text
stringlengths
4
1.02M
meta
dict
"""RCV1 dataset. """ # Author: Tom Dupre la Tour # License: BSD 3 clause import logging from os.path import exists, join from gzip import GzipFile from io import BytesIO from contextlib import closing try: from urllib2 import urlopen except ImportError: from urllib.request import urlopen import numpy as np import scipy.sparse as sp from .base import get_data_home from .base import Bunch from ..utils.fixes import makedirs from ..externals import joblib from .svmlight_format import load_svmlight_files from ..utils import shuffle as shuffle_ URL = ('http://jmlr.csail.mit.edu/papers/volume5/lewis04a/' 'a13-vector-files/lyrl2004_vectors') URL_topics = ('http://jmlr.csail.mit.edu/papers/volume5/lewis04a/' 'a08-topic-qrels/rcv1-v2.topics.qrels.gz') logger = logging.getLogger() def fetch_rcv1(data_home=None, subset='all', download_if_missing=True, random_state=None, shuffle=False): """Load the RCV1 multilabel dataset, downloading it if necessary. Version: RCV1-v2, vectors, full sets, topics multilabels. ============== ===================== Classes 103 Samples total 804414 Dimensionality 47236 Features real, between 0 and 1 ============== ===================== Read more in the :ref:`User Guide <datasets>`. Parameters ---------- data_home : string, optional Specify another download and cache folder for the datasets. By default all scikit learn data is stored in '~/scikit_learn_data' subfolders. subset: string, 'train', 'test', or 'all', default='all' Select the dataset to load: 'train' for the training set (23149 samples), 'test' for the test set (781265 samples), 'all' for both, with the training samples first if shuffle is False. This follows the official LYRL2004 chronological split. download_if_missing : boolean, default=True If False, raise a IOError if the data is not locally available instead of trying to download the data from the source site. random_state : int, RandomState instance or None, optional (default=None) Random state for shuffling the dataset. If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. shuffle : bool, default=False Whether to shuffle dataset. Returns ------- dataset : dict-like object with the following attributes: dataset.data : scipy csr array, dtype np.float64, shape (804414, 47236) The array has 0.16% of non zero values. dataset.target : scipy csr array, dtype np.uint8, shape (804414, 103) Each sample has a value of 1 in its categories, and 0 in others. The array has 3.15% of non zero values. dataset.sample_id : numpy array, dtype np.uint32, shape (804414,) Identification number of each sample, as ordered in dataset.data. dataset.target_names : numpy array, dtype object, length (103) Names of each target (RCV1 topics), as ordered in dataset.target. dataset.DESCR : string Description of the RCV1 dataset. Reference --------- Lewis, D. D., Yang, Y., Rose, T. G., & Li, F. (2004). RCV1: A new benchmark collection for text categorization research. The Journal of Machine Learning Research, 5, 361-397. """ N_SAMPLES = 804414 N_FEATURES = 47236 N_CATEGORIES = 103 N_TRAIN = 23149 data_home = get_data_home(data_home=data_home) rcv1_dir = join(data_home, "RCV1") if download_if_missing: makedirs(rcv1_dir, exist_ok=True) samples_path = join(rcv1_dir, "samples.pkl") sample_id_path = join(rcv1_dir, "sample_id.pkl") sample_topics_path = join(rcv1_dir, "sample_topics.pkl") topics_path = join(rcv1_dir, "topics_names.pkl") # load data (X) and sample_id if download_if_missing and (not exists(samples_path) or not exists(sample_id_path)): file_urls = ["%s_test_pt%d.dat.gz" % (URL, i) for i in range(4)] file_urls.append("%s_train.dat.gz" % URL) files = [] for file_url in file_urls: logger.warning("Downloading %s" % file_url) with closing(urlopen(file_url)) as online_file: # buffer the full file in memory to make possible to Gzip to # work correctly f = BytesIO(online_file.read()) files.append(GzipFile(fileobj=f)) Xy = load_svmlight_files(files, n_features=N_FEATURES) # Training data is before testing data X = sp.vstack([Xy[8], Xy[0], Xy[2], Xy[4], Xy[6]]).tocsr() sample_id = np.hstack((Xy[9], Xy[1], Xy[3], Xy[5], Xy[7])) sample_id = sample_id.astype(np.uint32) joblib.dump(X, samples_path, compress=9) joblib.dump(sample_id, sample_id_path, compress=9) else: X = joblib.load(samples_path) sample_id = joblib.load(sample_id_path) # load target (y), categories, and sample_id_bis if download_if_missing and (not exists(sample_topics_path) or not exists(topics_path)): logger.warning("Downloading %s" % URL_topics) with closing(urlopen(URL_topics)) as online_topics: f = BytesIO(online_topics.read()) # parse the target file n_cat = -1 n_doc = -1 doc_previous = -1 y = np.zeros((N_SAMPLES, N_CATEGORIES), dtype=np.uint8) sample_id_bis = np.zeros(N_SAMPLES, dtype=np.int32) category_names = {} for line in GzipFile(fileobj=f, mode='rb'): line_components = line.decode("ascii").split(u" ") if len(line_components) == 3: cat, doc, _ = line_components if cat not in category_names: n_cat += 1 category_names[cat] = n_cat doc = int(doc) if doc != doc_previous: doc_previous = doc n_doc += 1 sample_id_bis[n_doc] = doc y[n_doc, category_names[cat]] = 1 # Samples in X are ordered with sample_id, # whereas in y, they are ordered with sample_id_bis. permutation = _find_permutation(sample_id_bis, sample_id) y = sp.csr_matrix(y[permutation, :]) # save category names in a list, with same order than y categories = np.empty(N_CATEGORIES, dtype=object) for k in category_names.keys(): categories[category_names[k]] = k joblib.dump(y, sample_topics_path, compress=9) joblib.dump(categories, topics_path, compress=9) else: y = joblib.load(sample_topics_path) categories = joblib.load(topics_path) if subset == 'all': pass elif subset == 'train': X = X[:N_TRAIN, :] y = y[:N_TRAIN, :] sample_id = sample_id[:N_TRAIN] elif subset == 'test': X = X[N_TRAIN:, :] y = y[N_TRAIN:, :] sample_id = sample_id[N_TRAIN:] else: raise ValueError("Unknown subset parameter. Got '%s' instead of one" " of ('all', 'train', test')" % subset) if shuffle: X, y, sample_id = shuffle_(X, y, sample_id, random_state=random_state) return Bunch(data=X, target=y, sample_id=sample_id, target_names=categories, DESCR=__doc__) def _inverse_permutation(p): """inverse permutation p""" n = p.size s = np.zeros(n, dtype=np.int32) i = np.arange(n, dtype=np.int32) np.put(s, p, i) # s[p] = i return s def _find_permutation(a, b): """find the permutation from a to b""" t = np.argsort(a) u = np.argsort(b) u_ = _inverse_permutation(u) return t[u_]
{ "content_hash": "cca8e621b5023143bff486ffb798fc55", "timestamp": "", "source": "github", "line_count": 230, "max_line_length": 78, "avg_line_length": 34.84782608695652, "alnum_prop": 0.5987523393636931, "repo_name": "cl4rke/scikit-learn", "id": "090f03560d6ff76b08f061acf03b7a0d7b3fb9cd", "size": "8015", "binary": false, "copies": "4", "ref": "refs/heads/master", "path": "sklearn/datasets/rcv1.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "Batchfile", "bytes": "1786" }, { "name": "C", "bytes": "385829" }, { "name": "C++", "bytes": "139482" }, { "name": "Makefile", "bytes": "1388" }, { "name": "PowerShell", "bytes": "13427" }, { "name": "Python", "bytes": "5916687" }, { "name": "Shell", "bytes": "3952" } ], "symlink_target": "" }
"""Utility functions.""" import getpass def ask_input(prompt = '', is_password = False): """Keep asking for input until it's empty.""" while True: answer = getpass.getpass() if is_password == True else input(prompt) if answer is not '': return answer def ask_multiple_option(options, prefix = 'Choose between', prompt = ': '): """Keep asking for input until it's empty or not in range.""" def exists(index): return 0 <= index < len(options) while True: print(prefix) for index, option in enumerate(options): print(' {} - {}'.format(index + 1, option)) answer = input(prompt).strip() if answer is not '': index = int(answer) - 1 if exists(index): return options[index]
{ "content_hash": "b37e7cd01aa39687c242ac25afcab53a", "timestamp": "", "source": "github", "line_count": 29, "max_line_length": 76, "avg_line_length": 28.17241379310345, "alnum_prop": 0.5679314565483476, "repo_name": "frabonomi/instagram-followers-scraper", "id": "013f48340a828b04244452ee35eec7a30e0382a2", "size": "817", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "modules/utils.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "9777" } ], "symlink_target": "" }
from time import strftime, gmtime from logging import getLogger from os.path import dirname, join as path_join # pylint: disable=F0401 from tornado.httpserver import HTTPServer from tornado.ioloop import IOLoop from tornado.web import Application, FallbackHandler from tornado.wsgi import WSGIContainer from tornado.escape import utf8 from paste.deploy.converters import asbool # pylint: enable=F0401 from turbulenz_local.lib.multiplayer import MultiplayerHandler, MultiplayerStatusHandler, SessionStatusHandler from turbulenz_local.lib.responsefromfile import ResponseFromFileHandler from turbulenz_local.handlers.localv1.save import SaveFileHandler # pylint: disable=R0904 class DevserverWSGIContainer(WSGIContainer): logger = getLogger('DevserverWSGIContainer') new_line = b'\r\n' empty_string = b'' def __call__(self, request): parts = [] parts_append = parts.append base_header = strftime('\r\nDate: %a, %d %b %Y %H:%M:%S GMT', gmtime()) + '\r\nServer: tornado\r\n' if not request.supports_http_1_1(): if request.headers.get('Connection', '').lower() == 'keep-alive': base_header += 'Connection: Keep-Alive\r\n' def start_response(status, response_headers, exc_info=None): parts_append(utf8('HTTP/1.1 ' + status + base_header)) for key, value in response_headers: parts_append(utf8(key + ': ' + value + '\r\n')) parts_append(self.new_line) return None environ = WSGIContainer.environ(request) environ['wsgi.multiprocess'] = False # Some EvalException middleware fails if set to True app_response = self.wsgi_application(environ, start_response) if not parts: raise Exception('WSGI app did not call start_response') if request.method != 'HEAD': parts.extend(app_response) if hasattr(app_response, 'close'): app_response.close() app_response = None if hasattr(request, "connection"): # Now that the request is finished, clear the callback we # set on the IOStream (which would otherwise prevent the # garbage collection of the RequestHandler when there # are keepalive connections) request.connection.stream.set_close_callback(None) request.write(self.empty_string.join(parts)) try: request.finish() except IOError as e: self.logger.error('Exception when writing response: %s', str(e)) def _log(self, status_code, request): pass class DevserverApplication(Application): def log_request(self, handler): pass # pylint: enable=R0904 def run(wsgi_app, global_conf, host='0.0.0.0', port='8080', multiplayer=False, testing=False): port = int(port) multiplayer = asbool(multiplayer) testing = asbool(testing) wsgi_app = DevserverWSGIContainer(wsgi_app) handlers = [] if multiplayer: handlers.append(('/multiplayer/(.*)/(.*)', MultiplayerHandler)) handlers.append(('/api/v1/multiplayer/status', MultiplayerStatusHandler)) handlers.append(('/api/v1/multiplayer/status/session/(.*)', SessionStatusHandler)) if testing: raw_response_dir = path_join(dirname(__file__), 'raw-response') handlers.append(('/raw-response/(.*)', ResponseFromFileHandler, dict(path=raw_response_dir))) handlers.append(('/local/v1/save/([^/]+)/(.*)', SaveFileHandler)) handlers.append(('.*', FallbackHandler, dict(fallback=wsgi_app))) tornado_app = DevserverApplication(handlers, transforms=[]) handlers = None server = HTTPServer(tornado_app) server.listen(port, host) print 'Serving on %s:%u view at http://127.0.0.1:%u' % (host, port, port) IOLoop.instance().start()
{ "content_hash": "47f930f928f1541073c7439b3330fef8", "timestamp": "", "source": "github", "line_count": 114, "max_line_length": 110, "avg_line_length": 34.175438596491226, "alnum_prop": 0.6519507186858317, "repo_name": "turbulenz/turbulenz_local", "id": "d5f3806f46895cbafcf7c730a5935610132861ba", "size": "3940", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "turbulenz_local/paste_factory.py", "mode": "33188", "license": "mit", "language": [ { "name": "Batchfile", "bytes": "282" }, { "name": "CSS", "bytes": "29719" }, { "name": "HTML", "bytes": "54841" }, { "name": "JavaScript", "bytes": "200107" }, { "name": "Python", "bytes": "459206" } ], "symlink_target": "" }
"""Create threads to run multiple enqueue ops.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import threading import tensorflow.python.platform from tensorflow.python.framework import errors from tensorflow.python.framework import ops from tensorflow.python.platform import logging class QueueRunner(object): """Holds a list of enqueue operations for a queue, each to be run in a thread. Queues are a convenient TensorFlow mechanism to compute tensors asynchronously using multiple threads. For example in the canonical 'Input Reader' setup one set of threads generates filenames in a queue; a second set of threads read records from the files, processes them, and enqueues tensors on a second queue; a third set of threads dequeues these input records to construct batches and runs them through training operations. There are several delicate issues when running multiple threads that way: closing the queues in sequence as the input is exhausted, correctly catching and reporting exceptions, etc. The `QueueRunner`, combined with the `Coordinator`, helps handle these issues. """ def __init__(self, queue, enqueue_ops): """Create a QueueRunner. On construction the `QueueRunner` adds an op to close the queue. That op will be run if the enqueue ops raise exceptions. When you later call the `create_threads()` method, the `QueueRunner` will create one thread for each op in `enqueue_ops`. Each thread will run its enqueue op in parallel with the other threads. The enqueue ops do not have to all be the same op, but it is expected that they all enqueue tensors in `queue`. Args: queue: A `Queue`. enqueue_ops: List of enqueue ops to run in threads later. """ self._queue = queue self._enqueue_ops = enqueue_ops # Close when no more will be produced, but pending enqueues should be # preserved. self._close_op = self._queue.close() # Close and cancel pending enqueues since there was an error and we want # to unblock everything so we can cleanly exit. self._cancel_op = self._queue.close(cancel_pending_enqueues=True) # Protect the count of runs to wait for. self._lock = threading.Lock() self._runs = 0 # List of exceptions raised by the running threads. self._exceptions_raised = [] @property def exceptions_raised(self): """Exceptions raised but not handled by the `QueueRunner` threads. Exceptions raised in queue runner threads are handled in one of two ways depending on whether or not a `Coordinator` was passed to `create_threads()`: * With a `Coordinator`, exceptions are reported to the coordinator and forgotten by the `QueueRunner`. * Without a `Coordinator`, exceptions are captured by the `QueueRunner` and made available in this `exceptions_raised` property. Returns: A list of Python `Exception` objects. The list is empty if no exception was captured. (No exceptions are captured when using a Coordinator.) """ return self._exceptions_raised # pylint: disable=broad-except def _run(self, sess, enqueue_op, coord=None): """Execute the enqueue op in a loop, close the queue in case of error. Args: sess: A Session. enqueue_op: The Operation to run. coord: Optional Coordinator object for reporting errors and checking for stop conditions. """ decremented = False try: while True: if coord and coord.should_stop(): break try: sess.run(enqueue_op) except errors.OutOfRangeError: # This exception indicates that a queue was closed. with self._lock: self._runs -= 1 decremented = True if self._runs == 0: try: sess.run(self._close_op) except Exception as e: # Intentionally ignore errors from close_op. logging.vlog(1, "Ignored exception: %s", str(e)) return except Exception as e: # This catches all other exceptions. if coord: coord.request_stop(e) else: logging.error("Exception in QueueRunner: %s", str(e)) with self._lock: self._exceptions_raised.append(e) raise finally: # Make sure we account for all terminations: normal or errors. if not decremented: with self._lock: self._runs -= 1 def _close_on_stop(self, sess, cancel_op, coord): """Close the queue when the Coordinator requests stop. Args: sess: A Session. cancel_op: The Operation to run. coord: Coordinator. """ coord.wait_for_stop() try: sess.run(cancel_op) except Exception as e: # Intentionally ignore errors from cancel_op. logging.vlog(1, "Ignored exception: %s", str(e)) # pylint: enable=broad-except def create_threads(self, sess, coord=None, daemon=False, start=False): """Create threads to run the enqueue ops. This method requires a session in which the graph was launched. It creates a list of threads, optionally starting them. There is one thread for each op passed in `enqueue_ops`. The `coord` argument is an optional coordinator, that the threads will use to terminate together and report exceptions. If a coordinator is given, this method starts an additional thread to close the queue when the coordinator requests a stop. This method may be called again as long as all threads from a previous call have stopped. Args: sess: A `Session`. coord: Optional `Coordinator` object for reporting errors and checking stop conditions. daemon: Boolean. If `True` make the threads daemon threads. start: Boolean. If `True` starts the threads. If `False` the caller must call the `start()` method of the returned threads. Returns: A list of threads. Raises: RuntimeError: If threads from a previous call to `create_threads()` are still running. """ with self._lock: if self._runs > 0: raise RuntimeError( "Threads are already running from a previous call to Threads() " "for this queue runner.") self._runs = len(self._enqueue_ops) self._exceptions_raised = [] ret_threads = [threading.Thread(target=self._run, args=(sess, op, coord)) for op in self._enqueue_ops] if coord: ret_threads.append(threading.Thread(target=self._close_on_stop, args=(sess, self._cancel_op, coord))) for t in ret_threads: if daemon: t.daemon = True if start: t.start() return ret_threads def add_queue_runner(qr, collection=ops.GraphKeys.QUEUE_RUNNERS): """Adds a `QueueRunner` to a collection in the graph. When building a complex model that uses many queues it is often difficult to gather all the queue runners that need to be run. This convenience function allows you to add a queue runner to a well known collection in the graph. The companion method `start_queue_runners()` can be used to start threads for all the collected queue runners. Args: qr: A `QueueRunner`. collection: A `GraphKey` specifying the graph collection to add the queue runner to. Defaults to `GraphKeys.QUEUE_RUNNERS`. """ ops.add_to_collection(collection, qr) def start_queue_runners(sess=None, coord=None, daemon=True, start=True, collection=ops.GraphKeys.QUEUE_RUNNERS): """Starts all queue runners collected in the graph. This is a companion method to `add_queue_runner()`. It just starts threads for all queue runners collected in the graph. It returns the list of all threads. Args: sess: `Session` used to run the queue ops. Defaults to the default session. coord: Optional `Coordinator` for coordinating the started threads. daemon: Whether the threads should be marked as `daemons`, meaning they don't block program exit. start: Set to `False` to only create the threads, not start them. collection: A `GraphKey` specifying the graph collection to get the queue runners from. Defaults to `GraphKeys.QUEUE_RUNNERS`. Returns: A list of threads. """ if sess is None: sess = ops.get_default_session() threads = [] for qr in ops.get_collection(collection): threads.extend(qr.create_threads(sess, coord=coord, daemon=daemon, start=start)) return threads
{ "content_hash": "ff4601de8087e2ff9b0ffea81ce88eb2", "timestamp": "", "source": "github", "line_count": 237, "max_line_length": 80, "avg_line_length": 36.552742616033754, "alnum_prop": 0.672630728385086, "repo_name": "pavlovml/tensorflow", "id": "6c91a89ab78e1442e1bec5107ad757e2f882d7b1", "size": "8663", "binary": false, "copies": "5", "ref": "refs/heads/master", "path": "tensorflow/python/training/queue_runner.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "C", "bytes": "127104" }, { "name": "C++", "bytes": "4910453" }, { "name": "CSS", "bytes": "107" }, { "name": "HTML", "bytes": "637366" }, { "name": "Java", "bytes": "44388" }, { "name": "JavaScript", "bytes": "5067" }, { "name": "Objective-C", "bytes": "630" }, { "name": "Protocol Buffer", "bytes": "45213" }, { "name": "Python", "bytes": "2480267" }, { "name": "Shell", "bytes": "4262" }, { "name": "TypeScript", "bytes": "237684" } ], "symlink_target": "" }
import logging from pylons import g, request from tg import flash, redirect, session, config from openid.consumer import consumer from allura import model as M log = logging.getLogger(__name__) # openid.oidutil outputs all logging to STDERR unless otherwise configured. # We follow the openid.oidutil instructions to install our own logging hook. from openid import oidutil oidutil.log = log.info def verify_oid(oid_url, failure_redirect=None, return_to=None, **kw): '''Step 1 of OID verification -- redirect to provider site''' log.info('Trying to login via %s', oid_url) realm = config.get('openid.realm', 'http://localhost:8080/') return_to = realm + 'auth/' + return_to oidconsumer = consumer.Consumer(g.oid_session(), g.oid_store) try: req = oidconsumer.begin(oid_url) except consumer.DiscoveryFailure, ex: log.exception('Error in openid login') flash(str(ex[0]), 'error') redirect(failure_redirect) if req is None: # pragma no cover flash('No openid services found for <code>%s</code>' % oid_url, 'error') redirect(failure_redirect) if req.shouldSendRedirect(): redirect_url = req.redirectURL( realm, return_to, False) log.info('Redirecting to %r', redirect_url) session.save() redirect(redirect_url) else: return dict(kw, form=req.formMarkup(realm, return_to=return_to)) def process_oid(failure_redirect=None): oidconsumer = consumer.Consumer(g.oid_session(), g.oid_store) info = oidconsumer.complete(request.params, request.url) display_identifier = info.getDisplayIdentifier() or info.identity_url if info.status == consumer.FAILURE and display_identifier: # In the case of failure, if info is non-None, it is the # URL that we were verifying. We include it in the error # message to help the user figure out what happened. fmt = "Verification of %s failed: %s" flash(fmt % (display_identifier, info.message), 'error') redirect(failure_redirect) elif info.status == consumer.SUCCESS: # Success means that the transaction completed without # error. If info is None, it means that the user cancelled # the verification. css_class = 'alert' # This is a successful verification attempt. If this # was a real application, we would do our login, # comment posting, etc. here. fmt = "You have successfully verified %s as your identity." message = fmt % display_identifier if info.endpoint.canonicalID: # You should authorize i-name users by their canonicalID, # rather than their more human-friendly identifiers. That # way their account with you is not compromised if their # i-name registration expires and is bought by someone else. message += (" This is an i-name, and its persistent ID is %s" % info.endpoint.canonicalID ) flash(message, 'info') elif info.status == consumer.CANCEL: # cancelled message = 'Verification cancelled' flash(message, 'error') redirect(failure_redirect) elif info.status == consumer.SETUP_NEEDED: if info.setup_url: message = '<a href=%s>Setup needed</a>' % info.setup_url else: # This means auth didn't succeed, but you're welcome to try # non-immediate mode. message = 'Setup needed' flash(message, 'error') redirect(failure_redirect) else: # Either we don't understand the code or there is no # openid_url included with the error. Give a generic # failure message. The library should supply debug # information in a log. message = 'Verification failed.' flash(message, 'error') redirect(failure_redirect) session.save() oid_obj = M.OpenId.upsert(info.identity_url, display_identifier=display_identifier) return oid_obj
{ "content_hash": "8476045394dfe9f0f1c849e9b3fafc55", "timestamp": "", "source": "github", "line_count": 95, "max_line_length": 87, "avg_line_length": 42.863157894736844, "alnum_prop": 0.6453831041257367, "repo_name": "leotrubach/sourceforge-allura", "id": "c7e2f633546a07cc726e60484700f3a8d0a5158e", "size": "4072", "binary": false, "copies": "3", "ref": "refs/heads/dev", "path": "Allura/allura/lib/oid_helper.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "D", "bytes": "2985957" }, { "name": "JavaScript", "bytes": "650950" }, { "name": "Puppet", "bytes": "2677" }, { "name": "Python", "bytes": "1866436" }, { "name": "Ruby", "bytes": "4109" }, { "name": "Shell", "bytes": "6636" } ], "symlink_target": "" }
from flask import render_template, request from websod import app from websod.models import Integration, Job from websod.integration import integrations_view, calculate_result, calculate_diff, get_diff @app.route('/debug') def debug(): from pprint import pformat return "<pre>" + pformat(dict(app.config)) + "</pre>" @app.route('/') def home(): """shows integrations time graph and latest integrations with diff """ session = app.db.session limit = request.args.get('limit', 50, int) integrations = session.query(Integration).order_by(Integration.id.desc()).limit(limit).all() integrations_view(integrations) return render_template('integration_list.html', integrations=integrations, history=Integration.get_elapsed_history(session)) @app.route('/integration/') def integration_list(): """shows all integrations with diff """ session = app.db.session integrations = session.query(Integration).order_by(Integration.id.desc()).all() integrations_view(integrations) return render_template('integration_list.html', integrations=integrations, history='') @app.route('/integration/<int:id_>') def integration(id_): """integration page just show list of jobs with their result""" integration = app.db.session.query(Integration).get(id_) # collect the failed jobs failed_jobs = integration.getJobsByResult("fail") unstable_jobs = integration.getJobsByResult("unstable") success_jobs = integration.getJobsByResult("success") tpl_data = {'integration': integration, 'failed_jobs': sorted(failed_jobs, key=lambda k: k.name), 'unstable_jobs': sorted(unstable_jobs, key=lambda k: k.name), 'success_jobs': sorted(success_jobs, key=lambda k: k.name)} return render_template('integration.html', **tpl_data) @app.route('/job/<int:id_>') def job(id_): session = app.db.session the_job = session.query(Job).get(id_) elapsed_history = the_job.get_elapsed_history(session) return render_template('job.html', job=the_job, history=elapsed_history) # this is supposed to be called by sodd's to notify when a job_group is done @app.route('/group_finished/<int:integration_id>') def group_finished(integration_id): session = app.db.session integration = session.query(Integration).get(integration_id) # calcualte try: calculate_result(integration) calculate_diff(integration) except Integration.IntegrationException, exception: return str(exception) session.commit() # post integration get_diff(integration) # execute post-integration functions for setup in app.config['post-integration']: try: module_name, fun_name = setup.split(':') module = __import__(module_name) function = getattr(module, fun_name) function(integration) except Exception, e: print "Error executing post-integration %s" % setup print str(e) # TODO include traceback print return integration.result
{ "content_hash": "ab217275b1764598dc607cc373d43c70", "timestamp": "", "source": "github", "line_count": 91, "max_line_length": 96, "avg_line_length": 34.86813186813187, "alnum_prop": 0.6637251812165144, "repo_name": "schettino72/serveronduty", "id": "3f1429366e42dc8584421d3fcf0c636e8fb84bd4", "size": "3173", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "websod/views.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "1991" }, { "name": "Python", "bytes": "141677" } ], "symlink_target": "" }
"""Google Cloud Print Monitor Send an alert if printers are offline. Run this script first with the "register" parameter: sudo -u sma ./google-cloud-print.py register """ import getpass import os import sys import webbrowser import json from json.decoder import JSONDecodeError import requests import time from simple_monitor_alert.sma import get_var_directory GRANT_TYPE = 'http://oauth.net/grant_type/device/1.0' GRANT_TYPE_REFRESH = 'refresh_token' SCOPE = 'https://www.googleapis.com/auth/cloudprint' REGISTER_NEW_PROJECT_URL = 'https://console.developers.google.com/iam-admin/projects' OAUTH_DEVICE_CODE_URL = 'https://accounts.google.com/o/oauth2/device/code' OAUTH_TOKEN_URL = 'https://www.googleapis.com/oauth2/v4/token' SEARCH_PRINTS = 'https://www.google.com/cloudprint/search' var_directory = get_var_directory() auth_file = os.path.join(var_directory, 'google-cloud-print.json') if sys.version_info < (3, 0): input = raw_input class Auth(requests.auth.AuthBase): def __init__(self, file=None): self.file = file or auth_file if not self.file: print('You need execute "register". Look at the instructions.') raise SystemExit self.data = json.load(open(self.file)) def renew(self): r = requests.post(OAUTH_TOKEN_URL, {'client_secret': self.data['client_secret'], 'client_id': self.data['client_id'], 'grant_type': GRANT_TYPE_REFRESH, 'refresh_token': self.data['refresh_token']}) self.data.update(r.json()) self.save() def save(self): json.dump(self.data, open(self.file, 'w')) def __call__(self, r): r.headers['Authorization'] = '{token_type} {access_token}'.format(**self.data) return r def register(): print('You need to create access credentials to Google Cloud Print.') print('1. First, go to: {}'.format(REGISTER_NEW_PROJECT_URL)) webbrowser.open(REGISTER_NEW_PROJECT_URL) print('2. Create a new project.') print('3. Go to "credentials" and create a new Oauth ID Client".') print('Credentials url: https://console.developers.google.com/apis/credentials') print('4. Select "other" in application type. You may need to create an authentication screen before.') print('5. Now you must have: client ID and client Secret.') print('Client ID example: 137998618127-d0p9bh4k48gugfh0l50u59okri7bd2xr.apps.googleusercontent.com') print('Client Secret example: 1kuJGYaCEWpGIcqTP7gNHd5c') time.sleep(2) client_id = input('Insert client ID: ') client_secret = getpass.getpass('Insert Client Secret (hidden): ') data = {} while True: r = requests.post(OAUTH_DEVICE_CODE_URL, {'scope': SCOPE, 'client_id': client_id}) data = r.json() print('Go to {verification_url} and insert: {user_code}'.format(**data)) print('INSERT CODE ==========> {} <========== INSERT CODE'.format(data['user_code'])) webbrowser.open(data['verification_url']) time.sleep(2) print("[!!] Press enter when ready") input('[Press enter]') r = requests.post(OAUTH_TOKEN_URL, {'client_secret': client_secret, 'code': data['device_code'], 'client_id': client_id, 'grant_type': GRANT_TYPE}) data = r.json() if data.get('error'): print('Error: {error}'.format(**data)) print('Sorry, It will start again.') else: print('Great!') break data.update({'client_id': client_id, 'client_secret': client_secret}) json.dump(data, open(auth_file, 'w')) print('Created {}'.format(auth_file)) def get_prints(auth=None): auth = auth or Auth() r = None for i in range(2): r = requests.get(SEARCH_PRINTS, auth=auth) if r.status_code == 403 and i == 1: raise SystemExit('Renew token failed.') elif r.status_code == 403: auth.renew() else: break data = r.json() for printer in data['printers']: if printer['name'] in ['Save to Google Docs']: continue print('printer_status({id}).name = "{displayName}"'.format(**printer)) print('printer_status({id}).expected = "ONLINE"'.format(**printer)) print('printer_status({id}).value = "{connectionStatus}"'.format(**printer)) if __name__ == '__main__': if len(sys.argv) > 1 and sys.argv[1] == 'register': register() else: get_prints()
{ "content_hash": "7e3281d9ad89c1bad111eb1ab58e75b2", "timestamp": "", "source": "github", "line_count": 119, "max_line_length": 114, "avg_line_length": 38.319327731092436, "alnum_prop": 0.6182017543859649, "repo_name": "Nekmo/simple-monitor-alert", "id": "6f9f35e90705055b51e5a4c58b36fb65170cb5f1", "size": "4582", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "monitors/google-cloud-print.py", "mode": "33261", "license": "mit", "language": [ { "name": "Python", "bytes": "90820" }, { "name": "Shell", "bytes": "8075" } ], "symlink_target": "" }
import numpy as np import pandas as pd __author__ = 'shafferm' def sparcc_paper_filter(table): """if a observation averages more than 2 reads per sample then keep, if a sample has more than 500 reads then keep""" table = table[table.sum(axis=1) > 500] table = table.loc[:, table.mean(axis=0) > 2] return table def min_sample_filter(table, min_samples): """remove observations not present in more than a minimum number of samples""" zeroes_per_column = (table > 0).sum(axis=0) return table.loc[:, zeroes_per_column > min_samples] def bh_adjust(pvalues): """benjamini-hochberg p-value adjustment stolen from http://stackoverflow.com/questions/7450957/how-to-implement-rs-p-adjust-in-python """ pvalues = np.array(pvalues) n = pvalues.shape[0] new_pvalues = np.empty(n) values = [(pvalue, i) for i, pvalue in enumerate(pvalues)] values.sort() values.reverse() new_values = [] for i, vals in enumerate(values): rank = n - i pvalue, index = vals new_values.append((n/rank) * pvalue) for i in xrange(0, int(n)-1): if new_values[i] < new_values[i+1]: new_values[i+1] = new_values[i] for i, vals in enumerate(values): pvalue, index = vals new_pvalues[index] = new_values[i] return new_pvalues def bonferroni_adjust(pvalues): pvalues = np.array(pvalues) n = float(pvalues.shape[0]) new_pvalues = n * pvalues return new_pvalues def biom_to_pandas(table): # convert to pandas dataframe return pd.DataFrame(np.transpose(table.matrix_data.todense()), index=table.ids(), columns=table.ids(axis="observation")) def df_to_correls(cor): header = ['feature1', 'feature2', 'r'] correls = list() for i in xrange(len(cor.index)): for j in xrange(i+1, len(cor.index)): correls.append([str(cor.index[i]), str(cor.index[j]), cor.iat[i, j]]) return pd.DataFrame(correls, columns=header)
{ "content_hash": "2bb78e32dc93343767694aca335acdaf", "timestamp": "", "source": "github", "line_count": 64, "max_line_length": 124, "avg_line_length": 31, "alnum_prop": 0.641633064516129, "repo_name": "shafferm/fast_sparCC", "id": "6a073dc3903e59741213920edad6f99f60832e12", "size": "1984", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "sparcc_fast/utils.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "Python", "bytes": "20686" } ], "symlink_target": "" }
import os import h5py from scipy.io import loadmat from fuel.converters.base import fill_hdf5_file, MissingInputFiles def convert_silhouettes(size, directory, output_directory, output_file=None): """ Convert the CalTech 101 Silhouettes Datasets. Parameters ---------- size : {16, 28} Convert either the 16x16 or 28x28 sized version of the dataset. directory : str Directory in which the required input files reside. output_file : str Where to save the converted dataset. """ if size not in (16, 28): raise ValueError('size must be 16 or 28') if output_file is None: output_file = 'caltech101_silhouettes{}.hdf5'.format(size) output_file = os.path.join(output_directory, output_file) input_file = 'caltech101_silhouettes_{}_split1.mat'.format(size) input_file = os.path.join(directory, input_file) if not os.path.isfile(input_file): raise MissingInputFiles('Required files missing', [input_file]) with h5py.File(output_file, mode="w") as h5file: mat = loadmat(input_file) train_features = mat['train_data'].reshape([-1, 1, size, size]) train_targets = mat['train_labels'] valid_features = mat['val_data'].reshape([-1, 1, size, size]) valid_targets = mat['val_labels'] test_features = mat['test_data'].reshape([-1, 1, size, size]) test_targets = mat['test_labels'] data = ( ('train', 'features', train_features), ('train', 'targets', train_targets), ('valid', 'features', valid_features), ('valid', 'targets', valid_targets), ('test', 'features', test_features), ('test', 'targets', test_targets), ) fill_hdf5_file(h5file, data) for i, label in enumerate(('batch', 'channel', 'height', 'width')): h5file['features'].dims[i].label = label for i, label in enumerate(('batch', 'index')): h5file['targets'].dims[i].label = label return (output_file,) def fill_subparser(subparser): """Sets up a subparser to convert CalTech101 Silhouettes Database files. Parameters ---------- subparser : :class:`argparse.ArgumentParser` Subparser handling the `caltech101_silhouettes` command. """ subparser.add_argument( "size", type=int, choices=(16, 28), help="height/width of the datapoints") subparser.set_defaults(func=convert_silhouettes)
{ "content_hash": "2159b0998e4904cb57dddc953b7b6ec1", "timestamp": "", "source": "github", "line_count": 76, "max_line_length": 76, "avg_line_length": 33.14473684210526, "alnum_prop": 0.6137356093687971, "repo_name": "rizar/fuel", "id": "c8b8328b5b400f62c2d2564c1265a16ec9f7c310", "size": "2519", "binary": false, "copies": "7", "ref": "refs/heads/master", "path": "fuel/converters/caltech101_silhouettes.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "284103" }, { "name": "Shell", "bytes": "342" } ], "symlink_target": "" }
import logging from base64 import urlsafe_b64encode from satosa.context import Context from satosa.internal import InternalData from .base import RequestMicroService from ..exception import SATOSAConfigurationError from ..exception import SATOSAError logger = logging.getLogger(__name__) class CustomRoutingError(SATOSAError): """SATOSA exception raised by CustomRouting rules""" pass class DecideBackendByTargetIssuer(RequestMicroService): """ Select target backend based on the target issuer. """ def __init__(self, config:dict, *args, **kwargs): """ Constructor. :param config: microservice configuration loaded from yaml file :type config: Dict[str, Dict[str, str]] """ super().__init__(*args, **kwargs) self.target_mapping = config['target_mapping'] self.default_backend = config['default_backend'] def process(self, context:Context, data:InternalData): """Set context.target_backend based on the target issuer""" target_issuer = context.get_decoration(Context.KEY_TARGET_ENTITYID) if not target_issuer: logger.info('skipping backend decision because no target_issuer was found') return super().process(context, data) target_backend = ( self.target_mapping.get(target_issuer) or self.default_backend ) report = { 'msg': 'decided target backend by target issuer', 'target_issuer': target_issuer, 'target_backend': target_backend, } logger.info(report) context.target_backend = target_backend return super().process(context, data) class DecideBackendByRequester(RequestMicroService): """ Select which backend should be used based on who the requester is. """ def __init__(self, config, *args, **kwargs): """ Constructor. :param config: mapping from requester identifier to backend module name under the key 'requester_mapping' :type config: Dict[str, Dict[str, str]] """ super().__init__(*args, **kwargs) self.requester_mapping = config['requester_mapping'] def process(self, context, data): """ Will modify the context.target_backend attribute based on the requester identifier. :param context: request context :param data: the internal request """ context.target_backend = self.requester_mapping[data.requester] return super().process(context, data) class DecideIfRequesterIsAllowed(RequestMicroService): """ Decide whether a requester is allowed to send an authentication request to the target entity. This micro service currently only works when a target entityid is set. Currently, a target entityid is set only when the `SAMLMirrorFrontend` is used. """ def __init__(self, config, *args, **kwargs): super().__init__(*args, **kwargs) for target_entity, rules in config["rules"].items(): conflicting_rules = set(rules.get("deny", [])).intersection(rules.get("allow", [])) if conflicting_rules: raise SATOSAConfigurationError("Conflicting requester rules for DecideIfRequesterIsAllowed," "{} is both denied and allowed".format(conflicting_rules)) # target entity id is base64 url encoded to make it usable in URLs, # so we convert the rules the use those encoded entity id's instead self.rules = {self._b64_url(k): v for k, v in config["rules"].items()} def _b64_url(self, data): return urlsafe_b64encode(data.encode("utf-8")).decode("utf-8") def process(self, context, data): target_entity_id = context.get_decoration(Context.KEY_TARGET_ENTITYID) if None is target_entity_id: msg = "{name} can only be used when a target entityid is set".format( name=self.__class__.__name__ ) logger.error(msg) raise SATOSAError(msg) target_specific_rules = self.rules.get(target_entity_id) # default to allowing everything if there are no specific rules if not target_specific_rules: logger.debug("Requester '{}' allowed by default to target entity '{}' due to no entity specific rules".format( data.requester, target_entity_id )) return super().process(context, data) # deny rules takes precedence deny_rules = target_specific_rules.get("deny", []) if data.requester in deny_rules: logger.debug("Requester '{}' is not allowed by target entity '{}' due to deny rules '{}'".format( data.requester, target_entity_id, deny_rules )) raise SATOSAError("Requester is not allowed by target provider") allow_rules = target_specific_rules.get("allow", []) allow_all = "*" in allow_rules if data.requester in allow_rules or allow_all: logger.debug("Requester '{}' allowed by target entity '{}' due to allow rules '{}".format( data.requester, target_entity_id, allow_rules )) return super().process(context, data) logger.debug("Requester '{}' is not allowed by target entity '{}' due to final deny all rule in '{}'".format( data.requester, target_entity_id, deny_rules )) raise SATOSAError("Requester is not allowed by target provider")
{ "content_hash": "8d28bd15702115e48d3fe410acf502ae", "timestamp": "", "source": "github", "line_count": 146, "max_line_length": 122, "avg_line_length": 38.082191780821915, "alnum_prop": 0.6298561151079136, "repo_name": "SUNET/SATOSA", "id": "541b824f1c0383aaa924a39cf618b7375ed9561c", "size": "5560", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "src/satosa/micro_services/custom_routing.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Python", "bytes": "511690" }, { "name": "Shell", "bytes": "1866" } ], "symlink_target": "" }
import sys, os from datetime import datetime from twilio import __version_info__ # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. #sys.path.insert(0, os.path.abspath('.')) # -- General configuration ----------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be extensions # coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.intersphinx', ] RTD_NEW_THEME = True # Load the source for autodoc sys.path.insert(0, os.path.abspath(os.path.join(os.getcwd(), '..'))) # So links to Python default docs work intersphinx_mapping = {'python': ('http://docs.python.org/2.7', None)} # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'twilio-python' copyright = unicode(datetime.utcnow().year) + u', Twilio Inc' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = '.'.join(__version_info__[:2]) # The full version, including alpha/beta/rc tags. release = '.'.join(__version_info__) # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. #language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ['_build'] # The reST default role (used for this markup: `text`) to use for all documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # -- Options for HTML output --------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. sys.path.append(os.path.abspath('_themes')) #html_theme_path = ['_themes'] #html_theme = 'kr' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. #html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. #html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. #html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_domain_indices = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. #html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. #html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = 'twilio-pythondoc' # -- Options for LaTeX output -------------------------------------------------- # The paper size ('letter' or 'a4'). #latex_paper_size = 'letter' # The font size ('10pt', '11pt' or '12pt'). #latex_font_size = '10pt' # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass [howto/manual]). latex_documents = [ ('index', 'twilio-python.tex', u'twilio-python Documentation', u'Twilio Inc.', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Additional stuff for the LaTeX preamble. #latex_preamble = '' # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True # -- Options for manual page output -------------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ('index', 'twilio-python', u'twilio-python Documentation', [u'Twilio Inc.'], 1) ] # -- Options for Epub output --------------------------------------------------- # Bibliographic Dublin Core info. epub_title = u'twilio-python' epub_author = u'[email protected]' epub_publisher = u'Twilio Inc.' epub_copyright = u'2013, Twilio Inc.' # The language of the text. It defaults to the language option # or en if the language is not set. #epub_language = '' # The scheme of the identifier. Typical schemes are ISBN or URL. #epub_scheme = '' # The unique identifier of the text. This can be a ISBN number # or the project homepage. #epub_identifier = '' # A unique identification for the text. #epub_uid = '' # HTML files that should be inserted before the pages created by sphinx. # The format is a list of tuples containing the path and title. #epub_pre_files = [] # HTML files shat should be inserted after the pages created by sphinx. # The format is a list of tuples containing the path and title. #epub_post_files = [] # A list of files that should not be packed into the epub file. #epub_exclude_files = [] # The depth of the table of contents in toc.ncx. #epub_tocdepth = 3 # Allow duplicate toc entries. #epub_tocdup = True
{ "content_hash": "d553ba8e8fa6b9691bbfe27bd35e9266", "timestamp": "", "source": "github", "line_count": 260, "max_line_length": 80, "avg_line_length": 31.71153846153846, "alnum_prop": 0.7018799272286234, "repo_name": "supermanheng21/twilio-python", "id": "38ff9f8ee98af608af3d097ee6601d3f56f21747", "size": "8670", "binary": false, "copies": "6", "ref": "refs/heads/master", "path": "docs/conf.py", "mode": "33188", "license": "mit", "language": [ { "name": "Makefile", "bytes": "887" }, { "name": "Python", "bytes": "375426" } ], "symlink_target": "" }
class HorasInfo: def __init__(self): self.total = 0; self.doneFinished = 0; self.doneReal = 0; self.blockedTotal = 0; self.blockedReal = 0; self.statesH = {} self.proyectsH = {} class SprintStats: def __init__(self): self.title = "" self.startDate = ""; self.endDate = ""; self.festivos = []; self.horasSprint = HorasInfo(); self.horasSupport = HorasInfo(); def toDict(self): dD = self.__dict__.copy(); dD["horasSprint"] = self.horasSprint.__dict__; dD["horasSupport"] = self.horasSupport.__dict__; return dD;
{ "content_hash": "102f8449e3485112c531092eaefb4f71", "timestamp": "", "source": "github", "line_count": 24, "max_line_length": 56, "avg_line_length": 27.5, "alnum_prop": 0.5212121212121212, "repo_name": "grcanosa/code-playground", "id": "c1cdf7ca944c0ac95a04afbcfde3c3389d1b0605", "size": "681", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "scrum/redminecsv/sprintstats.py", "mode": "33188", "license": "mit", "language": [ { "name": "HTML", "bytes": "6793" }, { "name": "JavaScript", "bytes": "6939" }, { "name": "Jupyter Notebook", "bytes": "10972" }, { "name": "Python", "bytes": "40749" }, { "name": "Shell", "bytes": "838" } ], "symlink_target": "" }
from __future__ import division, print_function import numpy as np from bct.utils import BCTParamError, binarize from bct.utils import pick_four_unique_nodes_quickly from .clustering import number_of_components def latmio_dir_connected(R, itr, D=None): ''' This function "latticizes" a directed network, while preserving the in- and out-degree distributions. In weighted networks, the function preserves the out-strength but not the in-strength distributions. The function also ensures that the randomized network maintains connectedness, the ability for every node to reach every other node in the network. The input network for this function must be connected. Parameters ---------- R : NxN np.ndarray directed binary/weighted connection matrix itr : int rewiring parameter. Each edge is rewired approximately itr times. D : np.ndarray | None distance-to-diagonal matrix. Defaults to the actual distance matrix if not specified. Returns ------- Rlatt : NxN np.ndarray latticized network in original node ordering Rrp : NxN np.ndarray latticized network in node ordering used for latticization ind_rp : Nx1 np.ndarray node ordering used for latticization eff : int number of actual rewirings carried out ''' n = len(R) ind_rp = np.random.permutation(n) # random permutation of nodes R = R.copy() R = R[np.ix_(ind_rp, ind_rp)] # create distance to diagonal matrix if not specified by user if D is None: D = np.zeros((n, n)) un = np.mod(range(1, n), n) um = np.mod(range(n - 1, 0, -1), n) u = np.append((0,), np.where(un < um, un, um)) for v in range(int(np.ceil(n / 2))): D[n - v - 1, :] = np.append(u[v + 1:], u[:v + 1]) D[v, :] = D[n - v - 1, :][::-1] i, j = np.where(R) k = len(i) itr *= k # maximal number of rewiring attempts per iteration max_attempts = np.round(n * k / (n * (n - 1))) # actual number of successful rewirings eff = 0 for it in range(itr): att = 0 while att <= max_attempts: # while not rewired rewire = True while True: e1 = np.random.randint(k) e2 = np.random.randint(k) while e1 == e2: e2 = np.random.randint(k) a = i[e1] b = j[e1] c = i[e2] d = j[e2] if a != c and a != d and b != c and b != d: break # rewiring condition if not (R[a, d] or R[c, b]): # lattice condition if (D[a, b] * R[a, b] + D[c, d] * R[c, d] >= D[a, d] * R[a, b] + D[c, b] * R[c, d]): # connectedness condition if not (np.any((R[a, c], R[d, b], R[d, c])) and np.any((R[c, a], R[b, d], R[b, a]))): P = R[(a, c), :].copy() P[0, b] = 0 P[0, d] = 1 P[1, d] = 0 P[1, b] = 1 PN = P.copy() PN[0, a] = 1 PN[1, c] = 1 while True: P[0, :] = np.any(R[P[0, :] != 0, :], axis=0) P[1, :] = np.any(R[P[1, :] != 0, :], axis=0) P *= np.logical_not(PN) PN += P if not np.all(np.any(P, axis=1)): rewire = False break elif np.any(PN[0, (b, c)]) and np.any(PN[1, (d, a)]): break # end connectedness testing if rewire: # reassign edges R[a, d] = R[a, b] R[a, b] = 0 R[c, b] = R[c, d] R[c, d] = 0 j.setflags(write=True) j[e1] = d j[e2] = b # reassign edge indices eff += 1 break att += 1 Rlatt = R[np.ix_(ind_rp[::-1], ind_rp[::-1])] # reverse random permutation return Rlatt, R, ind_rp, eff def latmio_dir(R, itr, D=None): ''' This function "latticizes" a directed network, while preserving the in- and out-degree distributions. In weighted networks, the function preserves the out-strength but not the in-strength distributions. Parameters ---------- R : NxN np.ndarray directed binary/weighted connection matrix itr : int rewiring parameter. Each edge is rewired approximately itr times. D : np.ndarray | None distance-to-diagonal matrix. Defaults to the actual distance matrix if not specified. Returns ------- Rlatt : NxN np.ndarray latticized network in original node ordering Rrp : NxN np.ndarray latticized network in node ordering used for latticization ind_rp : Nx1 np.ndarray node ordering used for latticization eff : int number of actual rewirings carried out ''' n = len(R) ind_rp = np.random.permutation(n) # randomly reorder matrix R = R.copy() R = R[np.ix_(ind_rp, ind_rp)] # create distance to diagonal matrix if not specified by user if D is None: D = np.zeros((n, n)) un = np.mod(range(1, n), n) um = np.mod(range(n - 1, 0, -1), n) u = np.append((0,), np.where(un < um, un, um)) for v in range(int(np.ceil(n / 2))): D[n - v - 1, :] = np.append(u[v + 1:], u[:v + 1]) D[v, :] = D[n - v - 1, :][::-1] i, j = np.where(R) k = len(i) itr *= k # maximal number of rewiring attempts per iteration max_attempts = np.round(n * k / (n * (n - 1))) # actual number of successful rewirings eff = 0 for it in range(itr): att = 0 while att <= max_attempts: # while not rewired while True: e1 = np.random.randint(k) e2 = np.random.randint(k) while e1 == e2: e2 = np.random.randint(k) a = i[e1] b = j[e1] c = i[e2] d = j[e2] if a != c and a != d and b != c and b != d: break # rewiring condition if not (R[a, d] or R[c, b]): # lattice condition if (D[a, b] * R[a, b] + D[c, d] * R[c, d] >= D[a, d] * R[a, b] + D[c, b] * R[c, d]): R[a, d] = R[a, b] R[a, b] = 0 R[c, b] = R[c, d] R[c, d] = 0 j.setflags(write=True) j[e1] = d j[e2] = b # reassign edge indices eff += 1 break att += 1 Rlatt = R[np.ix_(ind_rp[::-1], ind_rp[::-1])] # reverse random permutation return Rlatt, R, ind_rp, eff def latmio_und_connected(R, itr, D=None): ''' This function "latticizes" an undirected network, while preserving the degree distribution. The function does not preserve the strength distribution in weighted networks. The function also ensures that the randomized network maintains connectedness, the ability for every node to reach every other node in the network. The input network for this function must be connected. Parameters ---------- R : NxN np.ndarray undirected binary/weighted connection matrix itr : int rewiring parameter. Each edge is rewired approximately itr times. D : np.ndarray | None distance-to-diagonal matrix. Defaults to the actual distance matrix if not specified. Returns ------- Rlatt : NxN np.ndarray latticized network in original node ordering Rrp : NxN np.ndarray latticized network in node ordering used for latticization ind_rp : Nx1 np.ndarray node ordering used for latticization eff : int number of actual rewirings carried out ''' if not np.all(R == R.T): raise BCTParamError("Input must be undirected") if number_of_components(R) > 1: raise BCTParamError("Input is not connected") n = len(R) ind_rp = np.random.permutation(n) # randomly reorder matrix R = R.copy() R = R[np.ix_(ind_rp, ind_rp)] if D is None: D = np.zeros((n, n)) un = np.mod(range(1, n), n) um = np.mod(range(n - 1, 0, -1), n) u = np.append((0,), np.where(un < um, un, um)) for v in range(int(np.ceil(n / 2))): D[n - v - 1, :] = np.append(u[v + 1:], u[:v + 1]) D[v, :] = D[n - v - 1, :][::-1] i, j = np.where(np.tril(R)) k = len(i) itr *= k # maximal number of rewiring attempts per iteration max_attempts = np.round(n * k / (n * (n - 1) / 2)) # actual number of successful rewirings eff = 0 for it in range(itr): att = 0 while att <= max_attempts: rewire = True while True: e1 = np.random.randint(k) e2 = np.random.randint(k) while e1 == e2: e2 = np.random.randint(k) a = i[e1] b = j[e1] c = i[e2] d = j[e2] if a != c and a != d and b != c and b != d: break if np.random.random() > .5: i.setflags(write=True) j.setflags(write=True) i[e2] = d j[e2] = c # flip edge c-d with 50% probability c = i[e2] d = j[e2] # to explore all potential rewirings # rewiring condition if not (R[a, d] or R[c, b]): # lattice condition if (D[a, b] * R[a, b] + D[c, d] * R[c, d] >= D[a, d] * R[a, b] + D[c, b] * R[c, d]): # connectedness condition if not (R[a, c] or R[b, d]): P = R[(a, d), :].copy() P[0, b] = 0 P[1, c] = 0 PN = P.copy() PN[:, d] = 1 PN[:, a] = 1 while True: P[0, :] = np.any(R[P[0, :] != 0, :], axis=0) P[1, :] = np.any(R[P[1, :] != 0, :], axis=0) P *= np.logical_not(PN) if not np.all(np.any(P, axis=1)): rewire = False break elif np.any(P[:, (b, c)]): break PN += P # end connectedness testing if rewire: # reassign edges R[a, d] = R[a, b] R[a, b] = 0 R[d, a] = R[b, a] R[b, a] = 0 R[c, b] = R[c, d] R[c, d] = 0 R[b, c] = R[d, c] R[d, c] = 0 j.setflags(write=True) j[e1] = d j[e2] = b eff += 1 break att += 1 Rlatt = R[np.ix_(ind_rp[::-1], ind_rp[::-1])] return Rlatt, R, ind_rp, eff def latmio_und(R, itr, D=None): ''' This function "latticizes" an undirected network, while preserving the degree distribution. The function does not preserve the strength distribution in weighted networks. Parameters ---------- R : NxN np.ndarray undirected binary/weighted connection matrix itr : int rewiring parameter. Each edge is rewired approximately itr times. D : np.ndarray | None distance-to-diagonal matrix. Defaults to the actual distance matrix if not specified. Returns ------- Rlatt : NxN np.ndarray latticized network in original node ordering Rrp : NxN np.ndarray latticized network in node ordering used for latticization ind_rp : Nx1 np.ndarray node ordering used for latticization eff : int number of actual rewirings carried out ''' n = len(R) ind_rp = np.random.permutation(n) # randomly reorder matrix R = R.copy() R = R[np.ix_(ind_rp, ind_rp)] if D is None: D = np.zeros((n, n)) un = np.mod(range(1, n), n) um = np.mod(range(n - 1, 0, -1), n) u = np.append((0,), np.where(un < um, un, um)) for v in range(int(np.ceil(n / 2))): D[n - v - 1, :] = np.append(u[v + 1:], u[:v + 1]) D[v, :] = D[n - v - 1, :][::-1] i, j = np.where(np.tril(R)) k = len(i) itr *= k # maximal number of rewiring attempts per iteration max_attempts = np.round(n * k / (n * (n - 1) / 2)) # actual number of successful rewirings eff = 0 for it in range(itr): att = 0 while att <= max_attempts: while True: e1 = np.random.randint(k) e2 = np.random.randint(k) while e1 == e2: e2 = np.random.randint(k) a = i[e1] b = j[e1] c = i[e2] d = j[e2] if a != c and a != d and b != c and b != d: break if np.random.random() > .5: i.setflags(write=True) j.setflags(write=True) i[e2] = d j[e2] = c # flip edge c-d with 50% probability c = i[e2] d = j[e2] # to explore all potential rewirings # rewiring condition if not (R[a, d] or R[c, b]): # lattice condition if (D[a, b] * R[a, b] + D[c, d] * R[c, d] >= D[a, d] * R[a, b] + D[c, b] * R[c, d]): R[a, d] = R[a, b] R[a, b] = 0 R[d, a] = R[b, a] R[b, a] = 0 R[c, b] = R[c, d] R[c, d] = 0 R[b, c] = R[d, c] R[d, c] = 0 j.setflags(write=True) j[e1] = d j[e2] = b eff += 1 break att += 1 Rlatt = R[np.ix_(ind_rp[::-1], ind_rp[::-1])] return Rlatt, R, ind_rp, eff def makeevenCIJ(n, k, sz_cl): ''' This function generates a random, directed network with a specified number of fully connected modules linked together by evenly distributed remaining random connections. Parameters ---------- N : int number of vertices (must be power of 2) K : int number of edges sz_cl : int size of clusters (must be power of 2) Returns ------- CIJ : NxN np.ndarray connection matrix Notes ----- N must be a power of 2. A warning is generated if all modules contain more edges than K. Cluster size is 2^sz_cl; ''' # compute number of hierarchical levels and adjust cluster size mx_lvl = int(np.floor(np.log2(n))) sz_cl -= 1 # make a stupid little template t = np.ones((2, 2)) * 2 # check n against the number of levels Nlvl = 2**mx_lvl if Nlvl != n: print("Warning: n must be a power of 2") n = Nlvl # create hierarchical template for lvl in range(1, mx_lvl): s = 2**(lvl + 1) CIJ = np.ones((s, s)) grp1 = range(int(s / 2)) grp2 = range(int(s / 2), s) ix1 = np.add.outer(np.array(grp1) * s, grp1).flatten() ix2 = np.add.outer(np.array(grp2) * s, grp2).flatten() CIJ.flat[ix1] = t # numpy indexing is teh sucks :( CIJ.flat[ix2] = t CIJ += 1 t = CIJ.copy() CIJ -= (np.ones((s, s)) + mx_lvl * np.eye(s)) # assign connection probabilities CIJp = (CIJ >= (mx_lvl - sz_cl)) # determine nr of non-cluster connections left and their possible positions rem_k = k - np.size(np.where(CIJp.flatten())) if rem_k < 0: print("Warning: K is too small, output matrix contains clusters only") return CIJp a, b = np.where(np.logical_not(CIJp + np.eye(n))) # assign remK randomly dstributed connections rp = np.random.permutation(len(a)) a = a[rp[:rem_k]] b = b[rp[:rem_k]] for ai, bi in zip(a, b): CIJp[ai, bi] = 1 return np.array(CIJp, dtype=int) def makefractalCIJ(mx_lvl, E, sz_cl): ''' This function generates a directed network with a hierarchical modular organization. All modules are fully connected and connection density decays as 1/(E^n), with n = index of hierarchical level. Parameters ---------- mx_lvl : int number of hierarchical levels, N = 2^mx_lvl E : int connection density fall off per level sz_cl : int size of clusters (must be power of 2) Returns ------- CIJ : NxN np.ndarray connection matrix K : int number of connections present in output CIJ ''' # make a stupid little template t = np.ones((2, 2)) * 2 # compute N and cluster size n = 2**mx_lvl sz_cl -= 1 for lvl in range(1, mx_lvl): s = 2**(lvl + 1) CIJ = np.ones((s, s)) grp1 = range(int(s / 2)) grp2 = range(int(s / 2), s) ix1 = np.add.outer(np.array(grp1) * s, grp1).flatten() ix2 = np.add.outer(np.array(grp2) * s, grp2).flatten() CIJ.flat[ix1] = t # numpy indexing is teh sucks :( CIJ.flat[ix2] = t CIJ += 1 t = CIJ.copy() CIJ -= (np.ones((s, s)) + mx_lvl * np.eye(s)) # assign connection probabilities ee = mx_lvl - CIJ - sz_cl ee = (ee > 0) * ee prob = (1 / E**ee) * (np.ones((s, s)) - np.eye(s)) CIJ = (prob > np.random.random((n, n))) # count connections k = np.sum(CIJ) return np.array(CIJ, dtype=int), k def makerandCIJdegreesfixed(inv, outv): ''' This function generates a directed random network with a specified in-degree and out-degree sequence. Parameters ---------- inv : Nx1 np.ndarray in-degree vector outv : Nx1 np.ndarray out-degree vector Returns ------- CIJ : NxN np.ndarray Notes ----- Necessary conditions include: length(in) = length(out) = n sum(in) = sum(out) = k in(i), out(i) < n-1 in(i) + out(j) < n+2 in(i) + out(i) < n No connections are placed on the main diagonal The algorithm used in this function is not, technically, guaranteed to terminate. If a valid distribution of in and out degrees is provided, this function will find it in bounded time with probability 1-(1/(2*(k^2))). This turns out to be a serious problem when computing infinite degree matrices, but offers good performance otherwise. ''' n = len(inv) k = np.sum(inv) in_inv = np.zeros((k,)) out_inv = np.zeros((k,)) i_in = 0 i_out = 0 for i in range(n): in_inv[i_in:i_in + inv[i]] = i out_inv[i_out:i_out + outv[i]] = i i_in += inv[i] i_out += outv[i] CIJ = np.eye(n) edges = np.array((out_inv, in_inv[np.random.permutation(k)])) # create CIJ and check for double edges and self connections for i in range(k): if CIJ[edges[0, i], edges[1, i]]: tried = set() while True: if len(tried) == k: raise BCTParamError('Could not resolve the given ' 'in and out vectors') switch = np.random.randint(k) while switch in tried: switch = np.random.randint(k) if not (CIJ[edges[0, i], edges[1, switch]] or CIJ[edges[0, switch], edges[1, i]]): CIJ[edges[0, switch], edges[1, switch]] = 0 CIJ[edges[0, switch], edges[1, i]] = 1 if switch < i: CIJ[edges[0, switch], edges[1, switch]] = 0 CIJ[edges[0, switch], edges[1, i]] = 1 t = edges[1, i] edges[1, i] = edges[1, switch] edges[1, switch] = t break tried.add(switch) else: CIJ[edges[0, i], edges[1, i]] = 1 CIJ -= np.eye(n) return CIJ def makerandCIJ_dir(n, k): ''' This function generates a directed random network Parameters ---------- N : int number of vertices K : int number of edges Returns ------- CIJ : NxN np.ndarray directed random connection matrix Notes ----- no connections are placed on the main diagonal. ''' ix, = np.where(np.logical_not(np.eye(n)).flat) rp = np.random.permutation(np.size(ix)) CIJ = np.zeros((n, n)) CIJ.flat[ix[rp][:k]] = 1 return CIJ def makerandCIJ_und(n, k): ''' This function generates an undirected random network Parameters ---------- N : int number of vertices K : int number of edges Returns ------- CIJ : NxN np.ndarray undirected random connection matrix Notes ----- no connections are placed on the main diagonal. ''' ix, = np.where(np.triu(np.logical_not(np.eye(n))).flat) rp = np.random.permutation(np.size(ix)) CIJ = np.zeros((n, n)) CIJ.flat[ix[rp][:k]] = 1 return CIJ def makeringlatticeCIJ(n, k): ''' This function generates a directed lattice network with toroidal boundary counditions (i.e. with ring-like "wrapping around"). Parameters ---------- N : int number of vertices K : int number of edges Returns ------- CIJ : NxN np.ndarray connection matrix Notes ----- The lattice is made by placing connections as close as possible to the main diagonal, with wrapping around. No connections are made on the main diagonal. In/Outdegree is kept approx. constant at K/N. ''' # initialize CIJ = np.zeros((n, n)) CIJ1 = np.ones((n, n)) kk = 0 count = 0 seq = range(1, n) seq2 = range(n - 1, 0, -1) # fill in while kk < k: count += 1 dCIJ = np.triu(CIJ1, seq[count]) - np.triu(CIJ1, seq[count] + 1) dCIJ2 = np.triu(CIJ1, seq2[count]) - np.triu(CIJ1, seq2[count] + 1) dCIJ = dCIJ + dCIJ.T + dCIJ2 + dCIJ2.T CIJ += dCIJ kk = int(np.sum(CIJ)) # remove excess connections overby = kk - k if overby: i, j = np.where(dCIJ) rp = np.random.permutation(np.size(i)) for ii in range(overby): CIJ[i[rp[ii]], j[rp[ii]]] = 0 return CIJ def maketoeplitzCIJ(n, k, s): ''' This function generates a directed network with a Gaussian drop-off in edge density with increasing distance from the main diagonal. There are toroidal boundary counditions (i.e. no ring-like "wrapping around"). Parameters ---------- N : int number of vertices K : int number of edges s : float standard deviation of toeplitz Returns ------- CIJ : NxN np.ndarray connection matrix Notes ----- no connections are placed on the main diagonal. ''' from scipy import linalg, stats pf = stats.norm.pdf(range(1, n), .5, s) template = linalg.toeplitz(np.append((0,), pf), r=np.append((0,), pf)) template *= (k / np.sum(template)) CIJ = np.zeros((n, n)) itr = 0 while np.sum(CIJ) != k: CIJ = (np.random.random((n, n)) < template) itr += 1 if itr > 10000: raise BCTParamError('Infinite loop was caught generating toeplitz ' 'matrix. This means the matrix could not be resolved with the ' 'specified parameters.') return CIJ def null_model_dir_sign(W, bin_swaps=5, wei_freq=.1): ''' This function randomizes an directed network with positive and negative weights, while preserving the degree and strength distributions. This function calls randmio_dir.m Parameters ---------- W : NxN np.ndarray directed weighted connection matrix bin_swaps : int average number of swaps in each edge binary randomization. Default value is 5. 0 swaps implies no binary randomization. wei_freq : float frequency of weight sorting in weighted randomization. 0<=wei_freq<1. wei_freq == 1 implies that weights are sorted at each step. wei_freq == 0.1 implies that weights sorted each 10th step (faster, default value) wei_freq == 0 implies no sorting of weights (not recommended) Returns ------- W0 : NxN np.ndarray randomized weighted connection matrix R : 4-tuple of floats Correlation coefficients between strength sequences of input and output connection matrices, rpos_in, rpos_out, rneg_in, rneg_out Notes ----- The value of bin_swaps is ignored when binary topology is fully connected (e.g. when the network has no negative weights). Randomization may be better (and execution time will be slower) for higher values of bin_swaps and wei_freq. Higher values of bin_swaps may enable a more random binary organization, and higher values of wei_freq may enable a more accurate conservation of strength sequences. R are the correlation coefficients between positive and negative in-strength and out-strength sequences of input and output connection matrices and are used to evaluate the accuracy with which strengths were preserved. Note that correlation coefficients may be a rough measure of strength-sequence accuracy and one could implement more formal tests (such as the Kolmogorov-Smirnov test) if desired. ''' W = W.copy() n = len(W) np.fill_diagonal(W, 0) # clear diagonal Ap = (W > 0) # positive adjmat if np.size(np.where(Ap.flat)) < (n * (n - 1)): W_r = randmio_und_signed(W, bin_swaps) Ap_r = W_r > 0 An_r = W_r < 0 else: Ap_r = Ap An_r = An W0 = np.zeros((n, n)) for s in (1, -1): if s == 1: Acur = Ap A_rcur = Ap_r else: Acur = An A_rcur = An_r Si = np.sum(W * Acur, axis=0) # positive in-strength So = np.sum(W * Acur, axis=1) # positive out-strength Wv = np.sort(W[Acur].flat) # sorted weights vector i, j = np.where(A_rcur) Lij, = np.where(A_rcur.flat) # weights indices P = np.outer(So, Si) if wei_freq == 0: # get indices of Lij that sort P Oind = np.argsort(P.flat[Lij]) # assign corresponding sorted W0.flat[Lij[Oind]] = s * Wv # weight at this index else: wsize = np.size(Wv) wei_period = np.round(1 / wei_freq) # convert frequency to period lq = np.arange(wsize, 0, -wei_period, dtype=int) for m in lq: # iteratively explore at this period # get indices of Lij that sort P Oind = np.argsort(P.flat[Lij]) R = np.random.permutation(m)[:np.min((m, wei_period))] for q, r in enumerate(R): # choose random index of sorted expected weight o = Oind[r] W0.flat[Lij[o]] = s * Wv[r] # assign corresponding weight # readjust expected weighted probability for i[o],j[o] f = 1 - Wv[r] / So[i[o]] P[i[o], :] *= f f = 1 - Wv[r] / So[j[o]] P[j[o], :] *= f # readjust in-strength of i[o] So[i[o]] -= Wv[r] # readjust out-strength of j[o] Si[j[o]] -= Wv[r] O = Oind[R] # remove current indices from further consideration Lij = np.delete(Lij, O) i = np.delete(i, O) j = np.delete(j, O) Wv = np.delete(Wv, O) rpos_in = np.corrcoef(np.sum(W * (W > 0), axis=0), np.sum(W0 * (W0 > 0), axis=0)) rpos_ou = np.corrcoef(np.sum(W * (W > 0), axis=1), np.sum(W0 * (W0 > 0), axis=1)) rneg_in = np.corrcoef(np.sum(-W * (W < 0), axis=0), np.sum(-W0 * (W0 < 0), axis=0)) rneg_ou = np.corrcoef(np.sum(-W * (W < 0), axis=1), np.sum(-W0 * (W0 < 0), axis=1)) return W0, (rpos_in[0, 1], rpos_ou[0, 1], rneg_in[0, 1], rneg_ou[0, 1]) def null_model_und_sign(W, bin_swaps=5, wei_freq=.1): ''' This function randomizes an undirected network with positive and negative weights, while preserving the degree and strength distributions. This function calls randmio_und.m Parameters ---------- W : NxN np.ndarray undirected weighted connection matrix bin_swaps : int average number of swaps in each edge binary randomization. Default value is 5. 0 swaps implies no binary randomization. wei_freq : float frequency of weight sorting in weighted randomization. 0<=wei_freq<1. wei_freq == 1 implies that weights are sorted at each step. wei_freq == 0.1 implies that weights sorted each 10th step (faster, default value) wei_freq == 0 implies no sorting of weights (not recommended) Returns ------- W0 : NxN np.ndarray randomized weighted connection matrix R : 4-tuple of floats Correlation coefficients between strength sequences of input and output connection matrices, rpos_in, rpos_out, rneg_in, rneg_out Notes ----- The value of bin_swaps is ignored when binary topology is fully connected (e.g. when the network has no negative weights). Randomization may be better (and execution time will be slower) for higher values of bin_swaps and wei_freq. Higher values of bin_swaps may enable a more random binary organization, and higher values of wei_freq may enable a more accurate conservation of strength sequences. R are the correlation coefficients between positive and negative strength sequences of input and output connection matrices and are used to evaluate the accuracy with which strengths were preserved. Note that correlation coefficients may be a rough measure of strength-sequence accuracy and one could implement more formal tests (such as the Kolmogorov-Smirnov test) if desired. ''' if not np.all(W == W.T): raise BCTParamError("Input must be undirected") W = W.copy() n = len(W) np.fill_diagonal(W, 0) # clear diagonal Ap = (W > 0) # positive adjmat if np.size(np.where(Ap.flat)) < (n * (n - 1)): W_r = randmio_und_signed(W, bin_swaps) Ap_r = W_r > 0 An_r = W_r < 0 else: Ap_r = Ap An_r = An W0 = np.zeros((n, n)) for s in (1, -1): if s == 1: Acur = Ap A_rcur = Ap_r else: Acur = An A_rcur = An_r S = np.sum(W * Acur, axis=0) # strengths Wv = np.sort(W[np.where(np.triu(Acur))]) # sorted weights vector i, j = np.where(np.triu(A_rcur)) Lij, = np.where(np.triu(A_rcur).flat) # weights indices P = np.outer(S, S) if wei_freq == 0: # get indices of Lij that sort P Oind = np.argsort(P.flat[Lij]) # assign corresponding sorted W0.flat[Lij[Oind]] = s * Wv # weight at this index else: wsize = np.size(Wv) wei_period = np.round(1 / wei_freq) # convert frequency to period lq = np.arange(wsize, 0, -wei_period, dtype=int) for m in lq: # iteratively explore at this period # get indices of Lij that sort P Oind = np.argsort(P.flat[Lij]) R = np.random.permutation(m)[:np.min((m, wei_period))] for q, r in enumerate(R): # choose random index of sorted expected weight o = Oind[r] W0.flat[Lij[o]] = s * Wv[r] # assign corresponding weight # readjust expected weighted probability for i[o],j[o] f = 1 - Wv[r] / S[i[o]] P[i[o], :] *= f P[:, i[o]] *= f f = 1 - Wv[r] / S[j[o]] P[j[o], :] *= f P[:, j[o]] *= f # readjust strength of i[o] S[i[o]] -= Wv[r] # readjust strength of j[o] S[j[o]] -= Wv[r] O = Oind[R] # remove current indices from further consideration Lij = np.delete(Lij, O) i = np.delete(i, O) j = np.delete(j, O) Wv = np.delete(Wv, R) W0 = W0 + W0.T rpos_in = np.corrcoef(np.sum(W * (W > 0), axis=0), np.sum(W0 * (W0 > 0), axis=0)) rpos_ou = np.corrcoef(np.sum(W * (W > 0), axis=1), np.sum(W0 * (W0 > 0), axis=1)) rneg_in = np.corrcoef(np.sum(-W * (W < 0), axis=0), np.sum(-W0 * (W0 < 0), axis=0)) rneg_ou = np.corrcoef(np.sum(-W * (W < 0), axis=1), np.sum(-W0 * (W0 < 0), axis=1)) return W0, (rpos_in[0, 1], rpos_ou[0, 1], rneg_in[0, 1], rneg_ou[0, 1]) def randmio_dir_connected(R, itr): ''' This function randomizes a directed network, while preserving the in- and out-degree distributions. In weighted networks, the function preserves the out-strength but not the in-strength distributions. The function also ensures that the randomized network maintains connectedness, the ability for every node to reach every other node in the network. The input network for this function must be connected. Parameters ---------- W : NxN np.ndarray directed binary/weighted connection matrix itr : int rewiring parameter. Each edge is rewired approximately itr times. Returns ------- R : NxN np.ndarray randomized network eff : int number of actual rewirings carried out ''' R = R.copy() n = len(R) i, j = np.where(R) k = len(i) itr *= k max_attempts = np.round(n * k / (n * (n - 1))) eff = 0 for it in range(itr): att = 0 while att <= max_attempts: # while not rewired rewire = True while True: e1 = np.random.randint(k) e2 = np.random.randint(k) while e1 == e2: e2 = np.random.randint(k) a = i[e1] b = j[e1] c = i[e2] d = j[e2] if a != c and a != d and b != c and b != d: break # all 4 vertices must be different # rewiring condition if not (R[a, d] or R[c, b]): # connectedness condition if not (np.any((R[a, c], R[d, b], R[d, c])) and np.any((R[c, a], R[b, d], R[b, a]))): P = R[(a, c), :].copy() P[0, b] = 0 P[0, d] = 1 P[1, d] = 0 P[1, b] = 1 PN = P.copy() PN[0, a] = 1 PN[1, c] = 1 while True: P[0, :] = np.any(R[P[0, :] != 0, :], axis=0) P[1, :] = np.any(R[P[1, :] != 0, :], axis=0) P *= np.logical_not(PN) PN += P if not np.all(np.any(P, axis=1)): rewire = False break elif np.any(PN[0, (b, c)]) and np.any(PN[1, (d, a)]): break # end connectedness testing if rewire: # reassign edges R[a, d] = R[a, b] R[a, b] = 0 R[c, b] = R[c, d] R[c, d] = 0 j.setflags(write=True) j[e1] = d # reassign edge indices j[e2] = b eff += 1 break att += 1 return R, eff def randmio_dir(R, itr): ''' This function randomizes a directed network, while preserving the in- and out-degree distributions. In weighted networks, the function preserves the out-strength but not the in-strength distributions. Parameters ---------- W : NxN np.ndarray directed binary/weighted connection matrix itr : int rewiring parameter. Each edge is rewired approximately itr times. Returns ------- R : NxN np.ndarray randomized network eff : int number of actual rewirings carried out ''' R = R.copy() n = len(R) i, j = np.where(R) k = len(i) itr *= k max_attempts = np.round(n * k / (n * (n - 1))) eff = 0 for it in range(itr): att = 0 while att <= max_attempts: # while not rewired while True: e1 = np.random.randint(k) e2 = np.random.randint(k) while e1 == e2: e2 = np.random.randint(k) a = i[e1] b = j[e1] c = i[e2] d = j[e2] if a != c and a != d and b != c and b != d: break # all 4 vertices must be different # rewiring condition if not (R[a, d] or R[c, b]): R[a, d] = R[a, b] R[a, b] = 0 R[c, b] = R[c, d] R[c, d] = 0 i.setflags(write=True) j.setflags(write=True) i[e1] = d j[e2] = b # reassign edge indices eff += 1 break att += 1 return R, eff def randmio_und_connected(R, itr): ''' This function randomizes an undirected network, while preserving the degree distribution. The function does not preserve the strength distribution in weighted networks. The function also ensures that the randomized network maintains connectedness, the ability for every node to reach every other node in the network. The input network for this function must be connected. NOTE the changes to the BCT matlab function of the same name made in the Jan 2016 release have not been propagated to this function because of substantially decreased time efficiency in the implementation. Expect these changes to be merged eventually. Parameters ---------- W : NxN np.ndarray undirected binary/weighted connection matrix itr : int rewiring parameter. Each edge is rewired approximately itr times. Returns ------- R : NxN np.ndarray randomized network eff : int number of actual rewirings carried out ''' if not np.all(R == R.T): raise BCTParamError("Input must be undirected") if number_of_components(R) > 1: raise BCTParamError("Input is not connected") R = R.copy() n = len(R) i, j = np.where(np.tril(R)) k = len(i) itr *= k # maximum number of rewiring attempts per iteration max_attempts = np.round(n * k / (n * (n - 1))) # actual number of successful rewirings eff = 0 for it in range(itr): att = 0 while att <= max_attempts: # while not rewired rewire = True while True: e1 = np.random.randint(k) e2 = np.random.randint(k) while e1 == e2: e2 = np.random.randint(k) a = i[e1] b = j[e1] c = i[e2] d = j[e2] if a != c and a != d and b != c and b != d: break # all 4 vertices must be different if np.random.random() > .5: i.setflags(write=True) j.setflags(write=True) i[e2] = d j[e2] = c # flip edge c-d with 50% probability c = i[e2] d = j[e2] # to explore all potential rewirings # rewiring condition if not (R[a, d] or R[c, b]): # connectedness condition if not (R[a, c] or R[b, d]): P = R[(a, d), :].copy() P[0, b] = 0 P[1, c] = 0 PN = P.copy() PN[:, d] = 1 PN[:, a] = 1 while True: P[0, :] = np.any(R[P[0, :] != 0, :], axis=0) P[1, :] = np.any(R[P[1, :] != 0, :], axis=0) P *= np.logical_not(PN) if not np.all(np.any(P, axis=1)): rewire = False break elif np.any(P[:, (b, c)]): break PN += P # end connectedness testing if rewire: R[a, d] = R[a, b] R[a, b] = 0 R[d, a] = R[b, a] R[b, a] = 0 R[c, b] = R[c, d] R[c, d] = 0 R[b, c] = R[d, c] R[d, c] = 0 j.setflags(write=True) j[e1] = d j[e2] = b # reassign edge indices eff += 1 break att += 1 return R, eff def randmio_dir_signed(R, itr): ''' This function randomizes a directed weighted network with positively and negatively signed connections, while preserving the positive and negative degree distributions. In weighted networks by default the function preserves the out-degree strength but not the in-strength distributions Parameters --------- W : NxN np.ndarray directed binary/weighted connection matrix itr : int rewiring parameter. Each edge is rewired approximately itr times. Returns ------- R : NxN np.ndarray randomized network eff : int number of actual rewirings carried out ''' R = R.copy() n = len(R) itr *= n * (n - 1) #maximal number of rewiring attempts per iter max_attempts = n #actual number of successful rewirings eff = 0 #print(itr) for it in range(itr): #print(it) att = 0 while att <= max_attempts: #select four distinct vertices a, b, c, d = pick_four_unique_nodes_quickly(n) #a, b, c, d = np.random.choice(n, 4) #a, b, c, d = np.random.permutation(4) r0_ab = R[a, b] r0_cd = R[c, d] r0_ad = R[a, d] r0_cb = R[c, b] #print(np.sign(r0_ab), np.sign(r0_ad)) #rewiring condition if ( np.sign(r0_ab) == np.sign(r0_cd) and np.sign(r0_ad) == np.sign(r0_cb) and np.sign(r0_ab) != np.sign(r0_ad)): R[a, d] = r0_ab R[a, b] = r0_ad R[c, b] = r0_cd R[c, d] = r0_cb eff += 1 break att += 1 #print(eff) return R, eff def randmio_und(R, itr): ''' This function randomizes an undirected network, while preserving the degree distribution. The function does not preserve the strength distribution in weighted networks. Parameters ---------- W : NxN np.ndarray undirected binary/weighted connection matrix itr : int rewiring parameter. Each edge is rewired approximately itr times. Returns ------- R : NxN np.ndarray randomized network eff : int number of actual rewirings carried out ''' if not np.all(R == R.T): raise BCTParamError("Input must be undirected") R = R.copy() n = len(R) i, j = np.where(np.tril(R)) k = len(i) itr *= k # maximum number of rewiring attempts per iteration max_attempts = np.round(n * k / (n * (n - 1))) # actual number of successful rewirings eff = 0 for it in range(itr): att = 0 while att <= max_attempts: # while not rewired while True: e1, e2 = np.random.randint(k, size=(2,)) while e1 == e2: e2 = np.random.randint(k) a = i[e1] b = j[e1] c = i[e2] d = j[e2] if a != c and a != d and b != c and b != d: break # all 4 vertices must be different if np.random.random() > .5: i.setflags(write=True) j.setflags(write=True) i[e2] = d j[e2] = c # flip edge c-d with 50% probability c = i[e2] d = j[e2] # to explore all potential rewirings # rewiring condition if not (R[a, d] or R[c, b]): R[a, d] = R[a, b] R[a, b] = 0 R[d, a] = R[b, a] R[b, a] = 0 R[c, b] = R[c, d] R[c, d] = 0 R[b, c] = R[d, c] R[d, c] = 0 j.setflags(write=True) j[e1] = d j[e2] = b # reassign edge indices eff += 1 break att += 1 return R, eff def randmio_und_signed(R, itr): ''' This function randomizes an undirected weighted network with positive and negative weights, while simultaneously preserving the degree distribution of positive and negative weights. The function does not preserve the strength distribution in weighted networks. Parameters ---------- W : NxN np.ndarray undirected binary/weighted connection matrix itr : int rewiring parameter. Each edge is rewired approximately itr times. Returns ------- R : NxN np.ndarray randomized network ''' R = R.copy() n = len(R) itr *= int(n * (n -1) / 2) max_attempts = int(np.round(n / 2)) eff = 0 for it in range(itr): att = 0 while att <= max_attempts: a, b, c, d = pick_four_unique_nodes_quickly(n) r0_ab = R[a, b] r0_cd = R[c, d] r0_ad = R[a, d] r0_cb = R[c, b] #rewiring condition if ( np.sign(r0_ab) == np.sign(r0_cd) and np.sign(r0_ad) == np.sign(r0_cb) and np.sign(r0_ab) != np.sign(r0_ad)): R[a, d] = R[d, a] = r0_ab R[a, b] = R[b, a] = r0_ad R[c, b] = R[b, c] = r0_cd R[c, d] = R[d, c] = r0_cb eff += 1 break att += 1 return R, eff def randomize_graph_partial_und(A, B, maxswap): ''' A = RANDOMIZE_GRAPH_PARTIAL_UND(A,B,MAXSWAP) takes adjacency matrices A and B and attempts to randomize matrix A by performing MAXSWAP rewirings. The rewirings will avoid any spots where matrix B is nonzero. Parameters ---------- A : NxN np.ndarray undirected adjacency matrix to randomize B : NxN np.ndarray mask; edges to avoid maxswap : int number of rewirings Returns ------- A : NxN np.ndarray randomized matrix Notes ----- 1. Graph may become disconnected as a result of rewiring. Always important to check. 2. A can be weighted, though the weighted degree sequence will not be preserved. 3. A must be undirected. ''' A = A.copy() i, j = np.where(np.triu(A, 1)) i.setflags(write=True) j.setflags(write=True) m = len(i) nswap = 0 while nswap < maxswap: while True: e1, e2 = np.random.randint(m, size=(2,)) while e1 == e2: e2 = np.random.randint(m) a = i[e1] b = j[e1] c = i[e2] d = j[e2] if a != c and a != d and b != c and b != d: break # all 4 vertices must be different if np.random.random() > .5: i[e2] = d j[e2] = c # flip edge c-d with 50% probability c = i[e2] d = j[e2] # to explore all potential rewirings # rewiring condition if not (A[a, d] or A[c, b] or B[a, d] or B[c, b]): # avoid specified ixes A[a, d] = A[a, b] A[a, b] = 0 A[d, a] = A[b, a] A[b, a] = 0 A[c, b] = A[c, d] A[c, d] = 0 A[b, c] = A[d, c] A[d, c] = 0 j[e1] = d j[e2] = b # reassign edge indices nswap += 1 return A def randomizer_bin_und(R, alpha): ''' This function randomizes a binary undirected network, while preserving the degree distribution. The function directly searches for rewirable edge pairs (rather than trying to rewire edge pairs at random), and hence avoids long loops and works especially well in dense matrices. Parameters ---------- A : NxN np.ndarray binary undirected connection matrix alpha : float fraction of edges to rewire Returns ------- R : NxN np.ndarray randomized network ''' R = binarize(R, copy=True) # binarize if not np.all(R == R.T): raise BCTParamError( 'randomizer_bin_und only takes undirected matrices') ax = len(R) nr_poss_edges = (np.dot(ax, ax) - ax) / 2 # find maximum possible edges savediag = np.diag(R) np.fill_diagonal(R, np.inf) # replace diagonal with high value # if there are more edges than non-edges, invert the matrix to reduce # computation time. "invert" means swap meaning of 0 and 1, not matrix # inversion i, j = np.where(np.triu(R, 1)) k = len(i) if k > nr_poss_edges / 2: swap = True R = np.logical_not(R) np.fill_diagonal(R, np.inf) i, j = np.where(np.triu(R, 1)) k = len(i) else: swap = False # exclude fully connected nodes fullnodes = np.where((np.sum(np.triu(R, 1), axis=0) + np.sum(np.triu(R, 1), axis=1).T) == (ax - 1)) if np.size(fullnodes): R[fullnodes, :] = 0 R[:, fullnodes] = 0 np.fill_diagonal(R, np.inf) i, j = np.where(np.triu(R, 1)) k = len(i) if k == 0 or k >= (nr_poss_edges - 1): raise BCTParamError("No possible randomization") for it in range(k): if np.random.random() > alpha: continue # rewire alpha% of edges a = i[it] b = j[it] # it is the chosen edge from a<->b alliholes, = np.where(R[:, a] == 0) # find where each end can connect alljholes, = np.where(R[:, b] == 0) # we can only use edges with connection to neither node i_intersect = np.intersect1d(alliholes, alljholes) # find which of these nodes are connected ii, jj = np.where(R[np.ix_(i_intersect, i_intersect)]) # if there is an edge to switch if np.size(ii): # choose one randomly nummates = np.size(ii) mate = np.random.randint(nummates) # randomly orient the second edge if np.random.random() > .5: c = i_intersect[ii[mate]] d = i_intersect[jj[mate]] else: d = i_intersect[ii[mate]] c = i_intersect[jj[mate]] # swap the edges R[a, b] = 0 R[c, d] = 0 R[b, a] = 0 R[d, c] = 0 R[a, c] = 1 R[b, d] = 1 R[c, a] = 1 R[d, b] = 1 # update the edge index (this is inefficient) for m in range(k): if i[m] == d and j[m] == c: i.setflags(write=True) j.setflags(write=True) i[it] = c j[m] = b elif i[m] == c and j[m] == d: i.setflags(write=True) j.setflags(write=True) j[it] = c i[m] = b # restore fullnodes if np.size(fullnodes): R[fullnodes, :] = 1 R[:, fullnodes] = 1 # restore inversion if swap: R = np.logical_not(R) # restore diagonal np.fill_diagonal(R, 0) R += savediag return np.array(R, dtype=int)
{ "content_hash": "e4243320d80eb2a203ee9a9498caabf3", "timestamp": "", "source": "github", "line_count": 1718, "max_line_length": 100, "avg_line_length": 31.352735739231665, "alnum_prop": 0.48917644437843455, "repo_name": "boomsbloom/dtm-fmri", "id": "74f03993eec3db326dfd5add9f3e019f8d9170cf", "size": "53864", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "DTM/for_gensim/lib/python2.7/site-packages/bct/algorithms/reference.py", "mode": "33188", "license": "mit", "language": [ { "name": "C", "bytes": "413670" }, { "name": "C++", "bytes": "262666" }, { "name": "CSS", "bytes": "5382" }, { "name": "Fortran", "bytes": "14725" }, { "name": "HTML", "bytes": "555708" }, { "name": "JavaScript", "bytes": "23921" }, { "name": "Jupyter Notebook", "bytes": "16254" }, { "name": "Makefile", "bytes": "1302" }, { "name": "Matlab", "bytes": "36260" }, { "name": "Objective-C", "bytes": "567" }, { "name": "Python", "bytes": "46698963" }, { "name": "R", "bytes": "199" }, { "name": "Shell", "bytes": "11728" }, { "name": "TeX", "bytes": "18567" } ], "symlink_target": "" }
def extractThenewscifiCom(item): ''' DISABLED Parser for 'thenewscifi.com' ''' if 'film' in item['tags']: return None vol, chp, frag, postfix = extractVolChapterFragmentPostfix(item['title']) if not (chp or vol) or "preview" in item['title'].lower(): return None tagmap = [ ('PRC', 'PRC', 'translated'), ('Loiterous', 'Loiterous', 'oel'), ] for tagname, name, tl_type in tagmap: if tagname in item['tags']: return buildReleaseMessageWithType(item, name, vol, chp, frag=frag, postfix=postfix, tl_type=tl_type) return False
{ "content_hash": "9d7a1181a97c7b79e2e7579f24e525ec", "timestamp": "", "source": "github", "line_count": 24, "max_line_length": 104, "avg_line_length": 24.75, "alnum_prop": 0.6279461279461279, "repo_name": "fake-name/ReadableWebProxy", "id": "44d3985e04eabaa406347c57dd4e6038d08cc13b", "size": "594", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "WebMirror/management/rss_parser_funcs/feed_parse_extractThenewscifiCom.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "CSS", "bytes": "105811" }, { "name": "Dockerfile", "bytes": "1178" }, { "name": "HTML", "bytes": "119737" }, { "name": "JavaScript", "bytes": "3006524" }, { "name": "Jupyter Notebook", "bytes": "148075" }, { "name": "Mako", "bytes": "1454" }, { "name": "Python", "bytes": "5264346" }, { "name": "Shell", "bytes": "1059" } ], "symlink_target": "" }
""" Policy based configuration of libvirt objects This module provides helper APIs for populating the config.py classes based on common operational needs / policies """ from nova.pci import utils as pci_utils def set_vif_guest_frontend_config(conf, mac, model, driver): """Populate a LibvirtConfigGuestInterface instance with guest frontend details. """ conf.mac_addr = mac if model is not None: conf.model = model if driver is not None: conf.driver_name = driver def set_vif_host_backend_bridge_config(conf, brname, tapname=None): """Populate a LibvirtConfigGuestInterface instance with host backend details for a software bridge. """ conf.net_type = "bridge" conf.source_dev = brname if tapname: conf.target_dev = tapname conf.script = "" def set_vif_host_backend_ethernet_config(conf, tapname): """Populate a LibvirtConfigGuestInterface instance with host backend details for an externally configured host device. NB use of this configuration is discouraged by libvirt project and will mark domains as 'tainted'. """ conf.net_type = "ethernet" conf.target_dev = tapname conf.script = "" def set_vif_host_backend_ovs_config(conf, brname, interfaceid, tapname=None): """Populate a LibvirtConfigGuestInterface instance with host backend details for an OpenVSwitch bridge. """ conf.net_type = "bridge" conf.source_dev = brname conf.vporttype = "openvswitch" conf.add_vport_param("interfaceid", interfaceid) if tapname: conf.target_dev = tapname conf.script = "" def set_vif_host_backend_802qbg_config(conf, devname, managerid, typeid, typeidversion, instanceid, tapname=None): """Populate a LibvirtConfigGuestInterface instance with host backend details for an 802.1qbg device. """ conf.net_type = "direct" conf.source_dev = devname conf.source_mode = "vepa" conf.vporttype = "802.1Qbg" conf.add_vport_param("managerid", managerid) conf.add_vport_param("typeid", typeid) conf.add_vport_param("typeidversion", typeidversion) conf.add_vport_param("instanceid", instanceid) if tapname: conf.target_dev = tapname def set_vif_host_backend_802qbh_config(conf, net_type, devname, profileid, tapname=None): """Populate a LibvirtConfigGuestInterface instance with host backend details for an 802.1qbh device. """ conf.net_type = net_type if net_type == 'direct': conf.source_mode = 'passthrough' conf.source_dev = pci_utils.get_ifname_by_pci_address(devname) conf.driver_name = 'vhost' else: conf.source_dev = devname conf.model = None conf.vporttype = "802.1Qbh" conf.add_vport_param("profileid", profileid) if tapname: conf.target_dev = tapname def set_vif_host_backend_hw_veb(conf, net_type, devname, vlan, tapname=None): """Populate a LibvirtConfigGuestInterface instance with host backend details for an device that supports hardware virtual ethernet bridge. """ conf.net_type = net_type if net_type == 'direct': conf.source_mode = 'passthrough' conf.source_dev = pci_utils.get_ifname_by_pci_address(devname) conf.driver_name = 'vhost' else: conf.source_dev = devname conf.model = None conf.vlan = vlan if tapname: conf.target_dev = tapname def set_vif_host_backend_direct_config(conf, devname): """Populate a LibvirtConfigGuestInterface instance with direct Interface. """ conf.net_type = "direct" conf.source_mode = "passthrough" conf.source_dev = devname conf.model = "virtio" def set_vif_host_backend_vhostuser_config(conf, mode, path): """Populate a LibvirtConfigGuestInterface instance with host backend details for vhostuser socket. """ conf.net_type = "vhostuser" conf.vhostuser_type = "unix" conf.vhostuser_mode = mode conf.vhostuser_path = path def set_vif_bandwidth_config(conf, inst_type): """Config vif inbound/outbound bandwidth limit. parameters are set in instance_type_extra_specs table, key is in the format quota:vif_inbound_average. """ bandwidth_items = ['vif_inbound_average', 'vif_inbound_peak', 'vif_inbound_burst', 'vif_outbound_average', 'vif_outbound_peak', 'vif_outbound_burst'] for key, value in inst_type.get('extra_specs', {}).iteritems(): scope = key.split(':') if len(scope) > 1 and scope[0] == 'quota': if scope[1] in bandwidth_items: setattr(conf, scope[1], value)
{ "content_hash": "6140a100c9cbe235b20b65a640cf3b21", "timestamp": "", "source": "github", "line_count": 154, "max_line_length": 77, "avg_line_length": 31.162337662337663, "alnum_prop": 0.6526359658262137, "repo_name": "affo/nova", "id": "716067c232a078b0d9285a7a7b234b3ee58d4120", "size": "5409", "binary": false, "copies": "10", "ref": "refs/heads/master", "path": "nova/virt/libvirt/designer.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "ApacheConf", "bytes": "3223" }, { "name": "Python", "bytes": "15659662" }, { "name": "Shell", "bytes": "20716" } ], "symlink_target": "" }
import subprocess import time import json import re import logging import db_devices as model import udev_query import datetime import uuid def runpreloadcommand(cmd,timeout): process = subprocess.Popen([cmd], shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) processRc = None handleprocess = True counter = 0 stdout = '' stderr = '' while handleprocess: counter += 1 time.sleep(1) cout,cerr = process.communicate() stdout += cout stderr += cerr process.poll() processRc = process.returncode if processRc != None: break if counter == timeout: os.kill(process.pid, signal.SIGQUIT) if counter > timeout: os.kill(process.pid, signal.SIGKILL) processRc = -9 break return (processRc,stdout,stderr) def lsblk(): log = logging.getLogger("lsblk") wantedFields = ["NAME","KNAME","MOUNTPOINT","PARTUUID","SERIAL","FSTYPE","RM","SIZE","FSTYPE","UUID","OWNER","GROUP","MODE","WWN","VENDOR","MAJ:MIN"] lkfields = ",".join(wantedFields) command = "lsblk --output %s --pairs" % (lkfields) #log.debug("command=%s" % (command)) processRc,stdout,stderr = runpreloadcommand(command,10) #log.debug("stdout=%s" % (stdout)) output = {} for line in stdout.split("\n"): parsedKetValue = {} for key_value in re.split(r'[ ](?=[A-Z]+\b)', line): key_value_list = re.split(r'=', key_value) if len(key_value_list) != 2: continue parsedKetValue[str(key_value_list[0])] = str(key_value_list[1]).strip('"') if not 'KNAME' in parsedKetValue.keys(): continue output[parsedKetValue['KNAME']] = parsedKetValue #json_line = str(output) #print json_line #parsedJson = json.loads(json_line) #print json.dumps(output,sort_keys=True, indent=4) return output def updatdatabase(session=None): did_something = False log = logging.getLogger("updatdatabase") blocks_known = set() query_block = session.query(model.Block) if query_block.count() == 0: log.warning('No Blocks found') for block in query_block: if block.devName == None: continue blocks_known.add(block.devName) blockdevices = lsblk() blockfound = set(blockdevices.keys()) blocks_discoverd = blockfound.difference(blocks_known) blocks_lost = blocks_known.difference(blockfound) id_update_type = None id_update = None if len(blocks_discoverd) > 0: find_existing = session.query(model.job_namespace, ).\ filter(model.job_namespace.name == "kname_new") if find_existing.count() == 0: newjob_namespace = model.job_namespace() newjob_namespace.name = "kname_new" session.add(newjob_namespace) session.commit() find_existing = session.query(model.job_namespace,).\ filter(model.job_namespace.name == "kname_new") id_update_type = int(find_existing.first().id) else: id_update_type = int(find_existing.first().id) find_existing = session.query(model.job_def).\ filter(model.job_def.fk_type == id_update_type) if find_existing.count() == 0: newjob_def = model.job_def() newjob_def.fk_type = id_update_type newjob_def.cmdln_template = "updatdatabase" newjob_def.cmdln_paramters = "updatdatabase" session.add(newjob_def) session.commit() find_existing = session.query(model.job_def).\ filter(model.job_def.fk_type == id_update_type) id_update = int(find_existing.first().id) find_existing = session.query(model.job_execution).\ filter(model.job_execution.fk_update == id_update) if find_existing.count() == 0: newjob_def = model.job_execution() newjob_def.fk_update = id_update newjob_def.cmdln = "here is is" newjob_def.created = datetime.datetime.now() newjob_def.uuid = str(uuid.uuid1()) session.add(newjob_def) session.commit() for device_key in blocks_discoverd: find_existing = session.query(model.job_execution).\ filter(model.Block.devName == device_key).\ filter(model.job_def.fk_type == model.job_namespace.id).\ filter("lsblk" == model.job_namespace.name).\ filter(model.job_execution.fk_update == model.job_namespace.id) for i in find_existing: log.debug("i=%s" % (i)) #log.debug("device_details=%s" % (device_details)) device_details = blockdevices[device_key] devName = device_details.get("KNAME") if devName == None: continue newImage = model.Block() newImage.devName = devName #log.debug("newImage.devName=%s" % (newImage.devName)) newImage.idVendor = device_details.get("ID_VENDOR") newImage.idProduct = device_details.get("DEVNAME") newImage.devicenodes_major = device_details.get("MAJOR") newImage.devicenodes_minor = device_details.get("MINOR") newImage.device_removable = device_details.get("RM") newImage.mountpoint = device_details.get('MOUNTPOINT') newImage.fk_update = id_update session.add(newImage) session.commit() did_something = True if did_something: find_existing = session.query(model.job_namespace, ).\ filter(model.job_namespace.name == "kname_new") if find_existing.count() == 0: newjob_namespace = model.job_namespace() newjob_namespace.name = "kname_new" session.add(newjob_namespace) find_existing = session.query(model.job_def, ).\ filter(model.job_def.fk_type ==model.job_namespace.id).\ filter(model.job_namespace.name == "kname_new") if find_existing.count() == 0: index = None find_type = session.query(model.job_namespace, ).\ filter(model.job_namespace.name == "kname_new") if find_type.count() == 0: newjob_namespace = model.job_namespace() newjob_namespace.name = "kname_new" session.add(newjob_namespace) session.commit() find_type = session.query(model.job_namespace, ).\ filter(model.job_namespace.name == "kname_new") typeID = int(find_type.one().id) newjob_namespace = model.job_def() newjob_namespace.fk_type = typeID newjob_namespace.name = "kname_new" session.add(newjob_namespace) session.commit() find_existing = session.query(model.job_def, ).\ filter(model.job_def.fk_type ==model.job_namespace.id).\ filter(model.job_namespace.name == "kname_new") for device_key in blocks_discoverd: find_existing = session.query(model.job_execution).\ filter(model.Block.devName == device_key).\ filter(model.job_def.fk_type == model.job_namespace.id).\ filter("lsblk" == model.job_namespace.name).\ filter(model.job_execution.fk_update == model.job_namespace.id) for device_key in blocks_lost: log.warning('Code not complete') return blockdevices
{ "content_hash": "de6dba322cb8bd01efc9c478f5912812", "timestamp": "", "source": "github", "line_count": 201, "max_line_length": 153, "avg_line_length": 37.791044776119406, "alnum_prop": 0.5864928909952607, "repo_name": "osynge/pmpman", "id": "78940f2b1eaf7a855efd92716cac872a39a95a3c", "size": "7596", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "pmpmanager/lsblk.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "277717" }, { "name": "Shell", "bytes": "1045" } ], "symlink_target": "" }
import os import pygame from pygame.locals import * currentmusic = "" def load_image(name, colorkey=None): fullname = os.path.join('img', name) try: image = pygame.image.load(fullname) except pygame.error, message: print 'Cannot load image:', fullname raise SystemExit, message image = image.convert() if colorkey is not None: if colorkey is -1: colorkey = image.get_at((0, 0)) image.set_colorkey(colorkey, RLEACCEL) return image, image.get_rect() def load_music(name): fullname = os.path.join('snd',name); currentmusic = fullname try: music = pygame.mixer.music.load (fullname) except pygame.error, message: print 'Cannot load music:', fullname raise SystemExit, message pygame.mixer.music.set_volume(0.3) pygame.mixer.music.play(-1) def load_sound(name): fullname = os.path.join('snd',name); try: sound = pygame.mixer.Sound(fullname) sound.set_volume(0.5) except pygame.error, message: print 'Cannot load sound:', fullname raise SystemExit, message return sound def stop_music(): pygame.mixer.music.stop()
{ "content_hash": "006da312b69f436a040153654a8649ff", "timestamp": "", "source": "github", "line_count": 45, "max_line_length": 50, "avg_line_length": 26.466666666666665, "alnum_prop": 0.6389588581024349, "repo_name": "borgaster/SpaceWarsEvolved", "id": "9dd4ce1c4caabedaaecffbbc848a911b7d81ea5b", "size": "1191", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "loader.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "138920" } ], "symlink_target": "" }
import numpy import scipy import unittest from redis import Redis from nearpy.storage import MemoryStorage, RedisStorage class TestStorage(unittest.TestCase): def setUp(self): self.memory = MemoryStorage() self.redis_object = Redis(host='localhost', port=6379, db=0) self.redis_storage = RedisStorage(self.redis_object) def test_memory_storage(self): x = numpy.random.randn(100, 1) bucket_key = '23749283743928748' x_data = ['one', 'two', 'three'] self.memory.store_vector('testHash', bucket_key, x, x_data) X = self.memory.get_bucket('testHash', bucket_key) self.assertEqual(len(X), 1) y = X[0][0] y_data = X[0][1] self.assertEqual(len(y), len(x)) self.assertEqual(type(x), type(y)) for k in range(100): self.assertEqual(y[k], x[k]) self.assertEqual(type(y_data), type(x_data)) self.assertEqual(len(y_data), len(x_data)) for k in range(3): self.assertEqual(y_data[k], x_data[k]) self.memory.clean_all_buckets() self.assertEqual(self.memory.get_bucket('testHash', bucket_key), []) def test_redis_storage(self): self.redis_storage.clean_all_buckets() x = numpy.random.randn(100, 1) bucket_key = '23749283743928748' x_data = ['one', 'two', 'three'] self.redis_storage.store_vector('testHash', bucket_key, x, x_data) X = self.redis_storage.get_bucket('testHash', bucket_key) self.assertEqual(len(X), 1) y = X[0][0] y_data = X[0][1] self.assertEqual(len(y), len(x)) self.assertEqual(type(x), type(y)) for k in range(100): self.assertEqual(y[k], x[k]) self.assertEqual(type(y_data), type(x_data)) self.assertEqual(len(y_data), len(x_data)) for k in range(3): self.assertEqual(y_data[k], x_data[k]) self.redis_storage.clean_all_buckets() self.assertEqual(self.redis_storage.get_bucket('testHash', bucket_key), []) def test_redis_storage_sparse(self): self.redis_storage.clean_all_buckets() x = scipy.sparse.rand(100, 1, density=0.1) bucket_key = '23749283743928748' x_data = ['one', 'two', 'three'] self.redis_storage.store_vector('testHash', bucket_key, x, x_data) X = self.redis_storage.get_bucket('testHash', bucket_key) self.assertEqual(len(X), 1) y = X[0][0] y_data = X[0][1] self.assertEqual(type(x), type(y)) self.assertEqual(x.shape[0], y.shape[0]) self.assertEqual(x.shape[1], y.shape[1]) self.assertTrue((y - x).sum() == 0.0) self.assertEqual(type(y_data), type(x_data)) self.assertEqual(len(y_data), len(x_data)) for k in range(3): self.assertEqual(y_data[k], x_data[k]) self.redis_storage.clean_all_buckets() self.assertEqual(self.redis_storage.get_bucket('testHash', bucket_key), []) if __name__ == '__main__': unittest.main()
{ "content_hash": "e5d8194daa18b264f5cfff122c5f7a07", "timestamp": "", "source": "github", "line_count": 83, "max_line_length": 76, "avg_line_length": 38.54216867469879, "alnum_prop": 0.5642388246326977, "repo_name": "nguyenhoan1988/NearPy", "id": "43a66faadac637da880801df7594aad2cece8c07", "size": "4320", "binary": false, "copies": "4", "ref": "refs/heads/master", "path": "nearpy/tests/storage_tests.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "183109" } ], "symlink_target": "" }
"""Defines SortedList class.""" import bisect class SortedList(object): """Maintains a list of sorted items, with fast trimming using less-than/greater-than comparison.""" def __init__(self, donor=list()): """Initialize the object with a copy of the donor list, sorted.""" self._list = sorted(donor[:]) def add(self, item): """Add item to the list while maintaining sorted order.""" bisect.insort_left(self._list, item) def getCountLT(self, item): """Return number of elements less than *item*.""" index = bisect.bisect_left(self._list, item) return index def getCountGT(self, item): """Return number of elements greater than *item*.""" index = bisect.bisect_right(self._list, item) return len(self._list) - index def removeLT(self, item): """Trim off any elements less than *item*. Return number of elements trimmed.""" count = self.getCountLT(item) self._list = self._list[count:] return count
{ "content_hash": "4c2e5219c69dcd01ac7c290143392e5a", "timestamp": "", "source": "github", "line_count": 33, "max_line_length": 74, "avg_line_length": 31.87878787878788, "alnum_prop": 0.6178707224334601, "repo_name": "vmlaker/coils", "id": "3d91f7f4c893bf6c9fe92784cceb0ef519b98add", "size": "1052", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "coils/SortedList.py", "mode": "33188", "license": "mit", "language": [ { "name": "Makefile", "bytes": "2351" }, { "name": "Python", "bytes": "28619" } ], "symlink_target": "" }
from .copy_source import CopySource class AzureDataLakeStoreSource(CopySource): """A copy activity Azure Data Lake source. :param additional_properties: Unmatched properties from the message are deserialized this collection :type additional_properties: dict[str, object] :param source_retry_count: Source retry count. Type: integer (or Expression with resultType integer). :type source_retry_count: object :param source_retry_wait: Source retry wait. Type: string (or Expression with resultType string), pattern: ((\\d+)\\.)?(\\d\\d):(60|([0-5][0-9])):(60|([0-5][0-9])). :type source_retry_wait: object :param type: Constant filled by server. :type type: str :param recursive: If true, files under the folder path will be read recursively. Default is true. Type: boolean (or Expression with resultType boolean). :type recursive: object """ _validation = { 'type': {'required': True}, } _attribute_map = { 'additional_properties': {'key': '', 'type': '{object}'}, 'source_retry_count': {'key': 'sourceRetryCount', 'type': 'object'}, 'source_retry_wait': {'key': 'sourceRetryWait', 'type': 'object'}, 'type': {'key': 'type', 'type': 'str'}, 'recursive': {'key': 'recursive', 'type': 'object'}, } def __init__(self, additional_properties=None, source_retry_count=None, source_retry_wait=None, recursive=None): super(AzureDataLakeStoreSource, self).__init__(additional_properties=additional_properties, source_retry_count=source_retry_count, source_retry_wait=source_retry_wait) self.recursive = recursive self.type = 'AzureDataLakeStoreSource'
{ "content_hash": "be6d5c0a7ae1e84cb50c1b19e5ed12dc", "timestamp": "", "source": "github", "line_count": 40, "max_line_length": 175, "avg_line_length": 42.925, "alnum_prop": 0.6557949912638322, "repo_name": "lmazuel/azure-sdk-for-python", "id": "ddd9319b43d59a3c28d8879fccb7ea20b228ff57", "size": "2191", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "azure-mgmt-datafactory/azure/mgmt/datafactory/models/azure_data_lake_store_source.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "42572767" } ], "symlink_target": "" }
import arcpy app_found = 'NOT_SET' toolbox10xSuffix = "_10.3" def GetApplication(): '''Return app environment as: ARCMAP, ARCGIS_PRO, OTHER''' global app_found if app_found != 'NOT_SET': return app_found try: from arcpy import mp except ImportError: try: from arcpy import mapping mxd = arcpy.mapping.MapDocument("CURRENT") app_found = "ARCMAP" return app_found except: app_found = "OTHER" return app_found try: aprx = arcpy.mp.ArcGISProject('CURRENT') app_found = "ARCGIS_PRO" return app_found except: app_found = "OTHER" return app_found
{ "content_hash": "d0a08c6412f4733889e737aedb994cd0", "timestamp": "", "source": "github", "line_count": 30, "max_line_length": 62, "avg_line_length": 24, "alnum_prop": 0.5569444444444445, "repo_name": "pshowalter/solutions-geoprocessing-toolbox", "id": "0678e11706067cdc9222e0d6fa3a8aa3273e010f", "size": "1912", "binary": false, "copies": "2", "ref": "refs/heads/dev", "path": "clearing_operations/scripts/Utilities.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Batchfile", "bytes": "6218" }, { "name": "CSS", "bytes": "16435" }, { "name": "HTML", "bytes": "220035" }, { "name": "JavaScript", "bytes": "52869" }, { "name": "Python", "bytes": "807424" } ], "symlink_target": "" }
"""Module containing HBase installation and cleanup functions. HBase is a scalable NoSQL database built on Hadoop. https://hbase.apache.org/ """ import functools import os import posixpath from perfkitbenchmarker import data from perfkitbenchmarker import vm_util from perfkitbenchmarker.linux_packages import hadoop HBASE_VERSION = '1.0.2' HBASE_URL = ('http://www.us.apache.org/dist/hbase/hbase-{0}/' 'hbase-{0}-bin.tar.gz').format(HBASE_VERSION) DATA_FILES = ['hbase/hbase-site.xml.j2', 'hbase/regionservers.j2', 'hbase/hbase-env.sh.j2'] HBASE_DIR = posixpath.join(vm_util.VM_TMP_DIR, 'hbase') HBASE_BIN = posixpath.join(HBASE_DIR, 'bin') HBASE_CONF_DIR = posixpath.join(HBASE_DIR, 'conf') def CheckPrerequisites(): """Verifies that the required resources are present. Raises: perfkitbenchmarker.data.ResourceNotFound: On missing resource. """ for resource in DATA_FILES: data.ResourcePath(resource) def _Install(vm): vm.Install('hadoop') vm.Install('curl') vm.RemoteCommand(('mkdir {0} && curl -L {1} | ' 'tar -C {0} --strip-components=1 -xzf -').format( HBASE_DIR, HBASE_URL)) def YumInstall(vm): """Installs HBase on the VM.""" _Install(vm) def AptInstall(vm): """Installs HBase on the VM.""" _Install(vm) def _RenderConfig(vm, master_ip, zk_ips, regionserver_ips): # Use the same heap configuration as Cassandra memory_mb = vm.total_memory_kb // 1024 hbase_memory_mb = max(min(memory_mb // 2, 1024), min(memory_mb // 4, 8192)) context = { 'master_ip': master_ip, 'worker_ips': regionserver_ips, 'zk_quorum_ips': zk_ips, 'hadoop_private_key': hadoop.HADOOP_PRIVATE_KEY, 'hbase_memory_mb': hbase_memory_mb, 'scratch_dir': vm.GetScratchDir(), } for file_name in DATA_FILES: file_path = data.ResourcePath(file_name) remote_path = posixpath.join(HBASE_CONF_DIR, os.path.basename(file_name)) if file_name.endswith('.j2'): vm.RenderTemplate(file_path, os.path.splitext(remote_path)[0], context) else: vm.RemoteCopy(file_path, remote_path) def ConfigureAndStart(master, regionservers, zk_nodes): """Configure HBase on a cluster. Args: master: VM. Master VM. regionservers: List of VMs. """ vms = [master] + regionservers def LinkNativeLibraries(vm): vm.RemoteCommand(('mkdir {0}/lib/native && ' 'ln -s {1} {0}/lib/native/Linux-amd64-64').format( HBASE_DIR, posixpath.join(hadoop.HADOOP_DIR, 'lib', 'native'))) vm_util.RunThreaded(LinkNativeLibraries, vms) fn = functools.partial(_RenderConfig, master_ip=master.internal_ip, zk_ips=[vm.internal_ip for vm in zk_nodes], regionserver_ips=[regionserver.internal_ip for regionserver in regionservers]) vm_util.RunThreaded(fn, vms) master.RemoteCommand('{0} dfs -mkdir /hbase'.format( posixpath.join(hadoop.HADOOP_BIN, 'hdfs'))) master.RemoteCommand(posixpath.join(HBASE_BIN, 'start-hbase.sh')) def Stop(master): """Stop HBase. Args: master: VM. Master VM. """ master.RemoteCommand(posixpath.join(HBASE_BIN, 'stop-hbase.sh'))
{ "content_hash": "d9331d745282813d4bc0d1bf08cc67e8", "timestamp": "", "source": "github", "line_count": 112, "max_line_length": 78, "avg_line_length": 29.883928571428573, "alnum_prop": 0.6340005975500448, "repo_name": "mateusz-blaszkowski/PerfKitBenchmarker", "id": "d8f80047d95eef1f030ebe42cd763f264a9fe2fc", "size": "3957", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "perfkitbenchmarker/linux_packages/hbase.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Lua", "bytes": "1547" }, { "name": "Python", "bytes": "1282006" }, { "name": "Shell", "bytes": "23160" } ], "symlink_target": "" }
""" Handle the Pagination for a Controller. """ class Pagination(object): """ The base implementation of Pagination. __init__ define max, offset and count. """ def __init__(self, max_result, offset_key="offset", count_key="count"): self.max = max_result self.offset_key = offset_key self.count_key = count_key def paginate(self, request): """ return an offset, a count and the request kwargs without pagination parameters """ request_kwargs = request.values.to_dict() offset = int(request_kwargs.pop(self.offset_key, 0)) count = int(request_kwargs.pop(self.count_key, self.max)) if count > self.max: count = self.max return offset, count, request_kwargs def get_metadata(self, total=0, offset=0, count=0, **filters): meta = {self.offset_key: offset, self.count_key: count, "total_count": total, "filters": {} } for k, v in filters.iteritems(): meta["filters"][k] = v if offset == 0: meta['previous'] = "null" else: meta["previous"] = offset - count if meta["previous"] < 0: meta["previous"] = 0 if meta['previous'] != "null": meta["previous"] = "?{0}={1}".format(self.offset_key, meta["previous"]) meta["next"] = offset + count if meta["next"] > total: meta["next"] = "null" if meta['next'] != "null": meta["next"] = "?{0}={1}".format(self.offset_key, meta["next"]) return meta
{ "content_hash": "a32534f1464656e1902724157cad766e", "timestamp": "", "source": "github", "line_count": 60, "max_line_length": 66, "avg_line_length": 29.683333333333334, "alnum_prop": 0.4884896125772038, "repo_name": "boblefrag/python-rest-api-framework", "id": "6eebfd930599a148b086ecb87ee72b6f7815ebdf", "size": "1781", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "rest_api_framework/pagination.py", "mode": "33188", "license": "mit", "language": [ { "name": "Makefile", "bytes": "83" }, { "name": "Python", "bytes": "90887" } ], "symlink_target": "" }
from memoized import memoized class SupplyInterface(object): def __init__(self, domain=None): self.domain = domain @classmethod def create_from_location(cls, domain, location): from corehq.apps.commtrack.helpers import make_supply_point return make_supply_point(domain, location) @property @memoized def supply_point(self): from corehq.form_processor.backends.sql.supply import SupplyPointSQL return SupplyPointSQL def get_or_create_by_location(self, location): return self.supply_point.get_or_create_by_location(location) def get_by_location(self, location): return self.supply_point.get_by_location(location) def get_supply_point_ids_by_location(self): return self.supply_point.get_supply_point_ids_by_location(self.domain) def get_closed_and_open_by_location_id_and_domain(self, domain, location_id): """ This also returns closed supply points. Please use location.linked_supply_point() instead. """ return self.supply_point.get_closed_and_open_by_location_id_and_domain(domain, location_id) def get_supply_point(self, supply_point_id): return self.supply_point.get_supply_point(supply_point_id) def get_supply_points(self, supply_point_ids): return self.supply_point.get_supply_points(supply_point_ids)
{ "content_hash": "fa5f8917729a15c148f053cddb30c82d", "timestamp": "", "source": "github", "line_count": 40, "max_line_length": 99, "avg_line_length": 34.65, "alnum_prop": 0.6940836940836941, "repo_name": "dimagi/commcare-hq", "id": "60ab0349322932dfed91aed2bd582d65f8d8b804", "size": "1386", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "corehq/form_processor/interfaces/supply.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "CSS", "bytes": "82928" }, { "name": "Dockerfile", "bytes": "2341" }, { "name": "HTML", "bytes": "2589268" }, { "name": "JavaScript", "bytes": "5889543" }, { "name": "Jinja", "bytes": "3693" }, { "name": "Less", "bytes": "176180" }, { "name": "Makefile", "bytes": "1622" }, { "name": "PHP", "bytes": "2232" }, { "name": "PLpgSQL", "bytes": "66704" }, { "name": "Python", "bytes": "21779773" }, { "name": "Roff", "bytes": "150" }, { "name": "Shell", "bytes": "67473" } ], "symlink_target": "" }
FILE_NAME = 'fdic_failed_bank_list.csv' # write a function to do some exploring with strings # open the csv # create the object that represents the data in the csv file # create a variable to represent the header row # from the last lesson we know the variable header_row refers to a list # let's isolate the string that is 'Acquiring Institution' # we'll do this by isolating in the list what is know as the index of the string # let's make sure this is a string # let's get the length of the string # create a variable to hold our string # let's see how string subscripting works # let's print the third characters # let's print the first five characters # let's print everything after the first five characters # let's capitalize the first letter in the string # let's lowercase the string # let's uppercase the string # close the csv file when we're done basic_string_methods('fdic_failed_bank_list.csv')
{ "content_hash": "b42e3563b327c77cef8d80adb4b9931e", "timestamp": "", "source": "github", "line_count": 37, "max_line_length": 84, "avg_line_length": 26.83783783783784, "alnum_prop": 0.702920443101712, "repo_name": "tommeagher/pycar14", "id": "ddbab78873b86d4b2e72bca74041b8f8f0197d98", "size": "1011", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "project1/step_5.py", "mode": "33188", "license": "mit", "language": [ { "name": "HTML", "bytes": "81996" }, { "name": "Python", "bytes": "41352" } ], "symlink_target": "" }
import os import pickle import logging from .DataLoader import DataLoader from .Dataset import Dataset def load_dataset(filename, n): with open(filename, 'rb') as f: data = pickle.load(f, encoding='latin-1') logging.info("Loaded {} examples from {}".format(len(data),filename)) if n > -1: data = data[:n] logging.info("Using {}".format(len(data))) dataset = Dataset.from_records(data) logging.info("Dataset size: {}".format(dataset.bytes)) del data return dataset def get_data_loader(filename, n, batch_size): dataset = load_dataset(filename, n) data_loader = DataLoader(dataset, batch_size) return data_loader def get_train_data_loader(data_dir, n_train, n_valid, batch_size, **kwargs): train_data_loader = get_data_loader(os.path.join(data_dir, 'train.pkl'), n_train, batch_size) valid_data_loader = get_data_loader(os.path.join(data_dir, 'valid.pkl'), n_valid, batch_size) return train_data_loader, valid_data_loader def get_test_data_loader(data_dir, n_test, batch_size, **kwargs): test_data_loader = get_data_loader(os.path.join(data_dir, 'valid.pkl'), n_test, batch_size) return test_data_loader
{ "content_hash": "ef83663e60d8e495cf51edcc453ff2b8", "timestamp": "", "source": "github", "line_count": 32, "max_line_length": 97, "avg_line_length": 37.21875, "alnum_prop": 0.6834592779177162, "repo_name": "isaachenrion/jets", "id": "2de3574ec555cce2b8b3ab2f6adfe785fdda687c", "size": "1191", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "src/proteins/data_ops/get_data_loader.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "Jupyter Notebook", "bytes": "11751" }, { "name": "Python", "bytes": "258548" }, { "name": "Shell", "bytes": "6358" } ], "symlink_target": "" }
"""Tests for tensorflow.python.client.session.Session.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import threading import time import numpy as np import six from six.moves import xrange # pylint: disable=redefined-builtin from tensorflow.core.lib.core import error_codes_pb2 from tensorflow.core.protobuf import config_pb2 from tensorflow.python.client import session from tensorflow.python.framework import common_shapes from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import errors from tensorflow.python.framework import ops from tensorflow.python.framework import sparse_tensor from tensorflow.python.framework import tensor_util from tensorflow.python.framework import test_util from tensorflow.python.framework import versions from tensorflow.python.ops import array_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import data_flow_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import state_ops from tensorflow.python.ops import variables from tensorflow.python.platform import googletest from tensorflow.python.training import server_lib from tensorflow.python.util import compat # NOTE(mrry): Dummy shape registration for ops used in the tests, since they # don't have C++ op registrations on which to attach C++ shape fns. ops.RegisterShape('ConstructionFails')(common_shapes.unknown_shape) class SessionTest(test_util.TensorFlowTestCase): def testUseExistingGraph(self): with ops.Graph().as_default() as g, ops.device('/cpu:0'): a = constant_op.constant(6.0, shape=[1, 1]) b = constant_op.constant(7.0, shape=[1, 1]) c = math_ops.matmul(a, b, name='matmul') with session.Session(graph=g): result = c.eval() self.assertAllEqual(result, [[42.0]]) def testUseDefaultGraph(self): with ops.Graph().as_default(), ops.device('/cpu:0'): a = constant_op.constant(6.0, shape=[1, 1]) b = constant_op.constant(7.0, shape=[1, 1]) c = math_ops.matmul(a, b, name='matmul') with session.Session(): result = c.eval() self.assertAllEqual(result, [[42.0]]) def testCreate(self): with session.Session(): inp = constant_op.constant(10.0, shape=[2, 3], name='W1') copy = array_ops.identity(inp) # Test with feed. # TODO(mrry): Investigate why order='F' didn't work. arr = np.asarray([[0, 1, 2], [3, 4, 5]], dtype=np.float32, order='C') copy_val = copy.eval({'W1:0': arr}) self.assertAllEqual(arr, copy_val) # Test without feed. copy_val = copy.eval() self.assertAllEqual(np.asarray([[10.0, 10.0, 10.0], [10.0, 10.0, 10.0]], dtype=np.float32), copy_val) def testManyCPUs(self): # TODO(keveman): Implement ListDevices and test for the number of # devices returned by ListDevices. with session.Session( config=config_pb2.ConfigProto(device_count={'CPU': 2})): inp = constant_op.constant(10.0, name='W1') self.assertAllEqual(inp.eval(), 10.0) def testPerSessionThreads(self): # TODO(keveman): Implement ListDevices and test for the number of # devices returned by ListDevices. with session.Session( config=config_pb2.ConfigProto(use_per_session_threads=True)): inp = constant_op.constant(10.0, name='W1') self.assertAllEqual(inp.eval(), 10.0) def testSessionInterOpThreadPool(self): config = config_pb2.ConfigProto() pool = config.session_inter_op_thread_pool.add() with session.Session(config=config) as s: inp = constant_op.constant(10.0, name='W1') results = s.run([inp]) self.assertAllEqual([10.0], results) pool = config.session_inter_op_thread_pool.add() pool.num_threads = 1 with session.Session(config=config) as s: inp = constant_op.constant(20.0, name='W2') results = s.run([inp]) self.assertAllEqual([20.0], results) def testErrorsReported(self): with session.Session() as s: constant_op.constant(10.0, name='W1') with self.assertRaises(ValueError): s.run('foo:0') def testErrorPayload(self): with session.Session(): a = array_ops.placeholder(dtypes.float32) with self.assertRaisesOpError(lambda e: e.op == a.op): a.eval() def testErrorCodeWithNoNodeDef(self): with session.Session() as s: a = array_ops.placeholder(dtypes.float32, shape=[]) b = array_ops.placeholder(dtypes.float32, shape=[]) r1 = math_ops.add(a, b) def exc_predicate(e): return (e.op is None and e.node_def is None and e.error_code == error_codes_pb2.INVALID_ARGUMENT) with self.assertRaisesOpError(exc_predicate): # Run with a bogus handle. s.partial_run('foo', r1, feed_dict={a: 1, b: 2}) def testOpConstructionErrorPayload(self): with session.Session(): failing_op = ops.get_default_graph().create_op( 'ConstructionFails', [], [], name='f') def exc_predicate(e): return (e.op == failing_op and e.error_code == error_codes_pb2.INVALID_ARGUMENT) with self.assertRaisesOpError(exc_predicate): failing_op.run() def testErrorBasedOn(self): with session.Session() as sess: a = constant_op.constant(0.0, shape=[2, 3]) # NOTE(mrry): The original_op is nonsense, but used here to test that the # errors are reported correctly. # pylint: disable=protected-access with sess.graph._original_op(a.op): b = array_ops.identity(a, name='id') with sess.graph._original_op(b.op): c = array_ops.placeholder(dtypes.float32) # pylint: enable=protected-access def exc_predicate(e): return (e.op == c.op and e.op._original_op == b.op and e.op._original_op._original_op == a.op) with self.assertRaisesOpError(exc_predicate): c.eval() def testFetchNone(self): with session.Session() as s: a = constant_op.constant(1.0) with self.assertRaises(TypeError): s.run(None) with self.assertRaises(TypeError): s.run([None]) with self.assertRaises(TypeError): s.run({'b': None}) with self.assertRaises(TypeError): s.run({'a': a, 'b': None}) def testFetchSingleton(self): with session.Session() as sess: a = constant_op.constant(42.0) res = sess.run(a) self.assertEqual(42.0, res) res = sess.run(a.op) # An op, not a tensor. self.assertEqual(None, res) tensor_runner = sess.make_callable(a) res = tensor_runner() self.assertEqual(42.0, res) op_runner = sess.make_callable(a.op) res = op_runner() self.assertEqual(None, res) def testFetchSingletonByName(self): with session.Session() as sess: a = constant_op.constant(42.0) res = sess.run(a.name) self.assertEqual(42.0, res) res = sess.run(a.op) # An op, not a tensor. self.assertEqual(None, res) def testFetchList(self): with session.Session() as sess: a = constant_op.constant(42.0) b = control_flow_ops.no_op() # An op, not a tensor. c = constant_op.constant(44.0) v = variables.Variable([54.0]) assign = v.assign([63.0]) res = sess.run([a, b, c, a.name, assign.op]) self.assertTrue(isinstance(res, list)) self.assertEqual([42.0, None, 44.0, 42.0, None], res) list_runner = sess.make_callable([a, b, c, a.name, assign.op]) res = list_runner() self.assertTrue(isinstance(res, list)) self.assertEqual([42.0, None, 44.0, 42.0, None], res) def testFetchTuple(self): with session.Session() as sess: a = constant_op.constant(42.0) b = control_flow_ops.no_op() # An op, not a tensor. c = constant_op.constant(44.0) res = sess.run((a, b, c, a.name)) self.assertTrue(isinstance(res, tuple)) self.assertEqual((42.0, None, 44.0, 42.0), res) tuple_runner = sess.make_callable((a, b, c, a.name)) res = tuple_runner() self.assertTrue(isinstance(res, tuple)) self.assertEqual((42.0, None, 44.0, 42.0), res) def testFetchNamedTuple(self): # pylint: disable=invalid-name ABC = collections.namedtuple('ABC', ['a', 'b', 'c']) # pylint: enable=invalid-name with session.Session() as sess: a = constant_op.constant(42.0) b = control_flow_ops.no_op() # An op, not a tensor. c = constant_op.constant(44.0) res = sess.run(ABC(a, b, c)) self.assertTrue(isinstance(res, ABC)) self.assertEqual(42.0, res.a) self.assertEqual(None, res.b) self.assertEqual(44.0, res.c) namedtuple_runner = sess.make_callable(ABC(a, b, c)) res = namedtuple_runner() self.assertTrue(isinstance(res, ABC)) self.assertEqual(42.0, res.a) self.assertEqual(None, res.b) self.assertEqual(44.0, res.c) def testFetchDict(self): with session.Session() as sess: a = constant_op.constant(42.0) b = control_flow_ops.no_op() # An op, not a tensor. c = constant_op.constant(44.0) res = sess.run({'a': a, 'b': b, 'c': c}) self.assertTrue(isinstance(res, dict)) self.assertEqual(42.0, res['a']) self.assertEqual(None, res['b']) self.assertEqual(44.0, res['c']) def testFetchOrderedDict(self): with session.Session() as sess: a = constant_op.constant(42.0) b = control_flow_ops.no_op() # An op, not a tensor. c = constant_op.constant(44.0) res = sess.run(collections.OrderedDict([(3, a), (2, b), (1, c)])) self.assertTrue(isinstance(res, collections.OrderedDict)) self.assertEqual([3, 2, 1], list(res.keys())) self.assertEqual(42.0, res[3]) self.assertEqual(None, res[2]) self.assertEqual(44.0, res[1]) def testFetchNestingEmptyOneLevel(self): with session.Session() as sess: a_val = 11.0 a = constant_op.constant(a_val) res = sess.run([[], tuple(), {}]) self.assertTrue(isinstance(res, list)) self.assertEquals(3, len(res)) self.assertTrue(isinstance(res[0], list)) self.assertEqual(0, len(res[0])) self.assertTrue(isinstance(res[1], tuple)) self.assertEqual(0, len(res[1])) self.assertTrue(isinstance(res[2], dict)) self.assertEqual(0, len(res[2])) res = sess.run([[], tuple(), {}, a]) self.assertTrue(isinstance(res, list)) self.assertEquals(4, len(res)) self.assertTrue(isinstance(res[0], list)) self.assertEqual(0, len(res[0])) self.assertTrue(isinstance(res[1], tuple)) self.assertEqual(0, len(res[1])) self.assertTrue(isinstance(res[2], dict)) self.assertEqual(0, len(res[2])) self.assertEqual(a_val, res[3]) def testFetchNestingOneLevel(self): with session.Session() as sess: # pylint: disable=invalid-name ABC = collections.namedtuple('ABC', ['a', 'b', 'c']) DEFG = collections.namedtuple('DEFG', ['d', 'e', 'f', 'g']) # pylint: enable=invalid-name a_val = 42.0 b_val = None c_val = 44.0 a = constant_op.constant(a_val) b = control_flow_ops.no_op() # An op, not a tensor. c = constant_op.constant(c_val) # List of lists, tuples, namedtuple, and dict res = sess.run([[a, b, c], (a, b, c), ABC(a=a, b=b, c=c), {'a': a.name, 'c': c, 'b': b}]) self.assertTrue(isinstance(res, list)) self.assertEqual(4, len(res)) self.assertTrue(isinstance(res[0], list)) self.assertEqual(3, len(res[0])) self.assertEqual(a_val, res[0][0]) self.assertEqual(b_val, res[0][1]) self.assertEqual(c_val, res[0][2]) self.assertTrue(isinstance(res[1], tuple)) self.assertEqual(3, len(res[1])) self.assertEqual(a_val, res[1][0]) self.assertEqual(b_val, res[1][1]) self.assertEqual(c_val, res[1][2]) self.assertTrue(isinstance(res[2], ABC)) self.assertEqual(a_val, res[2].a) self.assertEqual(b_val, res[2].b) self.assertEqual(c_val, res[2].c) self.assertTrue(isinstance(res[3], dict)) self.assertEqual(3, len(res[3])) self.assertEqual(a_val, res[3]['a']) self.assertEqual(b_val, res[3]['b']) self.assertEqual(c_val, res[3]['c']) # Tuple of lists, tuples, namedtuple, and dict res = sess.run(([a, b, c], (a.name, b, c), ABC(a=a, b=b, c=c), {'a': a, 'c': c, 'b': b})) self.assertTrue(isinstance(res, tuple)) self.assertEqual(4, len(res)) self.assertTrue(isinstance(res[0], list)) self.assertEqual(3, len(res[0])) self.assertEqual(a_val, res[0][0]) self.assertEqual(b_val, res[0][1]) self.assertEqual(c_val, res[0][2]) self.assertTrue(isinstance(res[1], tuple)) self.assertEqual(3, len(res[1])) self.assertEqual(a_val, res[1][0]) self.assertEqual(b_val, res[1][1]) self.assertEqual(c_val, res[1][2]) self.assertTrue(isinstance(res[2], ABC)) self.assertEqual(a_val, res[2].a) self.assertEqual(b_val, res[2].b) self.assertEqual(c_val, res[2].c) self.assertTrue(isinstance(res[3], dict)) self.assertEqual(3, len(res[3])) self.assertEqual(a_val, res[3]['a']) self.assertEqual(b_val, res[3]['b']) self.assertEqual(c_val, res[3]['c']) # Namedtuple of lists, tuples, namedtuples, and dict res = sess.run(DEFG(d=[a, b, c], e=(a, b, c), f=ABC(a=a.name, b=b, c=c), g={'a': a, 'c': c, 'b': b})) self.assertTrue(isinstance(res, DEFG)) self.assertTrue(isinstance(res.d, list)) self.assertEqual(3, len(res.d)) self.assertEqual(a_val, res.d[0]) self.assertEqual(b_val, res.d[1]) self.assertEqual(c_val, res.d[2]) self.assertTrue(isinstance(res.e, tuple)) self.assertEqual(3, len(res.e)) self.assertEqual(a_val, res.e[0]) self.assertEqual(b_val, res.e[1]) self.assertEqual(c_val, res.e[2]) self.assertTrue(isinstance(res.f, ABC)) self.assertEqual(a_val, res.f.a) self.assertEqual(b_val, res.f.b) self.assertEqual(c_val, res.f.c) self.assertTrue(isinstance(res.g, dict)) self.assertEqual(3, len(res.g)) self.assertEqual(a_val, res.g['a']) self.assertEqual(b_val, res.g['b']) self.assertEqual(c_val, res.g['c']) # Dict of lists, tuples, namedtuples, and dict res = sess.run({'d': [a, b, c], 'e': (a, b, c), 'f': ABC(a=a, b=b, c=c), 'g': {'a': a.name, 'c': c, 'b': b}}) self.assertTrue(isinstance(res, dict)) self.assertEqual(4, len(res)) self.assertTrue(isinstance(res['d'], list)) self.assertEqual(3, len(res['d'])) self.assertEqual(a_val, res['d'][0]) self.assertEqual(b_val, res['d'][1]) self.assertEqual(c_val, res['d'][2]) self.assertTrue(isinstance(res['e'], tuple)) self.assertEqual(3, len(res['e'])) self.assertEqual(a_val, res['e'][0]) self.assertEqual(b_val, res['e'][1]) self.assertEqual(c_val, res['e'][2]) self.assertTrue(isinstance(res['f'], ABC)) self.assertEqual(a_val, res['f'].a) self.assertEqual(b_val, res['f'].b) self.assertEqual(c_val, res['f'].c) self.assertTrue(isinstance(res['g'], dict)) self.assertEqual(3, len(res['g'])) self.assertEqual(a_val, res['g']['a']) self.assertEqual(b_val, res['g']['b']) self.assertEqual(c_val, res['g']['c']) def testFetchTensorObject(self): with session.Session() as s: a = constant_op.constant(1.0, shape=[1, 2]) b = constant_op.constant(2.0, shape=[2, 3]) c = math_ops.matmul(a, b) results_with_list = s.run([c]) self.assertAllEqual([[4.0, 4.0, 4.0]], results_with_list[0]) results_with_single = s.run(c) self.assertAllEqual([[4.0, 4.0, 4.0]], results_with_single) results_with_get = c.eval() self.assertAllEqual([[4.0, 4.0, 4.0]], results_with_get) a_val, b_val = s.run([a, b]) # Test multiple fetches. self.assertAllEqual([[1.0, 1.0]], a_val) self.assertAllEqual([[2.0, 2.0, 2.0], [2.0, 2.0, 2.0]], b_val) results_with_dict = s.run({'a': [a], 'b': b, 'z': [a, b]}) self.assertAllEqual([[1.0, 1.0]], results_with_dict['a'][0]) self.assertAllEqual([[2.0, 2.0, 2.0], [2.0, 2.0, 2.0]], results_with_dict['b']) self.assertAllEqual(results_with_dict['a'][0], results_with_dict['z'][0]) self.assertAllEqual(results_with_dict['b'], results_with_dict['z'][1]) # Test nested structures results_with_nested_list = s.run([[[a, b], b], a, [a, b]]) self.assertAllEqual([[1.0, 1.0]], results_with_nested_list[0][0][0]) self.assertAllEqual([[2.0, 2.0, 2.0], [2.0, 2.0, 2.0]], results_with_nested_list[0][0][1]) self.assertAllEqual(results_with_nested_list[0][0][0], results_with_nested_list[1]) self.assertAllEqual(results_with_nested_list[1], results_with_nested_list[2][0]) self.assertAllEqual(results_with_nested_list[0][0][1], results_with_nested_list[0][1]) self.assertAllEqual(results_with_nested_list[0][1], results_with_nested_list[2][1]) def testFetchScalar(self): with session.Session() as s: for scalar in np.int32, np.int64, np.float16, np.float32, np.float64: x = scalar(7) y = scalar(8) tf_x = constant_op.constant(x, shape=[]) tf_y = constant_op.constant(y) tf_xy = math_ops.add(tf_x, tf_y) # Single fetch xy = s.run(tf_xy) self.assertEqual(scalar, type(xy)) self.assertEqual(x + y, xy) # List fetch xy, = s.run([tf_xy]) self.assertEqual(scalar, type(xy)) self.assertEqual(x + y, xy) # Dict fetch xy = s.run({'xy': tf_xy})['xy'] self.assertEqual(scalar, type(xy)) self.assertEqual(x + y, xy) # Nested list fetch xy = s.run([[[tf_xy]], tf_xy, [tf_xy]]) self.assertAllEqual(xy, [[[x + y]], x + y, [x + y]]) self.assertEqual(scalar, type(xy[0][0][0])) self.assertEqual(scalar, type(xy[1])) self.assertEqual(scalar, type(xy[2][0])) def testFetchOperationObject(self): with session.Session() as s: a = constant_op.constant(1.0, shape=[1, 2]) v = variables.Variable(a, name='testFetchOperationObject_v') s.run(v.initializer) v_val = s.run(v) self.assertAllEqual([[1.0, 1.0]], v_val) def testFetchSparseTensor(self): with session.Session() as s: indices = np.array([[3, 2, 0], [4, 5, 1]]).astype(np.int64) values = np.array([1.0, 2.0]).astype(np.float32) shape = np.array([7, 9, 2]).astype(np.int64) sp = sparse_tensor.SparseTensor( constant_op.constant(indices), constant_op.constant(values), constant_op.constant(shape)) # Single fetch, use as tuple sp_out = s.run(sp) indices_out, values_out, shape_out = sp_out self.assertAllEqual(indices_out, indices) self.assertAllEqual(values_out, values) self.assertAllEqual(shape_out, shape) # Single fetch, use as SparseTensorValue sp_out = s.run(sp) self.assertAllEqual(sp_out.indices, indices) self.assertAllEqual(sp_out.values, values) self.assertAllEqual(sp_out.dense_shape, shape) # Tuple fetch, use as tuple indices_out, values_out, shape_out = s.run(sp) self.assertAllEqual(indices_out, indices) self.assertAllEqual(values_out, values) self.assertAllEqual(shape_out, shape) # List fetch, use as tuple (indices_out, values_out, shape_out), = s.run([sp]) self.assertAllEqual(indices_out, indices) self.assertAllEqual(values_out, values) self.assertAllEqual(shape_out, shape) # List fetch, use as SparseTensorValue sp_out, = s.run([sp]) self.assertAllEqual(sp_out.indices, indices) self.assertAllEqual(sp_out.values, values) self.assertAllEqual(sp_out.dense_shape, shape) # Dict fetch (single value), use as tuple indices_out, values_out, shape_out = s.run({'sp': sp})['sp'] self.assertAllEqual(indices_out, indices) self.assertAllEqual(values_out, values) self.assertAllEqual(shape_out, shape) # Dict fetch (list value), use as tuple (indices_out, values_out, shape_out), = s.run({'sp': [sp]})['sp'] self.assertAllEqual(indices_out, indices) self.assertAllEqual(values_out, values) self.assertAllEqual(shape_out, shape) # Dict fetch, use as SparseTensorValue sp_out = s.run({'sp': sp})['sp'] self.assertAllEqual(sp_out.indices, indices) self.assertAllEqual(sp_out.values, values) self.assertAllEqual(sp_out.dense_shape, shape) # Nested list fetch use as tuple sp_out = s.run([[[sp]], sp]) indices_out, values_out, shape_out = sp_out[0][0][0] self.assertAllEqual(indices_out, indices) self.assertAllEqual(values_out, values) self.assertAllEqual(shape_out, shape) indices_out, values_out, shape_out = sp_out[1] self.assertAllEqual(indices_out, indices) self.assertAllEqual(values_out, values) self.assertAllEqual(shape_out, shape) # Nested list fetch, use as SparseTensorValue sp_out = s.run([[[sp]], sp]) self.assertAllEqual(sp_out[0][0][0].indices, indices) self.assertAllEqual(sp_out[0][0][0].values, values) self.assertAllEqual(sp_out[0][0][0].dense_shape, shape) self.assertAllEqual(sp_out[1].indices, indices) self.assertAllEqual(sp_out[1].values, values) self.assertAllEqual(sp_out[1].dense_shape, shape) def testFeedSparseTensor(self): with session.Session() as s: indices = np.array([[3, 2, 0], [4, 5, 1]]).astype(np.int64) values = np.array([1.0, 2.0]).astype(np.float32) shape = np.array([7, 9, 2]).astype(np.int64) sp = sparse_tensor.SparseTensor( array_ops.placeholder(dtype=np.int64, shape=(2, 3)), array_ops.placeholder(dtype=np.float32, shape=(2,)), array_ops.placeholder(dtype=np.int64, shape=(3,)),) sp_indices = array_ops.identity(sp.indices) sp_values = array_ops.identity(sp.values) sp_shape = array_ops.identity(sp.dense_shape) sp2 = sparse_tensor.SparseTensor(sp_indices, sp_values, sp_shape) # Feed with tuple indices_out, values_out, shape_out = s.run( [sp_indices, sp_values, sp_shape], {sp: (indices, values, shape)}) self.assertAllEqual(indices_out, indices) self.assertAllEqual(values_out, values) self.assertAllEqual(shape_out, shape) # Feed with tuple, fetch sp directly sp_out = s.run(sp, {sp: (indices, values, shape)}) self.assertAllEqual(sp_out.indices, indices) self.assertAllEqual(sp_out.values, values) self.assertAllEqual(sp_out.dense_shape, shape) # Feed with SparseTensorValue indices_out, values_out, shape_out = s.run( [sp_indices, sp_values, sp_shape], {sp: sparse_tensor.SparseTensorValue(indices, values, shape)}) self.assertAllEqual(indices_out, indices) self.assertAllEqual(values_out, values) self.assertAllEqual(shape_out, shape) # Feed with SparseTensorValue, fetch SparseTensorValue sp2_out = s.run( sp2, {sp: sparse_tensor.SparseTensorValue(indices, values, shape)}) self.assertAllEqual(sp2_out.indices, indices) self.assertAllEqual(sp2_out.values, values) self.assertAllEqual(sp2_out.dense_shape, shape) # Feed SparseTensorValue and fetch sp directly. sp_out = s.run( sp, {sp: sparse_tensor.SparseTensorValue(indices, values, shape)}) self.assertAllEqual(sp_out.indices, indices) self.assertAllEqual(sp_out.values, values) self.assertAllEqual(sp_out.dense_shape, shape) def testFeedSparsePlaceholder(self): with session.Session() as s: indices = np.array([[3, 2, 0], [4, 5, 1]]).astype(np.int64) values = np.array([1.0, 2.0]).astype(np.float32) shape = np.array([7, 9, 2]).astype(np.int64) sp = array_ops.sparse_placeholder(dtype=np.float32, name='placeholder1') sp_indices = array_ops.identity(sp.indices) sp_values = array_ops.identity(sp.values) sp_shape = array_ops.identity(sp.dense_shape) sp2 = sparse_tensor.SparseTensor(sp_indices, sp_values, sp_shape) # Feed with tuple indices_out, values_out, shape_out = s.run( [sp_indices, sp_values, sp_shape], {sp: (indices, values, shape)}) self.assertAllEqual(indices_out, indices) self.assertAllEqual(values_out, values) self.assertAllEqual(shape_out, shape) # Feed with SparseTensorValue indices_out, values_out, shape_out = s.run( [sp_indices, sp_values, sp_shape], {sp: sparse_tensor.SparseTensorValue(indices, values, shape)}) self.assertAllEqual(indices_out, indices) self.assertAllEqual(values_out, values) self.assertAllEqual(shape_out, shape) # Feed with SparseTensorValue, fetch SparseTensorValue sp2_out = s.run( sp2, {sp: sparse_tensor.SparseTensorValue(indices, values, shape)}) self.assertAllEqual(sp2_out.indices, indices) self.assertAllEqual(sp2_out.values, values) self.assertAllEqual(sp2_out.dense_shape, shape) def testFeedSparsePlaceholderPartialShape(self): with session.Session() as s: indices = np.array([[3, 2, 0], [4, 5, 1]]).astype(np.int64) values = np.array([1.0, 2.0]).astype(np.float32) shape = np.array([7, 9, 2]).astype(np.int64) sp = array_ops.sparse_placeholder( shape=[None, 9, 2], dtype=np.float32, name='placeholder1') sp_indices = array_ops.identity(sp.indices) sp_values = array_ops.identity(sp.values) sp_shape = array_ops.identity(sp.dense_shape) sp2 = sparse_tensor.SparseTensor(sp_indices, sp_values, sp_shape) # Feed with tuple indices_out, values_out, shape_out = s.run( [sp_indices, sp_values, sp_shape], {sp: (indices, values, shape)}) self.assertAllEqual(indices_out, indices) self.assertAllEqual(values_out, values) self.assertAllEqual(shape_out, shape) # Feed with SparseTensorValue indices_out, values_out, shape_out = s.run( [sp_indices, sp_values, sp_shape], {sp: sparse_tensor.SparseTensorValue(indices, values, shape)}) self.assertAllEqual(indices_out, indices) self.assertAllEqual(values_out, values) self.assertAllEqual(shape_out, shape) # Feed with SparseTensorValue, fetch SparseTensorValue sp2_out = s.run( sp2, {sp: sparse_tensor.SparseTensorValue(indices, values, shape)}) self.assertAllEqual(sp2_out.indices, indices) self.assertAllEqual(sp2_out.values, values) self.assertAllEqual(sp2_out.dense_shape, shape) def testFeedSparsePlaceholderConstantShape(self): with session.Session() as s: indices = np.array([[3, 2, 0], [4, 5, 1]]).astype(np.int64) values = np.array([1.0, 2.0]).astype(np.float32) shape = np.array([7, 9, 2]).astype(np.int64) sp = array_ops.sparse_placeholder(dtype=np.float32, shape=shape, name='placeholder1') self.assertAllEqual(sp.dense_shape.eval(session=s), shape) self.assertAllEqual(tensor_util.constant_value(sp.dense_shape), shape) sp_indices = array_ops.identity(sp.indices) sp_values = array_ops.identity(sp.values) sp_shape = array_ops.identity(sp.dense_shape) # Feed with tuple indices_out, values_out, shape_out = s.run( [sp_indices, sp_values, sp_shape], {sp: (indices, values)}) self.assertAllEqual(indices_out, indices) self.assertAllEqual(values_out, values) self.assertAllEqual(shape_out, shape) def testFetchIndexedSlices(self): with session.Session() as s: indices = np.array([[3, 2, 0], [4, 5, 1]]).astype(np.int64) values = np.array([1.0, 2.0]).astype(np.float32) dense_shape = np.array([7, 9, 2]).astype(np.int64) ind = ops.IndexedSlices( constant_op.constant(values), constant_op.constant(indices), constant_op.constant(dense_shape)) # Single fetch, use as tuple ind_out = s.run(ind) values_out, indices_out, dense_shape_out = ind_out self.assertAllEqual(values_out, values) self.assertAllEqual(indices_out, indices) self.assertAllEqual(dense_shape_out, dense_shape) # Single fetch, use as IndexedSlicesValue ind_out = s.run(ind) self.assertAllEqual(ind_out.values, values) self.assertAllEqual(ind_out.indices, indices) self.assertAllEqual(ind_out.dense_shape, dense_shape) # Tuple fetch, use as tuple values_out, indices_out, dense_shape_out = s.run(ind) self.assertAllEqual(values_out, values) self.assertAllEqual(indices_out, indices) self.assertAllEqual(dense_shape_out, dense_shape) # List fetch, use as tuple (values_out, indices_out, dense_shape_out), = s.run([ind]) self.assertAllEqual(values_out, values) self.assertAllEqual(indices_out, indices) self.assertAllEqual(dense_shape_out, dense_shape) # List fetch, use as IndexedSlicesValue ind_out, = s.run([ind]) self.assertAllEqual(ind_out.values, values) self.assertAllEqual(ind_out.indices, indices) self.assertAllEqual(ind_out.dense_shape, dense_shape) def testFeedIndexedSlices(self): with session.Session() as s: values = np.array([1.0, 2.0]).astype(np.float32) indices = np.array([[3, 2, 0], [4, 5, 1]]).astype(np.int64) dense_shape = np.array([7, 9, 2]).astype(np.int64) ind = ops.IndexedSlices( array_ops.placeholder(dtype=np.float32, shape=(2,)), array_ops.placeholder(dtype=np.int64, shape=(2, 3)), array_ops.placeholder(dtype=np.int64, shape=(3,)),) ind_values = array_ops.identity(ind.values) ind_indices = array_ops.identity(ind.indices) ind_dense_shape = array_ops.identity(ind.dense_shape) ind2 = ops.IndexedSlices(ind_values, ind_indices, ind_dense_shape) # Feed with tuple values_out, indices_out, dense_shape_out = s.run( [ind_values, ind_indices, ind_dense_shape], {ind: (values, indices, dense_shape)}) self.assertAllEqual(values_out, values) self.assertAllEqual(indices_out, indices) self.assertAllEqual(dense_shape_out, dense_shape) # Feed with IndexedSlicesValue values_out, indices_out, dense_shape_out = s.run( [ind_values, ind_indices, ind_dense_shape], {ind: ops.IndexedSlicesValue(values, indices, dense_shape)}) self.assertAllEqual(values_out, values) self.assertAllEqual(indices_out, indices) self.assertAllEqual(dense_shape_out, dense_shape) # Feed with IndexedSlicesValue, fetch IndexedSlicesValue ind2_out = s.run(ind2, {ind: ops.IndexedSlicesValue(values, indices, dense_shape)}) self.assertAllEqual(ind2_out.values, values) self.assertAllEqual(ind2_out.indices, indices) self.assertAllEqual(ind2_out.dense_shape, dense_shape) def testFetchIndexedSlicesWithoutDenseShape(self): with session.Session() as s: indices = np.array([[3, 2, 0], [4, 5, 1]]).astype(np.int64) values = np.array([1.0, 2.0]).astype(np.float32) dense_shape = None ind = ops.IndexedSlices( constant_op.constant(values), constant_op.constant(indices), None) # Single fetch, use as tuple ind_out = s.run(ind) values_out, indices_out, dense_shape_out = ind_out self.assertAllEqual(values_out, values) self.assertAllEqual(indices_out, indices) self.assertAllEqual(dense_shape_out, dense_shape) # Single fetch, use as IndexedSlicesValue ind_out = s.run(ind) self.assertAllEqual(ind_out.values, values) self.assertAllEqual(ind_out.indices, indices) self.assertAllEqual(ind_out.dense_shape, dense_shape) # Tuple fetch, use as tuple values_out, indices_out, dense_shape_out = s.run(ind) self.assertAllEqual(values_out, values) self.assertAllEqual(indices_out, indices) self.assertAllEqual(dense_shape_out, dense_shape) # List fetch, use as tuple (values_out, indices_out, dense_shape_out), = s.run([ind]) self.assertAllEqual(values_out, values) self.assertAllEqual(indices_out, indices) self.assertAllEqual(dense_shape_out, dense_shape) # List fetch, use as IndexedSlicesValue ind_out, = s.run([ind]) self.assertAllEqual(ind_out.values, values) self.assertAllEqual(ind_out.indices, indices) self.assertAllEqual(ind_out.dense_shape, dense_shape) def testFeedIndexedSlicesWithoutDenseShape(self): with session.Session() as s: values = np.array([1.0, 2.0]).astype(np.float32) indices = np.array([[3, 2, 0], [4, 5, 1]]).astype(np.int64) dense_shape = None ind = ops.IndexedSlices( array_ops.placeholder(dtype=np.float32, shape=(2,)), array_ops.placeholder(dtype=np.int64, shape=(2, 3)), None) ind_values = array_ops.identity(ind.values) ind_indices = array_ops.identity(ind.indices) ind2 = ops.IndexedSlices(ind_values, ind_indices) # Feed with tuple values_out, indices_out = s.run( [ind_values, ind_indices], {ind: (values, indices)}) self.assertAllEqual(values_out, values) self.assertAllEqual(indices_out, indices) # Feed with IndexedSlicesValue values_out, indices_out = s.run( [ind_values, ind_indices], {ind: ops.IndexedSlicesValue(values, indices, dense_shape)}) self.assertAllEqual(values_out, values) self.assertAllEqual(indices_out, indices) # Feed with IndexedSlicesValue, fetch IndexedSlicesValue ind2_out = s.run(ind2, {ind: ops.IndexedSlicesValue(values, indices, dense_shape)}) self.assertAllEqual(ind2_out.values, values) self.assertAllEqual(ind2_out.indices, indices) self.assertAllEqual(ind2_out.dense_shape, dense_shape) def testExtendWithStatelessOperations(self): with session.Session() as s: a = constant_op.constant(1.0, shape=[1, 2]) b = constant_op.constant(2.0, shape=[2, 3]) c = math_ops.matmul(a, b) c_val = s.run(c) self.assertAllEqual([[4.0, 4.0, 4.0]], c_val) d = constant_op.constant([1.0, 2.0, 3.0], shape=[3, 1]) e = math_ops.matmul(c, d) # Extend will happen here. e_val = s.run(e) self.assertAllEqual([[24.0]], e_val) def testExtendWithStatefulOperations(self): with session.Session() as s: a = constant_op.constant(1.0, shape=[1, 2]) b = constant_op.constant(2.0, shape=[2, 3]) c = math_ops.matmul(a, b) v = variables.Variable(c, name='testExtendWithStatefulOperations_v') v.initializer.run() v_val = v.eval() self.assertAllEqual([[4.0, 4.0, 4.0]], v_val) d = constant_op.constant(3.0, shape=[2, 3]) e = math_ops.matmul(a, d) assign_e_to_v = state_ops.assign(v, e) # Extend will happen here. e_val = e.eval() self.assertAllEqual([[6.0, 6.0, 6.0]], e_val) v_val = v.eval() self.assertAllEqual([[4.0, 4.0, 4.0]], v_val) s.run(assign_e_to_v) v_val = v.eval() self.assertAllEqual([[6.0, 6.0, 6.0]], v_val) def testExtendWithGroupBy(self): with session.Session() as s: a = constant_op.constant(1.0, shape=[1, 2]) p = variables.Variable(a, name='testExtendWithGroupBy_p') a_val = a.eval() # Force an Extend after this op. self.assertAllEqual([[1.0, 1.0]], a_val) b = constant_op.constant(2.0, shape=[1, 2]) q = variables.Variable(b, name='testExtendWithGroupBy_q') # Extend will happen here. init = control_flow_ops.group(p.initializer, q.initializer) s.run(init) p_val, q_val = s.run([p, q]) self.assertAllEqual([[1.0, 1.0]], p_val) self.assertAllEqual([[2.0, 2.0]], q_val) def testTensorGetMethod(self): with session.Session(): a = constant_op.constant(1.0, shape=[1, 2]) b = constant_op.constant(2.0, shape=[2, 3]) c = math_ops.matmul(a, b) c_val = c.eval() self.assertAllEqual([[4.0, 4.0, 4.0]], c_val) fed_c_val = c.eval(feed_dict={a.name: [[4.0, 4.0]]}) self.assertAllEqual([[16.0, 16.0, 16.0]], fed_c_val) def testOperationRunMethod(self): with session.Session(): a = constant_op.constant(1.0, shape=[1, 2]) b = constant_op.constant(2.0, shape=[1, 2], name='b') v = variables.Variable(a, a.dtype) assign_a_to_v = state_ops.assign(v, a) assign_a_to_v.eval() v_val = v.eval() self.assertAllEqual([[1.0, 1.0]], v_val) assign_b_to_v = state_ops.assign(v, b) assign_b_to_v.eval() v_val = v.eval() self.assertAllEqual([[2.0, 2.0]], v_val) assign_b_to_v.eval(feed_dict={'b:0': [[3.0, 3.0]]}) v_val = v.eval() self.assertAllEqual([[3.0, 3.0]], v_val) def testDefaultGraph(self): with session.Session() as s: self.assertEqual(ops.get_default_graph(), s.graph) a = constant_op.constant(1.0, shape=[1, 2]) b = constant_op.constant(2.0, shape=[2, 3]) self.assertEqual(ops.get_default_graph(), a.graph) self.assertEqual(ops.get_default_graph(), b.graph) c = math_ops.matmul(a, b) v = variables.Variable(c, name='testDefaultGraph_v') v.initializer.run() v_val = v.eval() self.assertAllEqual([[4.0, 4.0, 4.0]], v_val) d = constant_op.constant(3.0, shape=[2, 3]) e = math_ops.matmul(a, d) assign_e_to_v = state_ops.assign(v, e) e_val = e.eval() self.assertAllEqual([[6.0, 6.0, 6.0]], e_val) v_val = v.eval() self.assertAllEqual([[4.0, 4.0, 4.0]], v_val) s.run(assign_e_to_v) v_val = v.eval() self.assertAllEqual([[6.0, 6.0, 6.0]], v_val) self.assertEqual(ops.get_default_graph(), s.graph) def _testDefaultGraphInThread(self, constructed_event, continue_event, i): with session.Session() as s: self.assertEqual(ops.get_default_graph(), s.graph) a = constant_op.constant(1.0, shape=[1, 2]) b = constant_op.constant(2.0, shape=[2, 3]) c = math_ops.matmul(a, b) v = variables.Variable(c, name='var_%d' % i) # Block here until all threads have constructed their graph. constructed_event.set() continue_event.wait() assign_c_to_v = state_ops.assign(v, c) v.initializer.run() assign_c_to_v.eval() v_val = v.eval() self.assertAllEqual([[4.0, 4.0, 4.0]], v_val) d = constant_op.constant(3.0, shape=[2, 3]) e = math_ops.matmul(a, d) assign_e_to_v = state_ops.assign(v, e) e_val = e.eval() self.assertAllEqual([[6.0, 6.0, 6.0]], e_val) v_val = v.eval() self.assertAllEqual([[4.0, 4.0, 4.0]], v_val) s.run(assign_e_to_v) v_val = v.eval() self.assertAllEqual([[6.0, 6.0, 6.0]], v_val) self.assertEqual(ops.get_default_graph(), s.graph) def testDefaultGraphWithThreads(self): # Fork ten threads that use their thread-local default graph. threads = [] constructed_events = [threading.Event() for _ in range(10)] continue_event = threading.Event() for i, constructed_event in enumerate(constructed_events): t = self.checkedThread(target=self._testDefaultGraphInThread, args=(constructed_event, continue_event, i)) threads.append(t) for t in threads: t.start() for constructed_event in constructed_events: constructed_event.wait() continue_event.set() for t in threads: t.join() def testParallelRun(self): with session.Session() as sess: c = constant_op.constant(5.0) ev = threading.Event() def run_step(): ev.wait() val = c.eval(session=sess) self.assertEqual(val, 5.0) threads = [self.checkedThread(target=run_step) for _ in range(100)] for t in threads: t.start() ev.set() for t in threads: t.join() def testRunFeedDict(self): with session.Session() as s: x = array_ops.zeros([2]) y = s.run(2 * x, feed_dict={x: np.ones(2).astype(np.float32)}) self.assertAllEqual(y, 2 * np.ones(2)) y = s.run(2 * x, feed_dict={x.name: np.ones(2).astype(np.float32)}) self.assertAllEqual(y, 2 * np.ones(2)) y = s.run(2 * x, feed_dict={x: [1, 1]}) assert (y == 2 * np.ones(2)).all() # Test nested tuple keys z = (((array_ops.zeros([2]),),), array_ops.zeros([2]), (array_ops.zeros([2]),)) result = [z[0][0][0] * 2, z[1] * 2, z[2][0] * 2] values = (((np.array([1, 1]),),), np.array([2, 2]), (np.array([3, 3]),)) result_value = s.run(result, feed_dict={z: values}) self.assertAllEqual(result_value[0], 2 * np.ones(2)) self.assertAllEqual(result_value[1], 2 * np.array([2, 2])) self.assertAllEqual(result_value[2], 2 * np.array([3, 3])) def testGraphDef(self): with session.Session() as sess: self.assertProtoEquals( 'versions { producer: %d min_consumer: %d }' % ( versions.GRAPH_DEF_VERSION, versions.GRAPH_DEF_VERSION_MIN_CONSUMER), sess.graph_def) c = constant_op.constant(5.0, name='c') self.assertEquals(len(sess.graph_def.node), 1) d = constant_op.constant(6.0, name='d') self.assertEquals(len(sess.graph_def.node), 2) self.assertAllEqual(c.eval(), 5.0) self.assertAllEqual(d.eval(), 6.0) e = constant_op.constant(7.0, name='e') self.assertEquals(len(sess.graph_def.node), 3) self.assertAllEqual(e.eval(), 7.0) def testUseAfterClose(self): with session.Session() as sess: c = constant_op.constant(5.0) self.assertAllEqual(sess.run(c), 5.0) with self.assertRaisesWithPredicateMatch( RuntimeError, lambda e: 'Attempted to use a closed Session.' in str(e)): sess.run(c) def testUseAfterCloseConcurrent(self): with session.Session() as sess: c = constant_op.constant(5.0) self.assertAllEqual(sess.run(c), 5.0) def update_thread(): with self.assertRaisesWithPredicateMatch( RuntimeError, lambda e: 'Attempted to use a closed Session.' in str(e)): while True: sess.run(c) t = threading.Thread(target=update_thread) t.start() time.sleep(0.1) sess.close() t.join() def testUseEmptyGraph(self): with session.Session() as sess: with self.assertRaisesRegexp(RuntimeError, 'The Session graph is empty.'): sess.run([]) with self.assertRaisesRegexp(RuntimeError, 'The Session graph is empty.'): sess.run(()) with self.assertRaisesRegexp(RuntimeError, 'The Session graph is empty.'): sess.run({}) def testNotEntered(self): # pylint: disable=protected-access self.assertEqual(ops._default_session_stack.get_default(), None) # pylint: enable=protected-access with ops.device('/cpu:0'): sess = session.Session() c_1 = constant_op.constant(5.0) with sess.graph.as_default(): c_2 = constant_op.constant(5.0) self.assertEqual(c_1.graph, c_2.graph) self.assertEqual(sess.run(c_2), 5.0) with self.assertRaisesWithPredicateMatch( ValueError, lambda e: 'No default session is registered.' in str(e)): c_2.eval() def testInteractive(self): with ops.device('/cpu:0'): sess = session.InteractiveSession() a = constant_op.constant(1.0, shape=[1, 2]) b = constant_op.constant(2.0, shape=[2, 3]) c = math_ops.matmul(a, b) self.assertAllEqual([[4.0, 4.0, 4.0]], c.eval()) d = constant_op.constant([1.0, 2.0, 3.0], shape=[3, 1]) e = math_ops.matmul(c, d) self.assertAllEqual([[24.0]], e.eval()) sess.close() def testInteractivePlacePrunedGraph(self): sess = session.InteractiveSession() # Build a graph that has a bad op in it (no kernel). # # This test currently does not link in any GPU kernels, # which is why placing this is invalid. If at some point # GPU kernels are added to this test, some other different # op / device combo should be chosen. with ops.device('/gpu:0'): a = constant_op.constant(1.0, shape=[1, 2]) b = constant_op.constant(1.0, shape=[1, 2]) # Only run the valid op, this should work. b.eval() with self.assertRaises(errors.InvalidArgumentError): a.eval() sess.close() def testDefaultSessionPlacePrunedGraph(self): sess = session.Session() # Build a graph that has a bad op in it (no kernel). # # This test currently does not link in any GPU kernels, # which is why placing this is invalid. If at some point # GPU kernels are added to this test, some other different # op / device combo should be chosen. with ops.device('/gpu:0'): _ = constant_op.constant(1.0, shape=[1, 2]) b = constant_op.constant(1.0, shape=[1, 2]) with self.assertRaises(errors.InvalidArgumentError): # Even though we don't run the bad op, we place the entire # graph, which should fail with a non-interactive session. sess.run(b) sess.close() def testSharedGraph(self): with ops.Graph().as_default() as g, ops.device('/cpu:0'): a = constant_op.constant(1.0, shape=[1, 2]) b = constant_op.constant(2.0, shape=[2, 3]) c = math_ops.matmul(a, b) with session.Session(graph=g) as sess1: with session.Session(graph=g) as sess2: self.assertAllEqual(sess1.run(c), sess2.run(c)) def testDuplicatedInputs(self): with session.Session() as sess: a = constant_op.constant(1.0, shape=[1, 2]) b = constant_op.constant(2.0, shape=[1, 3]) a_val, b_val, a2_val = sess.run([a, b, a]) self.assertAllEqual(a_val, [[1.0, 1.0]]) self.assertAllEqual(b_val, [[2.0, 2.0, 2.0]]) self.assertAllEqual(a2_val, [[1.0, 1.0]]) def testFeedAndFetch(self): with session.Session() as sess: for dtype in [dtypes.float16, dtypes.float32, dtypes.float64, dtypes.int32, dtypes.uint8, dtypes.int16, dtypes.int8, dtypes.int64, dtypes.bool, dtypes.complex64, dtypes.complex128]: for shape in [(32, 4, 128), (37,), (2, 0, 6), (0, 0, 0)]: np_dtype = dtype.as_numpy_dtype feed_t = array_ops.placeholder(dtype=dtype, shape=shape) out_t = array_ops.identity(feed_t) np_array = np.random.randint(-10, 10, shape) if dtype == dtypes.bool: np_array = np_array > 0 elif dtype == dtypes.complex64: np_array = np.sqrt(np_array.astype(np_dtype)) elif dtype == dtypes.complex64: np_array = np.sqrt(np_array.astype(np_dtype)) else: np_array = np_array.astype(np_dtype) self.assertAllEqual(np_array, sess.run(out_t, feed_dict={feed_t: np_array})) # Check that we can also get the feed back. self.assertAllEqual(np_array, sess.run(feed_t, feed_dict={feed_t: np_array})) # Also check that we can get both back. out_v, feed_v = sess.run([out_t, feed_t], feed_dict={feed_t: np_array}) self.assertAllEqual(np_array, out_v) self.assertAllEqual(np_array, feed_v) feed_fetch_runner = sess.make_callable([out_t, feed_t], [feed_t]) out_v, feed_v = feed_fetch_runner(np_array) self.assertAllEqual(np_array, out_v) self.assertAllEqual(np_array, feed_v) def testFeedError(self): with session.Session() as sess: feed_t = array_ops.placeholder(dtype=dtypes.float32) out_t = array_ops.identity(feed_t) feed_val = constant_op.constant(5.0) with self.assertRaisesRegexp(TypeError, 'cannot be a tf.Tensor object'): sess.run(out_t, feed_dict={feed_t: feed_val}) with self.assertRaisesRegexp(TypeError, 'cannot be a tf.Tensor object'): out_t.eval(feed_dict={feed_t: feed_val}) with self.assertRaisesRegexp(TypeError, 'cannot be a tf.Tensor object'): out_t.op.run(feed_dict={feed_t: feed_val}) def testFeedPrecisionLossError(self): with session.Session() as sess: largest_int64 = np.iinfo(np.int64).max feed_int_implicit_int32 = constant_op.constant(1) feed_int_explicit_int32 = constant_op.constant(1, dtype=dtypes.int32) out_t = constant_op.constant(1.0) with self.assertRaisesRegexp(TypeError, 'is not compatible with Tensor type'): sess.run(out_t, feed_dict={feed_int_implicit_int32: largest_int64}) with self.assertRaisesRegexp(TypeError, 'is not compatible with Tensor type'): sess.run(out_t, feed_dict={feed_int_explicit_int32: largest_int64}) def testStringFetch(self): with session.Session(): for shape in [(32, 4, 128), (37,), (2, 0, 6), (0, 0, 0)]: size = 1 for s in shape: size *= s c_list = np.array([compat.as_bytes(str(i)) for i in xrange(size)], dtype=np.object).reshape(shape) if size > 0 else [] c = constant_op.constant(c_list) self.assertAllEqual(c.eval(), c_list) def testStringFeed(self): with session.Session() as sess: for shape in [(32, 4, 128), (37,), (2, 0, 6), (0, 0, 0)]: size = 1 for s in shape: size *= s c_list = np.array([compat.as_bytes(str(i)) for i in xrange(size)], dtype=np.object).reshape(shape) feed_t = array_ops.placeholder(dtype=dtypes.string, shape=shape) c = array_ops.identity(feed_t) self.assertAllEqual(sess.run(c, feed_dict={feed_t: c_list}), c_list) self.assertAllEqual(sess.run(feed_t, feed_dict={feed_t: c_list}), c_list) c_v, feed_v = sess.run([c, feed_t], feed_dict={feed_t: c_list}) self.assertAllEqual(c_v, c_list) self.assertAllEqual(feed_v, c_list) def testStringFeedWithNullCharacters(self): with session.Session(): c_list = [b'\n\x01\x00', b'\n\x00\x01'] feed_t = array_ops.placeholder(dtype=dtypes.string, shape=[2]) c = array_ops.identity(feed_t) out = c.eval(feed_dict={feed_t: c_list}) self.assertEqual(c_list[0], out[0]) self.assertEqual(c_list[1], out[1]) def testStringFeedWithUnicode(self): with session.Session(): c_list = [u'\n\x01\x00', u'\n\x00\x01', u'\u26a3 unicode', u'\U0001f60e deal with it'] feed_t = array_ops.placeholder(dtype=dtypes.string, shape=[len(c_list)]) c = array_ops.identity(feed_t) out = c.eval(feed_dict={feed_t: c_list}) for i in range(len(c_list)): self.assertEqual(c_list[i], out[i].decode('utf-8')) out = c.eval(feed_dict={feed_t: np.array(c_list, dtype=np.object)}) for i in range(len(c_list)): self.assertEqual(c_list[i], out[i].decode('utf-8')) def testInvalidTargetFails(self): with self.assertRaisesRegexp( errors.NotFoundError, 'No session factory registered for the given session options'): session.Session('INVALID_TARGET') def testFetchByNameDifferentStringTypes(self): with session.Session() as sess: c = constant_op.constant(42.0, name='c') d = constant_op.constant(43.0, name=u'd') e = constant_op.constant(44.0, name=b'e') f = constant_op.constant(45.0, name=r'f') self.assertTrue(isinstance(c.name, six.text_type)) self.assertTrue(isinstance(d.name, six.text_type)) self.assertTrue(isinstance(e.name, six.text_type)) self.assertTrue(isinstance(f.name, six.text_type)) self.assertEqual(42.0, sess.run('c:0')) self.assertEqual(42.0, sess.run(u'c:0')) self.assertEqual(42.0, sess.run(b'c:0')) self.assertEqual(42.0, sess.run(r'c:0')) self.assertEqual(43.0, sess.run('d:0')) self.assertEqual(43.0, sess.run(u'd:0')) self.assertEqual(43.0, sess.run(b'd:0')) self.assertEqual(43.0, sess.run(r'd:0')) self.assertEqual(44.0, sess.run('e:0')) self.assertEqual(44.0, sess.run(u'e:0')) self.assertEqual(44.0, sess.run(b'e:0')) self.assertEqual(44.0, sess.run(r'e:0')) self.assertEqual(45.0, sess.run('f:0')) self.assertEqual(45.0, sess.run(u'f:0')) self.assertEqual(45.0, sess.run(b'f:0')) self.assertEqual(45.0, sess.run(r'f:0')) def testIncorrectGraph(self): with ops.Graph().as_default() as g_1: c_1 = constant_op.constant(1.0, name='c') with ops.Graph().as_default() as g_2: c_2 = constant_op.constant(2.0, name='c') self.assertEqual('c', c_1.op.name) self.assertEqual('c', c_2.op.name) with session.Session(graph=g_1) as sess_1: self.assertEqual(1.0, sess_1.run(c_1)) with self.assertRaises(ValueError): sess_1.run(c_2) with self.assertRaises(ValueError): sess_1.run(c_2.op) with session.Session(graph=g_2) as sess_2: with self.assertRaises(ValueError): sess_2.run(c_1) with self.assertRaises(ValueError): sess_2.run(c_1.op) self.assertEqual(2.0, sess_2.run(c_2)) def runTestPartialRun(self, sess): a = array_ops.placeholder(dtypes.float32, shape=[]) b = array_ops.placeholder(dtypes.float32, shape=[]) c = array_ops.placeholder(dtypes.float32, shape=[]) r1 = math_ops.add(a, b) r2 = math_ops.multiply(r1, c) h = sess.partial_run_setup([r1, r2], [a, b, c]) res = sess.partial_run(h, r1, feed_dict={a: 1, b: 2}) self.assertEqual(3, res) temp = res * 17 res = sess.partial_run(h, r2, feed_dict={c: temp}) self.assertEqual(153, res) # Call again on the same graph. h2 = sess.partial_run_setup([r1, r2], [a, b, c]) res = sess.partial_run(h2, r1, feed_dict={a: 1, b: 2}) self.assertEqual(3, res) temp = res * 18 res = sess.partial_run(h2, r2, feed_dict={c: temp}) self.assertEqual(162, res) def runTestPartialRunIncomplete(self, sess): a = array_ops.placeholder(dtypes.float32, shape=[]) b = array_ops.placeholder(dtypes.float32, shape=[]) c = array_ops.placeholder(dtypes.float32, shape=[]) r1 = math_ops.add(a, b) r2 = math_ops.multiply(r1, c) h = sess.partial_run_setup([r1, r2], [a, b, c]) res = sess.partial_run(h, r1, feed_dict={a: 1, b: 2}) self.assertEqual(3, res) def runTestConcurrentPartialRun(self, sess): a = array_ops.placeholder(dtypes.float32, shape=[]) b = array_ops.placeholder(dtypes.float32, shape=[]) c = array_ops.placeholder(dtypes.float32, shape=[]) r1 = math_ops.add(a, b) r2 = math_ops.multiply(r1, c) h1 = sess.partial_run_setup([r1], [a, b, c]) h2 = sess.partial_run_setup([r1, r2], [a, b, c]) res = sess.partial_run(h1, r1, feed_dict={a: 1, b: 2}) self.assertEqual(3, res) temp = res * 19 res = sess.partial_run(h2, r1, feed_dict={a: temp, b: 9}) self.assertEqual(66, res) res = sess.partial_run(h2, r2, feed_dict={c: 7}) self.assertEqual(462, res) def runTestManyPartialRun(self, sess): steps = 200 inputs = [] outputs = [] a = constant_op.constant(2.0, dtypes.float32) for i in xrange(steps): inputs.append(array_ops.placeholder(dtypes.float32, shape=[])) a = math_ops.multiply(a, inputs[i]) outputs.append(a) h = sess.partial_run_setup(outputs, inputs) for i in xrange(steps): res = sess.partial_run(h, outputs[i], feed_dict={inputs[i]: 1.0}) self.assertEqual(2.0, res) feed_dict = {} for i in xrange(steps): feed_dict[inputs[i]] = 1.0 res = sess.run(outputs, feed_dict) self.assertEqual(steps, len(res)) self.assertEqual(2.0, res[-1]) def runTestRunAndPartialRun(self, sess): a = constant_op.constant(2.0, dtypes.float32) b = a * 2 c = b * 3 r1 = sess.run([b, c]) h = sess.partial_run_setup([b, c], []) r2 = sess.partial_run(h, [b, c]) self.assertEqual(r1, r2) def runTestPartialRunMissingPlaceholderFeedException(self, sess): x = array_ops.placeholder(dtypes.float32, shape=()) fetches = [x * 2, x * 3] handle = sess.partial_run_setup(fetches=fetches, feeds=[]) with self.assertRaisesRegexp(errors.InvalidArgumentError, 'You must feed a value for placeholder'): sess.partial_run(handle, fetches[0]) def testPartialRunDirect(self): self.runTestPartialRun(session.Session()) def testPartialRunIncompleteDirect(self): self.runTestPartialRunIncomplete(session.Session()) def testConcurrentPartialRunDirect(self): self.runTestConcurrentPartialRun(session.Session()) def testManyPartialRunDirect(self): self.runTestManyPartialRun(session.Session()) def testRunAndPartialRunDirect(self): self.runTestRunAndPartialRun(session.Session()) def testPartialRunMissingPlaceholderFeedExceptionDirect(self): self.runTestPartialRunMissingPlaceholderFeedException(session.Session()) def testPartialRunDist(self): server = server_lib.Server.create_local_server() self.runTestPartialRun(session.Session(server.target)) def testPartialRunIncompleteDist(self): server = server_lib.Server.create_local_server() self.runTestPartialRunIncomplete(session.Session(server.target)) def testConcurrentPartialRunDist(self): server = server_lib.Server.create_local_server() self.runTestConcurrentPartialRun(session.Session(server.target)) def testManyPartialRunDist(self): server = server_lib.Server.create_local_server() self.runTestManyPartialRun(session.Session(server.target)) def testRunAndPartialRunDist(self): server = server_lib.Server.create_local_server() self.runTestRunAndPartialRun(session.Session(server.target)) def testPartialRunMissingPlaceholderFeedExceptionDist(self): server = server_lib.Server.create_local_server() self.runTestPartialRunMissingPlaceholderFeedException( session.Session(server.target)) def testFeedDictKeyException(self): with session.Session() as sess: a = constant_op.constant(1.0, dtypes.float32, name='a') with self.assertRaisesRegexp(TypeError, 'Cannot interpret feed_dict'): sess.run(a, feed_dict={'a': [2.0]}) def testPerStepTrace(self): run_options = config_pb2.RunOptions( trace_level=config_pb2.RunOptions.FULL_TRACE) run_metadata = config_pb2.RunMetadata() with ops.device('/cpu:0'): with session.Session() as sess: sess.run(constant_op.constant(1.0)) self.assertTrue(not run_metadata.HasField('step_stats')) sess.run(constant_op.constant(1.0), run_metadata=run_metadata) self.assertTrue(not run_metadata.HasField('step_stats')) sess.run(constant_op.constant(1.0), options=run_options, run_metadata=run_metadata) self.assertTrue(run_metadata.HasField('step_stats')) self.assertEquals(len(run_metadata.step_stats.dev_stats), 1) def testRunOptionsRunMetadata(self): run_options = config_pb2.RunOptions( trace_level=config_pb2.RunOptions.FULL_TRACE) run_metadata = config_pb2.RunMetadata() with ops.device('/cpu:0'): with session.Session() as sess: # all combinations are valid sess.run(constant_op.constant(1.0), options=None, run_metadata=None) sess.run(constant_op.constant(1.0), options=None, run_metadata=run_metadata) self.assertTrue(not run_metadata.HasField('step_stats')) sess.run(constant_op.constant(1.0), options=run_options, run_metadata=None) self.assertTrue(not run_metadata.HasField('step_stats')) sess.run(constant_op.constant(1.0), options=run_options, run_metadata=run_metadata) self.assertTrue(run_metadata.HasField('step_stats')) self.assertEquals(len(run_metadata.step_stats.dev_stats), 1) def testFeedShapeCompatibility(self): with session.Session() as sess: some_tensor = constant_op.constant([2.0, 2.0, 2.0, 2.0]) new_shape = constant_op.constant([2, 2]) reshaped_tensor = array_ops.reshape(some_tensor, new_shape) with self.assertRaisesRegexp(ValueError, 'Cannot feed value of shape'): sess.run(reshaped_tensor, feed_dict={some_tensor: [1.0, 2.0, 3.0]}) with self.assertRaisesRegexp(ValueError, 'may not be fed'): sess.run(reshaped_tensor, feed_dict={new_shape: [3, 7]}) def testInferShapesFalse(self): with ops.Graph().as_default(), ops.device('/cpu:0'): a = constant_op.constant([[1, 2]]) sess = session.Session() self.assertFalse('_output_shapes' in sess.graph_def.node[0].attr) # Avoid lint error regarding 'unused' var a. self.assertTrue(a == a) def testInferShapesTrue(self): config = config_pb2.ConfigProto( graph_options=config_pb2.GraphOptions(infer_shapes=True)) with ops.Graph().as_default(), ops.device('/cpu:0'): a = constant_op.constant([[1, 2]]) sess = session.Session(config=config) self.assertTrue('_output_shapes' in sess.graph_def.node[0].attr) # Avoid lint error regarding 'unused' var a. self.assertTrue(a == a) def testBuildCostModel(self): run_options = config_pb2.RunOptions() config = config_pb2.ConfigProto( allow_soft_placement=True, graph_options=config_pb2.GraphOptions(build_cost_model=100)) with session.Session(config=config) as sess: with ops.device('/gpu:0'): a = array_ops.placeholder(dtypes.float32, shape=[]) b = math_ops.add(a, a) c = array_ops.identity(b) d = math_ops.multiply(c, c) for step in xrange(120): run_metadata = config_pb2.RunMetadata() sess.run(d, feed_dict={a: 1.0}, options=run_options, run_metadata=run_metadata) if step == 99: self.assertTrue(run_metadata.HasField('cost_graph')) else: self.assertFalse(run_metadata.HasField('cost_graph')) def testNonInteractiveSessionNesting(self): sess1 = session.Session() sess1_controller = sess1.as_default() sess1_controller.__enter__() sess2 = session.Session() sess2_controller = sess2.as_default() sess2_controller.__enter__() with self.assertRaisesRegexp(AssertionError, 'Nesting violated'): sess1_controller.__exit__(None, None, None) ops._default_session_stack.reset() def testInteractiveSessionNesting(self): sess1 = session.InteractiveSession() sess2 = session.InteractiveSession() del sess1 del sess2 def testAsDefault(self): c = constant_op.constant(37) sess = session.Session() with sess.as_default(): self.assertEqual(37, c.eval()) # Ensure that the session remains valid even when it is not captured. with session.Session().as_default(): self.assertEqual(37, c.eval()) def testReentry(self): sess = session.Session() with self.assertRaisesRegexp(RuntimeError, 'not re-entrant'): with sess: with sess: pass def testInvalidArgument(self): with self.assertRaisesRegexp(TypeError, 'target must be a string'): session.Session(37) with self.assertRaisesRegexp(TypeError, 'config must be a tf.ConfigProto'): session.Session(config=37) with self.assertRaisesRegexp(TypeError, 'graph must be a tf.Graph'): session.Session(graph=37) def testTimeoutWithShortOperations(self): num_epochs = 5 q = data_flow_ops.FIFOQueue( capacity=50, dtypes=[dtypes.int32], shapes=[()]) enqueue_op = q.enqueue_many(constant_op.constant([1, 2])) # Use a 10-second timeout, which should be longer than any # non-blocking enqueue_many op. config = config_pb2.ConfigProto(operation_timeout_in_ms=10000) with session.Session(config=config) as sess: for _ in range(num_epochs): sess.run(enqueue_op) self.assertEqual(sess.run(q.size()), num_epochs * 2) def testRegisterFetchAndFeedConversionFunctions(self): class SquaredTensor(object): def __init__(self, tensor): self.sq = math_ops.square(tensor) fetch_fn = lambda squared_tensor: ([squared_tensor.sq], lambda val: val[0]) feed_fn1 = lambda feed, feed_val: [(feed.sq, feed_val)] feed_fn2 = lambda feed: [feed.sq] session.register_session_run_conversion_functions(SquaredTensor, fetch_fn, feed_fn1, feed_fn2) with self.assertRaises(ValueError): session.register_session_run_conversion_functions(SquaredTensor, fetch_fn, feed_fn1, feed_fn2) with self.test_session() as sess: np1 = np.array([1.0, 1.5, 2.0, 2.5]) np2 = np.array([3.0, 3.5, 4.0, 4.5]) squared_tensor = SquaredTensor(np2) squared_eval = sess.run(squared_tensor) self.assertAllClose(np2 * np2, squared_eval) squared_eval = sess.run(squared_tensor, feed_dict={ squared_tensor : np1 * np1}) self.assertAllClose(np1 * np1, squared_eval) partial_run = sess.partial_run_setup([squared_tensor], []) squared_eval = sess.partial_run(partial_run, squared_tensor) self.assertAllClose(np2 * np2, squared_eval) if __name__ == '__main__': googletest.main()
{ "content_hash": "df1f4e83d8b2f8e6fbecff1c82f8f666", "timestamp": "", "source": "github", "line_count": 1647, "max_line_length": 80, "avg_line_length": 40.335761991499695, "alnum_prop": 0.6224015173182003, "repo_name": "SnakeJenny/TensorFlow", "id": "99402ff2edefee79ea7694891e6adff43872bad6", "size": "67123", "binary": false, "copies": "4", "ref": "refs/heads/master", "path": "tensorflow/python/client/session_test.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "C", "bytes": "136455" }, { "name": "C++", "bytes": "5563037" }, { "name": "CSS", "bytes": "107" }, { "name": "HTML", "bytes": "638814" }, { "name": "Java", "bytes": "44388" }, { "name": "JavaScript", "bytes": "5534" }, { "name": "Objective-C", "bytes": "1288" }, { "name": "Protocol Buffer", "bytes": "45325" }, { "name": "Python", "bytes": "2683634" }, { "name": "Shell", "bytes": "6026" }, { "name": "TypeScript", "bytes": "238945" } ], "symlink_target": "" }
"""Storj API module.""" from binascii import b2a_hex def ecdsa_to_hex(ecdsa_key): """ Return hexadecimal string representation of the ECDSA key. Args: ecdsa_key (bytes): ECDSA key. Raises: TypeError: if the ECDSA key is not an array of bytes. Returns: str: hexadecimal string representation of the ECDSA key. """ return '04%s' % b2a_hex(ecdsa_key).decode('ascii')
{ "content_hash": "90bba0f7200c8bad7df737c0ea370935", "timestamp": "", "source": "github", "line_count": 19, "max_line_length": 64, "avg_line_length": 22.210526315789473, "alnum_prop": 0.6374407582938388, "repo_name": "Miskerest/storj-python-sdk", "id": "104489d1d461f9f4a11d1710fc1ed8c2f0535522", "size": "446", "binary": false, "copies": "4", "ref": "refs/heads/master", "path": "storj/api.py", "mode": "33188", "license": "mit", "language": [ { "name": "Makefile", "bytes": "2554" }, { "name": "Python", "bytes": "105012" } ], "symlink_target": "" }
''' Copyright (C) 2022, WAFW00F Developers. See the LICENSE file for copying permission. ''' NAME = 'Shadow Daemon (Zecure)' def is_waf(self): schemes = [ self.matchContent(r"<h\d{1}>\d{3}.forbidden<.h\d{1}>"), self.matchContent(r"request forbidden by administrative rules") ] if all(i for i in schemes): return True return False
{ "content_hash": "3227a31edb8cabc971c55e37febc7c27", "timestamp": "", "source": "github", "line_count": 16, "max_line_length": 71, "avg_line_length": 23.25, "alnum_prop": 0.6370967741935484, "repo_name": "EnableSecurity/wafw00f", "id": "23e24ad43825f070741e6193923f4d458950fcf5", "size": "394", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "wafw00f/plugins/shadowd.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "Dockerfile", "bytes": "97" }, { "name": "Makefile", "bytes": "339" }, { "name": "Python", "bytes": "109477" } ], "symlink_target": "" }
from __future__ import unicode_literals import unittest from django.conf.urls import patterns, url from django.core.urlresolvers import reverse from django.db import connection from django.forms import EmailField, IntegerField from django.http import HttpResponse from django.template.loader import render_to_string from django.test import SimpleTestCase, TestCase, skipIfDBFeature, skipUnlessDBFeature from django.test.html import HTMLParseError, parse_html from django.test.utils import (CaptureQueriesContext, IgnoreAllDeprecationWarningsMixin, override_settings) from django.utils import six from .models import Person class SkippingTestCase(TestCase): def test_skip_unless_db_feature(self): "A test that might be skipped is actually called." # Total hack, but it works, just want an attribute that's always true. @skipUnlessDBFeature("__class__") def test_func(): raise ValueError self.assertRaises(ValueError, test_func) class SkippingClassTestCase(TestCase): def test_skip_class_unless_db_feature(self): @skipUnlessDBFeature("__class__") class NotSkippedTests(unittest.TestCase): def test_dummy(self): return @skipIfDBFeature("__class__") class SkippedTests(unittest.TestCase): def test_will_be_skipped(self): self.fail("We should never arrive here.") test_suite = unittest.TestSuite() test_suite.addTest(NotSkippedTests('test_dummy')) try: test_suite.addTest(SkippedTests('test_will_be_skipped')) except unittest.SkipTest: self.fail("SkipTest should not be raised at this stage") result = unittest.TextTestRunner(stream=six.StringIO()).run(test_suite) self.assertEqual(result.testsRun, 2) self.assertEqual(len(result.skipped), 1) class AssertNumQueriesTests(TestCase): urls = 'test_utils.urls' def test_assert_num_queries(self): def test_func(): raise ValueError self.assertRaises(ValueError, self.assertNumQueries, 2, test_func) def test_assert_num_queries_with_client(self): person = Person.objects.create(name='test') self.assertNumQueries( 1, self.client.get, "/test_utils/get_person/%s/" % person.pk ) self.assertNumQueries( 1, self.client.get, "/test_utils/get_person/%s/" % person.pk ) def test_func(): self.client.get("/test_utils/get_person/%s/" % person.pk) self.client.get("/test_utils/get_person/%s/" % person.pk) self.assertNumQueries(2, test_func) class AssertQuerysetEqualTests(TestCase): def setUp(self): self.p1 = Person.objects.create(name='p1') self.p2 = Person.objects.create(name='p2') def test_ordered(self): self.assertQuerysetEqual( Person.objects.all().order_by('name'), [repr(self.p1), repr(self.p2)] ) def test_unordered(self): self.assertQuerysetEqual( Person.objects.all().order_by('name'), [repr(self.p2), repr(self.p1)], ordered=False ) def test_transform(self): self.assertQuerysetEqual( Person.objects.all().order_by('name'), [self.p1.pk, self.p2.pk], transform=lambda x: x.pk ) def test_undefined_order(self): # Using an unordered queryset with more than one ordered value # is an error. with self.assertRaises(ValueError): self.assertQuerysetEqual( Person.objects.all(), [repr(self.p1), repr(self.p2)] ) # No error for one value. self.assertQuerysetEqual( Person.objects.filter(name='p1'), [repr(self.p1)] ) class CaptureQueriesContextManagerTests(TestCase): urls = 'test_utils.urls' def setUp(self): self.person_pk = six.text_type(Person.objects.create(name='test').pk) def test_simple(self): with CaptureQueriesContext(connection) as captured_queries: Person.objects.get(pk=self.person_pk) self.assertEqual(len(captured_queries), 1) self.assertIn(self.person_pk, captured_queries[0]['sql']) with CaptureQueriesContext(connection) as captured_queries: pass self.assertEqual(0, len(captured_queries)) def test_within(self): with CaptureQueriesContext(connection) as captured_queries: Person.objects.get(pk=self.person_pk) self.assertEqual(len(captured_queries), 1) self.assertIn(self.person_pk, captured_queries[0]['sql']) def test_nested(self): with CaptureQueriesContext(connection) as captured_queries: Person.objects.count() with CaptureQueriesContext(connection) as nested_captured_queries: Person.objects.count() self.assertEqual(1, len(nested_captured_queries)) self.assertEqual(2, len(captured_queries)) def test_failure(self): with self.assertRaises(TypeError): with CaptureQueriesContext(connection): raise TypeError def test_with_client(self): with CaptureQueriesContext(connection) as captured_queries: self.client.get("/test_utils/get_person/%s/" % self.person_pk) self.assertEqual(len(captured_queries), 1) self.assertIn(self.person_pk, captured_queries[0]['sql']) with CaptureQueriesContext(connection) as captured_queries: self.client.get("/test_utils/get_person/%s/" % self.person_pk) self.assertEqual(len(captured_queries), 1) self.assertIn(self.person_pk, captured_queries[0]['sql']) with CaptureQueriesContext(connection) as captured_queries: self.client.get("/test_utils/get_person/%s/" % self.person_pk) self.client.get("/test_utils/get_person/%s/" % self.person_pk) self.assertEqual(len(captured_queries), 2) self.assertIn(self.person_pk, captured_queries[0]['sql']) self.assertIn(self.person_pk, captured_queries[1]['sql']) class AssertNumQueriesContextManagerTests(TestCase): urls = 'test_utils.urls' def test_simple(self): with self.assertNumQueries(0): pass with self.assertNumQueries(1): Person.objects.count() with self.assertNumQueries(2): Person.objects.count() Person.objects.count() def test_failure(self): with self.assertRaises(AssertionError) as exc_info: with self.assertNumQueries(2): Person.objects.count() self.assertIn("1 queries executed, 2 expected", str(exc_info.exception)) self.assertIn("Captured queries were", str(exc_info.exception)) with self.assertRaises(TypeError): with self.assertNumQueries(4000): raise TypeError def test_with_client(self): person = Person.objects.create(name="test") with self.assertNumQueries(1): self.client.get("/test_utils/get_person/%s/" % person.pk) with self.assertNumQueries(1): self.client.get("/test_utils/get_person/%s/" % person.pk) with self.assertNumQueries(2): self.client.get("/test_utils/get_person/%s/" % person.pk) self.client.get("/test_utils/get_person/%s/" % person.pk) class AssertTemplateUsedContextManagerTests(TestCase): urls = 'test_utils.urls' def test_usage(self): with self.assertTemplateUsed('template_used/base.html'): render_to_string('template_used/base.html') with self.assertTemplateUsed(template_name='template_used/base.html'): render_to_string('template_used/base.html') with self.assertTemplateUsed('template_used/base.html'): render_to_string('template_used/include.html') with self.assertTemplateUsed('template_used/base.html'): render_to_string('template_used/extends.html') with self.assertTemplateUsed('template_used/base.html'): render_to_string('template_used/base.html') render_to_string('template_used/base.html') def test_nested_usage(self): with self.assertTemplateUsed('template_used/base.html'): with self.assertTemplateUsed('template_used/include.html'): render_to_string('template_used/include.html') with self.assertTemplateUsed('template_used/extends.html'): with self.assertTemplateUsed('template_used/base.html'): render_to_string('template_used/extends.html') with self.assertTemplateUsed('template_used/base.html'): with self.assertTemplateUsed('template_used/alternative.html'): render_to_string('template_used/alternative.html') render_to_string('template_used/base.html') with self.assertTemplateUsed('template_used/base.html'): render_to_string('template_used/extends.html') with self.assertTemplateNotUsed('template_used/base.html'): render_to_string('template_used/alternative.html') render_to_string('template_used/base.html') def test_not_used(self): with self.assertTemplateNotUsed('template_used/base.html'): pass with self.assertTemplateNotUsed('template_used/alternative.html'): pass def test_error_message(self): with six.assertRaisesRegex(self, AssertionError, r'^template_used/base\.html'): with self.assertTemplateUsed('template_used/base.html'): pass with six.assertRaisesRegex(self, AssertionError, r'^template_used/base\.html'): with self.assertTemplateUsed(template_name='template_used/base.html'): pass with six.assertRaisesRegex(self, AssertionError, r'^template_used/base\.html.*template_used/alternative\.html$'): with self.assertTemplateUsed('template_used/base.html'): render_to_string('template_used/alternative.html') with self.assertRaises(AssertionError) as cm: response = self.client.get('/test_utils/no_template_used/') self.assertTemplateUsed(response, 'template_used/base.html') self.assertEqual(cm.exception.args[0], "No templates used to render the response") def test_failure(self): with self.assertRaises(TypeError): with self.assertTemplateUsed(): pass with self.assertRaises(AssertionError): with self.assertTemplateUsed(''): pass with self.assertRaises(AssertionError): with self.assertTemplateUsed(''): render_to_string('template_used/base.html') with self.assertRaises(AssertionError): with self.assertTemplateUsed(template_name=''): pass with self.assertRaises(AssertionError): with self.assertTemplateUsed('template_used/base.html'): render_to_string('template_used/alternative.html') class HTMLEqualTests(TestCase): def test_html_parser(self): element = parse_html('<div><p>Hello</p></div>') self.assertEqual(len(element.children), 1) self.assertEqual(element.children[0].name, 'p') self.assertEqual(element.children[0].children[0], 'Hello') parse_html('<p>') parse_html('<p attr>') dom = parse_html('<p>foo') self.assertEqual(len(dom.children), 1) self.assertEqual(dom.name, 'p') self.assertEqual(dom[0], 'foo') def test_parse_html_in_script(self): parse_html('<script>var a = "<p" + ">";</script>') parse_html(''' <script> var js_sha_link='<p>***</p>'; </script> ''') # script content will be parsed to text dom = parse_html(''' <script><p>foo</p> '</scr'+'ipt>' <span>bar</span></script> ''') self.assertEqual(len(dom.children), 1) self.assertEqual(dom.children[0], "<p>foo</p> '</scr'+'ipt>' <span>bar</span>") def test_self_closing_tags(self): self_closing_tags = ('br', 'hr', 'input', 'img', 'meta', 'spacer', 'link', 'frame', 'base', 'col') for tag in self_closing_tags: dom = parse_html('<p>Hello <%s> world</p>' % tag) self.assertEqual(len(dom.children), 3) self.assertEqual(dom[0], 'Hello') self.assertEqual(dom[1].name, tag) self.assertEqual(dom[2], 'world') dom = parse_html('<p>Hello <%s /> world</p>' % tag) self.assertEqual(len(dom.children), 3) self.assertEqual(dom[0], 'Hello') self.assertEqual(dom[1].name, tag) self.assertEqual(dom[2], 'world') def test_simple_equal_html(self): self.assertHTMLEqual('', '') self.assertHTMLEqual('<p></p>', '<p></p>') self.assertHTMLEqual('<p></p>', ' <p> </p> ') self.assertHTMLEqual( '<div><p>Hello</p></div>', '<div><p>Hello</p></div>') self.assertHTMLEqual( '<div><p>Hello</p></div>', '<div> <p>Hello</p> </div>') self.assertHTMLEqual( '<div>\n<p>Hello</p></div>', '<div><p>Hello</p></div>\n') self.assertHTMLEqual( '<div><p>Hello\nWorld !</p></div>', '<div><p>Hello World\n!</p></div>') self.assertHTMLEqual( '<div><p>Hello\nWorld !</p></div>', '<div><p>Hello World\n!</p></div>') self.assertHTMLEqual( '<p>Hello World !</p>', '<p>Hello World\n\n!</p>') self.assertHTMLEqual('<p> </p>', '<p></p>') self.assertHTMLEqual('<p/>', '<p></p>') self.assertHTMLEqual('<p />', '<p></p>') self.assertHTMLEqual('<input checked>', '<input checked="checked">') self.assertHTMLEqual('<p>Hello', '<p> Hello') self.assertHTMLEqual('<p>Hello</p>World', '<p>Hello</p> World') def test_ignore_comments(self): self.assertHTMLEqual( '<div>Hello<!-- this is a comment --> World!</div>', '<div>Hello World!</div>') def test_unequal_html(self): self.assertHTMLNotEqual('<p>Hello</p>', '<p>Hello!</p>') self.assertHTMLNotEqual('<p>foo&#20;bar</p>', '<p>foo&nbsp;bar</p>') self.assertHTMLNotEqual('<p>foo bar</p>', '<p>foo &nbsp;bar</p>') self.assertHTMLNotEqual('<p>foo nbsp</p>', '<p>foo &nbsp;</p>') self.assertHTMLNotEqual('<p>foo #20</p>', '<p>foo &#20;</p>') self.assertHTMLNotEqual( '<p><span>Hello</span><span>World</span></p>', '<p><span>Hello</span>World</p>') self.assertHTMLNotEqual( '<p><span>Hello</span>World</p>', '<p><span>Hello</span><span>World</span></p>') def test_attributes(self): self.assertHTMLEqual( '<input type="text" id="id_name" />', '<input id="id_name" type="text" />') self.assertHTMLEqual( '''<input type='text' id="id_name" />''', '<input id="id_name" type="text" />') self.assertHTMLNotEqual( '<input type="text" id="id_name" />', '<input type="password" id="id_name" />') def test_complex_examples(self): self.assertHTMLEqual( """<tr><th><label for="id_first_name">First name:</label></th> <td><input type="text" name="first_name" value="John" id="id_first_name" /></td></tr> <tr><th><label for="id_last_name">Last name:</label></th> <td><input type="text" id="id_last_name" name="last_name" value="Lennon" /></td></tr> <tr><th><label for="id_birthday">Birthday:</label></th> <td><input type="text" value="1940-10-9" name="birthday" id="id_birthday" /></td></tr>""", """ <tr><th> <label for="id_first_name">First name:</label></th><td><input type="text" name="first_name" value="John" id="id_first_name" /> </td></tr> <tr><th> <label for="id_last_name">Last name:</label></th><td><input type="text" name="last_name" value="Lennon" id="id_last_name" /> </td></tr> <tr><th> <label for="id_birthday">Birthday:</label></th><td><input type="text" name="birthday" value="1940-10-9" id="id_birthday" /> </td></tr> """) self.assertHTMLEqual( """<!DOCTYPE html> <html> <head> <link rel="stylesheet"> <title>Document</title> <meta attribute="value"> </head> <body> <p> This is a valid paragraph <div> this is a div AFTER the p</div> </body> </html>""", """ <html> <head> <link rel="stylesheet"> <title>Document</title> <meta attribute="value"> </head> <body> <p> This is a valid paragraph <!-- browsers would close the p tag here --> <div> this is a div AFTER the p</div> </p> <!-- this is invalid HTML parsing, but it should make no difference in most cases --> </body> </html>""") def test_html_contain(self): # equal html contains each other dom1 = parse_html('<p>foo') dom2 = parse_html('<p>foo</p>') self.assertTrue(dom1 in dom2) self.assertTrue(dom2 in dom1) dom2 = parse_html('<div><p>foo</p></div>') self.assertTrue(dom1 in dom2) self.assertTrue(dom2 not in dom1) self.assertFalse('<p>foo</p>' in dom2) self.assertTrue('foo' in dom2) # when a root element is used ... dom1 = parse_html('<p>foo</p><p>bar</p>') dom2 = parse_html('<p>foo</p><p>bar</p>') self.assertTrue(dom1 in dom2) dom1 = parse_html('<p>foo</p>') self.assertTrue(dom1 in dom2) dom1 = parse_html('<p>bar</p>') self.assertTrue(dom1 in dom2) def test_count(self): # equal html contains each other one time dom1 = parse_html('<p>foo') dom2 = parse_html('<p>foo</p>') self.assertEqual(dom1.count(dom2), 1) self.assertEqual(dom2.count(dom1), 1) dom2 = parse_html('<p>foo</p><p>bar</p>') self.assertEqual(dom2.count(dom1), 1) dom2 = parse_html('<p>foo foo</p><p>foo</p>') self.assertEqual(dom2.count('foo'), 3) dom2 = parse_html('<p class="bar">foo</p>') self.assertEqual(dom2.count('bar'), 0) self.assertEqual(dom2.count('class'), 0) self.assertEqual(dom2.count('p'), 0) self.assertEqual(dom2.count('o'), 2) dom2 = parse_html('<p>foo</p><p>foo</p>') self.assertEqual(dom2.count(dom1), 2) dom2 = parse_html('<div><p>foo<input type=""></p><p>foo</p></div>') self.assertEqual(dom2.count(dom1), 1) dom2 = parse_html('<div><div><p>foo</p></div></div>') self.assertEqual(dom2.count(dom1), 1) dom2 = parse_html('<p>foo<p>foo</p></p>') self.assertEqual(dom2.count(dom1), 1) dom2 = parse_html('<p>foo<p>bar</p></p>') self.assertEqual(dom2.count(dom1), 0) def test_parsing_errors(self): with self.assertRaises(AssertionError): self.assertHTMLEqual('<p>', '') with self.assertRaises(AssertionError): self.assertHTMLEqual('', '<p>') with self.assertRaises(HTMLParseError): parse_html('</p>') def test_contains_html(self): response = HttpResponse('''<body> This is a form: <form action="" method="get"> <input type="text" name="Hello" /> </form></body>''') self.assertNotContains(response, "<input name='Hello' type='text'>") self.assertContains(response, '<form action="" method="get">') self.assertContains(response, "<input name='Hello' type='text'>", html=True) self.assertNotContains(response, '<form action="" method="get">', html=True) invalid_response = HttpResponse('''<body <bad>>''') with self.assertRaises(AssertionError): self.assertContains(invalid_response, '<p></p>') with self.assertRaises(AssertionError): self.assertContains(response, '<p "whats" that>') def test_unicode_handling(self): response = HttpResponse('<p class="help">Some help text for the title (with unicode ŠĐĆŽćžšđ)</p>') self.assertContains(response, '<p class="help">Some help text for the title (with unicode ŠĐĆŽćžšđ)</p>', html=True) class XMLEqualTests(TestCase): def test_simple_equal(self): xml1 = "<elem attr1='a' attr2='b' />" xml2 = "<elem attr1='a' attr2='b' />" self.assertXMLEqual(xml1, xml2) def test_simple_equal_unordered(self): xml1 = "<elem attr1='a' attr2='b' />" xml2 = "<elem attr2='b' attr1='a' />" self.assertXMLEqual(xml1, xml2) def test_simple_equal_raise(self): xml1 = "<elem attr1='a' />" xml2 = "<elem attr2='b' attr1='a' />" with self.assertRaises(AssertionError): self.assertXMLEqual(xml1, xml2) def test_simple_not_equal(self): xml1 = "<elem attr1='a' attr2='c' />" xml2 = "<elem attr1='a' attr2='b' />" self.assertXMLNotEqual(xml1, xml2) def test_simple_not_equal_raise(self): xml1 = "<elem attr1='a' attr2='b' />" xml2 = "<elem attr2='b' attr1='a' />" with self.assertRaises(AssertionError): self.assertXMLNotEqual(xml1, xml2) def test_parsing_errors(self): xml_unvalid = "<elem attr1='a attr2='b' />" xml2 = "<elem attr2='b' attr1='a' />" with self.assertRaises(AssertionError): self.assertXMLNotEqual(xml_unvalid, xml2) def test_comment_root(self): xml1 = "<?xml version='1.0'?><!-- comment1 --><elem attr1='a' attr2='b' />" xml2 = "<?xml version='1.0'?><!-- comment2 --><elem attr2='b' attr1='a' />" self.assertXMLEqual(xml1, xml2) class SkippingExtraTests(TestCase): fixtures = ['should_not_be_loaded.json'] # HACK: This depends on internals of our TestCase subclasses def __call__(self, result=None): # Detect fixture loading by counting SQL queries, should be zero with self.assertNumQueries(0): super(SkippingExtraTests, self).__call__(result) @unittest.skip("Fixture loading should not be performed for skipped tests.") def test_fixtures_are_skipped(self): pass class AssertRaisesMsgTest(SimpleTestCase): def test_special_re_chars(self): """assertRaisesMessage shouldn't interpret RE special chars.""" def func1(): raise ValueError("[.*x+]y?") self.assertRaisesMessage(ValueError, "[.*x+]y?", func1) class AssertFieldOutputTests(SimpleTestCase): def test_assert_field_output(self): error_invalid = ['Enter a valid email address.'] self.assertFieldOutput(EmailField, {'[email protected]': '[email protected]'}, {'aaa': error_invalid}) self.assertRaises(AssertionError, self.assertFieldOutput, EmailField, {'[email protected]': '[email protected]'}, {'aaa': error_invalid + ['Another error']}) self.assertRaises(AssertionError, self.assertFieldOutput, EmailField, {'[email protected]': 'Wrong output'}, {'aaa': error_invalid}) self.assertRaises(AssertionError, self.assertFieldOutput, EmailField, {'[email protected]': '[email protected]'}, {'aaa': ['Come on, gimme some well formatted data, dude.']}) def test_custom_required_message(self): class MyCustomField(IntegerField): default_error_messages = { 'required': 'This is really required.', } self.assertFieldOutput(MyCustomField, {}, {}, empty_value=None) class DoctestNormalizerTest(IgnoreAllDeprecationWarningsMixin, SimpleTestCase): def test_normalizer(self): from django.test.simple import make_doctest suite = make_doctest("test_utils.doctest_output") failures = unittest.TextTestRunner(stream=six.StringIO()).run(suite) self.assertEqual(failures.failures, []) # for OverrideSettingsTests def fake_view(request): pass class FirstUrls: urlpatterns = patterns('', url(r'first/$', fake_view, name='first')) class SecondUrls: urlpatterns = patterns('', url(r'second/$', fake_view, name='second')) class OverrideSettingsTests(TestCase): """ #21518 -- If neither override_settings nor a settings_changed receiver clears the URL cache between tests, then one of these two test methods will fail. """ @override_settings(ROOT_URLCONF=FirstUrls) def test_first(self): reverse('first') @override_settings(ROOT_URLCONF=SecondUrls) def test_second(self): reverse('second')
{ "content_hash": "c1b0d222d4314eb68620dfc5c3c5debb", "timestamp": "", "source": "github", "line_count": 660, "max_line_length": 162, "avg_line_length": 37.79848484848485, "alnum_prop": 0.5974265442738605, "repo_name": "wfxiang08/django178", "id": "365341d50f6f8c9c29fb1b58bd20e8cbaddd8e9d", "size": "24987", "binary": false, "copies": "10", "ref": "refs/heads/master", "path": "tests/test_utils/tests.py", "mode": "33261", "license": "bsd-3-clause", "language": [ { "name": "CSS", "bytes": "42829" }, { "name": "HTML", "bytes": "169506" }, { "name": "JavaScript", "bytes": "75783" }, { "name": "Makefile", "bytes": "125" }, { "name": "Python", "bytes": "9164014" }, { "name": "Shell", "bytes": "809" }, { "name": "Smarty", "bytes": "130" } ], "symlink_target": "" }
from celery import group from sh import ssh from tasks import check_available_auth_methods, check_open_port import libtorrent import time import sys class TorrentScanner(object): def __init__(self, torrent_file, collection_attempts, collection_duration): self.torrent_file = torrent_file self.max_peer_collection_attempts = collection_attempts self.peer_collection_seconds = collection_duration self.torrent_ip_list = [] self.open_ip_list = [] self.bruteforce_attempt_list = [] def get_peers_from_swarm(self): session = libtorrent.session() session.listen_on(6881, 6891) info = libtorrent.torrent_info(self.torrent_file) handler = session.add_torrent({'ti': info, 'save_path': './poc', 'connections_limit': '1000', 'num_want': '2000'}) handler.set_download_limit(2) handler.set_upload_limit(2) print 'starting: ', handler.name() for i in xrange(0, self.max_peer_collection_attempts): status = handler.status() time.sleep(self.peer_collection_seconds) for i in handler.get_peer_info(): if i.ip[0] not in self.torrent_ip_list: self.torrent_ip_list.append(i.ip[0]) print "\npeers collected: ", len(self.torrent_ip_list) def cleanup_list(self, l): return [x for x in l if x is not None] def find_open_ports(self): job_list = [] if len(self.torrent_ip_list) > 0: for ip in self.torrent_ip_list: job_list.append(check_open_port.s(ip)) jobs = group(job_list) results = jobs.apply_async() self.open_ip_list = self.cleanup_list(results.join()) def check_for_weak_auth(self): job_list = [] for ip in self.open_ip_list: job_list.append(check_available_auth_methods.s(ip)) jobs = group(job_list) results = jobs.apply_async() self.bruteforce_attempt_list = self.cleanup_list(results.join()) print self.bruteforce_attempt_list def password_bruteforce(self): pass
{ "content_hash": "930f3401355cb36a0c16f527586eca3a", "timestamp": "", "source": "github", "line_count": 63, "max_line_length": 122, "avg_line_length": 34.07936507936508, "alnum_prop": 0.6101537028411738, "repo_name": "danpilch/torrent-ssh-bruteforce", "id": "bfd94a46160909a791a915b32da14cb4e2676d22", "size": "2147", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "torrent/torrentscanner.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "4123" } ], "symlink_target": "" }
''' Copyright (c) 2017 Yogesh Khatri This file is part of mac_apt (macOS Artifact Parsing Tool). Usage or distribution of this software/code is subject to the terms of the MIT License. ''' import os import logging import struct from plugins.helpers import spotlight_parser as spotlight_parser from plugins.helpers.spotlight_filter import create_views_for_ios_db from plugins.helpers.macinfo import * from plugins.helpers.writer import * __Plugin_Name = "SPOTLIGHT" __Plugin_Friendly_Name = "Spotlight" __Plugin_Version = "1.0" __Plugin_Description = "Reads spotlight indexes (user, volume, iOS)" __Plugin_Author = "Yogesh Khatri" __Plugin_Author_Email = "[email protected]" __Plugin_Modes = "IOS,MACOS,ARTIFACTONLY" __Plugin_ArtifactOnly_Usage = "This module reads spotlight's index database file found at: /.Spotlight-V100/Store-V2/<UUID>/store.db and "\ "also '.store.db' at the same location. Since macOS 10.13, there are also spotlight databases for each "\ "user under ~/Library/Metadata/CoreSpotlight/index.spotlightV3/ \niOS spotlight databases are also "\ "parsed. These would be found here: /private/var/mobile/Library/Spotlight/CoreSpotlight/*/index.spotlightV2" log = logging.getLogger('MAIN.' + __Plugin_Name) # Do not rename or remove this ! This is the logger object #---- Do not change the variable names in above section ----# writer = None mac_info_obj = None spotlight_parser.log = logging.getLogger('MAIN.' + __Plugin_Name + '.SPOTLIGHT_PARSER') def ProcessStoreItem(item, id_as_hex): '''Reads a single store item and processes it for output. Returns dictionary''' try: data_dict = {} if id_as_hex: id_hex_str = f'{(item.id & (2**64-1)):X}' if len(id_hex_str) % 2: id_hex_str = '0' + id_hex_str reversed_id = '' for x in range(-1, -len(id_hex_str), -2): reversed_id += id_hex_str[x-1] + id_hex_str[x] data_dict['ID_hex'] = id_hex_str data_dict['Parent_ID_hex'] = f'{(item.parent_id & (2**64-1)):X}' data_dict['ID_hex_reversed'] = reversed_id else: data_dict['ID'] = item.id data_dict['Parent_ID'] = item.parent_id data_dict['Flags'] = item.flags data_dict['Date_Updated'] = item.ConvertEpochToUtcDateStr(item.date_updated) for k, v in list(item.meta_data_dict.items()): orig_debug = v if type(v) == list: if len(v) == 1: v = v[0] if type(v) == str: if v.endswith('\x16\x02'): v = v[:-2] else: v = ', '.join([str(x) for x in v]) data_dict[k] = v return data_dict except Exception as ex: log.exception ("Failed while processing row data before writing") def ProcessStoreItems(store_items, id_as_hex=False): global writer try: data_list = [] for item in store_items: data = ProcessStoreItem(item, id_as_hex) if data: data_list.append(data) writer.WriteRows(data_list) except Exception as ex: log.exception ("Failed to write row data") def Get_Column_Info(store): '''Returns a list of columns with data types for use with writer''' if store.is_ios_store: data_info = [ ('ID_hex',DataType.TEXT),('ID_hex_reversed',DataType.TEXT),('Flags',DataType.INTEGER), ('Parent_ID_hex',DataType.TEXT),('Date_Updated',DataType.TEXT) ] else: data_info = [ ('ID',DataType.INTEGER),('Flags',DataType.INTEGER), ('Parent_ID',DataType.INTEGER),('Date_Updated',DataType.TEXT) ] for _, prop in list(store.properties.items()): # prop = [name, prop_type, value_type] if prop[0] in ('_kMDXXXX___DUMMY', 'kMDStoreAccumulatedSizes') : continue # skip this if prop[2] in [0, 2, 6, 7]: if prop[1] & 2 == 2: # Multiple items val_type = DataType.TEXT else: val_type = DataType.INTEGER else: val_type = DataType.TEXT data_info.append((prop[0], val_type)) return data_info def CopyOutputParams(output_params): '''Creates and returns a copy of MacInfo.OutputParams object''' op_copy = OutputParams() op_copy.output_path = output_params.output_path op_copy.write_csv = output_params.write_csv op_copy.write_tsv = output_params.write_tsv op_copy.write_sql = output_params.write_sql op_copy.write_xlsx = output_params.write_xlsx op_copy.xlsx_writer = output_params.xlsx_writer op_copy.output_db_path = output_params.output_db_path op_copy.export_path = output_params.export_path op_copy.export_log_sqlite = output_params.export_log_sqlite op_copy.timezone = output_params.timezone return op_copy def EnableSqliteDb(output_path, out_params, file_name_prefix): try: sqlite_path = os.path.join(output_path, file_name_prefix + "_spotlight.db") log.info("Creating sqlite db for spotlight output @ {}".format(sqlite_path)) out_params.output_db_path = SqliteWriter.CreateSqliteDb(sqlite_path) out_params.write_sql = True return True except (sqlite3.Error, OSError) as ex: log.info('Sqlite db could not be created at : ' + sqlite_path) log.exception('Exception occurred when trying to create Sqlite db') return False def GetFileData(path, user): '''Get entire file data - ios Only''' global mac_info_obj data = b'' if mac_info_obj != None: mac_info_obj.ExportFile(path, __Plugin_Name, user + '_', False) f = mac_info_obj.Open(path) if f: data = f.read() else: log.error("Failed to open file {}".format(path)) else: # For single artifact mode with open(path, 'rb') as f: data = f.read() return data def GetMapDataOffsetHeader(input_folder, id, user): ''' Given an id X, this returns the data from 3 files, dbStr-X.map.data, dbStr-X.map.header, dbStr-X.map.offsets. It will search for these files in the input_folder. Returns tuple (data, offsets, header) ''' if mac_info_obj == None: # single artifact mode data_path = os.path.join(input_folder, 'dbStr-{}.map.data'.format(id)) offsets_path = os.path.join(input_folder, 'dbStr-{}.map.offsets'.format(id)) header_path = os.path.join(input_folder, 'dbStr-{}.map.header'.format(id)) else: data_path = input_folder + '/dbStr-{}.map.data'.format(id) offsets_path = input_folder + '/dbStr-{}.map.offsets'.format(id) header_path = input_folder + '/dbStr-{}.map.header'.format(id) map_data = GetFileData(data_path, user) offsets_data = GetFileData(offsets_path, user) header_data = GetFileData(header_path, user) return (map_data, offsets_data, header_data) def ProcessStoreDb(input_file_path, input_file, output_path, output_params, items_to_compare, file_name_prefix, limit_output_types=True, no_path_file=False, user=""): '''Main spotlight store.db processing function file_name_prefix is used to name the excel sheet or sqlite table, as well as prefix for name of paths_file. limit_output_types=True will only write to SQLITE, else all output options are honored. This is for faster processing, as writing to excel is very slow. We will still try to honor user preference if the db is small. items_to_compare is a dictionary used to compare and only write new items not present already ''' items = {} global writer output_path_full_paths = os.path.join(output_path, file_name_prefix + '_fullpaths.tsv') output_path_data = os.path.join(output_path, file_name_prefix + '_data.txt') log.info('Processing ' + input_file_path) try: if not os.path.exists(output_path): log.info("Creating output folder for spotlight at {}".format(output_path)) os.makedirs(output_path) with open(output_path_data, 'wb') as output_file: output_paths_file = None store = spotlight_parser.SpotlightStore(input_file) if store.is_ios_store: # The properties, categories and indexes must be stored in external files input_folder = os.path.dirname(input_file_path) try: prop_map_data, prop_map_offsets,prop_map_header = GetMapDataOffsetHeader(input_folder, 1, user) cat_map_data, cat_map_offsets, cat_map_header = GetMapDataOffsetHeader(input_folder, 2, user) idx_1_map_data, idx_1_map_offsets, idx_1_map_header = GetMapDataOffsetHeader(input_folder, 4, user) idx_2_map_data, idx_2_map_offsets, idx_2_map_header = GetMapDataOffsetHeader(input_folder, 5, user) store.ParsePropertiesFromFileData(prop_map_data, prop_map_offsets, prop_map_header) store.ParseCategoriesFromFileData(cat_map_data, cat_map_offsets, cat_map_header) store.ParseIndexesFromFileData(idx_1_map_data, idx_1_map_offsets, idx_1_map_header, store.indexes_1) store.ParseIndexesFromFileData(idx_2_map_data, idx_2_map_offsets, idx_2_map_header, store.indexes_2, has_extra_byte=True) store.ReadPageIndexesAndOtherDefinitions(True) except: log.exception('Failed to find or process one or more dependency files. Cannot proceed!') return None ## else: store.ReadPageIndexesAndOtherDefinitions() ## create db, write table with fields. out_params = CopyOutputParams(output_params) if limit_output_types and (store.block0.item_count > 500): # Large db, limit to sqlite output log.warning('Since the spotlight database is large, only Sqlite output will be written!') out_params.write_xlsx = False out_params.write_csv = False out_params.write_tsv = False if not out_params.write_sql: # sql is not enabled, must initialize database! if not EnableSqliteDb(output_path, out_params, file_name_prefix): return None try: log.debug ("Trying to write extracted store data for {}".format(file_name_prefix)) data_type_info = Get_Column_Info(store) writer = DataWriter(out_params, "Spotlight-" + file_name_prefix, data_type_info, input_file_path) except (sqlite3.Error, ValueError, OSError) as ex: log.exception ("Failed to initilize data writer") return None total_items_parsed = store.ParseMetadataBlocks(output_file, items, items_to_compare, ProcessStoreItems) writer.FinishWrites() if total_items_parsed == 0: log.debug('Nothing was parsed from this file!') # create Views in ios/user style db if store.is_ios_store and (total_items_parsed > 0): create_views_for_ios_db(writer.sql_writer.filepath, writer.sql_writer.table_name) # Write Paths db as tsv if (not store.is_ios_store) and (not no_path_file): path_type_info = [ ('ID',DataType.INTEGER),('FullPath',DataType.TEXT) ] fullpath_writer = DataWriter(out_params, "Spotlight-" + file_name_prefix + '-paths', path_type_info, input_file_path) with open(output_path_full_paths, 'wb') as output_paths_file: log.info('Inodes and Path information being written to {}'.format(output_path_full_paths)) output_paths_file.write(b"Inode_Number\tFull_Path\r\n") if items_to_compare: items_to_compare.update(items) # This updates items_to_compare ! WriteFullPaths(items, items_to_compare, output_paths_file, fullpath_writer) else: WriteFullPaths(items, items, output_paths_file, fullpath_writer) if out_params.write_sql: CreateViewAndIndexes(data_type_info, fullpath_writer.sql_writer, file_name_prefix) fullpath_writer.FinishWrites() return items except Exception as ex: log.exception('Exception processing spotlight store db file') def CreateViewAndIndexes(data_type_info, sql_writer, file_name_prefix): desired = ['kMDItemContentTypeTree', 'kMDItemContentType', 'kMDItemKind', 'kMDItemMediaTypes', '_kMDItemOwnerUserID', '_kMDItemOwnerGroupID', 'kMDItemUserCreatedUserHandle', 'kMDItemUserModifiedUserHandle', 'kMDItemUserPrintedUserHandle', '_kMDItemFileName', 'kMDItemDisplayName', 'kMDItemAlternateNames', 'kMDItemTitle', 'kMDItemPhysicalSize', 'kMDItemLogicalSize', 'kMDItemDurationSeconds', 'kMDItemPixelHeight', 'kMDItemPixelWidth', 'kMDItemColorSpace', 'kMDItemWhereFroms', 'kMDItemURL', 'kMDItemSubject', 'kMDItemRecipientEmailAddresses', 'kMDItemPrimaryRecipientEmailAddresses', 'kMDItemAdditionalRecipientEmailAddresses', 'kMDItemHiddenAdditionalRecipientEmailAddresses', 'kMDItemCountry', 'kMDItemCity', 'kMDItemStateOrProvince', 'kMDItemPhoneNumbers', 'kMDItemAuthors', 'kMDItemComment', 'kMDItemAlbum', 'kMDItemComposer', 'kMDItemMusicalGenre', 'kMDItemRecordingYearkMDItemAcquisitionModel', 'kMDItemExposureProgram', 'kMDItemLatitude', 'kMDItemLongitude', 'kMDItemTimestamp', 'kMDItemGPSDateStamp', '_kMDItemContentChangeDate', '_kMDItemCreationDate', 'kMDItemContentCreationDate', 'kMDItemContentModificationDate', 'kMDItemDateAdded', 'kMDItemUsedDates', 'kMDItemLastUsedDate', 'kMDItemUseCount', 'kMDItemUserCreatedDate', 'kMDItemUserModifiedDate', 'kMDItemUserPrintedDate', 'kMDItemDownloadedDate', 'kMDItemCFBundleIdentifier', 'kMDItemCreator' ] columns = [] for prop in desired: for item in data_type_info: if item[0] == prop: columns.append(prop) break query = "CREATE VIEW 'SpotlightDataView-{}' AS SELECT s.ID, Flags, Date_Updated, p.FullPath, ".format(file_name_prefix) +\ ", ".join(columns) + " FROM 'Spotlight-{}' as s".format(file_name_prefix) +\ " LEFT JOIN 'Spotlight-{}-paths' as p ON s.ID=p.ID WHERE s.ID > 1".format(file_name_prefix) success, cursor, error_message = sql_writer.RunQuery(query) if success: log.info("VIEW 'SpotlightDataView-{}' created for spotlight data in database".format(file_name_prefix) ) else: log.error("Failed to create VIEW 'SpotlightDataView-{}'".format(file_name_prefix)) log.error("Error was : {}".format(error_message)) # # creating indexes, commented out for now # log.debug("Trying to add indexes") # query = "CREATE INDEX '{0}_idx_all' ON 'Spotlight-{0}' ({1})".format(file_name_prefix, ", ".join(columns)) # success, cursor, error_message = sql_writer.RunQuery(query) # if success: # log.info("Indexes created for 'Spotlight-{}'".format(file_name_prefix)) # else: # log.error("Failed to create Indexes 'Spotlight-{}'".format(file_name_prefix)) # log.error("Error was : {}".format(error_message)) # query = "CREATE INDEX '{0}_idx_paths' ON 'Spotlight-{0}-paths' (ID, FullPath)".format(file_name_prefix, ", ".join(columns)) # success, cursor, error_message = sql_writer.RunQuery(query) # if success: # log.info("Indexes created for 'Spotlight-{}'".format(file_name_prefix)) # else: # log.error("Failed to create Indexes 'Spotlight-{}'".format(file_name_prefix)) # log.error("Error was : {}".format(error_message)) def WriteFullPaths(items, all_items, output_paths_file, fullpath_writer): ''' Writes inode and full paths table to csv items = dictionary of items to write all_items = dictionary of items to recursively search full paths ''' path_list = [] for k,v in list(items.items()): name = v[2] if name: fullpath = spotlight_parser.RecursiveGetFullPath(v, all_items) to_write = str(k) + '\t' + fullpath + '\r\n' output_paths_file.write(to_write.encode('utf-8', 'backslashreplace')) path_list.append([k, fullpath]) fullpath_writer.WriteRows(path_list) def DropReadme(output_folder, message, filename='Readme.txt'): try: if not os.path.exists(output_folder): log.info("Creating output folder for {} at {}".format(filename, output_folder)) os.makedirs(output_folder) output_file_path = os.path.join(output_folder, filename) with open(output_file_path, 'wb') as output_file: output_file.write(message.encode('utf-8') + b'\r\n') except OSError as ex: log.exception('Exception writing file - {}'.format(filename)) def ReadVolumeConfigPlistFromImage(mac_info, file_path): success, plist, error = mac_info.ReadPlist(file_path) if success: ReadVolumeConfigPlist(plist, mac_info.output_params, file_path) else: log.error('Failed to read plist {} \r\nError was: {}'.format(file_path, error)) def ReadVolumeConfigPlist(plist, output_params, file_path): '''Reads VolumeConfiguration.plist and gets store configurations''' log.info("Trying to get spotlight configuration from {}".format(file_path)) config_info = [('StoreUUID',DataType.TEXT),('StoreCreationDate',DataType.DATE), ('Version',DataType.TEXT),('IndexVersion',DataType.INTEGER), ('PartialPath',DataType.TEXT),('ConfigurationModificationDate',DataType.DATE), ('ConfigurationModificationVersion',DataType.TEXT),('ConfigurationVolumeUUID',DataType.TEXT), ('Source',DataType.TEXT) ] configs_list = [] stores = plist.get('Stores', None) if stores: log.info (str(len(stores)) + " store(s) found") for k, v in list(stores.items()): store_uuid = k config = [ store_uuid, v.get('CreationDate', None), v.get('CreationVersion', ''), v.get('IndexVersion', 0), v.get('PartialPath', ''), plist.get('ConfigurationModificationDate', None), plist.get('ConfigurationModificationVersion', ''), plist.get('ConfigurationVolumeUUID', ''), file_path ] configs_list.append(config) WriteList("spotlight store configuration", "SpotlightConfig", configs_list, config_info, output_params, file_path) else: log.info ("No spotlight stores defined in plist!") def ProcessStoreAndDotStore(mac_info, store_path_1, store_path_2, prefix): items_1 = None items_2 = None if mac_info.IsValidFilePath(store_path_1): mac_info.ExportFile(store_path_1, __Plugin_Name, prefix + '_', False) log.info('Now processing file {} '.format(store_path_1)) # Process store.db here input_file = mac_info.Open(store_path_1) output_folder = os.path.join(mac_info.output_params.output_path, 'SPOTLIGHT_DATA', prefix) if input_file != None: table_name = prefix + '-store' log.info("Spotlight data for user='{}' db='{}' will be saved with table/sheet name as {}".format(prefix, 'store.db', table_name)) items_1 = ProcessStoreDb(store_path_1, input_file, output_folder, mac_info.output_params, None, table_name, True, True, prefix) if mac_info.IsValidFilePath(store_path_2): mac_info.ExportFile(store_path_2, __Plugin_Name, prefix + '_', False) log.info('Now processing file {}'.format(store_path_2)) # Process .store.db here input_file = mac_info.Open(store_path_2) output_folder = os.path.join(mac_info.output_params.output_path, 'SPOTLIGHT_DATA', prefix) if input_file != None: if items_1: log.info('Only newer items not found in store.db will be written out!') DropReadme(output_folder, 'Items already present in store.db were ignored when processing the'\ '.store.db file. Only new or updated items are shown in the .store-DIFF* '\ 'files. If you want the complete output, process the exported .store.db '\ 'file with mac_apt_single_plugin.py and this plugin') table_name = prefix + '-.store-DIFF' log.info("Spotlight store for user='{}' db='{}' will be saved with table/sheet name as {}".format(prefix, '.store.db', table_name)) items_2 = ProcessStoreDb(store_path_2, input_file, output_folder, mac_info.output_params, items_1, table_name, True, True, prefix) def Process_User_DBs(mac_info): ''' Process the databases located in /Users/<USER>/Library/Metadata/CoreSpotlight/index.spotlightV3/ Seen in High Sierra (10.13) and above ''' user_spotlight_store = '{}/Library/Metadata/CoreSpotlight/index.spotlightV3/store.db' user_spotlight_dot_store = '{}/Library/Metadata/CoreSpotlight/index.spotlightV3/.store.db' processed_paths = [] for user in mac_info.users: user_name = user.user_name if user.home_dir == '/private/var/empty': continue # Optimization, nothing should be here! elif user.home_dir == '/private/var/root': user_name = 'root' # Some other users use the same root folder, we will list such all users as 'root', as there is no way to tell if user.home_dir in processed_paths: continue # Avoid processing same folder twice (some users have same folder! (Eg: root & daemon)) processed_paths.append(user.home_dir) store_path_1 = user_spotlight_store.format(user.home_dir) store_path_2 = user_spotlight_dot_store.format(user.home_dir) ProcessStoreAndDotStore(mac_info, store_path_1, store_path_2, user_name) def ProcessVolumeStore(mac_info, spotlight_base_path, export_prefix=''): ''' Process the main Spotlight-V100 database usually found on the volume's root. ''' spotlight_folder = spotlight_base_path + '/Store-V2/' vol_config_plist_path = spotlight_base_path + '/VolumeConfiguration.plist' if mac_info.IsValidFilePath(vol_config_plist_path): mac_info.ExportFile(vol_config_plist_path, __Plugin_Name, export_prefix, False) ReadVolumeConfigPlistFromImage(mac_info, vol_config_plist_path) folders = mac_info.ListItemsInFolder(spotlight_folder, EntryType.FOLDERS) index = 0 for folder in folders: index += 1 uuid = folder['name'] store_path_1 = spotlight_folder + uuid + '/store.db' store_path_2 = spotlight_folder + uuid + '/.store.db' items_1 = None items_2 = None if mac_info.IsValidFilePath(store_path_1): sub_folder = os.path.join(__Plugin_Name, str(index) + "_" + uuid) mac_info.ExportFile(store_path_1, sub_folder, '', False) log.info('Now processing file {} '.format(store_path_1)) # Process store.db here input_file = mac_info.Open(store_path_1) output_folder = os.path.join(mac_info.output_params.output_path, 'SPOTLIGHT_DATA', uuid) if input_file != None: table_name = ((export_prefix + '_') if export_prefix else '') + str(index) + '-store' log.info("Spotlight data for uuid='{}' db='{}' will be saved with table/sheet name as {}".format(uuid, 'store.db', table_name)) items_1 = ProcessStoreDb(store_path_1, input_file, output_folder, mac_info.output_params, None, table_name, True, False, '') else: log.debug('File not found: {}'.format(store_path_1)) if mac_info.IsValidFilePath(store_path_2): mac_info.ExportFile(store_path_2, sub_folder, '', False) log.info('Now processing file {}'.format(store_path_2)) # Process .store.db here input_file = mac_info.Open(store_path_2) output_folder = os.path.join(mac_info.output_params.output_path, 'SPOTLIGHT_DATA', uuid) if input_file != None: if items_1: log.info('Only newer items not found in store.db will be written out!') DropReadme(output_folder, 'Items already present in store.db were ignored when processing the'\ '.store.db file. Only new or updated items are shown in the .store-DIFF* '\ 'files. If you want the complete output, process the exported .store.db '\ 'file with mac_apt_single_plugin.py and this plugin') table_name = ((export_prefix + '_') if export_prefix else '') + str(index) + '-.store-DIFF' log.info("Spotlight store for uuid='{}' db='{}' will be saved with table/sheet name as {}".format(uuid, '.store.db', table_name)) items_2 = ProcessStoreDb(store_path_2, input_file, output_folder, mac_info.output_params, items_1, table_name, True, False, '') else: log.debug('File not found: {}'.format(store_path_2)) def Plugin_Start(mac_info): '''Main Entry point function for plugin''' global mac_info_obj mac_info_obj = mac_info Process_User_DBs(mac_info) # Usually small , 10.13+ only spotlight_base_path = '/.Spotlight-V100' if mac_info.IsValidFolderPath(spotlight_base_path): ProcessVolumeStore(mac_info, spotlight_base_path) else: # For live/zip volume, Data may need to be accessed here: spotlight_base_path = '/System/Volumes/Data/.Spotlight-V100' if mac_info.IsValidFolderPath(spotlight_base_path): ProcessVolumeStore(mac_info, spotlight_base_path, 'DataVolume') # For catalina's read-only volume spotlight_base_path = '/private/var/db/Spotlight-V100/BootVolume' if mac_info.IsValidFolderPath(spotlight_base_path): ProcessVolumeStore(mac_info, spotlight_base_path, 'BootVolume') def Plugin_Start_Standalone(input_files_list, output_params): log.info("Module Started as standalone") for input_path in input_files_list: log.debug("Input file passed was: " + input_path) if os.path.basename(input_path).lower().endswith('store.db'): try: with open(input_path, 'rb') as input_file: output_folder = os.path.join(output_params.output_path, 'SPOTLIGHT_DATA') log.info('Now processing file {}'.format(input_path)) ProcessStoreDb(input_path, input_file, output_folder, output_params, None, os.path.basename(input_path), False, False, '') except (OSError): log.exception('Failed to open input file ' + input_path) else: log.info("Unknown file type: {}".format(os.path.basename())) def Plugin_Start_Ios(ios_info): '''Entry point for ios_apt plugin''' global mac_info_obj mac_info_obj = ios_info ios_spotlight_folders = [ '/private/var/mobile/Library/Spotlight/CoreSpotlight/NSFileProtectionComplete/index.spotlightV2', '/private/var/mobile/Library/Spotlight/CoreSpotlight/NSFileProtectionCompleteUnlessOpen/index.spotlightV2', '/private/var/mobile/Library/Spotlight/CoreSpotlight/NSFileProtectionCompleteUntilFirstUserAuthentication/index.spotlightV2' ] for folder in ios_spotlight_folders: store_path_1 = os.path.join(folder, 'store.db') store_path_2 = os.path.join(folder, '.store.db') prefix = folder.split('/')[-2] ProcessStoreAndDotStore(ios_info, store_path_1, store_path_2, prefix) if __name__ == '__main__': print ("This plugin is a part of a framework and does not run independently on its own!")
{ "content_hash": "07c8fca6126cd5c4e7c9c85414f7d0bd", "timestamp": "", "source": "github", "line_count": 519, "max_line_length": 180, "avg_line_length": 55.836223506743735, "alnum_prop": 0.612063908347424, "repo_name": "ydkhatri/mac_apt", "id": "70916e72dca8e24c3eb848f3669d558288de8909", "size": "28979", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "plugins/spotlight.py", "mode": "33188", "license": "mit", "language": [ { "name": "Kaitai Struct", "bytes": "19375" }, { "name": "Python", "bytes": "1315164" } ], "symlink_target": "" }
from support import submodule
{ "content_hash": "4f588e954edf25a31a807c72a831116d", "timestamp": "", "source": "github", "line_count": 1, "max_line_length": 29, "avg_line_length": 30, "alnum_prop": 0.8666666666666667, "repo_name": "ploxiln/fabric", "id": "4ceecbf7876ce1ee09c74f09b32030639e89ebb6", "size": "30", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "tests/support/deep.py", "mode": "33188", "license": "bsd-2-clause", "language": [ { "name": "Python", "bytes": "469937" } ], "symlink_target": "" }
""" sentry.utils.sourcemaps ~~~~~~~~~~~~~~~~~~~~~~~ Originally based on https://github.com/martine/python-sourcemap :copyright: (c) 2010-2013 by the Sentry Team, see AUTHORS for more details. :license: BSD, see LICENSE for more details. """ import bisect from collections import namedtuple from urlparse import urljoin from sentry.utils import json SourceMap = namedtuple('SourceMap', ['dst_line', 'dst_col', 'src', 'src_line', 'src_col', 'name']) SourceMapIndex = namedtuple('SourceMapIndex', ['states', 'keys', 'sources', 'content']) # Mapping of base64 letter -> integer value. B64 = dict( (c, i) for i, c in enumerate('ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/') ) def parse_vlq(segment): """ Parse a string of VLQ-encoded data. Returns: a list of integers. """ values = [] cur, shift = 0, 0 for c in segment: val = B64[c] # Each character is 6 bits: # 5 of value and the high bit is the continuation. val, cont = val & 0b11111, val >> 5 cur += val << shift shift += 5 if not cont: # The low bit of the unpacked value is the sign. cur, sign = cur >> 1, cur & 1 if sign: cur = -cur values.append(cur) cur, shift = 0, 0 if cur or shift: raise Exception('leftover cur/shift in vlq decode') return values def parse_sourcemap(smap): """ Given a sourcemap json object, yield SourceMap objects as they are read from it. """ sources = smap['sources'] sourceRoot = smap.get('sourceRoot') names = smap['names'] mappings = smap['mappings'] lines = mappings.split(';') if sourceRoot: sources = [ urljoin(sourceRoot, src) for src in sources ] dst_col, src_id, src_line, src_col, name_id = 0, 0, 0, 0, 0 for dst_line, line in enumerate(lines): segments = line.split(',') dst_col = 0 for segment in segments: if not segment: continue parse = parse_vlq(segment) dst_col += parse[0] src = None name = None if len(parse) > 1: src_id += parse[1] src = sources[src_id] src_line += parse[2] src_col += parse[3] if len(parse) > 4: name_id += parse[4] name = names[name_id] assert dst_line >= 0 assert dst_col >= 0 assert src_line >= 0 assert src_col >= 0 yield SourceMap(dst_line, dst_col, src, src_line, src_col, name) def sourcemap_to_index(sourcemap): smap = json.loads(sourcemap) state_list = [] key_list = [] src_list = set() content = None if 'sourcesContent' in smap: content = {} for idx, source in enumerate(smap['sources']): if smap['sourcesContent'][idx]: content[source] = smap['sourcesContent'][idx].splitlines() else: content[source] = [] for state in parse_sourcemap(smap): state_list.append(state) key_list.append((state.dst_line, state.dst_col)) src_list.add(state.src) return SourceMapIndex(state_list, key_list, src_list, content) def find_source(indexed_sourcemap, lineno, colno): # error says "line no 1, column no 56" assert lineno > 0, 'line numbers are 1-indexed' return indexed_sourcemap.states[bisect.bisect_left(indexed_sourcemap.keys, (lineno - 1, colno)) - 1]
{ "content_hash": "7745308e8a713a1d1e460ecbd400c5b5", "timestamp": "", "source": "github", "line_count": 135, "max_line_length": 104, "avg_line_length": 26.903703703703705, "alnum_prop": 0.5619493392070485, "repo_name": "rdio/sentry", "id": "065781ec1b2872e1987b7b0212e11841784ea1b3", "size": "3632", "binary": false, "copies": "1", "ref": "refs/heads/rdio_sentry_6.4.4", "path": "src/sentry/utils/sourcemaps.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "CSS", "bytes": "533425" }, { "name": "HTML", "bytes": "258193" }, { "name": "JavaScript", "bytes": "916843" }, { "name": "Makefile", "bytes": "2982" }, { "name": "Python", "bytes": "2881969" }, { "name": "Ruby", "bytes": "8042" } ], "symlink_target": "" }
""" Created on Tue Oct 11 09:49:40 2016 @author: dennis """ from geometry_msgs.msg import PoseStamped, TwistStamped, Vector3Stamped from nav_msgs.msg import Path import rospy class state(): def __init__(self, lock, driver): self._lock = lock self.driver = driver ## states # pose self._pose_pub = rospy.Publisher('mavros/setpoint_position/local', PoseStamped, queue_size=10) self._pose_msg = PoseStamped() self._pose_state = "posctr" # vel self._vel_pub = rospy.Publisher('mavros/setpoint_velocity/cmd_vel', TwistStamped, queue_size=10 ) self._vel_msg = TwistStamped() self._vel_state = "velctr" # acc self._accel_pub = rospy.Publisher('mavros/setpoint_accel/accel', Vector3Stamped, queue_size=10) self._accel_msg = Vector3Stamped() self._accel_state = "accelctr" # path self._bezier_pub = rospy.Publisher('path/bezier_pt', Path, queue_size=10) self._bezier_msg = Path() self._bezier_state = "bezier" # default initialization self.set_state("posctr") # initial desired position: position and orientation ps = [0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 0.0] self.set_msg(ps) def set_state(self, arg): self._lock.acquire() if arg == "posctr": self.state = self._pose_state self.msg = self._pose_msg self.pub = self._pose_pub elif arg == "velctr": self.state = self._vel_state self.msg = self._vel_msg self.pub = self._vel_pub elif arg == "accelctr": self.state = self._accel_state self.msg = self._accel_msg self.pub = self._accel_pub elif arg == "bezier": self.state = self._bezier_state self.msg = self._bezier_msg self.pub = self._bezier_pub else: print "this state is not supported" self._lock.release() def set_msg(self, arg): if self.state == "posctr": if len(arg) == 7: self._lock.acquire() self._pose_msg.pose.position.x = arg[0] self._pose_msg.pose.position.y = arg[1] self._pose_msg.pose.position.z = arg[2] self._pose_msg.pose.orientation.x = arg[3] self._pose_msg.pose.orientation.y = arg[4] self._pose_msg.pose.orientation.z = arg[5] self._pose_msg.pose.orientation.w = arg[6] self._lock.release() else: print "posctr requires array of len 7" elif self.state == "velctr": if len(arg) == 3: self._lock.acquire() self._vel_msg.twist.linear.x = arg[0] self._vel_msg.twist.linear.y = arg[1] self._vel_msg.twist.linear.z = arg[2] #self._vel_msg.twist.angular.x = arg[3] #self._vel_msg.twist.angular.y = arg[4] #self._vel_msg.twist.angular.z = arg[5] self._lock.release() else: print "velctr requires array of len 3" elif self.state == "accelctr": if len(arg) == 3: self._lock.acquire() self._accel_msg.vector.x = arg[0] self._accel_msg.vector.y = arg[1] self._accel_msg.vector.z = arg[2] self._lock.acquire() else: print "accelctr requires array of len 3" elif self.state == "bezier": if len(arg) == 3: # initialize poses = [] # loop through bezier points for idx, pose in enumerate(arg): p = PoseStamped() p.pose.position.x = pose[0] p.pose.position.y = pose[1] p.pose.position.z = pose[2] poses.append(p) self._lock.acquire() self._bezier_msg.poses = poses self._bezier_msg.header.stamp = rospy.get_rostime() #self._bezier_msg.header.frame_id = "local_origin" self._lock.release()
{ "content_hash": "92b510dd7b186e05b52ff47d9d13c101", "timestamp": "", "source": "github", "line_count": 147, "max_line_length": 106, "avg_line_length": 32.12925170068027, "alnum_prop": 0.45966546686428117, "repo_name": "Stifael/offboard", "id": "0a3a8b16f367959aacfd3aafbbac6d471b4c0ba3", "size": "4745", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "src/state.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "Python", "bytes": "74326" } ], "symlink_target": "" }
import json import logging import time from airflow.contrib.hooks.gcs_hook import GoogleCloudStorageHook from airflow.hooks import MySqlHook from airflow.models import BaseOperator from airflow.utils.decorators import apply_defaults from collections import OrderedDict from datetime import date, datetime from decimal import Decimal from MySQLdb.constants import FIELD_TYPE from tempfile import NamedTemporaryFile class MySqlToGoogleCloudStorageOperator(BaseOperator): """ Copy data from MySQL to Google cloud storage in JSON format. """ template_fields = ('sql', 'bucket', 'filename', 'schema_filename') template_ext = ('.sql',) ui_color = '#a0e08c' @apply_defaults def __init__(self, sql, bucket, filename, schema_filename=None, approx_max_file_size_bytes=1900000000, mysql_conn_id='mysql_default', google_cloud_storage_conn_id='google_cloud_storage_default', delegate_to=None, *args, **kwargs): """ :param sql: The SQL to execute on the MySQL table. :type sql: string :param bucket: The bucket to upload to. :type bucket: string :param filename: The filename to use as the object name when uploading to Google cloud storage. A {} should be specified in the filename to allow the operator to inject file numbers in cases where the file is split due to size. :type filename: string :param schema_filename: If set, the filename to use as the object name when uploading a .json file containing the BigQuery schema fields for the table that was dumped from MySQL. :type schema_filename: string :param approx_max_file_size_bytes: This operator supports the ability to split large table dumps into multiple files (see notes in the filenamed param docs above). Google cloud storage allows for files to be a maximum of 4GB. This param allows developers to specify the file size of the splits. :type approx_max_file_size_bytes: long :param mysql_conn_id: Reference to a specific MySQL hook. :type mysql_conn_id: string :param google_cloud_storage_conn_id: Reference to a specific Google cloud storage hook. :type google_cloud_storage_conn_id: string :param delegate_to: The account to impersonate, if any. For this to work, the service account making the request must have domain-wide delegation enabled. """ super(MySqlToGoogleCloudStorageOperator, self).__init__(*args, **kwargs) self.sql = sql; self.bucket = bucket self.filename = filename self.schema_filename = schema_filename self.approx_max_file_size_bytes = approx_max_file_size_bytes self.mysql_conn_id = mysql_conn_id self.google_cloud_storage_conn_id = google_cloud_storage_conn_id self.delegate_to = delegate_to def execute(self, context): cursor = self._query_mysql() files_to_upload = self._write_local_data_files(cursor) # If a schema is set, create a BQ schema JSON file. if self.schema_filename: files_to_upload.update(self._write_local_schema_file(cursor)) # Flush all files before uploading for file_handle in files_to_upload.values(): file_handle.flush() self._upload_to_gcs(files_to_upload) # Close all temp file handles. for file_handle in files_to_upload.values(): file_handle.close() def _query_mysql(self): """ Queries mysql and returns a cursor to the results. """ mysql = MySqlHook(mysql_conn_id=self.mysql_conn_id) conn = mysql.get_conn() cursor = conn.cursor() cursor.execute(self.sql) return cursor def _write_local_data_files(self, cursor): """ Takes a cursor, and writes results to a local file. :return: A dictionary where keys are filenames to be used as object names in GCS, and values are file handles to local files that contain the data for the GCS objects. """ schema = map(lambda schema_tuple: schema_tuple[0], cursor.description) file_no = 0 tmp_file_handle = NamedTemporaryFile(delete=True) tmp_file_handles = { self.filename.format(file_no): tmp_file_handle } for row in cursor: # Convert datetime objects to utc seconds, and decimals to floats row = map(self.convert_types, row) row_dict = dict(zip(schema, row)) # TODO validate that row isn't > 2MB. BQ enforces a hard row size of 2MB. json.dump(row_dict, tmp_file_handle) # Append newline to make dumps BigQuery compatible. tmp_file_handle.write('\n') # Stop if the file exceeds the file size limit. if tmp_file_handle.tell() >= self.approx_max_file_size_bytes: file_no += 1 tmp_file_handle = NamedTemporaryFile(delete=True) tmp_file_handles[self.filename.format(file_no)] = tmp_file_handle return tmp_file_handles def _write_local_schema_file(self, cursor): """ Takes a cursor, and writes the BigQuery schema for the results to a local file system. :return: A dictionary where key is a filename to be used as an object name in GCS, and values are file handles to local files that contains the BigQuery schema fields in .json format. """ schema = [] for field in cursor.description: # See PEP 249 for details about the description tuple. field_name = field[0] field_type = self.type_map(field[1]) # Always allow TIMESTAMP to be nullable. MySQLdb returns None types # for required fields because some MySQL timestamps can't be # represented by Python's datetime (e.g. 0000-00-00 00:00:00). field_mode = 'NULLABLE' if field[6] or field_type == 'TIMESTAMP' else 'REQUIRED' schema.append({ 'name': field_name, 'type': field_type, 'mode': field_mode, }) logging.info('Using schema for %s: %s', self.schema_filename, schema) tmp_schema_file_handle = NamedTemporaryFile(delete=True) json.dump(schema, tmp_schema_file_handle) return {self.schema_filename: tmp_schema_file_handle} def _upload_to_gcs(self, files_to_upload): """ Upload all of the file splits (and optionally the schema .json file) to Google cloud storage. """ hook = GoogleCloudStorageHook(google_cloud_storage_conn_id=self.google_cloud_storage_conn_id, scope='https://www.googleapis.com/auth/devstorage.read_write', delegate_to=self.delegate_to) for object, tmp_file_handle in files_to_upload.items(): hook.upload(self.bucket, object, tmp_file_handle.name, 'application/json') @classmethod def convert_types(cls, value): """ Takes a value from MySQLdb, and converts it to a value that's safe for JSON/Google cloud storage/BigQuery. Dates are converted to UTC seconds. Decimals are converted to floats. """ if type(value) in (datetime, date): return time.mktime(value.timetuple()) elif isinstance(value, Decimal): return float(value) else: return value @classmethod def type_map(cls, mysql_type): """ Helper function that maps from MySQL fields to BigQuery fields. Used when a schema_filename is set. """ d = { FIELD_TYPE.INT24: 'INTEGER', FIELD_TYPE.TINY: 'INTEGER', FIELD_TYPE.BIT: 'INTEGER', FIELD_TYPE.DATETIME: 'TIMESTAMP', FIELD_TYPE.DECIMAL: 'FLOAT', FIELD_TYPE.NEWDECIMAL: 'FLOAT', FIELD_TYPE.DOUBLE: 'FLOAT', FIELD_TYPE.FLOAT: 'FLOAT', FIELD_TYPE.INT24: 'INTEGER', FIELD_TYPE.LONG: 'INTEGER', FIELD_TYPE.LONGLONG: 'INTEGER', FIELD_TYPE.SHORT: 'INTEGER', FIELD_TYPE.TIMESTAMP: 'TIMESTAMP', FIELD_TYPE.YEAR: 'INTEGER', } return d[mysql_type] if mysql_type in d else 'STRING'
{ "content_hash": "99b9d2c442db4063b1895837ef8b85b9", "timestamp": "", "source": "github", "line_count": 210, "max_line_length": 101, "avg_line_length": 41.195238095238096, "alnum_prop": 0.6086001618310022, "repo_name": "wxiang7/airflow", "id": "0eb368e3fa95e8b1f56dd0dd2d4f4aa16f2abb11", "size": "8651", "binary": false, "copies": "3", "ref": "refs/heads/master", "path": "airflow/contrib/operators/mysql_to_gcs.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "CSS", "bytes": "36361" }, { "name": "HTML", "bytes": "101378" }, { "name": "JavaScript", "bytes": "889411" }, { "name": "Mako", "bytes": "494" }, { "name": "Python", "bytes": "941256" }, { "name": "Shell", "bytes": "11821" } ], "symlink_target": "" }
import os from mpp.models import SQLTestCase from mpp.lib.PSQL import PSQL class runtest(SQLTestCase): """ @db_name memory_accounting """ sql_dir = 'sql/' ans_dir = 'answer/' out_dir = 'output/' class verify(SQLTestCase): def gp_version(self): result = PSQL.run_sql_command( sql_cmd='select version()', flags='-t -q' ) if "HAWQ" in result: return "hawq" else: return "gpdb" def test_oom_count(self): prd = "hawq" if self.gp_version() == "gpdb": prd = "gp" # SQL command to find number of processes logging memory usage for single segment seg0 when a 4-slice query runs OOM search = "%Logging memory usage%" sql_command = """select count(*) from (select distinct logpid, logslice, logsegment from %s_toolkit.__%s_log_segment_ext where logmessage like '%s' and logtime >= (select logtime from %s_toolkit.__%s_log_master_ext where logmessage like 'statement: select 4 as oom_test;' order by logtime desc limit 1) and logsegment='seg0' group by logpid, logslice, logsegment order by logsegment,logslice desc) as foo;""" % (prd, prd, search, prd, prd) result = PSQL.run_sql_command( sql_cmd='%s ' %(sql_command), flags='-t -q' ) # Verify that OOM log count is at least the number of slices in the query self.failUnless(int(result) >= 4, 'OOM log count should be at least the number of slices. OOM log count is ' + result) def test_dumpusage(self): # Verify that .mem files are generated when test sets GUC gp_dump_memory_usage to on MASTER_DATA_DIRECTORY = os.environ['MASTER_DATA_DIRECTORY'] pg_logdir = os.path.join(MASTER_DATA_DIRECTORY, 'pg_log') mem_file = '' for f in os.listdir(pg_logdir): if f.endswith('.mem'): mem_file = f self.failUnless(mem_file != '', 'Memory usage files not generated with GUC gp_dump_memory_usage!')
{ "content_hash": "c5322320cb032376ce94819378bda04e", "timestamp": "", "source": "github", "line_count": 42, "max_line_length": 448, "avg_line_length": 47.11904761904762, "alnum_prop": 0.6306215260232441, "repo_name": "cjcjameson/gpdb", "id": "62825aa416b050081a99120ecd73ec37da483cab", "size": "1979", "binary": false, "copies": "12", "ref": "refs/heads/master", "path": "src/test/tinc/tincrepo/resource_management/memory_accounting/scenario/oom_test/runsql.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Assembly", "bytes": "5665" }, { "name": "Batchfile", "bytes": "11492" }, { "name": "C", "bytes": "35862596" }, { "name": "C++", "bytes": "3303631" }, { "name": "CMake", "bytes": "17118" }, { "name": "CSS", "bytes": "7407" }, { "name": "Csound Score", "bytes": "179" }, { "name": "DTrace", "bytes": "1160" }, { "name": "Fortran", "bytes": "14777" }, { "name": "GDB", "bytes": "576" }, { "name": "Gherkin", "bytes": "736617" }, { "name": "HTML", "bytes": "191406" }, { "name": "Java", "bytes": "268244" }, { "name": "JavaScript", "bytes": "23969" }, { "name": "Lex", "bytes": "196275" }, { "name": "M4", "bytes": "104559" }, { "name": "Makefile", "bytes": "437242" }, { "name": "Objective-C", "bytes": "41796" }, { "name": "PLSQL", "bytes": "261677" }, { "name": "PLpgSQL", "bytes": "5198576" }, { "name": "Perl", "bytes": "3901323" }, { "name": "Perl 6", "bytes": "8302" }, { "name": "Python", "bytes": "8753134" }, { "name": "Roff", "bytes": "51338" }, { "name": "Ruby", "bytes": "26724" }, { "name": "SQLPL", "bytes": "3895383" }, { "name": "Shell", "bytes": "554130" }, { "name": "XS", "bytes": "8405" }, { "name": "XSLT", "bytes": "5779" }, { "name": "Yacc", "bytes": "488779" } ], "symlink_target": "" }
import tweepy from checkConnection import is_connected import re # Below function will hit the twitter api and retune all the tweet def twitterData(consumer_key,consumer_secret,access_token,access_token_secret,twitter_id,numbr_of_tweets,since_id): auth = tweepy.OAuthHandler(consumer_key, consumer_secret) auth.set_access_token(access_token, access_token_secret) api = tweepy.API(auth) print "Finding out your internet connection" internet_working = is_connected() # handel error in case of authentication failure or connection error if internet_working: print "Internet is fine" try: print 'Parsing twitter API data... Wait for a while' #for reference http://docs.tweepy.org/en/v3.5.0/api.html#API.user_timeline all_tweet = api.user_timeline(id= twitter_id ,count = numbr_of_tweets, since_id = since_id)# here tweepy checkt the above user keys print "User Authenticated Successfully" return all_tweet except tweepy.TweepError as error: print error.message else: print "Check yout internet connection" def tweetData(tweet): #this function is for extracting the tweet data like tweet text, id from a object #this return a tuple a according to the query #in future release i will update the database to save emoji also ######################## for Emoticon removal from tweet.text################## #to remove unicode emoji, so 1366: Incorrect # string value: '\xF0\x9F\x9A\x97' for column 'tweet_text' at row 1 error can be avoided try: # Wide UCS-4 build myre = re.compile(u'[' u'\U0001F300-\U0001F64F' u'\U0001F680-\U0001F6FF' u'\u2600-\u26FF\u2700-\u27BF]+', re.UNICODE) except re.error: # Narrow UCS-2 build myre = re.compile(u'(' u'\ud83c[\udf00-\udfff]|' u'\ud83d[\udc00-\ude4f\ude80-\udeff]|' u'[\u2600-\u26FF\u2700-\u27BF])+', re.UNICODE) ######################## End of Emoticon removal############################### # myre.sub remove emoticon # .encode used to convert unicode in to text tweet_text = (myre.sub('', tweet.text)).encode('utf-8') tweet_id = tweet.id tweet_date = tweet.author.created_at.strftime('%Y-%m-%d %H:%M:%S') user_id = tweet.author.screen_name screen_name = tweet.author.name language = tweet.author.lang location = tweet.author.location.encode('utf-8-sig') followers_count = tweet.author.followers_count friends_count = tweet.author.friends_count time_zone = tweet.author.time_zone return (tweet_id,tweet_text,user_id,tweet_date,\ language,location,screen_name,followers_count,friends_count,time_zone) if __name__ == "__main__": consumer_key = "HXXXXXXXXXXXXXXXXn" consumer_secret = "wXXXXXXXXXXXXXXXXXXxk" access_token = "2XXXXXXXXXXXXXXXXXXXXXXXXhO" access_token_secret = "qXXXXXXXXXXxZYl" twitter_id = "@TrafflineDEL" numbr_of_tweets = 100 twitter_data(consumer_key,consumer_secret,access_token,access_token_secret,twitter_id,numbr_of_tweets)
{ "content_hash": "d26ea28b998327db1ff80932cfeb7742", "timestamp": "", "source": "github", "line_count": 74, "max_line_length": 134, "avg_line_length": 41.16216216216216, "alnum_prop": 0.6749835850295469, "repo_name": "SkumarAG/twitterFeedExtractor", "id": "ae81d51cee7435a9c22197b9954b89fd7f451215", "size": "3046", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "files/twitter_feed.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "9155" } ], "symlink_target": "" }
from __future__ import absolute_import from .. import models import factory class CaseFactory(factory.django.DjangoModelFactory): name = factory.Sequence('case-/{0}/'.format) office = factory.SubFactory('foundation.offices.tests.factories.OfficeFactory') created_by = factory.SubFactory('foundation.users.tests.factories.UserFactory') class Meta: model = models.Case
{ "content_hash": "c57a539a00ccbf1e7fd24a1bd97e5519", "timestamp": "", "source": "github", "line_count": 12, "max_line_length": 83, "avg_line_length": 32.833333333333336, "alnum_prop": 0.7436548223350253, "repo_name": "ad-m/foundation-manager", "id": "845f462acc650638b5f4ed90cec6f3e9e99b8238", "size": "394", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "foundation/cases/tests/factories.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "CSS", "bytes": "205007" }, { "name": "HTML", "bytes": "48803" }, { "name": "JavaScript", "bytes": "284166" }, { "name": "Python", "bytes": "155467" }, { "name": "Shell", "bytes": "3620" } ], "symlink_target": "" }
""" Deletes an azure function """ from common.methods import set_progress from infrastructure.models import CustomField from common.methods import generate_string_from_template import os, json def run(job, **kwargs): resource = kwargs.get('resource') function_name = resource.attributes.get(field__name='azure_function_name').value resource_group = resource.attributes.get(field__name='resource_group_name').value set_progress("Deleting function...") function_delete_command = "az functionapp delete --name {0} --resource-group {1}".format(function_name, resource_group) os.system(function_delete_command) return "Success", "The function has succefully been deleted.", ""
{ "content_hash": "d16f4d4c3852dfb2c3be3fd17a6e798e", "timestamp": "", "source": "github", "line_count": 18, "max_line_length": 123, "avg_line_length": 39, "alnum_prop": 0.7421652421652422, "repo_name": "CloudBoltSoftware/cloudbolt-forge", "id": "1ff546546ea81bf3b09b5cb9a0106f144774e441", "size": "702", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "blueprints/azure_functions/delete.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "CSS", "bytes": "1665" }, { "name": "HTML", "bytes": "165828" }, { "name": "JavaScript", "bytes": "1871" }, { "name": "PowerShell", "bytes": "5779" }, { "name": "Python", "bytes": "1742154" }, { "name": "Shell", "bytes": "16836" } ], "symlink_target": "" }
''' Templates for different types of sentences. #NAME = name of the character #NOM = name of second character #GPR = gender pronoun #POS = positive talking point or trait #NEG = negative talking point or trait #GNN = gender noun #PNR = Gender reflexive pronoun #GPN = Gender possessive pronoun #NOP = Second person gender pronoun #LOC = setting/location #DET = determiner #AMB = ambience #PREP = preposition #POS_LOC = a more positive, pleasant location #NEG_LOC = a more negative location #POS_AMB = an ambience that goes with a positive location #NEG_AMB = an ambience that goes with a negative location #NEUT_LOC = a location with both positive and negative aspects #NEUT_AMB = ambient words that can be negative or positive or neutral Possible differentiation of positive and negative settings in order to have character reactions and thoughts that make sense in terms of them. ''' GPR = {'male': 'he', 'female': 'she'} NOP = {'male': 'he', 'female': 'she'} GNN = {'male': 'man', 'female': 'woman'} PNR = {'male': 'himself', 'female': 'herself'} GPN = {'male': 'his', 'female': 'her'} GPS = {'male': 'him', 'female': 'her'} POS = [ "great", "smart", "cunning", "kind", "amiable", "brilliant", "aspiring", "articulate", "compassionate", "confident", "cultured", "creative", "innovative", "dedicated", "dignified", "dutiful", "elegant", "freethinking", "gallant", "flexible", "focused", "multi-faceted", "open", "meticulous", "peaceful", "practical", "scrupulous", "strong", "trustful", "upright", "venturesome", "wise", "witty", "suave", "steadfast", "respectful", "responsible", "principled", "patient", "insouciant", "humble", "generous", "gentle", "adaptive", "articulate", "clever", ] NEG = [ "sloppy", "mean", "forceful", "prideful", "blunt", "brutal", "calculating", "careless", "childish", "conceited", "fearful", "foolish", "gloomy", "graceless", "mawkish", "stingy", "negligent", "moody", "offhand", "furtive", "opinionated", "paranoid", "presumptuous", "reactive", "repressed", "resentful", "scornful", "single-minded", "superficial", "superstitious", "tactless", "tasteless", "oppressive", "domineering", "venomous", "unloveable", "troublesome", "thoughtless", "strong-willed", "self-indulgent", "fickle", "erratic", "dissolute", "discourteous", "dishonest", "destructive", "demanding", "cruel", "crude", "aloof", "assertive", "asocial", "apathetic", "barbaric", "arrogant", "authoritarian", ] CHARACTER_DESCRIPTIONS = [ "#NAME was as #POS as #GPR was #POS.", "#NAME was as #NEG as #GPR was #NEG.", #"#NOM was as #NEG as #GPR was #NEG.", #"#NOM was as #POS as #GPR was #POS.", "#NAME was as #NEG as #GPR was #POS.", "#NAME was as #POS as #GPR was #NEG.", #"#NOM was as #NEG as #GPR was #POS.", #"#NOM was as #POS as #GPR was #NEG.", #"#NAME was as #POS as #NOM was #NEG.", #"#NOM was as #POS as #NAME was #NEG.", "#NAME, a #POS and #POS #GNN, had a knack for getting people to do things.", "#NAME, as a #NEG #GNN, often got what #GPR wanted.", "A #POS #GNN, #NAME was widely respected in #GPN social circles.", "Even #NAME's closest acquaintances steered clear of #GPS because they knew what a #NEG #GNN #GPR was.", "#NAME, who appeared #POS and #POS, occasionally slipped up and let people see #GPN #NEG side.", #"#NOM wanted people to think #GPR was only #NEG and #NEG. If people found out #GPR was also #POS, they would never look at #GPR the same.", "A #POS and #POS #GNN, #NAME was well-liked.", "Everyone thought #NAME was such a #POS #GNN, but #GPR was quite #NEG as well.", "A #NEG and #NEG #GNN, #NAME was not well-liked.", "People admired #NAME for #GPN #POS personality.", "People didn't like #NAME because of #GPN #NEG character.", #"#NOM was envious of how #POS #NAME was." #"#NAME never understood why #NOM was so #NEG.", #"Some people wouldn't like to be #NEG or #NEG, but #NOM embraced these qualities in #PNR.", ] CHARACTER_RELATIONSHIPS = [ "#NOM wondered how #NAME came to be such a #NEG and #NEG person.", "#NOM always looked up to #NAME for #GPR #POS personality." ] ACTION_PAIRS_BUT = [ '#NAME #ACT #2NAME, but #GPR #2ACT #2NAME.', # 'As #PADJ as #NAME was #GPR #ACT #2NAME, but realizing what #GPR had '+ # ' done #GPR #2ACT #2NAME.', ] ACTION_PAIRS_AND = [ '#NAME #ACT #2NAME, and #GPR #2ACT #2NAME.', ] ACTION_PAIRS_BECAUSE = [ '#NAME #ACT #2NAME, because #NAME #2ACT #2NAME.', ] ACTION_PAIRS_YET = [ '#NAME #ACT #2NAME, yet #NAME #2ACT #2NAME.', ] ACTION_PAIRS_SO = [ '#NAME #ACT #2NAME, so #NAME #2ACT #2NAME.', ] SETTING_DESCRIPTIONS = [ "#PREP the #NEUT_AMB #NEUT_LOC, #NAME waited for #NOM. #GPR knew #NOM would be coming, because #NOP always came at this time.", "#NAME looked around the #NEG_AMB #NEG_LOC, wondering how #GPR had ended up here.", "#NAME looked around the #NEUT_AMB #NEUT_LOC, wondering how #GPR had ended up here.", "#NAME looked around the #POS_AMB #POS_LOC, wondering how #GPR had ended up here.", "The #POS_LOC was #POS_AMB and #POS_AMB, causing a smile to light #NAME's face.", "#NAME began to feel weary while looking around the #NEG_AMB, #NEG_AMB #NEG_LOC.", "Excitement coursed through #NAME's veins as #GPR entered the #POS_LOC.", "Fear coursed through #NAME's veins as #GPR entered the #NEG_LOC.", "The #NEG_AMB and #NEG_AMB of the #NEG_LOC made #NAME's knees shake, but #GPR couldn't show fear.", "#NAME examined #GPN surroundings with an air of indifference. The #NEUT_AMB state of the #NEUT_LOC was neither welcoming nor excluding.", "AS #NAME entered the #POS_LOC, #GPR was struck by the sound of children's laughter filling the air.", "The #NEG_AMB #NEG_LOC made #NAME uncomfortable, but #GPR had no option but to stay there.", "The #POS_LOC always reminded #NAME of home because of how #POS_AMB and #POS_AMB it was.", "The #NEG_LOC #NAME found #PNR in was #NEG_AMB and #NEG_AMB.", "The #POS_LOC #NAME found #PNR in was #POS_AMB and #POS_AMB.", "#NAME quite liked the #POS_AMB #POS_LOC and frequented as often #GPR could", "#NOM hated #NEG_AMB #NEG_LOC s like the one #NOP currently found #PNR in.", "#NAME walked confidently through the #AMB #LOC.", "It was late in the evening when #NAME found #PNR in a #NEUT_AMB #NEUT_LOC.", "It was late in the evening when #NAME found #PNR in a #NEG_AMB #NEG_LOC.", "It was late in the evening when #NAME found #PNR in a #POS_AMB #POS_LOC.", "In the late evening, #NAME found #PNR in a #NEUT_AMB #NEUT_LOC.", "In the late evening, #NAME found #PNR in a #NEG_AMB #NEG_LOC.", "In the late evening, #NAME found #PNR in a #POS_AMB #POS_LOC.", "In the late evening, #NAME encountered #NOM in a #NEUT_AMB #NEUT_LOC.", "In the late evening, #NAME encountered #NOM in a #NEG_AMB #NEG_LOC.", "In the late evening, #NAME encountered #NOM in a #POS_AMB #POS_LOC.", "The #NEUT_LOC was #NEUT_AMB and #NEUT_AMB.", "In the early morning, people trickled #PREP #DET #POS_LOC. It was #POS_AMB and #POS_AMB.", "Many people avoided the #NEG_LOC, no one wanted to spend time there.", "The #NEG_LOC was #NEG_AMB and #NEG_AMB.", "The #POS_LOC was #POS_AMB and #POS_AMB.", "Of all the places #NAME expected to find #NOM, #DET #POS_LOC was not one of them.", "Of all the places #NAME expected to find #NOM, #DET #NEG_LOC was not one of them.", "Of all the places #NAME expected to find #NOM, #DET #NEUT_LOC was not one of them.", "#NAME wasn't fond on #NEG_AMB places, like the #NEG_LOC #GPR was currently in.", "#NAME glanced around, appreciating the #POS_AMB quality of the #POS_LOC #GPR was currently in.", ] PAIRS_BUT = [ "#ACTOR1 #VERB1 #ACTOR2, but " ]
{ "content_hash": "160983cdf60c6a6620adda7d11726d3f", "timestamp": "", "source": "github", "line_count": 238, "max_line_length": 144, "avg_line_length": 34.470588235294116, "alnum_prop": 0.6217698683568991, "repo_name": "assamite/cc-codecamp16", "id": "65b9526fdad61467a49b2405d51fee0f01cee34e", "size": "8204", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "src/templates.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Python", "bytes": "54157" } ], "symlink_target": "" }
"""Support for switch sensor using I2C PCAL9535A chip.""" import logging from pcal9535a import PCAL9535A import voluptuous as vol from homeassistant.components.switch import PLATFORM_SCHEMA, SwitchDevice from homeassistant.const import DEVICE_DEFAULT_NAME import homeassistant.helpers.config_validation as cv _LOGGER = logging.getLogger(__name__) CONF_INVERT_LOGIC = "invert_logic" CONF_I2C_ADDRESS = "i2c_address" CONF_I2C_BUS = "i2c_bus" CONF_PINS = "pins" CONF_STRENGTH = "strength" STRENGTH_025 = "0.25" STRENGTH_050 = "0.5" STRENGTH_075 = "0.75" STRENGTH_100 = "1.0" DEFAULT_INVERT_LOGIC = False DEFAULT_I2C_ADDRESS = 0x20 DEFAULT_I2C_BUS = 1 DEFAULT_STRENGTH = STRENGTH_100 _SWITCHES_SCHEMA = vol.Schema({cv.positive_int: cv.string}) PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend( { vol.Required(CONF_PINS): _SWITCHES_SCHEMA, vol.Optional(CONF_INVERT_LOGIC, default=DEFAULT_INVERT_LOGIC): cv.boolean, vol.Optional(CONF_STRENGTH, default=DEFAULT_STRENGTH): vol.In( [STRENGTH_025, STRENGTH_050, STRENGTH_075, STRENGTH_100] ), vol.Optional(CONF_I2C_ADDRESS, default=DEFAULT_I2C_ADDRESS): vol.Coerce(int), vol.Optional(CONF_I2C_BUS, default=DEFAULT_I2C_BUS): cv.positive_int, } ) def setup_platform(hass, config, add_entities, discovery_info=None): """Set up the PCAL9535A devices.""" invert_logic = config[CONF_INVERT_LOGIC] i2c_address = config[CONF_I2C_ADDRESS] bus = config[CONF_I2C_BUS] pcal = PCAL9535A(bus, i2c_address) switches = [] pins = config[CONF_PINS] for pin_num, pin_name in pins.items(): pin = pcal.get_pin(pin_num // 8, pin_num % 8) switches.append(PCAL9535ASwitch(pin_name, pin, invert_logic)) add_entities(switches) class PCAL9535ASwitch(SwitchDevice): """Representation of a PCAL9535A output pin.""" def __init__(self, name, pin, invert_logic): """Initialize the pin.""" self._name = name or DEVICE_DEFAULT_NAME self._pin = pin self._pin.inverted = invert_logic self._pin.input = False self._state = self._pin.level @property def name(self): """Return the name of the switch.""" return self._name @property def should_poll(self): """No polling needed.""" return False @property def is_on(self): """Return true if device is on.""" return self._state @property def assumed_state(self): """Return true if optimistic updates are used.""" return True def turn_on(self, **kwargs): """Turn the device on.""" self._pin.level = True self._state = True self.schedule_update_ha_state() def turn_off(self, **kwargs): """Turn the device off.""" self._pin.level = False self._state = False self.schedule_update_ha_state()
{ "content_hash": "c919b70315528da32a48ef84559584b8", "timestamp": "", "source": "github", "line_count": 102, "max_line_length": 85, "avg_line_length": 28.352941176470587, "alnum_prop": 0.646957123098202, "repo_name": "postlund/home-assistant", "id": "87c8ced1b0d406319dc84bff3e2b16a74b4ba4a0", "size": "2892", "binary": false, "copies": "3", "ref": "refs/heads/dev", "path": "homeassistant/components/pcal9535a/switch.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Python", "bytes": "20215859" }, { "name": "Shell", "bytes": "6663" } ], "symlink_target": "" }
"""@file @brief driver for sending raw packets to pato Copyright (c) 2014-2015 Dimitry Kloper <[email protected]>. All rights reserved. @page License Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. The views and conclusions contained in the software and documentation are those of the authors and should not be interpreted as representing official policies, either expressed or implied, of the Pato Project. """ import os import sys import pdb import unittest import serial localdir = os.path.dirname(os.path.realpath(__file__)) sys.path.append(os.path.join(localdir, '..')) import pato.protocol as protocol from util.crc import crc8 from test import logger class Test(unittest.TestCase): @classmethod def setUpClass(cls): cls.logger = logger cls.transport = serial.Serial(port='COM102', baudrate=9600, timeout=10) @classmethod def tearDownClass(cls): cls.transport.close() def test_send_single_ping(self): packet = [protocol.Cmd.PING, 0, 0] packet += [crc8(packet), 0] packet = "".join([chr(c) for c in packet]) pdb.set_trace() self.transport.write(packet)
{ "content_hash": "29fd6f331b0d5f26fe2b0c6219796e0f", "timestamp": "", "source": "github", "line_count": 71, "max_line_length": 70, "avg_line_length": 34.25352112676056, "alnum_prop": 0.7351973684210527, "repo_name": "kloper/pato", "id": "d42f072fd1bc69fe2a4fd99e54d3447694aceedf", "size": "2449", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "python/test/test_packet.py", "mode": "33188", "license": "bsd-2-clause", "language": [ { "name": "Assembly", "bytes": "14538" }, { "name": "C", "bytes": "147405" }, { "name": "C++", "bytes": "29000" }, { "name": "Python", "bytes": "95196" } ], "symlink_target": "" }
""" In this problem set you work with cities infobox data, audit it, come up with a cleaning idea and then clean it up. If you look at the full city data, you will notice that there are couple of values that seem to provide the same information in different formats: "point" seems to be the combination of "wgs84_pos#lat" and "wgs84_pos#long". However we do not know if that is the case and should check if they are equivalent. Finish the function check_loc(). It will recieve 3 strings, first will be the combined value of "point" and then the "wgs84_pos#" values separately. You have to extract the lat and long values from the "point" and compare to the "wgs84_pos# values and return True or False. Note that you do not have to fix the values, just determine if they are consistent. To fix them in this case you would need more information. Feel free to discuss possible strategies for fixing this on the discussion forum. The rest of the code is just an example on how this function can be used. Changes to "process_file" function will not be take into account. """ import csv import pprint CITIES = 'cities.csv' def check_loc(point, lat, longi): # YOUR CODE HERE points = point.split(' ') return points[0] == lat and points[1] == longi def process_file(filename): data = [] with open(filename, "r") as f: reader = csv.DictReader(f) #skipping the extra matadata for i in range(3): l = reader.next() # processing file for line in reader: # calling your function to check the location result = check_loc(line["point"], line["wgs84_pos#lat"], line["wgs84_pos#long"]) if not result: print "{}: {} != {} {}".format(line["name"], line["point"], line["wgs84_pos#lat"], line["wgs84_pos#long"]) data.append(line) return data def test(): assert check_loc("33.08 75.28", "33.08", "75.28") == True assert check_loc("44.57833333333333 -91.21833333333333", "44.5783", "-91.2183") == False if __name__ == "__main__": test()
{ "content_hash": "98a6c50479f067d92163ce7b2837ff35", "timestamp": "", "source": "github", "line_count": 53, "max_line_length": 122, "avg_line_length": 39.18867924528302, "alnum_prop": 0.6706788637457872, "repo_name": "napjon/moocs_solution", "id": "e33cd0bf93eb922033f87f2ce4c777a099794466", "size": "2124", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "DataWranglingMongoDB/Lesson3/location.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "4046" }, { "name": "Jupyter Notebook", "bytes": "9892144" }, { "name": "Matlab", "bytes": "300578" }, { "name": "Python", "bytes": "441602" }, { "name": "R", "bytes": "7797" }, { "name": "Shell", "bytes": "681" } ], "symlink_target": "" }
import itertools import numpy as np import pytest from numcodecs.checksum32 import CRC32, Adler32 from numcodecs.tests.common import (check_encode_decode, check_config, check_repr, check_backwards_compatibility, check_err_encode_object_buffer) # mix of dtypes: integer, float, bool, string # mix of shapes: 1D, 2D, 3D # mix of orders: C, F arrays = [ np.arange(1000, dtype='i4'), np.linspace(1000, 1001, 1000, dtype='f8'), np.random.normal(loc=1000, scale=1, size=(100, 10)), np.random.randint(0, 2, size=1000, dtype=bool).reshape(100, 10, order='F'), np.random.choice([b'a', b'bb', b'ccc'], size=1000).reshape(10, 10, 10) ] codecs = [CRC32(), Adler32()] def test_encode_decode(): for codec, arr in itertools.product(codecs, arrays): check_encode_decode(arr, codec) def test_errors(): for codec, arr in itertools.product(codecs, arrays): enc = codec.encode(arr) with pytest.raises(RuntimeError): codec.decode(enc[:-1]) def test_config(): for codec in codecs: check_config(codec) def test_repr(): check_repr("CRC32()") check_repr("Adler32()") def test_backwards_compatibility(): check_backwards_compatibility(CRC32.codec_id, arrays, [CRC32()]) check_backwards_compatibility(Adler32.codec_id, arrays, [Adler32()]) def test_err_encode_object_buffer(): check_err_encode_object_buffer(CRC32()) check_err_encode_object_buffer(Adler32())
{ "content_hash": "af1929014dfc6a5a5f2ac4ddcf19e27f", "timestamp": "", "source": "github", "line_count": 57, "max_line_length": 82, "avg_line_length": 26.70175438596491, "alnum_prop": 0.6438896189224704, "repo_name": "zarr-developers/numcodecs", "id": "2cacc9202a529ead9bc9f89c7dc2bf92e0a13220", "size": "1522", "binary": false, "copies": "1", "ref": "refs/heads/main", "path": "numcodecs/tests/test_checksum32.py", "mode": "33188", "license": "mit", "language": [ { "name": "Cython", "bytes": "45959" }, { "name": "Jupyter Notebook", "bytes": "16894" }, { "name": "Python", "bytes": "149828" } ], "symlink_target": "" }
import copy from . import ElementTree XINCLUDE = "{http://www.w3.org/2001/XInclude}" XINCLUDE_INCLUDE = XINCLUDE + "include" XINCLUDE_FALLBACK = XINCLUDE + "fallback" ## # Fatal include error. class FatalIncludeError(SyntaxError): pass ## # Default loader. This loader reads an included resource from disk. # # @param href Resource reference. # @param parse Parse mode. Either "xml" or "text". # @param encoding Optional text encoding. # @return The expanded resource. If the parse mode is "xml", this # is an ElementTree instance. If the parse mode is "text", this # is a Unicode string. If the loader fails, it can return None # or raise an IOError exception. # @throws IOError If the loader fails to load the resource. def default_loader(href, parse, encoding=None): file = open(href) if parse == "xml": data = ElementTree.parse(file).getroot() else: data = file.read() if encoding: data = data.decode(encoding) file.close() return data ## # Expand XInclude directives. # # @param elem Root element. # @param loader Optional resource loader. If omitted, it defaults # to {@link default_loader}. If given, it should be a callable # that implements the same interface as <b>default_loader</b>. # @throws FatalIncludeError If the function fails to include a given # resource, or if the tree contains malformed XInclude elements. # @throws IOError If the function fails to load a given resource. def include(elem, loader=None): if loader is None: loader = default_loader # look for xinclude elements i = 0 while i < len(elem): e = elem[i] if e.tag == XINCLUDE_INCLUDE: # process xinclude directive href = e.get("href") parse = e.get("parse", "xml") if parse == "xml": node = loader(href, parse) if node is None: raise FatalIncludeError( "cannot load %r as %r" % (href, parse) ) node = copy.copy(node) if e.tail: node.tail = (node.tail or "") + e.tail elem[i] = node elif parse == "text": text = loader(href, parse, e.get("encoding")) if text is None: raise FatalIncludeError( "cannot load %r as %r" % (href, parse) ) if i: node = elem[i-1] node.tail = (node.tail or "") + text else: elem.text = (elem.text or "") + text + (e.tail or "") del elem[i] continue else: raise FatalIncludeError( "unknown parse type in xi:include tag (%r)" % parse ) elif e.tag == XINCLUDE_FALLBACK: raise FatalIncludeError( "xi:fallback tag must be child of xi:include (%r)" % e.tag ) else: include(e, loader) i = i + 1
{ "content_hash": "40665c28aa65e1e891a2e9e8ac26a806", "timestamp": "", "source": "github", "line_count": 93, "max_line_length": 74, "avg_line_length": 33.634408602150536, "alnum_prop": 0.5476342710997443, "repo_name": "MalloyPower/parsing-python", "id": "d7f85b3217c4abf322a65aaf15583409c0919a57", "size": "5045", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "front-end/testsuite-python-lib/Python-3.1/Lib/xml/etree/ElementInclude.py", "mode": "33188", "license": "mit", "language": [ { "name": "C", "bytes": "1963" }, { "name": "Lex", "bytes": "238458" }, { "name": "Makefile", "bytes": "4513" }, { "name": "OCaml", "bytes": "412695" }, { "name": "Python", "bytes": "17319" }, { "name": "Rascal", "bytes": "523063" }, { "name": "Yacc", "bytes": "429659" } ], "symlink_target": "" }
"""PPO.""" import collections import functools from clu import metric_writers import deluca.core import jax import jax.numpy as jnp import optax import time # pylint:disable=invalid-name Rollout = collections.namedtuple("Rollout", [ "agent_states", "actions", "losses" ]) @functools.partial( jax.jit, static_argnums=( 5, 6, )) def apg_rollout(env, env_start_state, env_init_obs, agent, agent_start_state, unroll_length, loss_func): """Comment.""" def rollout_step(inp, counter): env_state, env_obs, agent_state = inp agent_next_state, action = agent(agent_state, env_obs) env_next_state, env_next_obs = env(env_state, action) loss = loss_func(env_state, env_obs, action, env, counter) return (env_next_state, env_next_obs, agent_next_state), (env_next_state, env_next_obs, agent_next_state, action, loss) _, t = jax.lax.scan(rollout_step, (env_start_state, env_init_obs, agent_start_state), jnp.arange(unroll_length)) return Rollout(t[2], t[3], t[4]) @functools.partial( jax.jit, static_argnums=( 5, 6, )) def apg_parallel_rollouts(env, env_start_states, env_init_obs, agent, agent_start_states, unroll_length, loss_func): """Parallelize rollouts.""" # if agent_seeds == None: # agent_seeds = jnp.arange(num) # env_start_states, env_init_obs = env.reset() all_rollouts = jax.vmap(apg_rollout, (None, 0, 0, None, 0, None, None))( env, env_start_states, env_init_obs, agent, agent_start_states, unroll_length, loss_func) return all_rollouts def apg_loss(agent, env, env_start_states, env_init_obs, agent_init_states, unroll_length, loss_func): """Serialize the experiences.""" rollouts = apg_parallel_rollouts(env, env_start_states, env_init_obs, agent, agent_init_states, unroll_length, loss_func) return rollouts.losses.mean() @functools.partial( jax.jit, static_argnums=( 0, 1, 8, 9, )) def train_chunk(chunk_size, optim, optim_state, agent, env, env_start_states, env_init_obs, agent_init_states, unroll_length, loss_func): """Compilable train step. Runs an entire epoch of training (i.e. the loop over minibatches within an epoch is included here for performance reasons). """ @jax.jit def single_step(carry, inp): agent, optim_state = carry grad_fn = jax.value_and_grad(apg_loss) l, grads = grad_fn(agent, env, env_start_states, env_init_obs, agent_init_states, unroll_length, loss_func) updates, optim_state = optim.update(grads, optim_state, agent) agent = optax.apply_updates(agent, updates) return (agent, optim_state), l (agent, optim_state), losses = jax.lax.scan(single_step, (agent, optim_state), None, length=chunk_size) return agent, optim_state, losses def train(env, agent, loss_func, horizon, config, workdir=None): """Main training loop. config - num_episodes - episodes_per_eval - training_env_batch_size - eval_env_batch_size = 32 - optimizer - learning_rate - seed = 1 """ print(config) if workdir is not None: writer = metric_writers.create_default_writer( logdir=workdir, just_logging=jax.process_index() != 0) writer.write_hparams(dict(config)) key = jax.random.PRNGKey(config.seed) key_train_agent, key_eval_agent, key_train_env, key_eval_env, key_train, key = jax.random.split(key, 6) key_train_envs = jax.random.split(key_train_env, config.training_env_batch_size) key_train_agents = jax.random.split(key_train_agent, config.training_env_batch_size) key_eval_envs = jax.random.split(key_eval_env, config.eval_env_batch_size) key_eval_agents = jax.random.split(key_eval_agent, config.eval_env_batch_size) #TODO(danielsuo): The following vmap code does not work. train_env_start_states, train_env_init_obs = jax.vmap(env.init)(key_train_envs) eval_env_start_states, eval_env_init_obs = jax.vmap(env.init)(key_eval_envs) print(train_env_start_states) print(train_env_init_obs) # qtrain_init_list = list(map(env.init, key_train_envs)) # qtrain_env_start_states = [a for (a,_) in qtrain_init_list] # qtrain_env_init_obs = [b for (_,b) in qtrain_init_list] # print(qtrain_env_start_states) # print(qtrain_env_init_obs) # eval_init_list = list(map(env.init, key_eval_envs)) # eval_env_start_states = [a for (a,_) in eval_init_list] # eval_env_init_obs = [b for (_,b) in eval_init_list] train_agent_start_states = jax.vmap(agent.init)(key_train_agents) eval_agent_start_states = jax.vmap(agent.init)(key_eval_agents) if config.optimizer == "Adam": optim = optax.adam(learning_rate=config.learning_rate) else: # default is SGD optim = optax.sgd(learning_rate=config.learning_rate) optim_state = optim.init(agent) for episode in range(0, config.num_episodes, config.episodes_per_eval): # Eval Step tt = time.time() eval_rollouts = apg_parallel_rollouts(env, eval_env_start_states, eval_env_init_obs, agent, eval_agent_start_states, horizon, loss_func) test_score = eval_rollouts.losses.mean() print(f"TESTING episode {episode} - score:{test_score} - time:{time.time()-tt}") # Training Step tt = time.time() agent, optim_state, losses = train_chunk(config.episodes_per_eval, optim, optim_state, agent, env, train_env_start_states, train_env_init_obs, train_agent_start_states, horizon, loss_func) done_eps = episode + config.episodes_per_eval - 1 print(f"TRAINING: episode {done_eps} - score:{losses[0]} - time {time.time() - tt}") if workdir is not None: for (i, loss) in enumerate(reversed(losses)): writer.write_scalars(episode+i, {"train_score": loss}) writer.write_scalars(episode, {"test_score": test_score}) return optim_state, agent
{ "content_hash": "35d0fa1ccf0726b5ddd52c9771f365c0", "timestamp": "", "source": "github", "line_count": 171, "max_line_length": 111, "avg_line_length": 37.19298245614035, "alnum_prop": 0.6177672955974842, "repo_name": "google/deluca", "id": "d725c92b0b26536f00837808e7a1b2e7056146f4", "size": "6944", "binary": false, "copies": "1", "ref": "refs/heads/main", "path": "deluca/training/apg.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Python", "bytes": "297090" } ], "symlink_target": "" }
""" Multi-dimensional Scaling (MDS) """ # author: Nelle Varoquaux <[email protected]> # Licence: BSD import numpy as np import warnings from ..base import BaseEstimator from ..metrics import euclidean_distances from ..utils import check_random_state, check_array from ..externals.joblib import Parallel from ..externals.joblib import delayed from ..isotonic import IsotonicRegression def _smacof_single(similarities, metric=True, n_components=2, init=None, max_iter=300, verbose=0, eps=1e-3, random_state=None): """ Computes multidimensional scaling using SMACOF algorithm Parameters ---------- similarities: symmetric ndarray, shape [n * n] similarities between the points metric: boolean, optional, default: True compute metric or nonmetric SMACOF algorithm n_components: int, optional, default: 2 number of dimension in which to immerse the similarities overwritten if initial array is provided. init: {None or ndarray}, optional if None, randomly chooses the initial configuration if ndarray, initialize the SMACOF algorithm with this array max_iter: int, optional, default: 300 Maximum number of iterations of the SMACOF algorithm for a single run verbose: int, optional, default: 0 level of verbosity eps: float, optional, default: 1e-6 relative tolerance w.r.t stress to declare converge random_state: integer or numpy.RandomState, optional The generator used to initialize the centers. If an integer is given, it fixes the seed. Defaults to the global numpy random number generator. Returns ------- X: ndarray (n_samples, n_components), float coordinates of the n_samples points in a n_components-space stress_: float The final value of the stress (sum of squared distance of the disparities and the distances for all constrained points) n_iter : int Number of iterations run. """ n_samples = similarities.shape[0] random_state = check_random_state(random_state) if similarities.shape[0] != similarities.shape[1]: raise ValueError("similarities must be a square array (shape=%d)" % n_samples) if not np.allclose(similarities, similarities.T): raise ValueError("similarities must be symmetric") sim_flat = ((1 - np.tri(n_samples)) * similarities).ravel() sim_flat_w = sim_flat[sim_flat != 0] if init is None: # Randomly choose initial configuration X = random_state.rand(n_samples * n_components) X = X.reshape((n_samples, n_components)) else: # overrides the parameter p n_components = init.shape[1] if n_samples != init.shape[0]: raise ValueError("init matrix should be of shape (%d, %d)" % (n_samples, n_components)) X = init old_stress = None ir = IsotonicRegression() for it in range(max_iter): # Compute distance and monotonic regression dis = euclidean_distances(X) if metric: disparities = similarities else: dis_flat = dis.ravel() # similarities with 0 are considered as missing values dis_flat_w = dis_flat[sim_flat != 0] # Compute the disparities using a monotonic regression disparities_flat = ir.fit_transform(sim_flat_w, dis_flat_w) disparities = dis_flat.copy() disparities[sim_flat != 0] = disparities_flat disparities = disparities.reshape((n_samples, n_samples)) disparities *= np.sqrt((n_samples * (n_samples - 1) / 2) / (disparities ** 2).sum()) # Compute stress stress = ((dis.ravel() - disparities.ravel()) ** 2).sum() / 2 # Update X using the Guttman transform dis[dis == 0] = 1e-5 ratio = disparities / dis B = - ratio B[np.arange(len(B)), np.arange(len(B))] += ratio.sum(axis=1) X = 1. / n_samples * np.dot(B, X) dis = np.sqrt((X ** 2).sum(axis=1)).sum() if verbose >= 2: print('it: %d, stress %s' % (it, stress)) if old_stress is not None: if(old_stress - stress / dis) < eps: if verbose: print('breaking at iteration %d with stress %s' % (it, stress)) break old_stress = stress / dis return X, stress, it + 1 def smacof(similarities, metric=True, n_components=2, init=None, n_init=8, n_jobs=1, max_iter=300, verbose=0, eps=1e-3, random_state=None, return_n_iter=False): """ Computes multidimensional scaling using SMACOF (Scaling by Majorizing a Complicated Function) algorithm The SMACOF algorithm is a multidimensional scaling algorithm: it minimizes a objective function, the *stress*, using a majorization technique. The Stress Majorization, also known as the Guttman Transform, guarantees a monotone convergence of Stress, and is more powerful than traditional techniques such as gradient descent. The SMACOF algorithm for metric MDS can summarized by the following steps: 1. Set an initial start configuration, randomly or not. 2. Compute the stress 3. Compute the Guttman Transform 4. Iterate 2 and 3 until convergence. The nonmetric algorithm adds a monotonic regression steps before computing the stress. Parameters ---------- similarities : symmetric ndarray, shape (n_samples, n_samples) similarities between the points metric : boolean, optional, default: True compute metric or nonmetric SMACOF algorithm n_components : int, optional, default: 2 number of dimension in which to immerse the similarities overridden if initial array is provided. init : {None or ndarray of shape (n_samples, n_components)}, optional if None, randomly chooses the initial configuration if ndarray, initialize the SMACOF algorithm with this array n_init : int, optional, default: 8 Number of time the smacof algorithm will be run with different initialisation. The final results will be the best output of the n_init consecutive runs in terms of stress. n_jobs : int, optional, default: 1 The number of jobs to use for the computation. This works by breaking down the pairwise matrix into n_jobs even slices and computing them in parallel. If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one are used. max_iter : int, optional, default: 300 Maximum number of iterations of the SMACOF algorithm for a single run verbose : int, optional, default: 0 level of verbosity eps : float, optional, default: 1e-6 relative tolerance w.r.t stress to declare converge random_state : integer or numpy.RandomState, optional The generator used to initialize the centers. If an integer is given, it fixes the seed. Defaults to the global numpy random number generator. return_n_iter : bool Whether or not to return the number of iterations. Returns ------- X : ndarray (n_samples,n_components) Coordinates of the n_samples points in a n_components-space stress : float The final value of the stress (sum of squared distance of the disparities and the distances for all constrained points) n_iter : int The number of iterations corresponding to the best stress. Returned only if `return_n_iter` is set to True. Notes ----- "Modern Multidimensional Scaling - Theory and Applications" Borg, I.; Groenen P. Springer Series in Statistics (1997) "Nonmetric multidimensional scaling: a numerical method" Kruskal, J. Psychometrika, 29 (1964) "Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis" Kruskal, J. Psychometrika, 29, (1964) """ similarities = check_array(similarities) random_state = check_random_state(random_state) if hasattr(init, '__array__'): init = np.asarray(init).copy() if not n_init == 1: warnings.warn( 'Explicit initial positions passed: ' 'performing only one init of the MDS instead of %d' % n_init) n_init = 1 best_pos, best_stress = None, None if n_jobs == 1: for it in range(n_init): pos, stress, n_iter_ = _smacof_single( similarities, metric=metric, n_components=n_components, init=init, max_iter=max_iter, verbose=verbose, eps=eps, random_state=random_state) if best_stress is None or stress < best_stress: best_stress = stress best_pos = pos.copy() best_iter = n_iter_ else: seeds = random_state.randint(np.iinfo(np.int32).max, size=n_init) results = Parallel(n_jobs=n_jobs, verbose=max(verbose - 1, 0))( delayed(_smacof_single)( similarities, metric=metric, n_components=n_components, init=init, max_iter=max_iter, verbose=verbose, eps=eps, random_state=seed) for seed in seeds) positions, stress, n_iters = zip(*results) best = np.argmin(stress) best_stress = stress[best] best_pos = positions[best] best_iter = n_iters[best] if return_n_iter: return best_pos, best_stress, best_iter else: return best_pos, best_stress class MDS(BaseEstimator): """Multidimensional scaling Parameters ---------- metric : boolean, optional, default: True compute metric or nonmetric SMACOF (Scaling by Majorizing a Complicated Function) algorithm n_components : int, optional, default: 2 number of dimension in which to immerse the similarities overridden if initial array is provided. n_init : int, optional, default: 4 Number of time the smacof algorithm will be run with different initialisation. The final results will be the best output of the n_init consecutive runs in terms of stress. max_iter : int, optional, default: 300 Maximum number of iterations of the SMACOF algorithm for a single run verbose : int, optional, default: 0 level of verbosity eps : float, optional, default: 1e-6 relative tolerance w.r.t stress to declare converge n_jobs : int, optional, default: 1 The number of jobs to use for the computation. This works by breaking down the pairwise matrix into n_jobs even slices and computing them in parallel. If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one are used. random_state : integer or numpy.RandomState, optional The generator used to initialize the centers. If an integer is given, it fixes the seed. Defaults to the global numpy random number generator. dissimilarity : string Which dissimilarity measure to use. Supported are 'euclidean' and 'precomputed'. Attributes ---------- embedding_ : array-like, shape [n_components, n_samples] Stores the position of the dataset in the embedding space stress_ : float The final value of the stress (sum of squared distance of the disparities and the distances for all constrained points) References ---------- "Modern Multidimensional Scaling - Theory and Applications" Borg, I.; Groenen P. Springer Series in Statistics (1997) "Nonmetric multidimensional scaling: a numerical method" Kruskal, J. Psychometrika, 29 (1964) "Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis" Kruskal, J. Psychometrika, 29, (1964) """ def __init__(self, n_components=2, metric=True, n_init=4, max_iter=300, verbose=0, eps=1e-3, n_jobs=1, random_state=None, dissimilarity="euclidean"): self.n_components = n_components self.dissimilarity = dissimilarity self.metric = metric self.n_init = n_init self.max_iter = max_iter self.eps = eps self.verbose = verbose self.n_jobs = n_jobs self.random_state = random_state @property def _pairwise(self): return self.kernel == "precomputed" def fit(self, X, init=None, y=None): """ Computes the position of the points in the embedding space Parameters ---------- X : array, shape=[n_samples, n_features], or [n_samples, n_samples] \ if dissimilarity='precomputed' Input data. init : {None or ndarray, shape (n_samples,)}, optional If None, randomly chooses the initial configuration if ndarray, initialize the SMACOF algorithm with this array. """ self.fit_transform(X, init=init) return self def fit_transform(self, X, init=None, y=None): """ Fit the data from X, and returns the embedded coordinates Parameters ---------- X : array, shape=[n_samples, n_features], or [n_samples, n_samples] \ if dissimilarity='precomputed' Input data. init : {None or ndarray, shape (n_samples,)}, optional If None, randomly chooses the initial configuration if ndarray, initialize the SMACOF algorithm with this array. """ if X.shape[0] == X.shape[1] and self.dissimilarity != "precomputed": warnings.warn("The MDS API has changed. ``fit`` now constructs an" " dissimilarity matrix from data. To use a custom " "dissimilarity matrix, set " "``dissimilarity=precomputed``.") if self.dissimilarity == "precomputed": self.dissimilarity_matrix_ = X elif self.dissimilarity == "euclidean": self.dissimilarity_matrix_ = euclidean_distances(X) else: raise ValueError("Proximity must be 'precomputed' or 'euclidean'." " Got %s instead" % str(self.dissimilarity)) self.embedding_, self.stress_, self.n_iter_ = smacof( self.dissimilarity_matrix_, metric=self.metric, n_components=self.n_components, init=init, n_init=self.n_init, n_jobs=self.n_jobs, max_iter=self.max_iter, verbose=self.verbose, eps=self.eps, random_state=self.random_state, return_n_iter=True) return self.embedding_
{ "content_hash": "ac7247af53c32294847adee419f17d7e", "timestamp": "", "source": "github", "line_count": 417, "max_line_length": 79, "avg_line_length": 36.52997601918465, "alnum_prop": 0.6248276767544148, "repo_name": "hitszxp/scikit-learn", "id": "6be371171fe8bb223d1102ce1f3e6a90824ccfd1", "size": "15233", "binary": false, "copies": "14", "ref": "refs/heads/master", "path": "sklearn/manifold/mds.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "C", "bytes": "18556981" }, { "name": "C++", "bytes": "1808980" }, { "name": "CSS", "bytes": "1503" }, { "name": "JavaScript", "bytes": "20564" }, { "name": "Makefile", "bytes": "4897" }, { "name": "PowerShell", "bytes": "13427" }, { "name": "Python", "bytes": "5658750" }, { "name": "Shell", "bytes": "8730" } ], "symlink_target": "" }
import re import discord import Data import deco import utilities import misc import undecorated import MemeMachine import re import owner client = discord.Client() @client.event async def on_ready(): print('Logged in !') print('------------') @client.event async def on_message(message): if message.author == client.user: return if message.content.startswith(Data.PREFIX): if message.content.startswith(Data.MEME_REDIRECT): await MemeMachine.meme_machine(client, message) return foo_name = message.content.split()[0][len(Data.PREFIX):] try: await deco.foo_dict[foo_name](client, message) except KeyError: print("Command function not found, must be a type request !") pass if re.fullmatch(Data.MBTI, message.content[len(Data.PREFIX):].lower()): await undecorated.typeroles(client, message) @client.event async def on_member_join(member): bot_message = client.get_channel('139718812705619968') join = 'Welcome on this server, {}.\n'.format(member.mention) join += 'If you know your type, you can set it using /your-type, e.g. /ESFP\n' join += 'For a general guidline, please visit #code-of-conduct.\n' join += 'Otherwise, have fun, and don\'t be shy to say hello, we are a friendly bunch of people :)' await client.send_message(member.server, join) await client.send_message(bot_message, '\'{}\' (UID: {}) has joined the server'.format(member.name, member.id)) print('\'{}\' (UID: {}) has joined the server'.format(member.name, member.id)) @client.event async def on_member_remove(member): bot_message = client.get_channel('139718812705619968') await client.send_message(bot_message, '\'{}\' (UID: {}) has left the server'.format(member.name, member.id)) client.run(Data.TOKEN)
{ "content_hash": "9cc8403b4f2caa3a8218cba5dafa2345", "timestamp": "", "source": "github", "line_count": 57, "max_line_length": 115, "avg_line_length": 32.70175438596491, "alnum_prop": 0.6652360515021459, "repo_name": "zenAndroid/zenBot", "id": "1d31efbfe25f1c2284b99acd525710c6aa2b45d3", "size": "1864", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "zenBot.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "20566" } ], "symlink_target": "" }
""" discover and run doctests in modules and test files.""" from __future__ import absolute_import import traceback import pytest from _pytest._code.code import TerminalRepr, ReprFileLocation, ExceptionInfo from _pytest.python import FixtureRequest def pytest_addoption(parser): parser.addini('doctest_optionflags', 'option flags for doctests', type="args", default=["ELLIPSIS"]) group = parser.getgroup("collect") group.addoption("--doctest-modules", action="store_true", default=False, help="run doctests in all .py modules", dest="doctestmodules") group.addoption("--doctest-glob", action="append", default=[], metavar="pat", help="doctests file matching pattern, default: test*.txt", dest="doctestglob") group.addoption("--doctest-ignore-import-errors", action="store_true", default=False, help="ignore doctest ImportErrors", dest="doctest_ignore_import_errors") def pytest_collect_file(path, parent): config = parent.config if path.ext == ".py": if config.option.doctestmodules: return DoctestModule(path, parent) elif _is_doctest(config, path, parent): return DoctestTextfile(path, parent) def _is_doctest(config, path, parent): if path.ext in ('.txt', '.rst') and parent.session.isinitpath(path): return True globs = config.getoption("doctestglob") or ['test*.txt'] for glob in globs: if path.check(fnmatch=glob): return True return False class ReprFailDoctest(TerminalRepr): def __init__(self, reprlocation, lines): self.reprlocation = reprlocation self.lines = lines def toterminal(self, tw): for line in self.lines: tw.line(line) self.reprlocation.toterminal(tw) class DoctestItem(pytest.Item): def __init__(self, name, parent, runner=None, dtest=None): super(DoctestItem, self).__init__(name, parent) self.runner = runner self.dtest = dtest self.obj = None self.fixture_request = None def setup(self): if self.dtest is not None: self.fixture_request = _setup_fixtures(self) globs = dict(getfixture=self.fixture_request.getfixturevalue) self.dtest.globs.update(globs) def runtest(self): _check_all_skipped(self.dtest) self.runner.run(self.dtest) def repr_failure(self, excinfo): import doctest if excinfo.errisinstance((doctest.DocTestFailure, doctest.UnexpectedException)): doctestfailure = excinfo.value example = doctestfailure.example test = doctestfailure.test filename = test.filename if test.lineno is None: lineno = None else: lineno = test.lineno + example.lineno + 1 message = excinfo.type.__name__ reprlocation = ReprFileLocation(filename, lineno, message) checker = _get_checker() REPORT_UDIFF = doctest.REPORT_UDIFF if lineno is not None: lines = doctestfailure.test.docstring.splitlines(False) # add line numbers to the left of the error message lines = ["%03d %s" % (i + test.lineno + 1, x) for (i, x) in enumerate(lines)] # trim docstring error lines to 10 lines = lines[example.lineno - 9:example.lineno + 1] else: lines = ['EXAMPLE LOCATION UNKNOWN, not showing all tests of that example'] indent = '>>>' for line in example.source.splitlines(): lines.append('??? %s %s' % (indent, line)) indent = '...' if excinfo.errisinstance(doctest.DocTestFailure): lines += checker.output_difference(example, doctestfailure.got, REPORT_UDIFF).split("\n") else: inner_excinfo = ExceptionInfo(excinfo.value.exc_info) lines += ["UNEXPECTED EXCEPTION: %s" % repr(inner_excinfo.value)] lines += traceback.format_exception(*excinfo.value.exc_info) return ReprFailDoctest(reprlocation, lines) else: return super(DoctestItem, self).repr_failure(excinfo) def reportinfo(self): return self.fspath, None, "[doctest] %s" % self.name def _get_flag_lookup(): import doctest return dict(DONT_ACCEPT_TRUE_FOR_1=doctest.DONT_ACCEPT_TRUE_FOR_1, DONT_ACCEPT_BLANKLINE=doctest.DONT_ACCEPT_BLANKLINE, NORMALIZE_WHITESPACE=doctest.NORMALIZE_WHITESPACE, ELLIPSIS=doctest.ELLIPSIS, IGNORE_EXCEPTION_DETAIL=doctest.IGNORE_EXCEPTION_DETAIL, COMPARISON_FLAGS=doctest.COMPARISON_FLAGS, ALLOW_UNICODE=_get_allow_unicode_flag(), ALLOW_BYTES=_get_allow_bytes_flag(), ) def get_optionflags(parent): optionflags_str = parent.config.getini("doctest_optionflags") flag_lookup_table = _get_flag_lookup() flag_acc = 0 for flag in optionflags_str: flag_acc |= flag_lookup_table[flag] return flag_acc class DoctestTextfile(pytest.Module): obj = None def collect(self): import doctest # inspired by doctest.testfile; ideally we would use it directly, # but it doesn't support passing a custom checker text = self.fspath.read() filename = str(self.fspath) name = self.fspath.basename globs = {'__name__': '__main__'} optionflags = get_optionflags(self) runner = doctest.DebugRunner(verbose=0, optionflags=optionflags, checker=_get_checker()) parser = doctest.DocTestParser() test = parser.get_doctest(text, globs, name, filename, 0) if test.examples: yield DoctestItem(test.name, self, runner, test) def _check_all_skipped(test): """raises pytest.skip() if all examples in the given DocTest have the SKIP option set. """ import doctest all_skipped = all(x.options.get(doctest.SKIP, False) for x in test.examples) if all_skipped: pytest.skip('all tests skipped by +SKIP option') class DoctestModule(pytest.Module): def collect(self): import doctest if self.fspath.basename == "conftest.py": module = self.config.pluginmanager._importconftest(self.fspath) else: try: module = self.fspath.pyimport() except ImportError: if self.config.getvalue('doctest_ignore_import_errors'): pytest.skip('unable to import module %r' % self.fspath) else: raise # uses internal doctest module parsing mechanism finder = doctest.DocTestFinder() optionflags = get_optionflags(self) runner = doctest.DebugRunner(verbose=0, optionflags=optionflags, checker=_get_checker()) for test in finder.find(module, module.__name__): if test.examples: # skip empty doctests yield DoctestItem(test.name, self, runner, test) def _setup_fixtures(doctest_item): """ Used by DoctestTextfile and DoctestItem to setup fixture information. """ def func(): pass doctest_item.funcargs = {} fm = doctest_item.session._fixturemanager doctest_item._fixtureinfo = fm.getfixtureinfo(node=doctest_item, func=func, cls=None, funcargs=False) fixture_request = FixtureRequest(doctest_item) fixture_request._fillfixtures() return fixture_request def _get_checker(): """ Returns a doctest.OutputChecker subclass that takes in account the ALLOW_UNICODE option to ignore u'' prefixes in strings and ALLOW_BYTES to strip b'' prefixes. Useful when the same doctest should run in Python 2 and Python 3. An inner class is used to avoid importing "doctest" at the module level. """ if hasattr(_get_checker, 'LiteralsOutputChecker'): return _get_checker.LiteralsOutputChecker() import doctest import re class LiteralsOutputChecker(doctest.OutputChecker): """ Copied from doctest_nose_plugin.py from the nltk project: https://github.com/nltk/nltk Further extended to also support byte literals. """ _unicode_literal_re = re.compile(r"(\W|^)[uU]([rR]?[\'\"])", re.UNICODE) _bytes_literal_re = re.compile(r"(\W|^)[bB]([rR]?[\'\"])", re.UNICODE) def check_output(self, want, got, optionflags): res = doctest.OutputChecker.check_output(self, want, got, optionflags) if res: return True allow_unicode = optionflags & _get_allow_unicode_flag() allow_bytes = optionflags & _get_allow_bytes_flag() if not allow_unicode and not allow_bytes: return False else: # pragma: no cover def remove_prefixes(regex, txt): return re.sub(regex, r'\1\2', txt) if allow_unicode: want = remove_prefixes(self._unicode_literal_re, want) got = remove_prefixes(self._unicode_literal_re, got) if allow_bytes: want = remove_prefixes(self._bytes_literal_re, want) got = remove_prefixes(self._bytes_literal_re, got) res = doctest.OutputChecker.check_output(self, want, got, optionflags) return res _get_checker.LiteralsOutputChecker = LiteralsOutputChecker return _get_checker.LiteralsOutputChecker() def _get_allow_unicode_flag(): """ Registers and returns the ALLOW_UNICODE flag. """ import doctest return doctest.register_optionflag('ALLOW_UNICODE') def _get_allow_bytes_flag(): """ Registers and returns the ALLOW_BYTES flag. """ import doctest return doctest.register_optionflag('ALLOW_BYTES')
{ "content_hash": "6d5eb492a81d72dcf353b6d72f8a8560", "timestamp": "", "source": "github", "line_count": 288, "max_line_length": 91, "avg_line_length": 35.96527777777778, "alnum_prop": 0.5954817532342151, "repo_name": "JonathonSonesen/pytest", "id": "1fd8b419be97b6b8d5ffb7b046e1c093fe3e54f2", "size": "10358", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "_pytest/doctest.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "1230310" }, { "name": "Shell", "bytes": "282" } ], "symlink_target": "" }
from RMLApp.models import RemindMe from RMLApp.serializers import RemindMeSerializer from rest_framework.decorators import api_view from rest_framework.response import Response from rest_framework import status from Remind_Me_Later.tasks import sendEmail, sendSMS @api_view(['GET']) def remindme_list(request, format=None): if request.method == 'GET': remindme = RemindMe.objects.all() serializer = RemindMeSerializer(remindme, many=True) return Response(serializer.data) return Response({'status':'error'}, status=status.HTTP_400_BAD_REQUEST) @api_view(['POST']) def remindme_add(request, format=None): if request.method == 'POST': serializer = RemindMeSerializer(data=request.data) if serializer.is_valid(): serializer.save() #print(serializer.data['id']) modelid = serializer.data['id'] email = serializer.validated_data['remind_email'] phone = serializer.validated_data['remind_phone'] time = serializer.validated_data['remind_date'] if email: sendEmail.apply_async( eta=time, kwargs={'id': modelid}) if phone: sendSMS.apply_async( eta=time, kwargs={'id': modelid}) #print() #time = datetime(time) return Response({'status':'ok'},status=status.HTTP_201_CREATED) return Response({'status':'error','error':serializer.errors}, status=status.HTTP_400_BAD_REQUEST) return Response({'status':'error'}, status=status.HTTP_400_BAD_REQUEST)
{ "content_hash": "134080814510a91f3a707e95cc841dc3", "timestamp": "", "source": "github", "line_count": 40, "max_line_length": 105, "avg_line_length": 39.275, "alnum_prop": 0.6537237428389561, "repo_name": "sandeep-daiict/Remind-Me-Later", "id": "7f8c81a73807a3ff7a5b55dacb377d8a885f764c", "size": "1571", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "Remind_Me_Later/RMLApp/views.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "12792" }, { "name": "Shell", "bytes": "176" } ], "symlink_target": "" }
from BaseHTTPServer import BaseHTTPRequestHandler import cStringIO import json import traceback import config from src.music import MusicFinder, MusicPlayer TEXT_HTML = 'text/html' APPLICATION_JSON = 'application/json' APPLICATION_JAVA_SCRIPT = 'application/javascript' class RemotePlayHttpHandler(BaseHTTPRequestHandler): _finder = None _music_player = None def __init__(self, request, client_address, server): if self.__class__._finder is None: self.__class__._finder = MusicFinder(config.MUSIC_DIRECTORY) if self.__class__._music_player is None: self.__class__._music_player = MusicPlayer(self.__class__._finder) BaseHTTPRequestHandler.__init__(self, request, client_address, server) def send_text_response(self, type, output): self.send_response(200) self.send_header('Content-type', "%s; charset=utf-8" % type) self.end_headers() self.wfile.write(output.getvalue()) def get_html_begins(self): result = "<html><head><title></title></head><body>" return result def get_html_ends(self): result = "</body></html>" return result def do_GET(self): try: output = cStringIO.StringIO() response_type = TEXT_HTML if self.path == '/': output.write(self.get_html_begins()) output.write('<p>Remote Play Index</p>') output.write(self.get_html_ends()) if self.path.startswith("/html/"): html_file = self.path.replace('/html/', '', 1) with open('html/%s.htm' % html_file) as handle: content = handle.read() output.write(content) if self.path == "/js": response_type = APPLICATION_JAVA_SCRIPT with open('./js/rp.js') as handle: content = handle.read() output.write(content) if self.path.startswith("/play/"): music_id = self.path.replace('/play/', '', 1) self.__class__._music_player.play_from_id(music_id) if self.path.startswith("/set_volume/"): volume = self.path.replace('/set_volume/', '', 1) self.__class__._music_player.set_volume(float(volume) / 100.0) if self.path == '/play': self.__class__._music_player.play() if self.path == '/stop': self.__class__._music_player.stop() if self.path == '/pause': self.__class__._music_player.pause() if self.path == '/resume': self.__class__._music_player.resume() if self.path == '/play_next': self.__class__._music_player.play_next() if self.path == '/play_prev': self.__class__._music_player.play_prev() if self.path == '/current': response_type = APPLICATION_JSON response = { 'volume': self.__class__._music_player.get_volume(), 'position': self.__class__._music_player.get_position(), 'title': self.__class__._music_player.current_title(), 'artist': self.__class__._music_player.current_artist(), 'album': self.__class__._music_player.current_album(), 'length': self.__class__._music_player.current_length() } output.write(json.dumps(response)) if self.path == '/list': response_type = APPLICATION_JSON musics = self.__class__._finder.list_musics() self.__class__._music_player.set_list(musics) output.write(json.dumps(musics)) self.send_text_response(response_type, output) except: traceback.print_exc() self.send_error(500, 'The server failed: %s' % self.path)
{ "content_hash": "d655415c55934629a64ec6a9c7e711d1", "timestamp": "", "source": "github", "line_count": 112, "max_line_length": 78, "avg_line_length": 35.723214285714285, "alnum_prop": 0.5321169707573107, "repo_name": "paulocanedo/remote_play", "id": "872fcecd774a5fe2f841bc59644fc9f8a848565f", "size": "4001", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "src/http.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "JavaScript", "bytes": "582" }, { "name": "Python", "bytes": "16294" } ], "symlink_target": "" }
from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('supplier_partner', '0003_auto_20180215_0942'), ] operations = [ migrations.AlterField( model_name='buyer', name='id', field=models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID'), ), migrations.AlterField( model_name='partner', name='id', field=models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID'), ), migrations.AlterField( model_name='supplier', name='id', field=models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID'), ), ]
{ "content_hash": "362b7c02e4f4886306973f97c8b44489", "timestamp": "", "source": "github", "line_count": 26, "max_line_length": 111, "avg_line_length": 31.73076923076923, "alnum_prop": 0.5890909090909091, "repo_name": "cdaf/cbe", "id": "97ab1121b744fbb001af0c0c302109dc78cf3955", "size": "874", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "cbe/cbe/supplier_partner/migrations/0004_auto_20210617_2350.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Dockerfile", "bytes": "2292" }, { "name": "HTML", "bytes": "3112" }, { "name": "PowerShell", "bytes": "20448" }, { "name": "Python", "bytes": "241197" } ], "symlink_target": "" }
import nose.tools from nose import SkipTest from nose.plugins.attrib import attr from tests.common import WpsTestClient, assert_response_success @attr('online') def test_wps_analogs(): raise SkipTest wps = WpsTestClient() datainputs = "[experiment=NCEP;dateSt=1958-07-15;dateEn=1958-12-31]" resp = wps.get(service='wps', request='execute', version='1.0.0', identifier='analogs', datainputs=datainputs) assert_response_success(resp)
{ "content_hash": "e3cefec17b6674f2aacbcd348ff6b12b", "timestamp": "", "source": "github", "line_count": 16, "max_line_length": 91, "avg_line_length": 29.6875, "alnum_prop": 0.7094736842105264, "repo_name": "sradanov/flyingpigeon", "id": "3b923c2fcc2d091d540d7feb95e0f79e0526c15d", "size": "475", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "tests/test_wps_analogs.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Assembly", "bytes": "5904" }, { "name": "C", "bytes": "167437" }, { "name": "C++", "bytes": "185682" }, { "name": "CMake", "bytes": "80300" }, { "name": "FORTRAN", "bytes": "34034612" }, { "name": "Groff", "bytes": "129542" }, { "name": "Jupyter Notebook", "bytes": "1005031" }, { "name": "M4", "bytes": "182454" }, { "name": "Makefile", "bytes": "807377" }, { "name": "PAWN", "bytes": "6378" }, { "name": "Pascal", "bytes": "102662" }, { "name": "Python", "bytes": "259095" }, { "name": "R", "bytes": "49639" }, { "name": "Shell", "bytes": "1311673" }, { "name": "TeX", "bytes": "339616" } ], "symlink_target": "" }
import abc import weakref import asyncio class Person: def __init__(self, id, name): self.id = id self.name = name @asyncio.coroutine def get_name(self): return self.name class IncomingMessage: def __init__(self, protocol, conversation, author, text, timestamp=None, attachments=[]): self.protocol = weakref.ref(protocol) self.conversation = conversation self.author = author self.text = text self.timestamp = timestamp self.attachments = attachments self.handled = None class Message: def __init__(self, text, attachments=[]): self.text = text self.attachments = attachments class Conversation(abc.ABC): def __init__(self, protocol, title): self.protocol = weakref.ref(protocol) self.title = title @abc.abstractmethod @asyncio.coroutine def send(self, msg): pass @asyncio.coroutine def reply(self, *args, **kwargs): yield from self.send(Message(*args, **kwargs))
{ "content_hash": "61f58a32693b9636fa60686f2e3996a4", "timestamp": "", "source": "github", "line_count": 45, "max_line_length": 93, "avg_line_length": 23.266666666666666, "alnum_prop": 0.6217765042979942, "repo_name": "Slko/Slot", "id": "217b157442e9e0f2aa52c1cd5fa41293eb5113ac", "size": "1047", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "slot/message.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "Python", "bytes": "68413" } ], "symlink_target": "" }
from VisualisationPlugin import VisualisationPlugin import pygame import pygame.camera import logging from DDRPi import FloorCanvas from lib.controllers import ControllerInput class CameraVisualisationPlugin(VisualisationPlugin): logger = logging.getLogger(__name__) def __init__(self): self.clock = pygame.time.Clock() self.webcam = None self.webcam_index = None # Nothing specific to be done before this starts, although we could # set self.clock here. Stash any config so we can use it later def configure(self, config): self.config = config self.logger.info("Config: %s" % config) # This will just keep running, nothing specific to do for start(), stop(), # pause() or resume() def start(self): pygame.camera.init() camera_list = pygame.camera.list_cameras() # list available cameras self.logger.info("Cameras found: %d" % len(camera_list)) if len(camera_list) > 0: for camera in camera_list: self.logger.info("CAMERA: %s" % camera) # # Choose the first webcam self.webcam_index = 0 self.webcam = pygame.camera.Camera(camera_list[0], (800, 600)) # self.webcam.start() # start camera pass def stop(self): self.webcam.stop() def pause(self): self.stop() def resume(self): self.start() def handle_event(self, event): try: if (pygame.event.event_name(event.type) == "JoyButtonDown"): # iterate over the attached cameras if there are more than one if (event.button == ControllerInput.BUMPER_RIGHT): camera_list = pygame.camera.list_cameras() if len(camera_list) > 0: # Stop the existing one self.logger.info("Stopping current camera: %s" % self.webcam) self.webcam.stop() if self.webcam_index is not None: self.webcam_index += 1 else: self.webcam_index = 0 if self.webcam_index >= len(camera_list): self.webcam_index = 0 self.webcam = pygame.camera.Camera(camera_list[self.webcam_index], (800, 600)) self.logger.info("starting new camera: %s" % self.webcam) self.webcam.start() except Exception as e: self.logger.warn(e) def draw_frame(self, surface): if self.webcam is not None: self.logger.info("Getting image from webcam %s" % self.webcam) image = self.webcam.get_image() resized_image = pygame.transform.scale(image, (surface.get_width(), surface.get_height())) pixel_array = pygame.surfarray.pixels3d(resized_image) #self.logger.info(pixel_array) for row, row_data in enumerate(pixel_array): for column, pixel_data in enumerate(row_data): surface.set_pixel(row, column, (pixel_data[0], pixel_data[1], pixel_data[2])) # Limit the frame rate. # This sleeps so that at least 25ms has passed since tick() # was last called. It is a no-op if the loop is running slow self.clock.tick(25) # Draw whatever this plugin does. # We need to return our decorated surface return surface def draw_splash(self, canvas): return self.draw_surface(canvas, 0) # We've split the method that does the drawing out, so that draw_splash() # can call it with a fixed timer def draw_surface(self, canvas, ticks): canvas.set_colour(FloorCanvas.BLUE) # Return the canvas return canvas
{ "content_hash": "ba1b84eaa73d11a3abfe5467352cfcea", "timestamp": "", "source": "github", "line_count": 105, "max_line_length": 102, "avg_line_length": 36.8, "alnum_prop": 0.5750517598343685, "repo_name": "fraz3alpha/led-disco-dancefloor", "id": "172dbf49dbc142729b6470480a3de1df6e90d2de", "size": "3864", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "software/controller/visualisation_plugins/camera.py", "mode": "33188", "license": "mit", "language": [ { "name": "Arduino", "bytes": "16623" }, { "name": "Eagle", "bytes": "898737" }, { "name": "Python", "bytes": "302101" } ], "symlink_target": "" }
from operator import attrgetter from typing import List from .alarm_types import AlarmType, AlarmCommand, AlarmSignal, AlarmCurl, AlarmLog, AlarmMule, AlarmXmpp from ..base import OptionsGroup from ..utils import listify TypeAlarmExt = List[AlarmType] class Alarms(OptionsGroup): """Alarms. This subsystem allows the developer/sysadmin to "announce" special conditions of an app via various channels. * http://uwsgi-docs.readthedocs.io/en/latest/AlarmSubsystem.html """ class alarm_types: """Alarm types available for ``.register_alarm()``.""" command = AlarmCommand curl = AlarmCurl log = AlarmLog mule = AlarmMule signal = AlarmSignal xmpp = AlarmXmpp def __init__(self, *args, **kwargs): self._alarms = [] super().__init__(*args, **kwargs) def set_basic_params(self, *, msg_size: int = None, cheap: bool = None, anti_loop_timeout: int = None): """ :param msg_size: Set the max size of an alarm message in bytes. Default: 8192. :param cheap: Use main alarm thread rather than create dedicated threads for curl-based alarms :param anti_loop_timeout: Tune the anti-loop alarm system. Default: 3 seconds. """ self._set('alarm-msg-size', msg_size) self._set('alarm-cheap', cheap, cast=bool) self._set('alarm-freq', anti_loop_timeout) return self._section def print_alarms(self): """Print out enabled alarms.""" self._set('alarm-list', True, cast=bool) return self._section def register_alarm(self, alarm: TypeAlarmExt): """Register (create) an alarm. :param alarm: Alarm. """ for alarm in listify(alarm): if alarm not in self._alarms: self._set('alarm', alarm, multi=True) self._alarms.append(alarm) return self._section def alarm_on_log(self, alarm: TypeAlarmExt, matcher: str, *, skip: bool = False): """Raise (or skip) the specified alarm when a log line matches the specified regexp. :param alarm: Alarm. :param matcher: Regular expression to match log line. :param skip: """ self.register_alarm(alarm) value = f"{','.join(map(attrgetter('alias'), listify(alarm)))} {matcher}" self._set('not-alarm-log' if skip else 'alarm-log', value) return self._section def alarm_on_fd_ready(self, alarm: TypeAlarmExt, *, fd: str, message: str, byte_count: int = None): """Triggers the alarm when the specified file descriptor is ready for read. This is really useful for integration with the Linux eventfd() facility. Pretty low-level and the basis of most of the alarm plugins. * http://uwsgi-docs.readthedocs.io/en/latest/Changelog-1.9.7.html#alarm-fd :param alarm: Alarm. :param fd: File descriptor. :param message: Message to send. :param byte_count: Files to read. Default: 1 byte. .. note:: For ``eventfd`` set 8. """ self.register_alarm(alarm) value = fd if byte_count: value += f':{byte_count}' value += f' {message}' for alarm_ in listify(alarm): self._set('alarm-fd', f'{alarm_.alias} {value}', multi=True) return self._section def alarm_on_queue_full(self, alarm: TypeAlarmExt): """Raise the specified alarm when the socket backlog queue is full. :param alarm: Alarm. """ self.register_alarm(alarm) for alarm_ in listify(alarm): self._set('alarm-backlog', alarm_.alias, multi=True) return self._section def alarm_on_segfault(self, alarm: TypeAlarmExt): """Raise the specified alarm when the segmentation fault handler is executed. Sends a backtrace. :param alarm: Alarm. """ self.register_alarm(alarm) for alarm_ in listify(alarm): self._set('alarm-segfault', alarm_.alias, multi=True) return self._section
{ "content_hash": "f13694d939aecafa514c3f01063e7fdf", "timestamp": "", "source": "github", "line_count": 147, "max_line_length": 107, "avg_line_length": 28.14965986394558, "alnum_prop": 0.6072982116964717, "repo_name": "idlesign/uwsgiconf", "id": "e376636a1ff64e8915c3d21e45a7964423a251c3", "size": "4138", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "uwsgiconf/options/alarms.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "HTML", "bytes": "5422" }, { "name": "Python", "bytes": "522381" } ], "symlink_target": "" }
"""Contains global paths.""" # pylama:ignore=E221 (whitespace error) # Relative to channel instance DATABASE_PATH = '{}data/monkalot.db' IGNORED_USERS_PATH = '{}data/ignored_users.json' NOTIFICATIONS_FILE = '{}data/notifications.json' PRONOUNS_PATH = '{}data/pronouns.json' QUOTES_FILE = '{}data/quotes.json' REPLIES_FILE = '{}data/sreply_cmds.json' SLAPHUG_FILE = '{}data/slaphug.json' SMORC_FILE = '{}data/smorc.json' STATISTIC_FILE = '{}data/emote_stats.json' TRUSTED_MODS_PATH = '{}data/trusted_mods.json' JSON_DATA_PATH = '{}data/api_json_data/{}' CONFIG_PATH = '{}configs/bot_config.json' CUSTOM_RESPONSES_PATH = '{}configs/responses.json' # Absolute paths COMMON_API_JSON_DATA_PATH = 'data/common_api_json_data/{}' JSON_FILE_INDEX_PATH = 'data/common_api_json_data/json_index.json' TEMPLATE_RESPONSES_PATH = 'channels/template/configs/responses.json' # File names CHANNEL_BTTV_EMOTE_JSON_FILE = 'channel_bttv.json' # APIs TWITCH_TMI = 'http://tmi.twitch.tv/' USERLIST_API = TWITCH_TMI + 'group/user/{}/chatters' TWITCH_API = 'https://api.twitch.tv/' OIDC_API = TWITCH_API + '/api/oidc/keys' TWITCH_KRAKEN_API = TWITCH_API + 'kraken/' CHANNEL_API = TWITCH_KRAKEN_API + 'channels/{}' STREAMS_API = TWITCH_KRAKEN_API + 'streams/{}' USER_EMOTE_API = TWITCH_KRAKEN_API + 'users/{}/emotes' USER_ID_API = TWITCH_KRAKEN_API + 'users/{}' USER_NAME_API = TWITCH_KRAKEN_API + 'users?login={}' TWITCH_EMOTE_API = TWITCH_KRAKEN_API + 'chat/emoticon_images?emotesets=0' BTTV_API = 'https://api.betterttv.net/2/' GLOBAL_BTTVEMOTES_API = BTTV_API + 'emotes' CHANNEL_BTTVEMOTES_API = BTTV_API + 'channels/{}' HEARTHSTONE_CARD_API = 'http://api.hearthstonejson.com/v1/latest/enUS/cards.collectible.json' EMOJI_API = "https://raw.githubusercontent.com/github/gemoji/master/db/emoji.json"
{ "content_hash": "e3b7434be83fb53ad206544fde35ab0a", "timestamp": "", "source": "github", "line_count": 53, "max_line_length": 93, "avg_line_length": 38.43396226415094, "alnum_prop": 0.6298478154148257, "repo_name": "ghostduck/monkalot", "id": "867fe316eadc4f6c921338afd0285acb894fe95b", "size": "2037", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "bot/paths/__init__.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "195166" } ], "symlink_target": "" }
from .main import app
{ "content_hash": "113af8fa35f55016d02a94a987a41942", "timestamp": "", "source": "github", "line_count": 1, "max_line_length": 21, "avg_line_length": 22, "alnum_prop": 0.7727272727272727, "repo_name": "jniedrauer/jniedrauer.com", "id": "e4c7aa543f9b2957eca502687a621c81a2b25947", "size": "22", "binary": false, "copies": "3", "ref": "refs/heads/master", "path": "app/__init__.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "2757" }, { "name": "HCL", "bytes": "13050" }, { "name": "HTML", "bytes": "14702" }, { "name": "Makefile", "bytes": "2469" }, { "name": "Python", "bytes": "5728" }, { "name": "Shell", "bytes": "87" }, { "name": "Smarty", "bytes": "338" } ], "symlink_target": "" }
""" Runs tests and writes the results to the report.json file. This should be executed inside Blender, not from normal Python! """ import glob import json import os from timeit import default_timer as timer import sys import bpy print('bpy.app.version:', bpy.app.version) print('python sys.version:', sys.version) base_dir = os.path.dirname(os.path.abspath(__file__)) samples_path = os.path.join(base_dir, 'glTF-Sample-Models', '2.0') site_local_path = os.path.join(base_dir, 'site_local') report_path = os.path.join(base_dir, 'report.json') tests = [] files = ( glob.glob(samples_path + '/**/*.gltf', recursive=True) + glob.glob(samples_path + '/**/*.glb', recursive=True) + glob.glob(site_local_path + '/**/*.glb', recursive=True) + glob.glob(site_local_path + '/**/*.glb', recursive=True) ) # Skip Draco encoded files for now files = [fn for fn in files if 'Draco' not in fn] for filename in files: short_name = os.path.relpath(filename, samples_path) print('\nTrying ', short_name, '...') bpy.ops.wm.read_factory_settings() try: start_time = timer() bpy.ops.import_scene.gltf_ksons(filepath=filename) end_time = timer() print('[PASSED]\n') test = { 'filename': short_name, 'result': 'PASSED', 'timeElapsed': end_time - start_time, } except Exception as e: print('[FAILED]\n') test = { 'filename': filename, 'result': 'FAILED', 'error': str(e), } tests.append(test) report = { 'blenderVersion': list(bpy.app.version), 'tests': tests, } with open(report_path, 'w+') as f: json.dump(report, f, indent=4)
{ "content_hash": "ae8da14fc8ff5305ef6104b7d2262d0d", "timestamp": "", "source": "github", "line_count": 68, "max_line_length": 66, "avg_line_length": 25.235294117647058, "alnum_prop": 0.6078088578088578, "repo_name": "ksons/gltf-blender-importer", "id": "1e492d778f644ad82733828cf521bcc9afd57ca2", "size": "1716", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "test/bl_generate_report.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "146587" } ], "symlink_target": "" }
from collections import OrderedDict import functools import re from typing import Dict, Mapping, Optional, Sequence, Tuple, Type, Union import pkg_resources from google.api_core.client_options import ClientOptions from google.api_core import exceptions as core_exceptions from google.api_core import gapic_v1 from google.api_core import retry as retries from google.auth import credentials as ga_credentials # type: ignore from google.oauth2 import service_account # type: ignore try: OptionalRetry = Union[retries.Retry, gapic_v1.method._MethodDefault] except AttributeError: # pragma: NO COVER OptionalRetry = Union[retries.Retry, object] # type: ignore from google.protobuf import field_mask_pb2 # type: ignore from google.protobuf import timestamp_pb2 # type: ignore from grafeas.grafeas_v1.services.grafeas import pagers from grafeas.grafeas_v1.types import attestation from grafeas.grafeas_v1.types import build from grafeas.grafeas_v1.types import common from grafeas.grafeas_v1.types import compliance from grafeas.grafeas_v1.types import deployment from grafeas.grafeas_v1.types import discovery from grafeas.grafeas_v1.types import dsse_attestation from grafeas.grafeas_v1.types import grafeas from grafeas.grafeas_v1.types import image from grafeas.grafeas_v1.types import package from grafeas.grafeas_v1.types import upgrade from grafeas.grafeas_v1.types import vulnerability from .transports.base import GrafeasTransport, DEFAULT_CLIENT_INFO from .transports.grpc_asyncio import GrafeasGrpcAsyncIOTransport from .client import GrafeasClient class GrafeasAsyncClient: """`Grafeas <https://grafeas.io>`__ API. Retrieves analysis results of Cloud components such as Docker container images. Analysis results are stored as a series of occurrences. An ``Occurrence`` contains information about a specific analysis instance on a resource. An occurrence refers to a ``Note``. A note contains details describing the analysis and is generally stored in a separate project, called a ``Provider``. Multiple occurrences can refer to the same note. For example, an SSL vulnerability could affect multiple images. In this case, there would be one note for the vulnerability and an occurrence for each image with the vulnerability referring to that note. """ _client: GrafeasClient note_path = staticmethod(GrafeasClient.note_path) parse_note_path = staticmethod(GrafeasClient.parse_note_path) occurrence_path = staticmethod(GrafeasClient.occurrence_path) parse_occurrence_path = staticmethod(GrafeasClient.parse_occurrence_path) project_path = staticmethod(GrafeasClient.project_path) parse_project_path = staticmethod(GrafeasClient.parse_project_path) common_billing_account_path = staticmethod( GrafeasClient.common_billing_account_path ) parse_common_billing_account_path = staticmethod( GrafeasClient.parse_common_billing_account_path ) common_folder_path = staticmethod(GrafeasClient.common_folder_path) parse_common_folder_path = staticmethod(GrafeasClient.parse_common_folder_path) common_organization_path = staticmethod(GrafeasClient.common_organization_path) parse_common_organization_path = staticmethod( GrafeasClient.parse_common_organization_path ) common_project_path = staticmethod(GrafeasClient.common_project_path) parse_common_project_path = staticmethod(GrafeasClient.parse_common_project_path) common_location_path = staticmethod(GrafeasClient.common_location_path) parse_common_location_path = staticmethod(GrafeasClient.parse_common_location_path) @classmethod def from_service_account_info(cls, info: dict, *args, **kwargs): """Creates an instance of this client using the provided credentials info. Args: info (dict): The service account private key info. args: Additional arguments to pass to the constructor. kwargs: Additional arguments to pass to the constructor. Returns: GrafeasAsyncClient: The constructed client. """ return GrafeasClient.from_service_account_info.__func__(GrafeasAsyncClient, info, *args, **kwargs) # type: ignore @property def transport(self) -> GrafeasTransport: """Returns the transport used by the client instance. Returns: GrafeasTransport: The transport used by the client instance. """ return self._client.transport get_transport_class = functools.partial( type(GrafeasClient).get_transport_class, type(GrafeasClient) ) def __init__( self, *, transport: Union[str, GrafeasTransport] = "grpc_asyncio", ) -> None: """Instantiate the grafeas client. Args: transport (Union[str, ~.GrafeasTransport]): The transport to use. Raises: google.auth.exceptions.MutualTlsChannelError: If mutual TLS transport creation failed for any reason. """ self._client = GrafeasClient( transport=transport, ) async def get_occurrence( self, request: Union[grafeas.GetOccurrenceRequest, dict] = None, *, name: str = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: float = None, metadata: Sequence[Tuple[str, str]] = (), ) -> grafeas.Occurrence: r"""Gets the specified occurrence. .. code-block:: python # This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from grafeas import grafeas_v1 async def sample_get_occurrence(): # Create a client client = grafeas_v1.GrafeasAsyncClient() # Initialize request argument(s) request = grafeas_v1.GetOccurrenceRequest( name="name_value", ) # Make the request response = await client.get_occurrence(request=request) # Handle the response print(response) Args: request (Union[grafeas.grafeas_v1.types.GetOccurrenceRequest, dict]): The request object. Request to get an occurrence. name (:class:`str`): The name of the occurrence in the form of ``projects/[PROJECT_ID]/occurrences/[OCCURRENCE_ID]``. This corresponds to the ``name`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry.Retry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: grafeas.grafeas_v1.types.Occurrence: An instance of an analysis type that has been found on a resource. """ # Create or coerce a protobuf request object. # Quick check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([name]) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) request = grafeas.GetOccurrenceRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if name is not None: request.name = name # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = gapic_v1.method_async.wrap_method( self._client._transport.get_occurrence, default_retry=retries.Retry( initial=0.1, maximum=60.0, multiplier=1.3, predicate=retries.if_exception_type( core_exceptions.DeadlineExceeded, core_exceptions.ServiceUnavailable, ), deadline=30.0, ), default_timeout=30.0, client_info=DEFAULT_CLIENT_INFO, ) # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("name", request.name),)), ) # Send the request. response = await rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response async def list_occurrences( self, request: Union[grafeas.ListOccurrencesRequest, dict] = None, *, parent: str = None, filter: str = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: float = None, metadata: Sequence[Tuple[str, str]] = (), ) -> pagers.ListOccurrencesAsyncPager: r"""Lists occurrences for the specified project. .. code-block:: python # This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from grafeas import grafeas_v1 async def sample_list_occurrences(): # Create a client client = grafeas_v1.GrafeasAsyncClient() # Initialize request argument(s) request = grafeas_v1.ListOccurrencesRequest( parent="parent_value", ) # Make the request page_result = client.list_occurrences(request=request) # Handle the response async for response in page_result: print(response) Args: request (Union[grafeas.grafeas_v1.types.ListOccurrencesRequest, dict]): The request object. Request to list occurrences. parent (:class:`str`): The name of the project to list occurrences for in the form of ``projects/[PROJECT_ID]``. This corresponds to the ``parent`` field on the ``request`` instance; if ``request`` is provided, this should not be set. filter (:class:`str`): The filter expression. This corresponds to the ``filter`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry.Retry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: grafeas.grafeas_v1.services.grafeas.pagers.ListOccurrencesAsyncPager: Response for listing occurrences. Iterating over this object will yield results and resolve additional pages automatically. """ # Create or coerce a protobuf request object. # Quick check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([parent, filter]) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) request = grafeas.ListOccurrencesRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if parent is not None: request.parent = parent if filter is not None: request.filter = filter # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = gapic_v1.method_async.wrap_method( self._client._transport.list_occurrences, default_retry=retries.Retry( initial=0.1, maximum=60.0, multiplier=1.3, predicate=retries.if_exception_type( core_exceptions.DeadlineExceeded, core_exceptions.ServiceUnavailable, ), deadline=30.0, ), default_timeout=30.0, client_info=DEFAULT_CLIENT_INFO, ) # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("parent", request.parent),)), ) # Send the request. response = await rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # This method is paged; wrap the response in a pager, which provides # an `__aiter__` convenience method. response = pagers.ListOccurrencesAsyncPager( method=rpc, request=request, response=response, metadata=metadata, ) # Done; return the response. return response async def delete_occurrence( self, request: Union[grafeas.DeleteOccurrenceRequest, dict] = None, *, name: str = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: float = None, metadata: Sequence[Tuple[str, str]] = (), ) -> None: r"""Deletes the specified occurrence. For example, use this method to delete an occurrence when the occurrence is no longer applicable for the given resource. .. code-block:: python # This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from grafeas import grafeas_v1 async def sample_delete_occurrence(): # Create a client client = grafeas_v1.GrafeasAsyncClient() # Initialize request argument(s) request = grafeas_v1.DeleteOccurrenceRequest( name="name_value", ) # Make the request await client.delete_occurrence(request=request) Args: request (Union[grafeas.grafeas_v1.types.DeleteOccurrenceRequest, dict]): The request object. Request to delete an occurrence. name (:class:`str`): The name of the occurrence in the form of ``projects/[PROJECT_ID]/occurrences/[OCCURRENCE_ID]``. This corresponds to the ``name`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry.Retry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. """ # Create or coerce a protobuf request object. # Quick check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([name]) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) request = grafeas.DeleteOccurrenceRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if name is not None: request.name = name # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = gapic_v1.method_async.wrap_method( self._client._transport.delete_occurrence, default_retry=retries.Retry( initial=0.1, maximum=60.0, multiplier=1.3, predicate=retries.if_exception_type( core_exceptions.DeadlineExceeded, core_exceptions.ServiceUnavailable, ), deadline=30.0, ), default_timeout=30.0, client_info=DEFAULT_CLIENT_INFO, ) # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("name", request.name),)), ) # Send the request. await rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) async def create_occurrence( self, request: Union[grafeas.CreateOccurrenceRequest, dict] = None, *, parent: str = None, occurrence: grafeas.Occurrence = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: float = None, metadata: Sequence[Tuple[str, str]] = (), ) -> grafeas.Occurrence: r"""Creates a new occurrence. .. code-block:: python # This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from grafeas import grafeas_v1 async def sample_create_occurrence(): # Create a client client = grafeas_v1.GrafeasAsyncClient() # Initialize request argument(s) request = grafeas_v1.CreateOccurrenceRequest( parent="parent_value", ) # Make the request response = await client.create_occurrence(request=request) # Handle the response print(response) Args: request (Union[grafeas.grafeas_v1.types.CreateOccurrenceRequest, dict]): The request object. Request to create a new occurrence. parent (:class:`str`): The name of the project in the form of ``projects/[PROJECT_ID]``, under which the occurrence is to be created. This corresponds to the ``parent`` field on the ``request`` instance; if ``request`` is provided, this should not be set. occurrence (:class:`grafeas.grafeas_v1.types.Occurrence`): The occurrence to create. This corresponds to the ``occurrence`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry.Retry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: grafeas.grafeas_v1.types.Occurrence: An instance of an analysis type that has been found on a resource. """ # Create or coerce a protobuf request object. # Quick check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([parent, occurrence]) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) request = grafeas.CreateOccurrenceRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if parent is not None: request.parent = parent if occurrence is not None: request.occurrence = occurrence # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = gapic_v1.method_async.wrap_method( self._client._transport.create_occurrence, default_timeout=30.0, client_info=DEFAULT_CLIENT_INFO, ) # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("parent", request.parent),)), ) # Send the request. response = await rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response async def batch_create_occurrences( self, request: Union[grafeas.BatchCreateOccurrencesRequest, dict] = None, *, parent: str = None, occurrences: Sequence[grafeas.Occurrence] = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: float = None, metadata: Sequence[Tuple[str, str]] = (), ) -> grafeas.BatchCreateOccurrencesResponse: r"""Creates new occurrences in batch. .. code-block:: python # This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from grafeas import grafeas_v1 async def sample_batch_create_occurrences(): # Create a client client = grafeas_v1.GrafeasAsyncClient() # Initialize request argument(s) request = grafeas_v1.BatchCreateOccurrencesRequest( parent="parent_value", ) # Make the request response = await client.batch_create_occurrences(request=request) # Handle the response print(response) Args: request (Union[grafeas.grafeas_v1.types.BatchCreateOccurrencesRequest, dict]): The request object. Request to create occurrences in batch. parent (:class:`str`): The name of the project in the form of ``projects/[PROJECT_ID]``, under which the occurrences are to be created. This corresponds to the ``parent`` field on the ``request`` instance; if ``request`` is provided, this should not be set. occurrences (:class:`Sequence[grafeas.grafeas_v1.types.Occurrence]`): The occurrences to create. Max allowed length is 1000. This corresponds to the ``occurrences`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry.Retry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: grafeas.grafeas_v1.types.BatchCreateOccurrencesResponse: Response for creating occurrences in batch. """ # Create or coerce a protobuf request object. # Quick check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([parent, occurrences]) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) request = grafeas.BatchCreateOccurrencesRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if parent is not None: request.parent = parent if occurrences: request.occurrences.extend(occurrences) # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = gapic_v1.method_async.wrap_method( self._client._transport.batch_create_occurrences, default_timeout=30.0, client_info=DEFAULT_CLIENT_INFO, ) # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("parent", request.parent),)), ) # Send the request. response = await rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response async def update_occurrence( self, request: Union[grafeas.UpdateOccurrenceRequest, dict] = None, *, name: str = None, occurrence: grafeas.Occurrence = None, update_mask: field_mask_pb2.FieldMask = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: float = None, metadata: Sequence[Tuple[str, str]] = (), ) -> grafeas.Occurrence: r"""Updates the specified occurrence. .. code-block:: python # This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from grafeas import grafeas_v1 async def sample_update_occurrence(): # Create a client client = grafeas_v1.GrafeasAsyncClient() # Initialize request argument(s) request = grafeas_v1.UpdateOccurrenceRequest( name="name_value", ) # Make the request response = await client.update_occurrence(request=request) # Handle the response print(response) Args: request (Union[grafeas.grafeas_v1.types.UpdateOccurrenceRequest, dict]): The request object. Request to update an occurrence. name (:class:`str`): The name of the occurrence in the form of ``projects/[PROJECT_ID]/occurrences/[OCCURRENCE_ID]``. This corresponds to the ``name`` field on the ``request`` instance; if ``request`` is provided, this should not be set. occurrence (:class:`grafeas.grafeas_v1.types.Occurrence`): The updated occurrence. This corresponds to the ``occurrence`` field on the ``request`` instance; if ``request`` is provided, this should not be set. update_mask (:class:`google.protobuf.field_mask_pb2.FieldMask`): The fields to update. This corresponds to the ``update_mask`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry.Retry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: grafeas.grafeas_v1.types.Occurrence: An instance of an analysis type that has been found on a resource. """ # Create or coerce a protobuf request object. # Quick check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([name, occurrence, update_mask]) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) request = grafeas.UpdateOccurrenceRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if name is not None: request.name = name if occurrence is not None: request.occurrence = occurrence if update_mask is not None: request.update_mask = update_mask # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = gapic_v1.method_async.wrap_method( self._client._transport.update_occurrence, default_timeout=30.0, client_info=DEFAULT_CLIENT_INFO, ) # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("name", request.name),)), ) # Send the request. response = await rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response async def get_occurrence_note( self, request: Union[grafeas.GetOccurrenceNoteRequest, dict] = None, *, name: str = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: float = None, metadata: Sequence[Tuple[str, str]] = (), ) -> grafeas.Note: r"""Gets the note attached to the specified occurrence. Consumer projects can use this method to get a note that belongs to a provider project. .. code-block:: python # This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from grafeas import grafeas_v1 async def sample_get_occurrence_note(): # Create a client client = grafeas_v1.GrafeasAsyncClient() # Initialize request argument(s) request = grafeas_v1.GetOccurrenceNoteRequest( name="name_value", ) # Make the request response = await client.get_occurrence_note(request=request) # Handle the response print(response) Args: request (Union[grafeas.grafeas_v1.types.GetOccurrenceNoteRequest, dict]): The request object. Request to get the note to which the specified occurrence is attached. name (:class:`str`): The name of the occurrence in the form of ``projects/[PROJECT_ID]/occurrences/[OCCURRENCE_ID]``. This corresponds to the ``name`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry.Retry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: grafeas.grafeas_v1.types.Note: A type of analysis that can be done for a resource. """ # Create or coerce a protobuf request object. # Quick check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([name]) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) request = grafeas.GetOccurrenceNoteRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if name is not None: request.name = name # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = gapic_v1.method_async.wrap_method( self._client._transport.get_occurrence_note, default_retry=retries.Retry( initial=0.1, maximum=60.0, multiplier=1.3, predicate=retries.if_exception_type( core_exceptions.DeadlineExceeded, core_exceptions.ServiceUnavailable, ), deadline=30.0, ), default_timeout=30.0, client_info=DEFAULT_CLIENT_INFO, ) # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("name", request.name),)), ) # Send the request. response = await rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response async def get_note( self, request: Union[grafeas.GetNoteRequest, dict] = None, *, name: str = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: float = None, metadata: Sequence[Tuple[str, str]] = (), ) -> grafeas.Note: r"""Gets the specified note. .. code-block:: python # This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from grafeas import grafeas_v1 async def sample_get_note(): # Create a client client = grafeas_v1.GrafeasAsyncClient() # Initialize request argument(s) request = grafeas_v1.GetNoteRequest( name="name_value", ) # Make the request response = await client.get_note(request=request) # Handle the response print(response) Args: request (Union[grafeas.grafeas_v1.types.GetNoteRequest, dict]): The request object. Request to get a note. name (:class:`str`): The name of the note in the form of ``projects/[PROVIDER_ID]/notes/[NOTE_ID]``. This corresponds to the ``name`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry.Retry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: grafeas.grafeas_v1.types.Note: A type of analysis that can be done for a resource. """ # Create or coerce a protobuf request object. # Quick check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([name]) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) request = grafeas.GetNoteRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if name is not None: request.name = name # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = gapic_v1.method_async.wrap_method( self._client._transport.get_note, default_retry=retries.Retry( initial=0.1, maximum=60.0, multiplier=1.3, predicate=retries.if_exception_type( core_exceptions.DeadlineExceeded, core_exceptions.ServiceUnavailable, ), deadline=30.0, ), default_timeout=30.0, client_info=DEFAULT_CLIENT_INFO, ) # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("name", request.name),)), ) # Send the request. response = await rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response async def list_notes( self, request: Union[grafeas.ListNotesRequest, dict] = None, *, parent: str = None, filter: str = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: float = None, metadata: Sequence[Tuple[str, str]] = (), ) -> pagers.ListNotesAsyncPager: r"""Lists notes for the specified project. .. code-block:: python # This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from grafeas import grafeas_v1 async def sample_list_notes(): # Create a client client = grafeas_v1.GrafeasAsyncClient() # Initialize request argument(s) request = grafeas_v1.ListNotesRequest( parent="parent_value", ) # Make the request page_result = client.list_notes(request=request) # Handle the response async for response in page_result: print(response) Args: request (Union[grafeas.grafeas_v1.types.ListNotesRequest, dict]): The request object. Request to list notes. parent (:class:`str`): The name of the project to list notes for in the form of ``projects/[PROJECT_ID]``. This corresponds to the ``parent`` field on the ``request`` instance; if ``request`` is provided, this should not be set. filter (:class:`str`): The filter expression. This corresponds to the ``filter`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry.Retry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: grafeas.grafeas_v1.services.grafeas.pagers.ListNotesAsyncPager: Response for listing notes. Iterating over this object will yield results and resolve additional pages automatically. """ # Create or coerce a protobuf request object. # Quick check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([parent, filter]) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) request = grafeas.ListNotesRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if parent is not None: request.parent = parent if filter is not None: request.filter = filter # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = gapic_v1.method_async.wrap_method( self._client._transport.list_notes, default_retry=retries.Retry( initial=0.1, maximum=60.0, multiplier=1.3, predicate=retries.if_exception_type( core_exceptions.DeadlineExceeded, core_exceptions.ServiceUnavailable, ), deadline=30.0, ), default_timeout=30.0, client_info=DEFAULT_CLIENT_INFO, ) # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("parent", request.parent),)), ) # Send the request. response = await rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # This method is paged; wrap the response in a pager, which provides # an `__aiter__` convenience method. response = pagers.ListNotesAsyncPager( method=rpc, request=request, response=response, metadata=metadata, ) # Done; return the response. return response async def delete_note( self, request: Union[grafeas.DeleteNoteRequest, dict] = None, *, name: str = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: float = None, metadata: Sequence[Tuple[str, str]] = (), ) -> None: r"""Deletes the specified note. .. code-block:: python # This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from grafeas import grafeas_v1 async def sample_delete_note(): # Create a client client = grafeas_v1.GrafeasAsyncClient() # Initialize request argument(s) request = grafeas_v1.DeleteNoteRequest( name="name_value", ) # Make the request await client.delete_note(request=request) Args: request (Union[grafeas.grafeas_v1.types.DeleteNoteRequest, dict]): The request object. Request to delete a note. name (:class:`str`): The name of the note in the form of ``projects/[PROVIDER_ID]/notes/[NOTE_ID]``. This corresponds to the ``name`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry.Retry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. """ # Create or coerce a protobuf request object. # Quick check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([name]) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) request = grafeas.DeleteNoteRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if name is not None: request.name = name # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = gapic_v1.method_async.wrap_method( self._client._transport.delete_note, default_retry=retries.Retry( initial=0.1, maximum=60.0, multiplier=1.3, predicate=retries.if_exception_type( core_exceptions.DeadlineExceeded, core_exceptions.ServiceUnavailable, ), deadline=30.0, ), default_timeout=30.0, client_info=DEFAULT_CLIENT_INFO, ) # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("name", request.name),)), ) # Send the request. await rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) async def create_note( self, request: Union[grafeas.CreateNoteRequest, dict] = None, *, parent: str = None, note_id: str = None, note: grafeas.Note = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: float = None, metadata: Sequence[Tuple[str, str]] = (), ) -> grafeas.Note: r"""Creates a new note. .. code-block:: python # This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from grafeas import grafeas_v1 async def sample_create_note(): # Create a client client = grafeas_v1.GrafeasAsyncClient() # Initialize request argument(s) request = grafeas_v1.CreateNoteRequest( parent="parent_value", note_id="note_id_value", ) # Make the request response = await client.create_note(request=request) # Handle the response print(response) Args: request (Union[grafeas.grafeas_v1.types.CreateNoteRequest, dict]): The request object. Request to create a new note. parent (:class:`str`): The name of the project in the form of ``projects/[PROJECT_ID]``, under which the note is to be created. This corresponds to the ``parent`` field on the ``request`` instance; if ``request`` is provided, this should not be set. note_id (:class:`str`): The ID to use for this note. This corresponds to the ``note_id`` field on the ``request`` instance; if ``request`` is provided, this should not be set. note (:class:`grafeas.grafeas_v1.types.Note`): The note to create. This corresponds to the ``note`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry.Retry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: grafeas.grafeas_v1.types.Note: A type of analysis that can be done for a resource. """ # Create or coerce a protobuf request object. # Quick check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([parent, note_id, note]) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) request = grafeas.CreateNoteRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if parent is not None: request.parent = parent if note_id is not None: request.note_id = note_id if note is not None: request.note = note # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = gapic_v1.method_async.wrap_method( self._client._transport.create_note, default_timeout=30.0, client_info=DEFAULT_CLIENT_INFO, ) # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("parent", request.parent),)), ) # Send the request. response = await rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response async def batch_create_notes( self, request: Union[grafeas.BatchCreateNotesRequest, dict] = None, *, parent: str = None, notes: Mapping[str, grafeas.Note] = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: float = None, metadata: Sequence[Tuple[str, str]] = (), ) -> grafeas.BatchCreateNotesResponse: r"""Creates new notes in batch. .. code-block:: python # This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from grafeas import grafeas_v1 async def sample_batch_create_notes(): # Create a client client = grafeas_v1.GrafeasAsyncClient() # Initialize request argument(s) request = grafeas_v1.BatchCreateNotesRequest( parent="parent_value", ) # Make the request response = await client.batch_create_notes(request=request) # Handle the response print(response) Args: request (Union[grafeas.grafeas_v1.types.BatchCreateNotesRequest, dict]): The request object. Request to create notes in batch. parent (:class:`str`): The name of the project in the form of ``projects/[PROJECT_ID]``, under which the notes are to be created. This corresponds to the ``parent`` field on the ``request`` instance; if ``request`` is provided, this should not be set. notes (:class:`Mapping[str, grafeas.grafeas_v1.types.Note]`): The notes to create. Max allowed length is 1000. This corresponds to the ``notes`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry.Retry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: grafeas.grafeas_v1.types.BatchCreateNotesResponse: Response for creating notes in batch. """ # Create or coerce a protobuf request object. # Quick check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([parent, notes]) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) request = grafeas.BatchCreateNotesRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if parent is not None: request.parent = parent if notes: request.notes.update(notes) # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = gapic_v1.method_async.wrap_method( self._client._transport.batch_create_notes, default_timeout=30.0, client_info=DEFAULT_CLIENT_INFO, ) # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("parent", request.parent),)), ) # Send the request. response = await rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response async def update_note( self, request: Union[grafeas.UpdateNoteRequest, dict] = None, *, name: str = None, note: grafeas.Note = None, update_mask: field_mask_pb2.FieldMask = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: float = None, metadata: Sequence[Tuple[str, str]] = (), ) -> grafeas.Note: r"""Updates the specified note. .. code-block:: python # This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from grafeas import grafeas_v1 async def sample_update_note(): # Create a client client = grafeas_v1.GrafeasAsyncClient() # Initialize request argument(s) request = grafeas_v1.UpdateNoteRequest( name="name_value", ) # Make the request response = await client.update_note(request=request) # Handle the response print(response) Args: request (Union[grafeas.grafeas_v1.types.UpdateNoteRequest, dict]): The request object. Request to update a note. name (:class:`str`): The name of the note in the form of ``projects/[PROVIDER_ID]/notes/[NOTE_ID]``. This corresponds to the ``name`` field on the ``request`` instance; if ``request`` is provided, this should not be set. note (:class:`grafeas.grafeas_v1.types.Note`): The updated note. This corresponds to the ``note`` field on the ``request`` instance; if ``request`` is provided, this should not be set. update_mask (:class:`google.protobuf.field_mask_pb2.FieldMask`): The fields to update. This corresponds to the ``update_mask`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry.Retry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: grafeas.grafeas_v1.types.Note: A type of analysis that can be done for a resource. """ # Create or coerce a protobuf request object. # Quick check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([name, note, update_mask]) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) request = grafeas.UpdateNoteRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if name is not None: request.name = name if note is not None: request.note = note if update_mask is not None: request.update_mask = update_mask # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = gapic_v1.method_async.wrap_method( self._client._transport.update_note, default_timeout=30.0, client_info=DEFAULT_CLIENT_INFO, ) # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("name", request.name),)), ) # Send the request. response = await rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response async def list_note_occurrences( self, request: Union[grafeas.ListNoteOccurrencesRequest, dict] = None, *, name: str = None, filter: str = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: float = None, metadata: Sequence[Tuple[str, str]] = (), ) -> pagers.ListNoteOccurrencesAsyncPager: r"""Lists occurrences referencing the specified note. Provider projects can use this method to get all occurrences across consumer projects referencing the specified note. .. code-block:: python # This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from grafeas import grafeas_v1 async def sample_list_note_occurrences(): # Create a client client = grafeas_v1.GrafeasAsyncClient() # Initialize request argument(s) request = grafeas_v1.ListNoteOccurrencesRequest( name="name_value", ) # Make the request page_result = client.list_note_occurrences(request=request) # Handle the response async for response in page_result: print(response) Args: request (Union[grafeas.grafeas_v1.types.ListNoteOccurrencesRequest, dict]): The request object. Request to list occurrences for a note. name (:class:`str`): The name of the note to list occurrences for in the form of ``projects/[PROVIDER_ID]/notes/[NOTE_ID]``. This corresponds to the ``name`` field on the ``request`` instance; if ``request`` is provided, this should not be set. filter (:class:`str`): The filter expression. This corresponds to the ``filter`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry.Retry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: grafeas.grafeas_v1.services.grafeas.pagers.ListNoteOccurrencesAsyncPager: Response for listing occurrences for a note. Iterating over this object will yield results and resolve additional pages automatically. """ # Create or coerce a protobuf request object. # Quick check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([name, filter]) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) request = grafeas.ListNoteOccurrencesRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if name is not None: request.name = name if filter is not None: request.filter = filter # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = gapic_v1.method_async.wrap_method( self._client._transport.list_note_occurrences, default_retry=retries.Retry( initial=0.1, maximum=60.0, multiplier=1.3, predicate=retries.if_exception_type( core_exceptions.DeadlineExceeded, core_exceptions.ServiceUnavailable, ), deadline=30.0, ), default_timeout=30.0, client_info=DEFAULT_CLIENT_INFO, ) # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("name", request.name),)), ) # Send the request. response = await rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # This method is paged; wrap the response in a pager, which provides # an `__aiter__` convenience method. response = pagers.ListNoteOccurrencesAsyncPager( method=rpc, request=request, response=response, metadata=metadata, ) # Done; return the response. return response async def __aenter__(self): return self async def __aexit__(self, exc_type, exc, tb): await self.transport.close() try: DEFAULT_CLIENT_INFO = gapic_v1.client_info.ClientInfo( gapic_version=pkg_resources.get_distribution( "grafeas", ).version, ) except pkg_resources.DistributionNotFound: DEFAULT_CLIENT_INFO = gapic_v1.client_info.ClientInfo() __all__ = ("GrafeasAsyncClient",)
{ "content_hash": "4b96658422c5fa372a081b5a9fba2ea9", "timestamp": "", "source": "github", "line_count": 1769, "max_line_length": 122, "avg_line_length": 38.661390616167324, "alnum_prop": 0.577479822201427, "repo_name": "googleapis/python-grafeas", "id": "392521062f22230b94aca620c85c4b6e1792f4b4", "size": "68992", "binary": false, "copies": "1", "ref": "refs/heads/main", "path": "grafeas/grafeas_v1/services/grafeas/async_client.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Dockerfile", "bytes": "2050" }, { "name": "Python", "bytes": "588952" }, { "name": "Shell", "bytes": "30663" } ], "symlink_target": "" }
from django.conf.urls import patterns, url urlpatterns = patterns("spirit.views.admin.category", url(r'^$', 'category_list', name='admin-category'), url(r'^list/$', 'category_list', name='admin-category-list'), url(r'^create/$', 'category_create', name='admin-category-create'), url(r'^update/(?P<category_id>\d+)/$', 'category_update', name='admin-category-update'), )
{ "content_hash": "d2bd440cf67ad1aa6a45cedb9e331a04", "timestamp": "", "source": "github", "line_count": 9, "max_line_length": 92, "avg_line_length": 43, "alnum_prop": 0.6666666666666666, "repo_name": "Si-elegans/Web-based_GUI_Tools", "id": "7ce067e7836e47744d87613b295d2d688d1b163f", "size": "411", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "spirit/urls/admin/category.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "CSS", "bytes": "183432" }, { "name": "HTML", "bytes": "821815" }, { "name": "JavaScript", "bytes": "5240621" }, { "name": "Python", "bytes": "2130547" } ], "symlink_target": "" }
import unittest from visitor import * ''' Suite de pruebas unitarias para las clases de visitor.py ''' class VisitorTest(unittest.TestCase): def test_dot(self): dot = Dot('dot-1', 5, 6) self.assertIsInstance(dot, Shape) self.assertIsInstance(dot, Dot) self.assertEqual('dot-1', dot.id) self.assertEqual(5, dot.x) self.assertEqual(6, dot.y) dot.move(10, 10) self.assertEqual(10, dot.x) self.assertEqual(10, dot.y) self.assertEqual("Dot 'dot-1' drew at coordinates -> (10, 10)", dot.draw()) def test_circle(self): circle = Circle('circle-1', 2, 2, 5) self.assertIsInstance(circle, Shape) self.assertIsInstance(circle, Circle) self.assertEqual('circle-1', circle.id) self.assertEqual(2, circle.x) self.assertEqual(2, circle.y) self.assertEqual(5, circle.radius) circle.move(8, 4) self.assertEqual(8, circle.x) self.assertEqual(4, circle.y) self.assertEqual("Circle 'circle-1' drew at coordinates -> (8, 4)", circle.draw()) def test_rectangle(self): rectangle = Rectangle('rectangle-1', -5, -8, 4, 6) self.assertIsInstance(rectangle, Shape) self.assertIsInstance(rectangle, Rectangle) self.assertEqual('rectangle-1', rectangle.id) self.assertEqual(-5, rectangle.x) self.assertEqual(-8, rectangle.y) self.assertEqual(4, rectangle.width) self.assertEqual(6, rectangle.height) rectangle.move(-5, 8) self.assertEqual(-5, rectangle.x) self.assertEqual(8, rectangle.y) self.assertEqual("Rectangle 'rectangle-1' drew at coordinates -> (-5, 8)", rectangle.draw()) def test_xml_visitor(self): dot = Dot('dot-xml', 10, 6) circle = Circle('circle-xml', 6, 2, 3) rectangle = Rectangle('rectangle-xml', -5, 10, 5, 8) xml_visitor = XMLExportVisitor() self.assertEqual("XML export done for: <dot-xml coordinates=(10, 6)>", xml_visitor.visit_dot(dot)) self.assertEqual("XML export done for: <circle-xml radius=3 coordinates=(6, 2)>", xml_visitor.visit_circle(circle)) self.assertEqual("XML export done for: <rectangle-xml width=5 height=8 coordinates=(-5, 10)>", xml_visitor.visit_rectangle(rectangle)) def test_json_visitor(self): dot = Dot('dot-json', 10, 6) circle = Circle('circle-json', 6, 2, 3) rectangle = Rectangle('rectangle-json', -5, 10, 5, 8) json_visitor = JSONExportVisitor() self.assertEqual("JSON export done for: <dot-json coordinates=(10, 6)>", json_visitor.visit_dot(dot)) self.assertEqual("JSON export done for: <circle-json radius=3 coordinates=(6, 2)>", json_visitor.visit_circle(circle)) self.assertEqual("JSON export done for: <rectangle-json width=5 height=8 coordinates=(-5, 10)>", json_visitor.visit_rectangle(rectangle)) def test_yaml_visitor(self): dot = Dot('dot-yaml', 10, 6) circle = Circle('circle-yaml', 6, 2, 3) rectangle = Rectangle('rectangle-yaml', -5, 10, 5, 8) yaml_visitor = YAMLExportVisitor() self.assertEqual("YAML export done for: <dot-yaml coordinates=(10, 6)>", yaml_visitor.visit_dot(dot)) self.assertEqual("YAML export done for: <circle-yaml radius=3 coordinates=(6, 2)>", yaml_visitor.visit_circle(circle)) self.assertEqual("YAML export done for: <rectangle-yaml width=5 height=8 coordinates=(-5, 10)>", yaml_visitor.visit_rectangle(rectangle)) if __name__ == "__main__": unittest.main()
{ "content_hash": "81272387a66bf263dcac4051599b1f51", "timestamp": "", "source": "github", "line_count": 80, "max_line_length": 145, "avg_line_length": 45.4125, "alnum_prop": 0.6289567850261492, "repo_name": "AnhellO/DAS_Sistemas", "id": "2d0078340568fca7b5876706057219709c1ac55b", "size": "3633", "binary": false, "copies": "1", "ref": "refs/heads/ene-jun-2022", "path": "Ene-Jun-2022/juan-alejandro-calzoncit-rodriguez/Primer Parcial/Ejercicio4/visitor_test.py", "mode": "33188", "license": "mit", "language": [ { "name": "Dockerfile", "bytes": "8515" }, { "name": "Go", "bytes": "25845" }, { "name": "HTML", "bytes": "36671" }, { "name": "Python", "bytes": "716604" } ], "symlink_target": "" }
import argparse import cPickle import traceback import logging import time import sys import numpy from experiments.nmt import\ RNNEncoderDecoder,\ parse_input,\ get_batch_iterator,\ prototype_state logger = logging.getLogger(__name__) class BatchTxtIterator(object): def __init__(self, state, txt, indx, batch_size, raise_unk, unk_sym=-1, null_sym=-1): self.__dict__.update(locals()) self.__dict__.pop('self') def start(self): self.txt_file = open(self.txt) def _pack(self, seqs): num = len(seqs) max_len = max(map(len, seqs)) x = numpy.zeros((num, max_len), dtype="int64") x_mask = numpy.zeros((num, max_len), dtype="float32") for i, seq in enumerate(seqs): x[i, :len(seq)] = seq x_mask[i, :len(seq)] = 1.0 return x.T, x_mask.T def __iter__(self): return self def next(self): seqs = [] try: while len(seqs) < self.batch_size: line = next(self.txt_file).strip() seq, _ = parse_input(self.state, self.indx, line, raise_unk=self.raise_unk, unk_sym=self.unk_sym, null_sym=self.null_sym) seqs.append(seq) return self._pack(seqs) except StopIteration: if not seqs: raise StopIteration() return self._pack(seqs) class BatchBiTxtIterator(object): def __init__(self, state, src, indx_src, trg, indx_trg, batch_size, raise_unk): self.__dict__.update(locals()) self.__dict__.pop('self') self.src_iter = BatchTxtIterator(state, src, indx_src, batch_size, raise_unk, unk_sym=state['unk_sym_source'], null_sym=state['null_sym_source']) self.trg_iter = BatchTxtIterator(state, trg, indx_trg, batch_size, raise_unk, unk_sym=state['unk_sym_target'], null_sym=state['null_sym_target']) def start(self): self.src_iter.start() self.trg_iter.start() def __iter__(self): return self def next(self): x, x_mask = next(self.src_iter) y, y_mask = next(self.trg_iter) assert x.shape[1] == y.shape[1] return dict(x=x, x_mask=x_mask, y=y, y_mask=y_mask) def parse_args(): parser = argparse.ArgumentParser() parser.add_argument("--state", required=True, help="State to use") # Paths parser.add_argument("--src", help="Source phrases") parser.add_argument("--trg", help="Target phrases") parser.add_argument("--scores", default=None, help="Save scores to") parser.add_argument("model_path", help="Path to the model") # Options parser.add_argument("--print-probs", default=False, action="store_true", help="Print probs instead of log probs") parser.add_argument("--allow-unk", default=False, action="store_true", help="Allow unknown words in the input") parser.add_argument("--mode", default="interact", help="Processing mode, one of 'batch', 'txt', 'interact'") parser.add_argument("--n-batches", default=-1, type=int, help="Score only first n batches") parser.add_argument("--verbose", default=False, action="store_true", help="Print more stuff") parser.add_argument("--y-noise", type=float, help="Probability for a word to be replaced by a random word") # Additional arguments parser.add_argument("changes", nargs="?", help="Changes to state", default="") return parser.parse_args() def main(): args = parse_args() state = prototype_state() with open(args.state) as src: state.update(cPickle.load(src)) state.update(eval("dict({})".format(args.changes))) state['sort_k_batches'] = 1 state['shuffle'] = False state['use_infinite_loop'] = False state['force_enc_repr_cpu'] = False logging.basicConfig(level=getattr(logging, state['level']), format="%(asctime)s: %(name)s: %(levelname)s: %(message)s") rng = numpy.random.RandomState(state['seed']) enc_dec = RNNEncoderDecoder(state, rng, skip_init=True, compute_alignment=True) enc_dec.build() lm_model = enc_dec.create_lm_model() lm_model.load(args.model_path) indx_word_src = cPickle.load(open(state['word_indx'],'rb')) indx_word_trgt = cPickle.load(open(state['word_indx_trgt'], 'rb')) if args.mode == "batch": data_given = args.src or args.trg txt = data_given and not (args.src.endswith(".h5") and args.trg.endswith(".h5")) if data_given and not txt: state['source'] = [args.src] state['target'] = [args.trg] if not data_given and not txt: logger.info("Using the training data") if txt: data_iter = BatchBiTxtIterator(state, args.src, indx_word_src, args.trg, indx_word_trgt, state['bs'], raise_unk=not args.allow_unk) data_iter.start() else: data_iter = get_batch_iterator(state) data_iter.start(0) score_file = open(args.scores, "w") if args.scores else sys.stdout scorer = enc_dec.create_scorer(batch=True) count = 0 n_samples = 0 logger.info('Scoring phrases') for i, batch in enumerate(data_iter): if batch == None: continue if args.n_batches >= 0 and i == args.n_batches: break if args.y_noise: y = batch['y'] random_words = numpy.random.randint(0, 100, y.shape).astype("int64") change_mask = numpy.random.binomial(1, args.y_noise, y.shape).astype("int64") y = change_mask * random_words + (1 - change_mask) * y batch['y'] = y st = time.time() [scores] = scorer(batch['x'], batch['y'], batch['x_mask'], batch['y_mask']) if args.print_probs: scores = numpy.exp(scores) up_time = time.time() - st for s in scores: print >>score_file, "{:.5e}".format(float(s)) n_samples += batch['x'].shape[1] count += 1 if count % 100 == 0: score_file.flush() logger.debug("Scores flushed") logger.debug("{} batches, {} samples, {} per sample; example scores: {}".format( count, n_samples, up_time/scores.shape[0], scores[:5])) logger.info("Done") score_file.flush() elif args.mode == "interact": scorer = enc_dec.create_scorer() while True: try: compute_probs = enc_dec.create_probs_computer() src_line = raw_input('Source sequence: ') trgt_line = raw_input('Target sequence: ') src_seq = parse_input(state, indx_word_src, src_line, raise_unk=not args.allow_unk, unk_sym=state['unk_sym_source'], null_sym=state['null_sym_source']) trgt_seq = parse_input(state, indx_word_trgt, trgt_line, raise_unk=not args.allow_unk, unk_sym=state['unk_sym_target'], null_sym=state['null_sym_target']) print "Binarized source: ", src_seq print "Binarized target: ", trgt_seq probs = compute_probs(src_seq, trgt_seq) print "Probs: {}, cost: {}".format(probs, -numpy.sum(numpy.log(probs))) except Exception: traceback.print_exc() elif args.mode == "txt": assert args.src and args.trg scorer = enc_dec.create_scorer() src_file = open(args.src, "r") trg_file = open(args.trg, "r") compute_probs = enc_dec.create_probs_computer(return_alignment=True) try: numpy.set_printoptions(precision=3, linewidth=150, suppress=True) i = 0 while True: src_line = next(src_file).strip() trgt_line = next(trg_file).strip() src_seq, src_words = parse_input(state, indx_word_src, src_line, raise_unk=not args.allow_unk, unk_sym=state['unk_sym_source'], null_sym=state['null_sym_source']) trgt_seq, trgt_words = parse_input(state, indx_word_trgt, trgt_line, raise_unk=not args.allow_unk, unk_sym=state['unk_sym_target'], null_sym=state['null_sym_target']) probs, alignment = compute_probs(src_seq, trgt_seq) if args.verbose: print "Probs: ", probs.flatten() if alignment.ndim == 3: print "Alignment:".ljust(20), src_line, "<eos>" for i, word in enumerate(trgt_words): print "{}{}".format(word.ljust(20), alignment[i, :, 0]) print "Generated by:" for i, word in enumerate(trgt_words): j = numpy.argmax(alignment[i, :, 0]) print "{} <--- {}".format(word, src_words[j] if j < len(src_words) else "<eos>") i += 1 if i % 100 == 0: sys.stdout.flush() logger.debug(i) print -numpy.sum(numpy.log(probs)) except StopIteration: pass else: raise Exception("Unknown mode {}".format(args.mode)) if __name__ == "__main__": main()
{ "content_hash": "edfe41f9f015d179e5760abe5e612143", "timestamp": "", "source": "github", "line_count": 245, "max_line_length": 123, "avg_line_length": 39.57959183673469, "alnum_prop": 0.5366608229349283, "repo_name": "zerkh/GroundHog", "id": "d62dfdb8864c914ee22272e984af7e0ffb8eca85", "size": "9720", "binary": false, "copies": "9", "ref": "refs/heads/master", "path": "experiments/nmt/score.py", "mode": "33261", "license": "bsd-3-clause", "language": [ { "name": "HTML", "bytes": "8023" }, { "name": "PHP", "bytes": "372" }, { "name": "Perl", "bytes": "28016" }, { "name": "Python", "bytes": "462113" }, { "name": "Shell", "bytes": "2189" } ], "symlink_target": "" }
"""Twitter-style pagination integration tests.""" from __future__ import unicode_literals from el_pagination.tests.integration import SeleniumTestCase class TwitterPaginationTest(SeleniumTestCase): view_name = 'twitter' def test_new_elements_loaded(self): # Ensure a new page is loaded on click. self.get() with self.assertNewElements('object', range(1, 11)): self.click_link(self.MORE) def test_url_not_changed(self): # Ensure the request is done using Ajax (the page does not refresh). self.get() with self.assertSameURL(): self.click_link(self.MORE) def test_direct_link(self): # Ensure direct links work. self.get(page=4) self.assertElements('object', range(16, 21)) self.assertIn('page=4', self.selenium.current_url) def test_subsequent_page(self): # Ensure next page is correctly loaded in a subsequent page. self.get(page=2) with self.assertNewElements('object', range(6, 16)): self.click_link(self.MORE) def test_multiple_show_more(self): # Ensure new pages are loaded again and again. self.get() for page in range(2, 5): expected_range = range(1, 5 * page + 1) with self.assertSameURL(): with self.assertNewElements('object', expected_range): self.click_link(self.MORE) def test_no_more_link_in_last_page(self): # Ensure there is no more link on the last page. self.get(page=10) self.asserLinksEqual(0, self.MORE)
{ "content_hash": "b43f31acf79db8d600e4ef06475b0de7", "timestamp": "", "source": "github", "line_count": 48, "max_line_length": 76, "avg_line_length": 33.541666666666664, "alnum_prop": 0.6242236024844721, "repo_name": "dehu4ka/lna", "id": "f48c42322fd878d0a610207a31113db7c585bc6e", "size": "1610", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "el_pagination/tests/integration/test_twitter.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "7385" }, { "name": "HTML", "bytes": "75367" }, { "name": "JavaScript", "bytes": "106914" }, { "name": "Python", "bytes": "391076" }, { "name": "Shell", "bytes": "4196" } ], "symlink_target": "" }
import xml.etree.ElementTree as ET import pprint import re def get_user(element): return def process_map(filename): """ Count the user id in the filename. """ users = set() for _, element in ET.iterparse(filename): try: users.add(element.attrib['uid']) except KeyError: continue return users def test(): users = process_map(OSM_FILE) pprint.pprint(users) # assert len(users) == 6 if __name__ == "__main__": test()
{ "content_hash": "74feb7b03a12446b7a560f83c8fdcfee", "timestamp": "", "source": "github", "line_count": 32, "max_line_length": 45, "avg_line_length": 15.84375, "alnum_prop": 0.5798816568047337, "repo_name": "napjon/ds-nd", "id": "9c8e52cec2aec27dcd3054eb9d854979c923fe47", "size": "554", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "p3-wrangling/project.osm/02-codes/users.py", "mode": "33188", "license": "mit", "language": [ { "name": "HTML", "bytes": "7031223" }, { "name": "Jupyter Notebook", "bytes": "796962" }, { "name": "Python", "bytes": "39373" } ], "symlink_target": "" }
"""SCons.Tool.Packaging.zip The zip SRC packager. """ # # Copyright (c) 2001 - 2014 The SCons Foundation # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY # KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE # WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE # LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # __revision__ = "src/engine/SCons/Tool/packaging/zip.py 2014/09/27 12:51:43 garyo" from SCons.Tool.packaging import stripinstallbuilder, putintopackageroot def package(env, target, source, PACKAGEROOT, **kw): bld = env['BUILDERS']['Zip'] bld.set_suffix('.zip') target, source = stripinstallbuilder(target, source, env) target, source = putintopackageroot(target, source, env, PACKAGEROOT) return bld(env, target, source) # Local Variables: # tab-width:4 # indent-tabs-mode:nil # End: # vim: set expandtab tabstop=4 shiftwidth=4:
{ "content_hash": "def85fe5871bef9366c280a75f48d258", "timestamp": "", "source": "github", "line_count": 44, "max_line_length": 82, "avg_line_length": 39.13636363636363, "alnum_prop": 0.7531939605110337, "repo_name": "j-faria/OPEN", "id": "09a320d51b10e0700db6c672489822aec3895087", "size": "1722", "binary": false, "copies": "9", "ref": "refs/heads/develop", "path": "scons/scons-local-2.3.4/SCons/Tool/packaging/zip.py", "mode": "33188", "license": "mit", "language": [ { "name": "C", "bytes": "23647" }, { "name": "Fortran", "bytes": "395666" }, { "name": "Makefile", "bytes": "1443" }, { "name": "Python", "bytes": "2424612" } ], "symlink_target": "" }
from oslo.config import cfg from neutron.agent.common import config from neutron.agent.linux import ip_lib from neutron.common import topics from neutron import context from neutron.extensions import firewall as fw_ext from neutron.openstack.common import importutils from neutron.openstack.common import log as logging from neutron.plugins.common import constants from neutron.services.firewall.agents import firewall_agent_api as api LOG = logging.getLogger(__name__) class FWaaSL3PluginApi(api.FWaaSPluginApiMixin): """Agent side of the FWaaS agent to FWaaS Plugin RPC API.""" def get_firewalls_for_tenant(self, context, **kwargs): """Get the Firewalls with rules from the Plugin to send to driver.""" LOG.debug(_("Retrieve Firewall with rules from Plugin")) return self.client.call(context, 'get_firewalls_for_tenant', host=self.host) def get_tenants_with_firewalls(self, context, **kwargs): """Get all Tenants that have Firewalls configured from plugin.""" LOG.debug(_("Retrieve Tenants with Firewalls configured from Plugin")) return self.client.call(context, 'get_tenants_with_firewalls', host=self.host) class FWaaSL3AgentRpcCallback(api.FWaaSAgentRpcCallbackMixin): """FWaaS Agent support to be used by Neutron L3 agent.""" def __init__(self, conf): LOG.debug(_("Initializing firewall agent")) self.conf = conf fwaas_driver_class_path = cfg.CONF.fwaas.driver self.fwaas_enabled = cfg.CONF.fwaas.enabled if self.fwaas_enabled: try: self.fwaas_driver = importutils.import_object( fwaas_driver_class_path) LOG.debug(_("FWaaS Driver Loaded: '%s'"), fwaas_driver_class_path) except ImportError: msg = _('Error importing FWaaS device driver: %s') raise ImportError(msg % fwaas_driver_class_path) self.services_sync = False self.root_helper = config.get_root_helper(conf) # setup RPC to msg fwaas plugin self.fwplugin_rpc = FWaaSL3PluginApi(topics.FIREWALL_PLUGIN, conf.host) super(FWaaSL3AgentRpcCallback, self).__init__(host=conf.host) def _get_router_info_list_for_tenant(self, routers, tenant_id): """Returns the list of router info objects on which to apply the fw.""" root_ip = ip_lib.IPWrapper(self.root_helper) # Get the routers for the tenant router_ids = [ router['id'] for router in routers if router['tenant_id'] == tenant_id] local_ns_list = root_ip.get_namespaces( self.root_helper) if self.conf.use_namespaces else [] router_info_list = [] # Pick up namespaces for Tenant Routers for rid in router_ids: if self.router_info[rid].use_namespaces: router_ns = self.router_info[rid].ns_name() if router_ns in local_ns_list: router_info_list.append(self.router_info[rid]) else: router_info_list.append(self.router_info[rid]) return router_info_list def _invoke_driver_for_plugin_api(self, context, fw, func_name): """Invoke driver method for plugin API and provide status back.""" LOG.debug(_("%(func_name)s from agent for fw: %(fwid)s"), {'func_name': func_name, 'fwid': fw['id']}) try: routers = self.plugin_rpc.get_routers(context) router_info_list = self._get_router_info_list_for_tenant( routers, fw['tenant_id']) if not router_info_list: LOG.debug(_('No Routers on tenant: %s'), fw['tenant_id']) # fw was created before any routers were added, and if a # delete is sent then we need to ack so that plugin can # cleanup. if func_name == 'delete_firewall': self.fwplugin_rpc.firewall_deleted(context, fw['id']) return LOG.debug(_("Apply fw on Router List: '%s'"), [ri.router['id'] for ri in router_info_list]) # call into the driver try: self.fwaas_driver.__getattribute__(func_name)( router_info_list, fw) if fw['admin_state_up']: status = constants.ACTIVE else: status = constants.DOWN except fw_ext.FirewallInternalDriverError: LOG.error(_("Firewall Driver Error for %(func_name)s " "for fw: %(fwid)s"), {'func_name': func_name, 'fwid': fw['id']}) status = constants.ERROR # delete needs different handling if func_name == 'delete_firewall': if status in [constants.ACTIVE, constants.DOWN]: self.fwplugin_rpc.firewall_deleted(context, fw['id']) else: self.fwplugin_rpc.set_firewall_status( context, fw['id'], status) except Exception: LOG.exception( _("FWaaS RPC failure in %(func_name)s for fw: %(fwid)s"), {'func_name': func_name, 'fwid': fw['id']}) self.services_sync = True return def _invoke_driver_for_sync_from_plugin(self, ctx, router_info_list, fw): """Invoke the delete driver method for status of PENDING_DELETE and update method for all other status to (re)apply on driver which is Idempotent. """ if fw['status'] == constants.PENDING_DELETE: try: self.fwaas_driver.delete_firewall(router_info_list, fw) self.fwplugin_rpc.firewall_deleted( ctx, fw['id']) except fw_ext.FirewallInternalDriverError: LOG.error(_("Firewall Driver Error on fw state %(fwmsg)s " "for fw: %(fwid)s"), {'fwmsg': fw['status'], 'fwid': fw['id']}) self.fwplugin_rpc.set_firewall_status( ctx, fw['id'], constants.ERROR) else: # PENDING_UPDATE, PENDING_CREATE, ... try: self.fwaas_driver.update_firewall(router_info_list, fw) if fw['admin_state_up']: status = constants.ACTIVE else: status = constants.DOWN except fw_ext.FirewallInternalDriverError: LOG.error(_("Firewall Driver Error on fw state %(fwmsg)s " "for fw: %(fwid)s"), {'fwmsg': fw['status'], 'fwid': fw['id']}) status = constants.ERROR self.fwplugin_rpc.set_firewall_status( ctx, fw['id'], status) def _process_router_add(self, ri): """On router add, get fw with rules from plugin and update driver.""" LOG.debug(_("Process router add, router_id: '%s'"), ri.router['id']) routers = [] routers.append(ri.router) router_info_list = self._get_router_info_list_for_tenant( routers, ri.router['tenant_id']) if router_info_list: # Get the firewall with rules # for the tenant the router is on. ctx = context.Context('', ri.router['tenant_id']) fw_list = self.fwplugin_rpc.get_firewalls_for_tenant(ctx) LOG.debug(_("Process router add, fw_list: '%s'"), [fw['id'] for fw in fw_list]) for fw in fw_list: self._invoke_driver_for_sync_from_plugin( ctx, router_info_list, fw) def process_router_add(self, ri): """On router add, get fw with rules from plugin and update driver.""" # avoid msg to plugin when fwaas is not configured if not self.fwaas_enabled: return try: self._process_router_add(ri) except Exception: LOG.exception( _("FWaaS RPC info call failed for '%s'."), ri.router['id']) self.services_sync = True def process_services_sync(self, ctx): """On RPC issues sync with plugin and apply the sync data.""" # avoid msg to plugin when fwaas is not configured if not self.fwaas_enabled: return try: # get all routers routers = self.plugin_rpc.get_routers(ctx) # get the list of tenants with firewalls configured # from the plugin tenant_ids = self.fwplugin_rpc.get_tenants_with_firewalls(ctx) LOG.debug(_("Tenants with Firewalls: '%s'"), tenant_ids) for tenant_id in tenant_ids: ctx = context.Context('', tenant_id) fw_list = self.fwplugin_rpc.get_firewalls_for_tenant(ctx) if fw_list: # if fw present on tenant router_info_list = self._get_router_info_list_for_tenant( routers, tenant_id) if router_info_list: LOG.debug(_("Router List: '%s'"), [ri.router['id'] for ri in router_info_list]) LOG.debug(_("fw_list: '%s'"), [fw['id'] for fw in fw_list]) # apply sync data on fw for this tenant for fw in fw_list: # fw, routers present on this host for tenant # install LOG.debug(_("Apply fw on Router List: '%s'"), [ri.router['id'] for ri in router_info_list]) # no need to apply sync data for ACTIVE fw if fw['status'] != constants.ACTIVE: self._invoke_driver_for_sync_from_plugin( ctx, router_info_list, fw) self.services_sync = False except Exception: LOG.exception(_("Failed fwaas process services sync")) self.services_sync = True def create_firewall(self, context, firewall, host): """Handle Rpc from plugin to create a firewall.""" return self._invoke_driver_for_plugin_api( context, firewall, 'create_firewall') def update_firewall(self, context, firewall, host): """Handle Rpc from plugin to update a firewall.""" return self._invoke_driver_for_plugin_api( context, firewall, 'update_firewall') def delete_firewall(self, context, firewall, host): """Handle Rpc from plugin to delete a firewall.""" return self._invoke_driver_for_plugin_api( context, firewall, 'delete_firewall')
{ "content_hash": "014cb8812fff52e92f614705341144f4", "timestamp": "", "source": "github", "line_count": 263, "max_line_length": 79, "avg_line_length": 43.59695817490494, "alnum_prop": 0.5244200244200244, "repo_name": "beagles/neutron_hacking", "id": "62f9d9ef3257b4b616dc4cd694d154bef46c393b", "size": "12367", "binary": false, "copies": "1", "ref": "refs/heads/neutron_oslo_messaging", "path": "neutron/services/firewall/agents/l3reference/firewall_l3_agent.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "CSS", "bytes": "37307" }, { "name": "JavaScript", "bytes": "67930" }, { "name": "Python", "bytes": "8125263" }, { "name": "Shell", "bytes": "8920" }, { "name": "XSLT", "bytes": "50907" } ], "symlink_target": "" }
""" Test removing groups from users in the fake profile server. """ from __future__ import absolute_import # pylint:disable=no-name-in-module from nose.tools import assert_not_in from . import FakeProfileServerTestCase class RemoveGroupsTestCase(FakeProfileServerTestCase): """ Test removing groups from users. """ def test_remove_groups(self): """ Test the user is removed from all the groups in the list """ calculon = { 'email': '[email protected]', } fry = { 'email': '[email protected]', } # Create the groups by adding users to groups self.mock_ps.add_groups(calculon, ['group1', 'group2']) self.mock_ps.add_groups(fry, ['group1']) # Remove user from a group he doesn't belong to self.mock_ps.remove_groups(fry, ['group1', 'group2']) users = self.mock_ps.get_group('group1') assert_not_in('[email protected]', [user['email'] for user in users]) users = self.mock_ps.get_group('group2') assert_not_in('[email protected]', [user['email'] for user in users])
{ "content_hash": "2a686456cd910a75de3062698d06e6a6", "timestamp": "", "source": "github", "line_count": 43, "max_line_length": 64, "avg_line_length": 28.441860465116278, "alnum_prop": 0.5968928863450531, "repo_name": "infoxchange/ixprofile-client", "id": "9333265cf750110fbfda34b5245fae1600701e06", "size": "1223", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "ixprofile_client/tests/fake_profile_server/test_remove_groups.py", "mode": "33188", "license": "mit", "language": [ { "name": "Gherkin", "bytes": "4603" }, { "name": "HTML", "bytes": "611" }, { "name": "Python", "bytes": "92951" } ], "symlink_target": "" }
''' Given a singly linked list L: L0->L1->...->Ln-1->Ln, reorder it to: L0->Ln->L1->Ln->Ln-1->L2->Ln-2->... You must do this in-place without altering the nodes' values. For example, Given {1,2,3,4}, reorder it to {1,4,2,3}. ''' from node_struct import ListNode class Solution(object): def reorderList(self, head): """ :type head: ListNode :rtype: void Do not return anything, modify head in-place instead. """ if (not head): return None quick_cursor = head slow_cursor = head while (quick_cursor and quick_cursor.next): quick_cursor = quick_cursor.next.next slow_cursor = slow_cursor.next sec_head = slow_cursor.next slow_cursor.next = None new_head = self.reverse(sec_head) self.zip(head, new_head) def zip(self, head1, head2): pivot = ListNode(0) pivot.next = head1 cursor = pivot while (head1 or head2): if head1: cursor.next=head1 cursor = cursor.next head1 = head1.next if head2: cursor.next=head2 cursor = cursor.next head2 = head2.next return pivot.next def reverse(self, head): if (not head or not head.next): return head prev = None curr = head next = head.next while curr.next: next = curr.next curr.next = prev prev = curr curr = next curr.next = prev return curr if __name__ == '__main__': list_array = list() head = ListNode(0) cursor_node = head for index in range(1,5): cursor_node.next = ListNode(index) cursor_node = cursor_node.next solution = Solution() new_head = solution.reorderList(head) while new_head: print new_head.x new_head = new_head.next
{ "content_hash": "f25f41d221baf7faf4b948e26d375314", "timestamp": "", "source": "github", "line_count": 69, "max_line_length": 74, "avg_line_length": 28.333333333333332, "alnum_prop": 0.5381074168797954, "repo_name": "shub0/algorithm-data-structure", "id": "9c8aa0f3079d8f485fa6deeca22514b43fac4fee", "size": "1975", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "python/reorder_list.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "Java", "bytes": "166293" }, { "name": "Python", "bytes": "487573" } ], "symlink_target": "" }
from __future__ import (absolute_import, division, print_function, unicode_literals) from builtins import (ascii, bytes, chr, dict, filter, hex, input, int, map, next, oct, open, pow, range, round, str, super, zip) # local imports from .UpdateResourcesParams import UpdateResourcesParams class AddResourcesParams(UpdateResourcesParams): """Holds parameter values for the "addResources" operation on a user content item.""" @property def archive(self): self._get_nullable("archive") @archive.setter def archive(self, value): self._set_nullable_bool("archive", value)
{ "content_hash": "b30816750c2e4d55e9da0f82ab4d9af4", "timestamp": "", "source": "github", "line_count": 17, "max_line_length": 117, "avg_line_length": 36.88235294117647, "alnum_prop": 0.6953748006379585, "repo_name": "DavidWhittingham/agsadmin", "id": "7a791e7ec9ac48dbc4c7f9944d7c5c84036ee1c6", "size": "627", "binary": false, "copies": "1", "ref": "refs/heads/develop", "path": "agsadmin/sharing_admin/content/users/AddResourcesParams.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "PowerShell", "bytes": "442" }, { "name": "Python", "bytes": "173794" } ], "symlink_target": "" }
import logging import random import time log = logging.getLogger(__name__) class LoadTest(object): def __init__(self, gun): self.gun = gun def case1(self, task): with self.gun.measure(task): log.info("Shoot case 1: %s", task.data) time.sleep(random.random()) def case2(self, task): with self.gun.measure(task) as m: m.action = "PREPARE" log.info("Prepare case 2: %s", task.data) time.sleep(random.random()) with self.gun.measure(task) as m: m.action = "SHOOT" log.info("Shoot case 2: %s", task.data) time.sleep(random.random()) raise RuntimeError() def default(self, task): with self.gun.measure(task): log.info("Shoot default case: %s", task.data) time.sleep(random.random()) def setup(self, param): log.info("Setting up LoadTest: %s", param) def teardown(self): log.info("Tearing down LoadTest")
{ "content_hash": "a5ce872c07c47c676cba2305204fa9c2", "timestamp": "", "source": "github", "line_count": 37, "max_line_length": 57, "avg_line_length": 27.513513513513512, "alnum_prop": 0.5618860510805501, "repo_name": "direvius/bfg", "id": "b25713e8b086533945bdeaa6b06ac258d583dd94", "size": "1018", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "docs/examples/gun.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "50193" } ], "symlink_target": "" }
import os import sys if __name__ == "__main__": os.environ.setdefault("DJANGO_SETTINGS_MODULE", "cfsite.settings.prod") from django.core.management import execute_from_command_line execute_from_command_line(sys.argv)
{ "content_hash": "86326af8c3e84afb75b5ba8d98e27bc2", "timestamp": "", "source": "github", "line_count": 9, "max_line_length": 75, "avg_line_length": 25.77777777777778, "alnum_prop": 0.7112068965517241, "repo_name": "susanctu/Crazyfish-Public", "id": "de279032a495dd17a276ffbf020a9add27be1164", "size": "254", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "manage.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "54584" }, { "name": "JavaScript", "bytes": "71795" }, { "name": "Python", "bytes": "116379" } ], "symlink_target": "" }
import os import zlib import pytest from ..algorithms import crc32 crc32_implementations = [crc32.crc32_slice_by_8] if crc32.have_clmul: crc32_implementations.append(crc32.crc32_clmul) @pytest.mark.parametrize('implementation', crc32_implementations) def test_crc32(implementation): # This includes many critical values, like zero length, 3/4/5, 6/7/8 and so on which are near and on # alignment boundaries. This is of course just a sanity check ie. "did it compile all right?". data = os.urandom(256) initial_crc = 0x12345678 for i in range(0, 256): d = data[:i] assert zlib.crc32(d, initial_crc) == implementation(d, initial_crc)
{ "content_hash": "fd09eda56f82b4ea775b526e90866c12", "timestamp": "", "source": "github", "line_count": 21, "max_line_length": 104, "avg_line_length": 32.23809523809524, "alnum_prop": 0.7149187592319055, "repo_name": "edgimar/borg", "id": "4eb59fa880ce4d7b5042d0b8b3f549a4253f5fa6", "size": "677", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "src/borg/testsuite/crc32.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "C", "bytes": "98810" }, { "name": "HTML", "bytes": "66027" }, { "name": "Python", "bytes": "1124319" }, { "name": "Shell", "bytes": "2267" } ], "symlink_target": "" }
"""The influence of windowing of log. sweep signals when using a Kaiser Window by fixing beta (=7) and fade_out (=0). fstart = 1 Hz fstop = 22050 Hz FIR-Filter: Bandstop Deconvolution: Unwindowed Excitation """ import sys sys.path.append('..') import measurement_chain import plotting import calculation import generation import ir_imitation import matplotlib.pyplot as plt import windows from scipy.signal import lfilter import numpy as np # Parameters of the measuring system fs = 44100 fstart = 1 fstop = 22050 duration = 1 pad = 4 # Generate excitation signal excitation = generation.log_sweep(fstart, fstop, duration, fs) N = len(excitation) # Noise in measurement chain awgn = -30 noise_system = measurement_chain.additive_noise(awgn) # FIR-Filter-System # FIR-Filter-System f_low = 5000 f_high = 6000 order = 2 bandstop_system = measurement_chain.bandstop(f_low, f_high, fs, order) # Combinate system elements system = measurement_chain.chained(bandstop_system, noise_system) # Lists beta = 7 fade_in_list = np.arange(0, 1001, 1) fade_out = 0 t_noise = 0.004 # Spectrum of bandstop for reference bandstop_f = calculation.butter_bandstop(f_low, f_high, fs, N * 2 + 1, order) def get_results(fade_in): excitation_windowed = excitation * windows.window_kaiser(N, fade_in, fade_out, fs, beta) excitation_windowed_zeropadded = generation.zero_padding( excitation_windowed, pad, fs) excitation_zeropadded = generation.zero_padding(excitation, pad, fs) system_response = system(excitation_windowed_zeropadded) ir = calculation.deconv_process(excitation_zeropadded, system_response, fs) return ir with open("log_sweep_kaiser_window_script3_1.txt", "w") as f: for fade_in in fade_in_list: ir = get_results(fade_in) pnr = calculation.pnr_db(ir[0], ir[t_noise * fs:pad * fs]) spectrum_distance = calculation.vector_distance( bandstop_f, np.fft.rfft(ir[:pad * fs])) f.write( str(fade_in) + " " + str(pnr) + " " + str(spectrum_distance) + " \n")
{ "content_hash": "603f06d8371c9bd46fd1f57d7116cc09", "timestamp": "", "source": "github", "line_count": 94, "max_line_length": 77, "avg_line_length": 24.904255319148938, "alnum_prop": 0.6202477573686459, "repo_name": "spatialaudio/sweep", "id": "773169f2bd18ec305e4faa5564ad58df92b4cab0", "size": "2365", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "log_sweep_kaiser_window_script3/log_sweep_kaiser_window_script3_1.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "101013" } ], "symlink_target": "" }
from apiclient.discovery import build from apiclient.errors import HttpError, UnknownApiNameOrVersion import os from httplib2 import ServerNotFoundError YOUTUBE_DEVELOPER_KEY = os.environ.get('YT_AUTH') YOUTUBE_API_SERVICE_NAME = 'youtube' YOUTUBE_API_VERSION = 'v3' TERMS = ['remix', 'music', 'song', 'parody', 'jam', 'dance'] def youtube_search(keyword, max_results=20): """Query YouTube API for search results based off keyword search.""" try: youtube = build( YOUTUBE_API_SERVICE_NAME, YOUTUBE_API_VERSION, developerKey=YOUTUBE_DEVELOPER_KEY ) search_response = youtube.search( ).list( q=keyword + ' music', type='video', part='id,snippet', maxResults=max_results).execute() return search_response except HttpError as err: print('An HTTP error has occurred. Please check YT Developer Key.') return err except UnknownApiNameOrVersion: print('Please check your API name or version.') raise UnknownApiNameOrVersion except ServerNotFoundError: print('Server not found. Please connect and try again.') raise ServerNotFoundError except TypeError: print('Keyword must be a string.') raise TypeError def youtube_parse(search_result): """Parse the YouTube search result to output video ID tag.""" video_id_uris = [] try: search_items = search_result.get('items', []) for result in search_items: video_id = result['id']['videoId'] video_channel = result['snippet']['channelTitle'] video_title = result['snippet']['title'] video_id_uris.append((video_id, video_channel, video_title)) return video_id_uris except AttributeError: return video_id_uris def term_checker(title): """Check to see if keywords are in the title of the video.""" for term in TERMS: if term in title.lower(): return True return False def url_gen(video_id): """Create and return the url for the given video.""" yt_path = 'https://www.youtube.com/' yt_uri = 'watch?v=' + video_id yt_url = yt_path + yt_uri return yt_url def generate_youtube_link(parsed_list): """Generate a youtube video link from parsed list of YouTube video IDs.""" try: for video in parsed_list: if 'VEVO' in video[1]: return (url_gen(video[0]), True) for video in parsed_list: if term_checker(video[2]): return (url_gen(video[0]), True) return (url_gen(parsed_list[0][0]), False) except IndexError: return (url_gen('b_ILDFp5DGA'), False) def get_link(trend): """Get the single link from the entered trend.""" return generate_youtube_link(youtube_parse(youtube_search(trend)))
{ "content_hash": "21ebd9f8303a2585cc1e40ffe7dcdfa2", "timestamp": "", "source": "github", "line_count": 89, "max_line_length": 78, "avg_line_length": 32.741573033707866, "alnum_prop": 0.6190803019903912, "repo_name": "icarrera/twitter-tunes", "id": "0286657ef612f145642a78d6c5aabf8be41481a7", "size": "2929", "binary": false, "copies": "1", "ref": "refs/heads/staging", "path": "twitter_tunes/scripts/youtube_api.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "17144" }, { "name": "JavaScript", "bytes": "1510" }, { "name": "Python", "bytes": "55059" }, { "name": "Shell", "bytes": "61" } ], "symlink_target": "" }
from djangotoolbox.db.base import NonrelDatabaseIntrospection class DatabaseIntrospection(NonrelDatabaseIntrospection): # def __init__(self, manager): # self.manager = manager def get_cass_keyspace_list(self): return self.manager.list_keyspaces() def get_cass_keyspace_properties(self, keyspace_name): return self.manager.get_keyspace_properties(keyspace_name) def get_cass_column_families(self): return self.connection.get().get_keyspace_description().keys() def get_cass_keyspace_column_families(self, keyspace_name): return self.manager.get_keyspace_column_families(keyspace_name)
{ "content_hash": "2fee939b244dbb95e4b06794853ccfe1", "timestamp": "", "source": "github", "line_count": 22, "max_line_length": 65, "avg_line_length": 27.636363636363637, "alnum_prop": 0.7796052631578947, "repo_name": "jabadabadu/cassango", "id": "2a6ce59447ab9ff1b3ae01a1a41d3be71a1aff28", "size": "608", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "cassango/introspection.py", "mode": "33188", "license": "bsd-2-clause", "language": [ { "name": "Python", "bytes": "25698" } ], "symlink_target": "" }
from sklearn2sql_heroku.tests.classification import generic as class_gen class_gen.test_model("GaussianNB" , "iris" , "postgresql")
{ "content_hash": "0d7c241f3cd16f7c5cd388d725f80bfb", "timestamp": "", "source": "github", "line_count": 4, "max_line_length": 72, "avg_line_length": 33.5, "alnum_prop": 0.7761194029850746, "repo_name": "antoinecarme/sklearn2sql_heroku", "id": "78333c9367995c94ec30ae5f28312d16d84f9556", "size": "134", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "tests/classification/iris/ws_iris_GaussianNB_postgresql_code_gen.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "Makefile", "bytes": "507043" }, { "name": "Procfile", "bytes": "37" }, { "name": "Python", "bytes": "1021137" }, { "name": "R", "bytes": "2521" } ], "symlink_target": "" }
import os.path import unittest import angr import ailment from angr.analyses.decompiler.optimization_passes.base_ptr_save_simplifier import ( BasePointerSaveSimplifier, ) test_location = os.path.join( os.path.dirname(os.path.realpath(__file__)), "..", "..", "binaries", "tests" ) def _get_block(clinic, addr): for block in clinic.graph.nodes(): if block.addr == addr: return block return None def check_bp_save_fauxware(arch): p = angr.Project( os.path.join(test_location, arch, "fauxware"), auto_load_libs=False ) cfg = p.analyses.CFGFast(normalize=True) main = p.kb.functions["main"] optimization_passes = [BasePointerSaveSimplifier] dra = p.analyses.Decompiler(main, cfg=cfg, optimization_passes=optimization_passes) first_block_stmts = dra.codegen._sequence.nodes[0].nodes[0].statements for stmt in first_block_stmts: if isinstance(stmt, ailment.Stmt.Store): assert not ( isinstance(stmt.data, ailment.Expr.Register) and stmt.data.reg_offset == p.arch.bp_offset ) or ( isinstance(stmt.data, ailment.Expr.StackBaseOffset) and stmt.data.offset == 0 ) # pylint: disable=missing-class-docstring # pylint: disable=no-self-use class TestBaseptrSaveSimplifier(unittest.TestCase): def test_baseptr_save_simplifier_amd64(self): # decompile all:main and make sure the first and the last blocks do not save or restore to rbp bin_path = os.path.join(test_location, "x86_64", "all") proj = angr.Project(bin_path, auto_load_libs=False, load_debug_info=True) cfg = proj.analyses.CFG(data_references=True, normalize=True) optimization_passes = [BasePointerSaveSimplifier] main_func = cfg.functions["main"] dec = proj.analyses.Decompiler( main_func, cfg=cfg, optimization_passes=optimization_passes ) entry_block = _get_block(dec.clinic, main_func.addr) endpoint_block = _get_block(dec.clinic, next(iter(main_func.endpoints)).addr) assert entry_block is not None assert endpoint_block is not None for stmt in entry_block.statements: if isinstance(stmt, ailment.Stmt.Store) and isinstance( stmt.data, ailment.Expr.StackBaseOffset ): assert ( False ), "Found a base-pointer saving statement in the first block." for stmt in endpoint_block.statements: if ( isinstance(stmt, ailment.Stmt.Assignment) and isinstance(stmt.dst, ailment.Expr.Register) and stmt.dst.reg_offset == proj.arch.bp_offset ): assert ( False ), "Found a base-pointer restoring statement in the last block." def test_bp_save_amd64_fauxware(self): check_bp_save_fauxware("x86_64") def test_bp_save_armel_fauxware(self): check_bp_save_fauxware("armel") if __name__ == "__main__": unittest.main()
{ "content_hash": "37d45c75e21c61484ce81a61862d241f", "timestamp": "", "source": "github", "line_count": 91, "max_line_length": 102, "avg_line_length": 34.30769230769231, "alnum_prop": 0.6236386931454196, "repo_name": "angr/angr", "id": "cd762a942cbd17c2c904250dd3164a22a4964307", "size": "3122", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "tests/test_baseptr_save_simplifier.py", "mode": "33188", "license": "bsd-2-clause", "language": [ { "name": "C", "bytes": "6694" }, { "name": "C++", "bytes": "146292" }, { "name": "Makefile", "bytes": "946" }, { "name": "Python", "bytes": "27717304" } ], "symlink_target": "" }
"""AUACM top package""" import auacm.common, auacm.main, auacm.user, auacm.problems, auacm.submit, auacm.competition, auacm.exceptions from auacm.common import DEBUG, BASE_URL, logo, session import auacm.utils # Package metadata __description__ = 'A command line interface to the Auburn ACM website' __license__ = 'MIT' __uri__ = 'https://github.com/BrandonLMorris/auacm-cli' __version__ = '0.4' __author__ = 'Brandon Morris' __email__ = '[email protected]'
{ "content_hash": "c7958cc779eae7c9b1367a3c5cabdb3a", "timestamp": "", "source": "github", "line_count": 14, "max_line_length": 110, "avg_line_length": 33.57142857142857, "alnum_prop": 0.7191489361702128, "repo_name": "BrandonLMorris/auacm-cli", "id": "2847bc08fadd409b0c9fa9e994b7fc61fd6f0b87", "size": "470", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "src/auacm/__init__.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "37369" } ], "symlink_target": "" }
from webob import exc from nova.api.openstack import wsgi class ConsolesController(wsgi.Controller): """(Removed) The Consoles controller for the OpenStack API. This was removed during the Ussuri release along with the nova-console service. """ @wsgi.expected_errors(410) def index(self, req, server_id): raise exc.HTTPGone() @wsgi.expected_errors(410) def create(self, req, server_id, body): raise exc.HTTPGone() @wsgi.expected_errors(410) def show(self, req, server_id, id): raise exc.HTTPGone() @wsgi.expected_errors(410) def delete(self, req, server_id, id): raise exc.HTTPGone()
{ "content_hash": "814b4c3428a501aee3cefdb06fdc4db7", "timestamp": "", "source": "github", "line_count": 27, "max_line_length": 74, "avg_line_length": 24.88888888888889, "alnum_prop": 0.6636904761904762, "repo_name": "mahak/nova", "id": "16243d56ff06fc5f103501c6a77bbadbe0efefab", "size": "1308", "binary": false, "copies": "4", "ref": "refs/heads/master", "path": "nova/api/openstack/compute/consoles.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "C++", "bytes": "3545" }, { "name": "Mako", "bytes": "1952" }, { "name": "Python", "bytes": "23261880" }, { "name": "Shell", "bytes": "28113" }, { "name": "Smarty", "bytes": "507244" } ], "symlink_target": "" }
"""Commands that can be used to operate on activity summaries.""" from constants import constants from core.domain import activity_services from core.domain import collection_services from core.domain import exp_services from core.domain import rights_manager from core.domain import stats_jobs_continuous from core.domain import user_services import utils _LIBRARY_INDEX_GROUPS = [{ 'header_i18n_id': 'I18N_LIBRARY_GROUPS_MATHEMATICS_&_STATISTICS', 'search_categories': [ 'Mathematics', 'Algebra', 'Arithmetic', 'Calculus', 'Combinatorics', 'Geometry', 'Graph Theory', 'Logic', 'Probability', 'Statistics', 'Trigonometry', ], }, { 'header_i18n_id': 'I18N_LIBRARY_GROUPS_COMPUTING', 'search_categories': ['Algorithms', 'Computing', 'Programming'], }, { 'header_i18n_id': 'I18N_LIBRARY_GROUPS_SCIENCE', 'search_categories': [ 'Astronomy', 'Biology', 'Chemistry', 'Engineering', 'Environment', 'Medicine', 'Physics', ], }, { 'header_i18n_id': 'I18N_LIBRARY_GROUPS_HUMANITIES', 'search_categories': [ 'Architecture', 'Art', 'Music', 'Philosophy', 'Poetry' ], }, { 'header_i18n_id': 'I18N_LIBRARY_GROUPS_LANGUAGES', 'search_categories': [ 'Languages', 'Reading', 'English', 'Latin', 'Spanish', 'Gaulish' ], }, { 'header_i18n_id': 'I18N_LIBRARY_GROUPS_SOCIAL_SCIENCE', 'search_categories': [ 'Business', 'Economics', 'Geography', 'Government', 'History', 'Law' ], }] def get_human_readable_contributors_summary(contributors_summary): """Gets contributors summary in human readable form. Args: contributors_summary: dict. The keys are user ids and the values are the number of commits made by that user. Returns: dict. Dicts of contributors in human readable form; the keys are usernames and the values are a dict. Example: { 'albert': { 'num_commits': 10, }, } """ contributor_ids = contributors_summary.keys() contributor_usernames = user_services.get_human_readable_user_ids( contributor_ids) return { contributor_usernames[ind]: { 'num_commits': contributors_summary[contributor_ids[ind]], } for ind in xrange(len(contributor_ids)) } def get_learner_collection_dict_by_id( collection_id, user_id, strict=True, allow_invalid_explorations=False, version=None): """Gets a dictionary representation of a collection given by the provided collection ID. This dict includes user-specific playthrough information. Args: collection_id: str. The id of the collection. user_id: str. The user_id of the learner. strict: bool. Whether to fail noisily if no collection with the given id exists in the datastore. allow_invalid_explorations: bool. Whether to also return explorations that are invalid, such as deleted/private explorations. version: str or None. The version number of the collection to be retrieved. If it is None, the latest version will be retrieved. Returns: dict. A dictionary that contains extra information along with the dict returned by collection_domain.Collection.to_dict() which includes useful data for the collection learner view. The information includes progress in the collection, information about explorations referenced within the collection, and a slightly nicer data structure for frontend work. Raises: ValidationError: If the collection retrieved using the given ID references non-existent explorations. """ collection = collection_services.get_collection_by_id( collection_id, strict=strict, version=version) exp_ids = collection.exploration_ids exp_summary_dicts = get_displayable_exp_summary_dicts_matching_ids( exp_ids, editor_user_id=user_id) exp_summaries_dict_map = { exp_summary_dict['id']: exp_summary_dict for exp_summary_dict in exp_summary_dicts } # TODO(bhenning): Users should not be recommended explorations they have # completed outside the context of a collection (see #1461). next_exploration_ids = None completed_exp_ids = None if user_id: completed_exp_ids = ( collection_services.get_valid_completed_exploration_ids( user_id, collection)) next_exploration_ids = collection.get_next_exploration_ids( completed_exp_ids) else: # If the user is not logged in or they have not completed any of # the explorations yet within the context of this collection, # recommend the initial explorations. next_exploration_ids = collection.init_exploration_ids completed_exp_ids = [] collection_dict = collection.to_dict() collection_dict['playthrough_dict'] = { 'next_exploration_ids': next_exploration_ids, 'completed_exploration_ids': completed_exp_ids } collection_dict['version'] = collection.version collection_is_public = rights_manager.is_collection_public(collection_id) # Insert an 'exploration' dict into each collection node, where the # dict includes meta information about the exploration (ID and title). for collection_node in collection_dict['nodes']: exploration_id = collection_node['exploration_id'] summary_dict = exp_summaries_dict_map.get(exploration_id) if not allow_invalid_explorations: if not summary_dict: raise utils.ValidationError( 'Expected collection to only reference valid ' 'explorations, but found an exploration with ID: %s (was ' 'the exploration deleted or is it a private exploration ' 'that you do not have edit access to?)' % exploration_id) if collection_is_public and rights_manager.is_exploration_private( exploration_id): raise utils.ValidationError( 'Cannot reference a private exploration within a public ' 'collection, exploration ID: %s' % exploration_id) if summary_dict: collection_node['exploration_summary'] = summary_dict else: collection_node['exploration_summary'] = None return collection_dict def get_displayable_collection_summary_dicts_matching_ids(collection_ids): """Returns a list of collection summary dicts corresponding to the given collection ids. Args: collection_ids: list(str). A list of collection ids. Return: list(dict). Each element in this list is a collection summary dict. These elements are returned in the same order as that given in collection_ids. """ collection_summaries = ( collection_services.get_collection_summaries_matching_ids( collection_ids)) return _get_displayable_collection_summary_dicts(collection_summaries) def get_exp_metadata_dicts_matching_query(query_string, search_cursor, user_id): """Given a query string and a search cursor, returns a list of exploration metadata dicts that satisfy the search query. Args: query_string: str. The search query for which the search is to be performed. search_cursor: str or None. The cursor location to start the search from. If None, the returned values are from the beginning of the results list. user_id: str or None. The id of the user performing the query. If not None, private explorations that are editable by this user are also returned. Returns: exploration_list: list(dict). A list of metadata dicts for explorations matching the query. new_search_cursor: str. New search cursor location. """ exp_ids, new_search_cursor = ( exp_services.get_exploration_ids_matching_query( query_string, cursor=search_cursor)) exploration_list = get_exploration_metadata_dicts(exp_ids, user_id) return exploration_list, new_search_cursor def get_exploration_metadata_dicts(exploration_ids, editor_user_id=None): """Given a list of exploration ids, optionally filters the list for explorations that are currently non-private and not deleted, and returns a list of dicts of the corresponding exploration summaries for collection node search. Args: exploration_ids: list(str). A list of exploration ids for which exploration metadata dicts are to be returned. editor_user_id: str or None. The id of the user performing the query. If not None, private explorations that are editable by this user are also returned. Returns: list(dict). A list of metadata dicts corresponding to the given exploration ids. Each dict has three keys: 'id': the exploration id; 'title': the exploration title; 'objective': the exploration objective. """ exploration_summaries = ( exp_services.get_exploration_summaries_matching_ids(exploration_ids)) filtered_exploration_summaries = [] for exploration_summary in exploration_summaries: if exploration_summary is None: continue if exploration_summary.status == ( rights_manager.ACTIVITY_STATUS_PRIVATE): if editor_user_id is None: continue if not rights_manager.Actor(editor_user_id).can_edit( constants.ACTIVITY_TYPE_EXPLORATION, exploration_summary.id): continue filtered_exploration_summaries.append(exploration_summary) return [ summary.to_metadata_dict() for summary in filtered_exploration_summaries] def get_displayable_exp_summary_dicts_matching_ids( exploration_ids, editor_user_id=None): """Gets a summary of explorations in human readable form from exploration ids. Given a list of exploration ids, optionally filters the list for explorations that are currently non-private and not deleted, and returns a list of dicts of the corresponding exploration summaries. This function can also filter based on a user ID who has edit access to the corresponding exploration, where the editor ID is for private explorations. Please use this function when needing summary information to display on exploration summary tiles in the frontend. Args: exploration_ids: list(str). List of exploration ids. editor_user_id: str or None. If provided, the returned value is filtered based on a user ID who has edit access to the corresponding explorations. Otherwise, the returned list is not filtered. Return: list(dict). A list of exploration summary dicts in human readable form. Example: [ { 'category': u'A category', 'community_owned': False, 'id': 'eid2', 'language_code': 'en', 'num_views': 0, 'objective': u'An objective', 'status': 'public', 'tags': [], 'thumbnail_bg_color': '#a33f40', 'thumbnail_icon_url': self.get_static_asset_url( '/images/subjects/Lightbulb.svg'), 'title': u'Exploration 2 Albert title', }, ] """ exploration_summaries = ( exp_services.get_exploration_summaries_matching_ids(exploration_ids)) filtered_exploration_summaries = [] for exploration_summary in exploration_summaries: if exploration_summary is None: continue if exploration_summary.status == ( rights_manager.ACTIVITY_STATUS_PRIVATE): if editor_user_id is None: continue if not rights_manager.Actor(editor_user_id).can_edit( constants.ACTIVITY_TYPE_EXPLORATION, exploration_summary.id): continue filtered_exploration_summaries.append(exploration_summary) return get_displayable_exp_summary_dicts(filtered_exploration_summaries) def get_displayable_exp_summary_dicts(exploration_summaries): """Gets a summary of explorations in human readable form. Given a list of exploration summary domain objects, returns a list, with the same number of elements, of the corresponding human-readable exploration summary dicts. This assumes that all the exploration summary domain objects passed in are valid (i.e., none of them are None). Args: exploration_summaries: list(ExplorationSummary). List of exploration summary objects. Return: list(dict). A list of exploration summary dicts in human readable form. Example: [ { 'category': u'A category', 'community_owned': False, 'id': 'eid2', 'language_code': 'en', 'num_views': 0, 'objective': u'An objective', 'status': 'public', 'tags': [], 'thumbnail_bg_color': '#a33f40', 'thumbnail_icon_url': self.get_static_asset_url( '/images/subjects/Lightbulb.svg'), 'title': u'Exploration 2 Albert title', }, ] """ exploration_ids = [ exploration_summary.id for exploration_summary in exploration_summaries] view_counts = ( stats_jobs_continuous.StatisticsAggregator.get_views_multi( exploration_ids)) displayable_exp_summaries = [] for ind, exploration_summary in enumerate(exploration_summaries): if not exploration_summary: continue summary_dict = { 'id': exploration_summary.id, 'title': exploration_summary.title, 'activity_type': constants.ACTIVITY_TYPE_EXPLORATION, 'category': exploration_summary.category, 'created_on_msec': utils.get_time_in_millisecs( exploration_summary.exploration_model_created_on), 'objective': exploration_summary.objective, 'language_code': exploration_summary.language_code, 'last_updated_msec': utils.get_time_in_millisecs( exploration_summary.exploration_model_last_updated ), 'human_readable_contributors_summary': ( get_human_readable_contributors_summary( exploration_summary.contributors_summary) ), 'status': exploration_summary.status, 'ratings': exploration_summary.ratings, 'community_owned': exploration_summary.community_owned, 'tags': exploration_summary.tags, 'thumbnail_icon_url': utils.get_thumbnail_icon_url_for_category( exploration_summary.category), 'thumbnail_bg_color': utils.get_hex_color_for_category( exploration_summary.category), 'num_views': view_counts[ind], } displayable_exp_summaries.append(summary_dict) return displayable_exp_summaries def _get_displayable_collection_summary_dicts(collection_summaries): """Gets a summary of collections in human readable form. Args: collection_summaries: list(CollectionSummary). List of collection summary domain object. Return: list(dict). A list of exploration summary dicts in human readable form. Example: [ { 'category': u'A category', 'community_owned': False, 'id': 'eid2', 'language_code': 'en', 'num_views': 0, 'objective': u'An objective', 'status': 'public', 'tags': [], 'thumbnail_bg_color': '#a33f40', 'thumbnail_icon_url': self.get_static_asset_url( '/images/subjects/Lightbulb.svg'), 'title': u'Exploration 2 Albert title', }, ] """ displayable_collection_summaries = [] for collection_summary in collection_summaries: if collection_summary and collection_summary.status != ( rights_manager.ACTIVITY_STATUS_PRIVATE): displayable_collection_summaries.append({ 'id': collection_summary.id, 'title': collection_summary.title, 'category': collection_summary.category, 'activity_type': constants.ACTIVITY_TYPE_COLLECTION, 'objective': collection_summary.objective, 'language_code': collection_summary.language_code, 'tags': collection_summary.tags, 'node_count': collection_summary.node_count, 'last_updated_msec': utils.get_time_in_millisecs( collection_summary.collection_model_last_updated), 'thumbnail_icon_url': ( utils.get_thumbnail_icon_url_for_category( collection_summary.category)), 'thumbnail_bg_color': utils.get_hex_color_for_category( collection_summary.category)}) return displayable_collection_summaries def get_library_groups(language_codes): """Returns a list of groups for the library index page. Each group has a header and a list of dicts representing activity summaries. Args: language_codes: list(str). A list of language codes. Only explorations with these languages will be returned. Return: list(dict). A list of groups for the library index page. Each group is represented by a dict with the following keys and values: - activity_summary_dicts: list(dict). A list of dicts representing activity summaries. - categories: list(str). The list of group categories. - header_i18n_id: str. The i18n id for the header of the category. - has_full_results_page: bool. Whether the group header links to a "full results" page. This is always True for the "exploration category" groups. - full_results_url: str. The URL to the corresponding "full results" page. """ language_codes_suffix = '' if language_codes: language_codes_suffix = ' language_code=("%s")' % ( '" OR "'.join(language_codes)) def _generate_query(categories): # This assumes that 'categories' is non-empty. return 'category=("%s")%s' % ( '" OR "'.join(categories), language_codes_suffix) # Collect all collection ids so that the summary details can be retrieved # with a single get_multi() call. all_collection_ids = [] header_id_to_collection_ids = {} for group in _LIBRARY_INDEX_GROUPS: collection_ids = collection_services.search_collections( _generate_query(group['search_categories']), 8)[0] header_id_to_collection_ids[group['header_i18n_id']] = collection_ids all_collection_ids += collection_ids collection_summaries = [ summary for summary in collection_services.get_collection_summaries_matching_ids( all_collection_ids) if summary is not None] collection_summary_dicts = { summary_dict['id']: summary_dict for summary_dict in _get_displayable_collection_summary_dicts( collection_summaries) } # Collect all exp ids so that the summary details can be retrieved with a # single get_multi() call. all_exp_ids = [] header_to_exp_ids = {} for group in _LIBRARY_INDEX_GROUPS: exp_ids = exp_services.search_explorations( _generate_query(group['search_categories']), 8)[0] header_to_exp_ids[group['header_i18n_id']] = exp_ids all_exp_ids += exp_ids exp_summaries = [ summary for summary in exp_services.get_exploration_summaries_matching_ids(all_exp_ids) if summary is not None] exp_summary_dicts = { summary_dict['id']: summary_dict for summary_dict in get_displayable_exp_summary_dicts(exp_summaries) } results = [] for group in _LIBRARY_INDEX_GROUPS: summary_dicts = [] collection_ids_to_display = ( header_id_to_collection_ids[group['header_i18n_id']]) summary_dicts = [ collection_summary_dicts[collection_id] for collection_id in collection_ids_to_display if collection_id in collection_summary_dicts] exp_ids_to_display = header_to_exp_ids[group['header_i18n_id']] summary_dicts += [ exp_summary_dicts[exp_id] for exp_id in exp_ids_to_display if exp_id in exp_summary_dicts] if not summary_dicts: continue results.append({ 'header_i18n_id': group['header_i18n_id'], 'categories': group['search_categories'], 'activity_summary_dicts': summary_dicts, 'has_full_results_page': True, 'full_results_url': None, }) return results def require_activities_to_be_public(activity_references): """Raises an exception if any activity reference in the list does not exist, or is not public. Args: activity_references: list(ActivityReference). A list of ActivityReference domain objects. Raises: Exception: Any activity reference in the list does not exist, or is not public. """ exploration_ids, collection_ids = activity_services.split_by_type( activity_references) activity_summaries_by_type = [{ 'type': constants.ACTIVITY_TYPE_EXPLORATION, 'ids': exploration_ids, 'summaries': exp_services.get_exploration_summaries_matching_ids( exploration_ids), }, { 'type': constants.ACTIVITY_TYPE_COLLECTION, 'ids': collection_ids, 'summaries': collection_services.get_collection_summaries_matching_ids( collection_ids), }] for activities_info in activity_summaries_by_type: for index, summary in enumerate(activities_info['summaries']): if summary is None: raise Exception( 'Cannot feature non-existent %s with id %s' % (activities_info['type'], activities_info['ids'][index])) if summary.status == rights_manager.ACTIVITY_STATUS_PRIVATE: raise Exception( 'Cannot feature private %s with id %s' % (activities_info['type'], activities_info['ids'][index])) def get_featured_activity_summary_dicts(language_codes): """Returns a list of featured activities with the given language codes. The return value is sorted according to the list stored in the datastore. Args: language_codes: list(str). A list of language codes. Only explorations with these languages will be returned. Return: list(dict). Each dict in this list represents a featured activity. For example: [ { 'status': 'public', 'thumbnail_bg_color': '#a33f40', 'community_owned': False, 'tags': [], 'thumbnail_icon_url': self.get_static_asset_url( '/images/subjects/Lightbulb.svg'), 'language_code': constants.DEFAULT_LANGUAGE_CODE, 'id': 'eid2', 'category': 'A category', 'ratings': feconf.get_empty_ratings(), 'title': 'A title', 'num_views': 0, 'objective': 'An objective', }, ] """ activity_references = activity_services.get_featured_activity_references() exploration_ids, collection_ids = activity_services.split_by_type( activity_references) exp_summary_dicts = get_displayable_exp_summary_dicts_matching_ids( exploration_ids) col_summary_dicts = get_displayable_collection_summary_dicts_matching_ids( collection_ids) summary_dicts_by_id = { constants.ACTIVITY_TYPE_EXPLORATION: { summary_dict['id']: summary_dict for summary_dict in exp_summary_dicts }, constants.ACTIVITY_TYPE_COLLECTION: { summary_dict['id']: summary_dict for summary_dict in col_summary_dicts }, } featured_summary_dicts = [] for reference in activity_references: if reference.id in summary_dicts_by_id[reference.type]: summary_dict = summary_dicts_by_id[reference.type][reference.id] if summary_dict and summary_dict['language_code'] in language_codes: featured_summary_dicts.append(summary_dict) return featured_summary_dicts def get_top_rated_exploration_summary_dicts(language_codes, limit): """Returns a list of top rated explorations with the given language codes. The return value is sorted in decreasing order of average rating. Args: language_codes: list(str). A list of language codes. Only explorations with these languages will be returned. limit: int. The maximum number of explorations to return. Return: list(dict). Each dict in this list represents a exploration summary in human readable form. The list is sorted in decreasing order of average rating. For example: [ { 'category': u'A category', 'community_owned': False, 'id': 'eid2', 'language_code': 'en', 'num_views': 0, 'objective': u'An objective', 'status': 'public', 'tags': [], 'thumbnail_bg_color': '#a33f40', 'thumbnail_icon_url': self.get_static_asset_url( '/images/subjects/Lightbulb.svg'), 'title': u'Exploration 2 Albert title', }, ] """ filtered_exp_summaries = [ exp_summary for exp_summary in exp_services.get_top_rated_exploration_summaries(limit).values() if exp_summary.language_code in language_codes and sum(exp_summary.ratings.values()) > 0] sorted_exp_summaries = sorted( filtered_exp_summaries, key=lambda exp_summary: exp_summary.scaled_average_rating, reverse=True) return get_displayable_exp_summary_dicts(sorted_exp_summaries) def get_recently_published_exp_summary_dicts(limit): """Returns a list of recently published explorations. Args: limit: int. The maximum number of explorations to return. Return: list(dict). Each dict in this list represents a featured activity in human readable form. For example: [ { 'category': u'A category', 'community_owned': False, 'id': 'eid2', 'language_code': 'en', 'num_views': 0, 'objective': u'An objective', 'status': 'public', 'tags': [], 'thumbnail_bg_color': '#a33f40', 'thumbnail_icon_url': self.get_static_asset_url( '/images/subjects/Lightbulb.svg'), 'title': u'Exploration 2 Albert title', }, ] """ recently_published_exploration_summaries = [ exp_summary for exp_summary in exp_services.get_recently_published_exp_summaries(limit).values()] # Arranging recently published exploration summaries with respect to time. # sorted() is used to sort the random list of recently published summaries. summaries = sorted( recently_published_exploration_summaries, key=lambda exp_summary: exp_summary.first_published_msec, reverse=True) return get_displayable_exp_summary_dicts(summaries)
{ "content_hash": "a84e6c057e0c24087322ffa7d05285e9", "timestamp": "", "source": "github", "line_count": 715, "max_line_length": 80, "avg_line_length": 39.033566433566435, "alnum_prop": 0.6265720735246695, "repo_name": "shaz13/oppia", "id": "56b714bf52e109e8a41cbe483861681ff85c2e1e", "size": "28532", "binary": false, "copies": "1", "ref": "refs/heads/develop", "path": "core/domain/summary_services.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "CSS", "bytes": "102650" }, { "name": "HTML", "bytes": "944588" }, { "name": "JavaScript", "bytes": "2788895" }, { "name": "Python", "bytes": "3656185" }, { "name": "Shell", "bytes": "46842" } ], "symlink_target": "" }
from version import VERSION from setuptools import setup install_requires = ['lxml==3.1.0', 'requests==1.1.0', 'tox==1.4.3'] setup(name='ispdb', version=VERSION, description='Interface to Mozilla ISP database', author='sprt', author_email='[email protected]', classifiers=['Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Topic :: Communications :: Email :: Email Clients (MUA)', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', # the two following have not been tested yet # 'Programming Language :: Python :: 3.0', # 'Programming Language :: Python :: 3.1', 'Programming Language :: Python :: 3.2', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: Implementation :: PyPy', ], py_modules=['ispdb', 'version'], license='MIT License', install_requires=install_requires, test_suite='test')
{ "content_hash": "bca8cd8227d6a545725ac2927992e789", "timestamp": "", "source": "github", "line_count": 29, "max_line_length": 78, "avg_line_length": 40.793103448275865, "alnum_prop": 0.5224006762468301, "repo_name": "dveeden/ispdb", "id": "344d1c8182caacfeef0c411d75b5769a54b4c648", "size": "1205", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "setup.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "8213" } ], "symlink_target": "" }
__all__ = [ 'init', 'make_ops_dirs', ] import dataclasses import logging import tempfile from pathlib import Path import g1.files from g1 import scripts from g1.bases.assertions import ASSERT from g1.containers import models as ctr_models from g1.containers import scripts as ctr_scripts from g1.texts import jsons from . import bases from . import envs as ops_envs from . import models from . import repos from . import systemds from . import tokens LOG = logging.getLogger(__name__) class PodBundleDir(repos.AbstractBundleDir): deploy_instruction_type = models.PodDeployInstruction def post_init(self): ASSERT.predicate(self.path, Path.is_dir) ASSERT.predicate(self.deploy_instruction_path, Path.is_file) ASSERT.all((path for _, path in self.iter_images()), Path.is_file) ASSERT.all((path for _, path in self.iter_volumes()), Path.is_file) def iter_images(self): for image in self.deploy_instruction.images: yield image, ( self.path / \ models.POD_BUNDLE_IMAGES_DIR_NAME / image.name / models.POD_BUNDLE_IMAGE_FILENAME ) def iter_volumes(self): for volume in self.deploy_instruction.volumes: yield volume, ( self.path / \ models.POD_BUNDLE_VOLUMES_DIR_NAME / volume.name / models.POD_BUNDLE_VOLUME_FILENAME ) class PodOpsDir(repos.AbstractOpsDir): metadata_type = models.PodMetadata # XXX: This annotation works around pylint no-member false errors. metadata: object @staticmethod def _get_pod_id_set(metadata): return {config.pod_id for config in metadata.systemd_unit_configs} def check_invariants(self, active_ops_dirs): # We check uniqueness of UUIDs here, but to be honest, UUID is # quite unlikely to conflict. for ops_dir in active_ops_dirs: ASSERT.isdisjoint( self._get_pod_id_set(ops_dir.metadata), self._get_pod_id_set(self.metadata), ) def install(self, bundle_dir, target_ops_dir_path): ASSERT.isinstance(bundle_dir, PodBundleDir) log_args = (bundle_dir.label, bundle_dir.version) # Make metadata first so that uninstall may roll back properly. LOG.debug('pods install: metadata: %s %s', *log_args) metadata, groups = self._make_metadata(bundle_dir.deploy_instruction) jsons.dump_dataobject(metadata, self.metadata_path) bases.set_file_attrs(self.metadata_path) # Sanity check of the just-written metadata file. ASSERT.equal(self.label, bundle_dir.label) ASSERT.equal(self.version, bundle_dir.version) ASSERT.equal(self.metadata, metadata) LOG.debug( 'pods install: pod ids: %s %s: %s', *log_args, ', '.join(groups) ) LOG.debug('pods install: volumes: %s %s', *log_args) bases.make_dir(self.volumes_dir_path) for volume, volume_path in bundle_dir.iter_volumes(): volume_dir_path = self.volumes_dir_path / volume.name LOG.debug('pods: extract: %s -> %s', volume_path, volume_dir_path) bases.make_dir(ASSERT.not_predicate(volume_dir_path, Path.exists)) scripts.tar_extract( volume_path, directory=volume_dir_path, extra_args=( '--same-owner', '--same-permissions', ), ) LOG.debug('pods install: images: %s %s', *log_args) for _, image_path in bundle_dir.iter_images(): ctr_scripts.ctr_import_image(image_path) LOG.debug('pods install: tokens: %s %s', *log_args) assignments = {} with tokens.make_tokens_database().writing() as active_tokens: for pod_id in groups: assignments[pod_id] = { alias: active_tokens.assign(token_name, pod_id, alias) for alias, token_name in bundle_dir.deploy_instruction.token_names.items() } envs = ops_envs.load() LOG.debug('pods install: prepare pods: %s %s', *log_args) bases.make_dir(self.refs_dir_path) for pod_id, group in groups.items(): pod_config = self._make_pod_config( bundle_dir.deploy_instruction, target_ops_dir_path, systemds.make_envs( pod_id, self.metadata, group.envs, envs, assignments[pod_id], ), ) with tempfile.NamedTemporaryFile() as config_tempfile: config_path = Path(config_tempfile.name) jsons.dump_dataobject(pod_config, config_path) ctr_scripts.ctr_prepare_pod(pod_id, config_path) ctr_scripts.ctr_add_ref_to_pod(pod_id, self.refs_dir_path / pod_id) LOG.debug('pods install: systemd units: %s %s', *log_args) units = {(pod_id, unit.name): unit for pod_id, group in groups.items() for unit in group.units} for config in self.metadata.systemd_unit_configs: systemds.install( config, self.metadata, groups[config.pod_id], units[config.pod_id, config.name], envs, assignments[config.pod_id], ) systemds.daemon_reload() return True @staticmethod def _make_metadata(deploy_instruction): groups = {} systemd_unit_configs = [] for group in deploy_instruction.systemd_unit_groups: pod_id = ctr_models.generate_pod_id() groups[pod_id] = group systemd_unit_configs.extend( models.PodMetadata.SystemdUnitConfig( pod_id=pod_id, name=unit.name, auto_start=unit.auto_start, auto_stop=unit.auto_stop, ) for unit in group.units ) metadata = models.PodMetadata( label=deploy_instruction.label, version=deploy_instruction.version, images=deploy_instruction.images, systemd_unit_configs=systemd_unit_configs, ) return metadata, groups @staticmethod def _make_pod_config(deploy_instruction, target_ops_dir_path, envs): def volume_to_mount(volume): return ctr_models.PodConfig.Mount( source=str( target_ops_dir_path / \ models.OPS_DIR_VOLUMES_DIR_NAME / volume.name ), target=volume.target, read_only=volume.read_only, ) return dataclasses.replace( deploy_instruction.pod_config_template, apps=[ dataclasses.replace( app, exec=[arg.format_map(envs) for arg in app.exec], service_section=( app.service_section if app.service_section is None else app.service_section.format_map(envs) ), ) for app in deploy_instruction.pod_config_template.apps ], mounts=[ *deploy_instruction.pod_config_template.mounts, *map(volume_to_mount, deploy_instruction.volumes), ], ) def start(self, *, unit_names=None, all_units=False): """Enable and start the requested units.""" ASSERT.not_all((unit_names is not None, all_units)) LOG.info('pods start: %s %s', self.label, self.version) if unit_names is not None: predicate = lambda config: config.name in unit_names elif all_units: predicate = None else: predicate = lambda config: config.auto_start for config in self._filter_pod_ids_and_units(predicate): systemds.activate(config) def restart(self, *, unit_names=None, all_units=False): """Restart the requested units. NOTE: `restart` is not equivalent to `stop` followed by `start` for two reasons: * `start` and `stop` enables and disables the requested units, but `restart` does not. * The default behavior (when both `unit_names` and `all_units` are not set) of `restart` only restarts units of which both `auto_start` and `auto_stop` are true, which is usually what you want. But the default behavior of `stop` followed by `start` stops or starts only units of which `auto_start` or `auto_stop` is true. So units of which `auto_start` is false will be stopped but not restarted, and units of which `auto_stop` is false will not be stopped and thus not restarted; this is generally not what you want. """ ASSERT.not_all((unit_names is not None, all_units)) LOG.info('pods restart: %s %s', self.label, self.version) if unit_names is not None: predicate = lambda config: config.name in unit_names elif all_units: predicate = None else: predicate = lambda config: config.auto_start and config.auto_stop for config in self._filter_pod_ids_and_units(predicate): systemds.restart(config) def stop(self, *, unit_names=None, all_units=False): """Disable and stop the requested units.""" LOG.info('pods stop: %s %s', self.label, self.version) if unit_names is not None: predicate = lambda config: config.name in unit_names elif all_units: predicate = None else: predicate = lambda config: config.auto_stop for config in self._filter_pod_ids_and_units(predicate): systemds.deactivate(config) def stop_all(self): self.stop(all_units=True) def _filter_pod_ids_and_units(self, predicate): return filter(predicate, self.metadata.systemd_unit_configs) def uninstall(self): if not self.metadata_path.exists(): LOG.info('skip: pods uninstall: metadata was removed') ASSERT.predicate(self.path, g1.files.is_empty_dir) return False log_args = (self.label, self.version) LOG.debug('pods uninstall: systemd units: %s %s', *log_args) for config in self.metadata.systemd_unit_configs: systemds.uninstall(config) systemds.daemon_reload() LOG.debug('pods uninstall: pods: %s %s', *log_args) g1.files.remove(self.refs_dir_path) for pod_id in self._get_pod_id_set(self.metadata): ctr_scripts.ctr_remove_pod(pod_id) LOG.debug('pods uninstall: tokens: %s %s', *log_args) with tokens.make_tokens_database().writing() as active_tokens: for config in self.metadata.systemd_unit_configs: active_tokens.unassign_all(config.pod_id) LOG.debug('pods uninstall: images: %s %s', *log_args) for image in self.metadata.images: ctr_scripts.ctr_remove_image(image, skip_active=True) LOG.debug('pods uninstall: volumes: %s %s', *log_args) g1.files.remove(self.volumes_dir_path) LOG.debug('pods uninstall: metadata: %s %s', *log_args) g1.files.remove(self.metadata_path) # Remove metadata last. ASSERT.predicate(self.path, g1.files.is_empty_dir) return True def init(): repos.OpsDirs.init(_get_ops_dirs_path()) def make_ops_dirs(): return repos.OpsDirs( models.REPO_PODS_DIR_NAME, _get_ops_dirs_path(), bundle_dir_type=PodBundleDir, ops_dir_type=PodOpsDir, ) def _get_ops_dirs_path(): return bases.get_repo_path() / models.REPO_PODS_DIR_NAME
{ "content_hash": "19fd98920d8a81b3d7dfae73432576be", "timestamp": "", "source": "github", "line_count": 319, "max_line_length": 79, "avg_line_length": 37.711598746081506, "alnum_prop": 0.5804655029093931, "repo_name": "clchiou/garage", "id": "4c198779801e733218bf1be8dc9e91e97c437e68", "size": "12030", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "python/g1/operations/cores/g1/operations/cores/pod_ops_dirs.py", "mode": "33188", "license": "mit", "language": [ { "name": "Cap'n Proto", "bytes": "6917" }, { "name": "HTML", "bytes": "113" }, { "name": "Java", "bytes": "61027" }, { "name": "Python", "bytes": "1653733" }, { "name": "Shell", "bytes": "6209" } ], "symlink_target": "" }
from ..fetching import load_data_file # List the vispy fonts made available online _vispy_fonts = ('OpenSans', 'Cabin') def _get_vispy_font_filename(face, bold, italic): """Fetch a remote vispy font""" name = face + '-' name += 'Regular' if not bold and not italic else '' name += 'Bold' if bold else '' name += 'Italic' if italic else '' name += '.ttf' return load_data_file('fonts/%s' % name)
{ "content_hash": "f1f5a34e4efd30057220450bc17f5231", "timestamp": "", "source": "github", "line_count": 14, "max_line_length": 56, "avg_line_length": 30.428571428571427, "alnum_prop": 0.6244131455399061, "repo_name": "jdreaver/vispy", "id": "842a3e72a12343d35168ea0f7268b7ba5934e79b", "size": "752", "binary": false, "copies": "21", "ref": "refs/heads/master", "path": "vispy/util/fonts/_vispy_fonts.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "C", "bytes": "143081" }, { "name": "GLSL", "bytes": "195460" }, { "name": "JavaScript", "bytes": "5007" }, { "name": "Makefile", "bytes": "1638" }, { "name": "PowerShell", "bytes": "4078" }, { "name": "Python", "bytes": "2465363" } ], "symlink_target": "" }
"""Unit tests for reviewboard.search.signal_processor.SignalProcessor.""" import haystack import kgb from djblets.siteconfig.models import SiteConfiguration from haystack.signals import BaseSignalProcessor from reviewboard.search.signal_processor import SignalProcessor, logger from reviewboard.testing.testcase import TestCase class SignalProcessorTests(kgb.SpyAgency, TestCase): """Unit tests for reviewboard.search.signal_processor.SignalProcessor.""" def test_can_process_signals_with_siteconfig(self): """Testing SignalProcessor.can_process_signals with stored SiteConfiguration """ self.assertIsNotNone(SiteConfiguration.objects.get_current()) signal_processor = self._create_signal_processor() self.assertTrue(signal_processor.can_process_signals) def test_can_process_signals_without_siteconfig(self): """Testing SignalProcessor.can_process_signals without stored SiteConfiguration """ self.spy_on(SiteConfiguration.objects.get_current, op=kgb.SpyOpRaise(SiteConfiguration.DoesNotExist)) signal_processor = self._create_signal_processor() self.assertFalse(signal_processor.can_process_signals) # Make sure it works once one has been created. SiteConfiguration.objects.get_current.unspy() self.assertTrue(signal_processor.can_process_signals) def test_handle_delete_with_error(self): """Testing SignalProcessor.handle_delete with error""" exception = Exception('kaboom!') self.spy_on(BaseSignalProcessor.handle_delete, owner=BaseSignalProcessor, op=kgb.SpyOpRaise(exception)) self.spy_on(logger.error) signal_processor = self._create_signal_processor() # This should not raise an exception. # # We'll use some garbage values. signal_processor.handle_delete(sender=None, instance=None) self.assertSpyCalled(BaseSignalProcessor.handle_delete) self.assertSpyCalledWith( logger.error, ('Error updating the search index. Check to make sure the ' 'search backend is running and configured correctly, and then ' 'rebuild the search index. Error: %s'), exception) def test_handle_save_with_error(self): """Testing SignalProcessor.handle_save with error""" exception = Exception('kaboom!') self.spy_on(BaseSignalProcessor.handle_save, owner=BaseSignalProcessor, op=kgb.SpyOpRaise(exception)) self.spy_on(logger.error) signal_processor = self._create_signal_processor() # This should not raise an exception. # # We'll use some garbage values. signal_processor.handle_save(sender=None, instance=None) self.assertSpyCalled(BaseSignalProcessor.handle_save) self.assertSpyCalledWith( logger.error, ('Error updating the search index. Check to make sure the ' 'search backend is running and configured correctly, and then ' 'rebuild the search index. Error: %s'), exception) def _create_signal_processor(self): """Return a new instance of our Haystack signal processor. Returns: reviewboard.search.signal_processor.SignalProcessor: The new signal processor. """ return SignalProcessor(haystack.connections, haystack.connection_router)
{ "content_hash": "042f8959ec6a21d9f75a9d91139377f0", "timestamp": "", "source": "github", "line_count": 96, "max_line_length": 77, "avg_line_length": 38.0625, "alnum_prop": 0.6502463054187192, "repo_name": "reviewboard/reviewboard", "id": "2f21d2f4f3eea2ab6765218e2ed209e035b9d0ef", "size": "3654", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "reviewboard/search/tests/test_signal_processor.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "10167" }, { "name": "Dockerfile", "bytes": "7721" }, { "name": "HTML", "bytes": "226489" }, { "name": "JavaScript", "bytes": "3991608" }, { "name": "Less", "bytes": "438017" }, { "name": "Python", "bytes": "9186415" }, { "name": "Shell", "bytes": "3855" } ], "symlink_target": "" }
"""Implementation of an interactive wizard widget.""" from grr.gui import renderers from grr.gui.plugins import forms from grr.lib import aff4 class WizardRenderer(renderers.TemplateRenderer): """This renderer creates a wizard.""" render_as_modal = True current_page = 0 # WizardPage objects that defined this wizard's behaviour. title = "" pages = [] # This will be used for identifying the wizard when publishing the events. wizard_name = "wizard" layout_template = renderers.Template(""" <div id="Wizard_{{unique|escape}}" class="Wizard{% if this.render_as_modal %} modal-dialog{% endif %} FormData" data-current='{{this.current_page|escape}}' data-max_page='{{this.max_pages|escape}}' > {% if this.render_as_modal %}<div class="modal-content">{% endif %} {% for i, page, page_cls, page_renderer in this.raw_pages %} <div id="Page_{{i|escape}}" class="WizardPage" data-renderer="{{page_renderer|escape}}" style="display: none"> <div class="WizardBar modal-header"> <button type="button" class="close" data-dismiss="modal" aria-hidden="true">x</button> <h3>{{this.title|escape}} - <span class="Description"> {{page_cls.description|escape}} </span> </h3> </div> <div class="modal-body"> {{page|safe}} </div> </div> {% endfor %} <div class="modal-footer navbar-inner"> <ul class="nav pull-left"> <div id="Message{{unique}}"/> <div class="navbar-text" id="footer_message_{{unique}}"></div> </ul> <ul class="nav nav pull-right"> <button class="btn btn-default Back" style='display: none'>Back</button> <button class="btn btn-primary Next">Next</button> <button class="btn btn-primary Finish" style='display: none' data-dismiss="modal" > Finish </button> </ul> </div> {% if this.render_as_modal %}</div>{% endif %} </div> """) def Layout(self, request, response): """Render the content of the tab or the container tabset.""" self.raw_pages = [] for i, page_cls in enumerate(self.pages): # Make the page renderers dump all their data to the wizard DOM node. page_renderer = page_cls(id="Page_%d" % i) self.raw_pages.append((i, page_renderer.RawHTML(request), page_cls, page_cls.__name__)) self.max_pages = len(self.pages) - 1 super(WizardRenderer, self).Layout(request, response) return self.CallJavascript(response, "WizardRenderer.Layout") class AFF4AttributeFormRenderer(forms.TypeDescriptorFormRenderer): """A renderer for AFF4 attribute forms.""" type = aff4.AFF4Attribute layout_template = """<div class="form-group"> """ + forms.TypeDescriptorFormRenderer.default_description_view + """ <div class="controls"> <select id="{{this.prefix}}" class="unset" onchange="grr.forms.inputOnChange(this)" > {% for name in this.attributes %} {% if name %} <option {% ifequal name this.value %}selected{% endifequal %} value="{{name|escape}}"> {{name|escape}} {% ifequal name this.value %} (default){% endifequal %} </option> {% endif %} {% endfor %} </select> </div> </div> """ def __init__(self, **kwargs): super(AFF4AttributeFormRenderer, self).__init__(**kwargs) self.attributes = ["Unset"] self.attributes.extend(sorted(aff4.Attribute.NAMES.keys()))
{ "content_hash": "06e06e60858e2974414b7bc3bbd99a61", "timestamp": "", "source": "github", "line_count": 112, "max_line_length": 78, "avg_line_length": 30.089285714285715, "alnum_prop": 0.6391691394658754, "repo_name": "statik/grr", "id": "9a1c18ba24bd31d07357045e47d47f870f58a2e8", "size": "3392", "binary": false, "copies": "6", "ref": "refs/heads/master", "path": "gui/plugins/wizards.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Assembly", "bytes": "227" }, { "name": "Batchfile", "bytes": "14896" }, { "name": "C", "bytes": "10598" }, { "name": "C++", "bytes": "303841" }, { "name": "CMake", "bytes": "3228" }, { "name": "CSS", "bytes": "12812" }, { "name": "Groff", "bytes": "444" }, { "name": "HTML", "bytes": "83451" }, { "name": "JavaScript", "bytes": "229046" }, { "name": "Makefile", "bytes": "6232" }, { "name": "Protocol Buffer", "bytes": "202829" }, { "name": "Python", "bytes": "5266989" }, { "name": "Ruby", "bytes": "5103" }, { "name": "Shell", "bytes": "43667" }, { "name": "Standard ML", "bytes": "8172" } ], "symlink_target": "" }
"""Functional tests for reduction ops.""" import itertools import numbers import numpy as np from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import errors from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_shape from tensorflow.python.framework import test_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import gradient_checker from tensorflow.python.ops import math_ops from tensorflow.python.ops import variables from tensorflow.python.platform import test # The maximum input rank to test. _MAX_RANK = 5 def _powerset(iterable): """Helper for generating all possible reduction_axes arguments. Example: powerset([0,1,2]): () (0,) (1,) (2,) (0,1) (0,2) (1,2) (0,1,2) Args: iterable: An iterable of items to generate the powerset of. Returns: The powerset of all items in iterable. """ s = list(iterable) return itertools.chain.from_iterable( itertools.combinations(s, r) for r in range(len(s) + 1)) class ReducedShapeTest(test.TestCase): def _check(self, shape, axes, result): output = math_ops.reduced_shape(shape, axes=axes) self.assertAllEqual(output, result) @test_util.run_deprecated_v1 def testSimple(self): with self.cached_session(): self._check([3], [], [3]) self._check([3], [0], [1]) self._check([5, 3], [], [5, 3]) self._check([5, 3], [0], [1, 3]) self._check([5, 3], [1], [5, 1]) self._check([5, 3], [0, 1], [1, 1]) @test_util.run_deprecated_v1 def testZeros(self): """Check that reduced_shape does the right thing with zero dimensions.""" with self.cached_session(): self._check([0], [], [0]) self._check([0], [0], [1]) self._check([0, 3], [], [0, 3]) self._check([0, 3], [0], [1, 3]) self._check([0, 3], [1], [0, 1]) self._check([0, 3], [0, 1], [1, 1]) self._check([3, 0], [], [3, 0]) self._check([3, 0], [0], [1, 0]) self._check([3, 0], [1], [3, 1]) self._check([3, 0], [0, 1], [1, 1]) @test_util.run_deprecated_v1 def testNegAxes(self): with self.cached_session(): self._check([10, 10, 10], [-1], [10, 10, 1]) self._check([10, 10, 10], [-1, 2], [10, 10, 1]) self._check([10, 10, 10], [-1, -1], [10, 10, 1]) self._check([10, 10, 10], [-1, 0], [1, 10, 1]) self._check([10, 10, 10], [-3], [1, 10, 10]) class ReductionUnknownShape(test.TestCase): @test_util.run_deprecated_v1 def testBasic(self): with self.cached_session(): for dtype, reductions in [(dtypes.float32, (math_ops.reduce_sum, math_ops.reduce_mean, math_ops.reduce_prod, math_ops.reduce_max, math_ops.reduce_min, math_ops.reduce_euclidean_norm)), (dtypes.bool, (math_ops.reduce_all, math_ops.reduce_any))]: for reduction in reductions: x = array_ops.placeholder( dtype=dtype, shape=None) # Some tensor w/ unknown shape. y = reduction(x) self.assertEqual(y.shape, ()) class ReductionInvalidKeepdims(test.TestCase): def testBasic(self): # Test case for GitHub issue 46700. for dtype, reductions in [ (dtypes.float32, (math_ops.reduce_sum, math_ops.reduce_mean, math_ops.reduce_prod, math_ops.reduce_max, math_ops.reduce_min, math_ops.reduce_euclidean_norm)), (dtypes.bool, (math_ops.reduce_all, math_ops.reduce_any)) ]: for reduction in reductions: with self.assertRaisesRegex(ValueError, "The truth value"): x = True if dtype == dtypes.bool else 1 y = reduction( input_tensor=x, keepdims=np.array([63600, 1], dtype=np.float16)) self.evaluate(y) class BaseReductionTest(test.TestCase): def _tf_reduce(self, x, reduction_axes, keepdims): raise NotImplementedError() def _np_reduce(self, x, reduction_axes, keepdims): raise NotImplementedError() def _makeIncremental(self, shape, dtype): data = np.arange(np.prod(shape)).reshape(shape).astype(dtype.as_numpy_dtype) if dtype.is_complex: data -= 2j * data return data def _makeRandom(self, shape, dtype): data = np.random.rand(*shape).astype(dtype.as_numpy_dtype) if dtype.is_complex: data -= 2j * data return data def _compare(self, x, reduction_axes, keepdims, feed_dict=None, rtol=1e-6, atol=1e-6): np_ans = self._np_reduce(x, reduction_axes, keepdims) with self.cached_session() as sess: tf_ans = self._tf_reduce(x, reduction_axes, keepdims) out = sess.run(tf_ans, feed_dict) self.assertAllClose(np_ans, out, rtol=rtol, atol=atol) self.assertShapeEqual(np_ans, tf_ans) def _compareAll(self, x, reduction_axes, feed_dict=None, rtol=1e-6, atol=1e-6): if reduction_axes is not None and np.shape(reduction_axes) == (1,): # Test scalar reduction_axes argument self._compareAll(x, reduction_axes[0], rtol=rtol, atol=atol) self._compare( x, reduction_axes, keepdims=False, feed_dict=feed_dict, rtol=rtol, atol=atol) self._compare( x, reduction_axes, keepdims=True, feed_dict=feed_dict, rtol=rtol, atol=atol) def _compareAllAxes(self, x, feed_dict=None, rtol=1e-6, atol=1e-6): self._compareAll(x, None, rtol=rtol, atol=atol) for axes in _powerset(range(x.ndim)): self._compareAll(x, axes, feed_dict, rtol=rtol, atol=atol) def _compareGradient(self, x, reduction_axes, rtol=1e-8, atol=1e-8): if reduction_axes is not None and np.shape(reduction_axes) == (1,): # Test scalar reduction_axes argument self._compareGradient(x, reduction_axes[0], rtol=rtol, atol=atol) with self.cached_session(): t = ops.convert_to_tensor(x) su = self._tf_reduce(t, reduction_axes, False) jacob_t, jacob_n = gradient_checker.compute_gradient( t, x.shape, su, su.get_shape().as_list(), x_init_value=x, delta=1) self.assertAllClose(jacob_t, jacob_n, rtol=rtol, atol=atol) def _compareGradientAxes(self, x, rtol=1e-8, atol=1e-8): self._compareGradient(x, None, rtol=rtol, atol=atol) self._compareGradient(x, [], rtol=rtol, atol=atol) self._compareGradient(x, 0, rtol=rtol, atol=atol) self._compareGradient(x, [1], rtol=rtol, atol=atol) self._compareGradient(x, [2], rtol=rtol, atol=atol) self._compareGradient(x, [1, 2], rtol=rtol, atol=atol) self._compareGradient(x, [0, 1, 2, 3], rtol=rtol, atol=atol) class SumReductionTest(BaseReductionTest): def _tf_reduce(self, x, reduction_axes, keepdims): return math_ops.reduce_sum(x, reduction_axes, keepdims) def _np_reduce(self, x, reduction_axes, keepdims): if isinstance(reduction_axes, list) or isinstance(reduction_axes, np.ndarray): reduction_axes = tuple(reduction_axes) return np.sum(x, axis=reduction_axes, keepdims=keepdims) def testAxesType(self): for dtype in [dtypes.int64, dtypes.int32]: with self.cached_session(): v = math_ops.reduce_sum([0, 0], constant_op.constant(0, dtype=dtype)) tf_v = self.evaluate(v) self.assertAllEqual(tf_v, 0) @test_util.run_deprecated_v1 def testInfinity(self): for dtype in [np.float32, np.float64]: for special_value_x in [-np.inf, np.inf]: for special_value_y in [-np.inf, np.inf]: np_arr = np.array([special_value_x, special_value_y]).astype(dtype) self._compareAll(np_arr, None) @test_util.run_deprecated_v1 def testInt32(self): for rank in range(1, _MAX_RANK + 1): np_arr = self._makeIncremental((2,) * rank, dtypes.int32) self._compareAllAxes(np_arr) @test_util.run_deprecated_v1 def testFloat16(self): for rank in range(1, _MAX_RANK + 1): np_arr = self._makeIncremental((2,) * rank, dtypes.float16) self._compareAllAxes(np_arr) # test that mean doesn't overflow # only on GPU, since it has the more accurate implementation if not test.is_gpu_available(): return arr = np.ones([68000], dtype=np.float16) with self.session(graph=ops.Graph(), use_gpu=True) as sess: tf_arr = variables.Variable(arr) self.evaluate(variables.global_variables_initializer()) tf_mean = math_ops.reduce_mean(tf_arr, 0, False) tf_out_mean = self.evaluate(tf_mean) self.assertAllClose(tf_out_mean, 1.) @test_util.run_deprecated_v1 def testBfloat16(self): for rank in range(1, _MAX_RANK + 1): np_arr = self._makeIncremental((2,) * rank, dtypes.bfloat16) self._compareAllAxes(np_arr, rtol=1e-3, atol=5.) @test_util.run_deprecated_v1 def testFloat32(self): for rank in range(1, _MAX_RANK + 1): np_arr = self._makeIncremental((2,) * rank, dtypes.float32) self._compareAllAxes(np_arr) for _ in range(10): size_x = int(2**np.random.uniform(0, 15)) size_y = int(2**np.random.uniform(0, 15)) if size_x * size_y > 1e7: size_y = int(1e7 / size_x) arr = np.ones([size_x, size_y], dtype=np.float32) col_sum = np.sum(arr, axis=0) row_sum = np.sum(arr, axis=1) with self.session(graph=ops.Graph(), use_gpu=True) as sess: tf_row_sum = self._tf_reduce(arr, 1, False) tf_col_sum = self._tf_reduce(arr, 0, False) tf_out_row, tf_out_col = self.evaluate([tf_row_sum, tf_col_sum]) self.assertAllClose(col_sum, tf_out_col) self.assertAllClose(row_sum, tf_out_row) for size_x in [1, 3, 16, 33]: for size_y in [1, 3, 16, 33]: for size_z in [1, 3, 16, 33]: arr = np.ones([size_x, size_y, size_z], dtype=np.float32) sum_y = np.sum(arr, axis=1) sum_xz = np.sum(arr, axis=(0, 2)) with self.session(graph=ops.Graph(), use_gpu=True) as sess: tf_sum_xz = self._tf_reduce(arr, [0, 2], False) tf_sum_y = self._tf_reduce(arr, 1, False) tf_out_sum_xz, tf_out_sum_y = self.evaluate([tf_sum_xz, tf_sum_y]) self.assertAllClose(sum_y, tf_out_sum_y) self.assertAllClose(sum_xz, tf_out_sum_xz) @test_util.run_deprecated_v1 def testFloat64(self): for rank in range(1, _MAX_RANK + 1): np_arr = self._makeIncremental((2,) * rank, dtypes.float64) self._compareAllAxes(np_arr) @test_util.run_deprecated_v1 def testComplex64(self): for rank in range(1, _MAX_RANK + 1): np_arr = self._makeIncremental((2,) * rank, dtypes.complex64) self._compareAllAxes(np_arr) @test_util.run_deprecated_v1 def testComplex128(self): for rank in range(1, _MAX_RANK + 1): np_arr = self._makeIncremental((2,) * rank, dtypes.complex128) self._compareAllAxes(np_arr) @test_util.run_deprecated_v1 def testInvalidIndex(self): np_arr = np.arange(0, 10).reshape([2, 5]).astype(np.float32) input_tensor = ops.convert_to_tensor(np_arr) with self.assertRaisesWithPredicateMatch( ValueError, lambda e: "Invalid reduction dimension" in str(e)): math_ops.reduce_sum(input_tensor, [-3]) with self.assertRaisesWithPredicateMatch( ValueError, lambda e: "Invalid reduction dimension" in str(e)): math_ops.reduce_sum(input_tensor, [2]) with self.assertRaisesWithPredicateMatch( ValueError, lambda e: "Invalid reduction dimension" in str(e)): math_ops.reduce_sum(input_tensor, [0, 2]) @test_util.run_deprecated_v1 def testPartialShapes(self): np.random.seed(1618) # Input shape is unknown. reduction_axes = [1, 2] c_unknown = array_ops.placeholder(dtypes.float32) s_unknown = math_ops.reduce_sum(c_unknown, reduction_axes) self.assertEqual(tensor_shape.unknown_shape(), s_unknown.get_shape()) np_input = np.random.randn(3, 3, 3) self._compareAll(np_input, reduction_axes, {c_unknown: np_input}) # Input shape only has known rank. c_known_rank = array_ops.placeholder(dtypes.float32) c_known_rank.set_shape(tensor_shape.unknown_shape(rank=3)) s_known_rank = math_ops.reduce_sum( c_known_rank, reduction_axes, keepdims=True) self.assertEqual(3, s_known_rank.get_shape().rank) np_input = np.random.randn(3, 3, 3) self._compareAll(np_input, reduction_axes, {c_known_rank: np_input}) # Reduction indices are unknown. unknown_indices = array_ops.placeholder(dtypes.int32) c_unknown_indices = constant_op.constant([[10.0], [20.0]]) s_unknown_indices = math_ops.reduce_sum( c_unknown_indices, unknown_indices, keepdims=False) self.assertEqual(tensor_shape.unknown_shape(), s_unknown_indices.get_shape()) s_unknown_indices_keep = math_ops.reduce_sum( c_unknown_indices, unknown_indices, keepdims=True) self.assertEqual(2, s_unknown_indices_keep.get_shape().rank) @test_util.run_deprecated_v1 def testWrongShapeForReductionIndices(self): reduction_axes = [[1], [2]] c_unknown = array_ops.placeholder(dtypes.float32) with self.assertRaisesWithPredicateMatch(ValueError, ".*must be at most rank 1.*"): math_ops.reduce_sum(c_unknown, reduction_axes) def testInvalidRepeatedReductionIndices(self): reduction_axes = constant_op.constant([0, 0]) c = constant_op.constant([1.0, 2.0]) with self.assertRaisesWithPredicateMatch( errors.InvalidArgumentError, ".*Axes contains duplicate dimension: 0.*"): self.evaluate(math_ops.reduce_sum(c, reduction_axes)) # Int64?? @test_util.run_deprecated_v1 def testGradient(self): for dtype in [ dtypes.float32, dtypes.float64, dtypes.complex64, dtypes.complex128 ]: x = self._makeIncremental([2, 3, 4, 2], dtype) self._compareGradientAxes(x) @test_util.run_deprecated_v1 def testHighRank(self): # Do a bunch of random high dimensional reductions np.random.seed(42) for _ in range(20): rank = np.random.randint(4, 10 + 1) axes, = np.nonzero(np.random.randint(2, size=rank)) shape = tuple(np.random.randint(1, 3 + 1, size=rank)) data = np.random.randint(1024, size=shape) self._compareAll(data, axes) # Check some particular axis patterns for rank in 4, 7, 10: shape = tuple(np.random.randint(1, 3 + 1, size=rank)) data = np.random.randint(1024, size=shape) for axes in ([], np.arange(rank), np.arange(0, rank, 2), np.arange(1, rank, 2)): self._compareAll(data, axes) @test_util.run_deprecated_v1 def testExpand(self): # Reduce an empty tensor to a nonempty tensor x = np.zeros((5, 0)) self._compareAll(x, [1]) @test_util.run_deprecated_v1 def testEmptyGradients(self): with self.session(): x = array_ops.zeros([0, 3]) y = math_ops.reduce_sum(x, [1]) error = gradient_checker.compute_gradient_error(x, [0, 3], y, [0]) self.assertEqual(error, 0) @test_util.run_deprecated_v1 def testDegenerate(self): with self.session(): for dtype in (dtypes.bfloat16, dtypes.float16, dtypes.float32, dtypes.float64, dtypes.complex64, dtypes.complex128): # A large number is needed to get Eigen to die x = array_ops.zeros((0, 9938), dtype=dtype) y = math_ops.reduce_sum(x, [0]) self.assertAllEqual(y, np.zeros(9938)) class MeanReductionTest(BaseReductionTest): def _tf_reduce(self, x, reduction_axes, keepdims): return math_ops.reduce_mean(x, reduction_axes, keepdims) def _np_reduce(self, x, reduction_axes, keepdims): if isinstance(reduction_axes, list) or isinstance(reduction_axes, np.ndarray): reduction_axes = tuple(reduction_axes) elif isinstance(reduction_axes, numbers.Integral): reduction_axes = (reduction_axes,) if reduction_axes is None: count = np.prod(x.shape) else: count = np.prod([x.shape[ax] for ax in reduction_axes]) # np.mean automatically converts integer inputs to float, while TensorFlow's # reduce_mean does not. For integer inputs, we emulate TensorFlow's behavior # using np.sum and truncating division. np_sum = np.sum(x, axis=reduction_axes, keepdims=keepdims) if np.issubdtype(x.dtype, np.integer): return np_sum // count return np_sum / count def testAxesType(self): for dtype in [dtypes.int64, dtypes.int32]: with self.cached_session(): v = math_ops.reduce_mean([0, 0], constant_op.constant(0, dtype=dtype)) tf_v = self.evaluate(v) self.assertAllEqual(tf_v, 0) @test_util.run_deprecated_v1 def testInfinity(self): for dtype in [np.float32, np.float64]: for special_value_x in [-np.inf, np.inf]: for special_value_y in [-np.inf, np.inf]: np_arr = np.array([special_value_x, special_value_y]).astype(dtype) self._compareAll(np_arr, None) @test_util.run_deprecated_v1 def testInt32(self): for rank in range(1, _MAX_RANK + 1): np_arr = self._makeIncremental((2,) * rank, dtypes.int32) self._compareAllAxes(np_arr) @test_util.run_deprecated_v1 def testUint8(self): for rank in range(1, _MAX_RANK + 1): np_arr = self._makeRandom((2,) * rank, dtypes.uint8) self._compareAllAxes(np_arr) # This tests the issue reported in b/145030710. @test_util.run_deprecated_v1 def testSizeOverflowUint8(self): np_arr = self._makeRandom((2**8,), dtypes.uint8) self._compareAllAxes(np_arr) @test_util.run_deprecated_v1 def testSizeOverflowInt8(self): np_arr = self._makeRandom((2**7,), dtypes.int8) self._compareAllAxes(np_arr) @test_util.run_deprecated_v1 def testSizeOverflowUint16(self): np_arr = self._makeRandom((2**16,), dtypes.uint16) self._compareAllAxes(np_arr) @test_util.run_deprecated_v1 def testSizeOverflowInt16(self): np_arr = self._makeRandom((2**15,), dtypes.int16) self._compareAllAxes(np_arr) @test_util.run_deprecated_v1 def testFloat32(self): for rank in range(1, _MAX_RANK + 1): np_arr = self._makeIncremental((2,) * rank, dtypes.float32) self._compareAllAxes(np_arr) @test_util.run_deprecated_v1 def testBfloat16(self): for rank in range(1, _MAX_RANK + 1): np_arr = self._makeIncremental((2,) * rank, dtypes.bfloat16) self._compareAllAxes(np_arr, rtol=1e-3, atol=1.) @test_util.run_deprecated_v1 def testFloat64(self): for rank in range(1, _MAX_RANK + 1): np_arr = self._makeIncremental((2,) * rank, dtypes.float64) self._compareAllAxes(np_arr) @test_util.run_deprecated_v1 def testComplex64(self): for rank in range(1, _MAX_RANK + 1): np_arr = self._makeIncremental((2,) * rank, dtypes.complex64) self._compareAllAxes(np_arr) @test_util.run_deprecated_v1 def testComplex128(self): for rank in range(1, _MAX_RANK + 1): np_arr = self._makeIncremental((2,) * rank, dtypes.complex128) self._compareAllAxes(np_arr) @test_util.run_deprecated_v1 def testGradient(self): s = [2, 3, 4, 2] for dtype in [dtypes.float32, dtypes.float64]: x = self._makeIncremental(s, dtype) self._compareGradientAxes(x, rtol=1e-3, atol=1e-3) @test_util.run_deprecated_v1 def testEmptyGradients(self): with self.session(): x = array_ops.zeros([0, 3]) y = math_ops.reduce_mean(x, [1]) error = gradient_checker.compute_gradient_error(x, [0, 3], y, [0]) self.assertEqual(error, 0) @test_util.run_deprecated_v1 def testDegenerate(self): with self.session(): for dtype in (dtypes.bfloat16, dtypes.float16, dtypes.float32, dtypes.float64): # A large number is needed to get Eigen to die x = array_ops.zeros((0, 9938), dtype=dtype) y = math_ops.reduce_mean(x, [0]).eval() self.assertEqual(y.shape, (9938,)) self.assertTrue(np.all(np.isnan(y))) class EuclideanNormReductionTest(BaseReductionTest): def _tf_reduce(self, x, reduction_axes, keepdims): return math_ops.reduce_euclidean_norm(x, reduction_axes, keepdims) def _np_reduce(self, x, reduction_axes, keepdims): if isinstance(reduction_axes, list) or isinstance(reduction_axes, np.ndarray): reduction_axes = tuple(reduction_axes) np_fro = np.sqrt( np.sum(x * np.conj(x), axis=reduction_axes, keepdims=keepdims)) if np.issubdtype(x.dtype, np.integer): np_fro = np.floor(np_fro) return np_fro @test_util.run_deprecated_v1 def testAxesType(self): for dtype in [dtypes.int64, dtypes.int32]: with self.cached_session(): v = math_ops.reduce_mean([0, 0], constant_op.constant(0, dtype=dtype)) tf_v = self.evaluate(v) self.assertAllEqual(tf_v, 0) @test_util.run_deprecated_v1 def testInfinity(self): for dtype in [np.float32, np.float64]: for special_value_x in [-np.inf, np.inf]: for special_value_y in [-np.inf, np.inf]: np_arr = np.array([special_value_x, special_value_y]).astype(dtype) self._compareAll(np_arr, None) @test_util.run_deprecated_v1 def testSingleton(self): for dtype in [np.float32, np.float64]: np_arr = np.array([-1.]).astype(dtype) self._compareAll(np_arr, None) @test_util.run_deprecated_v1 def testInt32(self): for rank in range(1, _MAX_RANK + 1): np_arr = self._makeIncremental((2,) * rank, dtypes.int32) self._compareAllAxes(np_arr) @test_util.run_deprecated_v1 def testFloat32(self): for rank in range(1, _MAX_RANK + 1): np_arr = self._makeIncremental((2,) * rank, dtypes.float32) self._compareAllAxes(np_arr) @test_util.run_deprecated_v1 def testFloat64(self): for rank in range(1, _MAX_RANK + 1): np_arr = self._makeIncremental((2,) * rank, dtypes.float64) self._compareAllAxes(np_arr) @test_util.run_deprecated_v1 def testComplex64(self): for rank in range(1, _MAX_RANK + 1): np_arr = self._makeIncremental((2,) * rank, dtypes.complex64) self._compareAllAxes(np_arr) @test_util.run_deprecated_v1 def testComplex128(self): for rank in range(1, _MAX_RANK + 1): np_arr = self._makeIncremental((2,) * rank, dtypes.complex128) self._compareAllAxes(np_arr) with self.session(): for dtype in (dtypes.bfloat16, dtypes.float16, dtypes.float32, dtypes.float64): # A large number is needed to get Eigen to die x = array_ops.zeros((0, 9938), dtype=dtype) y = math_ops.reduce_euclidean_norm(x, [0]).eval() self.assertEqual(y.shape, (9938,)) self.assertAllEqual(y, np.zeros(9938)) @test_util.run_deprecated_v1 def testGradient(self): shape = [2, 3, 4, 2] for dtype in [dtypes.float32, dtypes.float64]: # zero value entry will result NaN gradient if reduction doesn't happen. # e.g., `tf.math.reduce_sum([0, 1], axis=[])` so add one to avoid it. x = self._makeIncremental(shape, dtype) + 1.0 self._compareGradientAxes(x, rtol=1e-2, atol=1e-2) class ProdReductionTest(BaseReductionTest): def _tf_reduce(self, x, reduction_axes, keepdims): return math_ops.reduce_prod(x, reduction_axes, keepdims) def _np_reduce(self, x, reduction_axes, keepdims): if isinstance(reduction_axes, list) or isinstance(reduction_axes, np.ndarray): reduction_axes = tuple(reduction_axes) return np.prod(x, axis=reduction_axes, keepdims=keepdims) def testAxesType(self): for dtype in [dtypes.int64, dtypes.int32]: with self.cached_session(): v = math_ops.reduce_prod([0, 0], constant_op.constant(0, dtype=dtype)) tf_v = self.evaluate(v) self.assertAllEqual(tf_v, 0) @test_util.run_deprecated_v1 def testInfinity(self): for dtype in [np.float32, np.float64]: for special_value_x in [-np.inf, np.inf]: for special_value_y in [-np.inf, np.inf]: np_arr = np.array([special_value_x, special_value_y]).astype(dtype) self._compareAll(np_arr, None) @test_util.run_deprecated_v1 def testInt32(self): # Numpy automatically upgrades the type of np.prod from int32 to int64, so # Numpy does not overflow an int32 np.prod while TensorFlow does. To avoid # overflow, limit array values. for rank in range(1, _MAX_RANK): np_arr = self._makeIncremental((2,) * rank, dtypes.int32) % 5 + 1 self._compareAllAxes(np_arr) @test_util.run_deprecated_v1 def testInt64(self): for rank in range(1, _MAX_RANK): # Avoid overflow by limiting array values. np_arr = self._makeIncremental((2,) * rank, dtypes.int64) % 11 + 1 self._compareAllAxes(np_arr) @test_util.run_deprecated_v1 def testFloat32(self): for rank in range(1, _MAX_RANK + 1): np_arr = self._makeIncremental((2,) * rank, dtypes.float32) self._compareAllAxes(np_arr) @test_util.run_deprecated_v1 def testBfloat16(self): for rank in range(1, _MAX_RANK + 1): np_arr = self._makeIncremental((2,) * rank, dtypes.bfloat16) * \ np.array([0.01]).astype(dtypes.bfloat16.as_numpy_dtype) self._compareAllAxes(np_arr, rtol=1e-2, atol=1e-2) @test_util.run_deprecated_v1 def testFloat64(self): for rank in range(1, _MAX_RANK + 1): np_arr = self._makeIncremental((2,) * rank, dtypes.float64) self._compareAllAxes(np_arr) @test_util.run_deprecated_v1 def testComplex64(self): for rank in range(1, _MAX_RANK + 1): np_arr = self._makeIncremental((2,) * rank, dtypes.complex64) self._compareAllAxes(np_arr) @test_util.run_deprecated_v1 def testComplex128(self): for rank in range(1, _MAX_RANK + 1): np_arr = self._makeIncremental((2,) * rank, dtypes.complex128) self._compareAllAxes(np_arr) @test_util.run_deprecated_v1 def testGradientWithZeros(self): s = [2, 3, 4, 2] x = self._makeIncremental(s, dtypes.float32) / 20. # No zeros in input self._compareGradientAxes(x, rtol=1e-3, atol=1e-3) # Zero at beginning x1 = x.copy() x1[:, :, 0, :] = 0 self._compareGradientAxes(x1, rtol=1e-3, atol=1e-3) # Zero at end x2 = x.copy() x2[:, :, -1, :] = 0 self._compareGradientAxes(x2, rtol=1e-3, atol=1e-3) # Zero in middle x3 = x.copy() x3[:, :, 2, :] = 0 self._compareGradientAxes(x3, rtol=1e-3, atol=1e-3) # All zeros x4 = x.copy() x4[:, :, :, :] = 0 self._compareGradientAxes(x4, rtol=1e-3, atol=1e-3) @test_util.run_deprecated_v1 def testEmptyGradients(self): with self.session(): x = array_ops.zeros([0, 3]) y = math_ops.reduce_prod(x, [1]) error = gradient_checker.compute_gradient_error(x, [0, 3], y, [0]) self.assertEqual(error, 0) @test_util.run_deprecated_v1 def testDegenerate(self): with self.session(): for dtype in (dtypes.bfloat16, dtypes.float16, dtypes.float32, dtypes.float64): # A large number is needed to get Eigen to die x = array_ops.zeros((0, 9938), dtype=dtype) y = math_ops.reduce_prod(x, [0]) self.assertAllEqual(y, np.ones(9938)) class MinReductionTest(test.TestCase): def _compare(self, x, reduction_axes, keepdims, use_gpu=False): np_ans = x if reduction_axes is None: np_ans = np.amin(np_ans, keepdims=keepdims) else: for ra in reduction_axes[::-1]: np_ans = np.amin(np_ans, axis=ra, keepdims=keepdims) with self.cached_session(use_gpu=use_gpu): if reduction_axes is not None: reduction_axes = np.array(reduction_axes).astype(np.int32) tf_ans = math_ops.reduce_min(x, reduction_axes, keepdims) out = self.evaluate(tf_ans) self.assertAllClose(np_ans, out) self.assertShapeEqual(np_ans, tf_ans) def _compareAll(self, x, reduction_axes): self._compare(x, reduction_axes, False, use_gpu=True) self._compare(x, reduction_axes, True, use_gpu=True) def testAxesType(self): for dtype in [dtypes.int64, dtypes.int32]: with self.cached_session(): v = math_ops.reduce_min([0, 0], constant_op.constant(0, dtype=dtype)) tf_v = self.evaluate(v) self.assertAllEqual(tf_v, 0) @test_util.disable_xla("b/168718272") # XLA handling of NaN is inconsistent def testSpecialValues(self): for dtype in [np.float32, np.float64]: for size in range(1, 4): for arr in itertools.product([-np.inf, 1., np.nan, np.inf], repeat=size): self._compareAll(np.array(arr, dtype=dtype), None) def testFloatReduce3D(self): # Create a 3D array of floats and reduce across all possible # dimensions np_arr = np.arange(1, 31).reshape([2, 3, 5]).astype(np.float32) self._compareAll(np_arr, None) self._compareAll(np_arr, []) self._compareAll(np_arr, [0]) self._compareAll(np_arr, [1]) self._compareAll(np_arr, [2]) self._compareAll(np_arr, [0, 1]) self._compareAll(np_arr, [1, 2]) self._compareAll(np_arr, [0, 2]) self._compareAll(np_arr, [0, 1, 2]) def testDoubleReduce3D(self): # Create a 3D array of doubles and reduce across all possible # dimensions np_arr = np.arange(1, 31).reshape([2, 3, 5]).astype(np.float64) self._compareAll(np_arr, None) self._compareAll(np_arr, []) self._compareAll(np_arr, [0]) self._compareAll(np_arr, [1]) self._compareAll(np_arr, [2]) self._compareAll(np_arr, [0, 1]) self._compareAll(np_arr, [1, 2]) self._compareAll(np_arr, [0, 2]) self._compareAll(np_arr, [0, 1, 2]) @test_util.run_deprecated_v1 def testGradient(self): s = [2, 3, 4, 2] x = np.arange(1.0, 49.0).reshape(s).astype(np.float64) with self.cached_session(): t = ops.convert_to_tensor(x) su = math_ops.reduce_min(t, [1, 2]) jacob_t, jacob_n = gradient_checker.compute_gradient( t, s, su, [2, 2], x_init_value=x, delta=1) self.assertAllClose(jacob_t, jacob_n, rtol=1e-8, atol=1e-8) @test_util.run_deprecated_v1 def testGradient2(self): s = [2, 3, 4, 2] x = np.arange(1.0, 49.0).reshape(s).astype(np.float64) with self.cached_session(): t = ops.convert_to_tensor(x) su = math_ops.reduce_min(t, [1]) jacob_t, jacob_n = gradient_checker.compute_gradient( t, s, su, [2, 4, 2], x_init_value=x, delta=1) self.assertAllClose(jacob_t, jacob_n, rtol=1e-8, atol=1e-8) @test_util.run_deprecated_v1 def testGradient3(self): s = [2, 3, 4, 2] x = np.arange(1.0, 49.0).reshape(s).astype(np.float64) with self.cached_session(): t = ops.convert_to_tensor(x) su = math_ops.reduce_min(t, [2]) jacob_t, jacob_n = gradient_checker.compute_gradient( t, s, su, [2, 3, 2], x_init_value=x, delta=1) self.assertAllClose(jacob_t, jacob_n, rtol=1e-8, atol=1e-8) @test_util.run_deprecated_v1 def testGradient4(self): s = [2, 3, 4, 2] x = np.arange(1.0, 49.0).reshape(s).astype(np.float64) with self.cached_session(): t = ops.convert_to_tensor(x) su = math_ops.reduce_min(t) jacob_t, jacob_n = gradient_checker.compute_gradient( t, s, su, [1], x_init_value=x, delta=1) self.assertAllClose(jacob_t, jacob_n, rtol=1e-8, atol=1e-8) @test_util.run_deprecated_v1 def testEmptyGradients(self): with self.cached_session(): x = array_ops.zeros([0, 3]) y = math_ops.reduce_min(x, [1]) error = gradient_checker.compute_gradient_error(x, [0, 3], y, [0]) self.assertEqual(error, 0) class MaxReductionTest(test.TestCase): def _compare(self, x, reduction_axes, keepdims, use_gpu=False): np_ans = x if reduction_axes is None: np_ans = np.amax(np_ans, keepdims=keepdims) else: for ra in reduction_axes[::-1]: np_ans = np.amax(np_ans, axis=ra, keepdims=keepdims) with self.cached_session(use_gpu=use_gpu): if reduction_axes is not None: reduction_axes = np.array(reduction_axes).astype(np.int32) tf_ans = math_ops.reduce_max(x, reduction_axes, keepdims) out = self.evaluate(tf_ans) self.assertAllClose(np_ans, out) self.assertShapeEqual(np_ans, tf_ans) def _compareAll(self, x, reduction_axes): self._compare(x, reduction_axes, False, use_gpu=True) self._compare(x, reduction_axes, True, use_gpu=True) def testAxesType(self): for dtype in [dtypes.int64, dtypes.int32]: with self.cached_session(): v = math_ops.reduce_max([0, 0], constant_op.constant(0, dtype=dtype)) tf_v = self.evaluate(v) self.assertAllEqual(tf_v, 0) @test_util.disable_xla("b/168718272") # XLA handling of NaN is inconsistent def testSpecialValues(self): for dtype in [np.float32, np.float64]: for size in range(1, 4): for arr in itertools.product([-np.inf, 1., np.nan, np.inf], repeat=size): self._compareAll(np.array(arr, dtype=dtype), None) def testInt64Reduce3D(self): # Create a 3D array of int64s and reduce across all possible # dimensions np_arr = np.arange(-31, -1).reshape([2, 3, 5]).astype(np.int64) self._compareAll(np_arr, None) self._compareAll(np_arr, []) self._compareAll(np_arr, [0]) self._compareAll(np_arr, [1]) self._compareAll(np_arr, [2]) self._compareAll(np_arr, [0, 1]) self._compareAll(np_arr, [1, 2]) self._compareAll(np_arr, [0, 2]) self._compareAll(np_arr, [0, 1, 2]) def testFloatReduce3D(self): # Create a 3D array of floats and reduce across all possible # dimensions np_arr = np.arange(-31, -1).reshape([2, 3, 5]).astype(np.float32) self._compareAll(np_arr, None) self._compareAll(np_arr, []) self._compareAll(np_arr, [0]) self._compareAll(np_arr, [1]) self._compareAll(np_arr, [2]) self._compareAll(np_arr, [0, 1]) self._compareAll(np_arr, [1, 2]) self._compareAll(np_arr, [0, 2]) self._compareAll(np_arr, [0, 1, 2]) def testDoubleReduce3D(self): # Create a 3D array of doubles and reduce across all possible # dimensions np_arr = np.arange(-31, -1).reshape([2, 3, 5]).astype(np.float64) self._compareAll(np_arr, None) self._compareAll(np_arr, []) self._compareAll(np_arr, [0]) self._compareAll(np_arr, [1]) self._compareAll(np_arr, [2]) self._compareAll(np_arr, [0, 1]) self._compareAll(np_arr, [1, 2]) self._compareAll(np_arr, [0, 2]) self._compareAll(np_arr, [0, 1, 2]) def testBfloat16Reduce3D(self): # Create a 3D array of floats and reduce across all possible # dimensions np_arr = np.arange(-31, -1).reshape([2, 3, 5]).astype(dtypes.bfloat16.as_numpy_dtype) self._compareAll(np_arr, None) self._compareAll(np_arr, []) self._compareAll(np_arr, [0]) self._compareAll(np_arr, [1]) self._compareAll(np_arr, [2]) self._compareAll(np_arr, [0, 1]) self._compareAll(np_arr, [1, 2]) self._compareAll(np_arr, [0, 2]) self._compareAll(np_arr, [0, 1, 2]) @test_util.run_deprecated_v1 def testGradient(self): s = [2, 3, 4, 2] x = np.arange(-49.0, -1.0).reshape(s).astype(np.float64) with self.cached_session(): t = ops.convert_to_tensor(x) su = math_ops.reduce_max(t, [1, 2]) jacob_t, jacob_n = gradient_checker.compute_gradient( t, s, su, [2, 2], x_init_value=x, delta=1) self.assertAllClose(jacob_t, jacob_n, rtol=1e-8, atol=1e-8) @test_util.run_deprecated_v1 def testGradient2(self): s = [2, 3, 4, 2] x = np.arange(-49.0, -1.0).reshape(s).astype(np.float64) with self.cached_session(): t = ops.convert_to_tensor(x) su = math_ops.reduce_max(t, [1]) jacob_t, jacob_n = gradient_checker.compute_gradient( t, s, su, [2, 4, 2], x_init_value=x, delta=1) self.assertAllClose(jacob_t, jacob_n, rtol=1e-8, atol=1e-8) @test_util.run_deprecated_v1 def testGradient3(self): s = [2, 3, 4, 2] x = np.arange(-49.0, -1.0).reshape(s).astype(np.float64) with self.cached_session(): t = ops.convert_to_tensor(x) su = math_ops.reduce_max(t, [2]) jacob_t, jacob_n = gradient_checker.compute_gradient( t, s, su, [2, 3, 2], x_init_value=x, delta=1) self.assertAllClose(jacob_t, jacob_n, rtol=1e-8, atol=1e-8) @test_util.run_deprecated_v1 def testGradient4(self): s = [2, 3, 4, 2] x = np.arange(-49.0, -1.0).reshape(s).astype(np.float64) with self.cached_session(): t = ops.convert_to_tensor(x) su = math_ops.reduce_max(t) jacob_t, jacob_n = gradient_checker.compute_gradient( t, s, su, [1], x_init_value=x, delta=1) self.assertAllClose(jacob_t, jacob_n, rtol=1e-8, atol=1e-8) @test_util.run_deprecated_v1 def testEmptyGradients(self): with self.cached_session(): x = array_ops.zeros([0, 3]) y = math_ops.reduce_max(x, [1]) error = gradient_checker.compute_gradient_error(x, [0, 3], y, [0]) self.assertEqual(error, 0) class AllReductionTest(test.TestCase): def _compare(self, x, reduction_axes, keepdims, use_gpu=False): np_ans = x if reduction_axes is None: np_ans = np.all(np_ans, keepdims=keepdims) else: for ra in reduction_axes[::-1]: np_ans = np.all(np_ans, axis=ra, keepdims=keepdims) with self.cached_session(use_gpu=use_gpu): if reduction_axes is not None: reduction_axes = np.array(reduction_axes).astype(np.int32) tf_ans = math_ops.reduce_all(x, reduction_axes, keepdims) out = self.evaluate(tf_ans) self.assertAllEqual(np_ans, out) self.assertShapeEqual(np_ans, tf_ans) def _compareAll(self, x, reduction_axes): self._compare(x, reduction_axes, False, use_gpu=True) self._compare(x, reduction_axes, False, use_gpu=False) self._compare(x, reduction_axes, True, use_gpu=True) self._compare(x, reduction_axes, True, use_gpu=False) def testAxesType(self): for dtype in [dtypes.int64, dtypes.int32]: with self.session(): v = math_ops.reduce_all([True, True], constant_op.constant(0, dtype=dtype)) tf_v = self.evaluate(v) self.assertAllEqual(tf_v, True) def testAll3D(self): # Create a 3D array of bools and reduce across all possible # dimensions np_arr = (np.random.uniform(0, 1, 30) > 0.1).reshape([2, 3, 5]) self._compareAll(np_arr, None) self._compareAll(np_arr, []) self._compareAll(np_arr, [0]) self._compareAll(np_arr, [1]) self._compareAll(np_arr, [2]) self._compareAll(np_arr, [0, 1]) self._compareAll(np_arr, [1, 2]) self._compareAll(np_arr, [0, 2]) self._compareAll(np_arr, [0, 1, 2]) def testEmpty(self): self._compareAll([], [0]) class AnyReductionTest(test.TestCase): def _compare(self, x, reduction_axes, keepdims, use_gpu=False): np_ans = x if reduction_axes is None: np_ans = np.any(np_ans, keepdims=keepdims) else: for ra in reduction_axes[::-1]: np_ans = np.any(np_ans, axis=ra, keepdims=keepdims) with self.cached_session(use_gpu=use_gpu): if reduction_axes is not None: reduction_axes = np.array(reduction_axes).astype(np.int32) tf_ans = math_ops.reduce_any(x, reduction_axes, keepdims) out = self.evaluate(tf_ans) self.assertAllEqual(np_ans, out) self.assertShapeEqual(np_ans, tf_ans) def _compareAll(self, x, reduction_axes): self._compare(x, reduction_axes, False, use_gpu=True) self._compare(x, reduction_axes, False, use_gpu=False) self._compare(x, reduction_axes, True, use_gpu=True) self._compare(x, reduction_axes, True, use_gpu=False) def testAxesType(self): for dtype in [dtypes.int64, dtypes.int32]: with self.session(): v = math_ops.reduce_any([True, True], constant_op.constant(0, dtype=dtype)) tf_v = self.evaluate(v) self.assertAllEqual(tf_v, True) def testAll3D(self): # Create a 3D array of bools and reduce across all possible # dimensions np_arr = (np.random.uniform(0, 1, 30) > 0.9).reshape([2, 3, 5]) self._compareAll(np_arr, None) self._compareAll(np_arr, []) self._compareAll(np_arr, [0]) self._compareAll(np_arr, [1]) self._compareAll(np_arr, [2]) self._compareAll(np_arr, [0, 1]) self._compareAll(np_arr, [1, 2]) self._compareAll(np_arr, [0, 2]) self._compareAll(np_arr, [0, 1, 2]) def testEmpty(self): self._compareAll([], [0]) class CountNonzeroReductionTest(test.TestCase): def _compare(self, x, reduction_axes, keepdims, use_gpu=False, zero=0, feed_dict=None): np_ans = (x != zero).astype(np.int32) if reduction_axes is None: np_ans = np.sum(np_ans, keepdims=keepdims) else: reduction_axes = np.array(reduction_axes).astype(np.int32) for ra in reduction_axes.ravel()[::-1]: np_ans = np.sum(np_ans, axis=ra, keepdims=keepdims) with self.cached_session(use_gpu=use_gpu) as sess: tf_ans = math_ops.count_nonzero(x, reduction_axes, keepdims) out = sess.run(tf_ans, feed_dict) self.assertAllClose(np_ans, out) self.assertShapeEqual(np_ans, tf_ans) def _compareAll(self, x, reduction_axes, feed_dict=None): if reduction_axes is not None and np.shape(reduction_axes) == (1,): # Test scalar reduction_axes argument self._compareAll(x, reduction_axes[0]) self._compare(x, reduction_axes, False, use_gpu=True, feed_dict=feed_dict) self._compare(x, reduction_axes, False, use_gpu=False, feed_dict=feed_dict) self._compare(x, reduction_axes, True, use_gpu=True, feed_dict=feed_dict) self._compare(x, reduction_axes, True, use_gpu=False, feed_dict=feed_dict) @test_util.run_deprecated_v1 def testBoolReduce1D(self): # Create a 1D array of floats np_arr = np.asarray([False, False, True, False, False, True]) self._compareAll(np_arr, None) self._compareAll(np_arr, []) self._compareAll(np_arr, [0]) @test_util.run_deprecated_v1 def testFloatReduce1D(self): # Create a 1D array of floats np_arr = np.asarray([0.0, 1.0, -1.0, 0.0, 0.0, 3.0]).astype(np.float32) self._compareAll(np_arr, [0]) @test_util.run_deprecated_v1 def testFloatReduce4D(self): # Create a 4D array of floats and reduce across some # dimensions np_arr = np.floor(np.arange(0.0, 210.0) / 100.0).reshape([2, 3, 5, 7]).astype( np.float32) self._compareAll(np_arr, None) self._compareAll(np_arr, []) self._compareAll(np_arr, [0]) self._compareAll(np_arr, [1]) self._compareAll(np_arr, [2]) self._compareAll(np_arr, [0, 1]) self._compareAll(np_arr, [1, 2]) # Need specialization for reduce(4D, [0, 2]) # self._compareAll(np_arr, [0, 2]) self._compareAll(np_arr, [0, 1, 2]) self._compareAll(np_arr, [1, 2, 3]) self._compareAll(np_arr, [0, 1, 2, 3]) @test_util.run_deprecated_v1 def testExpand(self): # Reduce an empty tensor to a nonempty tensor x = np.zeros((5, 0)) self._compareAll(x, [1]) @test_util.run_deprecated_v1 def testDegenerate(self): for use_gpu in False, True: with self.cached_session(use_gpu=use_gpu): for dtype in (dtypes.bool,): # A large number is needed to get Eigen to die x = array_ops.zeros((0, 9938), dtype=dtype) y = math_ops.count_nonzero(x, [0]) self.assertAllEqual(y, np.zeros(9938)) def testStringReduce(self): # Test case for GitHub issue 18712 with self.cached_session() as sess: v = math_ops.count_nonzero(constant_op.constant(["test"])) self.assertAllClose(self.evaluate(v), 1) @test_util.run_deprecated_v1 def testStringReduce1D(self): # Create a 1D array of strings x = np.asarray(["", "", "a", "", "", "b"]) self._compare(x, None, keepdims=False, zero=np.str_("")) self._compare(x, [], keepdims=False, zero=np.str_("")) self._compare(x, [0], keepdims=False, zero=np.str_("")) self._compare(x, None, keepdims=True, zero=np.str_("")) self._compare(x, [], keepdims=True, zero=np.str_("")) self._compare(x, [0], keepdims=True, zero=np.str_("")) @test_util.run_deprecated_v1 def testStringReduce2D(self): # Create a 2D array of strings x = np.asarray([["", "", "a", "", "", "b"], ["", "c", "", "d", "", ""], ["e", "", "f", "", "", ""]]) self._compare(x, None, keepdims=False, zero=np.str_("")) self._compare(x, [], keepdims=False, zero=np.str_("")) self._compare(x, [0], keepdims=False, zero=np.str_("")) self._compare(x, [1], keepdims=False, zero=np.str_("")) self._compare(x, [0, 1], keepdims=False, zero=np.str_("")) self._compare(x, None, keepdims=True, zero=np.str_("")) self._compare(x, [], keepdims=True, zero=np.str_("")) self._compare(x, [0], keepdims=True, zero=np.str_("")) self._compare(x, [0, 1], keepdims=True, zero=np.str_("")) if __name__ == "__main__": test.main()
{ "content_hash": "ffb443208c98af4cf414db554c1dbb6a", "timestamp": "", "source": "github", "line_count": 1237, "max_line_length": 80, "avg_line_length": 36.936944219886826, "alnum_prop": 0.6216322689369898, "repo_name": "tensorflow/tensorflow", "id": "ffa7601b17365bb6c24b62f2e32f6c9399308b7d", "size": "46380", "binary": false, "copies": "7", "ref": "refs/heads/master", "path": "tensorflow/python/kernel_tests/math_ops/reduction_ops_test.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Batchfile", "bytes": "36962" }, { "name": "C", "bytes": "1400913" }, { "name": "C#", "bytes": "13584" }, { "name": "C++", "bytes": "126099822" }, { "name": "CMake", "bytes": "182430" }, { "name": "Cython", "bytes": "5003" }, { "name": "Dockerfile", "bytes": "416133" }, { "name": "Go", "bytes": "2129888" }, { "name": "HTML", "bytes": "4686483" }, { "name": "Java", "bytes": "1074438" }, { "name": "Jupyter Notebook", "bytes": "792906" }, { "name": "LLVM", "bytes": "6536" }, { "name": "MLIR", "bytes": "11447433" }, { "name": "Makefile", "bytes": "2760" }, { "name": "Objective-C", "bytes": "172666" }, { "name": "Objective-C++", "bytes": "300213" }, { "name": "Pawn", "bytes": "5552" }, { "name": "Perl", "bytes": "7536" }, { "name": "Python", "bytes": "42782002" }, { "name": "Roff", "bytes": "5034" }, { "name": "Ruby", "bytes": "9199" }, { "name": "Shell", "bytes": "621854" }, { "name": "Smarty", "bytes": "89538" }, { "name": "SourcePawn", "bytes": "14625" }, { "name": "Starlark", "bytes": "7738020" }, { "name": "Swift", "bytes": "78435" }, { "name": "Vim Snippet", "bytes": "58" } ], "symlink_target": "" }
from flask import render_template, current_app, abort from flask_wtf import FlaskForm as Form from wtforms import StringField, PasswordField, TextAreaField, FileField, validators from notifications_utils.template import Template from app.main import main @main.route('/_styleguide') def styleguide(): if not current_app.config['SHOW_STYLEGUIDE']: abort(404) class FormExamples(Form): username = StringField(u'Username') password = PasswordField(u'Password', [validators.required()]) code = StringField('Enter code') message = TextAreaField(u'Message') file_upload = FileField('Upload a CSV file to add your recipients’ details') sms = "Your vehicle tax for ((registration number)) is due on ((date)). Renew online at www.gov.uk/vehicle-tax" form = FormExamples() form.message.data = sms form.validate() template = Template({'content': sms}) return render_template( 'views/styleguide.html', form=form, template=template )
{ "content_hash": "25438817f0283b83462dc7276bd29573", "timestamp": "", "source": "github", "line_count": 33, "max_line_length": 115, "avg_line_length": 31.424242424242426, "alnum_prop": 0.6875602700096431, "repo_name": "gov-cjwaszczuk/notifications-admin", "id": "52cc05de1a3777f0b1989650caf34ed47c307f67", "size": "1039", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "app/main/views/styleguide.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "62775" }, { "name": "HTML", "bytes": "300104" }, { "name": "JavaScript", "bytes": "33859" }, { "name": "Makefile", "bytes": "9209" }, { "name": "Python", "bytes": "1013002" }, { "name": "Shell", "bytes": "5460" } ], "symlink_target": "" }
from __future__ import print_function from __future__ import absolute_import import os import copy import tempfile import numpy import tables from tables import ( StringCol, BoolCol, IntCol, FloatCol, Int8Col, Int32Col, Int64Col, UInt16Col, Float32Col, ) from tables.index import Index, default_auto_index, default_index_filters from tables.idxutils import calc_chunksize from tables.exceptions import OldIndexWarning from tables.tests import common from tables.tests.common import verbose, allequal, heavy, TempFileMixin from tables.tests.common import unittest, test_filename from tables.tests.common import PyTablesTestCase as TestCase import six from six.moves import range # Sensible parameters for indexing with small blocksizes minRowIndex = 10 small_blocksizes = (96, 24, 6, 3) class TDescr(tables.IsDescription): var1 = StringCol(itemsize=4, dflt=b"", pos=1) var2 = BoolCol(dflt=0, pos=2) var3 = IntCol(dflt=0, pos=3) var4 = FloatCol(dflt=0, pos=4) class BasicTestCase(common.TempFileMixin, TestCase): compress = 0 complib = "zlib" shuffle = 0 fletcher32 = 0 nrows = minRowIndex ss = small_blocksizes[2] def setUp(self): super(BasicTestCase, self).setUp() self.rootgroup = self.h5file.root self.populateFile() # Close the file self.h5file.close() def populateFile(self): group = self.rootgroup # Create a table title = "This is the IndexArray title" self.filters = tables.Filters(complevel=self.compress, complib=self.complib, shuffle=self.shuffle, fletcher32=self.fletcher32) table = self.h5file.create_table(group, 'table', TDescr, title, self.filters, self.nrows) for i in range(self.nrows): table.row['var1'] = str(i).encode('ascii') # table.row['var2'] = i > 2 table.row['var2'] = i % 2 table.row['var3'] = i table.row['var4'] = float(self.nrows - i - 1) table.row.append() table.flush() # Index all entries: for col in six.itervalues(table.colinstances): indexrows = col.create_index(_blocksizes=small_blocksizes) if verbose: print("Number of written rows:", self.nrows) print("Number of indexed rows:", indexrows) return def test00_flushLastRow(self): """Checking flushing an Index incrementing only the last row.""" if verbose: print('\n', '-=' * 30) print("Running %s.test00_flushLastRow..." % self.__class__.__name__) # Open the HDF5 file in append mode self.h5file = tables.open_file(self.h5fname, mode="a") table = self.h5file.root.table # Add just 3 rows more for i in range(3): table.row['var1'] = str(i).encode('ascii') table.row.append() table.flush() # redo the indexes idxcol = table.cols.var1.index if verbose: print("Max rows in buf:", table.nrowsinbuf) print("Number of elements per slice:", idxcol.slicesize) print("Chunk size:", idxcol.sorted.chunksize) print("Elements in last row:", idxcol.indicesLR[-1]) # Do a selection results = [p["var1"] for p in table.where('var1 == b"1"')] self.assertEqual(len(results), 2) self.assertEqual(results, [b'1']*2) def test00_update(self): """Checking automatic re-indexing after an update operation.""" if verbose: print('\n', '-=' * 30) print("Running %s.test00_update..." % self.__class__.__name__) # Open the HDF5 file in append mode self.h5file = tables.open_file(self.h5fname, mode="a") table = self.h5file.root.table # Modify a couple of columns for i, row in enumerate(table.where("(var3>1) & (var3<5)")): row['var1'] = str(i) row['var3'] = i row.update() table.flush() # redo the indexes idxcol1 = table.cols.var1.index idxcol3 = table.cols.var3.index if verbose: print("Dirtyness of var1 col:", idxcol1.dirty) print("Dirtyness of var3 col:", idxcol3.dirty) self.assertEqual(idxcol1.dirty, False) self.assertEqual(idxcol3.dirty, False) # Do a couple of selections results = [p["var1"] for p in table.where('var1 == b"1"')] self.assertEqual(len(results), 2) self.assertEqual(results, [b'1']*2) results = [p["var3"] for p in table.where('var3 == 0')] self.assertEqual(len(results), 2) self.assertEqual(results, [0]*2) def test01_readIndex(self): """Checking reading an Index (string flavor)""" if verbose: print('\n', '-=' * 30) print("Running %s.test01_readIndex..." % self.__class__.__name__) # Open the HDF5 file in read-only mode self.h5file = tables.open_file(self.h5fname, mode="r") table = self.h5file.root.table idxcol = table.cols.var1.index if verbose: print("Max rows in buf:", table.nrowsinbuf) print("Number of elements per slice:", idxcol.slicesize) print("Chunk size:", idxcol.sorted.chunksize) # Do a selection results = [p["var1"] for p in table.where('var1 == b"1"')] self.assertEqual(len(results), 1) self.assertEqual(results, [b'1']) def test02_readIndex(self): """Checking reading an Index (bool flavor)""" if verbose: print('\n', '-=' * 30) print("Running %s.test02_readIndex..." % self.__class__.__name__) # Open the HDF5 file in read-only mode self.h5file = tables.open_file(self.h5fname, mode="r") table = self.h5file.root.table idxcol = table.cols.var2.index if verbose: print("Rows in table:", table.nrows) print("Max rows in buf:", table.nrowsinbuf) print("Number of elements per slice:", idxcol.slicesize) print("Chunk size:", idxcol.sorted.chunksize) # Do a selection results = [p["var2"] for p in table.where('var2 == True')] if verbose: print("Selected values:", results) self.assertEqual(len(results), self.nrows // 2) self.assertEqual(results, [True]*(self.nrows // 2)) def test03_readIndex(self): """Checking reading an Index (int flavor)""" if verbose: print('\n', '-=' * 30) print("Running %s.test03_readIndex..." % self.__class__.__name__) # Open the HDF5 file in read-only mode self.h5file = tables.open_file(self.h5fname, mode="r") table = self.h5file.root.table idxcol = table.cols.var3.index if verbose: print("Max rows in buf:", table.nrowsinbuf) print("Number of elements per slice:", idxcol.slicesize) print("Chunk size:", idxcol.sorted.chunksize) # Do a selection results = [p["var3"] for p in table.where('(1<var3)&(var3<10)')] if verbose: print("Selected values:", results) self.assertEqual(len(results), min(10, table.nrows) - 2) self.assertEqual(results, list(range(2, min(10, table.nrows)))) def test04_readIndex(self): """Checking reading an Index (float flavor)""" if verbose: print('\n', '-=' * 30) print("Running %s.test04_readIndex..." % self.__class__.__name__) # Open the HDF5 file in read-only mode self.h5file = tables.open_file(self.h5fname, mode="r") table = self.h5file.root.table idxcol = table.cols.var4.index if verbose: print("Max rows in buf:", table.nrowsinbuf) print("Number of rows in table:", table.nrows) print("Number of elements per slice:", idxcol.slicesize) print("Chunk size:", idxcol.sorted.chunksize) # Do a selection results = [p["var4"] for p in table.where('var4 < 10')] # results = [p["var4"] for p in table.where('(1<var4)&(var4<10)')] if verbose: print("Selected values:", results) self.assertEqual(len(results), min(10, table.nrows)) self.assertEqual(results, [float(i) for i in reversed(list(range(min(10, table.nrows))))]) def test05_getWhereList(self): """Checking reading an Index with get_where_list (string flavor)""" if verbose: print('\n', '-=' * 30) print("Running %s.test05_getWhereList..." % self.__class__.__name__) # Open the HDF5 file in read-write mode self.h5file = tables.open_file(self.h5fname, mode="a") table = self.h5file.root.table idxcol = table.cols.var4.index if verbose: print("Max rows in buf:", table.nrowsinbuf) print("Number of elements per slice:", idxcol.slicesize) print("Chunk size:", idxcol.sorted.chunksize) # Do a selection table.flavor = "python" rowList1 = table.get_where_list('var1 < b"10"') rowList2 = [p.nrow for p in table if p['var1'] < b"10"] if verbose: print("Selected values:", rowList1) print("Should look like:", rowList2) self.assertEqual(len(rowList1), len(rowList2)) self.assertEqual(rowList1, rowList2) def test06_getWhereList(self): """Checking reading an Index with get_where_list (bool flavor)""" if verbose: print('\n', '-=' * 30) print("Running %s.test06_getWhereList..." % self.__class__.__name__) # Open the HDF5 file in read-write mode self.h5file = tables.open_file(self.h5fname, mode="a") table = self.h5file.root.table idxcol = table.cols.var2.index if verbose: print("Max rows in buf:", table.nrowsinbuf) print("Rows in tables:", table.nrows) print("Number of elements per slice:", idxcol.slicesize) print("Chunk size:", idxcol.sorted.chunksize) # Do a selection table.flavor = "numpy" rowList1 = table.get_where_list('var2 == False', sort=True) rowList2 = [p.nrow for p in table if p['var2'] is False] # Convert to a NumPy object rowList2 = numpy.array(rowList2, numpy.int64) if verbose: print("Selected values:", rowList1) print("Should look like:", rowList2) self.assertEqual(len(rowList1), len(rowList2)) self.assertTrue(allequal(rowList1, rowList2)) def test07_getWhereList(self): """Checking reading an Index with get_where_list (int flavor)""" if verbose: print('\n', '-=' * 30) print("Running %s.test07_getWhereList..." % self.__class__.__name__) # Open the HDF5 file in read-write mode self.h5file = tables.open_file(self.h5fname, mode="a") table = self.h5file.root.table idxcol = table.cols.var4.index if verbose: print("Max rows in buf:", table.nrowsinbuf) print("Number of elements per slice:", idxcol.slicesize) print("Chunk size:", idxcol.sorted.chunksize) # Do a selection table.flavor = "python" rowList1 = table.get_where_list('var3 < 15', sort=True) rowList2 = [p.nrow for p in table if p["var3"] < 15] if verbose: print("Selected values:", rowList1) print("Should look like:", rowList2) self.assertEqual(len(rowList1), len(rowList2)) self.assertEqual(rowList1, rowList2) def test08_getWhereList(self): """Checking reading an Index with get_where_list (float flavor)""" if verbose: print('\n', '-=' * 30) print("Running %s.test08_getWhereList..." % self.__class__.__name__) # Open the HDF5 file in read-write mode self.h5file = tables.open_file(self.h5fname, mode="a") table = self.h5file.root.table idxcol = table.cols.var4.index if verbose: print("Max rows in buf:", table.nrowsinbuf) print("Number of elements per slice:", idxcol.slicesize) print("Chunk size:", idxcol.sorted.chunksize) # Do a selection table.flavor = "python" rowList1 = table.get_where_list('var4 < 10', sort=True) rowList2 = [p.nrow for p in table if p['var4'] < 10] if verbose: print("Selected values:", rowList1) print("Should look like:", rowList2) self.assertEqual(len(rowList1), len(rowList2)) self.assertEqual(rowList1, rowList2) def test09a_removeIndex(self): """Checking removing an index.""" if verbose: print('\n', '-=' * 30) print("Running %s.test09a_removeIndex..." % self.__class__.__name__) # Open the HDF5 file in read-write mode self.h5file = tables.open_file(self.h5fname, mode="a") table = self.h5file.root.table idxcol = table.cols.var1.index if verbose: print("Before deletion") print("var1 column:", table.cols.var1) self.assertEqual(table.colindexed["var1"], 1) self.assertTrue(idxcol is not None) # delete the index table.cols.var1.remove_index() if verbose: print("After deletion") print("var1 column:", table.cols.var1) self.assertTrue(table.cols.var1.index is None) self.assertEqual(table.colindexed["var1"], 0) # re-create the index again indexrows = table.cols.var1.create_index(_blocksizes=small_blocksizes) self.assertTrue(indexrows is not None) idxcol = table.cols.var1.index if verbose: print("After re-creation") print("var1 column:", table.cols.var1) self.assertTrue(idxcol is not None) self.assertEqual(table.colindexed["var1"], 1) def test09b_removeIndex(self): """Checking removing an index (persistent version)""" if verbose: print('\n', '-=' * 30) print("Running %s.test09b_removeIndex..." % self.__class__.__name__) # Open the HDF5 file in read-write mode self.h5file = tables.open_file(self.h5fname, mode="a") table = self.h5file.root.table idxcol = table.cols.var1.index if verbose: print("Before deletion") print("var1 index column:", table.cols.var1) self.assertTrue(idxcol is not None) self.assertEqual(table.colindexed["var1"], 1) # delete the index table.cols.var1.remove_index() # close and reopen the file self._reopen(mode="a") table = self.h5file.root.table idxcol = table.cols.var1.index if verbose: print("After deletion") print("var1 column:", table.cols.var1) self.assertTrue(table.cols.var1.index is None) self.assertEqual(table.colindexed["var1"], 0) # re-create the index again indexrows = table.cols.var1.create_index(_blocksizes=small_blocksizes) self.assertTrue(indexrows is not None) idxcol = table.cols.var1.index if verbose: print("After re-creation") print("var1 column:", table.cols.var1) self.assertTrue(idxcol is not None) self.assertEqual(table.colindexed["var1"], 1) def test10a_moveIndex(self): """Checking moving a table with an index.""" if verbose: print('\n', '-=' * 30) print("Running %s.test10a_moveIndex..." % self.__class__.__name__) # Open the HDF5 file in read-write mode self.h5file = tables.open_file(self.h5fname, mode="a") table = self.h5file.root.table idxcol = table.cols.var1.index if verbose: print("Before move") print("var1 column:", idxcol) self.assertEqual(table.colindexed["var1"], 1) self.assertTrue(idxcol is not None) # Create a new group called "agroup" agroup = self.h5file.create_group("/", "agroup") # move the table to "agroup" table.move(agroup, "table2") if verbose: print("After move") print("var1 column:", idxcol) self.assertTrue(table.cols.var1.index is not None) self.assertEqual(table.colindexed["var1"], 1) # Some sanity checks table.flavor = "python" rowList1 = table.get_where_list('var1 < b"10"') rowList2 = [p.nrow for p in table if p['var1'] < b"10"] if verbose: print("Selected values:", rowList1) print("Should look like:", rowList2) self.assertEqual(len(rowList1), len(rowList2)) self.assertEqual(rowList1, rowList2) def test10b_moveIndex(self): """Checking moving a table with an index (persistent version)""" if verbose: print('\n', '-=' * 30) print("Running %s.test10b_moveIndex..." % self.__class__.__name__) # Open the HDF5 file in read-write mode self.h5file = tables.open_file(self.h5fname, mode="a") table = self.h5file.root.table idxcol = table.cols.var1.index if verbose: print("Before move") print("var1 index column:", idxcol) self.assertTrue(idxcol is not None) self.assertEqual(table.colindexed["var1"], 1) # Create a new group called "agroup" agroup = self.h5file.create_group("/", "agroup") # move the table to "agroup" table.move(agroup, "table2") # close and reopen the file self._reopen(mode="a") table = self.h5file.root.agroup.table2 idxcol = table.cols.var1.index if verbose: print("After move") print("var1 column:", idxcol) self.assertTrue(table.cols.var1.index is not None) self.assertEqual(table.colindexed["var1"], 1) # Some sanity checks table.flavor = "python" rowList1 = table.get_where_list('var1 < b"10"') rowList2 = [p.nrow for p in table if p['var1'] < b"10"] if verbose: print("Selected values:", rowList1, type(rowList1)) print("Should look like:", rowList2, type(rowList2)) self.assertEqual(len(rowList1), len(rowList2)) self.assertEqual(rowList1, rowList2) def test10c_moveIndex(self): """Checking moving a table with an index (small node cache).""" if verbose: print('\n', '-=' * 30) print("Running %s.test10c_moveIndex..." % self.__class__.__name__) # Open the HDF5 file in read-write mode self.h5file = tables.open_file(self.h5fname, mode="a", node_cache_slots=10) table = self.h5file.root.table idxcol = table.cols.var1.index if verbose: print("Before move") print("var1 column:", idxcol) self.assertEqual(table.colindexed["var1"], 1) self.assertTrue(idxcol is not None) # Create a new group called "agroup" agroup = self.h5file.create_group("/", "agroup") # move the table to "agroup" table.move(agroup, "table2") if verbose: print("After move") print("var1 column:", idxcol) self.assertTrue(table.cols.var1.index is not None) self.assertEqual(table.colindexed["var1"], 1) # Some sanity checks table.flavor = "python" rowList1 = table.get_where_list('var1 < b"10"') rowList2 = [p.nrow for p in table if p['var1'] < b"10"] if verbose: print("Selected values:", rowList1) print("Should look like:", rowList2) self.assertEqual(len(rowList1), len(rowList2)) self.assertEqual(rowList1, rowList2) def test10d_moveIndex(self): """Checking moving a table with an index (no node cache).""" if verbose: print('\n', '-=' * 30) print("Running %s.test10d_moveIndex..." % self.__class__.__name__) # Open the HDF5 file in read-write mode self.h5file = tables.open_file(self.h5fname, mode="a", node_cache_slots=0) table = self.h5file.root.table idxcol = table.cols.var1.index if verbose: print("Before move") print("var1 column:", idxcol) self.assertEqual(table.colindexed["var1"], 1) self.assertTrue(idxcol is not None) # Create a new group called "agroup" agroup = self.h5file.create_group("/", "agroup") # move the table to "agroup" table.move(agroup, "table2") if verbose: print("After move") print("var1 column:", idxcol) self.assertTrue(table.cols.var1.index is not None) self.assertEqual(table.colindexed["var1"], 1) # Some sanity checks table.flavor = "python" rowList1 = table.get_where_list('var1 < b"10"') rowList2 = [p.nrow for p in table if p['var1'] < b"10"] if verbose: print("Selected values:", rowList1) print("Should look like:", rowList2) self.assertEqual(len(rowList1), len(rowList2)) self.assertEqual(rowList1, rowList2) def test11a_removeTableWithIndex(self): """Checking removing a table with indexes.""" if verbose: print('\n', '-=' * 30) print("Running %s.test11a_removeTableWithIndex..." % self.__class__.__name__) # Open the HDF5 file in read-write mode self.h5file = tables.open_file(self.h5fname, mode="a") table = self.h5file.root.table idxcol = table.cols.var1.index if verbose: print("Before deletion") print("var1 column:", table.cols.var1) self.assertEqual(table.colindexed["var1"], 1) self.assertTrue(idxcol is not None) # delete the table self.h5file.remove_node("/table") if verbose: print("After deletion") self.assertTrue("table" not in self.h5file.root) # re-create the table and the index again table = self.h5file.create_table("/", 'table', TDescr, "New table", self.filters, self.nrows) for i in range(self.nrows): table.row['var1'] = str(i) table.row['var2'] = i % 2 table.row['var3'] = i table.row['var4'] = float(self.nrows - i - 1) table.row.append() table.flush() # Index all entries: for col in six.itervalues(table.colinstances): indexrows = col.create_index(_blocksizes=small_blocksizes) self.assertTrue(indexrows is not None) idxcol = table.cols.var1.index if verbose: print("After re-creation") print("var1 column:", table.cols.var1) self.assertTrue(idxcol is not None) self.assertEqual(table.colindexed["var1"], 1) def test11b_removeTableWithIndex(self): """Checking removing a table with indexes (persistent version 2)""" if verbose: print('\n', '-=' * 30) print("Running %s.test11b_removeTableWithIndex..." % self.__class__.__name__) self.h5file = tables.open_file(self.h5fname, mode="a") table = self.h5file.root.table idxcol = table.cols.var1.index if verbose: print("Before deletion") print("var1 column:", table.cols.var1) self.assertEqual(table.colindexed["var1"], 1) self.assertTrue(idxcol is not None) # delete the table self.h5file.remove_node("/table") if verbose: print("After deletion") self.assertTrue("table" not in self.h5file.root) # close and reopen the file self._reopen(mode="r+") # re-create the table and the index again table = self.h5file.create_table("/", 'table', TDescr, "New table", self.filters, self.nrows) for i in range(self.nrows): table.row['var1'] = str(i) table.row['var2'] = i % 2 table.row['var3'] = i table.row['var4'] = float(self.nrows - i - 1) table.row.append() table.flush() # Index all entries: for col in six.itervalues(table.colinstances): indexrows = col.create_index(_blocksizes=small_blocksizes) self.assertTrue(indexrows is not None) idxcol = table.cols.var1.index if verbose: print("After re-creation") print("var1 column:", table.cols.var1) self.assertTrue(idxcol is not None) self.assertEqual(table.colindexed["var1"], 1) # Test provided by Andrew Straw def test11c_removeTableWithIndex(self): """Checking removing a table with indexes (persistent version 3)""" if verbose: print('\n', '-=' * 30) print("Running %s.test11c_removeTableWithIndex..." % self.__class__.__name__) class Distance(tables.IsDescription): frame = Int32Col(pos=0) distance = FloatCol(pos=1) # Delete the old temporal file os.remove(self.h5fname) self.h5fname = tempfile.mktemp(".h5") self.h5file = tables.open_file(self.h5fname, mode='w') table = self.h5file.create_table( self.h5file.root, 'distance_table', Distance) table.cols.frame.create_index(_blocksizes=small_blocksizes) r = table.row for i in range(10): r['frame'] = i r['distance'] = float(i**2) r.append() table.flush() self._reopen(mode='r+') self.h5file.remove_node(self.h5file.root.distance_table) def test12_doubleIterate(self): self.h5file = tables.open_file(self.h5fname, mode="r") table = self.h5file.root.table tests = [1, 4, self.nrows] if self.nrows > 500: tests.append(self.nrows - 500) for limit in tests: handle_a = [0, table.where('(var3 < e)', dict(e=limit))] handle_b = [0, table.where('(var3 < e)', dict(e=limit))] try: while True: next(handle_b[1]) handle_b[0] += 1 except StopIteration: for _ in handle_a[1]: handle_a[0] += 1 for _ in handle_b[1]: handle_b[0] += 1 self.assertEqual(handle_a[0], limit) self.assertEqual(handle_b[0], limit) self.assertEqual( len(list(table.where('(var3 < e)', dict(e=limit)))), limit) small_ss = small_blocksizes[2] class BasicReadTestCase(BasicTestCase): compress = 0 complib = "zlib" shuffle = 0 fletcher32 = 0 nrows = small_ss class ZlibReadTestCase(BasicTestCase): compress = 1 complib = "zlib" shuffle = 0 fletcher32 = 0 nrows = small_ss @unittest.skipIf(not common.blosc_avail, 'BLOSC compression library not available') class BloscReadTestCase(BasicTestCase): compress = 1 complib = "blosc" shuffle = 0 fletcher32 = 0 nrows = small_ss @unittest.skipIf(not common.lzo_avail, 'LZO compression library not available') class LZOReadTestCase(BasicTestCase): compress = 1 complib = "lzo" shuffle = 0 fletcher32 = 0 nrows = small_ss @unittest.skipIf(not common.bzip2_avail, 'BZIP2 compression library not available') class Bzip2ReadTestCase(BasicTestCase): compress = 1 complib = "bzip2" shuffle = 0 fletcher32 = 0 nrows = small_ss class ShuffleReadTestCase(BasicTestCase): compress = 1 complib = "zlib" shuffle = 1 fletcher32 = 0 nrows = small_ss class Fletcher32ReadTestCase(BasicTestCase): compress = 1 complib = "zlib" shuffle = 0 fletcher32 = 1 nrows = small_ss class ShuffleFletcher32ReadTestCase(BasicTestCase): compress = 1 complib = "zlib" shuffle = 1 fletcher32 = 1 nrows = small_ss class OneHalfTestCase(BasicTestCase): nrows = small_ss + small_ss//2 class UpperBoundTestCase(BasicTestCase): nrows = small_ss + 1 class LowerBoundTestCase(BasicTestCase): nrows = small_ss * 2-1 class DeepTableIndexTestCase(common.TempFileMixin, TestCase): nrows = minRowIndex def test01(self): """Checking the indexing of a table in a 2nd level hierarchy""" # Create an instance of an HDF5 Table group = self.h5file.create_group(self.h5file.root, "agroup") # Create a table title = "This is the IndexArray title" table = self.h5file.create_table(group, 'table', TDescr, title, None, self.nrows) for i in range(self.nrows): # Fill rows with defaults table.row.append() table.flush() # Index some column indexrows = table.cols.var1.create_index() self.assertTrue(indexrows is not None) idxcol = table.cols.var1.index # Some sanity checks self.assertEqual(table.colindexed["var1"], 1) self.assertTrue(idxcol is not None) self.assertEqual(idxcol.nelements, self.nrows) def test01b(self): """Checking the indexing of a table in 2nd level (persistent version)""" # Create an instance of an HDF5 Table group = self.h5file.create_group(self.h5file.root, "agroup") # Create a table title = "This is the IndexArray title" table = self.h5file.create_table(group, 'table', TDescr, title, None, self.nrows) for i in range(self.nrows): # Fill rows with defaults table.row.append() table.flush() # Index some column indexrows = table.cols.var1.create_index() self.assertTrue(indexrows is not None) idxcol = table.cols.var1.index # Close and re-open this file self._reopen(mode='a') table = self.h5file.root.agroup.table idxcol = table.cols.var1.index # Some sanity checks self.assertEqual(table.colindexed["var1"], 1) self.assertTrue(idxcol is not None) self.assertEqual(idxcol.nelements, self.nrows) def test02(self): """Checking the indexing of a table in a 4th level hierarchy""" # Create an instance of an HDF5 Table group = self.h5file.create_group(self.h5file.root, "agroup") group = self.h5file.create_group(group, "agroup") group = self.h5file.create_group(group, "agroup") # Create a table title = "This is the IndexArray title" table = self.h5file.create_table(group, 'table', TDescr, title, None, self.nrows) for i in range(self.nrows): # Fill rows with defaults table.row.append() table.flush() # Index some column indexrows = table.cols.var1.create_index() self.assertTrue(indexrows is not None) idxcol = table.cols.var1.index # Some sanity checks self.assertEqual(table.colindexed["var1"], 1) self.assertTrue(idxcol is not None) self.assertEqual(idxcol.nelements, self.nrows) def test02b(self): """Checking the indexing of a table in a 4th level (persistent version)""" # Create an instance of an HDF5 Table group = self.h5file.create_group(self.h5file.root, "agroup") group = self.h5file.create_group(group, "agroup") group = self.h5file.create_group(group, "agroup") # Create a table title = "This is the IndexArray title" table = self.h5file.create_table(group, 'table', TDescr, title, None, self.nrows) for i in range(self.nrows): # Fill rows with defaults table.row.append() table.flush() # Index some column indexrows = table.cols.var1.create_index() self.assertTrue(indexrows is not None) idxcol = table.cols.var1.index # Close and re-open this file self._reopen(mode='a') table = self.h5file.root.agroup.agroup.agroup.table idxcol = table.cols.var1.index # Some sanity checks self.assertEqual(table.colindexed["var1"], 1) self.assertTrue(idxcol is not None) self.assertEqual(idxcol.nelements, self.nrows) def test03(self): """Checking the indexing of a table in a 100th level hierarchy""" # Create an instance of an HDF5 Table group = self.h5file.root for i in range(100): group = self.h5file.create_group(group, "agroup") # Create a table title = "This is the IndexArray title" table = self.h5file.create_table(group, 'table', TDescr, title, None, self.nrows) for i in range(self.nrows): # Fill rows with defaults table.row.append() table.flush() # Index some column indexrows = table.cols.var1.create_index() self.assertTrue(indexrows is not None) idxcol = table.cols.var1.index # Some sanity checks self.assertEqual(table.colindexed["var1"], 1) self.assertTrue(idxcol is not None) self.assertEqual(idxcol.nelements, self.nrows) class IndexProps(object): def __init__(self, auto=default_auto_index, filters=default_index_filters): self.auto = auto self.filters = filters DefaultProps = IndexProps() NoAutoProps = IndexProps(auto=False) ChangeFiltersProps = IndexProps( filters=tables.Filters(complevel=6, complib="zlib", shuffle=False, fletcher32=False)) class AutomaticIndexingTestCase(common.TempFileMixin, TestCase): reopen = 1 iprops = NoAutoProps colsToIndex = ['var1', 'var2', 'var3'] small_blocksizes = (16, 8, 4, 2) def setUp(self): super(AutomaticIndexingTestCase, self).setUp() # Create an instance of an HDF5 Table title = "This is the IndexArray title" root = self.h5file.root # Make the chunkshape smaller or equal than small_blocksizes[-1] chunkshape = (2,) self.table = self.h5file.create_table(root, 'table', TDescr, title, None, self.nrows, chunkshape=chunkshape) self.table.autoindex = self.iprops.auto for colname in self.colsToIndex: self.table.colinstances[colname].create_index( _blocksizes=self.small_blocksizes) for i in range(self.nrows): # Fill rows with defaults self.table.row.append() self.table.flush() if self.reopen: self._reopen(mode='a') self.table = self.h5file.root.table def test01_attrs(self): """Checking indexing attributes (part1)""" if verbose: print('\n', '-=' * 30) print("Running %s.test01_attrs..." % self.__class__.__name__) table = self.table if self.iprops is DefaultProps: self.assertEqual(table.indexed, 0) else: self.assertEqual(table.indexed, 1) if self.iprops is DefaultProps: self.assertEqual(table.colindexed["var1"], 0) self.assertTrue(table.cols.var1.index is None) self.assertEqual(table.colindexed["var2"], 0) self.assertTrue(table.cols.var2.index is None) self.assertEqual(table.colindexed["var3"], 0) self.assertTrue(table.cols.var3.index is None) self.assertEqual(table.colindexed["var4"], 0) self.assertTrue(table.cols.var4.index is None) else: # Check that the var1, var2 and var3 (and only these) # has been indexed self.assertEqual(table.colindexed["var1"], 1) self.assertTrue(table.cols.var1.index is not None) self.assertEqual(table.colindexed["var2"], 1) self.assertTrue(table.cols.var2.index is not None) self.assertEqual(table.colindexed["var3"], 1) self.assertTrue(table.cols.var3.index is not None) self.assertEqual(table.colindexed["var4"], 0) self.assertTrue(table.cols.var4.index is None) def test02_attrs(self): """Checking indexing attributes (part2)""" if verbose: print('\n', '-=' * 30) print("Running %s.test02_attrs..." % self.__class__.__name__) table = self.table # Check the policy parameters if verbose: if table.indexed: print("index props:", table.autoindex) else: print("Table is not indexed") # Check non-default values for index saving policy if self.iprops is NoAutoProps: self.assertFalse(table.autoindex) elif self.iprops is ChangeFiltersProps: self.assertTrue(table.autoindex) # Check Index() objects exists and are properly placed if self.iprops is DefaultProps: self.assertEqual(table.cols.var1.index, None) self.assertEqual(table.cols.var2.index, None) self.assertEqual(table.cols.var3.index, None) self.assertEqual(table.cols.var4.index, None) else: self.assertTrue(isinstance(table.cols.var1.index, Index)) self.assertTrue(isinstance(table.cols.var2.index, Index)) self.assertTrue(isinstance(table.cols.var3.index, Index)) self.assertEqual(table.cols.var4.index, None) def test03_counters(self): """Checking indexing counters""" if verbose: print('\n', '-=' * 30) print("Running %s.test03_counters..." % self.__class__.__name__) table = self.table # Check the counters for indexes if verbose: if table.indexed: print("indexedrows:", table._indexedrows) print("unsavedindexedrows:", table._unsaved_indexedrows) index = table.cols.var1.index print("table rows:", table.nrows) print("computed indexed rows:", index.nrows * index.slicesize) else: print("Table is not indexed") if self.iprops is not DefaultProps: index = table.cols.var1.index indexedrows = index.nelements self.assertEqual(table._indexedrows, indexedrows) indexedrows = index.nelements self.assertEqual(table._unsaved_indexedrows, self.nrows - indexedrows) def test04_noauto(self): """Checking indexing counters (non-automatic mode)""" if verbose: print('\n', '-=' * 30) print("Running %s.test04_noauto..." % self.__class__.__name__) table = self.table # Force a sync in indexes table.flush_rows_to_index() # Check the counters for indexes if verbose: if table.indexed: print("indexedrows:", table._indexedrows) print("unsavedindexedrows:", table._unsaved_indexedrows) index = table.cols.var1.index print("computed indexed rows:", index.nelements) else: print("Table is not indexed") # No unindexated rows should remain index = table.cols.var1.index if self.iprops is DefaultProps: self.assertTrue(index is None) else: indexedrows = index.nelements self.assertEqual(table._indexedrows, index.nelements) self.assertEqual(table._unsaved_indexedrows, self.nrows - indexedrows) # Check non-default values for index saving policy if self.iprops is NoAutoProps: self.assertFalse(table.autoindex) elif self.iprops is ChangeFiltersProps: self.assertTrue(table.autoindex) def test05_icounters(self): """Checking indexing counters (remove_rows)""" if verbose: print('\n', '-=' * 30) print("Running %s.test05_icounters..." % self.__class__.__name__) table = self.table # Force a sync in indexes table.flush_rows_to_index() # Non indexated rows should remain here if self.iprops is not DefaultProps: indexedrows = table._indexedrows unsavedindexedrows = table._unsaved_indexedrows # Now, remove some rows: table.remove_rows(2, 4) if self.reopen: self._reopen(mode='a') table = self.h5file.root.table # Check the counters for indexes if verbose: if table.indexed: print("indexedrows:", table._indexedrows) print("original indexedrows:", indexedrows) print("unsavedindexedrows:", table._unsaved_indexedrows) print("original unsavedindexedrows:", unsavedindexedrows) # index = table.cols.var1.index print("index dirty:", table.cols.var1.index.dirty) else: print("Table is not indexed") # Check the counters self.assertEqual(table.nrows, self.nrows - 2) if self.iprops is NoAutoProps: self.assertTrue(table.cols.var1.index.dirty) # Check non-default values for index saving policy if self.iprops is NoAutoProps: self.assertFalse(table.autoindex) elif self.iprops is ChangeFiltersProps: self.assertTrue(table.autoindex) def test06_dirty(self): """Checking dirty flags (remove_rows action)""" if verbose: print('\n', '-=' * 30) print("Running %s.test06_dirty..." % self.__class__.__name__) table = self.table # Force a sync in indexes table.flush_rows_to_index() # Now, remove some rows: table.remove_rows(3, 5) if self.reopen: self._reopen(mode='a') table = self.h5file.root.table # Check the dirty flag for indexes if verbose: print("auto flag:", table.autoindex) for colname in table.colnames: if table.cols._f_col(colname).index: print("dirty flag col %s: %s" % (colname, table.cols._f_col(colname).index.dirty)) # Check the flags for colname in table.colnames: if table.cols._f_col(colname).index: if not table.autoindex: self.assertEqual(table.cols._f_col(colname).index.dirty, True) else: self.assertEqual(table.cols._f_col(colname).index.dirty, False) def test07_noauto(self): """Checking indexing counters (modify_rows, no-auto mode)""" if verbose: print('\n', '-=' * 30) print("Running %s.test07_noauto..." % self.__class__.__name__) table = self.table # Force a sync in indexes table.flush_rows_to_index() # No unindexated rows should remain here if self.iprops is not DefaultProps: indexedrows = table._indexedrows unsavedindexedrows = table._unsaved_indexedrows # Now, modify just one row: table.modify_rows(3, None, 1, [["asa", 0, 3, 3.1]]) if self.reopen: self._reopen(mode='a') table = self.h5file.root.table # Check the counters for indexes if verbose: if table.indexed: print("indexedrows:", table._indexedrows) print("original indexedrows:", indexedrows) print("unsavedindexedrows:", table._unsaved_indexedrows) print("original unsavedindexedrows:", unsavedindexedrows) index = table.cols.var1.index print("computed indexed rows:", index.nelements) else: print("Table is not indexed") # Check the counters self.assertEqual(table.nrows, self.nrows) if self.iprops is NoAutoProps: self.assertTrue(table.cols.var1.index.dirty) # Check the dirty flag for indexes if verbose: for colname in table.colnames: if table.cols._f_col(colname).index: print("dirty flag col %s: %s" % (colname, table.cols._f_col(colname).index.dirty)) for colname in table.colnames: if table.cols._f_col(colname).index: if not table.autoindex: self.assertEqual(table.cols._f_col(colname).index.dirty, True) else: self.assertEqual(table.cols._f_col(colname).index.dirty, False) def test07b_noauto(self): """Checking indexing queries (modify in iterator, no-auto mode)""" if verbose: print('\n', '-=' * 30) print("Running %s.test07b_noauto..." % self.__class__.__name__) table = self.table # Force a sync in indexes table.flush_rows_to_index() # Do a query that uses indexes res = [row.nrow for row in table.where('(var2 == True) & (var3 > 0)')] # Now, modify just one row: for row in table: if row.nrow == 3: row['var1'] = "asa" row['var2'] = True row['var3'] = 3 row['var4'] = 3.1 row.update() table.flush() if self.reopen: self._reopen(mode='a') table = self.h5file.root.table # Do a query that uses indexes resq = [row.nrow for row in table.where('(var2 == True) & (var3 > 0)')] res_ = res + [3] if verbose: print("AutoIndex?:", table.autoindex) print("Query results (original):", res) print("Query results (after modifying table):", resq) print("Should look like:", res_) self.assertEqual(res_, resq) def test07c_noauto(self): """Checking indexing queries (append, no-auto mode)""" if verbose: print('\n', '-=' * 30) print("Running %s.test07c_noauto..." % self.__class__.__name__) table = self.table # Force a sync in indexes table.flush_rows_to_index() # Do a query that uses indexes res = [row.nrow for row in table.where('(var2 == True) & (var3 > 0)')] # Now, append three rows table.append([("asa", True, 1, 3.1)]) table.append([("asb", True, 2, 3.1)]) table.append([("asc", True, 3, 3.1)]) table.flush() if self.reopen: self._reopen(mode='a') table = self.h5file.root.table # Do a query that uses indexes resq = [row.nrow for row in table.where('(var2 == True) & (var3 > 0)')] res_ = res + [table.nrows-3, table.nrows-2, table.nrows-1] if verbose: print("AutoIndex?:", table.autoindex) print("Query results (original):", res) print("Query results (after modifying table):", resq) print("Should look like:", res_) self.assertEqual(res_, resq) def test08_dirty(self): """Checking dirty flags (modify_columns)""" if verbose: print('\n', '-=' * 30) print("Running %s.test08_dirty..." % self.__class__.__name__) table = self.table # Force a sync in indexes table.flush_rows_to_index() # Non indexated rows should remain here if self.iprops is not DefaultProps: indexedrows = table._indexedrows self.assertTrue(indexedrows is not None) unsavedindexedrows = table._unsaved_indexedrows self.assertTrue(unsavedindexedrows is not None) # Now, modify a couple of rows: table.modify_columns(1, columns=[["asa", "asb"], [1., 2.]], names=["var1", "var4"]) if self.reopen: self._reopen(mode='a') table = self.h5file.root.table # Check the counters self.assertEqual(table.nrows, self.nrows) if self.iprops is NoAutoProps: self.assertTrue(table.cols.var1.index.dirty) # Check the dirty flag for indexes if verbose: for colname in table.colnames: if table.cols._f_col(colname).index: print("dirty flag col %s: %s" % (colname, table.cols._f_col(colname).index.dirty)) for colname in table.colnames: if table.cols._f_col(colname).index: if not table.autoindex: if colname in ["var1"]: self.assertEqual( table.cols._f_col(colname).index.dirty, True) else: self.assertEqual( table.cols._f_col(colname).index.dirty, False) else: self.assertEqual(table.cols._f_col(colname).index.dirty, False) def test09a_propIndex(self): """Checking propagate Index feature in Table.copy() (attrs)""" if verbose: print('\n', '-=' * 30) print("Running %s.test09a_propIndex..." % self.__class__.__name__) table = self.table # Don't force a sync in indexes # table.flush_rows_to_index() # Non indexated rows should remain here if self.iprops is not DefaultProps: indexedrows = table._indexedrows self.assertTrue(indexedrows is not None) unsavedindexedrows = table._unsaved_indexedrows self.assertTrue(unsavedindexedrows is not None) # Now, remove some rows to make columns dirty # table.remove_rows(3,5) # Copy a Table to another location table2 = table.copy("/", 'table2', propindexes=True) if self.reopen: self._reopen(mode='a') table = self.h5file.root.table table2 = self.h5file.root.table2 index1 = table.cols.var1.index index2 = table2.cols.var1.index if verbose: print("Copied index:", index2) print("Original index:", index1) if index1: print("Elements in copied index:", index2.nelements) print("Elements in original index:", index1.nelements) # Check the counters self.assertEqual(table.nrows, table2.nrows) if table.indexed: self.assertTrue(table2.indexed) if self.iprops is DefaultProps: # No index: the index should not exist self.assertTrue(index1 is None) self.assertTrue(index2 is None) elif self.iprops is NoAutoProps: self.assertTrue(index2 is not None) # Check the dirty flag for indexes if verbose: for colname in table2.colnames: if table2.cols._f_col(colname).index: print("dirty flag col %s: %s" % (colname, table2.cols._f_col(colname).index.dirty)) for colname in table2.colnames: if table2.cols._f_col(colname).index: self.assertEqual(table2.cols._f_col(colname).index.dirty, False) def test09b_propIndex(self): """Checking that propindexes=False works""" if verbose: print('\n', '-=' * 30) print("Running %s.test09b_propIndex..." % self.__class__.__name__) table = self.table # Don't force a sync in indexes # table.flush_rows_to_index() # Non indexated rows should remain here if self.iprops is not DefaultProps: indexedrows = table._indexedrows self.assertTrue(indexedrows is not None) unsavedindexedrows = table._unsaved_indexedrows self.assertTrue(unsavedindexedrows is not None) # Now, remove some rows to make columns dirty # table.remove_rows(3,5) # Copy a Table to another location table2 = table.copy("/", 'table2', propindexes=False) if self.reopen: self._reopen(mode='a') table = self.h5file.root.table table2 = self.h5file.root.table2 if verbose: print("autoindex?:", self.iprops.auto) print("Copied index indexed?:", table2.cols.var1.is_indexed) print("Original index indexed?:", table.cols.var1.is_indexed) if self.iprops is DefaultProps: # No index: the index should not exist self.assertFalse(table2.cols.var1.is_indexed) self.assertFalse(table.cols.var1.is_indexed) elif self.iprops is NoAutoProps: self.assertFalse(table2.cols.var1.is_indexed) self.assertTrue(table.cols.var1.is_indexed) def test10_propIndex(self): """Checking propagate Index feature in Table.copy() (values)""" if verbose: print('\n', '-=' * 30) print("Running %s.test10_propIndex..." % self.__class__.__name__) table = self.table # Don't force a sync in indexes # table.flush_rows_to_index() # Non indexated rows should remain here if self.iprops is not DefaultProps: indexedrows = table._indexedrows self.assertTrue(indexedrows is not None) unsavedindexedrows = table._unsaved_indexedrows self.assertTrue(unsavedindexedrows is not None) # Now, remove some rows to make columns dirty # table.remove_rows(3,5) # Copy a Table to another location table2 = table.copy("/", 'table2', propindexes=True) if self.reopen: self._reopen(mode='a') table = self.h5file.root.table table2 = self.h5file.root.table2 index1 = table.cols.var3.index index2 = table2.cols.var3.index if verbose: print("Copied index:", index2) print("Original index:", index1) if index1: print("Elements in copied index:", index2.nelements) print("Elements in original index:", index1.nelements) def test11_propIndex(self): """Checking propagate Index feature in Table.copy() (dirty flags)""" if verbose: print('\n', '-=' * 30) print("Running %s.test11_propIndex..." % self.__class__.__name__) table = self.table # Force a sync in indexes table.flush_rows_to_index() # Non indexated rows should remain here if self.iprops is not DefaultProps: indexedrows = table._indexedrows self.assertTrue(indexedrows is not None) unsavedindexedrows = table._unsaved_indexedrows self.assertTrue(unsavedindexedrows is not None) # Now, modify an indexed column and an unindexed one # to make the "var1" dirty table.modify_columns(1, columns=[["asa", "asb"], [1., 2.]], names=["var1", "var4"]) # Copy a Table to another location table2 = table.copy("/", 'table2', propindexes=True) if self.reopen: self._reopen(mode='a') table = self.h5file.root.table table2 = self.h5file.root.table2 index1 = table.cols.var1.index index2 = table2.cols.var1.index if verbose: print("Copied index:", index2) print("Original index:", index1) if index1: print("Elements in copied index:", index2.nelements) print("Elements in original index:", index1.nelements) # Check the dirty flag for indexes if verbose: for colname in table2.colnames: if table2.cols._f_col(colname).index: print("dirty flag col %s: %s" % (colname, table2.cols._f_col(colname).index.dirty)) for colname in table2.colnames: if table2.cols._f_col(colname).index: if table2.autoindex: # All the destination columns should be non-dirty because # the copy removes the dirty state and puts the # index in a sane state self.assertEqual(table2.cols._f_col(colname).index.dirty, False) # minRowIndex = 10000 # just if one wants more indexed rows to be checked class AI1TestCase(AutomaticIndexingTestCase): # nrows = 10002 nrows = 102 reopen = 0 iprops = NoAutoProps colsToIndex = ['var1', 'var2', 'var3'] class AI2TestCase(AutomaticIndexingTestCase): # nrows = 10002 nrows = 102 reopen = 1 iprops = NoAutoProps colsToIndex = ['var1', 'var2', 'var3'] class AI4bTestCase(AutomaticIndexingTestCase): # nrows = 10012 nrows = 112 reopen = 1 iprops = NoAutoProps colsToIndex = ['var1', 'var2', 'var3'] class AI5TestCase(AutomaticIndexingTestCase): sbs, bs, ss, cs = calc_chunksize(minRowIndex, memlevel=1) nrows = ss * 11-1 reopen = 0 iprops = NoAutoProps colsToIndex = ['var1', 'var2', 'var3'] class AI6TestCase(AutomaticIndexingTestCase): sbs, bs, ss, cs = calc_chunksize(minRowIndex, memlevel=1) nrows = ss * 21 + 1 reopen = 1 iprops = NoAutoProps colsToIndex = ['var1', 'var2', 'var3'] class AI7TestCase(AutomaticIndexingTestCase): sbs, bs, ss, cs = calc_chunksize(minRowIndex, memlevel=1) nrows = ss * 12-1 # nrows = ss * 1-1 # faster test reopen = 0 iprops = NoAutoProps colsToIndex = ['var1', 'var2', 'var3'] class AI8TestCase(AutomaticIndexingTestCase): sbs, bs, ss, cs = calc_chunksize(minRowIndex, memlevel=1) nrows = ss * 15 + 100 # nrows = ss * 1 + 100 # faster test reopen = 1 iprops = NoAutoProps colsToIndex = ['var1', 'var2', 'var3'] class AI9TestCase(AutomaticIndexingTestCase): sbs, bs, ss, cs = calc_chunksize(minRowIndex, memlevel=1) nrows = ss reopen = 0 iprops = DefaultProps colsToIndex = [] class AI10TestCase(AutomaticIndexingTestCase): # nrows = 10002 nrows = 102 reopen = 1 iprops = DefaultProps colsToIndex = [] class AI11TestCase(AutomaticIndexingTestCase): # nrows = 10002 nrows = 102 reopen = 0 iprops = ChangeFiltersProps colsToIndex = ['var1', 'var2', 'var3'] class AI12TestCase(AutomaticIndexingTestCase): # nrows = 10002 nrows = 102 reopen = 0 iprops = ChangeFiltersProps colsToIndex = ['var1', 'var2', 'var3'] class ManyNodesTestCase(common.TempFileMixin, TestCase): opem_kwargs = dict(node_cache_slots=64) def test00(self): """Indexing many nodes in one single session (based on bug #26)""" IdxRecord = { 'f0': Int8Col(), 'f1': Int8Col(), 'f2': Int8Col(), } for qn in range(5): for sn in range(5): qchr = 'chr' + str(qn) name = 'chr' + str(sn) path = "/at/%s/pt" % (qchr) table = self.h5file.create_table( path, name, IdxRecord, createparents=1) table.cols.f0.create_index() table.cols.f1.create_index() table.cols.f2.create_index() table.row.append() table.flush() class IndexPropsChangeTestCase(TempFileMixin, TestCase): """Test case for changing index properties in a table.""" class MyDescription(tables.IsDescription): icol = IntCol() oldIndexProps = IndexProps() newIndexProps = IndexProps(auto=False, filters=tables.Filters(complevel=9)) def setUp(self): super(IndexPropsChangeTestCase, self).setUp() table = self.h5file.create_table('/', 'test', self.MyDescription) table.autoindex = self.oldIndexProps.auto row = table.row for i in range(100): row['icol'] = i % 25 row.append() table.flush() self.table = table def test_attributes(self): """Storing index properties as table attributes.""" for refprops in [self.oldIndexProps, self.newIndexProps]: self.assertEqual(self.table.autoindex, refprops.auto) self.table.autoindex = self.newIndexProps.auto def test_copyattrs(self): """Copying index properties attributes.""" oldtable = self.table newtable = oldtable.copy('/', 'test2') self.assertEqual(oldtable.autoindex, newtable.autoindex) class IndexFiltersTestCase(TempFileMixin, TestCase): """Test case for setting index filters.""" def setUp(self): super(IndexFiltersTestCase, self).setUp() description = {'icol': IntCol()} self.table = self.h5file.create_table('/', 'test', description) def test_createIndex(self): """Checking input parameters in new indexes.""" # Different from default. argfilters = copy.copy(default_index_filters) argfilters.shuffle = not default_index_filters.shuffle # Different both from default and the previous one. idxfilters = copy.copy(default_index_filters) idxfilters.shuffle = not default_index_filters.shuffle idxfilters.fletcher32 = not default_index_filters.fletcher32 icol = self.table.cols.icol # First create icol.create_index(kind='ultralight', optlevel=4) self.assertEqual(icol.index.kind, 'ultralight') self.assertEqual(icol.index.optlevel, 4) self.assertEqual(icol.index.filters, default_index_filters) icol.remove_index() # Second create icol.create_index(kind='medium', optlevel=3, filters=argfilters) self.assertEqual(icol.index.kind, 'medium') self.assertEqual(icol.index.optlevel, 3) self.assertEqual(icol.index.filters, argfilters) icol.remove_index() def test_reindex(self): """Checking input parameters in recomputed indexes.""" icol = self.table.cols.icol icol.create_index( kind='full', optlevel=5, filters=tables.Filters(complevel=3)) kind = icol.index.kind optlevel = icol.index.optlevel filters = icol.index.filters icol.reindex() ni = icol.index if verbose: print("Old parameters: %s, %s, %s" % (kind, optlevel, filters)) print("New parameters: %s, %s, %s" % ( ni.kind, ni.optlevel, ni.filters)) self.assertEqual(ni.kind, kind) self.assertEqual(ni.optlevel, optlevel) self.assertEqual(ni.filters, filters) class OldIndexTestCase(common.TestFileMixin, TestCase): h5fname = test_filename("idx-std-1.x.h5") def test1_x(self): """Check that files with 1.x indexes are recognized and warned.""" self.assertWarns(OldIndexWarning, self.h5file.get_node, "/table") # Sensible parameters for indexing with small blocksizes small_blocksizes = (512, 128, 32, 8) class CompletelySortedIndexTestCase(TempFileMixin, TestCase): """Test case for testing a complete sort in a table.""" nrows = 100 nrowsinbuf = 11 class MyDescription(tables.IsDescription): rcol = IntCol(pos=1) icol = IntCol(pos=2) def setUp(self): super(CompletelySortedIndexTestCase, self).setUp() table = self.h5file.create_table('/', 'table', self.MyDescription) row = table.row nrows = self.nrows for i in range(nrows): row['rcol'] = i row['icol'] = nrows - i row.append() table.flush() self.table = table self.icol = self.table.cols.icol # A full index with maximum optlevel should always be completely sorted self.icol.create_csindex(_blocksizes=small_blocksizes) def test00_isCompletelySortedIndex(self): """Testing the Column.is_csi property.""" icol = self.icol self.assertEqual(icol.index.is_csi, True) icol.remove_index() # Other kinds than full, should never return a CSI icol.create_index(kind="medium", optlevel=9) self.assertEqual(icol.index.is_csi, False) icol.remove_index() # As the table is small, lesser optlevels should be able to # create a completely sorted index too. icol.create_index(kind="full", optlevel=6) self.assertEqual(icol.index.is_csi, True) # Checking a CSI in a sorted copy self.table.copy("/", 'table2', sortby='icol', checkCSI=True) self.assertEqual(icol.index.is_csi, True) def test01_readSorted1(self): """Testing the Index.read_sorted() method with no arguments.""" icol = self.icol sortedcol = numpy.sort(icol[:]) sortedcol2 = icol.index.read_sorted() if verbose: print("Original sorted column:", sortedcol) print("The values from the index:", sortedcol2) self.assertTrue(allequal(sortedcol, sortedcol2)) def test01_readSorted2(self): """Testing the Index.read_sorted() method with arguments (I).""" icol = self.icol sortedcol = numpy.sort(icol[:])[30:55] sortedcol2 = icol.index.read_sorted(30, 55) if verbose: print("Original sorted column:", sortedcol) print("The values from the index:", sortedcol2) self.assertTrue(allequal(sortedcol, sortedcol2)) def test01_readSorted3(self): """Testing the Index.read_sorted() method with arguments (II).""" icol = self.icol sortedcol = numpy.sort(icol[:])[33:97] sortedcol2 = icol.index.read_sorted(33, 97) if verbose: print("Original sorted column:", sortedcol) print("The values from the index:", sortedcol2) self.assertTrue(allequal(sortedcol, sortedcol2)) def test02_readIndices1(self): """Testing the Index.read_indices() method with no arguments.""" icol = self.icol indicescol = numpy.argsort(icol[:]).astype('uint64') indicescol2 = icol.index.read_indices() if verbose: print("Original indices column:", indicescol) print("The values from the index:", indicescol2) self.assertTrue(allequal(indicescol, indicescol2)) def test02_readIndices2(self): """Testing the Index.read_indices() method with arguments (I).""" icol = self.icol indicescol = numpy.argsort(icol[:])[30:55].astype('uint64') indicescol2 = icol.index.read_indices(30, 55) if verbose: print("Original indices column:", indicescol) print("The values from the index:", indicescol2) self.assertTrue(allequal(indicescol, indicescol2)) def test02_readIndices3(self): """Testing the Index.read_indices() method with arguments (II).""" icol = self.icol indicescol = numpy.argsort(icol[:])[33:97].astype('uint64') indicescol2 = icol.index.read_indices(33, 97) if verbose: print("Original indices column:", indicescol) print("The values from the index:", indicescol2) self.assertTrue(allequal(indicescol, indicescol2)) def test02_readIndices4(self): """Testing the Index.read_indices() method with arguments (III).""" icol = self.icol indicescol = numpy.argsort(icol[:])[33:97:2].astype('uint64') indicescol2 = icol.index.read_indices(33, 97, 2) if verbose: print("Original indices column:", indicescol) print("The values from the index:", indicescol2) self.assertTrue(allequal(indicescol, indicescol2)) def test02_readIndices5(self): """Testing the Index.read_indices() method with arguments (IV).""" icol = self.icol indicescol = numpy.argsort(icol[:])[33:55:5].astype('uint64') indicescol2 = icol.index.read_indices(33, 55, 5) if verbose: print("Original indices column:", indicescol) print("The values from the index:", indicescol2) self.assertTrue(allequal(indicescol, indicescol2)) def test02_readIndices6(self): """Testing the Index.read_indices() method with step only.""" icol = self.icol indicescol = numpy.argsort(icol[:])[::3].astype('uint64') indicescol2 = icol.index.read_indices(step=3) if verbose: print("Original indices column:", indicescol) print("The values from the index:", indicescol2) self.assertTrue(allequal(indicescol, indicescol2)) def test03_getitem1(self): """Testing the Index.__getitem__() method with no arguments.""" icol = self.icol indicescol = numpy.argsort(icol[:]).astype('uint64') indicescol2 = icol.index[:] if verbose: print("Original indices column:", indicescol) print("The values from the index:", indicescol2) self.assertTrue(allequal(indicescol, indicescol2)) def test03_getitem2(self): """Testing the Index.__getitem__() method with start.""" icol = self.icol indicescol = numpy.argsort(icol[:])[31].astype('uint64') indicescol2 = icol.index[31] if verbose: print("Original indices column:", indicescol) print("The values from the index:", indicescol2) self.assertTrue(allequal(indicescol, indicescol2)) def test03_getitem3(self): """Testing the Index.__getitem__() method with start, stop.""" icol = self.icol indicescol = numpy.argsort(icol[:])[2:16].astype('uint64') indicescol2 = icol.index[2:16] if verbose: print("Original indices column:", indicescol) print("The values from the index:", indicescol2) self.assertTrue(allequal(indicescol, indicescol2)) def test04_itersorted1(self): """Testing the Table.itersorted() method with no arguments.""" table = self.table sortedtable = numpy.sort(table[:], order='icol') sortedtable2 = numpy.array( [row.fetch_all_fields() for row in table.itersorted( 'icol')], dtype=table._v_dtype) if verbose: print("Original sorted table:", sortedtable) print("The values from the iterator:", sortedtable2) self.assertTrue(allequal(sortedtable, sortedtable2)) def test04_itersorted2(self): """Testing the Table.itersorted() method with a start.""" table = self.table sortedtable = numpy.sort(table[:], order='icol')[15:] sortedtable2 = numpy.array( [row.fetch_all_fields() for row in table.itersorted( 'icol', start=15)], dtype=table._v_dtype) if verbose: print("Original sorted table:", sortedtable) print("The values from the iterator:", sortedtable2) self.assertTrue(allequal(sortedtable, sortedtable2)) def test04_itersorted3(self): """Testing the Table.itersorted() method with a stop.""" table = self.table sortedtable = numpy.sort(table[:], order='icol')[:20] sortedtable2 = numpy.array( [row.fetch_all_fields() for row in table.itersorted( 'icol', stop=20)], dtype=table._v_dtype) if verbose: print("Original sorted table:", sortedtable) print("The values from the iterator:", sortedtable2) self.assertTrue(allequal(sortedtable, sortedtable2)) def test04_itersorted4(self): """Testing the Table.itersorted() method with a start and stop.""" table = self.table sortedtable = numpy.sort(table[:], order='icol')[15:20] sortedtable2 = numpy.array( [row.fetch_all_fields() for row in table.itersorted( 'icol', start=15, stop=20)], dtype=table._v_dtype) if verbose: print("Original sorted table:", sortedtable) print("The values from the iterator:", sortedtable2) self.assertTrue(allequal(sortedtable, sortedtable2)) def test04_itersorted5(self): """Testing the Table.itersorted() method with a start, stop and step.""" table = self.table sortedtable = numpy.sort(table[:], order='icol')[15:45:4] sortedtable2 = numpy.array( [row.fetch_all_fields() for row in table.itersorted( 'icol', start=15, stop=45, step=4)], dtype=table._v_dtype) if verbose: print("Original sorted table:", sortedtable) print("The values from the iterator:", sortedtable2) self.assertTrue(allequal(sortedtable, sortedtable2)) def test04_itersorted6(self): """Testing the Table.itersorted() method with a start, stop and step.""" table = self.table sortedtable = numpy.sort(table[:], order='icol')[33:55:5] sortedtable2 = numpy.array( [row.fetch_all_fields() for row in table.itersorted( 'icol', start=33, stop=55, step=5)], dtype=table._v_dtype) if verbose: print("Original sorted table:", sortedtable) print("The values from the iterator:", sortedtable2) self.assertTrue(allequal(sortedtable, sortedtable2)) def test04_itersorted7(self): """Testing the Table.itersorted() method with checkCSI=True.""" table = self.table sortedtable = numpy.sort(table[:], order='icol') sortedtable2 = numpy.array( [row.fetch_all_fields() for row in table.itersorted( 'icol', checkCSI=True)], dtype=table._v_dtype) if verbose: print("Original sorted table:", sortedtable) print("The values from the iterator:", sortedtable2) self.assertTrue(allequal(sortedtable, sortedtable2)) def test04_itersorted8(self): """Testing the Table.itersorted() method with a start, stop and negative step.""" # see also gh-252 table = self.table sortedtable = numpy.sort(table[:], order='icol')[55:33:-5] sortedtable2 = numpy.array( [row.fetch_all_fields() for row in table.itersorted( 'icol', start=55, stop=33, step=-5)], dtype=table._v_dtype) if verbose: print("Original sorted table:", sortedtable) print("The values from the iterator:", sortedtable2) self.assertTrue(allequal(sortedtable, sortedtable2)) def test04_itersorted9(self): """Testing the Table.itersorted() method with a negative step.""" # see also gh-252 table = self.table sortedtable = numpy.sort(table[:], order='icol')[::-5] sortedtable2 = numpy.array( [row.fetch_all_fields() for row in table.itersorted( 'icol', step=-5)], dtype=table._v_dtype) if verbose: print("Original sorted table:", sortedtable) print("The values from the iterator:", sortedtable2) self.assertTrue(allequal(sortedtable, sortedtable2)) def test05_readSorted1(self): """Testing the Table.read_sorted() method with no arguments.""" table = self.table sortedtable = numpy.sort(table[:], order='icol') sortedtable2 = table.read_sorted('icol') if verbose: print("Original sorted table:", sortedtable) print("The values from read_sorted:", sortedtable2) self.assertTrue(allequal(sortedtable, sortedtable2)) def test05_readSorted2(self): """Testing the Table.read_sorted() method with a start.""" table = self.table sortedtable = numpy.sort(table[:], order='icol')[16:17] sortedtable2 = table.read_sorted('icol', start=16) if verbose: print("Original sorted table:", sortedtable) print("The values from read_sorted:", sortedtable2) self.assertTrue(allequal(sortedtable, sortedtable2)) def test05_readSorted3(self): """Testing the Table.read_sorted() method with a start and stop.""" table = self.table sortedtable = numpy.sort(table[:], order='icol')[16:33] sortedtable2 = table.read_sorted('icol', start=16, stop=33) if verbose: print("Original sorted table:", sortedtable) print("The values from read_sorted:", sortedtable2) self.assertTrue(allequal(sortedtable, sortedtable2)) def test05_readSorted4(self): """Testing the Table.read_sorted() method with a start, stop and step.""" table = self.table sortedtable = numpy.sort(table[:], order='icol')[33:55:5] sortedtable2 = table.read_sorted('icol', start=33, stop=55, step=5) if verbose: print("Original sorted table:", sortedtable) print("The values from read_sorted:", sortedtable2) self.assertTrue(allequal(sortedtable, sortedtable2)) def test05_readSorted5(self): """Testing the Table.read_sorted() method with only a step.""" table = self.table sortedtable = numpy.sort(table[:], order='icol')[::3] sortedtable2 = table.read_sorted('icol', step=3) if verbose: print("Original sorted table:", sortedtable) print("The values from read_sorted:", sortedtable2) self.assertTrue(allequal(sortedtable, sortedtable2)) def test05_readSorted6(self): """Testing the Table.read_sorted() method with negative step.""" table = self.table sortedtable = numpy.sort(table[:], order='icol')[::-1] sortedtable2 = table.read_sorted('icol', step=-1) if verbose: print("Original sorted table:", sortedtable) print("The values from read_sorted:", sortedtable2) self.assertTrue(allequal(sortedtable, sortedtable2)) def test05_readSorted7(self): """Testing the Table.read_sorted() method with negative step (II).""" table = self.table sortedtable = numpy.sort(table[:], order='icol')[::-2] sortedtable2 = table.read_sorted('icol', step=-2) if verbose: print("Original sorted table:", sortedtable) print("The values from read_sorted:", sortedtable2) self.assertTrue(allequal(sortedtable, sortedtable2)) def test05_readSorted8(self): """Testing the Table.read_sorted() method with negative step (III)).""" table = self.table sstart = 100-24-1 sstop = 100-54-1 sortedtable = numpy.sort(table[:], order='icol')[sstart:sstop:-1] sortedtable2 = table.read_sorted('icol', start=24, stop=54, step=-1) if verbose: print("Original sorted table:", sortedtable) print("The values from read_sorted:", sortedtable2) self.assertTrue(allequal(sortedtable, sortedtable2)) def test05_readSorted9(self): """Testing the Table.read_sorted() method with negative step (IV)).""" table = self.table sstart = 100-14-1 sstop = 100-54-1 sortedtable = numpy.sort(table[:], order='icol')[sstart:sstop:-3] sortedtable2 = table.read_sorted('icol', start=14, stop=54, step=-3) if verbose: print("Original sorted table:", sortedtable) print("The values from read_sorted:", sortedtable2) self.assertTrue(allequal(sortedtable, sortedtable2)) def test05_readSorted10(self): """Testing the Table.read_sorted() method with negative step (V)).""" table = self.table sstart = 100-24-1 sstop = 100-25-1 sortedtable = numpy.sort(table[:], order='icol')[sstart:sstop:-2] sortedtable2 = table.read_sorted('icol', start=24, stop=25, step=-2) if verbose: print("Original sorted table:", sortedtable) print("The values from read_sorted:", sortedtable2) self.assertTrue(allequal(sortedtable, sortedtable2)) def test05_readSorted11(self): """Testing the Table.read_sorted() method with start > stop.""" table = self.table sstart = 100-137-1 sstop = 100-25-1 sortedtable = numpy.sort(table[:], order='icol')[sstart:sstop:-2] sortedtable2 = table.read_sorted('icol', start=137, stop=25, step=-2) if verbose: print("Original sorted table:", sortedtable) print("The values from read_sorted:", sortedtable2) self.assertTrue(allequal(sortedtable, sortedtable2)) def test05a_readSorted12(self): """Testing the Table.read_sorted() method with checkCSI (I).""" table = self.table sortedtable = numpy.sort(table[:], order='icol') sortedtable2 = table.read_sorted('icol', checkCSI=True) if verbose: print("Original sorted table:", sortedtable) print("The values from read_sorted:", sortedtable2) self.assertTrue(allequal(sortedtable, sortedtable2)) def test05b_readSorted12(self): """Testing the Table.read_sorted() method with checkCSI (II).""" table = self.table self.assertRaises(ValueError, table.read_sorted, "rcol", checkCSI=False) def test06_copy_sorted1(self): """Testing the Table.copy(sortby) method with no arguments.""" table = self.table # Copy to another table table.nrowsinbuf = self.nrowsinbuf table2 = table.copy("/", 'table2', sortby="icol") sortedtable = numpy.sort(table[:], order='icol') sortedtable2 = table2[:] if verbose: print("Original sorted table:", sortedtable) print("The values from copy:", sortedtable2) self.assertTrue(allequal(sortedtable, sortedtable2)) def test06_copy_sorted2(self): """Testing the Table.copy(sortby) method with step=-1.""" table = self.table # Copy to another table table.nrowsinbuf = self.nrowsinbuf table2 = table.copy("/", 'table2', sortby="icol", step=-1) sortedtable = numpy.sort(table[:], order='icol')[::-1] sortedtable2 = table2[:] if verbose: print("Original sorted table:", sortedtable) print("The values from copy:", sortedtable2) self.assertTrue(allequal(sortedtable, sortedtable2)) def test06_copy_sorted3(self): """Testing the Table.copy(sortby) method with only a start.""" table = self.table # Copy to another table table.nrowsinbuf = self.nrowsinbuf table2 = table.copy("/", 'table2', sortby="icol", start=3) sortedtable = numpy.sort(table[:], order='icol')[3:4] sortedtable2 = table2[:] if verbose: print("Original sorted table:", sortedtable) print("The values from copy:", sortedtable2) self.assertTrue(allequal(sortedtable, sortedtable2)) def test06_copy_sorted4(self): """Testing the Table.copy(sortby) method with start, stop.""" table = self.table # Copy to another table table.nrowsinbuf = self.nrowsinbuf table2 = table.copy("/", 'table2', sortby="icol", start=3, stop=40) sortedtable = numpy.sort(table[:], order='icol')[3:40] sortedtable2 = table2[:] if verbose: print("Original sorted table:", sortedtable) print("The values from copy:", sortedtable2) self.assertTrue(allequal(sortedtable, sortedtable2)) def test06_copy_sorted5(self): """Testing the Table.copy(sortby) method with start, stop, step.""" table = self.table # Copy to another table table.nrowsinbuf = self.nrowsinbuf table2 = table.copy("/", 'table2', sortby="icol", start=3, stop=33, step=5) sortedtable = numpy.sort(table[:], order='icol')[3:33:5] sortedtable2 = table2[:] if verbose: print("Original sorted table:", sortedtable) print("The values from copy:", sortedtable2) self.assertTrue(allequal(sortedtable, sortedtable2)) def test06_copy_sorted6(self): """Testing the Table.copy(sortby) method after table re-opening.""" self._reopen(mode='a') table = self.h5file.root.table # Copy to another table table.nrowsinbuf = self.nrowsinbuf table2 = table.copy("/", 'table2', sortby="icol") sortedtable = numpy.sort(table[:], order='icol') sortedtable2 = table2[:] if verbose: print("Original sorted table:", sortedtable) print("The values from copy:", sortedtable2) self.assertTrue(allequal(sortedtable, sortedtable2)) def test06_copy_sorted7(self): """Testing the `checkCSI` parameter of Table.copy() (I).""" table = self.table # Copy to another table table.nrowsinbuf = self.nrowsinbuf table2 = table.copy("/", 'table2', sortby="icol") self.assertRaises(ValueError, table2.copy, "/", 'table3', sortby="rcol", checkCSI=False) def test06_copy_sorted8(self): """Testing the `checkCSI` parameter of Table.copy() (II).""" table = self.table # Copy to another table table.nrowsinbuf = self.nrowsinbuf table2 = table.copy("/", 'table2', sortby="icol") self.assertRaises(ValueError, table2.copy, "/", 'table3', sortby="rcol", checkCSI=True) def test07_isCSI_noelements(self): """Testing the representation of an index with no elements.""" t2 = self.h5file.create_table('/', 't2', self.MyDescription) irows = t2.cols.rcol.create_csindex() if verbose: print("repr(t2)-->\n", repr(t2)) self.assertEqual(irows, 0) self.assertEqual(t2.colindexes['rcol'].is_csi, False) class ReadSortedIndexTestCase(TempFileMixin, TestCase): """Test case for testing sorted reading in a "full" sorted column.""" nrows = 100 nrowsinbuf = 11 class MyDescription(tables.IsDescription): rcol = IntCol(pos=1) icol = IntCol(pos=2) def setUp(self): super(ReadSortedIndexTestCase, self).setUp() table = self.h5file.create_table('/', 'table', self.MyDescription) row = table.row nrows = self.nrows for i in range(nrows): row['rcol'] = i row['icol'] = nrows - i row.append() table.flush() self.table = table self.icol = self.table.cols.icol # A full index with maximum optlevel should always be completely sorted self.icol.create_index(optlevel=self.optlevel, kind="full", _blocksizes=small_blocksizes) def test01_readSorted1(self): """Testing the Table.read_sorted() method with no arguments.""" table = self.table sortedtable = numpy.sort(table[:], order='icol') sortedtable2 = table.read_sorted('icol') if verbose: print("Sorted table:", sortedtable) print("The values from read_sorted:", sortedtable2) # Compare with the sorted read table because we have no # guarantees that read_sorted returns a completely sorted table self.assertTrue(allequal(sortedtable, numpy.sort(sortedtable2, order="icol"))) def test01_readSorted2(self): """Testing the Table.read_sorted() method with no arguments (re-open).""" self._reopen() table = self.h5file.root.table sortedtable = numpy.sort(table[:], order='icol') sortedtable2 = table.read_sorted('icol') if verbose: print("Sorted table:", sortedtable) print("The values from read_sorted:", sortedtable2) # Compare with the sorted read table because we have no # guarantees that read_sorted returns a completely sorted table self.assertTrue(allequal(sortedtable, numpy.sort(sortedtable2, order="icol"))) def test02_copy_sorted1(self): """Testing the Table.copy(sortby) method.""" table = self.table # Copy to another table table.nrowsinbuf = self.nrowsinbuf table2 = table.copy("/", 'table2', sortby="icol") sortedtable = numpy.sort(table[:], order='icol') sortedtable2 = numpy.sort(table2[:], order='icol') if verbose: print("Original table:", table2[:]) print("The sorted values from copy:", sortedtable2) self.assertTrue(allequal(sortedtable, sortedtable2)) def test02_copy_sorted2(self): """Testing the Table.copy(sortby) method after table re-opening.""" self._reopen(mode='a') table = self.h5file.root.table # Copy to another table table.nrowsinbuf = self.nrowsinbuf table2 = table.copy("/", 'table2', sortby="icol") sortedtable = numpy.sort(table[:], order='icol') sortedtable2 = numpy.sort(table2[:], order='icol') if verbose: print("Original table:", table2[:]) print("The sorted values from copy:", sortedtable2) self.assertTrue(allequal(sortedtable, sortedtable2)) class ReadSortedIndex0(ReadSortedIndexTestCase): optlevel = 0 class ReadSortedIndex3(ReadSortedIndexTestCase): optlevel = 3 class ReadSortedIndex6(ReadSortedIndexTestCase): optlevel = 6 class ReadSortedIndex9(ReadSortedIndexTestCase): optlevel = 9 class Issue156TestBase(common.TempFileMixin, TestCase): # field name in table according to which test_copysort() sorts the table sort_field = None def setUp(self): super(Issue156TestBase, self).setUp() # create nested table class Foo(tables.IsDescription): frame = UInt16Col() class Bar(tables.IsDescription): code = UInt16Col() table = self.h5file.create_table('/', 'foo', Foo, filters=tables.Filters(3, 'zlib'), createparents=True) self.h5file.flush() # fill table with 10 random numbers for k in range(10): row = table.row row['frame'] = numpy.random.random_integers(0, 2**16-1) row['Bar/code'] = numpy.random.random_integers(0, 2**16-1) row.append() self.h5file.flush() def test_copysort(self): # copy table oldNode = self.h5file.get_node('/foo') # create completely sorted index on a main column oldNode.colinstances[self.sort_field].create_csindex() # this fails on ade2ba123efd267fd31 # see gh-156 new_node = oldNode.copy(newname='foo2', overwrite=True, sortby=self.sort_field, checkCSI=True, propindexes=True) # check column is sorted self.assertTrue(numpy.all( new_node.col(self.sort_field) == sorted(oldNode.col(self.sort_field)))) # check index is available self.assertTrue(self.sort_field in new_node.colindexes) # check CSI was propagated self.assertTrue(new_node.colindexes[self.sort_field].is_csi) class Issue156TestCase01(Issue156TestBase): # sort by field from non nested entry sort_field = 'frame' class Issue156TestCase02(Issue156TestBase): # sort by field from nested entry sort_field = 'Bar/code' class Issue119Time32ColTestCase(common.TempFileMixin, TestCase): """TimeCol not properly indexing.""" col_typ = tables.Time32Col values = [ 0.93240451618785880, 0.76322375510776170, 0.16695030056300875, 0.91259117097807850, 0.93977847053454630, 0.51450406513503090, 0.24452129962257563, 0.85475938924825230, 0.32512326762476930, 0.75127635627046820, ] def setUp(self): super(Issue119Time32ColTestCase, self).setUp() class Descr(tables.IsDescription): when = self.col_typ(pos=1) value = Float32Col(pos=2) self.table = self.h5file.create_table('/', 'test', Descr) self.t = 1321031471.0 # 11/11/11 11:11:11 data = [(self.t + i, item) for i, item in enumerate(self.values)] self.table.append(data) self.h5file.flush() def test_timecol_issue(self): tbl = self.table t = self.t wherestr = '(when >= %d) & (when < %d)' % (t, t + 5) no_index = tbl.read_where(wherestr) tbl.cols.when.create_index(_verbose=False) with_index = tbl.read_where(wherestr) self.assertTrue((no_index == with_index).all()) class Issue119Time64ColTestCase(Issue119Time32ColTestCase): col_typ = tables.Time64Col class TestIndexingNans(TempFileMixin, TestCase): def test_issue_282(self): trMap = {'index': Int64Col(), 'values': FloatCol()} table = self.h5file.create_table('/', 'table', trMap) r = table.row for i in range(5): r['index'] = i r['values'] = numpy.nan if i == 0 else i r.append() table.flush() table.cols.values.create_index() # retrieve result = table.read_where('(values >= 0)') self.assertTrue(len(result) == 4) def test_issue_327(self): table = self.h5file.create_table('/', 'table', dict( index=Int64Col(), values=FloatCol(shape=()), values2=FloatCol(shape=()), )) r = table.row for i in range(5): r['index'] = i r['values'] = numpy.nan if i == 2 or i == 3 else i r['values2'] = i r.append() table.flush() table.cols.values.create_index() table.cols.values2.create_index() results2 = table.read_where('(values2 > 0)') self.assertTrue(len(results2), 4) results = table.read_where('(values > 0)') self.assertEqual(len(results), 2) def test_issue_327_b(self): table = self.h5file.create_table('/', 'table', dict( index=Int64Col(), values=FloatCol(shape=()), values2=FloatCol(shape=()), )) r = table.row for _ in range(100): for i in range(5): r['index'] = i r['values'] = numpy.nan if i == 2 or i == 3 else i r['values2'] = i r.append() table.flush() table.cols.values.create_index(_blocksizes=small_blocksizes) table.cols.values2.create_index(_blocksizes=small_blocksizes) results2 = table.read_where('(values2 > 0)') self.assertTrue(len(results2), 400) results = table.read_where('(values > 0)') self.assertEqual(len(results), 200) def test_csindex_nans(self): table = self.h5file.create_table('/', 'table', dict( index=Int64Col(), values=FloatCol(shape=()), values2=FloatCol(shape=()), )) r = table.row for x in range(100): for i in range(5): r['index'] = i r['values'] = numpy.nan if i == 2 or i == 3 else i r['values2'] = i r.append() table.flush() table.cols.values.create_csindex(_blocksizes=small_blocksizes) table.cols.values2.create_csindex(_blocksizes=small_blocksizes) results2 = table.read_where('(values2 > 0)') self.assertTrue(len(results2), 100*4) results = table.read_where('(values > 0)') self.assertEqual(len(results), 100*2) def suite(): theSuite = unittest.TestSuite() niter = 1 # heavy = 1 # Uncomment this only for testing purposes! for n in range(niter): theSuite.addTest(unittest.makeSuite(BasicReadTestCase)) theSuite.addTest(unittest.makeSuite(ZlibReadTestCase)) theSuite.addTest(unittest.makeSuite(BloscReadTestCase)) theSuite.addTest(unittest.makeSuite(LZOReadTestCase)) theSuite.addTest(unittest.makeSuite(Bzip2ReadTestCase)) theSuite.addTest(unittest.makeSuite(ShuffleReadTestCase)) theSuite.addTest(unittest.makeSuite(Fletcher32ReadTestCase)) theSuite.addTest(unittest.makeSuite(ShuffleFletcher32ReadTestCase)) theSuite.addTest(unittest.makeSuite(OneHalfTestCase)) theSuite.addTest(unittest.makeSuite(UpperBoundTestCase)) theSuite.addTest(unittest.makeSuite(LowerBoundTestCase)) theSuite.addTest(unittest.makeSuite(AI1TestCase)) theSuite.addTest(unittest.makeSuite(AI2TestCase)) theSuite.addTest(unittest.makeSuite(AI9TestCase)) theSuite.addTest(unittest.makeSuite(DeepTableIndexTestCase)) theSuite.addTest(unittest.makeSuite(IndexPropsChangeTestCase)) theSuite.addTest(unittest.makeSuite(IndexFiltersTestCase)) theSuite.addTest(unittest.makeSuite(OldIndexTestCase)) theSuite.addTest(unittest.makeSuite(CompletelySortedIndexTestCase)) theSuite.addTest(unittest.makeSuite(ManyNodesTestCase)) theSuite.addTest(unittest.makeSuite(ReadSortedIndex0)) theSuite.addTest(unittest.makeSuite(ReadSortedIndex3)) theSuite.addTest(unittest.makeSuite(ReadSortedIndex6)) theSuite.addTest(unittest.makeSuite(ReadSortedIndex9)) theSuite.addTest(unittest.makeSuite(Issue156TestCase01)) theSuite.addTest(unittest.makeSuite(Issue156TestCase02)) theSuite.addTest(unittest.makeSuite(Issue119Time32ColTestCase)) theSuite.addTest(unittest.makeSuite(Issue119Time64ColTestCase)) theSuite.addTest(unittest.makeSuite(TestIndexingNans)) if heavy: # These are too heavy for normal testing theSuite.addTest(unittest.makeSuite(AI4bTestCase)) theSuite.addTest(unittest.makeSuite(AI5TestCase)) theSuite.addTest(unittest.makeSuite(AI6TestCase)) theSuite.addTest(unittest.makeSuite(AI7TestCase)) theSuite.addTest(unittest.makeSuite(AI8TestCase)) theSuite.addTest(unittest.makeSuite(AI10TestCase)) theSuite.addTest(unittest.makeSuite(AI11TestCase)) theSuite.addTest(unittest.makeSuite(AI12TestCase)) return theSuite if __name__ == '__main__': import sys common.parse_argv(sys.argv) common.print_versions() unittest.main(defaultTest='suite')
{ "content_hash": "c1df2f9355ad0018763adce31d2307a0", "timestamp": "", "source": "github", "line_count": 2712, "max_line_length": 80, "avg_line_length": 36.73082595870206, "alnum_prop": 0.587015881301825, "repo_name": "jennolsen84/PyTables", "id": "739b6b4fc387fcf0551729ac2dca89e54ba7cf4c", "size": "99639", "binary": false, "copies": "5", "ref": "refs/heads/develop", "path": "tables/tests/test_indexes.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "C", "bytes": "896101" }, { "name": "C++", "bytes": "97380" }, { "name": "CMake", "bytes": "21598" }, { "name": "Gnuplot", "bytes": "2104" }, { "name": "Makefile", "bytes": "4159" }, { "name": "Objective-C", "bytes": "1404" }, { "name": "Python", "bytes": "3325716" }, { "name": "Shell", "bytes": "16985" } ], "symlink_target": "" }
from queue import Queue class Deque(object): """Make deque object.""" def __init__(self, val=None): """Make new deque.""" self._container_q = Queue(val) def pop(self): """Pop item from end of deque.""" return self._container_q._container.shift() def pop_left(self): """Pop item from beginning of deque.""" return self._container_q._container.pop() def append(self, val): """Append item to end of deque.""" self._container_q._container.append(val) def append_left(self, val): """Append item to beginning of deque.""" self._container_q._container.insert(val) def peek(self): """Return value at end of deque.""" cur = self._container_q._container.head if cur == self._container_q._container._mark: return None while cur.next_node != self._container_q._container._mark: cur = cur.next_node return cur.get_data() def peek_left(self): """Return value at beginning of deque.""" cur = self._container_q._container.head if cur == self._container_q._container._mark: return None return self._container_q.peek() def size(self): """Return size of deque.""" return self._container_q.size()
{ "content_hash": "26b524780257d26185005bf32e0f78f1", "timestamp": "", "source": "github", "line_count": 44, "max_line_length": 66, "avg_line_length": 30.136363636363637, "alnum_prop": 0.5746606334841629, "repo_name": "palindromed/data-structures2", "id": "42a28d8e416964e279b22738c8b4d2d9995fe029", "size": "1352", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "src/deque.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "72025" } ], "symlink_target": "" }
from django.conf import settings from django.conf.urls import include, url from django.contrib import admin from django.contrib.auth.views import login, logout from django.contrib.staticfiles.urls import staticfiles_urlpatterns from django.views.generic import TemplateView, ListView, DetailView admin.autodiscover() urlpatterns = [ url(r'^', include('status.urls', namespace='status', app_name='status')), url(r'^account/login/$', login, {'template_name': 'admin/login.html'}, 'login'), url(r'^account/logout/$', logout, {'template_name': 'admin/logout.html'}, 'logout'), url(r'^avatar/', include('avatar.urls')), url(r'^admin/', include(admin.site.urls)), url(r'^admin/doc/', include('django.contrib.admindocs.urls')), ] # if settings.DEBUG: # urlpatterns += url(r'^media/(?P<path>.*)$', 'django.views.static.serve', { # 'document_root': settings.MEDIA_ROOT, # }), # urlpatterns += staticfiles_urlpatterns() if settings.DEBUG: import debug_toolbar urlpatterns += [ url(r'^__debug__/', include(debug_toolbar.urls)), ]
{ "content_hash": "0e9431e7b85c0e7f2ba58143a7dea2c6", "timestamp": "", "source": "github", "line_count": 30, "max_line_length": 88, "avg_line_length": 36.266666666666666, "alnum_prop": 0.6773897058823529, "repo_name": "darkpixel/statuspage", "id": "f596256c857df3ae73432fa05d4944cc0c785481", "size": "1088", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "statuspage/urls.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "HTML", "bytes": "17084" }, { "name": "Python", "bytes": "32227" } ], "symlink_target": "" }
import ConfigParser import json import os import sys import unittest from network import get_lan_ip repo_root = os.path.abspath(os.path.join(__file__, "../..")) sys.path.insert(1, os.path.join(repo_root, "tools", "webdriver")) sys.path.insert(1, os.path.join(repo_root, "tools", "wptserve")) from wptserve import server from selenium import webdriver class WebDriverBaseTest(unittest.TestCase): @classmethod def setUpClass(cls): cls.driver = create_driver() cls.webserver = server.WebTestHttpd(host=get_lan_ip()) cls.webserver.start() cls.webserver.where_is = cls.webserver.get_url @classmethod def tearDownClass(cls): cls.webserver.stop() if cls.driver: cls.driver.quit() def create_driver(): config = ConfigParser.ConfigParser() config.read('webdriver.cfg') section = os.environ.get("WD_BROWSER", 'firefox') if config.has_option(section, 'url'): url = config.get(section, "url") else: url = 'http://127.0.0.1:4444/wd/hub' capabilities = None if config.has_option(section, 'capabilities'): try: capabilities = json.loads(config.get(section, "capabilities")) except: pass mode = 'compatibility' if config.has_option(section, 'mode'): mode = config.get(section, 'mode') if section == 'firefox': driver = webdriver.Firefox() elif section == 'chrome': driver = webdriver.Chrome() elif section == 'edge': driver = webdriver.Remote() elif section == 'ie': driver = webdriver.Ie() elif section == 'selendroid': driver = webdriver.Android() return driver
{ "content_hash": "5d5c173cf752ff255e13ae8e5e1f088c", "timestamp": "", "source": "github", "line_count": 60, "max_line_length": 74, "avg_line_length": 28.283333333333335, "alnum_prop": 0.6305244549204478, "repo_name": "youtube/cobalt_sandbox", "id": "851099936d29158f0084fb24ddb21fd97a249452", "size": "1697", "binary": false, "copies": "142", "ref": "refs/heads/main", "path": "third_party/web_platform_tests/webdriver/base_test.py", "mode": "33188", "license": "bsd-3-clause", "language": [], "symlink_target": "" }
import pyaf.Bench.TS_datasets as tsds import tests.artificial.process_artificial_dataset as art art.process_dataset(N = 32 , FREQ = 'D', seed = 0, trendtype = "LinearTrend", cycle_length = 30, transform = "Difference", sigma = 0.0, exog_count = 0, ar_order = 12);
{ "content_hash": "7a3122f69f6a0e14a52c12ef62249efe", "timestamp": "", "source": "github", "line_count": 7, "max_line_length": 167, "avg_line_length": 38.142857142857146, "alnum_prop": 0.7078651685393258, "repo_name": "antoinecarme/pyaf", "id": "0448ef68871944b708b29e18ccfd0ebbd72cf926", "size": "267", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "tests/artificial/transf_Difference/trend_LinearTrend/cycle_30/ar_12/test_artificial_32_Difference_LinearTrend_30_12_0.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "Makefile", "bytes": "6773299" }, { "name": "Procfile", "bytes": "24" }, { "name": "Python", "bytes": "54209093" }, { "name": "R", "bytes": "807" }, { "name": "Shell", "bytes": "3619" } ], "symlink_target": "" }
import queue import json from tweepy import Stream from tweepy import OAuthHandler from tweepy.streaming import StreamListener import mykeys def text(item): """ Get the text from the tweet """ if 'text' in item: return item['text'] return None # # Event based source. # This class is a tweepy StreamListener # which is an event handler. Each tweet # results in a call to on_data. Here # we add the tweet to a Queue as # a dictionary object created from the JSON. # # An instance of this class can be passed # to the source as it's callable returns # a iterable whose iterator will be an # iterator against the queue. Iterating # over the queue removes the tweet so # that is will be placed on the source stream # If the queue is empty the iterator blocks until # until a new tweet arrives. # # class tweets(StreamListener): def __init__(self, terms): self.terms = terms def on_data(self, data): self.items.put(json.loads(data)) return True def on_error(self, status): if status == 420: return False return False def __call__(self): self.items = queue.Queue() auth = OAuthHandler(mykeys.ckey, mykeys.csecret) auth.set_access_token(mykeys.atoken, mykeys.asecret) self.stream = Stream(auth, self) self.stream.filter(track=self.terms, async=True) return self def __iter__(self): return iter(self.items.get, None)
{ "content_hash": "f8eb3e4789eff857824489854f94a809", "timestamp": "", "source": "github", "line_count": 56, "max_line_length": 59, "avg_line_length": 25.857142857142858, "alnum_prop": 0.6795580110497238, "repo_name": "ibmkendrick/streamsx.topology", "id": "6651f5d46ab9d508f8b5e1dbf9bfe53e77d906b2", "size": "1514", "binary": false, "copies": "4", "ref": "refs/heads/master", "path": "samples/python/topology/tweepy/tweets.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "C", "bytes": "7805" }, { "name": "C++", "bytes": "58469" }, { "name": "HTML", "bytes": "11044" }, { "name": "Java", "bytes": "1409695" }, { "name": "Makefile", "bytes": "7673" }, { "name": "Perl", "bytes": "6392" }, { "name": "Python", "bytes": "373232" }, { "name": "Scala", "bytes": "11124" }, { "name": "Shell", "bytes": "4841" } ], "symlink_target": "" }
import cgi import cgitb # Abilita gli errori al server web/http cgitb.enable() # Le mie librerie Json, Html import mjl, mhl # Parametri generali # Ci provo, ma ogniuno avra` di sicuro le sue differenze TestoPagina="Configurazione db REDIS" DirBase="/var/www" ConfigFile=DirBase+"/conf/config.json" ExecFile="/cgi-bin/readconfig.py" ConfigNow=mjl.ReadJsonFile(ConfigFile) # Start web page - Uso l'intestazione "web" della mia libreria print (mhl.MyHtml()) print (mhl.MyHtmlHead()) print ("<h1>","<center>",TestoPagina,"</center>","</h1>","<hr/>","<br/>") # Estraggo i valori della configurazione redis ConfigNow = mjl.SearchValueJsonVar(ConfigNow,"redis") form=cgi.FieldStorage() # Praticamente il controllo di presenza nella form serve solo al campo "password" # perche` ho lasciato al possibilita` che sia vuoto (nessuna password) Error = "" for i in range(len(ConfigNow)): if ConfigNow[i]["name"] not in form: if ConfigNow[i]["name"] == "password": ConfigNow[i]["value"] = "" else: print("<br/>Errore:", ConfigNow[i]["name"]) Error = ConfigNow[i]["name"] else: ConfigNow[i]["value"] = cgi.escape(form[ConfigNow[i]["name"]].value) if Error == "": ConfigNew=mjl.ReadJsonFile(ConfigFile) # Mi serve il puntatore a "value", e non ho trovato/pensati di meglio # Devo scrivere il valore solo alla parte "value" di "redis" for i in range(len(ConfigNew)): if "redis" == ConfigNew[i]["name"]: ConfigNew[i]["value"] = ConfigNow # Scrivo qualcosa nella pagina per conferma dell'operazione, ma eseguo anche la scrittura del file print("Error:",mjl.WriteJsonFile(ConfigNew,ConfigFile)) else: # Teoricamente non saranno MAI errori, dovrebbero essere gia` stati eliminati a monte print("<h2>Errore</h2>") print("<p>",Error,"</p>") # End web page print (mhl.MyHtmlBottom())
{ "content_hash": "8f487414e8765d3d7e243b1d09c744c5", "timestamp": "", "source": "github", "line_count": 59, "max_line_length": 99, "avg_line_length": 30.54237288135593, "alnum_prop": 0.7130965593784684, "repo_name": "raspibo/Livello1", "id": "a22922e8dc45b458b2ba8526fb21d78714b32e3b", "size": "1990", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "var/www/cgi-bin/writeconfig.py", "mode": "33261", "license": "mit", "language": [ { "name": "HTML", "bytes": "2004" }, { "name": "PHP", "bytes": "39" }, { "name": "Python", "bytes": "163109" }, { "name": "Shell", "bytes": "10111" } ], "symlink_target": "" }
import sys import logging import nbformat from runipy.notebook_runner import NotebookRunner logging.basicConfig(level=logging.INFO) nb = nbformat.read(sys.argv[1], 3) r = NotebookRunner(nb) r.run_notebook() try: output_notebook = sys.argv[2] except IndexError: output_notebook = sys.argv[1] nbformat.write(nb, output_notebook, 3) nb = nbformat.read(output_notebook, 3) nbformat.write(nb, output_notebook, 4)
{ "content_hash": "28ad00e3e7aad7cafd62d8d577efd9ad", "timestamp": "", "source": "github", "line_count": 17, "max_line_length": 49, "avg_line_length": 24.58823529411765, "alnum_prop": 0.7607655502392344, "repo_name": "biosustain/cameo-notebooks", "id": "04947972fec02b3d6ea05e6df498d7f6f5a3ac5e", "size": "440", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "util/run_notebook.py", "mode": "33261", "license": "apache-2.0", "language": [ { "name": "Jupyter Notebook", "bytes": "47703955" }, { "name": "Python", "bytes": "1007" }, { "name": "Shell", "bytes": "532" } ], "symlink_target": "" }
from django.conf.urls import include, url from django.contrib import admin from django.conf import settings from django.conf.urls.static import static from . import views import profiles.urls import accounts.urls import rbls.urls urlpatterns = [ url(r'^$', views.HomePage.as_view(), name='home'), url(r'^about/$', views.AboutPage.as_view(), name='about'), url(r'^rbls/', include(rbls.urls, namespace='rbls')), url(r'^users/', include(profiles.urls, namespace='profiles')), url(r'^admin/', admin.site.urls), url(r'^', include(accounts.urls, namespace='accounts')), ] # User-uploaded files like profile pics need to be served in development urlpatterns += static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT) # Include django debug toolbar if DEBUG is on if settings.DEBUG: import debug_toolbar urlpatterns += [ url(r'^__debug__/', include(debug_toolbar.urls)), ]
{ "content_hash": "05ae34fa3d0f4064d96f2674fc198695", "timestamp": "", "source": "github", "line_count": 28, "max_line_length": 76, "avg_line_length": 32.82142857142857, "alnum_prop": 0.7040261153427638, "repo_name": "speedlight/rblmonitor", "id": "0ef307d15812cb11fd7f5ba00674ec22337dc8f8", "size": "919", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "src/rblmonitor/urls.py", "mode": "33261", "license": "mit", "language": [ { "name": "CSS", "bytes": "3379" }, { "name": "HTML", "bytes": "27831" }, { "name": "JavaScript", "bytes": "363" }, { "name": "Python", "bytes": "34377" } ], "symlink_target": "" }
import xmlrpclib import datetime url = "http://localhost:8080/RPC2" proxy = xmlrpclib.ServerProxy(url) text = u"il a souhaité que la présidence trace à nice le chemin pour l' avenir ." source = "Mein kleines Puppenhaus ." target = "My small doll house ." #align = "1-1 2-2 3-3 3-4 5-4" align = "0-0 1-1 2-2 2-3 3-4" params = {"source":source, "target":target, "alignment":align} print "Updating with %s ..." %params result = proxy.updater(params) print result
{ "content_hash": "e6b0d63b625e3261eeb6551bdaa5901f", "timestamp": "", "source": "github", "line_count": 18, "max_line_length": 81, "avg_line_length": 25.833333333333332, "alnum_prop": 0.6946236559139785, "repo_name": "shyamjvs/cs626_project", "id": "ec8dd9b96b1b14a2e2c328881826102b8318e312", "size": "565", "binary": false, "copies": "9", "ref": "refs/heads/master", "path": "stat_moses/tools/moses/contrib/server/update.py", "mode": "33261", "license": "apache-2.0", "language": [ { "name": "Assembly", "bytes": "10914" }, { "name": "Awk", "bytes": "743344" }, { "name": "C", "bytes": "3906431" }, { "name": "C#", "bytes": "206438" }, { "name": "C++", "bytes": "16167412" }, { "name": "CSS", "bytes": "23612" }, { "name": "Eiffel", "bytes": "66" }, { "name": "Emacs Lisp", "bytes": "17034" }, { "name": "FORTRAN", "bytes": "58" }, { "name": "Frege", "bytes": "811021" }, { "name": "Java", "bytes": "9070" }, { "name": "JavaScript", "bytes": "273860" }, { "name": "Objective-C", "bytes": "35399" }, { "name": "PHP", "bytes": "133822" }, { "name": "Perl", "bytes": "1739883" }, { "name": "Python", "bytes": "625658" }, { "name": "R", "bytes": "726" }, { "name": "Ruby", "bytes": "4403" }, { "name": "Shell", "bytes": "1302208" }, { "name": "Slash", "bytes": "356" }, { "name": "SystemVerilog", "bytes": "184" }, { "name": "XSLT", "bytes": "759" }, { "name": "nesC", "bytes": "366" } ], "symlink_target": "" }
from datetime import datetime from airflow.models import DAG from airflow.operators.dummy_operator import DummyOperator DEFAULT_DATE = datetime(2100, 1, 1) # DAG tests backfill with pooled tasks # Previously backfill would queue the task but never run it dag1 = DAG( dag_id='test_start_date_scheduling', start_date=datetime(2100, 1, 1)) dag1_task1 = DummyOperator( task_id='dummy', dag=dag1, owner='airflow')
{ "content_hash": "e684822b1427fd25fa5e95fd4c0c4ded", "timestamp": "", "source": "github", "line_count": 15, "max_line_length": 59, "avg_line_length": 28.733333333333334, "alnum_prop": 0.7378190255220418, "repo_name": "RealImpactAnalytics/airflow", "id": "990086693771af470e064b1251c60af5929b0bdf", "size": "1245", "binary": false, "copies": "13", "ref": "refs/heads/master", "path": "tests/dags/test_scheduler_dags.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "CSS", "bytes": "109698" }, { "name": "HTML", "bytes": "270710" }, { "name": "JavaScript", "bytes": "1988427" }, { "name": "Mako", "bytes": "1284" }, { "name": "Python", "bytes": "3765458" }, { "name": "Shell", "bytes": "46923" } ], "symlink_target": "" }