 0 count = 0 for m in temp["data"]: m = float(m) count = count +1 if count > 5 : temp["std"] = temp["std"] + (m -temp["average"])*(m-temp["average"]) temp["std"] = math.sqrt(temp["std"]/(count-5)) else: temp["std"] = 0 ## 1 gallon is 0.133681 ft3 ## assuming a 5 foot radius ## a 12 gallon/hour head 0.2450996343 inch/hour ## a 14 gallon/hour head 0.2859495733 inch/hour ## a 16 gallon/hour head 0.3267995123 inch/hour ## ## ## ## ## capacity of soil ## for silt 2 feet recharge rate 30 % recharge inches -- .13 * 24 *.3 = .936 inch ## for sand 1 feet recharge rate 30 % recharge inches -- .06 * 12 *.3 = .216 inch ## ## recharge rate for is as follows for 12 gallon/hour head: ## sand 1 feet .216/.245 which is 52 minutes ## silt 2 feet recharge rate is 3.820 hours or 229 minutes ## ## {"controller":"satellite_1", "pin": 9, "recharge_eto": 0.216, "recharge_rate":0.245 }, ## eto_site_data def eto_update( self, schedule_run_time, io_list ): self.eto_site_data = self.app_files.load_file( "eto_site_setup.json" ) manage_eto = self.redis.hget( "CONTROL_VARIABLES","ETO_MANAGE_FLAG" ) if manage_eto == None: manage_eto = 1 self.redis.hset("CONTROL_VARIABLES", "ETO_MANAGE_FLAG",manage_eto) manage_eto = int( manage_eto ) if manage_eto == 1: sensor_list = self.find_queue_names( io_list ) if len(sensor_list) != 0: run_time = self.find_largest_runtime( schedule_run_time, sensor_list ) if run_time < schedule_run_time : schedule_run_time = run_time return schedule_run_time def find_queue_names( self, io_list ): eto_values = [] for j in io_list: controller = j["remote"] bits = j["bits"] bit = bits[0] index = 0 for m in self.eto_site_data: if (m["controller"] == controller) and (m["pin"] == bit): queue_name = controller+"|"+str(bit) data = self.redis.hget( "ETO_RESOURCE", queue_name ) eto_values.append( [index, data, queue_name ] ) index = index +1 #print "eto values ",eto_values return eto_values def find_largest_runtime( self, run_time, sensor_list ): runtime = 0 for j in sensor_list: index = j[0] deficient = float(j[1]) eto_temp = self.eto_site_data[index] recharge_eto = float( eto_temp["recharge_eto"] ) recharge_rate = float(eto_temp["recharge_rate"]) if float(deficient) > recharge_eto : runtime_temp = (deficient /recharge_rate)*60 if runtime_temp > runtime : runtime = runtime_temp #print "run time",runtime return runtime def update_eto_queue_a( self, run_time, io_list ): self.eto_site_data = self.app_files.load_file( "eto_site_setup.json" ) manage_eto = self.redis.hget( "CONTROL_VARIABLES","ETO_MANAGE_FLAG" ) if manage_eto == None: manage_eto = 1 self.redis.hset( "CONTROL_VARIABLES","ETO_MANAGE_FLAG",manage_eto) manage_eto = int( manage_eto ) if manage_eto == 1: sensor_list = self.find_queue_names( io_list ) if len(sensor_list) != 0: self.update_eto_queue(run_time,sensor_list) def update_eto_queue( self, run_time, sensor_list ): for l in sensor_list: j_index = l[0] queue_name = l[2] j = self.eto_site_data[ j_index ] deficient = self.redis.hget("ETO_RESOURCE", queue_name ) if deficient == None: deficient = 0 else: deficient = float(deficient) recharge_rate = float(j["recharge_rate"]) deficient = deficient - (recharge_rate/60)*run_time if deficient < 0 : deficient = 0 self.redis.hset( "ETO_RESOURCE", queue_name, deficient ) if __name__ == "__main__": pass
{ "content_hash": "4d35b3c3cf4775a40bd3e4399c62adf6", "timestamp": "", "source": "github", "line_count": 424, "max_line_length": 170, "avg_line_length": 42.488207547169814, "alnum_prop": 0.5473216763807938, "repo_name": "glenn-edgar/local_controller_3", "id": "11dd81c6dcfb4776a20fc549b8f387b09cff46d9", "size": "18016", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "irrigation_control_py3/ref/queue_element_control_py3.py", "mode": "33188", "license": "mit", "language": [ { "name": "Batchfile", "bytes": "2510" }, { "name": "CSS", "bytes": "4575415" }, { "name": "HTML", "bytes": "2215958" }, { "name": "JavaScript", "bytes": "9981211" }, { "name": "Makefile", "bytes": "5136" }, { "name": "PHP", "bytes": "124476" }, { "name": "Python", "bytes": "4396570" }, { "name": "Shell", "bytes": "569" }, { "name": "Smalltalk", "bytes": "252" }, { "name": "TeX", "bytes": "3153" }, { "name": "TypeScript", "bytes": "11006" } ], "symlink_target": "" }
import os import json from bs4 import BeautifulSoup from flask import (abort, current_app, redirect, render_template, request, url_for) from models import SCHEMA from rst import iteritems, get_hyperlink_target, rst_to_html_fragment import search from settings import INDEX, INDEX_PATH, SRC, BACKLINKS def index(): suggestions = [] corpus = current_app.corpus for document in corpus.gen_documents(): try: preview = rst_to_html_fragment(document.excerpt) except StopIteration: preview = None suggestions.append({ "title": document.reference_name, "preview": preview, }) return render_template( "_layouts/index.html", suggestions=suggestions ) def article(name): """Generate a HTML page for an article. :param name: The name of the article. """ if name.endswith(".html"): root, _ = os.path.splitext(name) return redirect(url_for("article", name=root)) else: try: document = current_app.corpus.find(name) except ValueError: try: canonical_name = current_app.corpus.get_canonical_name(name) except KeyError: abort(404) else: return redirect(canonical_name) else: html_doc = document.html soup = BeautifulSoup(html_doc, 'html.parser') body = str(soup.body) title = name.replace('_', ' ') backlinks = BACKLINKS.get("{}.html".format(document.filename), []) return render_template( 'article.html', document=body, title=title, backlinks=sorted(backlinks), ) def search_view(): if not os.path.isdir(INDEX_PATH): os.mkdir(INDEX_PATH) search_index = search.get_or_create_index(INDEX_PATH, SCHEMA, SRC) querystring = request.args.get('q') results = list(search.search(search_index, querystring)) if request.args.get('follow'): # Redirect to article if a direct hit is found in the INDEX index = {k.lower(): v for k, v in iteritems(INDEX)} for result in results: reference_name = str(querystring).lower() try: target = get_hyperlink_target(index, reference_name) except KeyError: pass else: return redirect(target) return render_template("_layouts/search.html", querystring=querystring, results=results) def open_search(): return render_template("opensearch.xml"), 200, {'Content-Type': 'text/xml'}
{ "content_hash": "2809d357a3f523818b8acc0ea310537f", "timestamp": "", "source": "github", "line_count": 89, "max_line_length": 79, "avg_line_length": 30.640449438202246, "alnum_prop": 0.5775577557755776, "repo_name": "Ceasar/Encyclopedia", "id": "a49312abd5f2d4d2938a6a36381fe968fcfadf31", "size": "2727", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "app/views.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "10503" }, { "name": "HTML", "bytes": "2947" }, { "name": "JavaScript", "bytes": "71351" }, { "name": "Makefile", "bytes": "816" }, { "name": "Python", "bytes": "13822" } ], "symlink_target": "" }
from http import HTTPStatus import requests from eth_utils import to_bytes, to_hex from raiden.raiden_service import RaidenService from raiden.storage.wal import WriteAheadLog from raiden.transfer.mediated_transfer.events import SendSecretRequest from raiden.transfer.mediated_transfer.state_change import ReceiveSecretReveal def reveal_secret_with_resolver( raiden: RaidenService, secret_request_event: SendSecretRequest ) -> bool: if "resolver_endpoint" not in raiden.config: return False assert isinstance(raiden.wal, WriteAheadLog), "RaidenService has not been started" current_state = raiden.wal.state_manager.current_state task = current_state.payment_mapping.secrethashes_to_task[secret_request_event.secrethash] token = task.target_state.transfer.token request = { "token": to_hex(token), "secrethash": to_hex(secret_request_event.secrethash), "amount": secret_request_event.amount, "payment_identifier": secret_request_event.payment_identifier, "payment_sender": to_hex(secret_request_event.recipient), "expiration": secret_request_event.expiration, "payment_recipient": to_hex(raiden.address), "reveal_timeout": raiden.config["reveal_timeout"], "settle_timeout": raiden.config["settle_timeout"], } try: response = requests.post(raiden.config["resolver_endpoint"], json=request) except requests.exceptions.RequestException: return False if response is None or response.status_code != HTTPStatus.OK: return False state_change = ReceiveSecretReveal( to_bytes(hexstr=response.json()["secret"]), secret_request_event.recipient ) raiden.handle_and_track_state_change(state_change) return True
{ "content_hash": "d088d498870a35e0a122fe973aa164fb", "timestamp": "", "source": "github", "line_count": 48, "max_line_length": 94, "avg_line_length": 37.0625, "alnum_prop": 0.7234401349072512, "repo_name": "hackaugusto/raiden", "id": "649953ab78fb37c33f128f645378bc560b913484", "size": "1779", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "raiden/network/resolver/client.py", "mode": "33188", "license": "mit", "language": [ { "name": "Dockerfile", "bytes": "4327" }, { "name": "HCL", "bytes": "8943" }, { "name": "Makefile", "bytes": "5888" }, { "name": "Nix", "bytes": "1271" }, { "name": "Python", "bytes": "2681630" }, { "name": "Shell", "bytes": "9530" }, { "name": "Solidity", "bytes": "1004" } ], "symlink_target": "" }
from ..excel_comparison_test import ExcelComparisonTest from ...workbook import Workbook class TestCompareXLSXFiles(ExcelComparisonTest): """ Test file created by XlsxWriter against a file created by Excel. """ def setUp(self): self.set_filename('background05.xlsx') def test_create_file(self): """Test the creation of an XlsxWriter file with a background image.""" workbook = Workbook(self.got_filename) worksheet1 = workbook.add_worksheet() worksheet2 = workbook.add_worksheet() worksheet1.set_background(self.image_dir + 'logo.jpg') worksheet2.set_background(self.image_dir + 'red.jpg') workbook.close() self.assertExcelEqual()
{ "content_hash": "f0e1072a5b748eaf3c492608982306ae", "timestamp": "", "source": "github", "line_count": 28, "max_line_length": 78, "avg_line_length": 26.214285714285715, "alnum_prop": 0.6743869209809265, "repo_name": "jmcnamara/XlsxWriter", "id": "0d835b4cc329bedc4e78e57e6e75c6af5c9e8a15", "size": "947", "binary": false, "copies": "1", "ref": "refs/heads/main", "path": "xlsxwriter/test/comparison/test_background05.py", "mode": "33188", "license": "bsd-2-clause", "language": [ { "name": "Batchfile", "bytes": "5113" }, { "name": "CSS", "bytes": "16544" }, { "name": "HTML", "bytes": "13100" }, { "name": "Makefile", "bytes": "7748" }, { "name": "Perl", "bytes": "3503" }, { "name": "Python", "bytes": "2807230" }, { "name": "Shell", "bytes": "7964" } ], "symlink_target": "" }
''' Rackspace Cloud Module ====================== The Rackspace cloud module. This module uses the preferred means to set up a libcloud based cloud module and should be used as the general template for setting up additional libcloud based modules. The rackspace cloud module interfaces with the Rackspace public cloud service and requires that two configuration parameters be set for use, ``user`` and ``apikey``. Set up the cloud configuration at ``/etc/salt/cloud.providers`` or ``/etc/salt/cloud.providers.d/rackspace.conf``: .. code-block:: yaml my-rackspace-config: provider: rackspace # The Rackspace login user user: fred # The Rackspace user's apikey apikey: 901d3f579h23c8v73q9 ''' # The import section is mostly libcloud boilerplate # Import python libs import copy import logging import socket import pprint # Import libcloud from libcloud.compute.base import NodeState # Import generic libcloud functions from salt.cloud.libcloudfuncs import * # pylint: disable=W0614,W0401 # Import salt libs import salt.utils # Import salt.cloud libs import salt.utils.cloud import salt.config as config from salt.utils import namespaced_function from salt.cloud.exceptions import ( SaltCloudSystemExit, SaltCloudExecutionFailure, SaltCloudExecutionTimeout ) # Get logging started log = logging.getLogger(__name__) # Some of the libcloud functions need to be in the same namespace as the # functions defined in the module, so we create new function objects inside # this module namespace get_size = namespaced_function(get_size, globals()) get_image = namespaced_function(get_image, globals()) avail_locations = namespaced_function(avail_locations, globals()) avail_images = namespaced_function(avail_images, globals()) avail_sizes = namespaced_function(avail_sizes, globals()) script = namespaced_function(script, globals()) destroy = namespaced_function(destroy, globals()) list_nodes = namespaced_function(list_nodes, globals()) list_nodes_full = namespaced_function(list_nodes_full, globals()) list_nodes_select = namespaced_function(list_nodes_select, globals()) show_instance = namespaced_function(show_instance, globals()) # Only load in this module is the RACKSPACE configurations are in place def __virtual__(): ''' Set up the libcloud functions and check for Rackspace configuration. ''' if get_configured_provider() is False: log.debug( 'There is no Rackspace cloud provider configuration available. ' 'Not loading module.' ) return False log.debug('Loading Rackspace cloud module') return True def get_configured_provider(): ''' Return the first configured instance. ''' return config.is_provider_configured( __opts__, __active_provider_name__ or 'rackspace', ('user', 'apikey') ) def get_conn(): ''' Return a conn object for the passed VM data ''' force_first_gen = config.get_cloud_config_value( 'force_first_gen', get_configured_provider(), __opts__, search_global=False, default=False ) compute_region = config.get_cloud_config_value( 'compute_region', get_configured_provider(), __opts__, search_global=False, default='DFW' ).upper() if force_first_gen: log.info('Rackspace driver will only have access to first-gen images') driver = get_driver(Provider.RACKSPACE) else: computed_provider = 'RACKSPACE_NOVA_{0}'.format(compute_region) try: driver = get_driver(getattr(Provider, computed_provider)) except AttributeError: log.info( 'Rackspace driver will only have access to first-gen images ' 'since it was unable to load the driver as {0}'.format( computed_provider ) ) driver = get_driver(Provider.RACKSPACE) except Exception: # http://goo.gl/qFgY42 driver = get_driver(Provider.RACKSPACE) return driver( config.get_cloud_config_value( 'user', get_configured_provider(), __opts__, search_global=False ), config.get_cloud_config_value( 'apikey', get_configured_provider(), __opts__, search_global=False ) ) def preferred_ip(vm_, ips): ''' Return the preferred Internet protocol. Either 'ipv4' (default) or 'ipv6'. ''' proto = config.get_cloud_config_value( 'protocol', vm_, __opts__, default='ipv4', search_global=False ) family = socket.AF_INET if proto == 'ipv6': family = socket.AF_INET6 for ip in ips: try: socket.inet_pton(family, ip) return ip except Exception: continue return False def ssh_interface(vm_): ''' Return the ssh_interface type to connect to. Either 'public_ips' (default) or 'private_ips'. ''' return config.get_cloud_config_value( 'ssh_interface', vm_, __opts__, default='public_ips', search_global=False ) def create(vm_): ''' Create a single VM from a data dict ''' deploy = config.get_cloud_config_value('deploy', vm_, __opts__) if deploy is True and salt.utils.which('sshpass') is None: raise SaltCloudSystemExit( 'Cannot deploy salt in a VM if the \'sshpass\' binary is not ' 'present on the system.' ) salt.utils.cloud.fire_event( 'event', 'starting create', 'salt/cloud/{0}/creating'.format(vm_['name']), { 'name': vm_['name'], 'profile': vm_['profile'], 'provider': vm_['provider'], }, ) log.info('Creating Cloud VM {0}'.format(vm_['name'])) conn = get_conn() kwargs = { 'name': vm_['name'], 'image': get_image(conn, vm_), 'size': get_size(conn, vm_) } salt.utils.cloud.fire_event( 'event', 'requesting instance', 'salt/cloud/{0}/requesting'.format(vm_['name']), {'kwargs': {'name': kwargs['name'], 'image': kwargs['image'].name, 'size': kwargs['size'].name}}, ) try: data = conn.create_node(**kwargs) except Exception as exc: log.error( 'Error creating {0} on RACKSPACE\n\n' 'The following exception was thrown by libcloud when trying to ' 'run the initial deployment: \n{1}'.format( vm_['name'], exc ), # Show the traceback if the debug logging level is enabled exc_info=log.isEnabledFor(logging.DEBUG) ) return False def __query_node_data(vm_, data): try: nodelist = list_nodes() log.debug( 'Loaded node data for {0}:\n{1}'.format( vm_['name'], pprint.pformat( nodelist[vm_['name']] ) ) ) except Exception as err: log.error( 'Failed to get nodes list: {0}'.format( err ), # Show the traceback if the debug logging level is enabled exc_info=log.isEnabledFor(logging.DEBUG) ) # Trigger a failure in the wait for IP function return False running = nodelist[vm_['name']]['state'] == node_state( NodeState.RUNNING ) if not running: # Still not running, trigger another iteration return private = nodelist[vm_['name']]['private_ips'] public = nodelist[vm_['name']]['public_ips'] if private and not public: log.warn( 'Private IPs returned, but not public... Checking for ' 'misidentified IPs' ) for private_ip in private: private_ip = preferred_ip(vm_, [private_ip]) if salt.utils.cloud.is_public_ip(private_ip): log.warn('{0} is a public IP'.format(private_ip)) data.public_ips.append(private_ip) else: log.warn('{0} is a private IP'.format(private_ip)) if private_ip not in data.private_ips: data.private_ips.append(private_ip) if ssh_interface(vm_) == 'private_ips' and data.private_ips: return data if private: data.private_ips = private if ssh_interface(vm_) == 'private_ips': return data if public: data.public_ips = public if ssh_interface(vm_) != 'private_ips': return data try: data = salt.utils.cloud.wait_for_ip( __query_node_data, update_args=(vm_, data), timeout=config.get_cloud_config_value( 'wait_for_ip_timeout', vm_, __opts__, default=25 * 60), interval=config.get_cloud_config_value( 'wait_for_ip_interval', vm_, __opts__, default=10), ) except (SaltCloudExecutionTimeout, SaltCloudExecutionFailure) as exc: try: # It might be already up, let's destroy it! destroy(vm_['name']) except SaltCloudSystemExit: pass finally: raise SaltCloudSystemExit(exc.message) log.debug('VM is now running') if ssh_interface(vm_) == 'private_ips': ip_address = preferred_ip(vm_, data.private_ips) else: ip_address = preferred_ip(vm_, data.public_ips) log.debug('Using IP address {0}'.format(ip_address)) if not ip_address: raise SaltCloudSystemExit( 'No IP addresses could be found.' ) ssh_username = config.get_cloud_config_value( 'ssh_username', vm_, __opts__, default='root' ) ret = {} if deploy is True: deploy_script = script(vm_) deploy_kwargs = { 'host': ip_address, 'username': ssh_username, 'password': data.extra['password'], 'script': deploy_script.script, 'name': vm_['name'], 'tmp_dir': config.get_cloud_config_value( 'tmp_dir', vm_, __opts__, default='/tmp/.saltcloud' ), 'deploy_command': config.get_cloud_config_value( 'deploy_command', vm_, __opts__, default='/tmp/.saltcloud/deploy.sh', ), 'start_action': __opts__['start_action'], 'parallel': __opts__['parallel'], 'sock_dir': __opts__['sock_dir'], 'conf_file': __opts__['conf_file'], 'minion_pem': vm_['priv_key'], 'minion_pub': vm_['pub_key'], 'keep_tmp': __opts__['keep_tmp'], 'preseed_minion_keys': vm_.get('preseed_minion_keys', None), 'sudo': config.get_cloud_config_value( 'sudo', vm_, __opts__, default=(ssh_username != 'root') ), 'sudo_password': config.get_cloud_config_value( 'sudo_password', vm_, __opts__, default=None ), 'tty': config.get_cloud_config_value( 'tty', vm_, __opts__, default=False ), 'display_ssh_output': config.get_cloud_config_value( 'display_ssh_output', vm_, __opts__, default=True ), 'script_args': config.get_cloud_config_value( 'script_args', vm_, __opts__ ), 'script_env': config.get_cloud_config_value('script_env', vm_, __opts__), 'minion_conf': salt.utils.cloud.minion_config(__opts__, vm_) } # Deploy salt-master files, if necessary if config.get_cloud_config_value('make_master', vm_, __opts__) is True: deploy_kwargs['make_master'] = True deploy_kwargs['master_pub'] = vm_['master_pub'] deploy_kwargs['master_pem'] = vm_['master_pem'] master_conf = salt.utils.cloud.master_config(__opts__, vm_) deploy_kwargs['master_conf'] = master_conf if master_conf.get('syndic_master', None): deploy_kwargs['make_syndic'] = True deploy_kwargs['make_minion'] = config.get_cloud_config_value( 'make_minion', vm_, __opts__, default=True ) # Check for Windows install params win_installer = config.get_cloud_config_value('win_installer', vm_, __opts__) if win_installer: deploy_kwargs['win_installer'] = win_installer minion = salt.utils.cloud.minion_config(__opts__, vm_) deploy_kwargs['master'] = minion['master'] deploy_kwargs['username'] = config.get_cloud_config_value( 'win_username', vm_, __opts__, default='Administrator' ) deploy_kwargs['password'] = config.get_cloud_config_value( 'win_password', vm_, __opts__, default='' ) # Store what was used to the deploy the VM event_kwargs = copy.deepcopy(deploy_kwargs) del event_kwargs['minion_pem'] del event_kwargs['minion_pub'] del event_kwargs['sudo_password'] if 'password' in event_kwargs: del event_kwargs['password'] ret['deploy_kwargs'] = event_kwargs salt.utils.cloud.fire_event( 'event', 'executing deploy script', 'salt/cloud/{0}/deploying'.format(vm_['name']), {'kwargs': event_kwargs}, ) deployed = False if win_installer: deployed = salt.utils.cloud.deploy_windows(**deploy_kwargs) else: deployed = salt.utils.cloud.deploy_script(**deploy_kwargs) if deployed: log.info('Salt installed on {0}'.format(vm_['name'])) else: log.error( 'Failed to deploy and start Salt on Cloud VM {0}'.format( vm_['name'] ) ) log.info('Created Cloud VM {0[name]!r}'.format(vm_)) log.debug( '{0[name]!r} VM creation details:\n{1}'.format( vm_, pprint.pformat(data.__dict__) ) ) ret.update(data.__dict__) salt.utils.cloud.fire_event( 'event', 'created instance', 'salt/cloud/{0}/created'.format(vm_['name']), { 'name': vm_['name'], 'profile': vm_['profile'], 'provider': vm_['provider'], }, ) return ret
{ "content_hash": "21e92c11d5a182f33eaa18666a4fe205", "timestamp": "", "source": "github", "line_count": 452, "max_line_length": 85, "avg_line_length": 32.67035398230089, "alnum_prop": 0.5552244870318954, "repo_name": "MadeiraCloud/salt", "id": "aa4a61d2294100d58cf9bbbcea1f8421bcbaf40b", "size": "14791", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "sources/salt/cloud/clouds/rackspace.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "HTML", "bytes": "10058" }, { "name": "Makefile", "bytes": "1815" }, { "name": "Python", "bytes": "4530204" }, { "name": "Shell", "bytes": "169676" } ], "symlink_target": "" }
import sling import sys sys.path.insert(0, "sling/nlp/parser/trainer") import corpora # Error checking options. class Options: def __init__(self): self.stop_on_first_bad_document = False self.allow_mentions_without_frames = False self.allow_duplicate_evokes = False self.allow_nil_roles = False self.allow_nil_values = False self.max_error_examples = 3 # Represents a single error and the context it occurs in. class Error: # Error types. BAD_SPAN_BEGIN = 0 # span has a bad begin index BAD_SPAN_END = 1 # span has a bad end index CROSSING_SPAN = 2 # span crosses another span MENTION_WITHOUT_FRAME = 3 # mention without evoked frame UNTYPED_EVOKED_FRAME = 4 # evoked frame without a type FRAME_TYPE_NOT_GLOBAL = 5 # frame type is a local symbol ROLE_IS_NONE = 6 # frame with a nil role VALUE_IS_NONE = 7 # frame with a nil value ROLE_IS_LOCAL = 8 # frame with a role that is a local symbol VALUE_NOT_A_FRAME = 9 # frame with a slot value that is not a frame FRAME_NOT_LOCAL = 10 # expected a local frame but didn't get one DUPLICATE_EVOKED_FRAMES = 11 # >1 frames evoked from a mention with same type DUPLICATE_SPANS = 12 # >1 spans covering exactly the same tokens def __init__(self, code, doc_index, document, args): self.code = code self.doc_index = doc_index # Document where the error occurs. self.document = document assert isinstance(self.document, sling.Document), type(self.document) # Error-specific context (e.g. mention, frame etc). self.args = args # Returns [a limited-size prefix of] the document text. def _document_text(self, max_tokens=20): s = [] for index, token in enumerate(self.document.tokens): if max_tokens >= 0 and index >= max_tokens: break if token.brk == 0 and len(s) > 0: s[-1] = s[-1] + token.word else: s.append(token.word) if max_tokens >= 0 and len(self.document.tokens) > max_tokens: s.append(" ...") return ' '.join(s) # Returns a string reprsentation of the error. def tostr(self, indent=0): self.document.decorate() output = [] output.extend(["Document Index: " + str(self.doc_index)]) output.extend(["Document: " + self._document_text()]) frame_id = self.document.frame.id if frame_id is not None: output.extend(["Document FrameId: " + str(frame_id)]) output.extend(["DocumentLength: " + str(len(self.document.tokens))]) if type(self.args[0]) is sling.Mention: output.extend(["Mention: " + self.args[0].frame.data(binary=False)]) if self.code == Error.BAD_SPAN_BEGIN: output.extend(["Begin: " + str(self.args[0].begin)]) elif self.code == Error.BAD_SPAN_END: output.extend(["End: " + str(self.args[0].end)]) elif self.code == Error.CROSSING_SPAN: m2 = self.args[1] output.extend(["Mention2: " + m2.frame.data(binary=False)]) elif self.code == Error.UNTYPED_EVOKED_FRAME: f = self.args[1] output.extend(["UntypedEvokedFrame: " + f.data(binary=False)]) elif self.code == Error.FRAME_TYPE_NOT_GLOBAL: t = self.args[2] output.extend(["NonGlobalType: " + t.data(binary=False)]) elif self.code == Error.ROLE_IS_NONE: f = self.args[0] output.extend(["FrameWithNilRole: " + f.data(binary=False)]) elif self.code == Error.VALUE_IS_NONE: f = self.args[0] output.extend(["FrameWithNilValue: " + f.data(binary=False)]) elif self.code == Error.ROLE_IS_LOCAL: f = self.args[0] role = self.args[1] output.extend(["Frame: " + f.data(binary=False)]) output.extend(["LocalRole: " + role.data(binary=False)]) elif self.code == Error.VALUE_NOT_A_FRAME: f = self.args[1] output.extend(["NonFrameValue: " + str(f)]) elif self.code == Error.FRAME_NOT_LOCAL: f = self.args[1] output.extend(["NonLocalFrame: " + f.data(binary=False)]) elif self.code == Error.DUPLICATE_EVOKED_FRAMES: t = self.args[1] output.extend(["TypeEvokedAgain: " + t.id]) elif self.code == Error.DUPLICATE_SPANS: m2 = self.args[1] output.extend(["AnotherSpanOverSameInterval: " + m2.frame.data()]) if indent > 0: prefix = ' ' * indent for i in range(len(output)): if i > 0: output[i] = prefix + output[i] return '\n'.join(output) # Returns a string representation of the specified error code. def _codestr(code): assert type(code) is int, code for c, value in Error.__dict__.items(): if type(value) is int and value == code and c[0].isupper(): return c return "<UNKNOWN_ERROR:" + str(code) + ">" # Represents results of checking a corpora for errors. class Results: def __init__(self, options): self.error_counts = {} # error code -> count self.error_examples = {} # error code -> limited no. of examples self.options = options # error checking options # Returns whether there were no errors. def ok(self): return len(self.error_counts) == 0 # Creates and adds an error with the specified code and context. def error(self, code, args): doc_index = args[0] document = args[1] assert isinstance(document, sling.Document) args = args[2:] if code not in self.error_counts: self.error_counts[code] = 0 self.error_counts[code] += 1 if self.options.max_error_examples >= 0 and \ self.error_counts[code] <= self.options.max_error_examples: error = Error(code, doc_index, document, args) if code not in self.error_examples: self.error_examples[code] = [] self.error_examples[code].append(error) # Aggregates the result set in 'other' to this result set. def add(self, other): for code, count in other.error_counts.items(): if code not in self.error_counts: self.error_counts[code] = 0 self.error_examples[code] = [] self.error_counts[code] += count num = len(other.error_examples[code]) current = len(self.error_examples[code]) if self.options.max_error_examples >= 0 and \ num + current > self.options.max_error_examples: num = self.options.max_error_examples - current if num > 0: self.error_examples[code].extend(other.error_examples[code][0:num]) # Returns the string representation of error checking results. def __repr__(self): if self.ok(): return "No errors" total = 0 for code, count in self.error_counts.items(): total += count output = [] output.append("Total " + str(total) + " errors") for code, count in self.error_counts.items(): output.append(" " + _codestr(code) + " : " + str(count)) output.extend(["", "EXAMPLES", "-" * 70, ""]) for code, examples in self.error_examples.items(): output.append(_codestr(code) + ":") for index, example in enumerate(examples): indent = len(str(index) + ") ") s = str(index) + ") " + example.tostr(indent) output.extend([s, ""]) output.append("") return '\n'.join(output) # Validates 'frame', which is expected to be a local frame, for errors. # If 'mention' is not None, then 'frame' is one of the evoked frames from it. # Validation results are added to 'results' def _validate_frame(index, document, mention, frame, options, results): if type(frame) is not sling.Frame: results.error(Error.VALUE_NOT_A_FRAME, [index, document, mention, frame]) return if not frame.islocal(): results.error(Error.FRAME_NOT_LOCAL, [index, document, mention, frame]) return commons = document.store.globals() # Check that the frame type is valid. t = frame[document.schema.isa] if t is None: results.error(Error.UNTYPED_EVOKED_FRAME, [index, document, mention, frame]) elif t.islocal(): results.error(Error.FRAME_TYPE_NOT_GLOBAL, \ [index, document, mention, frame, t]) # Check that frame slots are valid. for role, value in frame: if not options.allow_nil_roles and role is None: results.error(Error.ROLE_IS_NONE, [index, document, frame]) if not options.allow_nil_values and value is None: results.error(Error.VALUE_IS_NONE, [index, document, frame]) if role is not None and type(role) is sling.Frame and role.islocal(): results.error(Error.ROLE_IS_LOCAL, [index, document, frame, role]) # TODO: Add support to see if certain slots (e.g. /pb/ARG0) should always # have local values, while others (e.g. measure) should always have global # values. This can be read from the schema or specified in 'options'. # Validates 'document' against common errors. def _validate(index, document, options): results = Results(options) length = len(document.tokens) isa = document.schema.isa spans = {} for mention in document.mentions: begin = mention.begin end = mention.end # Check for duplicate spans. k = (begin, end) if k in spans: results.error(Error.DUPLICATE_SPANS, [index, document, mention, spans[k]]) else: spans[k] = mention # Check span offsets. if begin < 0 or begin >= length: results.error(Error.BAD_SPAN_BEGIN, [index, document, mention]) if end < 0 or end > length: results.error(Error.BAD_SPAN_END, [index, document, mention]) # Check for crossing spans. for m2 in document.mentions: if m2.begin < begin: continue # don't double count crossing spans if m2.begin >= end: break # mentions are sorted if m2.begin < begin and m2.end > begin and m2.end < end: results.error(Error.CROSSING_SPAN, [index, document, mention, m2]) if m2.begin > begin and m2.end > end: results.error(Error.CROSSING_SPAN, [index, document, mention, m2]) # Check for duplicate frames. if not options.allow_duplicate_evokes: seen = {} for frame in mention.evokes(): t = frame[isa] if t in seen: results.error(Error.DUPLICATE_EVOKED_FRAMES, \ [index, document, mention, t]) seen[t] = True # Check valid evoked frames. num_evoked = 0 for frame in mention.evokes(): num_evoked += 1 _validate_frame(index, document, mention, frame, options, results) if not options.allow_mentions_without_frames and num_evoked == 0: results.error(Error.MENTION_WITHOUT_FRAME, [index, document, mention]) for frame in document.themes: _validate_frame(index, document, None, frame, options, results) return results # Main entry point. # Checks the corpora in 'recordio_filename' for errors. def validate(commons, recordio_filename, output_recordio='', options=Options()): schema = None if not isinstance(commons, sling.Store): assert type(commons) is str filename = commons commons = sling.Store() commons.load(filename) schema = sling.DocumentSchema(commons) commons.freeze() else: schema = sling.DocumentSchema(commons) corpus = corpora.Corpora(recordio_filename, commons, schema) aggregate = Results(options) count = 0 writer = None written = 0 if output_recordio != '': writer = sling.RecordWriter(output_recordio) for document in corpus: results = _validate(count, document, options) aggregate.add(results) if not results.ok() and options.stop_on_first_bad_document: print("Stopping after first bad document as requested") break count += 1 if writer and results.ok(): writer.write('', document.frame.data(binary=True)) written += 1 if writer: writer.close() return aggregate, count, written if __name__ == "__main__": import sling.flags as flags flags.define('--input', help='Input recordio file', default="", type=str, metavar='FILE') flags.define('--commons', help='Commons file name', default="", type=str, metavar='FILE') flags.define('--max_examples', help='Max number of examples per error type', default=3, type=int, metavar='NUM') flags.define('--output', help='Output recordio file name for valid documents', default="", type=str, metavar='FILE') flags.parse() options = Options() options.max_error_examples = flags.arg.max_examples results, total, written = validate( flags.arg.commons, flags.arg.input, flags.arg.output, options) print("Went over", total, "documents") if flags.arg.output: print("Wrote", written, "valid documents to", flags.arg.output) print(results)
{ "content_hash": "a37f864f08ff4889d6a21fae7941d7a5", "timestamp": "", "source": "github", "line_count": 352, "max_line_length": 80, "avg_line_length": 36.13920454545455, "alnum_prop": 0.6361921232607499, "repo_name": "google/sling", "id": "3e3571f308a4db19774d0ef3027d8525021e8b77", "size": "13505", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "sling/nlp/parser/tools/validate.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "C", "bytes": "765" }, { "name": "C++", "bytes": "4793787" }, { "name": "CSS", "bytes": "10049" }, { "name": "HTML", "bytes": "37253" }, { "name": "JavaScript", "bytes": "59134" }, { "name": "Python", "bytes": "577781" }, { "name": "Shell", "bytes": "10326" }, { "name": "Starlark", "bytes": "50958" } ], "symlink_target": "" }
""" WSGI config for citizenline project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/2.2/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault("DJANGO_SETTINGS_MODULE", "citizenline.settings") application = get_wsgi_application()
{ "content_hash": "2f6262158b1661c8302183c6c8ff8741", "timestamp": "", "source": "github", "line_count": 16, "max_line_length": 78, "avg_line_length": 24.9375, "alnum_prop": 0.7744360902255639, "repo_name": "citizenline/citizenline", "id": "a4b9dfaf9b3ab527d71e163a3397032c6032c433", "size": "399", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "citizenline/wsgi.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "3470" }, { "name": "HTML", "bytes": "22853" }, { "name": "JavaScript", "bytes": "8389" }, { "name": "Python", "bytes": "86277" }, { "name": "Ruby", "bytes": "198" } ], "symlink_target": "" }
import json import DbLiason from mpUtils import JobRunner class Connectable: def __init__(self, address=None, attrManifestDict=None): self.__dbLiason = None self.__address = address self.__jobRunner = JobRunner.JobRunner() self.__attrManifestDict = attrManifestDict if isinstance(attrManifestDict, dict) else {} def __initDBLiason(self, *args): self.__dbLiason = DbLiason.HandlerLiason(self.__address) return self.__dbLiason is not None def initDBLiason(self, callback=None): return self.__jobRunner.run(self.__initDBLiason, None, callback) def setConnectedAddress(self, addr): self.setAddress(addr) if hasattr(self.__dbLiason, 'shutdown'): self.__dbLiason.shutdown() return self.initDBLiason() def getDBLiason(self): return self.__dbLiason def getAddress(self): return self.__address def __setAddress(self, newAddress): self.__address = newAddress def setAddress(self, newAddress, callback=None): return self.__jobRunner.run(self.__setAddress, None, callback, newAddress) def __setAttrManifestDict(self, attrManifestDict, *args): if not isinstance(attrManifestDict, dict): return False else: self.__attrManifestDict = attrManifestDict return True def setAttrManifestDict(self, attrManifestDict, callback=None): return self.__jobRunner.run(self.__setAttrManifestDict, None, callback, attrManifestDict) def getAttrManifestDict(self): return self.__attrManifestDict def __filterAttrsPresentInManifest(self, restMethod, stateDict=None): if isinstance(stateDict, dict): dictatedManifest = self.__attrManifestDict.get(restMethod, []) screenedAttrs = [attr for attr in dictatedManifest if attr in stateDict] return dict((okAttr, stateDict[okAttr]) for okAttr in screenedAttrs) def filterForRestGet(self, stateDict, callback=None): return self.__jobRunner.run(self.__filterAttrsPresentInManifest, None, callback, 'get', stateDict) def ___opOnDBLiason(self, varsDict, restMethodName, onFinish): okAttrDict = getattr(self, 'filterForRest%s'%(restMethodName))(varsDict) relatedDBHandlerMethod = '%sConn'%(restMethodName.lower()) response = self.__prepareAndParseNetResult(getattr(self.__dbLiason, relatedDBHandlerMethod)(okAttrDict)) if hasattr(onFinish, '__call__'): onFinish(response) else: return response def __getConn(self, varsDict, onFinish): return self.___opOnDBLiason(varsDict, 'Get', onFinish) def getConn(self, varsDict, onFinish=None, callback=None): return self.__jobRunner.run(self.__getConn, None, callback, varsDict, onFinish) def filterForRestDelete(self, stateDict, callback=None): return self.__jobRunner.run(self.__filterAttrsPresentInManifest, None, callback, 'delete', stateDict) def __deleteConn(self, varsDict, onFinish): return self.___opOnDBLiason(varsDict, 'Delete', onFinish) def deleteConn(self, varsDict, onFinish=None, callback=None): return self.__jobRunner.run(self.__deleteConn, None, callback, varsDict, onFinish) def filterForRestPost(self, stateDict, callback=None): return self.__jobRunner.run(self.__filterAttrsPresentInManifest, None, callback, 'post', stateDict) def __postConn(self, varsDict, onFinish=None): return self.___opOnDBLiason(varsDict, 'Post', onFinish) def postConn(self, varsDict, onFinish=None, callback=None): return self.__jobRunner.run(self.__postConn, None, callback, varsDict, onFinish) def filterForRestPut(self, stateDict, callback=None): return self.__jobRunner.run(self.__filterAttrsPresentInManifest, None, callback, 'put', stateDict) def __putConn(self, varsDict, onFinish): return self.___opOnDBLiason(varsDict, 'Put', onFinish) def putConn(self, varsDict, onFinish=None, callback=None): return self.__jobRunner.run(self.__putConn, None, callback, varsDict, onFinish) def __prepareAndParseNetResult(self, httpResponse): outData = dict(status_code=httpResponse.get('status_code', 400)) try: outData['value'] = json.loads(httpResponse['value'].decode()) except Exception as e: print('\033[91mUnhandled exception\033[00m', e) finally: return outData
{ "content_hash": "66169a1c7b9800551b5b58bac48585c9", "timestamp": "", "source": "github", "line_count": 112, "max_line_length": 112, "avg_line_length": 40.32142857142857, "alnum_prop": 0.6767050487156776, "repo_name": "odeke-em/utils", "id": "ea0ec68204ab7cd7dfe93254ba7eb70814600c10", "size": "4585", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "connectable/src/Connectable.py", "mode": "33188", "license": "mit", "language": [ { "name": "C", "bytes": "127184" }, { "name": "C++", "bytes": "6311" }, { "name": "Go", "bytes": "5411" }, { "name": "Makefile", "bytes": "1957" }, { "name": "Python", "bytes": "81302" }, { "name": "Shell", "bytes": "1551" } ], "symlink_target": "" }
from __future__ import absolute_import, division, print_function __metaclass__ = type ANSIBLE_METADATA = {'metadata_version': '1.1', 'status': ['preview'], 'supported_by': 'community'} DOCUMENTATION = ''' --- module: azure_rm_image version_added: "2.5" short_description: Manage Azure image. description: - Create, delete an image from virtual machine, blob uri, managed disk or snapshot. options: resource_group: description: - Name of resource group. required: true name: description: - Name of the image. required: true source: description: - OS disk source from the same region. - It can be a virtual machine, OS disk blob URI, managed OS disk, or OS snapshot. - Each type of source except for blob URI can be given as resource id, name or a dict contains C(resource_group), C(name) and C(types). - If source type is blob URI, the source should be the full URI of the blob in string type. - If you specify the C(type) in a dict, acceptable value contains C(disks), C(virtual_machines) and C(snapshots). type: raw required: true data_disk_sources: description: - List of data disk sources, including unmanaged blob URI, managed disk id or name, or snapshot id or name. type: list location: description: - Location of the image. Derived from I(resource_group) if not specified. os_type: description: The OS type of image. choices: - Windows - Linux state: description: - Assert the state of the image. Use C(present) to create or update a image and C(absent) to delete an image. default: present choices: - absent - present extends_documentation_fragment: - azure - azure_tags author: - "Yuwei Zhou (@yuwzho)" ''' EXAMPLES = ''' - name: Create an image from a virtual machine azure_rm_image: resource_group: myResourceGroup name: myImage source: myVirtualMachine - name: Create an image from os disk azure_rm_image: resource_group: myResourceGroup name: myImage source: /subscriptions/xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx/resourceGroup/myResourceGroup/providers/Microsoft.Compute/disks/disk001 data_disk_sources: - datadisk001 - datadisk002 os_type: Linux - name: Create an image from os disk via dict azure_rm_image: resource_group: myResourceGroup name: myImage source: type: disks resource_group: myResourceGroup name: disk001 data_disk_sources: - datadisk001 - datadisk002 os_type: Linux - name: Delete an image azure_rm_image: state: absent resource_group: myResourceGroup name: myImage source: testvm001 ''' RETURN = ''' id: description: Image resource path. type: str returned: success example: "/subscriptions/xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx/resourceGroup/myResourceGroup/providers/Microsoft.Compute/images/myImage" ''' # NOQA from ansible.module_utils.azure_rm_common import AzureRMModuleBase, format_resource_id try: from msrestazure.tools import parse_resource_id from msrestazure.azure_exceptions import CloudError except ImportError: # This is handled in azure_rm_common pass class AzureRMImage(AzureRMModuleBase): def __init__(self): self.module_arg_spec = dict( resource_group=dict(type='str', required=True), name=dict(type='str', required=True), state=dict(type='str', default='present', choices=['present', 'absent']), location=dict(type='str'), source=dict(type='raw'), data_disk_sources=dict(type='list', default=[]), os_type=dict(type='str', choices=['Windows', 'Linux']) ) self.results = dict( changed=False, id=None ) required_if = [ ('state', 'present', ['source']) ] self.resource_group = None self.name = None self.state = None self.location = None self.source = None self.data_disk_sources = None self.os_type = None super(AzureRMImage, self).__init__(self.module_arg_spec, supports_check_mode=True, required_if=required_if) def exec_module(self, **kwargs): for key in list(self.module_arg_spec.keys()) + ['tags']: setattr(self, key, kwargs[key]) results = None changed = False image = None if not self.location: # Set default location resource_group = self.get_resource_group(self.resource_group) self.location = resource_group.location self.log('Fetching image {0}'.format(self.name)) image = self.get_image() if image: self.check_provisioning_state(image, self.state) results = image.id # update is not supported except for tags update_tags, tags = self.update_tags(image.tags) if update_tags: changed = True self.tags = tags if self.state == 'absent': changed = True # the image does not exist and create a new one elif self.state == 'present': changed = True self.results['changed'] = changed self.results['id'] = results if changed: if self.state == 'present': image_instance = None # create from virtual machine vm = self.get_source_vm() if vm: if self.data_disk_sources: self.fail('data_disk_sources is not allowed when capturing image from vm') image_instance = self.compute_models.Image(location=self.location, source_virtual_machine=self.compute_models.SubResource(id=vm.id), tags=self.tags) else: if not self.os_type: self.fail('os_type is required to create the image') os_disk = self.create_os_disk() data_disks = self.create_data_disks() storage_profile = self.compute_models.ImageStorageProfile(os_disk=os_disk, data_disks=data_disks) image_instance = self.compute_models.Image(location=self.location, storage_profile=storage_profile, tags=self.tags) # finally make the change if not check mode if not self.check_mode and image_instance: new_image = self.create_image(image_instance) self.results['id'] = new_image.id elif self.state == 'absent': if not self.check_mode: # delete image self.delete_image() # the delete does not actually return anything. if no exception, then we'll assume it worked. self.results['id'] = None return self.results def resolve_storage_source(self, source): blob_uri = None disk = None snapshot = None # blob URI can only be given by str if isinstance(source, str) and source.lower().endswith('.vhd'): blob_uri = source return (blob_uri, disk, snapshot) tokenize = dict() if isinstance(source, dict): tokenize = source elif isinstance(source, str): tokenize = parse_resource_id(source) else: self.fail("source parameter should be in type string or dictionary") if tokenize.get('type') == 'disks': disk = format_resource_id(tokenize['name'], tokenize.get('subscription_id') or self.subscription_id, 'Microsoft.Compute', 'disks', tokenize.get('resource_group') or self.resource_group) return (blob_uri, disk, snapshot) if tokenize.get('type') == 'snapshots': snapshot = format_resource_id(tokenize['name'], tokenize.get('subscription_id') or self.subscription_id, 'Microsoft.Compute', 'snapshots', tokenize.get('resource_group') or self.resource_group) return (blob_uri, disk, snapshot) # not a disk or snapshots if 'type' in tokenize: return (blob_uri, disk, snapshot) # source can be name of snapshot or disk snapshot_instance = self.get_snapshot(tokenize.get('resource_group') or self.resource_group, tokenize['name']) if snapshot_instance: snapshot = snapshot_instance.id return (blob_uri, disk, snapshot) disk_instance = self.get_disk(tokenize.get('resource_group') or self.resource_group, tokenize['name']) if disk_instance: disk = disk_instance.id return (blob_uri, disk, snapshot) def create_os_disk(self): blob_uri, disk, snapshot = self.resolve_storage_source(self.source) snapshot_resource = self.compute_models.SubResource(id=snapshot) if snapshot else None managed_disk = self.compute_models.SubResource(id=disk) if disk else None return self.compute_models.ImageOSDisk(os_type=self.os_type, os_state=self.compute_models.OperatingSystemStateTypes.generalized, snapshot=snapshot_resource, managed_disk=managed_disk, blob_uri=blob_uri) def create_data_disk(self, lun, source): blob_uri, disk, snapshot = self.resolve_storage_source(source) if blob_uri or disk or snapshot: snapshot_resource = self.compute_models.SubResource(id=snapshot) if snapshot else None managed_disk = self.compute_models.SubResource(id=disk) if disk else None return self.compute_models.ImageDataDisk(lun=lun, blob_uri=blob_uri, snapshot=snapshot_resource, managed_disk=managed_disk) def create_data_disks(self): return list(filter(None, [self.create_data_disk(lun, source) for lun, source in enumerate(self.data_disk_sources)])) def get_source_vm(self): # self.resource can be a vm (id/name/dict), or not a vm. return the vm iff it is an existing vm. resource = dict() if isinstance(self.source, dict): if self.source.get('type') != 'virtual_machines': return None resource = dict(type='virtualMachines', name=self.source['name'], resource_group=self.source.get('resource_group') or self.resource_group) elif isinstance(self.source, str): vm_resource_id = format_resource_id(self.source, self.subscription_id, 'Microsoft.Compute', 'virtualMachines', self.resource_group) resource = parse_resource_id(vm_resource_id) else: self.fail("Unsupported type of source parameter, please give string or dictionary") return self.get_vm(resource['resource_group'], resource['name']) if resource['type'] == 'virtualMachines' else None def get_snapshot(self, resource_group, snapshot_name): return self._get_resource(self.compute_client.snapshots.get, resource_group, snapshot_name) def get_disk(self, resource_group, disk_name): return self._get_resource(self.compute_client.disks.get, resource_group, disk_name) def get_vm(self, resource_group, vm_name): return self._get_resource(self.compute_client.virtual_machines.get, resource_group, vm_name, 'instanceview') def get_image(self): return self._get_resource(self.compute_client.images.get, self.resource_group, self.name) def _get_resource(self, get_method, resource_group, name, expand=None): try: if expand: return get_method(resource_group, name, expand=expand) else: return get_method(resource_group, name) except CloudError as cloud_err: # Return None iff the resource is not found if cloud_err.status_code == 404: self.log('{0}'.format(str(cloud_err))) return None self.fail('Error: failed to get resource {0} - {1}'.format(name, str(cloud_err))) except Exception as exc: self.fail('Error: failed to get resource {0} - {1}'.format(name, str(exc))) def create_image(self, image): try: poller = self.compute_client.images.create_or_update(self.resource_group, self.name, image) new_image = self.get_poller_result(poller) except Exception as exc: self.fail("Error creating image {0} - {1}".format(self.name, str(exc))) self.check_provisioning_state(new_image) return new_image def delete_image(self): self.log('Deleting image {0}'.format(self.name)) try: poller = self.compute_client.images.delete(self.resource_group, self.name) result = self.get_poller_result(poller) except Exception as exc: self.fail("Error deleting image {0} - {1}".format(self.name, str(exc))) return result def main(): AzureRMImage() if __name__ == '__main__': main()
{ "content_hash": "0f2157d3c2b815dea8b3cca429bbe11c", "timestamp": "", "source": "github", "line_count": 363, "max_line_length": 147, "avg_line_length": 39.30027548209367, "alnum_prop": 0.5666619935511005, "repo_name": "SergeyCherepanov/ansible", "id": "b5dff335e47f160756ab8cf7b141d85ffe607500", "size": "14438", "binary": false, "copies": "12", "ref": "refs/heads/master", "path": "ansible/ansible/modules/cloud/azure/azure_rm_image.py", "mode": "33188", "license": "mit", "language": [ { "name": "Shell", "bytes": "824" } ], "symlink_target": "" }
from django.contrib import admin from .models import * class EventAdmin(admin.ModelAdmin): list_display = ('id', 'title', 'open_date', 'close_date') class AccommodationAdmin(admin.ModelAdmin): list_display = ('id', 'event', '__str__', 'capacity') list_filter = ('event',) class ClassFeeAdmin(admin.ModelAdmin): list_display = ('event', 'label', 'classes') list_filter = ('event',) class EntryAdmin(admin.ModelAdmin): list_display = ('event', 'id', 'email') list_filter = ('event',) class ParticipantAdmin(admin.ModelAdmin): list_display = ('entry', 'id', 'firstname', 'surname', 'cls') list_filter = ('entry',) class DirectoryAdmin(admin.ModelAdmin): list_display = ('firstname', 'surname', 'club', 'cls') list_filter = ('cls',) admin.site.register(Event, EventAdmin) admin.site.register(Accommodation, AccommodationAdmin) admin.site.register(ClassFee, ClassFeeAdmin) admin.site.register(Entry, EntryAdmin) admin.site.register(Participant, ParticipantAdmin) admin.site.register(Directory, DirectoryAdmin)
{ "content_hash": "1492c18b97df6b84b4050b38867f2f19", "timestamp": "", "source": "github", "line_count": 34, "max_line_length": 62, "avg_line_length": 30.147058823529413, "alnum_prop": 0.72, "repo_name": "peterkuma/tjrapid", "id": "635390ac432d441c3a311952df9f7bdc4b159807", "size": "1089", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "eventapp/admin.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "35400" }, { "name": "HTML", "bytes": "43945" }, { "name": "JavaScript", "bytes": "257779" }, { "name": "Python", "bytes": "82948" }, { "name": "XSLT", "bytes": "2142" } ], "symlink_target": "" }
from dynet import * import time import random LAYERS = 2 INPUT_DIM = 256 #50 #256 HIDDEN_DIM = 256 # 50 #1024 VOCAB_SIZE = 0 from collections import defaultdict from itertools import count import sys import util class RNNLanguageModel: def __init__(self, model, LAYERS, INPUT_DIM, HIDDEN_DIM, VOCAB_SIZE, builder=SimpleRNNBuilder): self.builder = builder(LAYERS, INPUT_DIM, HIDDEN_DIM, model) self.lookup = model.add_lookup_parameters((VOCAB_SIZE, INPUT_DIM)) self.R = model.add_parameters((VOCAB_SIZE, HIDDEN_DIM)) self.bias = model.add_parameters((VOCAB_SIZE)) def BuildLMGraph(self, sent): renew_cg() init_state = self.builder.initial_state() R = parameter(self.R) bias = parameter(self.bias) errs = [] # will hold expressions es=[] state = init_state for (cw,nw) in zip(sent,sent[1:]): # assume word is already a word-id x_t = lookup(self.lookup, int(cw)) state = state.add_input(x_t) y_t = state.output() r_t = bias + (R * y_t) err = pickneglogsoftmax(r_t, int(nw)) errs.append(err) nerr = esum(errs) return nerr def sample(self, first=1, nchars=0, stop=-1): res = [first] renew_cg() state = self.builder.initial_state() R = parameter(self.R) bias = parameter(self.bias) cw = first while True: x_t = lookup(self.lookup, cw) state = state.add_input(x_t) y_t = state.output() r_t = bias + (R * y_t) ydist = softmax(r_t) dist = ydist.vec_value() rnd = random.random() for i,p in enumerate(dist): rnd -= p if rnd <= 0: break res.append(i) cw = i if cw == stop: break if nchars and len(res) > nchars: break return res if __name__ == '__main__': train = util.CharsCorpusReader(sys.argv[1],begin="<s>") vocab = util.Vocab.from_corpus(train) VOCAB_SIZE = vocab.size() model = Model() sgd = SimpleSGDTrainer(model) #lm = RNNLanguageModel(model, LAYERS, INPUT_DIM, HIDDEN_DIM, VOCAB_SIZE, builder=SimpleRNNBuilder) lm = RNNLanguageModel(model, LAYERS, INPUT_DIM, HIDDEN_DIM, VOCAB_SIZE, builder=LSTMBuilder) train = list(train) chars = loss = 0.0 for ITER in range(100): random.shuffle(train) for i,sent in enumerate(train): _start = time.time() if i % 50 == 0: sgd.status() if chars > 0: print(loss / chars,) for _ in range(1): samp = lm.sample(first=vocab.w2i["<s>"],stop=vocab.w2i["\n"]) print("".join([vocab.i2w[c] for c in samp]).strip()) loss = 0.0 chars = 0.0 chars += len(sent)-1 isent = [vocab.w2i[w] for w in sent] errs = lm.BuildLMGraph(isent) loss += errs.scalar_value() errs.backward() sgd.update(1.0) #print "TM:",(time.time() - _start)/len(sent) print("ITER",ITER,loss) sgd.status() sgd.update_epoch(1.0)
{ "content_hash": "bb3a563e41267185b2d9b81e582b5e1f", "timestamp": "", "source": "github", "line_count": 105, "max_line_length": 102, "avg_line_length": 31.504761904761907, "alnum_prop": 0.530229746070133, "repo_name": "kamigaito/cnn", "id": "eb190be5f45ea88eeec2fb5a42d7595091ea2f8c", "size": "3308", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "examples/python/rnnlm.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "C++", "bytes": "562793" }, { "name": "CMake", "bytes": "18889" }, { "name": "Cuda", "bytes": "4308" }, { "name": "Makefile", "bytes": "697" }, { "name": "Python", "bytes": "128659" } ], "symlink_target": "" }
from collections import defaultdict from util import * import re,sys from optparse import OptionParser #from DependencyGraph import * # Error definitions class LexerError(Exception): pass class ParserError(Exception): pass class Node(): #node_id = 0 #static counter, unique for each node #mapping_table = {} # old new index mapping table def __init__(self, parent, trace, node_label, firsthit, leaf, depth, seqID): """ initialize a node in the graph here a node keeps record of trace i.e. from where the node is reached (the edge label) so nodes with same other attributes may have different trace """ self.parent = parent self.trace = trace self.node_label = node_label self.firsthit = firsthit self.leaf = leaf self.depth = depth self.children = [] self.seqID = seqID #Node.node_id += 1 #self.node_id = node_id def __str__(self): return str((self.trace, self.node_label, self.depth, self.seqID)) def __repr__(self): return str((self.trace, self.node_label, self.depth, self.seqID)) class AMR(defaultdict): """ An abstract meaning representation. Basic idea is based on bolinas' hypergraph for amr. Here one AMR is a rooted, directed, acyclic graph. We also use the edge-label style in bolinas. """ def __init__(self,*args, **kwargs): defaultdict.__init__(self,ListMap,*args,**kwargs) self.roots = [] self.external_nodes = {} # attributes to be added self.node_to_concepts = {} self.align_to_sentence = None self.reentrance_triples = [] @classmethod def parse_string(cls,amr_string,RENAME_NODE=False): """ Parse a Pennman style string representation for amr and return an AMR >>>x = AMR.parse_string("(a / and :op1(恶化 :ARG0(它) :ARG1(模式 :mod(开发)) :time (已 经)) :op2(堵塞 :ARG0(它) :ARG1(交通 :mod(局部)) :location(a / around :op1(出口)))))") >>> . """ def make_compiled_regex(rules): regexstr = '|'.join('(?P<%s>%s)' % (name, rule) for name, rule in rules) return re.compile(regexstr) def rename_node(parentnodelabel,parentconcept): if not isinstance(parentnodelabel,(Quantity,Polarity,Interrogative,StrLiteral)): # graph node rebuild if parentconcept is not None: amr.node_to_concepts[node_idx] = parentconcept mapping_table[parentnodelabel] = node_idx parentnodelabel = node_idx node_idx += 1 else: # not revisiting and concept is None if parentnodelabel not in mapping_table: amr.node_to_concepts[node_idx] = parentnodelabel parentnodelabel = node_idx node_idx += 1 else: #revisiting parentnodelabel = mapping_table[parentnodelabel] PNODE = 1 CNODE = 2 EDGE = 3 RCNODE = 4 amr = cls() stack = [] state = 0 node_idx = 0; # sequential new node index mapping_table = {}; # old new index mapping table lex_rules = [ ("LPAR", '\('), ("RPAR",'\)'), ("COMMA",','), ("SLASH",'/'), ("EDGELABEL",":[^\s()]+"), ("STRLITERAL",u'"[^"]+"|\u201c[^\u201d]+\u201d'), ("LITERAL","'[^\s(),]+"), ("INTERROGATIVE","\s(interrogative|imperative|expressive)(?=[\s\)])"), ("QUANTITY","[0-9][0-9Ee^+\-\.,:]*(?=[\s\)])"), ("IDENTIFIER","[^\s()]+"), #no blank within characters ("POLARITY","\s(\-|\+)(?=[\s\)])") ] token_re = make_compiled_regex(lex_rules) #lexer = Lexer(lex_rules) #amr.reentrance_triples = [] for match in token_re.finditer(amr_string): token = match.group() type = match.lastgroup #if type == "STRLITERAL": # import pdb # pdb.set_trace() #print token.strip(),type if state == 0: if type == "LPAR": state = 1 else: raise ParserError, "Unexpected token %s"%(token) elif state == 1: if type == "IDENTIFIER": stack.append((PNODE,token.strip(),None)) state = 2 elif type == "QUANTITY": stack.append((PNODE,Quantity(token.strip()),None)) state = 2 elif type == "STRLITERAL": stack.append((PNODE,StrLiteral(token.strip()),None)) state = 2 else: raise ParserError , "Unexpected token %s"%(token.encode('utf8')) elif state == 2: if type == "SLASH": state = 3 elif type == "EDGELABEL": stack.append((EDGE,token[1:])) state = 5 elif type == "RPAR": forgetme, parentnodelabel, parentconcept = stack.pop() assert forgetme == PNODE assert parentconcept == None if RENAME_NODE: rename_node(parentnodelabel,parentconcept) else: if not parentnodelabel in amr.node_to_concepts or parentconcept is not None: amr.node_to_concepts[parentnodelabel] = parentconcept foo = amr[parentnodelabel] if stack: stack.append((CNODE,parentnodelabel,parentconcept)) state = 6 else: amr.roots.append(parentnodelabel) state = 0 else: raise ParserError, "Unexpected token %s"%(token) elif state == 3: if type == "IDENTIFIER" or "QUANTITY": assert stack[-1][0] == PNODE nodelabel = stack.pop()[1] stack.append((PNODE,nodelabel,token)) state = 4 else: raise ParserError, "Unexpected token %s"%(token) elif state == 4: if type == "EDGELABEL": stack.append((EDGE,token[1:])) state = 5 elif type == "RPAR": forgetme, parentnodelabel, parentconcept = stack.pop() assert forgetme == PNODE foo = amr[parentnodelabel] # add only the node #print state,parentnodelabel,parentconcept if parentconcept is not None: amr.node_to_concepts[parentnodelabel] = parentconcept if stack: stack.append((CNODE,parentnodelabel,parentconcept)) state = 6 else: amr.roots.append(parentnodelabel) state = 0 else: print amr_string raise ParserError, "Unexpected token %s"%(token.encode('utf8')) elif state == 5: if type == "LPAR": state = 1 elif type == "QUANTITY": stack.append((CNODE,Quantity(token),None)) state = 6 elif type == "STRLITERAL": stack.append((CNODE,StrLiteral(token[1:-1]),None)) state = 6 elif type == "INTERROGATIVE": stack.append((CNODE,Interrogative(token[1:]),None)) state = 6 elif type == "POLARITY": stack.append((CNODE,Polarity(token.strip()),None)) state = 6 elif type == "IDENTIFIER": stack.append((RCNODE,token,None)) state = 6 elif type == "EDGELABEL": #Unary edge stack.append((CNODE,None,None)) stack.append((EDGE,token[1:])) state = 5 assert False elif type == "RPAR": stack.append((CNODE,None,None)) edges = [] assert False while stack[-1][0] != PNODE: children = [] #one edge may have multiple children/tail nodes while stack[-1][0] == CNODE: forgetme, childnodelabel, childconcept = stack.pop() children.append((childnodelabel,childconcept)) assert stack[-1][0] == EDGE forgetme, edgelabel = stack.pop() edges.append((edgelabel,children)) forgetme,parentnodelabel,parentconcept = stack.pop() #print state,parentnodelabel,parentconcept #check for annotation error if parentnodelabel in amr.node_to_concepts.keys(): #concept has been defined by the children, #then they must have different concepts, otherwise the children's concepts should be None #(coreference) if amr.node_to_concepts[parentnodelabel] == parentconcept: sys.stderr.write("Wrong annotation format: Revisited concepts %s should be ignored.\n" % parentconcept) else: sys.stderr.write("Wrong annotation format: Different concepts %s and %s have same node label(index)\n" % (amr.node_to_concepts[parentnodelabel],parentconcept)) parentnodelabel = parentnodelabel + "1" if RENAME_NODE: rename_node(parentnodelabel,parentconcept) else: if not parentnodelabel in amr.node_to_concepts or parentconcept is not None: amr.node_to_concepts[parentnodelabel] = parentconcept for edgelabel,children in reversed(edges): hypertarget = [] for node, concept in children: if node is not None and not isinstance(node,(Quantity,Polarity,Interrogative,StrLiteral)) and not node in amr.node_to_concepts: if RENAME_NODE: rename_node(node,concept) else: if concept: amr.node_to_concepts[node] = concept hypertarget.append(node) hyperchild = tuple(hypertarget) amr._add_triple(parentnodelabel,edgelabel,hyperchild) if stack: #we have done with current level state = 6 stack.append((CNODE, parentnodelabel, parentconcept)) else: #we have done with this subgraph state = 0 amr.roots.append(parentlabel) elif state == 6: if type == "RPAR": edges = [] reedges = [] while stack[-1][0] != PNODE: children = [] reentrances = [] #one edge may have multiple children/tail nodes while stack[-1][0] == CNODE or stack[-1][0] == RCNODE: CTYPE, childnodelabel, childconcept = stack.pop() if CTYPE == RCNODE: reentrances.append((childnodelabel,childconcept)) children.append((childnodelabel,childconcept)) assert stack[-1][0] == EDGE forgetme, edgelabel = stack.pop() edges.append((edgelabel,children)) reedges.append((edgelabel,reentrances)) forgetme,parentnodelabel,parentconcept = stack.pop() #print "PNODE",state,parentnodelabel,parentconcept #check for annotation error if parentnodelabel in amr.node_to_concepts.keys(): #concept has been defined by the children, #then they must have different concepts, otherwise the children's concepts should be None #(coreference) if amr.node_to_concepts[parentnodelabel] == parentconcept: sys.stderr.write("Wrong annotation format: Revisited concepts %s should be ignored.\n" % parentconcept) else: sys.stderr.write("Wrong annotation format: Different concepts %s and %s have same node label(index)\n" % (amr.node_to_concepts[parentnodelabel],parentconcept)) parentnodelabel = parentnodelabel + "1" if RENAME_NODE: rename_node(parentnodelabel,parentconcept) else: if not parentnodelabel in amr.node_to_concepts or parentconcept is not None: amr.node_to_concepts[parentnodelabel] = parentconcept for edgelabel,children in reversed(edges): hypertarget = [] for node, concept in children: if node is not None and not isinstance(node,(Quantity,Polarity,Interrogative,StrLiteral)) and not node in amr.node_to_concepts: if RENAME_NODE: rename_node(node,concept) else: if concept: amr.node_to_concepts[node] = concept hypertarget.append(node) hyperchild = tuple(hypertarget) amr._add_triple(parentnodelabel,edgelabel,hyperchild) for edgelabel,reentrance in reedges: hreent = [] for node,concept in reentrance: hreent.append(node) amr._add_reentrance(parentnodelabel,edgelabel,hreent) if stack: #we have done with current level state = 6 stack.append((CNODE, parentnodelabel, parentconcept)) else: #we have done with this subgraph state = 0 amr.roots.append(parentnodelabel) elif type == "COMMA": # to seperate multiple children/tails state = 7 elif type == "EDGELABEL": stack.append((EDGE,token[1:])) state = 5 else: raise ParserError, "Unexpected token %s"%(token.encode('utf8')) elif state == 7: if type == "IDENTIFIER": stack.append((CNODE, token, None)) # another children state = 6 elif typpe == "LPAR": state = 1 else: raise ParserError, "Unexpected token %s"%(token) if state != 0 and stack: raise ParserError, "mismatched parenthesis" return amr def get_variable(self,posID): """return variable given postition ID""" reent_var = None seq = self.dfs()[0] for node in seq: if node.seqID == posID: return node.node_label return None def get_match(self, subgraph): """find the subgraph""" def is_match(dict1, dict2): rel_concept_pairs = [] for rel, cpt in dict2.items(): rel_concept_pairs.append(rel+'@'+cpt) if not (rel in dict1 and cpt in dict1[rel]): return None return rel_concept_pairs subroot = subgraph.keys()[0] # sub root's concept concepts_on_the_path = [] for v in self.node_to_concepts: if v[0] == subroot[0] and self.node_to_concepts[v] == subroot: concepts_on_the_path = [subroot] rcp = is_match(self[v], subgraph[subroot]) if rcp is not None: return v, concepts_on_the_path+rcp #for rel, cpt in subgraph[subroot].items(): # if rel in self[v] and cpt in self[v][rel]: # concepts_on_the_path.append(rel+'@'+cpt) return None, None def get_pid(self,var): seq = self.dfs()[0] for node in seq: if node.node_label == var: return node.seqID return None ''' posn_queue = posID.split('.') var_list = self.roots past_pos_id = [] while posn_queue: posn = int(posn_queue.pop(0)) past_pos_id.append(posn) print var_list,past_pos_id,posn,visited_var variable = var_list[posn] var_list = [] vars = [v[0] for v in self[variable].values()] i = 0 while i < len(vars): k = vars[i] if k not in visited_var: var_list.append(k) elif isinstance(k,(StrLiteral,Quantity)): var_list.append(k) else: if visited_var[k] == '.'.join(str(j) for j in past_pos_id+[i]): var_list.append(k) else: vars.pop(i) i -= 1 i += 1 ''' return variable def get_ref_graph(self,alignment): """return the gold dependency graph based on amr graph""" dpg = DepGraph() for h in self: hstr = self.node_to_concepts[h] if h in self.node_to_concepts else h hidx = alignment[h][0] if not hidx in dpg.nodes.keys(): h_node = DNode(hidx,hstr) dpg.addNode(h_node) for ds in self[h].values(): d = ds[0] dstr = self.node_to_concepts[d] if d in self.node_to_concepts else d didx = alignment[d][0] if not didx in dpg.nodes.keys(): d_node = DNode(didx,dstr) dpg.addNode(d_node) dpg.addEdge(hidx,didx) #root root = DNode(0,'ROOT') dpg.addNode(root) dpg.addEdge(0,alignment[self.roots[0]][0]) return dpg ''' def get_unlabel_arcs(self): arc_set = set() for h in self: for d in self[h].values(): arc_set.add((h,d[0])) return arc_set ''' def _add_reentrance(self,parent,relation,reentrance): if reentrance: self.reentrance_triples.append((parent,relation,reentrance[0])) def _add_triple(self, parent, relation, child, warn=None): """ Add a (parent, relation, child) triple to the DAG. """ if type(child) is not tuple: child = (child,) if parent in child: #raise Exception('self edge!') #sys.stderr.write("WARNING: Self-edge (%s, %s, %s).\n" % (parent, relation, child)) if warn: warn.write("WARNING: Self-edge (%s, %s, %s).\n" % (parent, relation, child)) #raise ValueError, "Cannot add self-edge (%s, %s, %s)." % (parent, relation, child) for c in child: x = self[c] for rel, test in self[c].items(): if parent in test: if warn: warn.write("WARNING: (%s, %s, %s) produces a cycle with (%s, %s, %s)\n" % (parent, relation, child, c, rel, test)) #ATTENTION:maybe wrong, test may not have only one element, deal with it later concept1 = self.node_to_concepts[parent] concept2 = self.node_to_concepts[test[0]] #print concept1,concept2 if concept1 != concept2: warn.write("ANNOTATION ERROR: concepts %s and %s have same node label %s!" % (concept1, concepts2, parent)) #raise ValueError,"(%s, %s, %s) would produce a cycle with (%s, %s, %s)" % (parent, relation, child, c, rel, test) self[parent].append(relation, child) def set_alignment(self,alignment): self.align_to_sentence = alignment def bfs(self): """ breadth first search for the graph return the bfs-ordered triples """ from collections import deque visited_nodes = set() amr_triples = [] sequence = [] nid = 0 for i,r in enumerate(self.roots): seqID = str(i) queue = deque([((r,),None, 0, seqID)]) # node, incoming edge and depth amr_triples.append(('root','ROOT',r)) while queue: next,rel,depth,seqID = queue.popleft() for n in next: firsthit = (parent,rel,n) not in self.reentrance_triples leaf = False if self[n] else True node = Node(rel,n,firsthit,leaf,depth,seqID) #nid += 1 sequence.append(node) if n in visited_nodes or (parent,rel,n) in self.reentrance_triples: continue visited_nodes.add(n) p = len([child for rel,child in self[n].items() if (n,rel,child[0]) not in self.reentrance_triples]) - 1 for rel,child in reversed(self[n].items()): if not (rel,n,child[0]) in amr_triples: if (n,rel,child[0]) not in self.reentrance_triples: queue.append((child,rel,depth+1,seqID+'.'+str(p))) p -= 1 else: queue.append((child,rel,depth+1,None)) amr_triples.append((rel,n,child[0])) return (sequence,amr_triples) def print_triples(self): result = '' amr_triples = self.bfs()[1] for rel,parent,child in amr_triples: if not isinstance(child,(Quantity,Polarity,Interrogative,StrLiteral)): result += "%s(%s,%s)\n"%(rel,self.node_to_concepts[parent],self.node_to_concepts[child]) else: result += "%s(%s,%s)\n"%(rel,self.node_to_concepts[parent],child) return result def dfs(self): """ depth first search for the graph return dfs ordered nodes and edges TO-DO: this visiting order information can be obtained through the reading order of amr strings; modify the class to OrderedDefaultDict; """ visited_nodes = set() visited_edges = [] sequence = [] for i,r in enumerate(self.roots): seqID = str(i) stack = [((r,),None,None,0,seqID)] # record the node, incoming edge, parent, depth and unique identifier #all_nodes = [] while stack: next,rel,parent,depth,seqID = stack.pop() for n in next: if self.reentrance_triples: firsthit = (parent,rel,n) not in self.reentrance_triples else: firsthit = n not in visited_nodes leaf = False if self[n] else True node = Node(parent, rel, n, firsthit, leaf, depth, seqID) #print self.node_to_concepts sequence.append(node) # same StrLiteral/Quantity/Polarity should not be revisited if self.reentrance_triples: # for being the same with the amr string readed in if n in visited_nodes or (parent,rel,n) in self.reentrance_triples: continue else: if n in visited_nodes: continue visited_nodes.add(n) p = len([child for rel,child in self[n].items() if (n,rel,child[0]) not in self.reentrance_triples]) - 1 for rel, child in reversed(self[n].items()): #print rel,child if not (rel, n, child[0]) in visited_edges: #if child[0] not in visited_nodes or isinstance(child[0],(StrLiteral,Quantity)): visited_edges.append((rel,n,child[0])) if (n,rel,child[0]) not in self.reentrance_triples: stack.append((child,rel,n,depth+1,seqID+'.'+str(p))) p -= 1 else: stack.append((child,rel,n,depth+1,None)) elif isinstance(child[0],(StrLiteral,Quantity)): stack.append((child,rel,n,depth+1,seqID+'.'+str(p))) p -= 1 else: pass return (sequence, visited_edges) def replace_node(self, h_idx, idx): """for coreference, replace all occurrence of node idx to h_idx""" visited_nodes = set() visited_edges = set() for i,r in enumerate(self.roots[:]): stack = [((r,),None,None)] #node,incoming edge and preceding node while stack: next, rel, previous = stack.pop() for n in next: if n == idx: if previous == None: # replace root self.roots[i] = h_idx break self[previous].replace(rel,(h_idx,)) if n in visited_nodes: continue visited_nodes.add(n) for rel, child in reversed(self[n].items()): if not (n, rel, child) in visited_edges: if child in visited_nodes: stack.append((child,rel,n)) else: visited_edges.add((n,rel,child)) stack.append((child,rel,n)) def find_rel(self,h_idx,idx): """find the relation between head_idx and idx""" rels = [] for rel,child in self[h_idx].items(): #print child,idx if child == (idx,): rels.append(rel) return rels def replace_head(self,old_head,new_head,KEEP_OLD=True): """change the focus of current sub graph""" for rel,child in self[old_head].items(): if child != (new_head,): self[new_head].append(rel,child) del self[old_head] if KEEP_OLD: foo = self[old_head] self[new_head].append('NA',(old_head,)) def replace_rel(self,h_idx,old_rel,new_rel): """replace the h_idx's old_rel to new_rel""" for v in self[h_idx].getall(old_rel): self[h_idx].append(new_rel,v) del self[h_idx][old_rel] ''' def rebuild_index(self, node, sent_index_mapping=None): """assign non-literal node a new unique node label; replace the original index with the new node id or sentence offset; if we have been provided the sentence index mapping, we use the sentence offsets as new node label instead of the serialized node id. """ if sent_index_mapping is None: if node.node_label in self.node_to_concepts and self.node_to_concepts[node.node_label] is not None: #update the node_to_concepts table self.node_to_concepts[Node.node_id] = self.node_to_concepts[node.node_label] del self.node_to_concepts[node.node_label] Node.mapping_table[node.node_label] = Node.node_id node.node_label = Node.node_id elif self.node_label not in node_to_concepts and self.node_label in Node.mapping_table: new_label = Node.mapping_table[self.node_label] self.node_label = new_label else: #print Node.node_id,self.node_label node_to_concepts[Node.node_id] = self.node_label self.node_label = Node.node_id ''' def is_named_entity(self, var): edge_label_set = self[var].keys() if 'name' in edge_label_set: try: assert 'wiki' in edge_label_set except: print 'ill-formed entity found' print self.to_amr_string() return False return True return False def is_entity(self, var): if var in self.node_to_concepts: var_concept = self.node_to_concepts[var] return var_concept.endswith('-entity') or var_concept.endswith('-quantity') or var_concept.endswith('-organization') or var_concept == 'amr-unknown' return False def is_predicate(self, var): if var in self.node_to_concepts: return re.match('.*-[0-9]+',self.node_to_concepts[var]) is not None return False def is_const(self, var): return var not in self.node_to_concepts def statistics(self): #sequence = self.dfs()[0] named_entity_nums = defaultdict(int) entity_nums = defaultdict(int) predicate_nums = defaultdict(int) variable_nums = defaultdict(int) const_nums = defaultdict(int) reentrancy_nums = 0 stack = [(self.roots[0],None,None,0)] while stack: cur_var, rel, parent, depth = stack.pop() exclude_rels = [] if (parent, rel, cur_var) in self.reentrance_triples: # reentrancy here reentrancy_nums += 1 continue if self.is_named_entity(cur_var): entity_name = self.node_to_concepts[cur_var] named_entity_nums[entity_name] += 1 exclude_rels = ['name','wiki'] elif self.is_entity(cur_var): # entity does not have name relation entity_name = self.node_to_concepts[cur_var] entity_nums[entity_name] += 1 elif self.is_predicate(cur_var): pred_name = self.node_to_concepts[cur_var] predicate_nums[pred_name] += 1 elif self.is_const(cur_var): const_nums[cur_var] += 1 else: variable_name = self.node_to_concepts[cur_var] variable_nums[variable_name] += 1 for rel, var in self[cur_var].items(): if rel not in exclude_rels: stack.append((var[0], rel, cur_var, depth+1)) return named_entity_nums,entity_nums,predicate_nums,variable_nums,const_nums,reentrancy_nums def to_amr_string(self): amr_string = "" seq = self.dfs()[0] #always begin with root assert seq[0].trace == None dep_rec = 0 for node in seq: if node.trace == None: if node.firsthit and node.node_label in self.node_to_concepts: amr_string += "(%s / %s"%(node.node_label,self.node_to_concepts[node.node_label]) else: amr_string += "(%s"%(node.node_label) else: if node.depth >= dep_rec: dep_rec = node.depth else: amr_string += "%s"%((dep_rec-node.depth)*')') dep_rec = node.depth if not node.leaf: if node.firsthit and node.node_label in self.node_to_concepts: amr_string += "\n%s:%s (%s / %s"%(node.depth*"\t",node.trace,node.node_label,self.node_to_concepts[node.node_label]) else: amr_string += "\n%s:%s %s"%(node.depth*"\t",node.trace,node.node_label) else: if node.firsthit and node.node_label in self.node_to_concepts: amr_string += "\n%s:%s (%s / %s)"%(node.depth*"\t",node.trace,node.node_label,self.node_to_concepts[node.node_label]) else: if isinstance(node.node_label,StrLiteral): amr_string += '\n%s:%s "%s"'%(node.depth*"\t",node.trace,node.node_label) else: amr_string += "\n%s:%s %s"%(node.depth*"\t",node.trace,node.node_label) if dep_rec != 0: amr_string += "%s"%((dep_rec)*')') else: amr_string += ')' return amr_string def __reduce__(self): t = defaultdict.__reduce__(self) return (t[0], ()) + (self.__dict__,) + t[3:] if __name__ == "__main__": opt = OptionParser() opt.add_option("-v", action="store_true", dest="verbose") (options, args) = opt.parse_args() s = '''(a / and :op1(恶化 :ARG0(它) :ARG1(模式 :mod(开发)) :time (已经)) :op2(t / 堵塞 :ARG0(它) :ARG1(交通 :mod(局部)) :location(a / around :op1(出口))))''' s1 = '''(a / and :op1 (c / change-01 :ARG0 (i / it) :ARG1 (p / pattern :mod (d / develop-02)) :ARG2 (b / bad :degree (m / more))) :op2 (c2 / cause-01 :ARG0 i :ARG1 (c3 / congest-01 :ARG1 (a2 / around :op1 (e / exit :poss i)) :ARG2 (t / traffic) :ARG1-of (l2 / localize-01))) :time (a3 / already))''' s = s.decode('utf8') #amr_ch = AMR.parse_string(s) amr_en = AMR.parse_string(s1) #print str(amr_en) #print amr_en.dfs() print amr_en.to_amr_string() #print amr_ch #print amr_ch.dfs() #print amr_ch.to_amr_string()
{ "content_hash": "4f3744002d4084de1e532f420463c1c1", "timestamp": "", "source": "github", "line_count": 826, "max_line_length": 330, "avg_line_length": 41.705811138014525, "alnum_prop": 0.48889662980057474, "repo_name": "masterkeywikz/seq2graph", "id": "a9c8428c156d12e8f63cb143c7a4232da5437fa9", "size": "34643", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "amr2seq/amr_graph.py", "mode": "33261", "license": "mit", "language": [ { "name": "Batchfile", "bytes": "10200" }, { "name": "Makefile", "bytes": "11456" }, { "name": "Python", "bytes": "1082495" }, { "name": "Shell", "bytes": "3567" } ], "symlink_target": "" }
import logging from time import sleep from typing import List from django.conf import settings from telegram import InlineKeyboardButton, InlineKeyboardMarkup, \ InputMediaPhoto, InputMediaVideo, TelegramError from memes_reposter.telegram_bot import bot from .models import ImgurConfig, Media, Post logger = logging.getLogger(__name__) def publish_posts(posts: List[Post], config: ImgurConfig): size = len(posts) for i, post in enumerate(posts): published = publish_post(post, config) sleep(0.5) if published: logger.info('Published %3d/%d: %s', i + 1, size, repr(post)) post.save() def publish_blank(posts: List[Post]): for post in posts: logger.info('Blank publishing: %s', repr(post)) post.save() def publish_post(post: Post, config: ImgurConfig): delete_on_fail = settings.IMGUR_DELETE_ON_FAIL try: if post.is_single: publish_single(post, config) else: publish_album(post, config, delete_on_fail) return True except TelegramError as e: logger.error('Error %s: %s for post %s', type(e), e, repr(post)) return False def send_media(chat_id, media: Media, caption=None, reply_markup=None): common = dict(chat_id=chat_id, caption=caption, reply_markup=reply_markup) if media.animated: return bot.send_video(video=media.link, **common) else: return bot.send_photo(photo=media.link, **common) def get_media_input(media: Media, caption=None): if media.animated: inp = InputMediaVideo(media.link, caption=caption) else: inp = InputMediaPhoto(media.link, caption=caption) return inp def format_album_title(post: Post): title = post.title.strip() if post.images_count > len(post.medias): title = f"🔥 Album [ {post.images_count} ]\n" + title title += f"\n{post.link}" return title def post_title(post: Post, config: ImgurConfig): title = format_album_title(post) # reply_markup = build_keyboard_markup(post) title_message = bot.send_message( chat_id=config.chat_id, text=title, # reply_markup=reply_markup, disable_web_page_preview=True) return title_message def publish_single(post: Post, config: ImgurConfig): title_message = post_title(post, config) try: media = post.medias[0] send_media(config.chat_id, media) except TelegramError as e: logger.error('Error %s: %s for post %s', type(e), e, repr(post)) title_message.delete() def publish_album(post: Post, config: ImgurConfig, delete_on_fail=True): title_message = post_title(post, config) medias = [ get_media_input(media) for media in post.medias[:10] ] try: bot.send_media_group(media=medias, chat_id=config.chat_id) except TelegramError as e: logger.error('Error %s: %s for post %s', type(e), e, repr(post)) if delete_on_fail: title_message.delete() def build_keyboard_markup(post: Post): return InlineKeyboardMarkup([[ InlineKeyboardButton('comments', url=post.link + '#comments-container'), InlineKeyboardButton('post', url=post.link), ]])
{ "content_hash": "2e9036a602f242b2af2d5f2b67f67466", "timestamp": "", "source": "github", "line_count": 107, "max_line_length": 80, "avg_line_length": 30.16822429906542, "alnum_prop": 0.6496282527881041, "repo_name": "vaniakosmos/memes-reposter", "id": "785a3f6f076a0976641b4681d4fa926f9209ce05", "size": "3231", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "apps/imgur/publisher.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "1067" }, { "name": "Dockerfile", "bytes": "203" }, { "name": "HTML", "bytes": "11813" }, { "name": "JavaScript", "bytes": "6442" }, { "name": "Makefile", "bytes": "247" }, { "name": "Python", "bytes": "81075" }, { "name": "Shell", "bytes": "614" } ], "symlink_target": "" }
import re def filter_objlist(olist, fieldname, fieldval): """ Returns a list with of the objects in olist that have a fieldname valued as fieldval Parameters ---------- olist: list of objects fieldname: string fieldval: anything Returns ------- list of objets """ return [x for x in olist if getattr(x, fieldname) == fieldval] def filter_list(lst, filt): """ Parameters ---------- lst: list filter: function Unary string filter function Returns ------- list List of items that passed the filter Example ------- >>> l = ['12123123', 'N123213'] >>> filt = re.compile('\d*').match >>> nu_l = list_filter(l, filt) """ return [m for s in lst for m in (filt(s),) if m] def match_list(lst, pattern, group_names=[]): """ Parameters ---------- lst: list of str regex: string group_names: list of strings See re.MatchObject group docstring Returns ------- list of strings Filtered list, with the strings that match the pattern """ filtfn = re.compile(pattern).match filtlst = filter_list(lst, filtfn) if not group_names: return [m.string for m in filtlst] else: return [m.group(group_names) for m in filtlst] def search_list(lst, pattern): """ Parameters ---------- pattern: string lst: list of strings Returns ------- filtered_list: list of str Filtered lists with the strings in which the pattern is found. """ filt = re.compile(pattern).search return filter_list(lst, filt) def append_to_keys(adict, preffix): """ Parameters ---------- adict: preffix: Returns ------- """ return {preffix + str(key): (value if isinstance(value, dict) else value) for key, value in list(adict.items())} def append_to_list(lst, preffix): """ Parameters ---------- lst: preffix: Returns ------- """ return [preffix + str(item) for item in lst] def is_valid_regex(string): """ Checks whether the re module can compile the given regular expression. Parameters ---------- string: str Returns ------- boolean """ try: re.compile(string) is_valid = True except re.error: is_valid = False return is_valid def is_regex(string): """ TODO: improve this! Returns True if the given string is considered a regular expression, False otherwise. It will be considered a regex if starts with a non alphabetic character and then correctly compiled by re.compile :param string: str """ is_regex = False regex_chars = ['\\', '(', '+', '^', '$'] for c in regex_chars: if string.find(c) > -1: return is_valid_regex(string) return is_regex def is_fnmatch_regex(string): """ Returns True if the given string is considered a fnmatch regular expression, False otherwise. It will look for :param string: str """ is_regex = False regex_chars = ['!', '*', '$'] for c in regex_chars: if string.find(c) > -1: return True return is_regex def remove_from_string(string, values): """ Parameters ---------- string: values: Returns ------- """ for v in values: string = string.replace(v, '') return string def count_hits(strings, pattern): count = 0 for s in strings: if re.match(pattern, s): count += 1 return count def where_is(strings, pattern, n=1, lookup_func=re.match): """Return index of the nth match found of pattern in strings Parameters ---------- strings: list of str List of strings pattern: str Pattern to be matched nth: int Number of times the match must happen to return the item index. lookup_func: callable Function to match each item in strings to the pattern, e.g., re.match or re.search. Returns ------- index: int Index of the nth item that matches the pattern. If there are no n matches will return -1 """ count = 0 for idx, item in enumerate(strings): if lookup_func(pattern, item): count += 1 if count == n: return idx return -1 def to_str(bytes_or_str): if isinstance(bytes_or_str, bytes): value = bytes_or_str.decode('utf-8') else: value = bytes_or_str return value # Instance of str” def to_bytes(bytes_or_str): if isinstance(bytes_or_str, str): value = bytes_or_str.encode('utf-8') else: value = bytes_or_str return value # Instance of bytes” # Python 2 def to_unicode(unicode_or_str): if isinstance(unicode_or_str, str): value = unicode_or_str.decode('utf-8') else: value = unicode_or_str return value # Instance of unicode # Python 2 def to_str2(unicode_or_str): if isinstance(unicode_or_str, unicode): value = unicode_or_str.encode('utf-8') else: value = unicode_or_str return value # Instance of str”
{ "content_hash": "222d3532d2ec699c306104abaa9543ba", "timestamp": "", "source": "github", "line_count": 261, "max_line_length": 91, "avg_line_length": 20.04597701149425, "alnum_prop": 0.5726299694189603, "repo_name": "Neurita/boyle", "id": "798e060ad8d9e92faef5584ffed72e69edafd711", "size": "5635", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "boyle/utils/strings.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "Makefile", "bytes": "1687" }, { "name": "Python", "bytes": "391188" } ], "symlink_target": "" }
from PyQt4.QtCore import * from PyQt4.QtGui import * from PyQt4.uic import * import os class ConnectorsInfoWnd(QDialog): def __init__(self, treeModel, genus): super(ConnectorsInfoWnd, self).__init__() self.genus = genus self.treeModel = treeModel dirname, filename = os.path.split(os.path.abspath(__file__)) loadUi(dirname+'\\connector_info.ui', self) self.btnAdd.clicked.connect(self.onAddConnector) self.btnOk.clicked.connect(self.accept) self.btnCancel.clicked.connect(self.reject) self.header = ['Label', 'Kind', 'Type'] connectors = [] if(genus.plug != None): connectors.append(genus.plug) for socket in self.genus.sockets: connectors.append(socket) model = ConnectorTableModel(self, connectors, self.header) self.tableView.setModel(model) verticalHeader = self.tableView.verticalHeader(); #verticalHeader.setDefaultAlignment (Qt.AlignLeft) verticalHeader.setResizeMode(QHeaderView.Fixed); verticalHeader.setDefaultSectionSize(18); self.tableView.setItemDelegate(MyDelegate(self.tableView)); self.tableView.setEditTriggers(QAbstractItemView.AllEditTriggers) def onAddConnector(self): self.tableView.model().addConnector() class ConnectorTableModel(QAbstractTableModel): def __init__(self, parent, connectors, header, *args): QAbstractTableModel.__init__(self, parent, *args) self.connectors = connectors self.header = header self.InfoWnd = parent self.blockImages = [] def rowCount(self, parent): return len(self.connectors) def columnCount(self, parent): return len(self.header) def flags (self, index ) : if (not index.isValid()): return Qt.ItemIsEnabled; return Qt.ItemIsDragEnabled | Qt.ItemIsEnabled | Qt.ItemIsEditable; def addConnector(self): #return from blocks.BlockImageIcon import BlockImageIcon icon = QPixmap(os.getcwd() + "\\" + 'resource\\117-puzzle.png') img = BlockImageIcon('', 'CENTER', icon, 32, 32, False, False) self.blockImages.append(img) index = QModelIndex () self.insertRow(len(self.blockImages), index) self.emit(SIGNAL("dataChanged(QModelIndex,QModelIndex)"), index, index) def setData(self, index, value, role=Qt.DisplayRole): if (index.isValid() and role == Qt.EditRole): connector = self.connectors[index.row()] if(index.column() == 0): connector.label = value if(index.column() == 1): connector.kind = value if(index.column() == 2): connector.type = value #emit dataChanged(index, index); self.InfoWnd.treeModel.showBlock(self.InfoWnd.genus) return True; return False def data(self, index, role): if not index.isValid(): return None elif role != Qt.DisplayRole: return None connector = self.connectors[index.row()] if(index.column() == 0): return connector.label if(index.column() == 1): return connector.kind if(index.column() == 2): return connector.type return None def headerData(self, col, orientation, role): if orientation == Qt.Horizontal and role == Qt.DisplayRole: return self.header[col] if (role == Qt.TextAlignmentRole): return Qt.AlignLeft | Qt.AlignVCenter return None class MyDelegate(QItemDelegate): def __init__(self, parent): super(MyDelegate, self).__init__(parent) def createEditor(self, parent, option, index): if(index.column() == 0): editor = super(MyDelegate, self).createEditor(parent, option, index) return editor if(index.column() == 1): combobox = QComboBox(parent) combobox.addItems(['socket', 'plug']) #combobox.currentIndexChanged[int].connect(self.currentIndexChanged) return combobox if(index.column() == 2): combobox = QComboBox(parent) combobox.addItems(['boolean','cmd','number','poly', 'poly-list', 'string']) #combobox.currentIndexChanged[int].connect(self.currentIndexChanged) return combobox return None def setModelData(self, editor, model, index) : super(MyDelegate, self).setModelData(editor, model, index) def setEditorData (self, editor, index): #self.m_finishedMapper.blockSignals(True); text = index.model().data(index, Qt.DisplayRole) if index.column() == 0: #print('setEditorData') editor.setText(text); #super(MyDelegate, self).setEditorData(editor, index) if index.column() == 1: _ind = editor.findText(text) editor.setCurrentIndex(_ind) if index.column() == 2: _ind = editor.findText(text) editor.setCurrentIndex(_ind)
{ "content_hash": "fa7cac093b9fba95bbfbaa1622637761", "timestamp": "", "source": "github", "line_count": 160, "max_line_length": 87, "avg_line_length": 33.09375, "alnum_prop": 0.5916902738432483, "repo_name": "go2net/PythonBlocks", "id": "2605900e400651a7dafc92f44c5f2c94fe672508", "size": "5295", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "components/ConnectorsInfoWnd.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "560957" } ], "symlink_target": "" }
from base_model import WsModel class ThemePackage(WsModel): """ ThemePackage groups theme elements together for packaging and distribution""" _modfields = [{"name":"name","type":"text"}, {"name":"themes","type":"selectmulti","list":"Theme","list_val":"key","list_name":"name"}] name = WsModel.db.StringProperty() themes = WsModel.db.ListProperty(WsModel.db.Key) @classmethod def relations(cls): return WsModel.Relation([], [{"name":"name","type":"text"}, {"name":"themes","type":"selectmulti","list":WsModel.Theme,"list_val":"key","list_name":"name"}]) @classmethod def old_create(cls, dict_values): theme_package = cls() theme_package.name = "".join(dict_values["name"]) theme_package.themes = dict_values["themes"] theme_package.put() return theme_package WsModel.ThemePackage = ThemePackage class Theme(WsModel): """ Theme relieves the need for static file upload Each theme element contains the complete html, css and js for the space the element is intended to fill.""" name = WsModel.db.StringProperty() html = WsModel.db.TextProperty() css = WsModel.db.TextProperty() js = WsModel.db.TextProperty() @classmethod def relations(cls): return WsModel.Relation([{"model":"Page","field":"theme","value":"key"}], [{"name":"name","type":"text"}, {"name":"html","type":"textareahtml"}, {"name":"css","type":"textarea"}, {"name":"js","type":"textarea"}]) WsModel.Theme = Theme
{ "content_hash": "093363a1e664f413203978134d341357", "timestamp": "", "source": "github", "line_count": 38, "max_line_length": 109, "avg_line_length": 39.63157894736842, "alnum_prop": 0.650066401062417, "repo_name": "webspinner/webspinner-gae-cms", "id": "cc376bb63dfec90bc776d87e6d9b0f3cdcc314bd", "size": "1506", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "models/theme.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "C", "bytes": "5995" }, { "name": "JavaScript", "bytes": "35291" }, { "name": "Python", "bytes": "2486474" }, { "name": "Shell", "bytes": "65" } ], "symlink_target": "" }
import numpy as np def print_test(network, testset, cost_function): assert testset[0].features.shape[0] == network.n_inputs, \ "ERROR: input size varies from the defined input setting" assert testset[0].targets.shape[0] == network.layers[-1][0], \ "ERROR: output size varies from the defined output setting" test_data = np.array([instance.features for instance in testset]) test_targets = np.array([instance.targets for instance in testset]) input_signals, derivatives = network.update(test_data, trace=True) out = input_signals[-1] error = cost_function(out, test_targets) print "[testing] Network error: %.4g" % error print "[testing] Network results:" print "[testing] input\tresult\ttarget" for entry, result, target in zip(test_data, out, test_targets): print "[testing] %s\t%s\t%s" % tuple(map(str, [entry, result, target])) # end def dropout(X, p=0.): if p != 0: retain_p = 1 - p X = X * np.random.binomial(1, retain_p, size=X.shape) X /= retain_p return X # end def add_bias(A): # Add a bias value of 1. The value of the bias is adjusted through # weights rather than modifying the input signal. return np.hstack((np.ones((A.shape[0], 1)), A)) # end addBias def confirm(promt='Do you want to continue?'): prompt = '%s [%s|%s]: ' % (promt, 'y', 'n') while True: ans = raw_input(prompt).lower() if ans in ['y', 'yes']: return True if ans in ['n', 'no']: return False print "Please enter y or n." # end
{ "content_hash": "a53f1c2e2bce941d45686522a3716fd9", "timestamp": "", "source": "github", "line_count": 56, "max_line_length": 81, "avg_line_length": 28.803571428571427, "alnum_prop": 0.6100433973961562, "repo_name": "DailyActie/Surrogate-Model", "id": "9f00b836635c310655d4e3c0dfe7d89ce3b48469", "size": "1613", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "01-codes/python-neural-network-master/nimblenet/tools.py", "mode": "33261", "license": "mit", "language": [ { "name": "Awk", "bytes": "345" }, { "name": "Batchfile", "bytes": "18746" }, { "name": "C", "bytes": "13004913" }, { "name": "C++", "bytes": "14692003" }, { "name": "CMake", "bytes": "72831" }, { "name": "CSS", "bytes": "303488" }, { "name": "Fortran", "bytes": "7339415" }, { "name": "HTML", "bytes": "854774" }, { "name": "Java", "bytes": "38854" }, { "name": "JavaScript", "bytes": "2432846" }, { "name": "Jupyter Notebook", "bytes": "829689" }, { "name": "M4", "bytes": "1379" }, { "name": "Makefile", "bytes": "48708" }, { "name": "Matlab", "bytes": "4346" }, { "name": "Objective-C", "bytes": "567" }, { "name": "PHP", "bytes": "93585" }, { "name": "Pascal", "bytes": "1449" }, { "name": "Perl", "bytes": "1152272" }, { "name": "PowerShell", "bytes": "17042" }, { "name": "Python", "bytes": "34668203" }, { "name": "Roff", "bytes": "5925" }, { "name": "Ruby", "bytes": "92498" }, { "name": "Shell", "bytes": "94698" }, { "name": "TeX", "bytes": "156540" }, { "name": "TypeScript", "bytes": "41691" } ], "symlink_target": "" }
"""" Most Popular Collaborative Filtering Recommender [Rating Prediction] Most Popular predicts ratings for unobserved items for each user based on popularity of user and items. """ # © 2019. Case Recommender (MIT License) from caserec.recommenders.rating_prediction.base_rating_prediction import BaseRatingPrediction from caserec.utils.extra_functions import timed import numpy as np __author__ = 'Arthur Fortes <[email protected]>' class MostPopular(BaseRatingPrediction): def __init__(self, train_file=None, test_file=None, output_file=None, sep='\t', output_sep='\t'): """ Most Popular for Item Recommendation This algorithm predicts a rank for each user using the count of number of feedback of users and items Usage:: >> MostPopular(train, test).compute() :param train_file: File which contains the train set. This file needs to have at least 3 columns (user item feedback_value). :type train_file: str :param test_file: File which contains the test set. This file needs to have at least 3 columns (user item feedback_value). :type test_file: str, default None :param output_file: File with dir to write the final predictions :type output_file: str, default None :param sep: Delimiter for input files :type sep: str, default '\t' :param output_sep: Delimiter for output file :type output_sep: str, default '\t' """ super(MostPopular, self).__init__(train_file=train_file, test_file=test_file, output_file=output_file, sep=sep, output_sep=output_sep) self.recommender_name = 'Most Popular' def predict(self): """ This method predict final result, building an rank of each user of the train set. """ if self.test_file is not None: for user in self.test_set['users']: for item in self.test_set['feedback'][user]: count_value = 0 feedback_value = 0 for user_v in self.train_set['users_viewed_item'].get(item, []): feedback_value += self.train_set['feedback'][user_v][item] count_value += 1 if feedback_value == 0: try: feedback_value = np.mean(list(self.train_set['feedback'][user].values())) except KeyError: feedback_value = self.train_set['mean_value'] else: feedback_value /= count_value self.predictions.append((user, item, feedback_value)) else: raise NotImplemented def compute(self, verbose=True, metrics=None, verbose_evaluation=True, as_table=False, table_sep='\t'): """ Extends compute method from BaseItemRecommendation. Method to run recommender algorithm :param verbose: Print recommender and database information :type verbose: bool, default True :param metrics: List of evaluation measures :type metrics: list, default None :param verbose_evaluation: Print the evaluation results :type verbose_evaluation: bool, default True :param as_table: Print the evaluation results as table :type as_table: bool, default False :param table_sep: Delimiter for print results (only work with verbose=True and as_table=True) :type table_sep: str, default '\t' """ super(MostPopular, self).compute(verbose=verbose) if verbose: print("prediction_time:: %4f sec" % timed(self.predict)) print('\n') else: self.predict() self.write_predictions() if self.test_file is not None: self.evaluate(metrics, verbose_evaluation, as_table=as_table, table_sep=table_sep)
{ "content_hash": "87cd3d4a8364961a51348e82e46e0516", "timestamp": "", "source": "github", "line_count": 115, "max_line_length": 110, "avg_line_length": 34.80869565217391, "alnum_prop": 0.6025480889333, "repo_name": "ArthurFortes/CaseRecommender", "id": "41aa133f75904cba8ddbd32d69c116c00097245e", "size": "4019", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "caserec/recommenders/rating_prediction/most_popular.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "198143" } ], "symlink_target": "" }