text
stringlengths
4
1.02M
meta
dict
''' Created on Apr 15, 2015 Description: This will help to plot SV using Genome Diagram from bio python @author: Ronak H Shah ''' from Bio.SeqFeature import SeqFeature, FeatureLocation from Bio.Graphics import GenomeDiagram from reportlab.lib.colors import red, grey, orange, green, brown, blue, lightblue, purple import sys import os import logging from PIL import Image import coloredlogs coloredlogs.install(level='DEBUG') def VisualizeSV(svDF, refDF, upDF, args): staticDir = args.outFilePrefix + "_iAnnotateSVplots" AnalysisDir = os.path.join(args.outDir, staticDir) try: os.mkdir(AnalysisDir) except OSError: if(args.verbose): logging.warn("iAnnotateSV::VisualizeSV: Dir: %s exists thus we wont be making it. Thus Results would be over-written", AnalysisDir) for count, row in svDF.iterrows(): # print row chr1 = str(row.loc['chr1']) chr2 = str(row.loc['chr2']) if(chr1.startswith('chr')): chr1 = chr1 else: chr1 = "chr" + chr1 if(chr2.startswith('chr')): chr2 = chr2 else: chr2 = "chr" + chr2 pos1 = int(row.loc['pos1']) pos2 = int(row.loc['pos2']) str1 = int(row.loc['str1']) str2 = int(row.loc['str2']) gene1 = str(row.loc['gene1']) gene2 = str(row.loc['gene2']) site1 = str(row.loc['site1']) site2 = str(row.loc['site2']) transcript1 = str(row.loc['transcript1']) transcript2 = str(row.loc['transcript2']) fusion = str(row.loc['fusion']) if(fusion != "-"): (domain1Idx, maxLen1, minLen1) = processData(chr1, transcript1, refDF, upDF) (domain2Idx, maxLen2, minLen2) = processData(chr2, transcript2, refDF, upDF) # print fusion, "\n", "1", domain1Idx, "\n", "2", domain2Idx, "\n\n", eventtype = None if(str1 == 0 and str2 == 0 and chr1 == chr2): eventtype = "Inversion" elif(str1 == 1 and str2 == 1 and chr1 == chr2): eventtype = "Inversion" elif(str1 == 1 and str2 == 0 and chr1 == chr2): eventtype = "Duplication" elif(str1 == 0 and str2 == 1 and chr1 == chr2): eventtype = "Deletion" else: eventtype = "Translocation" #imageMSG = eventtype + " causing " + fusion if(gene1 != gene2): outFile1Name = AnalysisDir + "/" + gene1 + "-" + str(chr1) + "_" + str( pos1) + "_" + gene2 + "-" + str(chr2) + "_" + str(pos2) + "_" + str(eventtype) + "-part1.jpg" outFile2Name = AnalysisDir + "/" + gene1 + "-" + str(chr1) + "_" + str( pos1) + "_" + gene2 + "-" + str(chr2) + "_" + str(pos2) + "_" + str(eventtype) + "-part2.jpg" outFileName = AnalysisDir + "/" + gene1 + "-" + str(chr1) + "_" + str( pos1) + "_" + gene2 + "-" + str(chr2) + "_" + str(pos2) + "_" + str(eventtype) + ".jpg" d1Name = eventtype + "-" + gene1 d2Name = eventtype + "-" + gene2 # Make an instace of class diagram gdd1 = GenomeDiagram.Diagram(d1Name) gdd2 = GenomeDiagram.Diagram(d2Name) # Make name of the tracks feature1Name = "GeneTrack:" + gene1 + ":" + eventtype feature2Name = "AlignmentTrack:" + gene1 + ":" + eventtype feature3Name = "DomainTrack:" + gene1 + ":" + eventtype feature4Name = "GeneTrack:" + gene2 + ":" + eventtype feature5Name = "AlignmentTrack:" + gene2 + ":" + eventtype feature6Name = "DomainTrack:" + gene2 + ":" + eventtype # Make track for each feature gdt1_features = gdd1.new_track(1, greytrack=True, name=feature1Name) gdt2_features = gdd1.new_track(1, greytrack=True, name=feature2Name) gdt3_features = gdd1.new_track(1, greytrack=True, name=feature3Name) gdt4_features = gdd2.new_track(1, greytrack=True, name=feature4Name) gdt5_features = gdd2.new_track(1, greytrack=True, name=feature5Name) gdt6_features = gdd2.new_track(1, greytrack=True, name=feature6Name) # Write features to a track gds_features = gdt1_features.new_set() (gds_features) = makeReferenceFeatures( transcript1, site1, chr1, pos1, refDF, gds_features) gds_features = gdt2_features.new_set() (gds_features) = makeReadFeatures(chr1, pos1, str1, gds_features) gds_features = gdt3_features.new_set() if(domain1Idx): (gds_features) = makeUniProtFeatures(domain1Idx, upDF, gds_features) gdd1.draw( format='linear', #pagesize='A4', fragments=1, start=minLen1 - 1000, end=maxLen1 + 1000) gdd1.write(outFile1Name, "JPG", dpi=300) gds_features = gdt4_features.new_set() (gds_features) = makeReferenceFeatures( transcript2, site2, chr2, pos2, refDF, gds_features) gds_features = gdt5_features.new_set() (gds_features) = makeReadFeatures(chr2, pos2, str2, gds_features) gds_features = gdt6_features.new_set() if(domain2Idx): (gds_features) = makeUniProtFeatures(domain2Idx, upDF, gds_features) # draw the object and store in memory gdd2.draw( format='linear', #pagesize='A4', fragments=1, start=minLen2 - 1000, end=maxLen2 + 1000) # Write the object to a file gdd2.write(outFile2Name, "JPG", dpi=300) # merge Images img1 = Image.open(outFile1Name) img2 = Image.open(outFile2Name) images = map(Image.open, [outFile1Name, outFile2Name]) w = max(i.size[0] for i in images) mh = sum(i.size[1] for i in images) result = Image.new("RGB", (w, mh), (255, 255, 255)) x = 0 for i in images: result.paste(i, (0, x)) x += i.size[1] result.save(outFileName) if(os.path.isfile(outFileName)): os.remove(outFile1Name) os.remove(outFile2Name) else: outFileName = AnalysisDir + "/" + gene1 + "-" + str(chr1) + "_" + str( pos1) + "_" + gene2 + "-" + str(chr2) + "_" + str(pos2) + "_" + str(eventtype) + ".jpg" gdd = GenomeDiagram.Diagram('Test Diagram') feature1Name = "GeneTrack:" + gene1 + ":" + eventtype feature2Name = "AlignmentTrack:" + gene1 + ":" + eventtype feature3Name = "ProteinDomainTrack:" + gene1 + ":" + eventtype feature4Name = "GeneTrack:" + gene2 + ":" + eventtype feature5Name = "AlignmentTrack:" + gene2 + ":" + eventtype feature6Name = "ProteinDomainTrack:" + gene2 + ":" + eventtype gdt1_features = gdd.new_track(1, greytrack=True, name=feature1Name) gdt2_features = gdd.new_track(1, greytrack=True, name=feature2Name) gdt3_features = gdd.new_track(1, greytrack=True, name=feature3Name) gdt4_features = gdd.new_track(1, greytrack=True, name=feature4Name) gdt5_features = gdd.new_track(1, greytrack=True, name=feature5Name) gdt6_features = gdd.new_track(1, greytrack=True, name=feature6Name) gds_features = gdt1_features.new_set() (gds_features) = makeReferenceFeatures( transcript1, site1, chr1, pos1, refDF, gds_features) gds_features = gdt2_features.new_set() (gds_features) = makeReadFeatures(chr1, pos1, str1, gds_features) gds_features = gdt3_features.new_set() if(domain1Idx): (gds_features) = makeUniProtFeatures(domain1Idx, upDF, gds_features) gds_features = gdt4_features.new_set() (gds_features) = makeReferenceFeatures( transcript2, site2, chr2, pos2, refDF, gds_features) gds_features = gdt5_features.new_set() (gds_features) = makeReadFeatures(chr2, pos2, str2, gds_features) gds_features = gdt6_features.new_set() if(domain2Idx): (gds_features) = makeUniProtFeatures(domain2Idx, upDF, gds_features) max_len = max(maxLen1, maxLen2) min_len = min(minLen1, minLen2) gdd.draw( format='linear', pagesize='A4', fragments=1, start=min_len - 1000, end=max_len + 1000) gdd.write(outFileName, "JPG", dpi=300) #gdd = GenomeDiagram.Diagram("Fusion Image") #featureName = gene1 + ":" + gene2 + ":" + eventtype #gdt_features = gdd.new_track(1, greytrack=True, name=featureName) #gds_features = gdt_features.new_set() # makePlainImage(refDF,eventtype,transcript1,transcript2,chr1,chr2,pos1,pos2,str1,str2,site1,site2,fusion,gds_features) def processData(chrom, transcript, refDF, upDF): transcripts = (refDF[refDF['#name'] == transcript]) if(len(transcripts) > 1): transcriptIdx, = (transcripts[transcripts['chrom'] == chrom].index) else: transcriptIdx, = (refDF[refDF['#name'] == transcript].index) refTxSt = int(refDF.iloc[transcriptIdx]['txStart']) refTxEn = int(refDF.iloc[transcriptIdx]['txEnd']) # print "1:",transcriptIdx,"\n",refTxSt,"\n", refTxEn, "\n" up_idxList = upDF[upDF['#chrom'] == chrom].index.tolist() # Find all overlapping transcripts up_recordIndex = [] for index in (up_idxList): # print upDF.iloc[index],"\n" chromStart = upDF.iloc[index]['chromStart'] chromEnd = upDF.iloc[index]['chromEnd'] if((chromStart >= refTxSt) and (chromEnd <= refTxEn)): # print "Chr" , chromStart,chromEnd, refTxSt, refTxEn,"\n" if(upDF.iloc[index]['annotationType'] == 'domain'): up_recordIndex.append(index) allMaxVal = [] allMinVal = [] for index, val in enumerate(up_recordIndex): chromStart = upDF.iloc[val]['chromStart'] chromEnd = upDF.iloc[val]['chromEnd'] maxVal = max(refTxEn, chromEnd) allMaxVal.append(maxVal) minVal = min(refTxSt, chromStart) allMinVal.append(minVal) if(allMaxVal): max_len = max(allMaxVal) else: max_len = refTxEn if(allMinVal): min_len = max(allMinVal) else: min_len = refTxSt return(up_recordIndex, max_len, min_len) def makeReferenceFeatures(transcript, site, chrom, pos, refDF, gds_features): transcripts = (refDF[refDF['#name'] == transcript]) if(len(transcripts) > 1): transcriptIdx, = (transcripts[transcripts['chrom'] == chrom].index) else: transcriptIdx, = (refDF[refDF['#name'] == transcript].index) refTxSt = int(refDF.iloc[transcriptIdx]['txStart']) refTxEn = int(refDF.iloc[transcriptIdx]['txEnd']) # print "2:",transcriptIdx,"\n",refTxSt,"\n", refTxEn, "\n" ExonSts = filter(None, refDF.iloc[transcriptIdx]['exonStarts'].split(",")) ExonEnds = filter(None, refDF.iloc[transcriptIdx]['exonEnds'].split(",")) #ExonCounts = int(refDF.iloc[transcriptIdx]['exonCount']) transcriptStrand = str(refDF.iloc[transcriptIdx]['strand']) if(transcriptStrand == "+"): transcriptStrand = +1 if(transcriptStrand == "-"): transcriptStrand = -1 for idx, val in enumerate(ExonSts): feature = SeqFeature( FeatureLocation( int(val), int(ExonEnds[idx]), strand=transcriptStrand)) if(transcriptStrand == -1): fname = "exon" + str(len(ExonSts)-idx) gds_features.add_feature( feature, sigil="ARROW", color=brown, arrowshaft_height=1.0, name=fname, label=True, label_position="middle", label_size=5, label_angle=90) else: fname = "exon" + str(idx + 1) gds_features.add_feature( feature, sigil="ARROW", color=brown, arrowshaft_height=1.0, name=fname, label=True, label_position="middle", label_size=5) feature = SeqFeature(FeatureLocation(pos - 5, pos + 5)) bname = site gds_features.add_feature( feature, color=orange, name=bname, label=True, label_size=6, label_color=orange) return(gds_features) def makeUniProtFeatures(domainIdx, upDF, gds_features): #colors = ["green", "purple", "blue", "brown", "teal", "red", "yellow"] for index, val in enumerate(domainIdx): chromStart = upDF.iloc[val]['chromStart'] chromEnd = upDF.iloc[val]['chromEnd'] fname = upDF.iloc[val]['name'] feature = SeqFeature(FeatureLocation(chromStart, chromEnd), strand=None) gds_features.add_feature( feature, name=fname, label=True, color=green, label_position="middle", label_size=6, label_color=green) return(gds_features) def makeReadFeatures(chrom, pos, strand, gds_features): start = int(pos) - 1000 end = int(pos) + 1000 bname = str(chrom) + ":" + str(pos) if(strand == 0): strandDirection = +1 feature = SeqFeature(FeatureLocation(start, end, strand=strandDirection)) gds_features.add_feature( feature, sigil="ARROW", arrowshaft_height=0.1, color=blue, name=bname, label_size=8, label=True, label_angle=0, label_color=purple) if(strand == 1): strandDirection = -1 feature = SeqFeature(FeatureLocation(start, end, strand=strandDirection)) gds_features.add_feature( feature, sigil="ARROW", arrowshaft_height=0.1, color=red, name=bname, label_size=8, label=True, label_position="middle", label_angle=-90, label_color=purple) return(gds_features) # Work In Progress def makePlainImage( refDF, eventtype, transcript1, transcript2, chr1, chr2, pos1, pos2, str1, str2, site1, site2, fusion, gds_features): transcript1Idx, = (refDF[refDF['#name'] == transcript1].index) ExonSts1 = filter(None, refDF.iloc[transcript1Idx]['exonStarts'].split(",")) ExonEnds1 = filter(None, refDF.iloc[transcript1Idx]['exonEnds'].split(",")) ExonCounts1 = int(refDF.iloc[transcript1Idx]['exonCount']) transcript1Strand = str(refDF.iloc[transcript1Idx]['strand']) transcript2Idx, = (refDF[refDF['#name'] == transcript2].index) Exon1Sts2 = filter(None, refDF.iloc[transcript2Idx]['exonStarts'].split(",")) Exon1Ends2 = filter(None, refDF.iloc[transcript2Idx]['exonEnds'].split(",")) ExonCounts2 = int(refDF.iloc[transcript2Idx]['exonCount']) transcript2Strand = str(refDF.iloc[transcript2Idx]['strand']) if("before" in site1): before_exonNum1 = site1[-1:] if("after" in site1): after_exonNum1 = site1[-1:] if("before" in site2): before_exonNum2 = site2[-1:] if("after" in site2): after_exonNum2 = site2[-1:] beforeExons1 = [] afterExons1 = [] beforeExons2 = [] afterExons2 = [] for i in range(1, ExonCounts1): if(before_exonNum1): if(i <= int(before_exonNum1)): beforeExons1.append("exon" + i) if(after_exonNum1): if(i >= int(after_exonNum1)): afterExons1.append("exon" + i) for i in range(1, ExonCounts2): if(before_exonNum2): if(i <= int(before_exonNum2)): beforeExons2.append("exon" + i) if(after_exonNum2): if(i >= int(after_exonNum2)): afterExons2.append("exon" + i) def get_concat_v_resize(im1, im2, resample=Image.BICUBIC, resize_big_image=True): if im1.width == im2.width: _im1 = im1 _im2 = im2 elif (((im1.width > im2.width) and resize_big_image) or ((im1.width < im2.width) and not resize_big_image)): _im1 = im1.resize((im2.width, int(im1.height * im2.width / im1.width)), resample=resample) _im2 = im2 else: _im1 = im1 _im2 = im2.resize((im1.width, int(im2.height * im1.width / im2.width)), resample=resample) dst = Image.new('RGB', (_im1.width, _im1.height + _im2.height)) dst.paste(_im1, (0, 0)) dst.paste(_im2, (0, _im1.height)) return dst
{ "content_hash": "92818f3f8f20180f9e76b4a6c5b35d4c", "timestamp": "", "source": "github", "line_count": 421, "max_line_length": 143, "avg_line_length": 42.612826603325416, "alnum_prop": 0.5326644370122631, "repo_name": "rhshah/iAnnotateSV", "id": "8b831c28daff1ef51edecb406f1d22e1543d9151", "size": "17940", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "iAnnotateSV/VisualizeSV.py", "mode": "33261", "license": "apache-2.0", "language": [ { "name": "Makefile", "bytes": "95" }, { "name": "Python", "bytes": "90085" } ], "symlink_target": "" }
import tests.model_control.test_ozone_custom_models_enabled as testmod testmod.build_model( ['Difference'] , ['Lag1Trend'] , ['BestCycle'] , ['SVR'] );
{ "content_hash": "25c6733bfb1a54b8b703b5494c2e9c4f", "timestamp": "", "source": "github", "line_count": 4, "max_line_length": 80, "avg_line_length": 38.25, "alnum_prop": 0.7058823529411765, "repo_name": "antoinecarme/pyaf", "id": "cd26471a56bb4bb2e3525041b02e59ec6679b7d1", "size": "153", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "tests/model_control/detailed/transf_Difference/model_control_one_enabled_Difference_Lag1Trend_BestCycle_SVR.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "Makefile", "bytes": "6773299" }, { "name": "Procfile", "bytes": "24" }, { "name": "Python", "bytes": "54209093" }, { "name": "R", "bytes": "807" }, { "name": "Shell", "bytes": "3619" } ], "symlink_target": "" }
import font def status_wordlist(location, wlist): return font.color('ciano')+'\nLoaded '+font.color('bold')+location+font.color('end')\ +font.color('ciano')+' wordlist with '+font.color('bold')+str(len(wlist))+font.color('end')\ +font.color('ciano')+' item(s)\n'+font.color('end') def start_scan(domain): text = font.color('bold') + 'Getting subdomain for ' + domain + font.color('end') + '\n\n' text += 'Ip Address'.ljust(18) + 'Domain Name\n' text += '----------'.ljust(18) + '-----------' return text def target(domain): text = font.color('bold')+'Target information '+domain+font.color('end')+'\n\n' text += 'Ip Address'.ljust(18) + 'Target Name\n' text += '----------'.ljust(18) + '-----------' return text def response_code(): text = 'Code'.ljust(18) + 'Reason\n' text += '----------'.ljust(18) + '-----------' return text def response_head(): text = 'Field'.ljust(18) + 'Value\n' text += '----------'.ljust(18) + '-----------' return text def stats_summary(): return font.color('bold')+'\nSummary\n'+font.color('end') def start_scan_zt(domain): text = font.color('bold') + 'Getting zone transfer for ' + domain + font.color('end') + '\n\n' text += 'Ip Address'.ljust(18) + 'Domain Name\n' text += '----------'.ljust(18) + '-----------' return text
{ "content_hash": "96b11444388ab8de2a33c7b5ccc80b22", "timestamp": "", "source": "github", "line_count": 37, "max_line_length": 95, "avg_line_length": 34.729729729729726, "alnum_prop": 0.5782101167315176, "repo_name": "rajeshmajumdar/TheFatCat", "id": "076e3d6cdca456087c8eb4f51891fe0b372d3fe1", "size": "2150", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "modules/headers.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Python", "bytes": "30014" } ], "symlink_target": "" }
from datetime import datetime from flask import current_app, g, url_for from werkzeug.security import check_password_hash, generate_password_hash from itsdangerous import TimedJSONWebSignatureSerializer as Serializer from application import db class User(db.Model): __tablename__ = 'users' id = db.Column(db.Integer, primary_key=True) username = db.Column(db.String(40), index=True, unique=True) password_hash = db.Column(db.String(128)) def encrypt_password(self, password): self.password_hash = generate_password_hash(password) def verify_password(self, password): return check_password_hash(self.password_hash, password) def generate_auth_token(self, expires_in=2400): s = Serializer(current_app.config['SECRET_KEY'], expires_in=expires_in) return s.dumps({'id': self.id}) @staticmethod def verify_auth_token(token): s = Serializer(current_app.config['SECRET_KEY']) try: data = s.loads(token) except: return None return User.query.get(data['id']) class Bucketlist(db.Model): __tablename__ = "bucketlists" bucketlist_id = db.Column(db.Integer, primary_key=True) name = db.Column(db.String(60), index=True, unique=True, nullable=False) date_created = db.Column(db.DateTime, default=datetime.now()) date_modified = db.Column(db.DateTime, default=datetime.now()) created_by = db.Column(db.Integer, db.ForeignKey( 'users.id', ondelete='CASCADE')) items = db.relationship( 'Item', backref='bucketlists', passive_deletes=True) def render_data(self): return { "bucketlist_id": self.bucketlist_id, "name": self.name, "date_created": self.date_created.strftime("%Y-%m-%d %H:%M:%S"), "date_modified": self.date_modified.strftime("%Y-%m-%d %H:%M:%S"), "created_by": self.created_by } class Item(db.Model): __tablename__ = 'items' item_id = db.Column(db.Integer, primary_key=True) name = db.Column(db.String(100), nullable=False) date_created = db.Column(db.DateTime, default=datetime.now()) date_modified = db.Column(db.DateTime, default=datetime.now()) done = db.Column(db.Boolean, default=False) bucketlist_id = db.Column(db.Integer, db.ForeignKey( 'bucketlists.bucketlist_id', ondelete='CASCADE')) def render_data(self): return { "item_id": self.item_id, "name": self.name, "date_created": self.date_created.strftime("%Y-%m-%d %H:%M:%S"), "date_modified": self.date_modified.strftime("%Y-%m-%d %H:%M:%S"), "done": self.done, "created_by": self.created_by }
{ "content_hash": "d65c754576c9433cc458038c8aa0b442", "timestamp": "", "source": "github", "line_count": 73, "max_line_length": 79, "avg_line_length": 37.57534246575342, "alnum_prop": 0.6325191396281443, "repo_name": "andela-lolali/bucketlist_api", "id": "d41d6c924f0a429fd8f3d4dc61577770d7a80634", "size": "2743", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "application/models.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "30700" } ], "symlink_target": "" }
"""Models representing Call Center API objects""" from __future__ import absolute_import from ..common.models import Item class Call(Item): """An object for retrieving data from and working with an individual call.""" rest_root = '/callcenter/calls/' @property def url(self): return None
{ "content_hash": "52f41b2ce8ae8a1ee5f0314befd200f7", "timestamp": "", "source": "github", "line_count": 13, "max_line_length": 81, "avg_line_length": 24.307692307692307, "alnum_prop": 0.6867088607594937, "repo_name": "PerformLine/python-performline-client", "id": "ea6bb35f8be027078bf1424153073a94b335c083", "size": "1858", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "performline/products/callcenter/models.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "Makefile", "bytes": "2103" }, { "name": "Python", "bytes": "177148" }, { "name": "Shell", "bytes": "413" } ], "symlink_target": "" }
from __future__ import division import numpy as np from pysd import functions from pysd import builder class Components(builder.ComponentClass):
{ "content_hash": "aae00510f609642d5eb357795eed81dd", "timestamp": "", "source": "github", "line_count": 7, "max_line_length": 64, "avg_line_length": 65, "alnum_prop": 0.26153846153846155, "repo_name": "bpowers/pysd", "id": "0975627af6e3a4cb404244db175905a18db186d9", "size": "455", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "tests/vensim/test_variable_names_with_quotes.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "108427" }, { "name": "Shell", "bytes": "63" } ], "symlink_target": "" }
import pygame from pygame import * from button import Button from player import Player from scene import Scene import globals import glob import os class PlayerScene(Scene): """Player scene""" def __init__(self, manager_scene): super(PlayerScene, self).__init__(manager_scene) self.bg = Surface(globals.SCREEN_SIZE) self.bg.fill(Color("#fdf6e3")) self.font = pygame.font.SysFont('Arial', 64) self.text = self.font.render("Next", True, (211, 54, 130)) self.buttons = [] self.repeat_button = None self.is_repeat_on = False self.folder = None self.cover_placeholder = "./resources/images/cover_placeholder.jpg" self.tracks = [] self.covers = [] self.track_count = 0 self.current_track_index = 0 self.current_track = None self.current_cover = None self.is_for_music = False self.repeat_empty_icon = "./resources/images/repeat_empty.png" self.repeat_full_icon = "./resources/images/repeat_full.png" self.player = Player() self.is_paused = True self.play_pause_button = None self.play_icon_file = "./resources/images/play.png" self.pause_icon_file = "./resources/images/pause.png" self.play_icon = pygame.image.load(self.play_icon_file) self.pause_icon = pygame.image.load(self.pause_icon_file) self.has_updates = True self.init_buttons() def render(self, screen): screen.blit(self.bg, (0, 0)) screen.blit(self.text, (2, 5)) self.current_cover = self.covers[self.current_track_index] cover = pygame.image.load(self.current_cover) cover = aspect_scale(cover) black = (0, 0, 0) screen.fill(black) rect = cover.get_rect() rect.x = 40 screen.blit(cover, rect) for btn in self.buttons: btn.draw(screen) if self.is_for_music: self.repeat_button.draw(screen) def update(self): if self.is_for_music: if self.player.is_playing is False and self.is_paused is False: print "track", self.tracks[self.current_track_index], "finished: Play next" # self.is_paused = True self.has_updates = True print "ff" if not self.is_repeat_on: if self.current_track_index < self.track_count - 1: self.current_track_index += 1 else: self.current_track_index = 0 self.player.stop() self.player.play_track(self.tracks[self.current_track_index]) else: if self.player.is_playing is False and self.is_paused is False: print "track", self.tracks[self.current_track_index], "finished" self.is_paused = True self.play_pause_button.iconFg = self.play_icon self.has_updates = True current_update_stat = self.has_updates self.has_updates = False return current_update_stat def handle_events(self, e): if e.type is pygame.MOUSEBUTTONUP: pos = pygame.mouse.get_pos() for btn in self.buttons: btn.selected(pos) if self.is_for_music: self.repeat_button.selected(pos) def set_folder(self, folder, is_for_music): self.player.stop() self.folder = folder self.is_for_music = is_for_music self.update_data() def update_data(self): self.has_updates = True self.current_track_index = 0 self.tracks = glob.glob(self.folder + "*.mp3") self.tracks.sort() self.track_count = len(self.tracks) self.covers = [] for track in self.tracks: self.covers.append( track.replace("mp3", "jpg") if os.path.isfile( track.replace("mp3", "jpg")) else self.cover_placeholder) def go_to_menu(self): self.manager.show_main_menu() def repeat(self): self.has_updates = True print("repeat") print(self.is_repeat_on) self.is_repeat_on = not self.is_repeat_on if self.is_repeat_on: self.repeat_button.iconFg = pygame.image.load(self.repeat_full_icon) else: self.repeat_button.iconFg = pygame.image.load(self.repeat_empty_icon) def fast_forward(self): self.has_updates = True print "ff" if self.current_track_index < self.track_count - 1: self.current_track_index += 1 else: self.current_track_index = 0 if not self.is_paused and self.player.is_playing: self.player.stop() self.player.play_track(self.tracks[self.current_track_index]) else: self.player.stop() def rewind(self): self.has_updates = True print "rewind" if self.current_track_index > 0: self.current_track_index -= 1 else: self.current_track_index = self.track_count - 1 if not self.is_paused and self.player.is_playing: self.player.stop() self.player.play_track(self.tracks[self.current_track_index]) else: self.player.stop() def play_pause(self): self.has_updates = True print "play pause" print self.tracks[self.current_track_index] if not self.player.is_playing: self.play_pause_button.iconFg = self.pause_icon self.is_paused = False self.player.play_track(self.tracks[self.current_track_index]) else: if self.is_paused: self.play_pause_button.iconFg = self.pause_icon self.is_paused = False else: self.play_pause_button.iconFg = self.play_icon self.is_paused = True self.player.toggle_play_pause() def init_buttons(self): button = Button((0, 0, 42, 42), cb=self.go_to_menu) button.iconFg = pygame.image.load("./resources/images/chevron.png") self.buttons.append(button) fast_forward = Button((256, 150, 64, 64), cb=self.fast_forward) ff_icon = "./resources/images/next.png" fast_forward.iconFg = pygame.image.load(ff_icon) self.buttons.append(fast_forward) self.play_pause_button = Button((128, 150, 64, 64), cb=self.play_pause) self.play_pause_button.iconFg = self.play_icon self.buttons.append(self.play_pause_button) rewind_button = Button((0, 150, 64, 64), cb=self.rewind) rewind_icon = "./resources/images/previous.png" rewind_button.iconFg = pygame.image.load(rewind_icon) self.buttons.append(rewind_button) # repeat button for music mode self.repeat_button = Button((256, 60, 64, 64), cb=self.repeat) self.repeat_button.iconFg = pygame.image.load(self.repeat_empty_icon) def aspect_scale(img): """ Scales 'img' to fit into box bx/by. This method will retain the original image's aspect ratio """ (bx, by) = globals.SCREEN_SIZE ix, iy = img.get_size() if ix > iy: # fit to width scale_factor = bx / float(ix) sy = scale_factor * iy if sy > by: scale_factor = by / float(iy) sx = scale_factor * ix sy = by else: sx = bx else: # fit to height scale_factor = by / float(iy) sx = scale_factor * ix if sx > bx: scale_factor = bx / float(ix) sx = bx sy = scale_factor * iy else: sy = by return pygame.transform.scale(img, (int(sx), int(sy)))
{ "content_hash": "a42a32a607c3faa41817a0b71aa42fa6", "timestamp": "", "source": "github", "line_count": 234, "max_line_length": 91, "avg_line_length": 33.427350427350426, "alnum_prop": 0.5698031194068013, "repo_name": "dnlkng/zplayer", "id": "57e50362e777f508e096a23457cad3f1e7627aa1", "size": "7822", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "playerscene.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "19623" } ], "symlink_target": "" }
""" Display song currently playing in moc. MOC (music on console) is a console audio player for Linux/Unix designed to be powerful and easy to use. It consists of two parts, a server (moc) and a player/interface (mocp). It supports OGG, WAV, MP3 and other formats. Configuration parameters: button_next: mouse button to skip next track (default None) button_pause: mouse button to pause/play the playback (default 1) button_previous: mouse button to skip previous track (default None) button_stop: mouse button to stop the playback (default 3) cache_timeout: refresh interval for this module (default 5) format: display format for this module (default '\?if=is_started [\?if=is_stopped \[\] moc| [\?if=is_paused \|\|][\?if=is_playing >] {title}]') sleep_timeout: when moc is not running, this interval will be used to allow one to refresh constantly with time placeholders and/or to refresh once every minute rather than every few seconds (default 20) Control placeholders: {is_paused} a boolean based on moc status {is_playing} a boolean based on moc status {is_started} a boolean based on moc status {is_stopped} a boolean based on moc status Format placeholders: {album} album name, eg (new output here) {artist} artist name, eg (new output here) {avgbitrate} audio average bitrate, eg 230kbps {bitrate} audio bitrate, eg 230kbps {currentsec} elapsed time in seconds, eg 32 {currenttime} elapsed time in [HH:]MM:SS, eg 00:32 {file} file location, eg /home/user/Music... {rate} audio rate, eg 44kHz {songtitle} song title, eg (new output here) {state} playback state, eg PLAY, PAUSE, STOP {timeleft} time left in [HH:]MM:SS, eg 71:30 {title} track title, eg (new output here) {totalsec} total time in seconds, eg 4322 {totaltime} total time in seconds, eg 72:02 Placeholders are retrieved directly from `mocp --info` command. The list was harvested once and should not represent a full list. Color options: color_paused: Paused, defaults to color_degraded color_playing: Playing, defaults to color_good color_stopped: Stopped, defaults to color_bad Requires: moc: a console audio player with simple ncurses interface Examples: ``` # see 'man mocp' for more buttons moc { on_click 9 = 'exec mocp --example' } ``` @author lasers SAMPLE OUTPUT {'color': '#00FF00', 'full_text': '> Music For Programming - Mindaugaszq'} paused {'color': '#FFFF00', 'full_text': '|| Music For Programming - Mindaugaszq'} stopped {'color': '#FF0000', 'full_text': '[] moc'} """ from __future__ import division STRING_NOT_INSTALLED = "not installed" class Py3status: """ """ # available configuration parameters button_next = None button_pause = 1 button_previous = None button_stop = 3 cache_timeout = 5 format = '\?if=is_started [\?if=is_stopped \[\] moc|' +\ '[\?if=is_paused \|\|][\?if=is_playing >] {title}]' sleep_timeout = 20 def post_config_hook(self): if not self.py3.check_commands('mocp'): raise Exception(STRING_NOT_INSTALLED) self.color_stopped = self.py3.COLOR_STOPPED or self.py3.COLOR_BAD self.color_paused = self.py3.COLOR_PAUSED or self.py3.COLOR_DEGRADED self.color_playing = self.py3.COLOR_PLAYING or self.py3.COLOR_GOOD def _get_moc_data(self): try: data = self.py3.command_output('mocp --info') is_started = True except: data = {} is_started = False return is_started, data def moc(self): is_paused = is_playing = is_stopped = None cached_until = self.sleep_timeout color = self.py3.COLOR_BAD data = {} is_started, moc_data = self._get_moc_data() if is_started: cached_until = self.cache_timeout for line in moc_data.splitlines(): category, value = line.split(': ', 1) data[category.lower()] = value self.state = data['state'] if self.state == 'PLAY': is_playing = True color = self.color_playing elif self.state == 'PAUSE': is_paused = True color = self.color_paused elif self.state == 'STOP': is_stopped = True color = self.color_stopped return { 'cached_until': self.py3.time_in(cached_until), 'color': color, 'full_text': self.py3.safe_format( self.format, dict( is_paused=is_paused, is_playing=is_playing, is_started=is_started, is_stopped=is_stopped, **data ) ) } def on_click(self, event): """ Control moc with mouse clicks. """ button = event['button'] if button == self.button_pause: if self.state == 'STOP': self.py3.command_run('mocp --play') else: self.py3.command_run('mocp --toggle-pause') elif button == self.button_stop: self.py3.command_run('mocp --stop') elif button == self.button_next: self.py3.command_run('mocp --next') elif button == self.button_previous: self.py3.command_run('mocp --prev') else: self.py3.prevent_refresh() if __name__ == "__main__": """ Run module in test mode. """ from py3status.module_test import module_test module_test(Py3status)
{ "content_hash": "9fe85acc285c8aab84a8f3dac0a5f88e", "timestamp": "", "source": "github", "line_count": 177, "max_line_length": 78, "avg_line_length": 32.259887005649716, "alnum_prop": 0.5970227670753064, "repo_name": "alexoneill/py3status", "id": "48c91f11d6e8bb173d9ba645141652caef9d2edb", "size": "5734", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "py3status/modules/moc.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "Python", "bytes": "814174" } ], "symlink_target": "" }
__author__ = 'ar (Alexander Kalinovsky)' import glob import os import sys import time import numpy as np import json from keras.backend.tensorflow_backend import set_session import tensorflow as tf import nibabel as nib try: import cPickle as pickle except: import pickle import collections # from collections import OrderedDict import skimage.io as skio import skimage.transform as sktf import skimage.color as skolor import pandas as pd import matplotlib.pyplot as plt import keras from keras.engine import Layer, InputSpec from keras import backend as K from keras.datasets import mnist from keras.models import Sequential, Model from keras.layers import Dense, Convolution2D, Activation, MaxPooling2D,\ Flatten, BatchNormalization, InputLayer, Dropout, Reshape, Permute, Input, UpSampling3D, Lambda from keras.layers.normalization import BatchNormalization from keras.utils import np_utils # from keras.utils.visualize_util import plot as kplot from keras.utils import plot_model as kplot ###################################################### def resize_images_interpolated(X, height_factor, width_factor, order, dim_ordering): """ Simple modification of the original Keras code (by ar) **** Resizes the images contained in a 4D tensor of shape - `[batch, channels, height, width]` (for 'th' dim_ordering) - `[batch, height, width, channels]` (for 'tf' dim_ordering) by a factor of `(height_factor, width_factor)`. Both factors should be positive integers. # Returns A tensor. """ resizeMethod = 0 if order==0: resizeMethod = tf.image.ResizeMethod.NEAREST_NEIGHBOR elif order==1: resizeMethod = tf.image.ResizeMethod.BILINEAR elif order==2: resizeMethod = tf.image.ResizeMethod.BICUBIC else: raise Exception('Incorrect interpolation method order [%s], currently available values is 0,1,2') if dim_ordering == 'th': original_shape = K.int_shape(X) new_shape = tf.shape(X)[2:] new_shape *= tf.constant(np.array([height_factor, width_factor]).astype('int32')) X = K.permute_dimensions(X, [0, 2, 3, 1]) X = tf.image.resize_images(X, new_shape, method=resizeMethod) # X = tf.image.resize_nearest_neighbor(X, new_shape) X = K.permute_dimensions(X, [0, 3, 1, 2]) X.set_shape((None, None, original_shape[2] * height_factor if original_shape[2] is not None else None, original_shape[3] * width_factor if original_shape[3] is not None else None)) return X elif dim_ordering == 'tf': original_shape = K.int_shape(X) new_shape = tf.shape(X)[1:3] new_shape *= tf.constant(np.array([height_factor, width_factor]).astype('int32')) # X = tf.image.resize_nearest_neighbor(X, new_shape) X = tf.image.resize_images(X, new_shape, method=resizeMethod) X.set_shape((None, original_shape[1] * height_factor if original_shape[1] is not None else None, original_shape[2] * width_factor if original_shape[2] is not None else None, None)) return X else: raise ValueError('Invalid dim_ordering:', dim_ordering) ###################################################### class UpSamplingInterpolated2D(Layer): def __init__(self, size=(2, 2), order=2, dim_ordering='default', **kwargs): if dim_ordering == 'default': dim_ordering = K.image_dim_ordering() self.size = tuple(size) if dim_ordering not in {'tf', 'th'}: raise ValueError('dim_ordering must be in {tf, th}.') if dim_ordering != 'tf': raise Exception('Layer <UpSamplingInterpolated2D> currently supported only Tensorflow backend!') self.dim_ordering = dim_ordering self.input_spec = [InputSpec(ndim=4)] self.order = order super(UpSamplingInterpolated2D, self).__init__(**kwargs) def compute_output_shape(self, input_shape): if self.dim_ordering == 'th': width = self.size[0] * input_shape[2] if input_shape[2] is not None else None height = self.size[1] * input_shape[3] if input_shape[3] is not None else None return (input_shape[0], input_shape[1], width, height) elif self.dim_ordering == 'tf': width = self.size[0] * input_shape[1] if input_shape[1] is not None else None height = self.size[1] * input_shape[2] if input_shape[2] is not None else None return (input_shape[0], width, height, input_shape[3]) else: raise ValueError('Invalid dim_ordering:', self.dim_ordering) def call(self, x, mask=None): # return K.resize_images(x, self.size[0], self.size[1], self.dim_ordering) return resize_images_interpolated(x, self.size[0], self.size[1], self.order, self.dim_ordering) def get_config(self): config = { 'size': self.size, 'order': self.order } base_config = super(UpSamplingInterpolated2D, self).get_config() return dict(list(base_config.items()) + list(config.items())) ###################################################### def split_list_by_blocks(lst, psiz): tret = [lst[x:x + psiz] for x in range(0, len(lst), psiz)] return tret ###################################################### def buildModelSegNet_InterpolatedUpSampling2D(inpShape=(256, 256, 5), numCls=2, kernelSize=3, order=1): dataInput = Input(shape=inpShape) # -------- Encoder -------- # Conv #1 x = Convolution2D(nb_filter=16, nb_row=kernelSize, nb_col=kernelSize, border_mode='same', activation='relu')(dataInput) x = MaxPooling2D(pool_size=(2,2))(x) # Conv #2 x = Convolution2D(nb_filter=32, nb_row=kernelSize, nb_col=kernelSize, border_mode='same', activation='relu')(x) x = MaxPooling2D(pool_size=(2, 2))(x) # Conv #3 x = Convolution2D(nb_filter=64, nb_row=kernelSize, nb_col=kernelSize, border_mode='same', activation='relu')(x) x = MaxPooling2D(pool_size=(2, 2))(x) # Conv #4 x = Convolution2D(nb_filter=128, nb_row=kernelSize, nb_col=kernelSize, border_mode='same', activation='relu')(x) x = MaxPooling2D(pool_size=(2, 2))(x) # # -------- Decoder -------- # UpConv #1 x = Convolution2D(nb_filter=128, nb_row=kernelSize, nb_col=kernelSize, border_mode='same', activation='relu')(x) x = UpSamplingInterpolated2D(size=(2, 2), order=order)(x) # UpConv #2 x = Convolution2D(nb_filter=64, nb_row=kernelSize, nb_col=kernelSize, border_mode='same', activation='relu')(x) x = UpSamplingInterpolated2D(size=(2, 2), order=order)(x) # UpConv #3 x = Convolution2D(nb_filter=32, nb_row=kernelSize, nb_col=kernelSize, border_mode='same', activation='relu')(x) x = UpSamplingInterpolated2D(size=(2, 2), order=order)(x) retModel = Model(dataInput, x) # UpConv #4 x = Convolution2D(nb_filter=16, nb_row=kernelSize, nb_col=kernelSize, border_mode='same', activation='relu')(x) x = UpSamplingInterpolated2D(size=(2, 2), order=order)(x) # # 1x1 Convolution: emulation of Dense layer x = Convolution2D(nb_filter=numCls, nb_row=1, nb_col=1, border_mode='valid', activation='linear')(x) tmpModel = Model(dataInput, x) if K.image_dim_ordering()=='th': tmpShape = tmpModel.output_shape[-2:] sizeReshape = np.prod(tmpShape) x = Reshape([numCls, sizeReshape])(x) x = Permute((2,1))(x) else: tmpShape = tmpModel.output_shape[1:-1] sizeReshape = np.prod(tmpShape) x = Reshape([sizeReshape,numCls])(x) x = Activation('softmax')(x) retModel = Model(dataInput, x) return retModel ###################################################### class BatcherCTLung2D: pathDataIdx=None pathMeanData=None meanPrefix='mean.pkl' arrPathDataImg=None arrPathDataMsk=None wdir=None dataImg = None dataMsk = None dataMskCls = None meanData = None # imgScale = 1. modelPrefix = None # isTheanoShape=True # isRemoveMeanImage=False isDataInMemory=False shapeImg = None shapeImgSlc = None shapeMsk = None shapeMskSlc = None sizeZ = -1 numCh = 1 numImg = -1 numSlices = -1 # modelPath = None model = None def __init__(self, pathDataIdx=None, pathMeanData=None, numSlices=-1, isRecalculateMeanIfExist=False, isTheanoShape=True, isLoadIntoMemory=False): if pathDataIdx is not None: self.loadDataset(pathDataIdx=pathDataIdx, pathMeanData=pathMeanData, numSlices=numSlices, isRecalculateMeanIfExist=isRecalculateMeanIfExist, isTheanoShape=isTheanoShape, isLoadIntoMemory=isLoadIntoMemory) def loadDataset(self, pathDataIdx, pathMeanData=None, numSlices=-1, isRecalculateMeanIfExist=False, isTheanoShape=True, isLoadIntoMemory=False): self.isTheanoShape=isTheanoShape # self.isRemoveMeanImage=isRemoveMeanImage # (1) Check input Image if not os.path.isfile(pathDataIdx): raise Exception('Cant find input Image file [%s]' % pathDataIdx) self.pathDataIdx = os.path.abspath(pathDataIdx) self.wdir = os.path.dirname(self.pathDataIdx) tdata = pd.read_csv(self.pathDataIdx) # (2) Check input Image Mask # self.pathDataMsk = '%s_msk.png' % os.path.splitext(self.pathDataImg)[0] self.arrPathDataImg = np.array([os.path.join(self.wdir, xx) for xx in tdata['path']]) self.arrPathDataMsk = np.array([os.path.join(self.wdir, xx) for xx in tdata['pathmsk']]) # (3) Load Image and Mask tpathImg = self.arrPathDataImg[0] tpathMsk = self.arrPathDataMsk[0] if not os.path.isfile(tpathImg): raise Exception('Cant find CT Image file [%s]' % tpathImg) if not os.path.isfile(tpathMsk): raise Exception('Cant find CT Image Mask file [%s]' % tpathMsk) tdataImg = nib.load(tpathImg).get_data() tdataMsk = nib.load(tpathMsk).get_data() tdataImg = self.adjustImage(self.transformImageFromOriginal(tdataImg, isRemoveMean=False)) tdataMsk = self.transformImageFromOriginal(tdataMsk>200, isRemoveMean=False) self.numCls = len(np.unique(tdataMsk)) tdataMskCls = self.convertMskToOneHot(tdataMsk) self.shapeImg = tdataImg.shape self.shapeMsk = tdataMskCls.shape self.numSlices = numSlices if numSlices<0: self.shapeImgSlc = self.shapeImg self.shapeMskSlc = self.shapeMsk else: tnumSlc = 2*self.numSlices+1 if K.image_dim_ordering()=='th': self.shapeImgSlc = list(self.shapeImg[:-1]) + [tnumSlc] self.shapeMskSlc = list(self.shapeMsk[:-1]) + [tnumSlc] self.sizeZ = self.shapeImg[-1] else: self.shapeImgSlc = list(self.shapeImg[:2]) + [tnumSlc] #+ [self.shapeImg[-1]] self.shapeMskSlc = list(self.shapeMsk[:2]) + [self.numCls] #+ [self.shapeMsk[-1]] self.sizeZ = self.shapeImg[-2] # (4) Check input Mean Image Data if pathMeanData is None: self.pathMeanData = '%s-%s' % (self.pathDataIdx, self.meanPrefix) self.precalculateAndLoadMean(isRecalculateMean=isRecalculateMeanIfExist) else: if not os.path.isfile(pathMeanData): raise Exception('Cant find MEAN-data file [%s]' % pathMeanData) self.pathMeanData = pathMeanData self.precalculateAndLoadMean(isRecalculateMean=isRecalculateMeanIfExist) # (5) Load data into memory self.numImg = len(self.arrPathDataImg) if isLoadIntoMemory: #FIXME: incorrect code, please, fix this code before using self.isDataInMemory = True self.dataImg = np.zeros([self.numImg] + list(self.shapeImg), dtype=np.float) self.dataMsk = None # self.dataMsk = np.zeros([self.numImg] + list(self.shapeImg), dtype=np.float) self.dataMskCls = np.zeros([self.numImg] + list(self.shapeMsk), dtype=np.float) print (':: Loading data into memory:') for ii in range(self.numImg): tpathImg = self.arrPathDataImg[ii] tpathMsk = self.arrPathDataMsk[ii] # tdataImg = self.adjustImage(nib.load(tpathImg).get_data()) tdataMsk = nib.load(tpathMsk).get_data() tdataImg = self.transformImageFromOriginal(tdataImg, isRemoveMean=True) tdataMsk = self.transformImageFromOriginal(tdataMsk > 200, isRemoveMean=False) tdataMskCls = self.convertMskToOneHot(tdataMsk) self.dataImg[ii] = tdataImg # self.dataMsk[ii] = tdataMsk self.dataMskCls[ii] = tdataMskCls if (ii % 10) == 0: print ('\t[%d/%d] ...' % (ii, self.numImg)) print ('\t... [done]') if self.isTheanoShape: tshp = self.dataMskCls.shape print (tshp) else: self.isDataInMemory = False self.dataImg = None self.dataMsk = None self.dataMskCls = None def getNumImg(self): if self.isInitialized(): return self.numImg else: return 0 def adjustImage(self, pimg): qmin = -1400. qmax = +400 tret = pimg.copy() tret[pimg < qmin] = qmin tret[pimg > qmax] = qmax tret = (tret - qmin) / (qmax - qmin) return tret def convertMskToOneHot(self, msk): tshape = list(msk.shape) if self.numCls>2: tret = np_utils.to_categorical(msk.reshape(-1), self.numCls) else: tret = (msk.reshape(-1)>0).astype(np.float) tret = np.vstack((1.-tret,tret)).transpose() if self.isTheanoShape: tmpShape = list(tshape[1:]) + [self.numCls] # tshape[ 0] = self.numCls else: tmpShape = tshape tmpShape[-1] = self.numCls tret = tret.reshape(tmpShape) if self.isTheanoShape: #FIXME: work only for 3D!!! tret = tret.transpose((3,0,1,2)) return tret def isInitialized(self): return (self.shapeImg is not None) and (self.shapeMsk is not None) and (self.wdir is not None) and (self.numCls>0) def checkIsInitialized(self): if not self.isInitialized(): raise Exception('class Batcher() is not correctly initialized') # def toString(self): # if self.isInitialized(): # tstr = 'Shape/Slice=%s/%s, #Samples=%d, #Labels=%d, #Slices=%s'\ # % (self.shapeImg, self.shapeImgSlc, self.numImg, self.numCls, self.numSlices) # if self.meanData is not None: # tstr = '%s, meanValuePerCh=%s' % (tstr, self.meanData['meanCh']) # else: # tstr = '%s, meanValuePerCh= is Not Calculated' % (tstr) # else: # tstr = "BatcherOnImageCT3D() is not initialized" # return tstr def toString(self): if self.isInitialized(): tstr = '#Samples=%d' % (self.numImg) else: tstr = "BatcherOnImage3D() is not initialized" # (1) number of classes if self.numCls is not None: tstr = '%s, #Cls=%d' % (tstr, self.numCls) # (2) input/output shapes tstr = '%s, InpShape=%s, OutShape=%s' % (tstr, self.shapeImg, self.shapeMsk) # if self.meanData is not None: tstr = '%s, meanValuePerCh=%s' % (tstr, self.meanData['meanCh']) else: tstr = '%s, meanValuePerCh= is Not Calculated' % (tstr) if (self.model is not None) and (self.modelPath is not None): tstr = '%s, model is loaded [%s]' % (tstr, os.path.basename(self.modelPath)) return tstr def __str__(self): return self.toString() def __repr__(self): return self.toString() def preprocImageShape(self, img): if self.isTheanoShape: return img.reshape([1] + list(img.shape)) else: return img.reshape(list(img.shape) + [1]) def removeMean(self, img): ret = img ret -= self.meanData['meanCh'] # ret -= self.meanData['meanImg'] return ret def transformImageFromOriginal(self, pimg, isRemoveMean=True): tmp = self.preprocImageShape(pimg) tmp = tmp.astype(np.float) / self.imgScale if isRemoveMean: tmp = self.removeMean(tmp) return tmp def precalculateAndLoadMean(self, isRecalculateMean=False): if os.path.isfile(self.pathMeanData) and (not isRecalculateMean): print (':: found mean-value file, try to load from it [%s] ...' % self.pathMeanData) with open(self.pathMeanData, 'rb') as f: self.meanData = pickle.load(f, encoding='latin1') tmpMeanKeys = ('meanImg', 'meanCh', 'meanImgCh') for ii in tmpMeanKeys: if ii not in self.meanData.keys(): raise Exception('Mean-file is invalid. Cant find key-value in mean-file [%s]' % self.pathMeanData) else: self.meanData = {} self.meanData['meanImg'] = None self.meanData['meanImgCh'] = None maxNumImages = 1000 if len(self.arrPathDataImg)<maxNumImages: maxNumImages = len(self.arrPathDataImg) rndIdx = np.random.permutation(range(len(self.arrPathDataImg)))[:maxNumImages] print ('*** Precalculate mean-info:') for ii,idx in enumerate(rndIdx): tpathImg = self.arrPathDataImg[idx] tdataImg = nib.load(tpathImg).get_data() tdataImg = self.adjustImage(self.transformImageFromOriginal(tdataImg, isRemoveMean=False)) if self.meanData['meanImg'] is None: self.meanData['meanImg'] = tdataImg else: self.meanData['meanImg'] += tdataImg if (ii%10)==0: print ('\t[%d/%d] ...' % (ii, len(rndIdx))) self.meanData['meanImg'] /= len(rndIdx) self.meanData['meanCh'] = np.mean(self.meanData['meanImg']) print (':: mean-image %s mean channels value is [%s], saved to [%s]' % (self.meanData['meanImg'].shape, self.meanData['meanCh'], self.pathMeanData)) with open(self.pathMeanData, 'wb') as f: pickle.dump(self.meanData, f) def getSlice25D(self, idxImg, zidx): if self.isDataInMemory: tnumSlices = len(zidx) dataX = np.zeros([tnumSlices] + list(self.shapeImgSlc), dtype=np.float) # dataM = np.zeros([tnumSlices] + list(self.shapeMskSlc), dtype=np.float) dataM = None dataY = None tnumBrd = self.numSlices + 1 for ii, tidx in enumerate(zidx): if K.image_dim_ordering() == 'th': # 3D-version # dataX[ii] = tdataImg[:, :, :, tidx - tnumBrd + 1:tidx + tnumBrd ] # dataY[ii] = tdataMskCls[:, :, :, tidx:tidx+1] # 2D-version dataX[ii] = self.dataImg[idxImg, 0, :, :, tidx - tnumBrd + 1:tidx + tnumBrd] # dataM[ii] = self.dataMskCls[idxImg, :, :, :, tidx] else: # 3D-version # dataX[ii] = tdataImg[:, :, tidx - tnumBrd + 1:tidx + tnumBrd, :] # dataY[ii] = tdataMskCls[:, :, tidx:tidx+1, :] # 2D-version timg = self.dataImg[idxImg, :, :, tidx - tnumBrd + 1:tidx + tnumBrd, 0] tmsk = self.dataMskCls[idxImg, :, :, tidx, :] tout = tmsk.reshape(-1, self.numCls) if dataY is None: dataY = np.zeros([tnumSlices] + list(tout.shape), dtype=np.float) dataX[ii] = timg dataY[ii] = tout # dataM[ii] = tmsk else: tpathImg = self.arrPathDataImg[idxImg] tpathMsk = self.arrPathDataMsk[idxImg] tdataImg = self.adjustImage(nib.load(tpathImg).get_data()) tdataMsk = nib.load(tpathMsk).get_data() tdataImg = self.transformImageFromOriginal(tdataImg, isRemoveMean=True) tdataMsk = self.transformImageFromOriginal(tdataMsk > 200, isRemoveMean=False) tdataMskCls = self.convertMskToOneHot(tdataMsk) # tnumSlices = len(zidx) dataX = np.zeros([tnumSlices] + list(self.shapeImgSlc), dtype=np.float) dataM = np.zeros([tnumSlices] + list(self.shapeMskSlc), dtype=np.float) dataY = None tnumBrd = self.numSlices+1 for ii, tidx in enumerate(zidx): if K.image_dim_ordering()=='th': # 3D-version # dataX[ii] = tdataImg[:, :, :, tidx - tnumBrd + 1:tidx + tnumBrd ] # dataY[ii] = tdataMskCls[:, :, :, tidx:tidx+1] # 2D-version dataX[ii] = tdataImg[0, :, :, tidx - tnumBrd + 1:tidx + tnumBrd ] dataM[ii] = tdataMskCls[:, :, :, tidx] else: # 3D-version # dataX[ii] = tdataImg[:, :, tidx - tnumBrd + 1:tidx + tnumBrd, :] # dataY[ii] = tdataMskCls[:, :, tidx:tidx+1, :] # 2D-version timg = tdataImg[:, :, tidx - tnumBrd + 1:tidx + tnumBrd, 0] tmsk = tdataMskCls[:, :, tidx, :] tout = tmsk.reshape(-1, self.numCls) if dataY is None: dataY = np.zeros([tnumSlices] + list(tout.shape), dtype=np.float) dataX[ii] = timg dataY[ii] = tout dataM[ii] = tmsk return (dataX, dataY, dataM) def getSlice25DFromImg(self, pdataImg, zidx): tnumSlices = len(zidx) dataX = np.zeros([tnumSlices] + list(self.shapeImgSlc), dtype=np.float) tnumBrd = self.numSlices + 1 for ii, tidx in enumerate(zidx): if K.image_dim_ordering() == 'th': dataX[ii] = pdataImg[0, :, :, tidx - tnumBrd + 1:tidx + tnumBrd] else: dataX[ii] = pdataImg[:, :, tidx - tnumBrd + 1:tidx + tnumBrd, 0] return dataX def getBatchDataSlicedByIdx(self, dictImg2SliceIdx, isReturnDict=True): dictDataX = collections.OrderedDict() dictDataY = collections.OrderedDict() for ii,(imgIdx, listIdxSlices) in enumerate(dictImg2SliceIdx.items()): tmpDataX, tmpDataY, _ = self.getSlice25D(imgIdx, listIdxSlices) dictDataX[imgIdx] = tmpDataX dictDataY[imgIdx] = tmpDataY if isReturnDict: return (dictDataX, dictDataY) else: return (np.concatenate(dictDataX.values()), np.concatenate(dictDataY.values())) def getBatchDataSliced(self, parNumImages=8, parNumSlices=4, isReturnDict=True): self.checkIsInitialized() numImg = self.numImg rndIdx = np.random.permutation(range(numImg))[:parNumImages] dictImg2Idx={} for imgIdx in rndIdx: trndSliceIdx = range(self.numSlices, self.sizeZ-self.numSlices) trndSliceIdx = np.random.permutation(trndSliceIdx)[:parNumSlices] dictImg2Idx[imgIdx] = trndSliceIdx return self.getBatchDataSlicedByIdx(dictImg2SliceIdx=dictImg2Idx, isReturnDict=isReturnDict) def getBatchDataByIdx(self, parBatchIdx): rndIdx = parBatchIdx parBatchSize = len(rndIdx) dataX = np.zeros([parBatchSize] + list(self.shapeImg), dtype=np.float) dataY = np.zeros([parBatchSize] + list(self.shapeMsk), dtype=np.float) for ii, tidx in enumerate(rndIdx): if self.isDataInMemory: dataX[ii] = self.dataImg[tidx] dataY[ii] = self.dataMskCls[tidx] else: tpathImg = self.arrPathDataImg[tidx] tpathMsk = self.arrPathDataMsk[tidx] tdataImg = self.adjustImage(nib.load(tpathImg).get_data()) tdataMsk = nib.load(tpathMsk).get_data() tdataImg = self.transformImageFromOriginal(tdataImg, isRemoveMean=True) tdataMsk = self.transformImageFromOriginal(tdataMsk > 200, isRemoveMean=False) tdataMskCls = self.convertMskToOneHot(tdataMsk) dataX[ii] = tdataImg dataY[ii] = tdataMskCls if self.isTheanoShape: tshp = dataY.shape dataY = dataY.reshape([tshp[0], tshp[1], np.prod(tshp[-3:])]).transpose((0, 2, 1)) # print (tshp) return (dataX, dataY) def getBatchData(self, parBatchSize=8): self.checkIsInitialized() numImg = self.numImg rndIdx = np.random.permutation(range(numImg))[:parBatchSize] return self.getBatchDataByIdx(rndIdx) def exportModel(self, model, epochId, extInfo=None): if extInfo is not None: modelPrefix = extInfo else: modelPrefix = '' foutModel = "%s-e%03d.json" % (modelPrefix, epochId) foutWeights = "%s-e%03d.h5" % (modelPrefix, epochId) foutModel = '%s-%s' % (self.pathDataIdx, foutModel) foutWeights = '%s-%s' % (self.pathDataIdx, foutWeights) with open(foutModel, 'w') as f: str = json.dumps(json.loads(model.to_json()), indent=3) f.write(str) model.save_weights(foutWeights, overwrite=True) return foutModel @staticmethod def loadModelFromJson(pathModelJson): if not os.path.isfile(pathModelJson): raise Exception('Cant find JSON-file [%s]' % pathModelJson) tpathBase = os.path.splitext(pathModelJson)[0] tpathModelWeights = '%s.h5' % tpathBase if not os.path.isfile(tpathModelWeights): raise Exception('Cant find h5-Weights-file [%s]' % tpathModelWeights) # with open(pathModelJson, 'r') as f: # tmpStr = f.read() # model = keras.models.model_from_json(tmpStr, custom_objects={'UpSamplingInterpolated2D': UpSamplingInterpolated2D}) # model.load_weights(tpathModelWeights) model = buildModelSegNet_InterpolatedUpSampling2D(inpShape=(256, 256, 5)) model.load_weights(tpathModelWeights) return model def loadModelFromDir(self, pathDirWithModels, paramFilter=None): if paramFilter is None: lstModels = glob.glob('%s/*.json' % pathDirWithModels) else: lstModels = glob.glob('%s/*%s*.json' % (pathDirWithModels, paramFilter)) pathJson = os.path.abspath(sorted(lstModels)[-1]) print (':: found model [%s] in directory [%s]' % (os.path.basename(pathJson), pathDirWithModels)) self.modelPath = pathJson return BatcherCTLung2D.loadModelFromJson(pathJson) def loadModelForInference(self, pathModelJson, pathMeanData, paramFilter=None): if os.path.isdir(pathModelJson): self.model = self.loadModelFromDir(pathModelJson) else: self.model = BatcherCTLung2D.loadModelFromJson(pathModelJson) if os.path.isdir(pathMeanData): if paramFilter is None: lstMean = sorted(glob.glob('%s/*mean.pkl' % pathMeanData)) else: lstMean = sorted(glob.glob('%s/*%s*mean.pkl' % (pathMeanData, paramFilter))) if len(lstMean) < 1: raise Exception('Cant find mean-file in directory [%s]' % pathMeanData) self.pathMeanData = lstMean[0] else: self.pathMeanData = pathMeanData self.precalculateAndLoadMean(isRecalculateMean=False) self.numCls = self.model.output_shape[-1] self.shapeImgSlc = self.model.input_shape[1:] self.isTheanoShape = (K.image_dim_ordering() == 'th') if self.isTheanoShape: self.shapeMskSlc = tuple([self.numCls] + list(self.shapeImgSlc[1:])) self.numSlices = (self.model.input_shape[1] - 1) // 2 else: self.shapeMskSlc = tuple(list(self.shapeImgSlc[:-1]) + [self.numCls]) self.numSlices = (self.model.input_shape[-1] - 1) // 2 def inference(self, lstData, batchSize=2, isDebug=False): if self.model is None: raise Exception('Model is not loaded... load model before call inferece()') if len(lstData) > 0: tmpListOfImg = [] # (1) load into memory if isinstance(lstData[0], str):# or isinstance(lstData[0], unicode): for ii in lstData: tmpListOfImg.append(nib.load(ii).get_data()) else: for ii in lstData: tmpListOfImg.append(ii.get_data()) # (2) check shapes tsetShapes = set() for ii in tmpListOfImg: tsetShapes.add(ii.shape[:-1]) if len(tsetShapes) > 1: raise Exception('Shapes of images must be equal sized') tmpShape = self.shapeImgSlc[:-1] if tmpShape not in tsetShapes: raise Exception('Model input shape and shapes of input images is not equal!') # (3) inference # self.isDataInMemory = True numImg = len(tmpListOfImg) # self.dataImg = np.zeros([numImg] + list(self.shapeImg), dtype=np.float) ret = [] for ii in range(numImg): # (3.1) convert data if isDebug: print (':: process: [%s]' % tmpListOfImg[ii]) tdataImg = self.adjustImage(tmpListOfImg[ii]) tdataImg = self.transformImageFromOriginal(tdataImg, isRemoveMean=True) if K.image_dim_ordering() == 'th': tsegm3D = np.zeros(tdataImg.shapeImg[+1:], np.float) numSlicesZ = tdataImg.shape[-1] else: tsegm3D = np.zeros(tdataImg.shape[:-1], np.float) numSlicesZ = tdataImg.shape[-2] # (3.2) inference slide-by-slide lstIdxScl = range(self.numSlices, numSlicesZ - self.numSlices) lstIdxScl = split_list_by_blocks(lstIdxScl, batchSize) for ss, sslst in enumerate(lstIdxScl): dataX = self.getSlice25DFromImg(tdataImg, sslst) tret = self.model.predict_on_batch(dataX) if K.image_dim_ordering() == 'th': # raise NotImplementedError tret = tret.transpose((1, 0, 2)) sizXY = self.shapeImgSlc[+1:] else: sizXY = self.shapeImgSlc[:-1] tret = tret.transpose((1, 0, 2)) tret = tret.reshape(list(sizXY) + list(tret.shape[1:])) # tmskSlc = (tret[:, :, :, 1] > 0.5).astype(np.float) tsegm3D[:, :, sslst] = tret[:,:,:,1] ret.append(tsegm3D) return ret else: return [] ######################################### if __name__ == '__main__': pass
{ "content_hash": "c3e3dac89290dcc92fe97770f41f062f", "timestamp": "", "source": "github", "line_count": 688, "max_line_length": 129, "avg_line_length": 46.60029069767442, "alnum_prop": 0.5700071738248963, "repo_name": "gakarak/BTBDB_ImageAnalysisSubPortal", "id": "0157575e58a02b5fec2688a29dbd4635a9dc1273", "size": "32103", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "app/core/segmct/fcnn_lung2d.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "CSS", "bytes": "161" }, { "name": "HTML", "bytes": "15991" }, { "name": "JavaScript", "bytes": "6689" }, { "name": "Python", "bytes": "458280" }, { "name": "Shell", "bytes": "3378" } ], "symlink_target": "" }
import unittest import copy from scrapy.http import Headers class HeadersTest(unittest.TestCase): def assertSortedEqual(self, first, second, msg=None): return self.assertEqual(sorted(first), sorted(second), msg) def test_basics(self): h = Headers({'Content-Type': 'text/html', 'Content-Length': 1234}) assert h['Content-Type'] assert h['Content-Length'] self.assertRaises(KeyError, h.__getitem__, 'Accept') self.assertEqual(h.get('Accept'), None) self.assertEqual(h.getlist('Accept'), []) self.assertEqual(h.get('Accept', '*/*'), b'*/*') self.assertEqual(h.getlist('Accept', '*/*'), [b'*/*']) self.assertEqual(h.getlist('Accept', ['text/html', 'images/jpeg']), [b'text/html', b'images/jpeg']) def test_single_value(self): h = Headers() h['Content-Type'] = 'text/html' self.assertEqual(h['Content-Type'], b'text/html') self.assertEqual(h.get('Content-Type'), b'text/html') self.assertEqual(h.getlist('Content-Type'), [b'text/html']) def test_multivalue(self): h = Headers() h['X-Forwarded-For'] = hlist = ['ip1', 'ip2'] self.assertEqual(h['X-Forwarded-For'], b'ip2') self.assertEqual(h.get('X-Forwarded-For'), b'ip2') self.assertEqual(h.getlist('X-Forwarded-For'), [b'ip1', b'ip2']) assert h.getlist('X-Forwarded-For') is not hlist def test_encode_utf8(self): h = Headers({'key': '\xa3'}, encoding='utf-8') key, val = dict(h).popitem() assert isinstance(key, bytes), key assert isinstance(val[0], bytes), val[0] self.assertEqual(val[0], b'\xc2\xa3') def test_encode_latin1(self): h = Headers({'key': '\xa3'}, encoding='latin1') key, val = dict(h).popitem() self.assertEqual(val[0], b'\xa3') def test_encode_multiple(self): h = Headers({'key': ['\xa3']}, encoding='utf-8') key, val = dict(h).popitem() self.assertEqual(val[0], b'\xc2\xa3') def test_delete_and_contains(self): h = Headers() h['Content-Type'] = 'text/html' assert 'Content-Type' in h del h['Content-Type'] assert 'Content-Type' not in h def test_setdefault(self): h = Headers() hlist = ['ip1', 'ip2'] olist = h.setdefault('X-Forwarded-For', hlist) assert h.getlist('X-Forwarded-For') is not hlist assert h.getlist('X-Forwarded-For') is olist h = Headers() olist = h.setdefault('X-Forwarded-For', 'ip1') self.assertEqual(h.getlist('X-Forwarded-For'), [b'ip1']) assert h.getlist('X-Forwarded-For') is olist def test_iterables(self): idict = {'Content-Type': 'text/html', 'X-Forwarded-For': ['ip1', 'ip2']} h = Headers(idict) self.assertDictEqual(dict(h), {b'Content-Type': [b'text/html'], b'X-Forwarded-For': [b'ip1', b'ip2']}) self.assertSortedEqual(h.keys(), [b'X-Forwarded-For', b'Content-Type']) self.assertSortedEqual(h.items(), [(b'X-Forwarded-For', [b'ip1', b'ip2']), (b'Content-Type', [b'text/html'])]) self.assertSortedEqual(h.values(), [b'ip2', b'text/html']) def test_update(self): h = Headers() h.update({'Content-Type': 'text/html', 'X-Forwarded-For': ['ip1', 'ip2']}) self.assertEqual(h.getlist('Content-Type'), [b'text/html']) self.assertEqual(h.getlist('X-Forwarded-For'), [b'ip1', b'ip2']) def test_copy(self): h1 = Headers({'header1': ['value1', 'value2']}) h2 = copy.copy(h1) self.assertEqual(h1, h2) self.assertEqual(h1.getlist('header1'), h2.getlist('header1')) assert h1.getlist('header1') is not h2.getlist('header1') assert isinstance(h2, Headers) def test_appendlist(self): h1 = Headers({'header1': 'value1'}) h1.appendlist('header1', 'value3') self.assertEqual(h1.getlist('header1'), [b'value1', b'value3']) h1 = Headers() h1.appendlist('header1', 'value1') h1.appendlist('header1', 'value3') self.assertEqual(h1.getlist('header1'), [b'value1', b'value3']) def test_setlist(self): h1 = Headers({'header1': 'value1'}) self.assertEqual(h1.getlist('header1'), [b'value1']) h1.setlist('header1', [b'value2', b'value3']) self.assertEqual(h1.getlist('header1'), [b'value2', b'value3']) def test_setlistdefault(self): h1 = Headers({'header1': 'value1'}) h1.setlistdefault('header1', ['value2', 'value3']) h1.setlistdefault('header2', ['value2', 'value3']) self.assertEqual(h1.getlist('header1'), [b'value1']) self.assertEqual(h1.getlist('header2'), [b'value2', b'value3']) def test_none_value(self): h1 = Headers() h1['foo'] = 'bar' h1['foo'] = None h1.setdefault('foo', 'bar') self.assertEqual(h1.get('foo'), None) self.assertEqual(h1.getlist('foo'), []) def test_int_value(self): h1 = Headers({'hey': 5}) h1['foo'] = 1 h1.setdefault('bar', 2) h1.setlist('buz', [1, 'dos', 3]) self.assertEqual(h1.getlist('foo'), [b'1']) self.assertEqual(h1.getlist('bar'), [b'2']) self.assertEqual(h1.getlist('buz'), [b'1', b'dos', b'3']) self.assertEqual(h1.getlist('hey'), [b'5']) def test_invalid_value(self): self.assertRaisesRegex(TypeError, 'Unsupported value type', Headers, {'foo': object()}) self.assertRaisesRegex(TypeError, 'Unsupported value type', Headers().__setitem__, 'foo', object()) self.assertRaisesRegex(TypeError, 'Unsupported value type', Headers().setdefault, 'foo', object()) self.assertRaisesRegex(TypeError, 'Unsupported value type', Headers().setlist, 'foo', [object()])
{ "content_hash": "cedf853b496e15bf906865b9184384d6", "timestamp": "", "source": "github", "line_count": 155, "max_line_length": 80, "avg_line_length": 39.670967741935485, "alnum_prop": 0.5550496015612295, "repo_name": "pawelmhm/scrapy", "id": "64ff7a73dbfee6a2f84b6380e24fdd637ba69966", "size": "6149", "binary": false, "copies": "4", "ref": "refs/heads/master", "path": "tests/test_http_headers.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "HTML", "bytes": "2790" }, { "name": "Python", "bytes": "1889675" }, { "name": "Roff", "bytes": "2010" }, { "name": "Shell", "bytes": "259" } ], "symlink_target": "" }
from __future__ import (absolute_import, division, generators, nested_scopes, print_function, unicode_literals, with_statement) import logging import os import sys # Note throughout the distinction between the artifact_root (which is where the artifacts are # originally built and where the cache restores them to) and the cache root path/URL (which is # where the artifacts are cached). logger = logging.getLogger(__name__) class ArtifactCacheError(Exception): pass class NonfatalArtifactCacheError(Exception): pass class UnreadableArtifact(object): """A False-y value to indicate a read-failure (vs a normal cache-miss) See docstring on `ArtifactCache.use_cached_files` for details. """ def __init__(self, key, err=None): """ :param CacheKey key: The key of the artifact that encountered an error :param err: Any additional information on the nature of the read error. """ self.key = key self.err = err # For python 3 def __bool__(self): return False # For python 2 def __nonzero__(self): return self.__bool__() def __str__(self): return "key={} err={}".format(self.key, self.err) class ArtifactCache(object): """A map from cache key to a set of build artifacts. The cache key must uniquely identify the inputs (sources, compiler flags etc.) needed to build the artifacts. Cache keys are typically obtained from a CacheKeyGenerator. Subclasses implement the methods below to provide this functionality. """ def __init__(self, artifact_root): """Create an ArtifactCache. All artifacts must be under artifact_root. """ self.artifact_root = artifact_root def prune(self): """Prune stale cache files Remove old unused cache files :return: """ pass def insert(self, cache_key, paths, overwrite=False): """Cache the output of a build. By default, checks cache.has(key) first, only proceeding to create and insert an artifact if it is not already in the cache (though `overwrite` can be used to skip the check and unconditionally insert). :param CacheKey cache_key: A CacheKey object. :param list<str> paths: List of absolute paths to generated dirs/files. These must be under the artifact_root. :param bool overwrite: Skip check for existing, insert even if already in cache. """ missing_files = filter(lambda f: not os.path.exists(f), paths) if missing_files: raise ArtifactCacheError('Tried to cache nonexistent files {0}'.format(missing_files)) if not overwrite: if self.has(cache_key): logger.debug('Skipping insert of existing artifact: {0}'.format(cache_key)) return False try: self.try_insert(cache_key, paths) return True except NonfatalArtifactCacheError as e: logger.error('Error while writing to artifact cache: {0}'.format(e)) return False def try_insert(self, cache_key, paths): """Attempt to cache the output of a build, without error-handling. :param CacheKey cache_key: A CacheKey object. :param list<str> paths: List of absolute paths to generated dirs/files. These must be under the artifact_root. """ pass def has(self, cache_key): pass def use_cached_files(self, cache_key, hit_callback=None): """Use the files cached for the given key. Returned result indicates whether or not an artifact was successfully found and decompressed to the `artifact_root`: `True` if artifact was found and successfully decompressed `False` if not in the cache Implementations may choose to return an UnreadableArtifact instance instead of `False` to indicate an artifact was in the cache but could not be read, due to an error or corruption. UnreadableArtifact evaluates as False-y, so callers can treat the result as a boolean if they are only concerned with whether or not an artifact was read. Callers may also choose to attempt to repair or report corrupted artifacts differently, as these are unexpected, unlike normal cache misses. :param CacheKey cache_key: A CacheKey object. """ pass def delete(self, cache_key): """Delete the artifacts for the specified key. Deleting non-existent artifacts is a no-op. :param CacheKey cache_key: A CacheKey object. """ pass def call_use_cached_files(tup): """Importable helper for multi-proc calling of ArtifactCache.use_cached_files on a cache instance. Multiprocessing map/apply/etc require functions which can be imported, not bound methods. To call a bound method, instead call a helper like this and pass tuple of the instance and args. The helper can then call the original method on the deserialized instance. :param tup: A tuple of an ArtifactCache and args (eg CacheKey) for ArtifactCache.use_cached_files. """ try: cache, key, callback = tup res = cache.use_cached_files(key, callback) if res: sys.stderr.write('.') else: sys.stderr.write(' ') return res except NonfatalArtifactCacheError as e: logger.warn('Error calling use_cached_files in artifact cache: {0}'.format(e)) return False def call_insert(tup): """Importable helper for multi-proc calling of ArtifactCache.insert on an ArtifactCache instance. See docstring on call_use_cached_files explaining why this is useful. :param tup: A 4-tuple of an ArtifactCache and the 3 args passed to ArtifactCache.insert: eg (some_cache_instance, cache_key, [some_file, another_file], False) """ try: cache, key, files, overwrite = tup return cache.insert(key, files, overwrite) except NonfatalArtifactCacheError as e: logger.warn('Error while inserting into artifact cache: {0}'.format(e)) return False
{ "content_hash": "401d9481ab3acacc51add883079bcbac", "timestamp": "", "source": "github", "line_count": 180, "max_line_length": 114, "avg_line_length": 32.37222222222222, "alnum_prop": 0.7025913849322121, "repo_name": "sameerparekh/pants", "id": "1f7ddc2d8fda2e85adc8e6be2e1f9dc3f438f86f", "size": "5974", "binary": false, "copies": "3", "ref": "refs/heads/master", "path": "src/python/pants/cache/artifact_cache.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "C++", "bytes": "767" }, { "name": "CSS", "bytes": "11442" }, { "name": "GAP", "bytes": "2459" }, { "name": "Go", "bytes": "1437" }, { "name": "HTML", "bytes": "70150" }, { "name": "Java", "bytes": "308102" }, { "name": "JavaScript", "bytes": "25075" }, { "name": "Protocol Buffer", "bytes": "3783" }, { "name": "Python", "bytes": "3862954" }, { "name": "Scala", "bytes": "85437" }, { "name": "Shell", "bytes": "49265" }, { "name": "Thrift", "bytes": "2858" } ], "symlink_target": "" }
from __future__ import division, print_function, unicode_literals # This code is so you can run the samples without installing the package import sys import os sys.path.insert(0, os.path.join(os.path.dirname(__file__), '..')) # testinfo = "s, t 0.49, s, t 0.51, s, t 2.49, s, t 2.51, s, t 2.99, s, t 3.1, s, q" tags = "WavesTiles3D, grid_effects" import cocos from cocos.director import director import cocos.actions as ac from cocos.layer import * import pyglet class BackgroundLayer(cocos.layer.Layer): def __init__(self): super(BackgroundLayer, self).__init__() self.img = pyglet.resource.image('background_image.png') def draw( self ): glColor4ub(255, 255, 255, 255) glPushMatrix() self.transform() self.img.blit(0,0) glPopMatrix() def main(): director.init( resizable=True ) director.set_depth_test() main_scene = cocos.scene.Scene() main_scene.add( BackgroundLayer(), z=0 ) # In real code after a sequence of grid actions the StopGrid() action # should be called. Omited here to stay in the last grid action render action1 = ac.WavesTiles3D( waves=2, amplitude=70, grid=(16,16), duration=3) main_scene.do( action1 ) director.run (main_scene) if __name__ == '__main__': main()
{ "content_hash": "da6f35c884e72a2cdc25727bb32b8304", "timestamp": "", "source": "github", "line_count": 45, "max_line_length": 82, "avg_line_length": 28.8, "alnum_prop": 0.6566358024691358, "repo_name": "vyscond/cocos", "id": "d89060ed1834cbf4eb46b135b92e6afde2d1866b", "size": "1296", "binary": false, "copies": "6", "ref": "refs/heads/master", "path": "test/test_wavestiles3d.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "Batchfile", "bytes": "7097" }, { "name": "Makefile", "bytes": "6766" }, { "name": "Python", "bytes": "1330883" } ], "symlink_target": "" }
import os import math from director.consoleapp import ConsoleApp from director import ioUtils from director import segmentation from director import segmentationroutines from director import applogic from director import visualization as vis from director import roboturdf app = ConsoleApp() # create a view view = app.createView() segmentation._defaultSegmentationView = view segmentation.initAffordanceManager(view) robotStateModel, robotStateJointController = roboturdf.loadRobotModel('robot state model', view, parent='sensors', color=roboturdf.getRobotGrayColor(), visible=True) segmentationroutines.SegmentationContext.initWithRobot(robotStateModel) # Move robot to near to valve wall: # 0degrees #robotStateJointController.q[5] = math.radians(120) #robotStateJointController.q[0] = 0 #robotStateJointController.q[1] = 0 # 30,60,90 robotStateJointController.q [5] = math.radians(-120) robotStateJointController.q [0] = 1 robotStateJointController.q [1] = 1 robotStateJointController.q[2] = 0.85 robotStateJointController.push() # load poly data dataDir = app.getTestingDataDirectory() #polyData = ioUtils.readPolyData(os.path.join(dataDir, 'valve/valve-lever-scene.vtp')) #polyData = ioUtils.readPolyData(os.path.join(dataDir, 'valve/valve-lever-scene-30.vtp')) #polyData = ioUtils.readPolyData(os.path.join(dataDir, 'valve/valve-lever-scene-60.vtp')) polyData = ioUtils.readPolyData(os.path.join(dataDir, 'valve/valve-lever-scene-90.vtp')) vis.showPolyData(polyData, 'pointcloud snapshot') segmentation.segmentValveWallAuto(.2, mode='both', removeGroundMethod=segmentation.removeGround ) if app.getTestingInteractiveEnabled(): view.show() app.showObjectModel() app.start()
{ "content_hash": "585d4751dd704833d738a6c344270349", "timestamp": "", "source": "github", "line_count": 48, "max_line_length": 165, "avg_line_length": 35.4375, "alnum_prop": 0.800705467372134, "repo_name": "patmarion/director", "id": "cb146a65bb33c2ba784a2e860825ab3914d0c5a9", "size": "1701", "binary": false, "copies": "5", "ref": "refs/heads/master", "path": "src/python/tests/testValveFit.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "C", "bytes": "121912" }, { "name": "C++", "bytes": "565385" }, { "name": "CMake", "bytes": "82478" }, { "name": "Dockerfile", "bytes": "2510" }, { "name": "GLSL", "bytes": "15443" }, { "name": "MATLAB", "bytes": "161948" }, { "name": "Makefile", "bytes": "5014" }, { "name": "Python", "bytes": "2282093" }, { "name": "Shell", "bytes": "14291" } ], "symlink_target": "" }
from __future__ import division import gc import os.path import sys import timeit pythoscope_path = os.path.join(os.path.dirname(__file__), os.pardir) sys.path.insert(0, os.path.abspath(pythoscope_path)) from pythoscope.cmdline import init_project from pythoscope.store import get_pickle_path from test.helper import putfile, rmtree, tmpdir def make_class(name, methods_count=20): code = ["class %s(object):\n" % name] for i in range(methods_count): code.append(" def method_%d(self):\n pass\n" % i) return ''.join(code) def make_function(name): return "def %s():\n pass\n" % name def make_module(classes_count=10, functions_count=10): code = [] for i in range(classes_count): code.append(make_class("Class%d" % i)) for i in range(functions_count): code.append(make_function("function_%d" % i)) return ''.join(code) # Run the setup once, stmt n times and report the minimum running time. # # Based on timeit module. I had to modify it, because: # - timer.timeit(n) returns time of running stmt n times (the sum, not the minimum), # - min(timer.repeat(n, 1)) runs the setup n times. timer_template = """ def inner(_n, _timer): _results = [] %(setup)s for _i in range(_n): _t0 = _timer() %(stmt)s _t1 = _timer() _results.append(_t1 - _t0) return min(_results) """ def run_timer(stmt, setup, n=3, timer=timeit.default_timer): src = timer_template % {'stmt': stmt, 'setup': setup} code = compile(src, '', "exec") ns = {} exec code in globals(), ns inner = ns["inner"] gcold = gc.isenabled() gc.disable() timing = inner(n, timer) if gcold: gc.enable() return timing def human_size(bytes, prefixes=['', 'K', 'M', 'G']): if bytes > 1024: return human_size(bytes/1024, prefixes[1:]) return "%.2f%sb" % (bytes, prefixes[0]) def benchmark_project_load_performance(modules_count=25): print "==> Creating project with %d modules..." % modules_count project_path = tmpdir() module = make_module() for i in range(modules_count): putfile(project_path, "module%s.py" % i, module) init_project(project_path, skip_inspection=True) print "==> Inspecting project.." elapsed = run_timer("inspect_project(Project('%s'))" % project_path, "from pythoscope.inspector import inspect_project; from pythoscope.store import Project") print "It took %f seconds to inspect." % elapsed print "==> Saving project information" elapsed = run_timer("project.save()", """from pythoscope.inspector import inspect_project ;\ from pythoscope.store import Project ;\ project = Project('%s') ;\ inspect_project(project)""" % project_path) print "It took %f seconds to save the project information." % elapsed print "==> Reading project information" elapsed = run_timer("Project.from_directory('%s')" % project_path, "from pythoscope.store import Project") print "It took %f seconds to read project information from %s pickle." % \ (elapsed, human_size(os.path.getsize(get_pickle_path(project_path)))) rmtree(project_path) if __name__ == "__main__": benchmark_project_load_performance()
{ "content_hash": "68a2874ebe8fd4f4a1f2990e865079ab", "timestamp": "", "source": "github", "line_count": 99, "max_line_length": 113, "avg_line_length": 34.111111111111114, "alnum_prop": 0.6188925081433225, "repo_name": "adamhaapala/pythoscope", "id": "688d810ba4414e9a9cfe6e8fb1e7205fce5a40d3", "size": "3377", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "tools/speed_benchmark.py", "mode": "33188", "license": "mit", "language": [], "symlink_target": "" }
from openturns import * TESTPREAMBLE() try: # Create an intance myFunc = NumericalMathFunction("x", "x^2") mySpatialFunc = SpatialFunction(myFunc) print "mySpatialFunc=", mySpatialFunc # Get the input and output description print "mySpatialFunc input description=", mySpatialFunc.getInputDescription() print "mySpatialFunc output description=", mySpatialFunc.getOutputDescription() # Get the input and output dimension, based on description print "mySpatialFunc input dimension=", mySpatialFunc.getInputDimension() print "mySpatialFunc output dimension=", mySpatialFunc.getOutputDimension() # Create a TimeSeries tg = RegularGrid(0.0, 0.2, 6) data = NumericalSample(tg.getN(), myFunc.getInputDimension()) for i in range(data.getSize()): for j in range(data.getDimension()): data[i, j] = i * data.getDimension() + j ts = TimeSeries(tg, data) print "input time series=", ts print "output time series=", mySpatialFunc(ts) # Get the number of calls print "called ", mySpatialFunc.getCallsNumber(), " times" except: import sys print "t_SpatialFunction_std.py", sys.exc_type, sys.exc_value
{ "content_hash": "b816bd1b392fe639b36d974b9c080928", "timestamp": "", "source": "github", "line_count": 31, "max_line_length": 83, "avg_line_length": 38.45161290322581, "alnum_prop": 0.7030201342281879, "repo_name": "sofianehaddad/ot-svn", "id": "4d9854a1f50d7f9e9b59033bc092f79bfa4bba09", "size": "1216", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "python/test/t_SpatialFunction_std.py", "mode": "33261", "license": "mit", "language": [ { "name": "Batchfile", "bytes": "6498" }, { "name": "C", "bytes": "455749" }, { "name": "C++", "bytes": "10021345" }, { "name": "CMake", "bytes": "240050" }, { "name": "FORTRAN", "bytes": "299" }, { "name": "Makefile", "bytes": "12372" }, { "name": "NSIS", "bytes": "26263" }, { "name": "Python", "bytes": "1221927" }, { "name": "R", "bytes": "11141" }, { "name": "Scilab", "bytes": "2612" }, { "name": "Shell", "bytes": "20403" }, { "name": "TeX", "bytes": "4250" }, { "name": "Visual Basic", "bytes": "3294" } ], "symlink_target": "" }
"""The Normal (Gaussian) distribution class. @@Gaussian """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import math from tensorflow.contrib.framework.python.framework import tensor_util as contrib_tensor_util # pylint: disable=line-too-long from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_shape from tensorflow.python.framework import tensor_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import constant_op from tensorflow.python.ops import logging_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import random_ops # TODO(ebrevdo): Use asserts contrib module when ready def _assert_all_positive(x): return logging_ops.Assert( math_ops.reduce_all(x > 0), ["Tensor %s should contain only positive values: " % x.name, x]) class Gaussian(object): """The scalar Gaussian distribution with mean and stddev parameters mu, sigma. The PDF of this distribution is: ```f(x) = sqrt(1/(2*pi*sigma^2)) exp(-(x-mu)^2/(2*sigma^2))``` """ def __init__(self, mu, sigma, name=None): """Construct Gaussian distributions with mean and stddev `mu` and `sigma`. The parameters `mu` and `sigma` must be shaped in a way that supports broadcasting (e.g. `mu + sigma` is a valid operation). Args: mu: `float` or `double` tensor, the means of the distribution(s). sigma: `float` or `double` tensor, the stddevs of the distribution(s). sigma must contain only positive values. name: The name to give Ops created by the initializer. Raises: TypeError: if mu and sigma are different dtypes. """ with ops.op_scope([mu, sigma], name, "Gaussian"): mu = ops.convert_to_tensor(mu) sigma = ops.convert_to_tensor(sigma) with ops.control_dependencies([_assert_all_positive(sigma)]): self._mu = mu self._sigma = sigma contrib_tensor_util.assert_same_float_dtype((mu, sigma)) @property def dtype(self): return self._mu.dtype @property def mu(self): return self._mu @property def sigma(self): return self._sigma @property def mean(self): return self._mu * array_ops.ones_like(self._sigma) def log_pdf(self, x, name=None): """Log pdf of observations in `x` under these Gaussian distribution(s). Args: x: tensor of dtype `dtype`, must be broadcastable with `mu` and `sigma`. name: The name to give this op. Returns: log_pdf: tensor of dtype `dtype`, the log-PDFs of `x`. """ with ops.op_scope([self._mu, self._sigma, x], name, "GaussianLogPdf"): x = ops.convert_to_tensor(x) if x.dtype != self.dtype: raise TypeError("Input x dtype does not match dtype: %s vs. %s" % (x.dtype, self.dtype)) log_2_pi = constant_op.constant(math.log(2 * math.pi), dtype=self.dtype) return (-0.5*log_2_pi - math_ops.log(self._sigma) -0.5*math_ops.square((x - self._mu) / self._sigma)) def cdf(self, x, name=None): """CDF of observations in `x` under these Gaussian distribution(s). Args: x: tensor of dtype `dtype`, must be broadcastable with `mu` and `sigma`. name: The name to give this op. Returns: cdf: tensor of dtype `dtype`, the CDFs of `x`. """ with ops.op_scope([self._mu, self._sigma, x], name, "GaussianCdf"): x = ops.convert_to_tensor(x) if x.dtype != self.dtype: raise TypeError("Input x dtype does not match dtype: %s vs. %s" % (x.dtype, self.dtype)) return (0.5 + 0.5*math_ops.erf( 1.0/(math.sqrt(2.0) * self._sigma)*(x - self._mu))) def log_cdf(self, x, name=None): """Log CDF of observations `x` under these Gaussian distribution(s). Args: x: tensor of dtype `dtype`, must be broadcastable with `mu` and `sigma`. name: The name to give this op. Returns: log_cdf: tensor of dtype `dtype`, the log-CDFs of `x`. """ with ops.op_scope([self._mu, self._sigma, x], name, "GaussianLogCdf"): return math_ops.log(self.cdf(x)) def pdf(self, x, name=None): """The PDF of observations in `x` under these Gaussian distribution(s). Args: x: tensor of dtype `dtype`, must be broadcastable with `mu` and `sigma`. name: The name to give this op. Returns: pdf: tensor of dtype `dtype`, the pdf values of `x`. """ with ops.op_scope([self._mu, self._sigma, x], name, "GaussianPdf"): return math_ops.exp(self.log_pdf(x)) def entropy(self, name=None): """The entropy of Gaussian distribution(s). Args: name: The name to give this op. Returns: entropy: tensor of dtype `dtype`, the entropy. """ with ops.op_scope([self._mu, self._sigma], name, "GaussianEntropy"): two_pi_e1 = constant_op.constant( 2 * math.pi * math.exp(1), dtype=self.dtype) # Use broadcasting rules to calculate the full broadcast sigma. sigma = self._sigma * array_ops.ones_like(self._mu) return 0.5 * math_ops.log(two_pi_e1 * math_ops.square(sigma)) def sample(self, n, seed=None, name=None): """Sample `n` observations from the Gaussian Distributions. Args: n: `Scalar`, type int32, the number of observations to sample. seed: Python integer, the random seed. name: The name to give this op. Returns: samples: `[n, ...]`, a `Tensor` of `n` samples for each of the distributions determined by broadcasting the hyperparameters. """ with ops.op_scope([self._mu, self._sigma, n], name, "GaussianSample"): broadcast_shape = (self._mu + self._sigma).get_shape() n = ops.convert_to_tensor(n) shape = array_ops.concat( 0, [array_ops.pack([n]), array_ops.shape(self.mean)]) sampled = random_ops.random_normal( shape=shape, mean=0, stddev=1, dtype=self._mu.dtype, seed=seed) # Provide some hints to shape inference n_val = tensor_util.constant_value(n) final_shape = tensor_shape.vector(n_val).concatenate(broadcast_shape) sampled.set_shape(final_shape) return sampled * self._sigma + self._mu
{ "content_hash": "31ac1a3b29086d92fec57c5971748333", "timestamp": "", "source": "github", "line_count": 183, "max_line_length": 125, "avg_line_length": 34.114754098360656, "alnum_prop": 0.6423193977254525, "repo_name": "peterbraden/tensorflow", "id": "cbb98624d97f639b4b0c47bcfd40335a042c0cf6", "size": "6920", "binary": false, "copies": "3", "ref": "refs/heads/master", "path": "tensorflow/contrib/distributions/python/ops/gaussian.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "C", "bytes": "154152" }, { "name": "C++", "bytes": "8654768" }, { "name": "CMake", "bytes": "29372" }, { "name": "CSS", "bytes": "1297" }, { "name": "HTML", "bytes": "737101" }, { "name": "Java", "bytes": "50361" }, { "name": "JavaScript", "bytes": "11651" }, { "name": "Jupyter Notebook", "bytes": "1771939" }, { "name": "Objective-C", "bytes": "1288" }, { "name": "Protocol Buffer", "bytes": "108842" }, { "name": "Python", "bytes": "5710163" }, { "name": "Shell", "bytes": "164294" }, { "name": "TypeScript", "bytes": "394470" } ], "symlink_target": "" }
"""Certificate Authority package certificate request helper module """ __author__ = "P J Kershaw" __date__ = "19/09/12" __copyright__ = "(C) 2012 Science and Technology Facilities Council" __license__ = "BSD - see LICENSE file in top-level directory" __contact__ = "[email protected]" __revision__ = "$Id$" from OpenSSL import crypto class CertReqUtils(object): """Utility class containing helper functions for use with Certificate Authority""" PRIKEY_NBITS_DEFAULT = 1024 MESSAGE_DIGEST_TYPE_DEFAULT = "md5" @staticmethod def create_key_pair(nbits_for_key=PRIKEY_NBITS_DEFAULT): """Generate key pair and return as PEM encoded string @type nbits_for_key: int @param nbits_for_key: number of bits for private key generation - default is 2048 @rtype: OpenSSL.crypto.PKey @return: public/private key pair """ key_pair = crypto.PKey() key_pair.generate_key(crypto.TYPE_RSA, nbits_for_key) return key_pair @staticmethod def create_cert_req(dn, key_pair, message_digest=MESSAGE_DIGEST_TYPE_DEFAULT): """Create a certificate request. @param dn: The distinguished name of the subject of the request, possible arguments are: C - Country name SP - State or province name L - Locality name O - Organization name OU - Organizational unit name CN - Common name email - E-mail address @type dn: dict @type key_pair: string/None @param key_pair: public/private key pair @type message_digest: basestring @param message_digest: message digest type - default is MD5 @return certificate request PEM text and private key PEM text @rtype: base string """ # Check all required certificate request DN parameters are set # Create certificate request cert_req = crypto.X509Req() subj = cert_req.get_subject() for k, v in dn.items(): setattr(subj, k, v) # Create public key object cert_req.set_pubkey(key_pair) # Add the public key to the request cert_req.sign(key_pair, message_digest) return cert_req
{ "content_hash": "672f5786d696991ca0d39fbc7306dbfb", "timestamp": "", "source": "github", "line_count": 70, "max_line_length": 86, "avg_line_length": 34.55714285714286, "alnum_prop": 0.5890863993385697, "repo_name": "philipkershaw/CertificateAuthority", "id": "879aff245e64340949635ec99275cab8d7949636", "size": "2419", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "contrail/security/ca/cert_req.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "Python", "bytes": "49019" } ], "symlink_target": "" }
from django.shortcuts import redirect def index(request): return redirect('/panel')
{ "content_hash": "a4f6884607653a10ced8d0be0bf14388", "timestamp": "", "source": "github", "line_count": 4, "max_line_length": 37, "avg_line_length": 22.25, "alnum_prop": 0.7528089887640449, "repo_name": "bilgorajskim/soman", "id": "0ee7e53bac4d2a3af00ba4ec81e9db5a1c773a59", "size": "89", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "server/config/views.py", "mode": "33188", "license": "mit", "language": [ { "name": "Arduino", "bytes": "2811" }, { "name": "Batchfile", "bytes": "5094" }, { "name": "CSS", "bytes": "6968" }, { "name": "HTML", "bytes": "20408" }, { "name": "JavaScript", "bytes": "73516" }, { "name": "Makefile", "bytes": "5560" }, { "name": "Nginx", "bytes": "1275" }, { "name": "Python", "bytes": "74190" }, { "name": "Shell", "bytes": "9973" } ], "symlink_target": "" }
import numpy as np import dill from pathlib import Path from pySDC.helpers.stats_helper import get_sorted from pySDC.core.Collocation import CollBase as Collocation from pySDC.implementations.problem_classes.Battery_2Condensators import battery_2condensators from pySDC.implementations.sweeper_classes.imex_1st_order import imex_1st_order from pySDC.implementations.controller_classes.controller_nonMPI import controller_nonMPI from pySDC.implementations.transfer_classes.TransferMesh import mesh_to_mesh from pySDC.projects.PinTSimE.piline_model import setup_mpl import pySDC.helpers.plot_helper as plt_helper from pySDC.core.Hooks import hooks from pySDC.projects.PinTSimE.switch_estimator import SwitchEstimator class log_data(hooks): def post_step(self, step, level_number): super(log_data, self).post_step(step, level_number) # some abbreviations L = step.levels[level_number] L.sweep.compute_end_point() self.add_to_stats( process=step.status.slot, time=L.time + L.dt, level=L.level_index, iter=0, sweep=L.status.sweep, type='current L', value=L.uend[0], ) self.add_to_stats( process=step.status.slot, time=L.time + L.dt, level=L.level_index, iter=0, sweep=L.status.sweep, type='voltage C1', value=L.uend[1], ) self.add_to_stats( process=step.status.slot, time=L.time + L.dt, level=L.level_index, iter=0, sweep=L.status.sweep, type='voltage C2', value=L.uend[2], ) self.increment_stats( process=step.status.slot, time=L.time, level=L.level_index, iter=0, sweep=L.status.sweep, type='restart', value=1, initialize=0, ) def main(use_switch_estimator=True): """ A simple test program to do SDC/PFASST runs for the battery drain model using 2 condensators """ # initialize level parameters level_params = dict() level_params['restol'] = 1e-13 level_params['dt'] = 1e-2 # initialize sweeper parameters sweeper_params = dict() sweeper_params['quad_type'] = 'LOBATTO' sweeper_params['num_nodes'] = 5 sweeper_params['QI'] = 'LU' # For the IMEX sweeper, the LU-trick can be activated for the implicit part sweeper_params['initial_guess'] = 'zero' # initialize problem parameters problem_params = dict() problem_params['Vs'] = 5.0 problem_params['Rs'] = 0.5 problem_params['C1'] = 1.0 problem_params['C2'] = 1.0 problem_params['R'] = 1.0 problem_params['L'] = 1.0 problem_params['alpha'] = 5.0 problem_params['V_ref'] = np.array([1.0, 1.0]) # [V_ref1, V_ref2] problem_params['set_switch'] = np.array([False, False], dtype=bool) problem_params['t_switch'] = np.zeros(np.shape(problem_params['V_ref'])[0]) # initialize step parameters step_params = dict() step_params['maxiter'] = 20 # initialize controller parameters controller_params = dict() controller_params['logger_level'] = 20 controller_params['hook_class'] = log_data # convergence controllers convergence_controllers = dict() if use_switch_estimator: switch_estimator_params = {} convergence_controllers[SwitchEstimator] = switch_estimator_params # fill description dictionary for easy step instantiation description = dict() description['problem_class'] = battery_2condensators # pass problem class description['problem_params'] = problem_params # pass problem parameters description['sweeper_class'] = imex_1st_order # pass sweeper description['sweeper_params'] = sweeper_params # pass sweeper parameters description['level_params'] = level_params # pass level parameters description['step_params'] = step_params description['space_transfer_class'] = mesh_to_mesh # pass spatial transfer class if use_switch_estimator: description['convergence_controllers'] = convergence_controllers proof_assertions_description(description, problem_params) # set time parameters t0 = 0.0 Tend = 3.5 # instantiate controller controller = controller_nonMPI(num_procs=1, controller_params=controller_params, description=description) # get initial values on finest level P = controller.MS[0].levels[0].prob uinit = P.u_exact(t0) # call main function to get things done... uend, stats = controller.run(u0=uinit, t0=t0, Tend=Tend) Path("data").mkdir(parents=True, exist_ok=True) fname = 'data/battery_2condensators.dat' f = open(fname, 'wb') dill.dump(stats, f) f.close() # filter statistics by number of iterations iter_counts = get_sorted(stats, type='niter', sortby='time') # compute and print statistics min_iter = 20 max_iter = 0 f = open('battery_2condensators_out.txt', 'w') niters = np.array([item[1] for item in iter_counts]) out = ' Mean number of iterations: %4.2f' % np.mean(niters) f.write(out + '\n') print(out) for item in iter_counts: out = 'Number of iterations for time %4.2f: %1i' % item f.write(out + '\n') # print(out) min_iter = min(min_iter, item[1]) max_iter = max(max_iter, item[1]) restarts = np.array(get_sorted(stats, type='restart', recomputed=False))[:, 1] print("Restarts for dt: ", level_params['dt'], " -- ", np.sum(restarts)) assert np.mean(niters) <= 10, "Mean number of iterations is too high, got %s" % np.mean(niters) f.close() plot_voltages(description, use_switch_estimator) return np.mean(niters) def plot_voltages(description, use_switch_estimator, cwd='./'): """ Routine to plot the numerical solution of the model """ f = open(cwd + 'data/battery_2condensators.dat', 'rb') stats = dill.load(f) f.close() # convert filtered statistics to list of iterations count, sorted by process cL = get_sorted(stats, type='current L', sortby='time') vC1 = get_sorted(stats, type='voltage C1', sortby='time') vC2 = get_sorted(stats, type='voltage C2', sortby='time') times = [v[0] for v in cL] setup_mpl() fig, ax = plt_helper.plt.subplots(1, 1, figsize=(4.5, 3)) ax.plot(times, [v[1] for v in cL], label='$i_L$') ax.plot(times, [v[1] for v in vC1], label='$v_{C_1}$') ax.plot(times, [v[1] for v in vC2], label='$v_{C_2}$') if use_switch_estimator: t_switch_plot = np.zeros(np.shape(description['problem_params']['t_switch'])[0]) for i in range(np.shape(description['problem_params']['t_switch'])[0]): t_switch_plot[i] = description['problem_params']['t_switch'][i] ax.axvline(x=t_switch_plot[i], linestyle='--', color='k', label='Switch {}'.format(i + 1)) ax.legend(frameon=False, fontsize=12, loc='upper right') ax.set_xlabel('Time') ax.set_ylabel('Energy') fig.savefig('data/battery_2condensators_model_solution.png', dpi=300, bbox_inches='tight') plt_helper.plt.close(fig) def proof_assertions_description(description, problem_params): """ Function to proof the assertions (function to get cleaner code) """ assert problem_params['alpha'] > problem_params['V_ref'][0], 'Please set "alpha" greater than "V_ref1"' assert problem_params['alpha'] > problem_params['V_ref'][1], 'Please set "alpha" greater than "V_ref2"' assert problem_params['V_ref'][0] > 0, 'Please set "V_ref1" greater than 0' assert problem_params['V_ref'][1] > 0, 'Please set "V_ref2" greater than 0' assert type(problem_params['V_ref']) == np.ndarray, '"V_ref" needs to be an array (of type float)' assert not problem_params['set_switch'][0], 'First entry of "set_switch" needs to be False' assert not problem_params['set_switch'][1], 'Second entry of "set_switch" needs to be False' assert not type(problem_params['t_switch']) == float, '"t_switch" has to be an array with entry zero' assert problem_params['t_switch'][0] == 0, 'First entry of "t_switch" needs to be zero' assert problem_params['t_switch'][1] == 0, 'Second entry of "t_switch" needs to be zero' assert 'errtol' not in description['step_params'].keys(), 'No exact solution known to compute error' assert 'alpha' in description['problem_params'].keys(), 'Please supply "alpha" in the problem parameters' assert 'V_ref' in description['problem_params'].keys(), 'Please supply "V_ref" in the problem parameters' if __name__ == "__main__": main()
{ "content_hash": "022959d64c8d45a6f81e7aa0d7d7c223", "timestamp": "", "source": "github", "line_count": 241, "max_line_length": 109, "avg_line_length": 36.22406639004149, "alnum_prop": 0.6406643757159222, "repo_name": "Parallel-in-Time/pySDC", "id": "c41cb8271236f26c8c7c6f827a0a2853e1154c91", "size": "8730", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "pySDC/projects/PinTSimE/battery_2condensators_model.py", "mode": "33188", "license": "bsd-2-clause", "language": [ { "name": "Jupyter Notebook", "bytes": "4264000" }, { "name": "Python", "bytes": "2450453" }, { "name": "Shell", "bytes": "18105" } ], "symlink_target": "" }
from lib.graphics import * from src.interface.IDrawable import * from src.interface.Color import * class Fence(IDrawable): class DIRECTION(Enum): HORIZONTAL = 0 VERTICAL = 1 def __init__(self, board, player): self.board = board self.player = player def draw(self, color = None): if not INTERFACE: return square = self.getSquare() rectangleLength = 2*self.board.squareSize + self.board.innerSize rectangleWidth = self.board.innerSize if (self.direction == Fence.DIRECTION.HORIZONTAL): rectangle = Rectangle(Point(square.left, square.top - rectangleWidth), Point(square.left + rectangleLength, square.top)) else: rectangle = Rectangle(Point(square.left - rectangleWidth, square.top), Point(square.left, square.top + rectangleLength)) rectangle.setFill(self.player.color.value if color is None else color) rectangle.setWidth(0) rectangle.draw(self.board.window) def place(self, coord, direction): self.coord = coord self.direction = direction self.board.fences.append(self) self.board.updateStoredValidActionsAfterFencePlacing(coord, direction) self.draw() def getSquare(self): return self.board.getSquareAt(self.coord) def __str__(self): vertical = (self.direction == Fence.DIRECTION.VERTICAL) return "%s-fence at %s" % ("V" if vertical else "H", self.coord)
{ "content_hash": "84b1e5795808b75d7e89c65a3a7cd25c", "timestamp": "", "source": "github", "line_count": 46, "max_line_length": 132, "avg_line_length": 34, "alnum_prop": 0.6214833759590793, "repo_name": "alainrinder/quoridor.py", "id": "08c758ca17efcf5fe3c32dbaac017454d09afda6", "size": "1656", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "src/interface/Fence.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "95359" } ], "symlink_target": "" }
""" Proxied API URLs. Served from the same domain docs are served, so they can make use of features that require to have access to their cookies. """ from django.conf.urls import url from readthedocs.analytics.proxied_api import AnalyticsView from readthedocs.api.v2.views.proxied import ProxiedEmbedAPI, ProxiedFooterHTML from readthedocs.search.proxied_api import ProxiedPageSearchAPIView api_footer_urls = [ url(r'footer_html/', ProxiedFooterHTML.as_view(), name='footer_html'), url(r'search/$', ProxiedPageSearchAPIView.as_view(), name='search_api'), url(r'embed/', ProxiedEmbedAPI.as_view(), name='embed_api'), url(r'analytics/$', AnalyticsView.as_view(), name='analytics_api'), ] urlpatterns = api_footer_urls
{ "content_hash": "bf2a1232e5159202df321f1bed74c451", "timestamp": "", "source": "github", "line_count": 21, "max_line_length": 79, "avg_line_length": 35.095238095238095, "alnum_prop": 0.7530529172320217, "repo_name": "rtfd/readthedocs.org", "id": "2f5346a465dabfa56b5338d9c5cfd3b84cb99463", "size": "737", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "readthedocs/api/v2/proxied_urls.py", "mode": "33188", "license": "mit", "language": [ { "name": "Batchfile", "bytes": "4515" }, { "name": "CSS", "bytes": "66552" }, { "name": "Dockerfile", "bytes": "205" }, { "name": "HTML", "bytes": "196998" }, { "name": "JavaScript", "bytes": "431128" }, { "name": "Makefile", "bytes": "4594" }, { "name": "Python", "bytes": "1821332" }, { "name": "Shell", "bytes": "682" } ], "symlink_target": "" }
"""C4 dataset based on Common Crawl.""" import os import gzip import requests from tqdm import tqdm BASE_DOWNLOAD_PATH = "/tmp" _VARIANTS = ["en", "realnewslike", "en.noblocklist", "en.noclean"] _N_SHARDS_PER_SPLIT = { "en": { "train": 1024, "validation": 8 }, "realnewslike": { "train": 512, "validation": 1 }, "en.noblocklist": { "train": 1024, "validation": 8 }, "en.noclean": { "train": 7168, "validation": 64 }, } _DATA_URL = "https://huggingface.co/datasets/allenai/c4/resolve/607bd4c8450a42878aa9ddc051a65a055450ef87/{name}/c4-{split}.{index:05d}-of-{n_shards:05d}.json.gz" def download(url: str, fname: str): resp = requests.get(url, stream=True) total = int(resp.headers.get('content-length', 0)) # Can also replace 'file' with a io.BytesIO object with open(fname, 'wb') as file, tqdm( desc=fname, total=total, unit='iB', unit_scale=True, unit_divisor=1024, ) as bar: for data in resp.iter_content(chunk_size=1024): size = file.write(data) bar.update(size) def decompress(infile, tofile): with open(infile, 'rb') as inf, open(tofile, 'w', encoding='utf8') as tof: decom_str = gzip.decompress(inf.read()).decode('utf-8') tof.write(decom_str) if __name__ == "__main__": for variant in _VARIANTS: print('\n=============================================================') print(f'Processing Variant: {variant}') variant_dir = os.path.join(BASE_DOWNLOAD_PATH, variant) try: os.makedirs(variant_dir) except FileExistsError: pass for split in ["train", "validation"]: if split == "train": continue num_shards = _N_SHARDS_PER_SPLIT[variant][split] print(f"Split: {split}, Shards: {num_shards}") for index in range(num_shards): url = _DATA_URL.format( name=variant, split=split, index=index, n_shards=num_shards ) filename = os.path.join(variant_dir, url.split("/")[-1]) # Downloading the file in GZIP format if not os.path.isfile(filename): print(f"Downloading: {url}...") download(url, fname=filename) else: print(f"Already exists: {filename}...") # Processing the file from GZIP to JSON target_file = filename.replace(".gz", "") if not os.path.isfile(target_file): print(f"Decompressing: {filename}...") decompress(filename, target_file) else: print(f"Decompressed file already exists: {target_file}")
{ "content_hash": "0fb8ad22a7585c57a5bd78777ffde330", "timestamp": "", "source": "github", "line_count": 100, "max_line_length": 161, "avg_line_length": 28.96, "alnum_prop": 0.523135359116022, "repo_name": "tensorflow/tensorrt", "id": "5dcf3b23a75cbd430242c389ebad74b396d720b8", "size": "2896", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "tftrt/benchmarking-python/huggingface/t5/download_c4.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "C++", "bytes": "46221" }, { "name": "CMake", "bytes": "4340" }, { "name": "Jupyter Notebook", "bytes": "2748791" }, { "name": "Python", "bytes": "588488" }, { "name": "Shell", "bytes": "103938" }, { "name": "Starlark", "bytes": "1478" } ], "symlink_target": "" }
"""Tools for animation. Animation sources are GIFs from disk, which have been made into a PygAnimation [1]_ object. Stateful animations which represent objects, e.g., :class:`Walkabout` represents an :class:`actor.Actor`. Examples of "tools": * functions for creating an animation from a single suface * loading animations from disk * adding frame-dependent positional data * contextually-aware sprites References: .. [1] PygAnim: http://inventwithpython.com/pyganim/ Warning: Sometimes an "animation" can consist of one frame. Note: I wanna add support for loading character animations from sprite sheets. See Also: * :mod:`util` * :mod:`actor` * :class:`Walkabout` """ import os import copy import glob import itertools import collections try: import ConfigParser as configparser except ImportError: import configparser import pygame import pyganim from PIL import Image from hypatia import util from hypatia import render from hypatia import constants class BadWalkabout(Exception): """The supplied directory has no files which match ``*.gif.`` The walkabout resource specified does not contain any GIFs. See Also: :meth:`Walkabout.__init__` """ def __init__(self, supplied_archive): """ Args: supplied_archive (str): :class:`Walkabout` resource archive which *should* have contained files of pattern ``*.gif,`` but didn't. """ super(BadWalkabout, self).__init__(supplied_archive) class AnimAnchors(object): """The anchors per frame of a :class:`pyganim.PygAnimation`. Anchors are coordinates belonging to a :class:`pygame.Surface`, which can be translated to coordinates belonging to another surface. With :class:`AnimAnchors` you can keep one animation "pinned" or "glued" to another. This can help with adding decals to a :class;`Walkabout` animation (like a hat!). Attributes: anchor_points (dict): key is anchor label/group, value is a list of :class:`AnchorPoint` instances whose index corresponds to respective :class:`pyganim.PygAnimation` frame index. anchor_groups (list): the names/labels of the anchor groups, e.g., *head_anchor*. Example: >>> resource = util.Resource('walkabouts', 'debug') >>> anchors = AnimAnchors.from_config(resource['walk_north.ini']) >>> anchors.anchor_points['head_anchor'] [<hypatia.animations.AnchorPoint object at 0x...>, ...] >>> anchors.anchor_groups ['head_anchor'] Note: You can modify anchors--there's no reason they have to be immutable. You can even build them yourself. Remember the tall cacti from Mario? How about a spinning mace? See Also: * :class:`AnchorPoint` * :meth:`Walkabout.blit` """ def __init__(self, anchor_points, anchor_groups): self.anchor_points = anchor_points self.anchor_groups = anchor_groups @classmethod def from_config(cls, anchor_ini): """Instantiate AnimAnchors using the anchor_ini config. The anchor_ini derives from an INI like this: [head_anchor] 0=0,2 1=1,3 2=2,2 `[head_anchor]` is the anchor label. The stuff below it is `head_anchor`'s position for frames 0, 1, and 2. In the above example, `head_anchor` has a coordinate (anchor) for three different frames: * frame 0 at (0, 2) * frame 1 at (1, 3) * frame 2 at (2, 2) Note: `anchor_ini` should be provided from a :class:`util.Resource`. See example below. Args: anchor_ini (configparser): configparser object. Example: >>> resource = util.Resource('walkabouts', 'debug') >>> AnimAnchors.from_config(resource['walk_north.ini']) <hypatia.animations.AnimAnchors object at 0x...> Returns: AnimAnchors: anchor points and groups collected from an INI """ anchor_point_groups = anchor_ini.sections() # key is group, value is list of frame coord positions anchors = {name: [] for name in anchor_point_groups} for anchor_point_group in anchor_point_groups: for __, frame_anchor in anchor_ini.items(anchor_point_group): x, y = frame_anchor.split(',') anchor_point = AnchorPoint(int(x), int(y)) anchors[anchor_point_group].append(anchor_point) return AnimAnchors(anchors, anchor_point_groups) def get_anchor_point(self, anchor_point_group, frame_index): """Return an :class:`AnchorPoint` corresponding to group name and frame index. Args: anchor_point_group (str): name of the anchor point group frame_index (int): which frame for group's anchor Returns: AnchorPoint: -- Note: Will simply return last anchor point for group if an anchor isn't defined for frame. Example: >>> resource = util.Resource('walkabouts', 'debug') >>> config = resource['walk_north.ini'] >>> animation_anchors = AnimAnchors.from_config(config) >>> animation_anchors.get_anchor_point('head_anchor', 0) <hypatia.animations.AnchorPoint object at 0x...> """ try: return self.anchor_points[anchor_point_group][frame_index] except IndexError: return self.anchor_points[anchor_point_group][-1] class AnchorPoint(object): """A coordinate on a surface which is used for pinning to another surface AnchorPoint. Used when attempting to afix one surface to another, lining up their corresponding anchorpoints. Attributes: x (int): x-axis coordinate on a surface to place anchor at y (int): x-axis coordinate on a surface to place anchor at """ def __init__(self, x, y): """Create an AnchorPoint at coordinate (x, y). Args: x (int): the x-axis pixel position y (int): the y-axis pixel position Example: >>> anchor_point = AnchorPoint(5, 3) >>> anchor_point.x 5 >>> anchor_point.y 3 """ self.x = x self.y = y def __add__(self, other_anchor_point): """Adds the x, y values of this and another anchor point. Args: other_anchor_point (AnchorPoint): the AnchorPoint coordinates to add to this AnchorPoint's coordinates. Returns: (x, y) tuple: the new x, y coordinate Example: >>> anchor_point_a = AnchorPoint(4, 1) >>> anchor_point_b = AnchorPoint(2, 0) >>> anchor_point_a + anchor_point_b (6, 1) """ return (self.x + other_anchor_point.x, self.y + other_anchor_point.y) def __sub__(self, other_anchor_point): """Find the difference between this anchor and another. Args: other_anchor_point (AnchorPoint): the AnchorPoint coordinates to subtract from this AnchorPoint's coordinates. Returns: tuple: the (x, y) difference between this anchor point and the other supplied. Example: >>> anchor_point_a = AnchorPoint(4, 1) >>> anchor_point_b = AnchorPoint(2, 0) >>> anchor_point_a - anchor_point_b (2, 1) """ return (self.x - other_anchor_point.x, self.y - other_anchor_point.y) class Walkabout(object): """Sprite animations for a character which walks around. Contextually-aware graphical representation. The walkabout sprites specified to be therein walkabout_directory, are files with an action__direction.gif filename convention. Blits its children relative to its own anchor. Attributes: resource (Resource): -- animations (dict): 2D dictionary [action][direction] whose values are PygAnimations. animation_anchors (dict): 2D dictionary [action][direction] whose values are AnimAnchors. rect (pygame.Rect): position on tilemap size (tuple): the size of the animation in pixels. action (constants.Action): -- direction (constnts.Direction): -- topleft_float (x,y tuple): -- position_rect """ def __init__(self, directory, position=None, children=None): """ Args: directory (str): directory containing (animated) walkabout GIFs. Assumed parent is data/walkabouts/ position (tuple): (x, y) coordinates (integers) referring to absolute pixel coordinate. children (list|None): Walkabout objects drawn relative to this Walkabout instance. Example: >>> hat = Walkabout('hat') >>> Walkabout('debug', position=(44, 55), children=[hat]) <hypatia.animations.Walkabout object at 0x...> """ # the attributes we're generating self.animations = {} self.animation_anchors = {} self.actions = [] self.directions = [] self.size = None # will be removed in future? if not position: position = (0, 0) topleft_float = (float(position[0]), float(position[1])) # specify the files to load # how will i glob a resource resource = util.Resource('walkabouts', directory) sprite_files = resource.get_type('.gif') # no sprites matching pattern! if not sprite_files: raise BadWalkabout(directory) for sprite_path in sprite_files.keys(): file_name, file_ext = os.path.splitext(sprite_path) file_name = os.path.split(file_name)[1] if file_name == 'only': action = constants.Action.stand direction = constants.Direction.south else: action, direction = file_name.split('_', 1) direction = getattr(constants.Direction, direction) action = getattr(constants.Action, action) self.actions.append(action) self.directions.append(direction) # load pyganim from gif file animation = sprite_files[sprite_path] try: self.animations[action][direction] = animation except KeyError: self.animations[action] = {direction: animation} # load anchor points # erro here not loading all the time # maybe make the ini exlpicit? this caused porbs associated_ini_name = file_name + '.ini' if associated_ini_name in resource: anchors_ini = resource[associated_ini_name] anim_anchors = AnimAnchors.from_config(anchors_ini) try: self.animation_anchors[action][direction] = anim_anchors except KeyError: self.animation_anchors[action] = {direction: anim_anchors} else: self.animation_anchors = None # ... set the rest of the attribs self.resource = resource self.size = animation.getMaxSize() self.rect = pygame.Rect(position, self.size) self.topleft_float = topleft_float self.action = constants.Action.stand self.direction = constants.Direction.south self.child_walkabouts = children or [] def __getitem__(self, key): """Fetch sprites associated with action (key). Args: key (constants.Action): return dictionary of sprites for this action (key). Returns: dict: sprites associated with action supplied (key) Examples: >>> walkabout = Walkabout('debug') >>> walkabout[constants.Action.walk][constants.Direction.south] <pyganim.PygAnimation object at 0x...> """ return self.animations[key] def current_animation(self): """Returns the animation selected by the current action and direction. Returns: PygAnim: the animation associated with this Walkabout's current action and direction. Example: >>> walkabout = Walkabout('debug') >>> walkabout.current_animation() <pyganim.PygAnimation object at 0x...> """ return self.animations[self.action][self.direction] def get_anchors(self): """Get anchors per frame in a GIF by identifying th ecoordinate of a specific color. Warning: This is an old, but still useful way of loading anchors for an animation. """ anchors = {a: {d: [] for d in self.directions} for a in self.actions} for action, directions in self.animations.items(): for direction, animation in directions.items(): for surface_frame in animation._images: anchor = self.get_anchor(surface_frame) anchors[action][direction].append(anchor) return anchors def get_anchor(self, surface): """Locate the anchor coordinate by identifying which pixel coordinate matches color. Args: surface (pygame.Surface): surface to scan for color and return the coord which color appears Returns: tuple: (x, y) pixel coordinate where color shows up. Warning: Old way of defining anchor points, but still handy! """ x, y = surface.get_size() debug_color = pygame.Color(255, 136, 255) for coord in itertools.product(range(0, x), range(0, y)): if surface.get_at(coord) == debug_color: return coord def blit(self, screen, offset): """Draw the appropriate/active animation to screen. Note: Should go to render module? Args: screen (pygame.Surface): the primary display/screen. offset (x, y tuple): the x, y coords of the absolute starting top left corner for the current screen/viewport position. """ x, y = self.topleft_float x -= offset[0] y -= offset[1] position_on_screen = (x, y) pyganim_gif = self.current_animation() pyganim_gif.blit(screen, position_on_screen) # the rest of this is for children/anchors if self.animation_anchors is None: return None pyganim_frame_index = pyganim.findStartTime(pyganim_gif._startTimes, pyganim_gif.elapsed) current_frame_surface = pyganim_gif.getFrame(pyganim_frame_index) # anchors are all completely wrong animation_anchors = self.animation_anchors[self.action][self.direction] frame_anchor = animation_anchors.get_anchor_point('head_anchor', pyganim_frame_index) parent_anchor = AnchorPoint(position_on_screen[0] + frame_anchor.x, position_on_screen[1] + frame_anchor.y) for child_walkabout in self.child_walkabouts: # draw at position + difference in child anchor child_anim_anchor = (child_walkabout .animation_anchors[self.action] [self.direction]) child_frame_anchor = (child_anim_anchor .get_anchor_point('head_anchor', pyganim_frame_index)) child_position = parent_anchor - child_frame_anchor child_anim = child_walkabout.current_animation() child_anim.blit(screen, child_position) def runtime_setup(self): """Perform actions to setup the walkabout. Actions performed once pygame is running and walkabout has been initialized. Convert and play all the animations, run init for children. Note: It MAY be bad to leave the sprites in play mode in startup by default. """ if len(self.animations) == 1: actions = (constants.Action.stand,) directions = (constants.Direction.south,) else: actions = (constants.Action.walk, constants.Action.stand) directions = (constants.Direction.north, constants.Direction.south, constants.Direction.east, constants.Direction.west) for action in actions: for direction in directions: animated_sprite = self.animations[action][direction] animated_sprite.convert_alpha() animated_sprite.play() for walkabout_child in self.child_walkabouts: walkabout_child.runtime_setup() def palette_cycle(surface): """get_palette is not sufficient; it generates superflous colors. Note: Need to see if I can convert 32bit alpha to 8 bit temporarily, to be converted back at end of palette/color manipulations. """ original_surface = surface.copy() # don't touch! used for later calc width, height = surface.get_size() ordered_color_list = [] seen_colors = set() for coordinate in itertools.product(range(0, width), range(0, height)): color = surface.get_at(coordinate) color = tuple(color) if color in seen_colors: continue ordered_color_list.append(color) seen_colors.add(color) # reverse the color list but not the pixel arrays, then replace! old_color_list = collections.deque(ordered_color_list) new_surface = surface.copy() frames = [] for rotation_i in range(len(ordered_color_list)): new_surface = new_surface.copy() new_color_list = copy.copy(old_color_list) new_color_list.rotate(1) color_translations = dict(zip(old_color_list, new_color_list)) # replace each former color with the color from newcolor_list for coordinate in itertools.product(range(0, width), range(0, height)): color = new_surface.get_at(coordinate) color = tuple(color) new_color = color_translations[color] new_surface.set_at(coordinate, new_color) frame = new_surface.copy() frames.append((frame, 0.2)) old_color_list = copy.copy(new_color_list) return pyganim.PygAnimation(frames)
{ "content_hash": "8558f7f78fffc3b0a328341726211bcc", "timestamp": "", "source": "github", "line_count": 605, "max_line_length": 79, "avg_line_length": 32.236363636363635, "alnum_prop": 0.5722196585140747, "repo_name": "brechin/hypatia", "id": "8ab4294e4f6e6bf3134ba4e17c2ea9b1df44f594", "size": "19614", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "hypatia/animations.py", "mode": "33188", "license": "mit", "language": [ { "name": "Batchfile", "bytes": "25" }, { "name": "Python", "bytes": "101038" }, { "name": "Shell", "bytes": "6424" } ], "symlink_target": "" }
from shop.models.ordermodel import OrderExtraInfo, Order from shop.util.order import get_order_from_request class ShopAPI(object): """ A base-baseclass for shop APIs. Both payment and shipping backends need some common functions from the shop interface (for example get_order() is useful in both cases). To reduce code duplication, theses common methods are defined here and inherited by shop interfaces (DRY) Another approach would be to stuff everything here, but I think it opens up potential to overbloating this one class. This is debatable and relatively easy to change later anyway. Define all functions common to both the shipping and the payment shop APIs here PLEASE: When adding functions here please write a short description of them in BaseShippingBackend and BasePaymentBackend, future implementers thank you :) """ def get_order(self, request): """ Returns the order object for the current shopper. This is called from the backend's views as: >>> order = self.shop.getOrder(request) """ # it might seem a bit strange to simply forward the call to a helper, # but this avoids exposing the shop's internal workings to module # writers return get_order_from_request(request) def add_extra_info(self, order, text): """ Add an extra info text field to the order """ OrderExtraInfo.objects.create(text=text, order=order) def is_order_paid(self, order): """Whether the passed order is fully paid or not.""" return order.is_paid() is_order_payed = is_order_paid #Backward compatability, deprecated spelling def is_order_completed(self, order): return order.is_completed() def get_order_total(self, order): """The total amount to be charged for passed order""" return order.order_total def get_order_subtotal(self, order): """The total amount to be charged for passed order""" return order.order_subtotal def get_order_short_name(self, order): """ A short name for the order, to be displayed on the payment processor's website. Should be human-readable, as much as possible """ return "%s-%s" % (order.pk, order.order_total) def get_order_unique_id(self, order): """ A unique identifier for this order. This should be our shop's reference number. This is sent back by the payment processor when confirming payment, for example. """ return order.pk def get_order_for_id(self, id): """ Get an order for a given ID. Typically, this would be used when the backend receives notification from the transaction processor (i.e. paypal ipn), with an attached "invoice ID" or "order ID", which should then be used to get the shop's order with this method. """ return Order.objects.get(pk=id)
{ "content_hash": "38c5edff89c0f82b134c47eb6f7b64ae", "timestamp": "", "source": "github", "line_count": 81, "max_line_length": 79, "avg_line_length": 37.111111111111114, "alnum_prop": 0.6636726546906188, "repo_name": "bmihelac/django-shop", "id": "f300f8875af5c0d89ce3e26c6bad47b6d2d46ce1", "size": "3029", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "shop/shop_api.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "Python", "bytes": "386859" }, { "name": "Shell", "bytes": "5030" } ], "symlink_target": "" }
1import sys as s import subprocess as sb from time import time from parsingInfo import parseInfo from actions import userNodeSelectionAct,randomSubSamplingAct,parseList from featuresVector import featuresCreate from misc import mergeList from preformat import process #/!\ The list of samples ID is supposed to be the same as the list of .match files! Each .match file must correspond to one single sample! def main(): iMatrix = raw_input("Write down the CSV file name of the data matrix in the folder \"meta\" [ without the extension .csv ]\n") if (iMatrix == ""): iMatrix = "Info" fastaFileName = raw_input("Write down the FASTA file names in the folder \"meta\" [ without the extension .fasta ]\n") if (fastaFileName == ""): fastaFileName = "GREENGENES_gg16S_unaligned_10022015" print "/!\ Data getting parsed..." try: samplesInfoList,infoList = parseInfo(iMatrix) filenames = [sample[0] for sample in samplesInfoList] except IOError: print "\nERROR: Maybe the filename",iMatrix,".csv does not exist in \"meta\" folder.\n" s.exit(0) print "-- End of parsing\n" sb.call("ls ./meta/match > sampleidlist",shell=True) sampleidlist = sb.check_output("sed 's/.match//g' sampleidlist | sed 's/testfiles//g' | sed '/^$/d'",shell=True).split() sb.call("rm -f sampleidlist",shell=True) result = sb.check_output("ls ./meta/match/testfiles",shell=True) if not result: print "/!\ Pre-processing files for parsing..." process(sampleidlist) print "/!\ Pre-processing done." print "/!\ Constructing the features vectors..." sampleList = mergeList(sampleidlist,filenames) try: matchingNodes,idSequences,_,_ = featuresCreate(sampleList,fastaFileName) except ValueError: print "/!\ ERROR: Please look at the line above." print "/!\ ERROR: If the line above is blank, it may be an uncatched ValueError.\n" s.exit(0) print "-- End of construction\n" dataArray = [samplesInfoList,infoList,idSequences,sampleList,matchingNodes] answer = "" while not ((answer == "exit") or (answer == "exit()") or (answer == "quit")): try: print "What do you want to do?" print "[Write down the number matching with the action required. Details are in README file]" print " 1: User node selection" print " 2: Random sub-sampling" print "[To quit, write down exit]" answer = raw_input("Your answer?\n") if (answer =="1"): userNodeSelectionAct(dataArray) print "-- End \n" elif (answer == "2"): randomSubSamplingAct(dataArray) print "-- End \n" elif not ((answer == "exit") or (answer == "exit()") or (answer == "quit")): print "\n/!\ ERROR: Please enter a number between 1 and 2 included, or 'exit' if you want to quit." raise ValueError except ValueError: print "/!\ ERROR: Please look at the line above." print "/!\ ERROR: If the line above is blank, it may be an uncatched ValueError.\n"
{ "content_hash": "f90b61d5c086f13276f129a65c1fe4f3", "timestamp": "", "source": "github", "line_count": 66, "max_line_length": 138, "avg_line_length": 48.36363636363637, "alnum_prop": 0.6284461152882206, "repo_name": "kuredatan/taxoclassifier", "id": "9256919fad98cb7ba745f4a099d09723c4802381", "size": "3192", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "main.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "52677" }, { "name": "Shell", "bytes": "922" } ], "symlink_target": "" }
import sys from typing import Any, TYPE_CHECKING from azure.core.configuration import Configuration from azure.core.pipeline import policies from azure.mgmt.core.policies import ARMHttpLoggingPolicy, AsyncARMChallengeAuthenticationPolicy from .._version import VERSION if sys.version_info >= (3, 8): from typing import Literal # pylint: disable=no-name-in-module, ungrouped-imports else: from typing_extensions import Literal # type: ignore # pylint: disable=ungrouped-imports if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from azure.core.credentials_async import AsyncTokenCredential class ContainerServiceClientConfiguration(Configuration): # pylint: disable=too-many-instance-attributes """Configuration for ContainerServiceClient. Note that all parameters used to create this instance are saved as instance attributes. :param credential: Credential needed for the client to connect to Azure. Required. :type credential: ~azure.core.credentials_async.AsyncTokenCredential :param subscription_id: Subscription credentials which uniquely identify Microsoft Azure subscription. The subscription ID forms part of the URI for every service call. Required. :type subscription_id: str :keyword api_version: Api Version. Default value is "2018-08-01-preview". Note that overriding this default value may result in unsupported behavior. :paramtype api_version: str """ def __init__(self, credential: "AsyncTokenCredential", subscription_id: str, **kwargs: Any) -> None: super(ContainerServiceClientConfiguration, self).__init__(**kwargs) api_version = kwargs.pop("api_version", "2018-08-01-preview") # type: Literal["2018-08-01-preview"] if credential is None: raise ValueError("Parameter 'credential' must not be None.") if subscription_id is None: raise ValueError("Parameter 'subscription_id' must not be None.") self.credential = credential self.subscription_id = subscription_id self.api_version = api_version self.credential_scopes = kwargs.pop("credential_scopes", ["https://management.azure.com/.default"]) kwargs.setdefault("sdk_moniker", "mgmt-containerservice/{}".format(VERSION)) self._configure(**kwargs) def _configure(self, **kwargs: Any) -> None: self.user_agent_policy = kwargs.get("user_agent_policy") or policies.UserAgentPolicy(**kwargs) self.headers_policy = kwargs.get("headers_policy") or policies.HeadersPolicy(**kwargs) self.proxy_policy = kwargs.get("proxy_policy") or policies.ProxyPolicy(**kwargs) self.logging_policy = kwargs.get("logging_policy") or policies.NetworkTraceLoggingPolicy(**kwargs) self.http_logging_policy = kwargs.get("http_logging_policy") or ARMHttpLoggingPolicy(**kwargs) self.retry_policy = kwargs.get("retry_policy") or policies.AsyncRetryPolicy(**kwargs) self.custom_hook_policy = kwargs.get("custom_hook_policy") or policies.CustomHookPolicy(**kwargs) self.redirect_policy = kwargs.get("redirect_policy") or policies.AsyncRedirectPolicy(**kwargs) self.authentication_policy = kwargs.get("authentication_policy") if self.credential and not self.authentication_policy: self.authentication_policy = AsyncARMChallengeAuthenticationPolicy( self.credential, *self.credential_scopes, **kwargs )
{ "content_hash": "128556ca68c5947dc4d18dfec6920f0f", "timestamp": "", "source": "github", "line_count": 65, "max_line_length": 108, "avg_line_length": 53.4, "alnum_prop": 0.7251512532411409, "repo_name": "Azure/azure-sdk-for-python", "id": "5d4d41c05cac63d16919a896dec93f58ed5e5fec", "size": "3939", "binary": false, "copies": "1", "ref": "refs/heads/main", "path": "sdk/containerservice/azure-mgmt-containerservice/azure/mgmt/containerservice/v2018_08_01_preview/aio/_configuration.py", "mode": "33188", "license": "mit", "language": [ { "name": "Batchfile", "bytes": "1224" }, { "name": "Bicep", "bytes": "24196" }, { "name": "CSS", "bytes": "6089" }, { "name": "Dockerfile", "bytes": "4892" }, { "name": "HTML", "bytes": "12058" }, { "name": "JavaScript", "bytes": "8137" }, { "name": "Jinja", "bytes": "10377" }, { "name": "Jupyter Notebook", "bytes": "272022" }, { "name": "PowerShell", "bytes": "518535" }, { "name": "Python", "bytes": "715484989" }, { "name": "Shell", "bytes": "3631" } ], "symlink_target": "" }
from tastypie.test import ResourceTestCase from mozdns.tests.utils import create_fake_zone, random_label from core.registration.static.models import StaticReg from core.hwadapter.models import HWAdapter from core.group.models import Group from systems.models import ( System, SystemRack, SystemStatus, OperatingSystem, Allocation, ServerModel, SystemType ) from systems.tests.utils import create_fake_host import simplejson as json from datetime import datetime API_VERSION = '1' class TestCaseUtils(object): def localize_url(self, url): if 'en-US' not in url: url = url.replace('core/api', 'en-US/core/api') return url class CoreAPITests(TestCaseUtils): object_list_url = "/en-US/core/api/v{0}_core/{1}/" object_url = "/en-US/core/api/v{0}_core/{1}/{2}/" def setUp(self): super(CoreAPITests, self).setUp() def test_create(self): resp, post_data = self.generic_create(self.post_data()) new_object_url = resp['Location'] new_resp = self.api_client.get( new_object_url, format='json', follow=True ) self.assertValidJSONResponse(new_resp) new_obj_data = json.loads(new_resp.content) self.compare_data(post_data, new_obj_data) def compare_data(self, old_data, new_obj_data): for key in old_data.keys(): self.assertEqual(old_data[key], new_obj_data[key]) def test_update(self): # Are these test's failing? See this bug. # https://github.com/toastdriven/django-tastypie/issues/597 # Please monkey patch tastypie # tastypie/test.py Line # diff --git a/tastypie/test.py b/tastypie/test.py # index e395158..27f813f 100644 # --- a/tastypie/test.py # +++ b/tastypie/test.py # @@ -161,6 +161,8 @@ class TestApiClient(object): # # if data is not None: # kwargs['data'] = self.serializer.serialize(data, format=content_type) # + if content_type == 'application/json': # + kwargs['data'] = str(kwargs['data']) # # if authentication is not None: # kwargs['HTTP_AUTHORIZATION'] = authentication post_data = self.post_data() resp, post_data = self.generic_create(post_data) new_object_url = resp['Location'] patch_data = self.post_data() update_resp, patch_data = self.generic_update(new_object_url, patch_data) # Now make sure the data used to patch is sticking to the model. patch_resp = self.api_client.get( new_object_url, format='json', follow=True ) self.assertValidJSONResponse(patch_resp) patch_obj_data = json.loads(patch_resp.content) self.compare_data(patch_data, patch_obj_data) def test_delete(self): obj_count = self.test_type.objects.count() resp, post_data = self.generic_create(self.post_data()) new_object_url = self.localize_url(resp['Location']) self.assertEqual(self.test_type.objects.count(), obj_count + 1) resp = self.api_client.delete(new_object_url, format='json') self.assertHttpAccepted(resp) self.assertEqual(self.test_type.objects.count(), obj_count) def generic_update(self, patch_url, patch_data, assertResponse=None): patch_url = self.localize_url(patch_url) obj_count = self.test_type.objects.count() resp = self.api_client.patch(patch_url, format='json', data=patch_data) if not assertResponse: self.assertHttpAccepted(resp) else: assertResponse(resp) # Verify a no new object has been added. self.assertEqual(self.test_type.objects.count(), obj_count) return resp, patch_data def generic_create(self, post_data, assertResponse=None, fail=False): # Check how many are there first. obj_count = self.test_type.objects.count() create_url = self.object_list_url.format( API_VERSION, str(self.test_name).lower()) resp = self.api_client.post(create_url, format='json', data=post_data) if assertResponse: assertResponse(resp) else: self.assertHttpCreated(resp) # Verify a new one has been added. if not fail: self.assertEqual(self.test_type.objects.count(), obj_count + 1) return resp, post_data def test_changing_only_one_field(self): resp, post_data = self.generic_create(self.post_data()) new_object_url = self.localize_url(resp['Location']) change_post_data = {} change_post_data['description'] = "==DIFFERENT==" post_data['description'] = "==DIFFERENT==" resp, patch_data = self.generic_update( new_object_url, change_post_data ) new_resp = self.api_client.get( new_object_url, format='json', follow=True ) updated_obj_data = json.loads(new_resp.content) self.compare_data(post_data, updated_obj_data) class HWAdapterTest(CoreAPITests, ResourceTestCase): test_type = HWAdapter test_name = 'hwadapter' def setUp(self): self.num = 0 create_fake_zone('2.ip6.arpa', suffix="") self.domain = create_fake_zone('foo.mozilla.com', suffix='') self.s = create_fake_host(hostname='foo.mozilla.com') self.sreg = StaticReg.objects.create( label='', domain=self.domain, ip_str='2222:123::', ip_type='6', system=self.s ) self.s = create_fake_host(hostname='foobar.mozilla.com') self.g = Group.objects.create(name='foobar') super(HWAdapterTest, self).setUp() def compare_data(self, old_data, new_obj_data): for key in old_data.keys(): if key in ('sreg', 'group'): continue self.assertEqual(old_data[key], new_obj_data[key]) def post_data(self): return { 'description': random_label(), 'sreg': self.sreg.pk, 'mac': '11:22:33:44:55:66' } class SystemTest(CoreAPITests, ResourceTestCase): test_type = System test_name = 'system' def setUp(self): self.operating_system = OperatingSystem.objects.create() self.server_model = ServerModel.objects.create() self.allocation = Allocation.objects.create(name='foo') self.system_rack = SystemRack.objects.create() self.system_type = SystemType.objects.create() self.system_status = SystemStatus.objects.create() self.change_password_date = datetime(2002, 12, 25) super(SystemTest, self).setUp() def compare_data(self, old_data, new_obj_data): for key in old_data.keys(): if key in ('operating_system', 'operating_system', 'server_model', 'allocation', 'system_rack', 'system_type', 'system_status'): self.assertEqual( getattr(self, key).pk, new_obj_data[key]['pk'] ) elif key == 'change_password': self.assertTrue(new_obj_data[key].startswith(old_data[key])) else: self.assertEqual(old_data[key], new_obj_data[key]) def post_data(self): return { 'operating_system': self.operating_system.pk, 'server_model': self.server_model.pk, 'allocation': self.allocation.pk, 'system_rack': self.system_rack.pk, 'system_type': self.system_type.pk, 'system_status': self.system_status.pk, 'hostname': '{0}.{1}.mozilla.com'.format( random_label(), random_label() ), 'serial': '1234', 'oob_ip': '10.2.3.4', 'asset_tag': 'foobar', 'notes': 'foobar notes', 'rack_order': '1.21', 'switch_ports': 'hihi', 'patch_panel_port': 'derpdaderp', 'oob_switch_port': 'derpdaderp', 'purchase_date': '2012-08-01', 'purchase_price': '$3000', 'change_password': self.change_password_date.isoformat(), 'warranty_start': '2012-08-01', 'warranty_end': '2012-08-04' } def test_changing_only_one_field(self): # Systems don't have descriptions, they have notes resp, post_data = self.generic_create(self.post_data()) new_object_url = self.localize_url(resp['Location']) change_post_data = {} change_post_data['notes'] = "==DIFFERENT==" post_data['notes'] = "==DIFFERENT==" resp, patch_data = self.generic_update( new_object_url, change_post_data ) new_resp = self.api_client.get( new_object_url, format='json', follow=True ) updated_obj_data = json.loads(new_resp.content) self.compare_data(post_data, updated_obj_data)
{ "content_hash": "f97e77d624a9f8976c33316101be2a7b", "timestamp": "", "source": "github", "line_count": 233, "max_line_length": 79, "avg_line_length": 38.836909871244636, "alnum_prop": 0.5883523041220025, "repo_name": "rtucker-mozilla/inventory", "id": "fffc68aa14105166000de53b68697f4b781db547", "size": "9049", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "core/api/tests/basic.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "Batchfile", "bytes": "5104" }, { "name": "CSS", "bytes": "362837" }, { "name": "CoffeeScript", "bytes": "9538" }, { "name": "HTML", "bytes": "1195738" }, { "name": "JavaScript", "bytes": "1530665" }, { "name": "Makefile", "bytes": "14421" }, { "name": "PHP", "bytes": "27273" }, { "name": "Python", "bytes": "3642241" }, { "name": "Shell", "bytes": "1783" } ], "symlink_target": "" }
import ConfigParser import json import logging import os import subprocess import re import time import unittest from selenium import webdriver from selenium.webdriver import ActionChains from selenium.webdriver.support.ui import Select from selenium.common.exceptions import UnexpectedAlertPresentException from autothreadharness import settings from autothreadharness.exceptions import FailError, FatalError, GoldenDeviceNotEnoughError from autothreadharness.harness_controller import HarnessController from autothreadharness.helpers import HistoryHelper from autothreadharness.open_thread_controller import OpenThreadController from autothreadharness.pdu_controller_factory import PduControllerFactory from autothreadharness.rf_shield_controller import get_rf_shield_controller logger = logging.getLogger(__name__) THREAD_CHANNEL_MAX = 26 """Maximum channel number of thread protocol""" THREAD_CHANNEL_MIN = 11 """Minimum channel number of thread protocol""" DEFAULT_TIMEOUT = 2700 """Timeout for each test case in seconds""" def wait_until(what, times=-1): """Wait until `what` return True Args: what (Callable[bool]): Call `wait()` again and again until it returns True times (int): Maximum times of trials before giving up Returns: True if success, False if times threshold reached """ while times: logger.info('Waiting times left %d', times) try: if what() is True: return True except: logger.exception('Wait failed') else: logger.warning('Trial[%d] failed', times) times -= 1 time.sleep(1) return False class HarnessCase(unittest.TestCase): """This is the case class of all automation test cases. All test case classes MUST define properties `role`, `case` and `golden_devices_required` """ channel = settings.THREAD_CHANNEL """int: Thread channel. Thread channel ranges from 11 to 26. """ ROLE_LEADER = 1 ROLE_ROUTER = 2 ROLE_SED = 4 ROLE_BORDER = 8 ROLE_REED = 16 ROLE_ED = 32 ROLE_COMMISSIONER = 64 ROLE_JOINER = 128 ROLE_FED = 512 ROLE_MED = 1024 role = None """int: role id. 1 Leader 2 Router 4 Sleepy end device 16 Router eligible end device 32 End device 64 Commissioner 128 Joiner 512 Full end device 1024 Minimal end device """ case = None """str: Case id, e.g. '6 5 1'. """ golden_devices_required = 0 """int: Golden devices needed to finish the test """ child_timeout = settings.THREAD_CHILD_TIMEOUT """int: Child timeout in seconds """ sed_polling_interval = settings.THREAD_SED_POLLING_INTERVAL """int: SED polling interval in seconds """ auto_dut = settings.AUTO_DUT """bool: whether use harness auto dut feature""" timeout = hasattr(settings, 'TIMEOUT') and settings.TIMEOUT or DEFAULT_TIMEOUT """number: timeout in seconds to stop running this test case""" started = 0 """number: test case started timestamp""" def __init__(self, *args, **kwargs): self.dut = None self._browser = None self._hc = None self.result_dir = '%s\\%s' % (settings.OUTPUT_PATH, self.__class__.__name__) self.history = HistoryHelper() self.add_all_devices = False super(HarnessCase, self).__init__(*args, **kwargs) def _init_devices(self): """Reboot all usb devices. Note: If PDU_CONTROLLER_TYPE is not valid, usb devices is not rebooted. """ if not settings.PDU_CONTROLLER_TYPE: if settings.AUTO_DUT: return for device in settings.GOLDEN_DEVICES: port, _ = device try: with OpenThreadController(port) as otc: logger.info('Resetting %s', port) otc.reset() except: logger.exception('Failed to reset device %s', port) self.history.mark_bad_golden_device(device) return tries = 3 pdu_factory = PduControllerFactory() while True: try: pdu = pdu_factory.create_pdu_controller(settings.PDU_CONTROLLER_TYPE) pdu.open(**settings.PDU_CONTROLLER_OPEN_PARAMS) except EOFError: logger.warning('Failed to connect to telnet') tries = tries - 1 if tries: time.sleep(10) continue else: logger.error('Fatal error: cannot connect to apc') raise else: pdu.reboot(**settings.PDU_CONTROLLER_REBOOT_PARAMS) pdu.close() break time.sleep(len(settings.GOLDEN_DEVICES)) def _init_harness(self): """Restart harness backend service. Please start the harness controller before running the cases, otherwise, nothing happens """ self._hc = HarnessController(self.result_dir) self._hc.stop() time.sleep(1) self._hc.start() time.sleep(2) harness_config = ConfigParser.ConfigParser() harness_config.read('%s\\Config\\Configuration.ini' % settings.HARNESS_HOME) if harness_config.has_option('THREAD_HARNESS_CONFIG', 'BrowserAutoNavigate') and \ harness_config.getboolean('THREAD_HARNESS_CONFIG', 'BrowserAutoNavigate'): os.system('taskkill /t /f /im chrome.exe') def _destroy_harness(self): """Stop harness backend service Stop harness service. """ self._hc.stop() time.sleep(2) def _init_dut(self): """Initialize the DUT. DUT will be restarted. and openthread will started. """ if self.auto_dut: self.dut = None return dut_port = settings.DUT_DEVICE[0] dut = OpenThreadController(dut_port) self.dut = dut def _destroy_dut(self): self.dut = None def _init_browser(self): """Open harness web page. Open a quiet chrome which: 1. disables extensions, 2. ignore certificate errors and 3. always allow notifications. """ chrome_options = webdriver.ChromeOptions() chrome_options.add_argument('--disable-extensions') chrome_options.add_argument('--ignore-certificate-errors') chrome_options.add_experimental_option('prefs', { 'profile.managed_default_content_settings.notifications': 1 }) browser = webdriver.Chrome(chrome_options=chrome_options) browser.set_page_load_timeout(10) browser.implicitly_wait(1) browser.maximize_window() browser.get(settings.HARNESS_URL) self._browser = browser if not wait_until(lambda: 'Thread' in browser.title, 30): self.assertIn('Thread', browser.title) def _destroy_browser(self): """Close the browser. """ self._browser.close() self._browser = None def _init_rf_shield(self): if getattr(settings, 'SHIELD_CONTROLLER_TYPE', None) and getattr(settings, 'SHIELD_CONTROLLER_PARAMS', None): self.rf_shield = get_rf_shield_controller( shield_type=settings.SHIELD_CONTROLLER_TYPE, params=settings.SHIELD_CONTROLLER_PARAMS ) else: self.rf_shield = None def _destroy_rf_shield(self): self.rf_shield = None def setUp(self): """Prepare to run test case. Start harness service, init golden devices, reset DUT and open browser. """ if self.__class__ is HarnessCase: return logger.info('Setting up') # clear files logger.info('Deleting all .pdf') os.system('del /q "%HOMEDRIVE%%HOMEPATH%\\Downloads\\NewPdf_*.pdf"') logger.info('Deleting all .xlsx') os.system('del /q "%HOMEDRIVE%%HOMEPATH%\\Downloads\\ExcelReport*.xlsx"') logger.info('Deleting all .pcapng') os.system('del /q "%s\\Captures\\*.pcapng"' % settings.HARNESS_HOME) # using temp files to fix excel downloading fail logger.info('Empty files in temps') os.system('del /q "%s\\Thread_Harness\\temp\\*.*"' % settings.HARNESS_HOME) # create directory os.system('mkdir %s' % self.result_dir) self._init_harness() self._init_devices() self._init_dut() self._init_rf_shield() def tearDown(self): """Clean up after each case. Stop harness service, close browser and close DUT. """ if self.__class__ is HarnessCase: return logger.info('Tearing down') self._destroy_harness() self._destroy_browser() self._destroy_dut() self._destroy_rf_shield() def _setup_page(self): """Do sniffer settings and general settings """ if not self.started: self.started = time.time() if time.time() - self.started > 30: self._browser.refresh() return # Detect Sniffer try: dialog = self._browser.find_element_by_id('capture-Setup-modal') except: logger.exception('Failed to get dialog.') else: if dialog and dialog.get_attribute('aria-hidden') == 'false': times = 60 while times: status = dialog.find_element_by_class_name('status-notify').text if 'Searching' in status: logger.info('Still detecting..') elif 'Not' in status: logger.warning('Sniffer device not verified!') button = dialog.find_element_by_id('snifferAutoDetectBtn') button.click() elif 'Verified' in status: logger.info('Verified!') button = dialog.find_element_by_id('saveCaptureSettings') button.click() break else: logger.warning('Unexpected sniffer verification status') times = times - 1 time.sleep(1) if not times: raise Exception('Unable to detect sniffer device') time.sleep(1) try: skip_button = self._browser.find_element_by_id('SkipPrepareDevice') if skip_button.is_enabled(): skip_button.click() time.sleep(1) except: logger.info('Still detecting sniffers') try: next_button = self._browser.find_element_by_id('nextButton') except: logger.exception('Failed to finish setup') return if not next_button.is_enabled(): logger.info('Harness is still not ready') return # General Setup try: if self.child_timeout or self.sed_polling_interval: button = self._browser.find_element_by_id('general-Setup') button.click() time.sleep(2) dialog = self._browser.find_element_by_id('general-Setup-modal') if dialog.get_attribute('aria-hidden') != 'false': raise Exception('Missing General Setup dialog') field = dialog.find_element_by_id('inp_general_child_update_wait_time') field.clear() if self.child_timeout: field.send_keys(str(self.child_timeout)) field = dialog.find_element_by_id('inp_general_sed_polling_rate') field.clear() if self.sed_polling_interval: field.send_keys(str(self.sed_polling_interval)) button = dialog.find_element_by_id('saveGeneralSettings') button.click() time.sleep(1) except: logger.exception('Failed to do general setup') return # Finish this page next_button.click() time.sleep(1) def _connect_devices(self): connect_all = self._browser.find_element_by_link_text('Connect All') connect_all.click() def _add_device(self, port, device_type_id): browser = self._browser test_bed = browser.find_element_by_id('test-bed') device = browser.find_element_by_id(device_type_id) # drag action_chains = ActionChains(browser) action_chains.click_and_hold(device) action_chains.move_to_element(test_bed).perform() time.sleep(1) # drop drop_hw = browser.find_element_by_class_name('drop-hw') action_chains = ActionChains(browser) action_chains.move_to_element(drop_hw) action_chains.release(drop_hw).perform() time.sleep(0.5) selected_hw = browser.find_element_by_class_name('selected-hw') form_inputs = selected_hw.find_elements_by_tag_name('input') form_port = form_inputs[0] form_port.clear() form_port.send_keys(port) def _test_bed(self): """Set up the test bed. Connect number of golden devices required by each case. """ browser = self._browser test_bed = browser.find_element_by_id('test-bed') time.sleep(3) selected_hw_set = test_bed.find_elements_by_class_name('selected-hw') selected_hw_num = len(selected_hw_set) while selected_hw_num: remove_button = selected_hw_set[selected_hw_num - 1].find_element_by_class_name( 'removeSelectedDevice') remove_button.click() selected_hw_num = selected_hw_num - 1 devices = [device for device in settings.GOLDEN_DEVICES if not self.history.is_bad_golden_device(device[0]) and \ not (settings.DUT_DEVICE and device[0] == settings.DUT_DEVICE[0])] logger.info('Available golden devices: %s', json.dumps(devices, indent=2)) golden_devices_required = self.golden_devices_required if self.auto_dut and not settings.DUT_DEVICE: golden_devices_required += 1 if len(devices) < golden_devices_required: raise GoldenDeviceNotEnoughError() # add golden devices number_of_devices_to_add = len(devices) if self.add_all_devices else golden_devices_required for i in range(number_of_devices_to_add): self._add_device(*devices.pop()) # add DUT if settings.DUT_DEVICE: self._add_device(*settings.DUT_DEVICE) # enable AUTO DUT if self.auto_dut: checkbox_auto_dut = browser.find_element_by_id('EnableAutoDutSelection') if not checkbox_auto_dut.is_selected(): checkbox_auto_dut.click() time.sleep(1) if settings.DUT_DEVICE: radio_auto_dut = browser.find_element_by_class_name('AutoDUT_RadBtns') if not radio_auto_dut.is_selected(): radio_auto_dut.click() while True: try: self._connect_devices() button_next = browser.find_element_by_id('nextBtn') if not wait_until(lambda: 'disabled' not in button_next.get_attribute('class'), times=(30 + 4 * number_of_devices_to_add)): bad_ones = [] selected_hw_set = test_bed.find_elements_by_class_name('selected-hw') for selected_hw in selected_hw_set: form_inputs = selected_hw.find_elements_by_tag_name('input') form_port = form_inputs[0] if form_port.is_enabled(): bad_ones.append(selected_hw) for selected_hw in bad_ones: form_inputs = selected_hw.find_elements_by_tag_name('input') form_port = form_inputs[0] port = form_port.get_attribute('value').encode('utf8') if settings.DUT_DEVICE and port == settings.DUT_DEVICE[0]: if settings.PDU_CONTROLLER_TYPE is None: # connection error cannot recover without power cycling raise FatalError('Failed to connect to DUT') else: raise FailError('Failed to connect to DUT') if settings.PDU_CONTROLLER_TYPE is None: # port cannot recover without power cycling self.history.mark_bad_golden_device(port) # remove the bad one selected_hw.find_element_by_class_name('removeSelectedDevice').click() time.sleep(0.1) if len(devices): self._add_device(*devices.pop()) else: devices = None if devices is None: logger.warning('Golden devices not enough') raise GoldenDeviceNotEnoughError() else: logger.info('Try again with new golden devices') continue if self.auto_dut and not settings.DUT_DEVICE: radio_auto_dut = browser.find_element_by_class_name('AutoDUT_RadBtns') if not radio_auto_dut.is_selected(): radio_auto_dut.click() time.sleep(5) button_next.click() if not wait_until(lambda: self._browser.current_url.endswith('TestExecution.html'), 20): raise Exception('Failed to load TestExecution page') except FailError: raise except: logger.exception('Unexpected error') else: break def _select_case(self, role, case): """Select the test case. """ # select the case elem = Select(self._browser.find_element_by_id('select-dut')) elem.select_by_value(str(role)) time.sleep(1) checkbox = None wait_until(lambda: self._browser.find_elements_by_css_selector('.tree-node .tree-title') and True) elems = self._browser.find_elements_by_css_selector('.tree-node .tree-title') finder = re.compile(r'.*\b' + case + r'\b') finder_dotted = re.compile(r'.*\b' + case.replace(' ', r'\.') + r'\b') for elem in elems: action_chains = ActionChains(self._browser) action_chains.move_to_element(elem) action_chains.perform() logger.debug(elem.text) if finder.match(elem.text) or finder_dotted.match(elem.text): parent = elem.find_element_by_xpath('..') checkbox = parent.find_element_by_class_name('tree-checkbox') break if not checkbox: time.sleep(5) raise Exception('Failed to find the case') self._browser.execute_script("$('.overview').css('left', '0')") checkbox.click() time.sleep(1) elem = self._browser.find_element_by_id('runTest') elem.click() if not wait_until(lambda: self._browser.find_element_by_id('stopTest') and True, 10): raise Exception('Failed to start test case') def _collect_result(self): """Collect test result. Generate PDF, excel and pcap file """ # generate pdf self._browser.find_element_by_class_name('save-pdf').click() time.sleep(1) try: dialog = self._browser.find_element_by_id('Testinfo') except: logger.exception('Failed to get test info dialog.') else: if dialog.get_attribute('aria-hidden') != 'false': raise Exception('Test information dialog not ready') version = self.auto_dut and settings.DUT_VERSION or self.dut.version dialog.find_element_by_id('inp_dut_manufacturer').send_keys(settings.DUT_MANUFACTURER) dialog.find_element_by_id('inp_dut_firmware_version').send_keys(version) dialog.find_element_by_id('inp_tester_name').send_keys(settings.TESTER_NAME) dialog.find_element_by_id('inp_remarks').send_keys(settings.TESTER_REMARKS) dialog.find_element_by_id('generatePdf').click() time.sleep(1) main_window = self._browser.current_window_handle # generate excel self._browser.find_element_by_class_name('save-excel').click() time.sleep(1) for window_handle in self._browser.window_handles: if window_handle != main_window: self._browser.switch_to.window(window_handle) self._browser.close() self._browser.switch_to.window(main_window) # save pcap self._browser.find_element_by_class_name('save-wireshark').click() time.sleep(1) for window_handle in self._browser.window_handles: if window_handle != main_window: self._browser.switch_to.window(window_handle) self._browser.close() self._browser.switch_to.window(main_window) os.system('copy "%%HOMEPATH%%\\Downloads\\NewPdf_*.pdf" %s\\' % self.result_dir) os.system('copy "%%HOMEPATH%%\\Downloads\\ExcelReport_*.xlsx" %s\\' % self.result_dir) os.system('copy "%s\\Captures\\*.pcapng" %s\\' % (settings.HARNESS_HOME, self.result_dir)) os.system('copy "%s\\Thread_Harness\\temp\\*.*" "%s"' % (settings.HARNESS_HOME, self.result_dir)) def _wait_dialog(self): """Wait for dialogs and handle them until done. """ logger.debug('waiting for dialog') done = False error = False while not done and self.timeout: try: dialog = self._browser.find_element_by_id('RemoteConfirm') except: logger.exception('Failed to get dialog.') else: if dialog and dialog.get_attribute('aria-hidden') == 'false': title = dialog.find_element_by_class_name('modal-title').text time.sleep(1) logger.info('Handling dialog[%s]', title) try: done = self._handle_dialog(dialog, title) except: logger.exception('Error handling dialog: %s', title) error = True if done is None: raise FailError('Unexpected dialog occurred') dialog.find_element_by_id('ConfirmOk').click() time.sleep(1) try: stop_button = self._browser.find_element_by_id('stopTest') if done: stop_button.click() # wait for stop procedure end time.sleep(10) except: logger.exception('Test stopped') time.sleep(5) done = True self.timeout -= 1 # check if already ended capture if self.timeout % 10 == 0: lines = self._hc.tail() if 'SUCCESS: The process "dumpcap.exe" with PID ' in lines: logger.info('Tshark should be ended now, lets wait at most 30 seconds.') if not wait_until(lambda: 'tshark.exe' not in subprocess.check_output('tasklist'), 30): res = subprocess.check_output('taskkill /t /f /im tshark.exe', stderr=subprocess.STDOUT, shell=True) logger.info(res) # Wait until case really stopped wait_until(lambda: self._browser.find_element_by_id('runTest') and True, 30) if error: raise FailError('Fail for previous exceptions') def _handle_dialog(self, dialog, title): """Handle a dialog. Returns: bool True if no more dialogs expected, False if more dialogs needed, and None if not handled """ done = self.on_dialog(dialog, title) if isinstance(done, bool): return done if title.startswith('Start DUT'): body = dialog.find_element_by_id('cnfrmMsg').text if 'Sleepy End Device' in body: self.dut.mode = 's' self.dut.child_timeout = self.child_timeout elif 'End Device' in body: self.dut.mode = 'rsn' self.dut.child_timeout = self.child_timeout else: self.dut.mode = 'rsdn' if 'at channel' in body: self.channel = int(body.split(':')[1]) self.dut.channel = self.channel self.dut.panid = settings.THREAD_PANID self.dut.networkname = settings.THREAD_NETWORKNAME self.dut.extpanid = settings.THREAD_EXTPANID self.dut.start() elif (title.startswith('MAC Address Required') or title.startswith('DUT Random Extended MAC Address Required')): mac = self.dut.mac inp = dialog.find_element_by_id('cnfrmInpText') inp.clear() inp.send_keys('0x%s' % mac) elif title.startswith('LL64 Address'): ll64 = None for addr in self.dut.addrs: addr = addr.lower() if addr.startswith('fe80') and not re.match('.+ff:fe00:[0-9a-f]{0,4}$', addr): ll64 = addr break if not ll64: raise FailError('No link local address found') logger.info('Link local address is %s', ll64) inp = dialog.find_element_by_id('cnfrmInpText') inp.clear() inp.send_keys(ll64) elif title.startswith('Enter Channel'): self.dut.channel = self.channel inp = dialog.find_element_by_id('cnfrmInpText') inp.clear() inp.send_keys(str(self.dut.channel)) elif title.startswith('User Action Needed'): body = dialog.find_element_by_id('cnfrmMsg').text if body.startswith('Power Down the DUT'): self.dut.stop() return True elif title.startswith('Short Address'): short_addr = '0x%s' % self.dut.short_addr inp = dialog.find_element_by_id('cnfrmInpText') inp.clear() inp.send_keys(short_addr) elif title.startswith('ML64 Address'): ml64 = None for addr in self.dut.addrs: if addr.startswith('fd') and not re.match('.+ff:fe00:[0-9a-f]{0,4}$', addr): ml64 = addr break if not ml64: raise Exception('No mesh local address found') logger.info('Mesh local address is %s', ml64) inp = dialog.find_element_by_id('cnfrmInpText') inp.clear() inp.send_keys(ml64) elif title.startswith('Shield Devices') or title.startswith('Sheild DUT'): if self.rf_shield: logger.info('Shielding devices') with self.rf_shield: self.rf_shield.shield() elif self.dut and settings.SHIELD_SIMULATION: self.dut.channel = (self.channel == THREAD_CHANNEL_MAX and THREAD_CHANNEL_MIN) or (self.channel + 1) else: raw_input('Shield DUT and press enter to continue..') elif title.startswith('Unshield Devices') or title.startswith('Bring DUT Back to network'): if self.rf_shield: logger.info('Unshielding devices') with self.rf_shield: self.rf_shield.unshield() elif self.dut and settings.SHIELD_SIMULATION: self.dut.channel = self.channel else: raw_input('Bring DUT and press enter to continue..') elif title.startswith('Configure Prefix on DUT'): body = dialog.find_element_by_id('cnfrmMsg').text body = body.split(': ')[1] params = reduce(lambda params, param: params.update(((param[0].strip(' '), param[1]),)) or params, [it.split('=') for it in body.split(', ')], {}) prefix = params['P_Prefix'].strip('\0\r\n\t ') flags = [] if params.get('P_slaac_preferred', 0) == '1': flags.append('p') flags.append('ao') if params.get('P_stable', 0) == '1': flags.append('s') if params.get('P_default', 0) == '1': flags.append('r') prf = 'high' self.dut.add_prefix(prefix, ''.join(flags), prf) return False def test(self): """This method will only start test case in child class""" if self.__class__ is HarnessCase: logger.warning('Skip this harness itself') return logger.info('Testing role[%d] case[%s]', self.role, self.case) try: self._init_browser() # prepare test case while True: url = self._browser.current_url if url.endswith('SetupPage.html'): self._setup_page() elif url.endswith('TestBed.html'): self._test_bed() elif url.endswith('TestExecution.html'): logger.info('Ready to handle dialogs') break time.sleep(2) except UnexpectedAlertPresentException: logger.exception('Failed to connect to harness server') raise SystemExit() except FatalError: logger.exception('Test stopped for fatal error') raise SystemExit() except FailError: logger.exception('Test failed') raise except: logger.exception('Something wrong') self._select_case(self.role, self.case) self._wait_dialog() try: self._collect_result() except: logger.exception('Failed to collect results') raise # get case result status = self._browser.find_element_by_class_name('title-test').text logger.info(status) success = 'Pass' in status self.assertTrue(success)
{ "content_hash": "b6f9419ec1c9616c4c6c07fe8016f947", "timestamp": "", "source": "github", "line_count": 867, "max_line_length": 117, "avg_line_length": 36.08073817762399, "alnum_prop": 0.5465123713317562, "repo_name": "xiaom-GitHub/openthread", "id": "33384cd77cc747bcd3dee795be003d671c475a18", "size": "32863", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "tools/harness-automation/autothreadharness/harness_case.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "Batchfile", "bytes": "10128" }, { "name": "C", "bytes": "572698" }, { "name": "C#", "bytes": "18077" }, { "name": "C++", "bytes": "3486464" }, { "name": "M4", "bytes": "48751" }, { "name": "Makefile", "bytes": "82554" }, { "name": "Python", "bytes": "1060869" }, { "name": "Ruby", "bytes": "3397" }, { "name": "Shell", "bytes": "28070" } ], "symlink_target": "" }
"""Agent-environment training loop based on acme.""" import collections import csv import operator import os import pickle from absl import flags from acme import core from acme.utils import counting from acme.utils import loggers import dm_env from mime.agent import ScriptAgent import numpy as np import tensorflow as tf from tensorflow.io import gfile from rrlfd.bc import pickle_dataset FLAGS = flags.FLAGS class ActionLogger: """Logger to save actions and their base and residual components to pickle.""" def __init__(self, spec): self._spec = spec self._reset() def _reset(self): """Reset episode buffers.""" if isinstance(self._spec, dict): self.actions = collections.defaultdict(list) self.base_actions = collections.defaultdict(list) self.residual_actions = collections.defaultdict(list) else: self.actions = [] self.base_actions = [] self.residual_actions = [] def add(self, action, base_action, residual_action): """Append an action to the current episode.""" if isinstance(self._spec, dict): for k, v in action.items(): self.actions[k].append(np.copy(v)) for k, v in base_action.items(): self.base_actions[k].append(np.copy(v)) for k, v in residual_action.items(): self.residual_actions[k].append(np.copy(v)) else: self.actions.append(np.copy(action)) self.base_actions.append(np.copy(base_action)) self.residual_actions.append(np.copy(residual_action)) def append_to_pickle(self, path): if not gfile.exists(os.path.dirname(path)): gfile.makedirs(os.path.dirname(path)) with gfile.GFile(path, 'ab') as f: pickle.dump((self.actions, self.base_actions, self.residual_actions), f) self._reset() def equal_observations(obs1, obs2, obs_type): # Account for noise (in linear velocity). if obs_type in ['visible_state', 'linear_velocity']: return np.all(np.isclose(obs1, obs2, rtol=0., atol=1e-09)) elif obs_type == 'failure_message': return np.all(obs1 == obs2) else: return np.all(np.equal(obs1, obs2)) def equal_dicts(d1, d2): """Test whether the dicts d1 and d2 have equal items.""" equal_keys = sorted(d1.keys()) == sorted(d2.keys()) equal_values = np.all( [equal_observations(d1[k], d2[k], k) for k in d1.keys()]) return equal_keys and equal_values def loop_is_stuck(base_obs1, base_obs2, acme_obs1, acme_obs2, a1, a2): """Detect if observations and actions are stuck.""" # If first time step. if acme_obs1 is None or acme_obs2 is None or a1 is None or a2 is None: return False, False, False, False act_stuck = np.all(np.equal(a1, a2)) base_obs_stuck = True # Not used in the case of RL-only agent. if base_obs1 is not None and base_obs2 is not None: # Base observation is a list of frames (and possibly other features). for obs1, obs2 in zip(base_obs1, base_obs2): base_obs_stuck = base_obs_stuck and equal_dicts(obs1, obs2) acme_obs_stuck = equal_dicts(acme_obs1, acme_obs2) obs_stuck = base_obs_stuck and acme_obs_stuck stuck = act_stuck and obs_stuck return stuck, act_stuck, base_obs_stuck, acme_obs_stuck class EnvironmentLoop(core.Worker): """A custom RL environment loop.""" def __init__( self, environment, eval_environment, cam_environment, cam_eval_environment, actor, counter=None, logger=None, label='environment_loop', summary_writer=None, ): # Internalize agent and environment. self._environment = environment self._eval_environment = eval_environment self._cam_environment = cam_environment self._cam_eval_environment = cam_eval_environment self._actor = actor self._counter = counter or counting.Counter() self._logger = logger or loggers.make_default_logger(label) self._summary_writer = summary_writer self.min_discounted = np.inf self.max_discounted = -np.inf @property def actor(self): return self._actor @actor.setter def actor(self, actor): self._actor = actor def _eval_policy(self, num_episodes, out_dir, num_episodes_to_log): # Write a single file with num_episodes_to_log episodes. start_log_episode = num_episodes - num_episodes_to_log self.run(num_episodes, out_dir, ckpt_freq=None, log_frames_freq=start_log_episode, eval_freq=None, num_episodes_to_log=num_episodes_to_log) def _log_action(self, action_logger, action_components): action_dicts = [] for action in action_components: action_dicts.append(self._actor.flat_action_to_dict(action)) action_logger.add(*action_dicts) def env_timestep_to_acme_timestep(self, env_timestep, rl_obs): return dm_env.TimeStep( env_timestep.step_type, env_timestep.reward, env_timestep.discount, rl_obs) def keep_shortest_trajectories( self, demos_file, num_to_keep, episode_lengths=None): # Keep num_to_keep shortest trajectories in the dataset at demos_file. if episode_lengths is None: episode_lengths = [] with gfile.GFile(demos_file, 'rb') as f: while True: try: demo = pickle.load(f) episode_lengths.append(len(demo['actions'])) except EOFError: break sorted_lengths = sorted( enumerate(episode_lengths), key=operator.itemgetter(1)) included_trajectories = set([e[0] for e in sorted_lengths[:num_to_keep]]) print('Keeping', len(included_trajectories), 'trajectories') all_demos_file = ( demos_file.replace(f'e{num_to_keep}', '').replace('.pkl', 'all.pkl')) gfile.Rename(demos_file, all_demos_file) new_demo_writer = pickle_dataset.DemoWriter(demos_file) i = 0 with gfile.GFile(all_demos_file, 'rb') as f: while True: try: demo = pickle.load(f) if i in included_trajectories: new_demo_writer.write_episode(demo['observations'], demo['actions']) i += 1 except EOFError: break def keep_latest_trajectories(self, demos_file, num_to_keep): # Keep num_to_keep shortest trajectories in the dataset at demos_file. print(demos_file) all_demos_file = ( demos_file.replace(f'e{num_to_keep}', '').replace('.pkl', 'all.pkl')) print(all_demos_file) gfile.Rename(demos_file, all_demos_file) last_demos = [] with gfile.GFile(all_demos_file, 'rb') as f: while True: try: demo = pickle.load(f) last_demos.append(demo) last_demos = last_demos[:num_to_keep] except EOFError: break new_demo_writer = pickle_dataset.DemoWriter(demos_file) for demo in last_demos: new_demo_writer.write_episode(demo['observations'], demo['actions']) def run(self, num_episodes=None, num_successes=None, success_writer=None, out_dir=None, ckpt_freq=50_000, log_frames_freq=1000, eval_freq=100_000, start_with_eval=False, num_eval_episodes=100, num_episodes_to_log=0, collapse_in_eval=True, eval_seed=None, increment_eval_seed=False, stop_if_stuck=False, trajectory_filter='latest', summary_writer=None): """Run the env for num_episodes episodes or num_successes successes.""" # If both are set, use num_episodes as the limit but write num_successes # trajectories with success_writer. # TODO(minttu): OR train until both are satisfied. np.set_printoptions(precision=4, suppress=True) action_logger = ActionLogger(self._environment.action_spec()) num_successes_written = 0 success_lengths = [] counts = self._counter.get_counts() print('Starting env loop with counters', counts) total_steps = counts['env_steps'] if 'env_steps' in counts else 0 prev_total_steps = total_steps summary_writer = summary_writer or self._summary_writer i = counts['episodes'] if 'episodes' in counts else 0 # How many episodes have been written in latest log. record_count = i % log_frames_freq while num_episodes is None or i < num_episodes: rewards = [] episode_steps = 0 episode_return = 0 prev_raw_residual = None prev_residual_exploration = False # For envs with non-Markovian success criteria, track required fields. if i % log_frames_freq == 0: record_count = 0 first_to_record = i last_to_record = i + num_episodes_to_log - 1 if out_dir is not None: demo_writer = pickle_dataset.DemoWriter( os.path.join(out_dir, 'episodes', f'episodes_{first_to_record}-{last_to_record}.pkl')) if record_count < num_episodes_to_log: # Log frames for current episode. if self._cam_environment is None: environment = self._environment else: environment = self._cam_environment self._environment.reset() # Keep both environments in same state. print(f'episode {i}: using cam env') else: # Do not log frames for current episode. environment = self._environment if self._cam_environment is not None: self._cam_environment.reset() # Keep both environments in same state. print(f'episode {i}: using non-cam env') timestep = environment.reset() if FLAGS.base_controller is not None: # Reset script for each episode. # TODO(minttu): Recompute at each time step. self._actor.base_controller = ScriptAgent( environment.env, FLAGS.base_controller) if record_count < num_episodes_to_log: observations = [] actions = [] # Call base agent here (if applicable) in order to pre-shape observation # for acme's observe first. acme_obs, _, norm_base_act = self._actor.get_acme_observation( timestep.observation) acme_timestep = self.env_timestep_to_acme_timestep( timestep, acme_obs) self._actor.observe_first(acme_timestep) while not timestep.last(): (action, base_action, residual_action, raw_residual, residual_exploration, policy_mean, policy_std) = ( self._actor.select_action( acme_obs, norm_base_act, timestep.observation, prev_raw_residual, prev_residual_exploration)) prev_raw_residual = raw_residual prev_residual_exploration = residual_exploration self._log_action(action_logger, (action, base_action, residual_action)) if (i % 100 == 0 and episode_steps == 0 and summary_writer is not None): if policy_std is not None: with summary_writer.as_default(): tf.summary.scalar('grip_policy_std', policy_std[0], step=i) tf.summary.scalar( 'linear_policy_std', np.mean(policy_std[1:]), step=i) if policy_mean is None: if residual_exploration: # Get deterministic action. _, _, policy_mean, _, _, _, _ = ( self._actor.select_action( acme_obs, norm_base_act, timestep.observation, add_exploration=False)) else: policy_mean = residual_action with summary_writer.as_default(): tf.summary.scalar( 'grip_policy_magn', np.abs(policy_mean[0]), step=i) tf.summary.scalar( 'linear_policy_magn', np.mean(np.abs(policy_mean[1:])), step=i) next_timestep = environment.step(action) info = environment.info_from_observation(next_timestep.observation) if record_count < num_episodes_to_log: observations.append(timestep.observation) actions.append(self._actor.flat_action_to_dict(action)) next_acme_obs, _, next_norm_base_act = ( self._actor.get_acme_observation(next_timestep.observation)) acme_timestep = self.env_timestep_to_acme_timestep( next_timestep, next_acme_obs) self._actor.observe(raw_residual, acme_timestep) self._actor.update() timestep = next_timestep rewards.append(timestep.reward) acme_obs = next_acme_obs norm_base_act = next_norm_base_act episode_return += timestep.reward episode_steps += 1 if ((eval_freq is not None # and total_steps > 0 and total_steps % eval_freq == 0) or (total_steps == prev_total_steps and start_with_eval)): eval_path = None eval_task = self._environment.task if out_dir is not None: increment_str = 'i' if increment_eval_seed else '' eval_path = os.path.join( out_dir, 'eval', f'eval{eval_task}_s{eval_seed}{increment_str}_' f'e{num_eval_episodes}') finished_eval = False while not finished_eval: print(f'Evaluating policy after {total_steps} frames') success_rate, finished_eval = self.eval_policy( num_episodes=num_eval_episodes, trained_steps=total_steps, collapse_policy=collapse_in_eval, eval_path=eval_path, num_videos_to_save=100, seed=eval_seed, increment_seed=increment_eval_seed, stop_if_stuck=stop_if_stuck) if summary_writer is not None: collapse_str = 'c' if collapse_in_eval else '' with summary_writer.as_default(): tf.summary.scalar( f'{eval_task}_s{eval_seed}_e{num_eval_episodes}{collapse_str}' f'_success_rate', success_rate, step=i) tf.summary.scalar( f'{eval_task}_s{eval_seed}_e{num_eval_episodes}{collapse_str}' '_success_rate_env_steps', success_rate, step=total_steps) if (ckpt_freq is not None and total_steps % ckpt_freq == 0 and out_dir is not None): # TODO(minttu): Add global step to checkpoint. ckpt_path = os.path.join(out_dir, 'policy', f'policy_{total_steps}') print('Saving policy weights to', ckpt_path) self._actor.save_policy_weights(ckpt_path) if self._actor.rl_observation_network_type is not None: ckpt_path = os.path.join( out_dir, 'observation_net', f'observation_{total_steps}') print('Saving observation weights to', ckpt_path) checkpoint = tf.train.Checkpoint( module=self._actor.rl_agent._learner._observation_network) # pylint: disable=protected-access checkpoint.save(ckpt_path) total_steps += 1 discounted_returns = [rewards[-1]] for r in reversed(rewards[:-1]): discounted_returns.append(r + FLAGS.discount * discounted_returns[-1]) self.min_discounted = min(self.min_discounted, np.min(discounted_returns)) self.max_discounted = max(self.max_discounted, np.max(discounted_returns)) print('discounted episode return range:' f'[{self.min_discounted}, {self.max_discounted}]') # Record counts. counts = self._counter.increment(episodes=1, env_steps=episode_steps) print(self._counter.get_counts(), 'success' if info['success'] else '') # Collect the results and combine with counts. result = { 'episode_length': episode_steps, 'episode_return': episode_return} result.update(counts) self._logger.write(result) if out_dir is not None: if record_count < num_episodes_to_log: print('Saving episode', i) demo_writer.write_episode(observations, actions) actions_path = ( os.path.join( out_dir, 'actions', f'actions_{first_to_record}-{last_to_record}.pkl')) action_logger.append_to_pickle(actions_path) record_count += 1 if success_writer is not None and info['success']: num_successes_written += 1 print(f'Saving episode {num_successes_written} / {num_successes}') success_writer.write_episode(observations, actions) success_lengths.append(episode_steps) if num_successes_written >= num_successes and num_episodes is None: break i += 1 print('Ending env loop with counters', self._counter.get_counts()) if success_writer is not None and num_successes_written > num_successes: if trajectory_filter == 'shortest': self.keep_shortest_trajectories( success_writer.path, num_successes, success_lengths) else: self.keep_latest_trajectories(success_writer.path, num_successes) def eval_policy( self, num_episodes, trained_steps=None, collapse_policy=True, eval_path=None, num_videos_to_save=0, max_num_steps=None, seed=None, increment_seed=False, stop_if_stuck=False): """Evaluate policy on env for num_episodes episodes.""" if FLAGS.domain == 'mime': self._eval_environment.create_env() if not increment_seed and seed is not None: self._eval_environment.env.seed(seed) if self._cam_eval_environment is not None: self._cam_eval_environment.env.seed(seed) num_successes = 0 action_logger = ActionLogger(self._environment.action_spec()) if max_num_steps is None: max_num_steps = self._eval_environment.default_max_episode_steps if eval_path is None: log_f = None success_f = None episode_length_f = None eval_writer = None else: if not gfile.exists(os.path.dirname(eval_path)): gfile.makedirs(os.path.dirname(eval_path)) collapse_str = 'c' if collapse_policy else '' stuck_str = 's' if stop_if_stuck else '' eval_summary_path = eval_path + f'_all{collapse_str}{stuck_str}' eval_path = eval_path + f'_{trained_steps}{collapse_str}{stuck_str}' log_f = gfile.GFile(eval_path + '_log.txt', 'w') success_f = gfile.GFile(eval_path + '_success.txt', 'w') episode_length_f = gfile.GFile(eval_path + '_lengths.txt', 'w') eval_writer = pickle_dataset.DemoWriter(eval_path + '.pkl') actions_path = eval_path + '_actions.pkl' if gfile.exists(actions_path): gfile.Remove(actions_path) for e in range(num_episodes): rewards = [] if increment_seed and seed is not None: self._eval_environment.env.seed(seed + e) if self._cam_eval_environment is not None: self._cam_eval_environment.env.seed(seed + e) if e % 10 == 0 and e > 0: success_rate = num_successes / e * 100 print(f'Episode {e} / {num_episodes}; Success rate {num_successes} / ' f'{e} ({success_rate:.4f}%)') if (e < num_videos_to_save and eval_writer is not None and self._cam_eval_environment is not None): environment = self._cam_eval_environment self._eval_environment.reset() # Keep both environments in same state. print(f'eval episode {e}: using cam env') else: environment = self._eval_environment if self._cam_eval_environment is not None: # Keep both environments in same state. self._cam_eval_environment.reset() print(f'eval episode {e}: using non-cam env') timestep = environment.reset() observations = [] actions = [] step_count = 0 if FLAGS.base_controller is not None: # Reset script for each episode. self._actor.base_controller = ScriptAgent( environment.env, FLAGS.base_controller) while not timestep.last(): acme_obs, _, norm_base_act = self._actor.get_acme_observation( timestep.observation) action, base_action, residual_action, _, _, _, _ = ( self._actor.select_action( acme_obs, norm_base_act, timestep.observation, add_exploration=False, collapse=collapse_policy)) observations.append(timestep.observation) actions.append(self._actor.flat_action_to_dict(action)) self._log_action(action_logger, (action, base_action, residual_action)) next_timestep = environment.step(action) info = environment.info_from_observation(next_timestep.observation) timestep = next_timestep rewards.append(timestep.reward) step_count += 1 discounted_returns = [rewards[-1]] for r in reversed(rewards[:-1]): discounted_returns.append(r + FLAGS.discount * discounted_returns[-1]) self.min_discounted = min(self.min_discounted, np.min(discounted_returns)) self.max_discounted = max(self.max_discounted, np.max(discounted_returns)) print('discounted episode return range:' f'[{self.min_discounted}, {self.max_discounted}]') if info['success']: print(f'{e}: success') if log_f is not None: log_f.write(f'{e}: success\n') log_f.flush() if success_f is not None: success_f.write('success\n') success_f.flush() num_successes += 1 else: if 'failure_message' in info: print(f'{e}: failure:', info['failure_message']) elif step_count >= max_num_steps or timestep.last(): print(f'{e}: failure: time limit') else: print(f'{e}: failure') if log_f is not None: if 'failure_message' in info: log_f.write(f'{e}: failure:' + info['failure_message'] + '\n') elif step_count >= max_num_steps or timestep.last(): log_f.write(f'{e}: failure: time limit \n') else: log_f.write(f'{e}: failure\n') log_f.flush() if success_f is not None: success_f.write('failure\n') success_f.flush() if episode_length_f is not None: episode_length_f.write(str(step_count) + '\n') episode_length_f.flush() if e < num_videos_to_save and eval_writer is not None: eval_writer.write_episode(observations, actions) action_logger.append_to_pickle(actions_path) success_rate = num_successes / num_episodes * 100 print( f'Done; Success rate {num_successes} / {num_episodes} ' f'({success_rate:.4f}%)') if log_f is not None: log_f.write( f'Done; Success rate {num_successes} / {num_episodes} ' f'({success_rate:.4f}%)\n') log_f.close() csv_writer = csv.writer( gfile.GFile(eval_summary_path + '_success_rates.csv', 'a')) csv_writer.writerow([trained_steps, num_successes / num_episodes]) return num_successes / num_episodes, True
{ "content_hash": "7895d304c0c53f55f6bdf2eaf267004e", "timestamp": "", "source": "github", "line_count": 575, "max_line_length": 110, "avg_line_length": 39.850434782608694, "alnum_prop": 0.6140350877192983, "repo_name": "google-research/google-research", "id": "5ececab16486438bc9f1dfb7d1a3eb181cadf26b", "size": "23522", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "rrlfd/residual/environment_loop.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "C", "bytes": "9817" }, { "name": "C++", "bytes": "4166670" }, { "name": "CMake", "bytes": "6412" }, { "name": "CSS", "bytes": "27092" }, { "name": "Cuda", "bytes": "1431" }, { "name": "Dockerfile", "bytes": "7145" }, { "name": "Gnuplot", "bytes": "11125" }, { "name": "HTML", "bytes": "77599" }, { "name": "ImageJ Macro", "bytes": "50488" }, { "name": "Java", "bytes": "487585" }, { "name": "JavaScript", "bytes": "896512" }, { "name": "Julia", "bytes": "67986" }, { "name": "Jupyter Notebook", "bytes": "71290299" }, { "name": "Lua", "bytes": "29905" }, { "name": "MATLAB", "bytes": "103813" }, { "name": "Makefile", "bytes": "5636" }, { "name": "NASL", "bytes": "63883" }, { "name": "Perl", "bytes": "8590" }, { "name": "Python", "bytes": "53790200" }, { "name": "R", "bytes": "101058" }, { "name": "Roff", "bytes": "1208" }, { "name": "Rust", "bytes": "2389" }, { "name": "Shell", "bytes": "730444" }, { "name": "Smarty", "bytes": "5966" }, { "name": "Starlark", "bytes": "245038" } ], "symlink_target": "" }
import rospy import tf from geometry_msgs.msg import PoseStamped from sensor_msgs.msg import Joy from math import fabs lastData = None def joyChanged(data): global lastData lastData = data # print(data) if __name__ == '__main__': rospy.init_node('publish_pose', anonymous=True) name = rospy.get_param("~name") r = rospy.get_param("~rate") joy_topic = rospy.get_param("~joy_topic", "joy") x = rospy.get_param("~x") y = rospy.get_param("~y") z = rospy.get_param("~z") rate = rospy.Rate(r) msg = PoseStamped() msg.header.seq = 0 msg.header.stamp = rospy.Time.now() msg.header.frame_id = "world" msg.pose.position.x = x msg.pose.position.y = y msg.pose.position.z = z yaw = 0 quaternion = tf.transformations.quaternion_from_euler(0, 0, yaw) msg.pose.orientation.x = quaternion[0] msg.pose.orientation.y = quaternion[1] msg.pose.orientation.z = quaternion[2] msg.pose.orientation.w = quaternion[3] pub = rospy.Publisher(name, PoseStamped, queue_size=1) rospy.Subscriber(joy_topic, Joy, joyChanged) while not rospy.is_shutdown(): global lastData if lastData != None: if fabs(lastData.axes[1]) > 0.1: msg.pose.position.z += lastData.axes[1] / r / 2 if fabs(lastData.axes[4]) > 0.1: msg.pose.position.x += lastData.axes[4] / r * 1 if fabs(lastData.axes[3]) > 0.1: msg.pose.position.y += lastData.axes[3] / r * 1 if fabs(lastData.axes[0]) > 0.1: yaw += lastData.axes[0] / r * 2 quaternion = tf.transformations.quaternion_from_euler(0, 0, yaw) msg.pose.orientation.x = quaternion[0] msg.pose.orientation.y = quaternion[1] msg.pose.orientation.z = quaternion[2] msg.pose.orientation.w = quaternion[3] # print(pose) msg.header.seq += 1 msg.header.stamp = rospy.Time.now() pub.publish(msg) rate.sleep()
{ "content_hash": "15ea1b3d61f53b111bfa00988b6c198e", "timestamp": "", "source": "github", "line_count": 62, "max_line_length": 76, "avg_line_length": 32.854838709677416, "alnum_prop": 0.5915562101129112, "repo_name": "marktsai0316/crazyflie_ros", "id": "96f64d66c9eef231aac6e4cf67ee64a7deedd354", "size": "2060", "binary": false, "copies": "5", "ref": "refs/heads/master", "path": "crazyflie_demo/scripts/publish_pose_teleop.py", "mode": "33261", "license": "mit", "language": [ { "name": "C++", "bytes": "53809" }, { "name": "CMake", "bytes": "21553" }, { "name": "Python", "bytes": "21713" } ], "symlink_target": "" }
from setuptools import setup import codecs import os here = os.path.abspath(os.path.dirname(__file__)) def read_file(names, encoding='utf-8'): file_path = os.path.join(here, *names) if encoding: with codecs.open(file_path, encoding=encoding) as f: return f.read() else: with open(file_path, 'rb') as f: return f.read() def exec_file(names): code = read_file(names, encoding=None) result = {} exec(code, result) return result setup( name='matrix_client', version=exec_file(('matrix_client', '__init__.py',))['__version__'], description='Client-Server SDK for Matrix', long_description=read_file(('README.rst',)), author='The Matrix.org Team', author_email='[email protected]', url='https://github.com/matrix-org/matrix-python-sdk', packages=['matrix_client'], license='Apache License, Version 2.0', classifiers=[ 'Development Status :: 3 - Alpha', 'Intended Audience :: Developers', 'License :: OSI Approved :: Apache Software License', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 3', 'Topic :: Communications :: Chat', 'Topic :: Communications :: Conferencing', ], keywords='chat sdk matrix matrix.org', install_requires=[ 'requests' ], extras_require={ 'test': ['tox', 'pytest', 'flake8'] } )
{ "content_hash": "ba8bfc9583d1e30906b6381a3c4e7996", "timestamp": "", "source": "github", "line_count": 51, "max_line_length": 72, "avg_line_length": 28.098039215686274, "alnum_prop": 0.6022330774598744, "repo_name": "dovf/matrix-python-sdk", "id": "dc7c8d717db8fa7e06971c0fb04c13088062bcb0", "size": "1455", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "setup.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Python", "bytes": "36602" } ], "symlink_target": "" }
"""Maintain moving averages of parameters.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import init_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import state_ops from tensorflow.python.ops import variable_scope from tensorflow.python.ops import variables from tensorflow.python.training import distribution_strategy_context from tensorflow.python.training import slot_creator from tensorflow.python.util.tf_export import tf_export # TODO(touts): switch to variables.Variable. def assign_moving_average(variable, value, decay, zero_debias=True, name=None): """Compute the moving average of a variable. The moving average of 'variable' updated with 'value' is: variable * decay + value * (1 - decay) The returned Operation sets 'variable' to the newly computed moving average, by performing this subtraction: variable -= (1 - decay) * (variable - value) Since variables that are initialized to a `0` value will be `0` biased, `zero_debias` optionally enables scaling by the mathematically correct debiasing factor of 1 - decay ** num_updates See `ADAM: A Method for Stochastic Optimization` Section 3 for more details (https://arxiv.org/abs/1412.6980). The names of the debias shadow variables, by default, include both the scope they were created in and the scope of the variables they debias. They are also given a uniquifying-suffix. E.g.: ``` with tf.variable_scope('scope1'): with tf.variable_scope('scope2'): var = tf.get_variable('foo') update_1 = tf.assign_moving_average(var, 0.0, 1.0) update_2 = tf.assign_moving_average(var, 0.0, 0.9) # var.name: 'scope1/scope2/foo' # shadow var names: 'scope1/scope2/scope1/scope2/foo/biased' # 'scope1/scope2/scope1/scope2/foo/biased_1' ``` Args: variable: A Variable. value: A tensor with the same shape as 'variable'. decay: A float Tensor or float value. The moving average decay. zero_debias: A python bool. If true, assume the variable is 0-initialized and unbias it, as in https://arxiv.org/abs/1412.6980. See docstring in `_zero_debias` for more details. name: Optional name of the returned operation. Returns: A tensor which if evaluated will compute and return the new moving average. """ def update_fn(v, value, decay=decay): decay = ops.convert_to_tensor(1.0 - decay, name="decay") if decay.dtype != v.dtype.base_dtype: decay = math_ops.cast(decay, v.dtype.base_dtype) if zero_debias: update_delta = _zero_debias(v, value, decay) else: update_delta = (v - value) * decay return state_ops.assign_sub(v, update_delta, name=scope) with ops.name_scope(name, "AssignMovingAvg", [variable, value, decay]) as scope: replica_context = distribution_strategy_context.get_replica_context() if replica_context: # In a replica context, we update variable using the mean of value across # replicas. def merge_fn(strategy, v, value): value = strategy.reduce( variable_scope.VariableAggregation.MEAN, value, v) return strategy.update(v, update_fn, value) return replica_context.merge_call(merge_fn, variable, value) else: strategy = distribution_strategy_context.get_cross_replica_context() return strategy.update(variable, update_fn, value) def weighted_moving_average(value, decay, weight, truediv=True, collections=None, name=None): """Compute the weighted moving average of `value`. Conceptually, the weighted moving average is: `moving_average(value * weight) / moving_average(weight)`, where a moving average updates by the rule `new_value = decay * old_value + (1 - decay) * update` Internally, this Op keeps moving average variables of both `value * weight` and `weight`. Args: value: A numeric `Tensor`. decay: A float `Tensor` or float value. The moving average decay. weight: `Tensor` that keeps the current value of a weight. Shape should be able to multiply `value`. truediv: Boolean, if `True`, dividing by `moving_average(weight)` is floating point division. If `False`, use division implied by dtypes. collections: List of graph collections keys to add the internal variables `value * weight` and `weight` to. Defaults to `[GraphKeys.GLOBAL_VARIABLES]`. name: Optional name of the returned operation. Defaults to "WeightedMovingAvg". Returns: An Operation that updates and returns the weighted moving average. """ # Unlike assign_moving_average, the weighted moving average doesn't modify # user-visible variables. It is the ratio of two internal variables, which are # moving averages of the updates. Thus, the signature of this function is # quite different than assign_moving_average. if collections is None: collections = [ops.GraphKeys.GLOBAL_VARIABLES] with variable_scope.variable_scope(name, "WeightedMovingAvg", [value, weight, decay]) as scope: value_x_weight_var = variable_scope.get_variable( "value_x_weight", shape=value.get_shape(), dtype=value.dtype, initializer=init_ops.zeros_initializer(), trainable=False, collections=collections) weight_var = variable_scope.get_variable( "weight", shape=weight.get_shape(), dtype=weight.dtype, initializer=init_ops.zeros_initializer(), trainable=False, collections=collections) numerator = assign_moving_average( value_x_weight_var, value * weight, decay, zero_debias=False) denominator = assign_moving_average( weight_var, weight, decay, zero_debias=False) if truediv: return math_ops.truediv(numerator, denominator, name=scope.name) else: return math_ops.div(numerator, denominator, name=scope.name) def _zero_debias(unbiased_var, value, decay): """Compute the delta required for a debiased Variable. All exponential moving averages initialized with Tensors are initialized to 0, and therefore are biased to 0. Variables initialized to 0 and used as EMAs are similarly biased. This function creates the debias updated amount according to a scale factor, as in https://arxiv.org/abs/1412.6980. To demonstrate the bias the results from 0-initialization, take an EMA that was initialized to `0` with decay `b`. After `t` timesteps of seeing the constant `c`, the variable have the following value: ``` EMA = 0*b^(t) + c*(1 - b)*b^(t-1) + c*(1 - b)*b^(t-2) + ... = c*(1 - b^t) ``` To have the true value `c`, we would divide by the scale factor `1 - b^t`. In order to perform debiasing, we use two shadow variables. One keeps track of the biased estimate, and the other keeps track of the number of updates that have occurred. Args: unbiased_var: A Variable representing the current value of the unbiased EMA. value: A Tensor representing the most recent value. decay: A Tensor representing `1-decay` for the EMA. Returns: The amount that the unbiased variable should be updated. Computing this tensor will also update the shadow variables appropriately. """ with variable_scope.variable_scope( unbiased_var.op.name, values=[unbiased_var, value, decay]) as scope: with ops.colocate_with(unbiased_var): with ops.init_scope(): biased_initializer = init_ops.zeros_initializer( dtype=unbiased_var.dtype)(unbiased_var.get_shape()) local_step_initializer = init_ops.zeros_initializer() def _maybe_get_unique(name): """Get name for a unique variable, if not `reuse=True`.""" if variable_scope.get_variable_scope().reuse: return name vs_vars = [x.op.name for x in variable_scope.get_variable_scope().global_variables()] full_name = variable_scope.get_variable_scope().name + "/" + name if full_name not in vs_vars: return name idx = 1 while full_name + ("_%d" % idx) in vs_vars: idx += 1 return name + ("_%d" % idx) biased_var = variable_scope.get_variable( _maybe_get_unique("biased"), initializer=biased_initializer, trainable=False) local_step = variable_scope.get_variable( _maybe_get_unique("local_step"), shape=[], dtype=unbiased_var.dtype, initializer=local_step_initializer, trainable=False) # Get an update ops for both shadow variables. update_biased = state_ops.assign_sub(biased_var, (biased_var - value) * decay, name=scope.name) update_local_step = local_step.assign_add(1) # Compute the value of the delta to update the unbiased EMA. Make sure to # use the new values of the biased variable and the local step. with ops.control_dependencies([update_biased, update_local_step]): # This function gets `1 - decay`, so use `1.0 - decay` in the exponent. unbiased_ema_delta = (unbiased_var - biased_var.read_value() / (1 - math_ops.pow( 1.0 - decay, local_step.read_value()))) return unbiased_ema_delta @tf_export("train.ExponentialMovingAverage") class ExponentialMovingAverage(object): """Maintains moving averages of variables by employing an exponential decay. When training a model, it is often beneficial to maintain moving averages of the trained parameters. Evaluations that use averaged parameters sometimes produce significantly better results than the final trained values. The `apply()` method adds shadow copies of trained variables and add ops that maintain a moving average of the trained variables in their shadow copies. It is used when building the training model. The ops that maintain moving averages are typically run after each training step. The `average()` and `average_name()` methods give access to the shadow variables and their names. They are useful when building an evaluation model, or when restoring a model from a checkpoint file. They help use the moving averages in place of the last trained values for evaluations. The moving averages are computed using exponential decay. You specify the decay value when creating the `ExponentialMovingAverage` object. The shadow variables are initialized with the same initial values as the trained variables. When you run the ops to maintain the moving averages, each shadow variable is updated with the formula: `shadow_variable -= (1 - decay) * (shadow_variable - variable)` This is mathematically equivalent to the classic formula below, but the use of an `assign_sub` op (the `"-="` in the formula) allows concurrent lockless updates to the variables: `shadow_variable = decay * shadow_variable + (1 - decay) * variable` Reasonable values for `decay` are close to 1.0, typically in the multiple-nines range: 0.999, 0.9999, etc. Example usage when creating a training model: ```python # Create variables. var0 = tf.Variable(...) var1 = tf.Variable(...) # ... use the variables to build a training model... ... # Create an op that applies the optimizer. This is what we usually # would use as a training op. opt_op = opt.minimize(my_loss, [var0, var1]) # Create an ExponentialMovingAverage object ema = tf.train.ExponentialMovingAverage(decay=0.9999) with tf.control_dependencies([opt_op]): # Create the shadow variables, and add ops to maintain moving averages # of var0 and var1. This also creates an op that will update the moving # averages after each training step. This is what we will use in place # of the usual training op. training_op = ema.apply([var0, var1]) ...train the model by running training_op... ``` There are two ways to use the moving averages for evaluations: * Build a model that uses the shadow variables instead of the variables. For this, use the `average()` method which returns the shadow variable for a given variable. * Build a model normally but load the checkpoint files to evaluate by using the shadow variable names. For this use the `average_name()` method. See the `tf.train.Saver` for more information on restoring saved variables. Example of restoring the shadow variable values: ```python # Create a Saver that loads variables from their saved shadow values. shadow_var0_name = ema.average_name(var0) shadow_var1_name = ema.average_name(var1) saver = tf.train.Saver({shadow_var0_name: var0, shadow_var1_name: var1}) saver.restore(...checkpoint filename...) # var0 and var1 now hold the moving average values ``` """ def __init__(self, decay, num_updates=None, zero_debias=False, name="ExponentialMovingAverage"): """Creates a new ExponentialMovingAverage object. The `apply()` method has to be called to create shadow variables and add ops to maintain moving averages. The optional `num_updates` parameter allows one to tweak the decay rate dynamically. It is typical to pass the count of training steps, usually kept in a variable that is incremented at each step, in which case the decay rate is lower at the start of training. This makes moving averages move faster. If passed, the actual decay rate used is: `min(decay, (1 + num_updates) / (10 + num_updates))` Args: decay: Float. The decay to use. num_updates: Optional count of number of updates applied to variables. zero_debias: If `True`, zero debias moving-averages that are initialized with tensors. name: String. Optional prefix name to use for the name of ops added in `apply()`. """ self._decay = decay self._num_updates = num_updates self._zero_debias = zero_debias self._name = name self._averages = {} @property def name(self): """The name of this ExponentialMovingAverage object.""" return self._name def apply(self, var_list=None): """Maintains moving averages of variables. `var_list` must be a list of `Variable` or `Tensor` objects. This method creates shadow variables for all elements of `var_list`. Shadow variables for `Variable` objects are initialized to the variable's initial value. They will be added to the `GraphKeys.MOVING_AVERAGE_VARIABLES` collection. For `Tensor` objects, the shadow variables are initialized to 0 and zero debiased (see docstring in `assign_moving_average` for more details). shadow variables are created with `trainable=False` and added to the `GraphKeys.ALL_VARIABLES` collection. They will be returned by calls to `tf.global_variables()`. Returns an op that updates all shadow variables from the current value of their associated variables. Note that `apply()` can be called multiple times. When eager execution is enabled each call to apply will update the variables once, so this needs to be called in a loop. Args: var_list: A list of Variable or Tensor objects. The variables and Tensors must be of types bfloat16, float16, float32, or float64. Returns: An Operation that updates the moving averages. Raises: TypeError: If the arguments are not an allowed type. """ # TODO(touts): op_scope if var_list is None: var_list = variables.trainable_variables() zero_debias_true = set() # set of vars to set `zero_debias=True` for var in var_list: if var.dtype.base_dtype not in [ dtypes.bfloat16, dtypes.float16, dtypes.float32, dtypes.float64 ]: raise TypeError("The variables must be half, float, or double: %s" % var.name) if var not in self._averages: # For variables: to lower communication bandwidth across devices we keep # the moving averages on the same device as the variables. For other # tensors, we rely on the existing device allocation mechanism. with ops.init_scope(): if isinstance(var, variables.Variable): avg = slot_creator.create_slot(var, var.initialized_value(), self.name, colocate_with_primary=True) # NOTE(mrry): We only add `tf.Variable` objects to the # `MOVING_AVERAGE_VARIABLES` collection. ops.add_to_collection(ops.GraphKeys.MOVING_AVERAGE_VARIABLES, var) else: avg = slot_creator.create_zeros_slot( var, self.name, colocate_with_primary=(var.op.type in ["Variable", "VariableV2", "VarHandleOp"])) if self._zero_debias: zero_debias_true.add(avg) self._averages[var] = avg with ops.name_scope(self.name) as scope: decay = ops.convert_to_tensor(self._decay, name="decay") if self._num_updates is not None: num_updates = math_ops.cast(self._num_updates, dtypes.float32, name="num_updates") decay = math_ops.minimum(decay, (1.0 + num_updates) / (10.0 + num_updates)) updates = [] for var in var_list: zero_debias = self._averages[var] in zero_debias_true updates.append(assign_moving_average( self._averages[var], var, decay, zero_debias=zero_debias)) return control_flow_ops.group(*updates, name=scope) def average(self, var): """Returns the `Variable` holding the average of `var`. Args: var: A `Variable` object. Returns: A `Variable` object or `None` if the moving average of `var` is not maintained. """ return self._averages.get(var, None) def average_name(self, var): """Returns the name of the `Variable` holding the average for `var`. The typical scenario for `ExponentialMovingAverage` is to compute moving averages of variables during training, and restore the variables from the computed moving averages during evaluations. To restore variables, you have to know the name of the shadow variables. That name and the original variable can then be passed to a `Saver()` object to restore the variable from the moving average value with: `saver = tf.train.Saver({ema.average_name(var): var})` `average_name()` can be called whether or not `apply()` has been called. Args: var: A `Variable` object. Returns: A string: The name of the variable that will be used or was used by the `ExponentialMovingAverage class` to hold the moving average of `var`. """ if var in self._averages: return self._averages[var].op.name return ops.get_default_graph().unique_name( var.op.name + "/" + self.name, mark_as_used=False) def variables_to_restore(self, moving_avg_variables=None): """Returns a map of names to `Variables` to restore. If a variable has a moving average, use the moving average variable name as the restore name; otherwise, use the variable name. For example, ```python variables_to_restore = ema.variables_to_restore() saver = tf.train.Saver(variables_to_restore) ``` Below is an example of such mapping: ``` conv/batchnorm/gamma/ExponentialMovingAverage: conv/batchnorm/gamma, conv_4/conv2d_params/ExponentialMovingAverage: conv_4/conv2d_params, global_step: global_step ``` Args: moving_avg_variables: a list of variables that require to use of the moving variable name to be restored. If None, it will default to variables.moving_average_variables() + variables.trainable_variables() Returns: A map from restore_names to variables. The restore_name can be the moving_average version of the variable name if it exist, or the original variable name. """ name_map = {} if moving_avg_variables is None: # Include trainable variables and variables which have been explicitly # added to the moving_average_variables collection. moving_avg_variables = variables.trainable_variables() moving_avg_variables += variables.moving_average_variables() # Remove duplicates moving_avg_variables = set(moving_avg_variables) # Collect all the variables with moving average, for v in moving_avg_variables: name_map[self.average_name(v)] = v # Make sure we restore variables without moving averages as well. moving_avg_variable_names = set([v.name for v in moving_avg_variables]) for v in list(set(variables.global_variables())): if v.name not in moving_avg_variable_names and v.op.name not in name_map: name_map[v.op.name] = v return name_map
{ "content_hash": "9126bb91abcc95ea3e20ac2fae1dca29", "timestamp": "", "source": "github", "line_count": 517, "max_line_length": 80, "avg_line_length": 41.65570599613153, "alnum_prop": 0.6680906389301634, "repo_name": "dongjoon-hyun/tensorflow", "id": "fc9eb479cc3a0c3fd3dba4de7269b7894d3ec84c", "size": "22225", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "tensorflow/python/training/moving_averages.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Assembly", "bytes": "3301" }, { "name": "Batchfile", "bytes": "10132" }, { "name": "C", "bytes": "446293" }, { "name": "C#", "bytes": "8446" }, { "name": "C++", "bytes": "50950243" }, { "name": "CMake", "bytes": "198845" }, { "name": "Dockerfile", "bytes": "36908" }, { "name": "Go", "bytes": "1285854" }, { "name": "HTML", "bytes": "4681865" }, { "name": "Java", "bytes": "869263" }, { "name": "Jupyter Notebook", "bytes": "2611125" }, { "name": "LLVM", "bytes": "6536" }, { "name": "Makefile", "bytes": "62216" }, { "name": "Objective-C", "bytes": "15634" }, { "name": "Objective-C++", "bytes": "101475" }, { "name": "PHP", "bytes": "5191" }, { "name": "Perl", "bytes": "7536" }, { "name": "PureBasic", "bytes": "25356" }, { "name": "Python", "bytes": "40335927" }, { "name": "RobotFramework", "bytes": "891" }, { "name": "Ruby", "bytes": "553" }, { "name": "Shell", "bytes": "487251" }, { "name": "Smarty", "bytes": "6976" } ], "symlink_target": "" }
import logging from django import template from django.utils.html import mark_safe import cio.conf from cio.pipeline import pipeline from djedi.auth import has_permission from djedi.utils.templates import render_embed register = template.Library() logger = logging.getLogger(__name__) @register.simple_tag(takes_context=True) def djedi_admin(context): output = "" if has_permission(context.get("request")): defaults = { node.uri.clone(version=None): node.initial for node in pipeline.history.list("get") } output = render_embed(nodes=defaults) # Clear pipeline pipeline.clear() return output @register.simple_tag def djedi_xss_domain(): domain = cio.conf.settings.get("XSS_DOMAIN") if domain: return mark_safe(f'<script>document.domain = "{domain}";</script>') return ""
{ "content_hash": "2fbaabdaed5620b2efb1284621d4c4c2", "timestamp": "", "source": "github", "line_count": 38, "max_line_length": 75, "avg_line_length": 22.894736842105264, "alnum_prop": 0.6816091954022988, "repo_name": "5monkeys/djedi-cms", "id": "8798839b1eaed7fe6c19fe6e200724e8adfcdd78", "size": "870", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "djedi/templatetags/djedi_admin.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "CSS", "bytes": "330222" }, { "name": "CoffeeScript", "bytes": "38279" }, { "name": "Dockerfile", "bytes": "535" }, { "name": "HTML", "bytes": "14605" }, { "name": "JavaScript", "bytes": "141445" }, { "name": "Less", "bytes": "73752" }, { "name": "Makefile", "bytes": "1489" }, { "name": "Python", "bytes": "84579" } ], "symlink_target": "" }
from django.conf.urls.defaults import url, patterns urlpatterns = patterns("symposion.boxes.views", url(r"^([-\w]+)/edit/$", "box_edit", name="box_edit"), )
{ "content_hash": "a6493064498cfc9a771e3b2037039bb6", "timestamp": "", "source": "github", "line_count": 6, "max_line_length": 58, "avg_line_length": 27, "alnum_prop": 0.6666666666666666, "repo_name": "djangocon/symposion-2014", "id": "dc57fe6bd7fe5147a39210669f116f9086cd5cc2", "size": "162", "binary": false, "copies": "8", "ref": "refs/heads/master", "path": "symposion/boxes/urls.py", "mode": "33188", "license": "bsd-3-clause", "language": [], "symlink_target": "" }
from tempest.lib.services.identity.v3 import groups_client from tempest.tests.lib import fake_auth_provider from tempest.tests.lib.services import base class TestGroupsClient(base.BaseServiceTest): FAKE_CREATE_GROUP = { 'group': { 'description': 'Tempest Group Description', 'domain_id': 'TempestDomain', 'name': 'Tempest Group', } } FAKE_GROUP_INFO = { 'group': { 'description': 'Tempest Group Description', 'domain_id': 'TempestDomain', 'id': '6e13e2068cf9466e98950595baf6bb35', 'links': { 'self': 'http://example.com/identity/v3/groups/' + '6e13e2068cf9466e98950595baf6bb35' }, 'name': 'Tempest Group', } } FAKE_GROUP_LIST = { 'links': { 'self': 'http://example.com/identity/v3/groups', 'previous': None, 'next': None, }, 'groups': [ { 'description': 'Tempest Group One Description', 'domain_id': 'TempestDomain', 'id': '1c92f3453ed34291a074b87493455b8f', 'links': { 'self': 'http://example.com/identity/v3/groups/' + '1c92f3453ed34291a074b87493455b8f' }, 'name': 'Tempest Group One', }, { 'description': 'Tempest Group Two Description', 'domain_id': 'TempestDomain', 'id': 'ce9e7dafed3b4877a7d4466ed730a9ee', 'links': { 'self': 'http://example.com/identity/v3/groups/' + 'ce9e7dafed3b4877a7d4466ed730a9ee' }, 'name': 'Tempest Group Two', }, ] } FAKE_USER_LIST = { 'links': { 'self': 'http://example.com/identity/v3/groups/' + '6e13e2068cf9466e98950595baf6bb35/users', 'previous': None, 'next': None, }, 'users': [ { 'domain_id': 'TempestDomain', 'description': 'Tempest Test User One Description', 'enabled': True, 'id': '642688fa65a84217b86cef3c063de2b9', 'name': 'TempestUserOne', 'links': { 'self': 'http://example.com/identity/v3/users/' + '642688fa65a84217b86cef3c063de2b9' } }, { 'domain_id': 'TempestDomain', 'description': 'Tempest Test User Two Description', 'enabled': True, 'id': '1048ead6f8ef4a859b44ffbce3ac0b52', 'name': 'TempestUserTwo', 'links': { 'self': 'http://example.com/identity/v3/users/' + '1048ead6f8ef4a859b44ffbce3ac0b52' } }, ] } def setUp(self): super(TestGroupsClient, self).setUp() fake_auth = fake_auth_provider.FakeAuthProvider() self.client = groups_client.GroupsClient(fake_auth, 'identity', 'regionOne') def _test_create_group(self, bytes_body=False): self.check_service_client_function( self.client.create_group, 'tempest.lib.common.rest_client.RestClient.post', self.FAKE_CREATE_GROUP, bytes_body, status=201, ) def _test_show_group(self, bytes_body=False): self.check_service_client_function( self.client.show_group, 'tempest.lib.common.rest_client.RestClient.get', self.FAKE_GROUP_INFO, bytes_body, group_id='6e13e2068cf9466e98950595baf6bb35', ) def _test_list_groups(self, bytes_body=False): self.check_service_client_function( self.client.list_groups, 'tempest.lib.common.rest_client.RestClient.get', self.FAKE_GROUP_LIST, bytes_body, ) def _test_update_group(self, bytes_body=False): self.check_service_client_function( self.client.update_group, 'tempest.lib.common.rest_client.RestClient.patch', self.FAKE_GROUP_INFO, bytes_body, group_id='6e13e2068cf9466e98950595baf6bb35', name='NewName', ) def _test_list_users_in_group(self, bytes_body=False): self.check_service_client_function( self.client.list_group_users, 'tempest.lib.common.rest_client.RestClient.get', self.FAKE_USER_LIST, bytes_body, group_id='6e13e2068cf9466e98950595baf6bb35', ) def test_create_group_with_string_body(self): self._test_create_group() def test_create_group_with_bytes_body(self): self._test_create_group(bytes_body=True) def test_show_group_with_string_body(self): self._test_show_group() def test_show_group_with_bytes_body(self): self._test_show_group(bytes_body=True) def test_list_groups_with_string_body(self): self._test_list_groups() def test_list_groups_with_bytes_body(self): self._test_list_groups(bytes_body=True) def test_update_group_with_string_body(self): self._test_update_group() def test_update_group_with_bytes_body(self): self._test_update_group(bytes_body=True) def test_list_users_in_group_with_string_body(self): self._test_list_users_in_group() def test_list_users_in_group_with_bytes_body(self): self._test_list_users_in_group(bytes_body=True) def test_delete_group(self): self.check_service_client_function( self.client.delete_group, 'tempest.lib.common.rest_client.RestClient.delete', {}, group_id='6e13e2068cf9466e98950595baf6bb35', status=204, ) def test_add_user_to_group(self): self.check_service_client_function( self.client.add_group_user, 'tempest.lib.common.rest_client.RestClient.put', {}, status=204, group_id='6e13e2068cf9466e98950595baf6bb35', user_id='642688fa65a84217b86cef3c063de2b9', ) def test_check_user_in_group(self): self.check_service_client_function( self.client.check_group_user_existence, 'tempest.lib.common.rest_client.RestClient.head', {}, status=204, group_id='6e13e2068cf9466e98950595baf6bb35', user_id='642688fa65a84217b86cef3c063de2b9', )
{ "content_hash": "97758a9c480fb7c78dbed0705e923150", "timestamp": "", "source": "github", "line_count": 199, "max_line_length": 71, "avg_line_length": 34.085427135678394, "alnum_prop": 0.5364882795223352, "repo_name": "Tesora/tesora-tempest", "id": "38cf3ae1c271d666a15aac37be7dd3c846d5b5b7", "size": "7359", "binary": false, "copies": "5", "ref": "refs/heads/master", "path": "tempest/tests/lib/services/identity/v3/test_groups_client.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Python", "bytes": "3633718" }, { "name": "Shell", "bytes": "9310" } ], "symlink_target": "" }
from distutils.core import setup from distutils.extension import Extension from Cython.Distutils import build_ext setup( cmdclass = {'build_ext': build_ext}, ext_modules = [Extension("decoder", ["decoder.pyx"]),] )
{ "content_hash": "1753375b652c7a945735165e69f5a849", "timestamp": "", "source": "github", "line_count": 8, "max_line_length": 56, "avg_line_length": 27.5, "alnum_prop": 0.740909090909091, "repo_name": "xiamike/stanford-ctc", "id": "19c47c9790dd97f3f6364a707cf9f3c1f0e2af31", "size": "221", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "ctc_fast/new_decoder/setup.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "C++", "bytes": "19111" }, { "name": "CMake", "bytes": "5218" }, { "name": "CSS", "bytes": "1125" }, { "name": "HTML", "bytes": "616" }, { "name": "JavaScript", "bytes": "1699" }, { "name": "Makefile", "bytes": "244" }, { "name": "Matlab", "bytes": "38086" }, { "name": "Python", "bytes": "242535" }, { "name": "Shell", "bytes": "15591" } ], "symlink_target": "" }
from tweepy.mixins import DataMapping, HashableID from tweepy.utils import parse_datetime class List(HashableID, DataMapping): """The list object contains `Twitter Lists`_ metadata describing the referenced List. The List object is the primary object returned in the List lookup endpoint. When requesting additional List fields on this endpoint, simply use the fields parameter ``list.fields``. At the moment, the List object cannot be found as a child object from any other data object. However, user objects can be found and expanded in the user resource. These objects are available for expansion by adding ``owner_id`` to the ``expansions`` query parameter. Use the expansion with the field parameter: ``list.fields`` when requesting additional fields to complete the primary List object and ``user.fields`` to complete the expansion object. .. versionadded:: 4.4 Attributes ---------- data : dict The JSON data representing the List. id : str The unique identifier of this List. name : str The name of the List, as defined when creating the List. created_at : datetime.datetime | None The UTC datetime that the List was created on Twitter. description : str | None A brief description to let users know about the List. follower_count : int | None Shows how many users follow this List, member_count : int | None Shows how many members are part of this List. private : bool | None Indicates if the List is private. owner_id : str | None Unique identifier of this List's owner. References ---------- https://developer.twitter.com/en/docs/twitter-api/data-dictionary/object-model/lists .. _Twitter Lists: https://help.twitter.com/en/using-twitter/twitter-lists """ __slots__ = ( "data", "id", "name", "created_at", "description", "follower_count", "member_count", "private", "owner_id" ) def __init__(self, data): self.data = data self.id = data["id"] self.name = data["name"] self.created_at = data.get("created_at") if self.created_at is not None: self.created_at = parse_datetime(self.created_at) self.description = data.get("description") self.follower_count = data.get("follower_count") self.member_count = data.get("member_count") self.private = data.get("private") self.owner_id = data.get("owner_id") def __repr__(self): return f"<List id={self.id} name={self.name}>" def __str__(self): return self.name
{ "content_hash": "6cfb8b3d71522023f7998eb86f58815b", "timestamp": "", "source": "github", "line_count": 73, "max_line_length": 88, "avg_line_length": 36.36986301369863, "alnum_prop": 0.6508474576271186, "repo_name": "tweepy/tweepy", "id": "b2a5044246f2b6210fb07e5302defe2a08bf1907", "size": "2731", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "tweepy/list.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "656249" } ], "symlink_target": "" }
""" Views for CAVE Language """ from cavelanguage.utils import template from cavelanguage.models import Symbol, Collection, Category, Diagram, Contributor @template('home.html') def home(request): """ Home page. """ return {'location':'home'} @template('symbol_library.html') def symbol_library(request): """ The main symbol library. """ connector_symbols = Symbol.objects.active().filter(collection__name='Core',categories__name='Connectors') data_symbols = Symbol.objects.active().filter(collection__name='Core',categories__name='Data') context_symbols = Symbol.objects.active().filter(collection__name='Core',categories__name='Context') conditional_symbols = Symbol.objects.active().filter(collection__name='Core',categories__name='Conditionals') mode_symbols = Symbol.objects.active().filter(collection__name='Core',categories__name='Modes') container_symbols = Symbol.objects.active().filter(collection__name='Core',categories__name='Containers') extensions = Collection.objects.exclude(name='Core') return {'location':'symbol_library', 'connector_symbols':connector_symbols, 'data_symbols':data_symbols, 'context_symbols':context_symbols, 'conditional_symbols':conditional_symbols, 'mode_symbols':mode_symbols, 'container_symbols':container_symbols, 'extensions':extensions} @template('symbol.html') def symbol(request,slug): """ Shows the symbol. """ sym = Symbol.objects.get(slug=slug) return {'symbol':sym,'location':'symbol_library'} @template('collection.html') def collection(request,slug): """ Gets the collection. """ col = Collection.objects.get(slug=slug) return {'collection':col,'location':'symbol_library'} @template('category.html') def category(request,collection_slug,slug): """ Gets the category. """ cat = Category.objects.get(slug=slug) return {'category':cat,'location':'symbol_library'} @template('diagram.html') def diagram(request,diagram_id,diagram_slug): """ Gets the diagram. """ diagram = Diagram.objects.get(pk=diagram_id) return {'diagram':diagram,'location':'diagrams'} @template('diagrams.html') def diagrams(request): """ Main diagrams page. """ return {'location':'diagrams','diagrams':Diagram.objects.all()} @template('contributors.html') def contributors(request): """ Contributors to CAVE. """ return {'location':'contributors','contributors':Contributor.objects.all()}
{ "content_hash": "022e8911968b58b62a8e5ca8f8637ee2", "timestamp": "", "source": "github", "line_count": 82, "max_line_length": 113, "avg_line_length": 31.621951219512194, "alnum_prop": 0.6702661010412649, "repo_name": "Axilent/cave-language", "id": "84ae2bc2d1c05b49fda643294a7d948cebebf4ca", "size": "2593", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "cavelanguage/views.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "245" }, { "name": "HTML", "bytes": "23813" }, { "name": "Python", "bytes": "24840" } ], "symlink_target": "" }
import json import urllib import urlparse import logging import cookielib import dateutil.tz from datetime import datetime from StringIO import StringIO from collections import OrderedDict from twisted.web.client import Agent, CookieAgent, FileBodyProducer from twisted.web.http_headers import Headers from twisted.internet.protocol import Protocol from twisted.internet import reactor, defer from twisted.web._newclient import _WrapperException from requests.cookies import create_cookie class Response(object): def __init__(self, status_code, headers, cookiejar, content): self.status_code = status_code self.headers = headers self.cookiejar = cookiejar self.content = content @property def json(self): return json.loads(self.content) @property def cookies(self): return {cookie.name: cookie.value for cookie in self.cookiejar} class BodyReceiver(Protocol): def __init__(self, status_code, headers, cookiejar, finished): self.status_code = status_code self.headers = headers self.cookiejar = cookiejar self.finished = finished self.data = '' def dataReceived(self, bytes): self.data += bytes def connectionLost(self, reason): self.finished.callback(Response(self.status_code, self.headers, self.cookiejar, self.data)) def http_request(method, url, params={}, data=None, headers={}, cookies=None, timeout=30, ignore_errors=True): # Urlencode does not accept unicode, so convert to str first url = url.encode('utf-8') if isinstance(url, unicode) else url for k, v in params.items(): params[k] = v.encode('utf-8') if isinstance(v, unicode) else v for k, v in headers.items(): headers[k] = v.encode('utf-8') if isinstance(v, unicode) else v # Add any additional params to the url url_parts = list(urlparse.urlparse(url)) query = dict(urlparse.parse_qsl(url_parts[4])) query.update(params) url_parts[4] = urllib.urlencode(query, doseq=True) url = urlparse.urlunparse(url_parts) # Handle cookies if isinstance(cookies, cookielib.CookieJar): cookiejar = cookies else: cookiejar = cookielib.CookieJar() for name, value in (cookies or {}).iteritems(): cookiejar.set_cookie(create_cookie(name=name, value=value)) # Urlencode the data, if needed if isinstance(data, dict): data = urllib.urlencode(data) headers['Content-Type'] = 'application/x-www-form-urlencoded' agent = Agent(reactor, connectTimeout=timeout) cookie_agent = CookieAgent(agent, cookiejar) body = FileBodyProducer(StringIO(data)) if data else None d = cookie_agent.request(method, url, Headers({k: [v] for k, v in headers.iteritems()}), body) def handle_response(response, cookiejar): if 'audio/mpeg' in response.headers.getRawHeaders('content-type')[-1]: # Don't download any multimedia files raise Exception('reponse contains a multimedia file') d = defer.Deferred() response.deliverBody(BodyReceiver(response.code, dict(response.headers.getAllRawHeaders()), cookiejar, d)) return d def handle_error(error): if isinstance(error, _WrapperException): reason = ', '.join(error.reasons) else: reason = error.getErrorMessage() logger = logging.getLogger(__name__) logger.error('Failed to GET %s (reason: %s)', url, reason) return Response(0, {}, cookielib.CookieJar(), '') d.addCallback(handle_response, cookiejar) if ignore_errors: d.addErrback(handle_error) return d def get_request(url, **kwargs): return http_request('GET', url, **kwargs) def post_request(url, **kwargs): return http_request('POST', url, **kwargs) def put_request(url, **kwargs): return http_request('PUT', url, **kwargs) def delete_request(url, **kwargs): return http_request('DELETE', url, **kwargs) # From: http://stackoverflow.com/questions/2437617/limiting-the-size-of-a-python-dictionary class LimitedSizeDict(OrderedDict): def __init__(self, *args, **kwds): self.size_limit = kwds.pop("size_limit", None) OrderedDict.__init__(self, *args, **kwds) self._check_size_limit() def __setitem__(self, key, value): OrderedDict.__setitem__(self, key, value) self._check_size_limit() def _check_size_limit(self): if self.size_limit is not None: while len(self) > self.size_limit: self.popitem(last=False) def parse_title(title): # Try to split the title into artist and name components if title.count(' - ') == 1: artist_name, track_name = title.split(' - ', 1) return artist_name, track_name return None def ts_to_rfc3339(ts): dt = datetime.utcfromtimestamp(ts) return dt.isoformat("T") + "Z" def datetime_to_ts(dt): epoch_dt = datetime(1970, 1, 1, tzinfo=dateutil.tz.tzoffset(None, 0)) return int((dt - epoch_dt).total_seconds()) def build_bool_query(bool_type, match_dict, nested_path=None): query = {'query': {'bool': {bool_type: []}}} for key, value in match_dict.iteritems(): query['query']['bool'][bool_type].append({'match': {key: value}}) if nested_path: query = {'nested': query} query['nested']['path'] = nested_path return query def build_simple_query(query, fields=['_all']): return {'query': {'simple_query_string': {'query': query, 'fields': fields}}} def build_query(query, field='_all'): return {'query': {'query_string': {'query': query, 'default_field': field}}}
{ "content_hash": "a6a5cf793b846b44c62423a72f046e4a", "timestamp": "", "source": "github", "line_count": 184, "max_line_length": 110, "avg_line_length": 31.972826086956523, "alnum_prop": 0.6328403875573687, "repo_name": "mmc-tudelft/billy", "id": "dd2c00185ee5e1e0cb824dbf2ed3618a281b8b06", "size": "5883", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "server/util.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "4321" }, { "name": "HTML", "bytes": "17285" }, { "name": "JavaScript", "bytes": "34479" }, { "name": "Python", "bytes": "71926" } ], "symlink_target": "" }
import argparse from matplotlib import pyplot as plt class Result(): params = {} iterations = [] def __init__(self, lines): info = lines[0].split() self.params = { 'population_size': int(info[0]), 'number_of_tournaments': int(info[1]), 'tournament_size': int(info[2]), 'mutation_probability': float(info[3]), 'board_fill': int(info[4]) } self.iterations = [line.split() for line in lines[1:]] def read_files(file_list): results = [] for filename in file_list: with open(filename) as f: lines = f.readlines() results.append(Result(lines)) return results def plot_by_fill_ratio(results, y_column): params = results[0].params figure_label = "Population: {0}, mutation probability: {1}".format(params['population_size'], params['mutation_probability']) figure = plt.figure() figure.suptitle(figure_label) fills = set(result.params['board_fill'] for result in results) for fill in sorted(fills): selected = next(result.iterations for result in results if result.params['board_fill'] == fill) x = [l[0] for l in selected] values = [l[y_column] for l in selected] label = "fill ratio {0:.2f}".format(fill / 81) plt.plot(x, values, '-', label=label) plt.ylabel("error value") plt.xlabel("iteration number") plt.legend() plt.show() def plot_by_mutation_probability(results, y_column): params = results[0].params figure_label = "Population: {0}, fill ratio: {1}".format(params['population_size'], params['board_fill']) figure = plt.figure() figure.suptitle(figure_label) probabilities = set(result.params['mutation_probability'] for result in results) for p in sorted(probabilities): selected = next(result.iterations for result in results if result.params['mutation_probability'] == p) x = [l[0] for l in selected] values = [l[y_column] for l in selected] label = "mutation prob. {0}".format(p) plt.plot(x, values, '-', label=label) plt.ylabel("error value") plt.xlabel("iteration number") plt.legend() plt.show() if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('-t', '--type', required=True, help="type of the plot: mutation, fill") parser.add_argument('-v', '--value', help="values to print: min, mean", default="min") parser.add_argument('files', nargs='+', help="files with results") args = parser.parse_args() results = read_files(args.files) if args.value == "mean": y_column = 2 else: y_column = 1 if args.type == 'mutation': plot_by_mutation_probability(results, y_column) elif args.type == 'fill': plot_by_fill_ratio(results, y_column)
{ "content_hash": "a94736bec3421c0a8a27de264ac2e46d", "timestamp": "", "source": "github", "line_count": 99, "max_line_length": 110, "avg_line_length": 30.363636363636363, "alnum_prop": 0.583166999334664, "repo_name": "konradstrack/stochastic-sudoku-solver", "id": "6f44dbeaa8e8820c700b78da780aecdcb07f65dc", "size": "3006", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "tools/plot.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "49713" } ], "symlink_target": "" }
"""Resize images in a folder using imagemagick command line tools. http://hakanu.net """ import glob import os def main(): print 'Started' images = glob.glob("/home/h/Desktop/all_karikatur_resized/*.jpg") counter = 0 for image in images: print 'Processing: ', image index = image[image.rfind('/') + 1:image.rfind('.jpg')] print 'index: ', index os.system("convert " + index + ".jpg -resize 128x128 resize_128_" + index + ".jpg") counter += 1 if counter % 100 == 0: print 'Completed: ', counter print '\n' main()
{ "content_hash": "4f343e1fe2cd019d9a7f8b87a074ebd0", "timestamp": "", "source": "github", "line_count": 23, "max_line_length": 88, "avg_line_length": 24.304347826086957, "alnum_prop": 0.6243291592128801, "repo_name": "hakanu/scripts", "id": "a9836284221d7bd240a52447bd76b631ea410043", "size": "559", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "batch_image_resizer2/batch_image_resizer.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Python", "bytes": "559" } ], "symlink_target": "" }
from flask import request from weblab.core.wl import weblab_api @weblab_api.route_web('/language/') def language(): accept_language = request.headers.get('Accept-Language') if accept_language is None: return 'var acceptLanguageHeader = null;' else: return 'var acceptLanguageHeader = "%s";' % accept_language
{ "content_hash": "9a2b3889a843574bce7d9ef6accf0d39", "timestamp": "", "source": "github", "line_count": 11, "max_line_length": 67, "avg_line_length": 30.818181818181817, "alnum_prop": 0.6991150442477876, "repo_name": "zstars/weblabdeusto", "id": "800db39b8e955667dbd9626031c036a2f30538aa", "size": "783", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "server/src/weblab/core/web/language.py", "mode": "33188", "license": "bsd-2-clause", "language": [ { "name": "ASP", "bytes": "4785" }, { "name": "ActionScript", "bytes": "8508" }, { "name": "ApacheConf", "bytes": "122186" }, { "name": "Batchfile", "bytes": "7753" }, { "name": "C", "bytes": "19456" }, { "name": "C#", "bytes": "315160" }, { "name": "C++", "bytes": "9547" }, { "name": "CSS", "bytes": "150709" }, { "name": "CoffeeScript", "bytes": "30909" }, { "name": "Go", "bytes": "7076" }, { "name": "HTML", "bytes": "452001" }, { "name": "Java", "bytes": "1234794" }, { "name": "JavaScript", "bytes": "1656027" }, { "name": "Makefile", "bytes": "1571" }, { "name": "Mako", "bytes": "824" }, { "name": "PHP", "bytes": "155137" }, { "name": "Python", "bytes": "3435335" }, { "name": "Shell", "bytes": "2596" }, { "name": "Smarty", "bytes": "20160" }, { "name": "VHDL", "bytes": "5874" } ], "symlink_target": "" }
from setuptools import setup, find_packages version = '1.0' setup( name='tn.plonehtmlimagecache', version=version, description='', classifiers=[ "Framework :: Plone", "Programming Language :: Python", ], keywords='', author='TN Tecnologia e Negocios', author_email='[email protected]', url='http://www.tecnologiaenegocios.com.br', packages=find_packages('src'), package_dir={'': 'src'}, namespace_packages=['tn'], include_package_data=True, zip_safe=False, install_requires=[ 'setuptools', 'five.grok', 'Plone', 'plone.directives.form', 'plone.behavior', 'plone.app.intid', 'plone.namedfile[blobs]', 'lxml', ], extras_require={ 'test': [ 'stubydoo', 'zope.app.testing', ] }, entry_points=""" [z3c.autoinclude.plugin] target = plone """, )
{ "content_hash": "307359e80e6efd8bc8a264ec381b2041", "timestamp": "", "source": "github", "line_count": 42, "max_line_length": 49, "avg_line_length": 22.88095238095238, "alnum_prop": 0.554630593132154, "repo_name": "tecnologiaenegocios/tn.plonehtmlimagecache", "id": "f12e623665fe15791b0d552bf26d1a9ea9847bbe", "size": "961", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "setup.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "Python", "bytes": "65298" } ], "symlink_target": "" }
__author__ = 'innopath'
{ "content_hash": "fcea760b40a8f9fe5f38fe6f6938dc46", "timestamp": "", "source": "github", "line_count": 1, "max_line_length": 23, "avg_line_length": 24, "alnum_prop": 0.5833333333333334, "repo_name": "xinquanking/AndJoin", "id": "03d774b81c4755ff04d6fd338a72d456e10398f9", "size": "24", "binary": false, "copies": "4", "ref": "refs/heads/master", "path": "tools/__init__.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Python", "bytes": "369281" }, { "name": "Shell", "bytes": "682" }, { "name": "TypeScript", "bytes": "67" } ], "symlink_target": "" }
"""A specfile interface. Used mainly by transformer and tests to represent a conventional specfile as a structure of sections. """ try: from functools import reduce except ImportError: pass # we're on Python 2 => ok import re from spec2scl import settings class Specfile(object): """An specfile interface.""" def __init__(self, specfile): if not isinstance(specfile, str): specfile = ''.join(specfile) self.specfile = specfile self.sections = self.split_sections() def split_sections(self): """Split a specfile into sections. Return: list of (section name, section text) """ headers_re = [re.compile('^' + x + '\\b', re.M) for x in settings.SPECFILE_SECTIONS] section_starts = [] for header in headers_re: for match in header.finditer(self.specfile): section_starts.append(match.start()) section_starts.sort() # this is mainly for tests - if the header is the only section header_end = section_starts[0] if section_starts else len(self.specfile) sections = [('%header', self.specfile[:header_end])] for i in range(len(section_starts)): if len(section_starts) > i + 1: curr_section = self.specfile[section_starts[i]: section_starts[i + 1]] else: curr_section = self.specfile[section_starts[i]:] for header in headers_re: if header.match(curr_section): sections.append((header.pattern[1:-2], curr_section)) return sections def __contains__(self, what): return reduce(lambda x, y: x or (what in y[1]), self.sections, False) def __str__(self): # in tests (maybe in reality, too), we may have an empty header, which will result in # putting unnecessary newlines on top => leave out empty sections from joining return '\n\n'.join([section for section in list(zip(*self.sections))[1] if section])
{ "content_hash": "ed603780743af8c6532ede539b111075", "timestamp": "", "source": "github", "line_count": 60, "max_line_length": 93, "avg_line_length": 34.016666666666666, "alnum_prop": 0.6080352768250857, "repo_name": "sclorg/spec2scl", "id": "5fe5e7324fe391fcb879e7d9647cc4da58ef6e2c", "size": "2041", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "spec2scl/specfile.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "41446" }, { "name": "Roff", "bytes": "2162" } ], "symlink_target": "" }
from fuel_agent import errors from fuel_agent.openstack.common import log as logging from fuel_agent.utils import utils LOG = logging.getLogger(__name__) def pvdisplay(): # unit m means MiB (power of 2) output = utils.execute( 'pvdisplay', '-C', '--noheading', '--units', 'm', '--options', 'pv_name,vg_name,pv_size,dev_size,pv_uuid', '--separator', ';', check_exit_code=[0])[0] return pvdisplay_parse(output) def pvdisplay_parse(output): pvs = [] for line in output.split('\n'): line = line.strip() if not line: continue pv_params = line.split(';') pvs.append({ 'name': pv_params[0], 'vg': pv_params[1] or None, 'psize': utils.parse_unit(pv_params[2], 'm'), 'devsize': utils.parse_unit(pv_params[3], 'm'), 'uuid': pv_params[4] }) LOG.debug('Found physical volumes: {0}'.format(pvs)) return pvs def pvcreate(pvname, metadatasize=64, metadatacopies=2): # check if pv already exists if filter(lambda x: x['name'] == pvname, pvdisplay()): raise errors.PVAlreadyExistsError( 'Error while creating pv: pv %s already exists' % pvname) utils.execute('pvcreate', '--metadatacopies', str(metadatacopies), '--metadatasize', str(metadatasize) + 'm', pvname, check_exit_code=[0]) def pvremove(pvname): pv = filter(lambda x: x['name'] == pvname, pvdisplay()) # check if pv exists if not pv: raise errors.PVNotFoundError( 'Error while removing pv: pv %s not found' % pvname) # check if pv is attached to some vg if pv[0]['vg'] is not None: raise errors.PVBelongsToVGError('Error while removing pv: ' 'pv belongs to vg %s' % pv[0]['vg']) utils.execute('pvremove', '-ff', '-y', pvname, check_exit_code=[0]) def vgdisplay(): output = utils.execute( 'vgdisplay', '-C', '--noheading', '--units', 'm', '--options', 'vg_name,vg_uuid,vg_size,vg_free', '--separator', ';', check_exit_code=[0])[0] return vgdisplay_parse(output) def vgdisplay_parse(output): vgs = [] for line in output.split('\n'): line = line.strip() if not line: continue vg_params = line.split(';') vgs.append({ 'name': vg_params[0], 'uuid': vg_params[1], 'size': utils.parse_unit(vg_params[2], 'm'), 'free': utils.parse_unit(vg_params[3], 'm', ceil=False) }) LOG.debug('Found volume groups: {0}'.format(vgs)) return vgs def _vg_attach_validate(pvnames): pvs = pvdisplay() # check if all necessary pv exist if not set(pvnames).issubset(set([pv['name'] for pv in pvs])): raise errors.PVNotFoundError( 'Error while creating vg: at least one of pv is not found') # check if all necessary pv are not already attached to some vg if not set(pvnames).issubset( set([pv['name'] for pv in pvs if pv['vg'] is None])): raise errors.PVBelongsToVGError( 'Error while creating vg: at least one of pvs is ' 'already attached to some vg') def vgcreate(vgname, pvname, *args): # check if vg already exists if filter(lambda x: x['name'] == vgname, vgdisplay()): raise errors.VGAlreadyExistsError( 'Error while creating vg: vg %s already exists' % vgname) pvnames = [pvname] + list(args) _vg_attach_validate(pvnames) utils.execute('vgcreate', vgname, *pvnames, check_exit_code=[0]) def vgextend(vgname, pvname, *args): # check if vg exists if not filter(lambda x: x['name'] == vgname, vgdisplay()): raise errors.VGNotFoundError( 'Error while extending vg: vg %s not found' % vgname) pvnames = [pvname] + list(args) _vg_attach_validate(pvnames) utils.execute('vgextend', vgname, *pvnames, check_exit_code=[0]) def vgreduce(vgname, pvname, *args): # check if vg exists if not filter(lambda x: x['name'] == vgname, vgdisplay()): raise errors.VGNotFoundError( 'Error while reducing vg: vg %s not found' % vgname) pvnames = [pvname] + list(args) # check if all necessary pv are attached to vg if not set(pvnames).issubset( set([pv['name'] for pv in pvdisplay() if pv['vg'] == vgname])): raise errors.PVNotFoundError( 'Error while reducing vg: at least one of pv is ' 'not attached to vg') utils.execute('vgreduce', '-f', vgname, *pvnames, check_exit_code=[0]) def vgremove(vgname): # check if vg exists if not filter(lambda x: x['name'] == vgname, vgdisplay()): raise errors.VGNotFoundError( 'Error while removing vg: vg %s not found' % vgname) utils.execute('vgremove', '-f', vgname, check_exit_code=[0]) def lvdisplay(): output = utils.execute( 'lvdisplay', '-C', '--noheading', '--units', 'm', #NOTE(agordeev): lv_path had been removed from options # since versions of lvdisplay prior 2.02.68 don't have it. '--options', 'lv_name,lv_size,vg_name,lv_uuid', '--separator', ';', check_exit_code=[0])[0] return lvdisplay_parse(output) def lvdisplay_parse(output): lvs = [] for line in output.split('\n'): line = line.strip() if not line: continue lv_params = line.split(';') lvs.append({ 'name': lv_params[0], 'size': utils.parse_unit(lv_params[1], 'm'), 'vg': lv_params[2], 'uuid': lv_params[3], #NOTE(agordeev): simulate lv_path with '/dev/$vg_name/$lv_name' 'path': '/dev/%s/%s' % (lv_params[2], lv_params[0]) }) LOG.debug('Found logical volumes: {0}'.format(lvs)) return lvs def lvcreate(vgname, lvname, size): vg = filter(lambda x: x['name'] == vgname, vgdisplay()) # check if vg exists if not vg: raise errors.VGNotFoundError( 'Error while creating vg: vg %s not found' % vgname) # check if enough space is available if vg[0]['free'] < size: raise errors.NotEnoughSpaceError( 'Error while creating lv: vg %s has only %s m of free space, ' 'but at least %s m is needed' % (vgname, vg[0]['free'], size)) # check if lv already exists if filter(lambda x: x['name'] == lvname and x['vg'] == vgname, lvdisplay()): raise errors.LVAlreadyExistsError( 'Error while creating lv: lv %s already exists' % lvname) utils.execute('lvcreate', '-L', '%sm' % size, '-n', lvname, vgname, check_exit_code=[0]) def lvremove(lvpath): # check if lv exists if not filter(lambda x: x['path'] == lvpath, lvdisplay()): raise errors.LVNotFoundError( 'Error while removing lv: lv %s not found' % lvpath) utils.execute('lvremove', '-f', lvpath, check_exit_code=[0]) def lvremove_all(): for lv in lvdisplay(): lvremove(lv['path']) def vgremove_all(): for vg in vgdisplay(): vgremove(vg['name']) def pvremove_all(): for pv in pvdisplay(): pvremove(pv['name'])
{ "content_hash": "4c0bcf53c331d047de6f7538698690b8", "timestamp": "", "source": "github", "line_count": 225, "max_line_length": 76, "avg_line_length": 32.693333333333335, "alnum_prop": 0.5710984230560087, "repo_name": "zhaochao/fuel-web", "id": "8dc2a2911311c48e3ddb9c9f639561048a5ecb69", "size": "7934", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "fuel_agent/fuel_agent/utils/lvm_utils.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "CSS", "bytes": "109800" }, { "name": "HTML", "bytes": "16017" }, { "name": "JavaScript", "bytes": "705662" }, { "name": "Mako", "bytes": "1037" }, { "name": "Puppet", "bytes": "282" }, { "name": "Python", "bytes": "3493678" }, { "name": "Ruby", "bytes": "33590" }, { "name": "Shell", "bytes": "26585" } ], "symlink_target": "" }
""" The MIT License (MIT) Copyright (c) 2015-present Rapptz Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from __future__ import annotations import types from collections import namedtuple from typing import Any, ClassVar, Dict, List, Optional, TYPE_CHECKING, Tuple, Type, TypeVar, Iterator, Mapping __all__ = ( 'Enum', 'ChannelType', 'MessageType', 'SpeakingState', 'VerificationLevel', 'ContentFilter', 'Status', 'DefaultAvatar', 'AuditLogAction', 'AuditLogActionCategory', 'UserFlags', 'ActivityType', 'NotificationLevel', 'TeamMembershipState', 'WebhookType', 'ExpireBehaviour', 'ExpireBehavior', 'StickerType', 'StickerFormatType', 'InviteTarget', 'VideoQualityMode', 'ComponentType', 'ButtonStyle', 'TextStyle', 'PrivacyLevel', 'InteractionType', 'InteractionResponseType', 'NSFWLevel', 'MFALevel', 'Locale', 'EntityType', 'EventStatus', 'AppCommandType', 'AppCommandOptionType', 'AppCommandPermissionType', 'AutoModRuleTriggerType', 'AutoModRuleEventType', 'AutoModRuleActionType', ) if TYPE_CHECKING: from typing_extensions import Self def _create_value_cls(name: str, comparable: bool): # All the type ignores here are due to the type checker being unable to recognise # Runtime type creation without exploding. cls = namedtuple('_EnumValue_' + name, 'name value') cls.__repr__ = lambda self: f'<{name}.{self.name}: {self.value!r}>' # type: ignore cls.__str__ = lambda self: f'{name}.{self.name}' # type: ignore if comparable: cls.__le__ = lambda self, other: isinstance(other, self.__class__) and self.value <= other.value # type: ignore cls.__ge__ = lambda self, other: isinstance(other, self.__class__) and self.value >= other.value # type: ignore cls.__lt__ = lambda self, other: isinstance(other, self.__class__) and self.value < other.value # type: ignore cls.__gt__ = lambda self, other: isinstance(other, self.__class__) and self.value > other.value # type: ignore return cls def _is_descriptor(obj): return hasattr(obj, '__get__') or hasattr(obj, '__set__') or hasattr(obj, '__delete__') class EnumMeta(type): if TYPE_CHECKING: __name__: ClassVar[str] _enum_member_names_: ClassVar[List[str]] _enum_member_map_: ClassVar[Dict[str, Any]] _enum_value_map_: ClassVar[Dict[Any, Any]] def __new__(cls, name: str, bases: Tuple[type, ...], attrs: Dict[str, Any], *, comparable: bool = False) -> Self: value_mapping = {} member_mapping = {} member_names = [] value_cls = _create_value_cls(name, comparable) for key, value in list(attrs.items()): is_descriptor = _is_descriptor(value) if key[0] == '_' and not is_descriptor: continue # Special case classmethod to just pass through if isinstance(value, classmethod): continue if is_descriptor: setattr(value_cls, key, value) del attrs[key] continue try: new_value = value_mapping[value] except KeyError: new_value = value_cls(name=key, value=value) value_mapping[value] = new_value member_names.append(key) member_mapping[key] = new_value attrs[key] = new_value attrs['_enum_value_map_'] = value_mapping attrs['_enum_member_map_'] = member_mapping attrs['_enum_member_names_'] = member_names attrs['_enum_value_cls_'] = value_cls actual_cls = super().__new__(cls, name, bases, attrs) value_cls._actual_enum_cls_ = actual_cls # type: ignore # Runtime attribute isn't understood return actual_cls def __iter__(cls) -> Iterator[Any]: return (cls._enum_member_map_[name] for name in cls._enum_member_names_) def __reversed__(cls) -> Iterator[Any]: return (cls._enum_member_map_[name] for name in reversed(cls._enum_member_names_)) def __len__(cls) -> int: return len(cls._enum_member_names_) def __repr__(cls) -> str: return f'<enum {cls.__name__}>' @property def __members__(cls) -> Mapping[str, Any]: return types.MappingProxyType(cls._enum_member_map_) def __call__(cls, value: str) -> Any: try: return cls._enum_value_map_[value] except (KeyError, TypeError): raise ValueError(f"{value!r} is not a valid {cls.__name__}") def __getitem__(cls, key: str) -> Any: return cls._enum_member_map_[key] def __setattr__(cls, name: str, value: Any) -> None: raise TypeError('Enums are immutable.') def __delattr__(cls, attr: str) -> None: raise TypeError('Enums are immutable') def __instancecheck__(self, instance: Any) -> bool: # isinstance(x, Y) # -> __instancecheck__(Y, x) try: return instance._actual_enum_cls_ is self except AttributeError: return False if TYPE_CHECKING: from enum import Enum else: class Enum(metaclass=EnumMeta): @classmethod def try_value(cls, value): try: return cls._enum_value_map_[value] except (KeyError, TypeError): return value class ChannelType(Enum): text = 0 private = 1 voice = 2 group = 3 category = 4 news = 5 news_thread = 10 public_thread = 11 private_thread = 12 stage_voice = 13 forum = 15 def __str__(self) -> str: return self.name class MessageType(Enum): default = 0 recipient_add = 1 recipient_remove = 2 call = 3 channel_name_change = 4 channel_icon_change = 5 pins_add = 6 new_member = 7 premium_guild_subscription = 8 premium_guild_tier_1 = 9 premium_guild_tier_2 = 10 premium_guild_tier_3 = 11 channel_follow_add = 12 guild_stream = 13 guild_discovery_disqualified = 14 guild_discovery_requalified = 15 guild_discovery_grace_period_initial_warning = 16 guild_discovery_grace_period_final_warning = 17 thread_created = 18 reply = 19 chat_input_command = 20 thread_starter_message = 21 guild_invite_reminder = 22 context_menu_command = 23 auto_moderation_action = 24 class SpeakingState(Enum): none = 0 voice = 1 soundshare = 2 priority = 4 def __str__(self) -> str: return self.name def __int__(self) -> int: return self.value class VerificationLevel(Enum, comparable=True): none = 0 low = 1 medium = 2 high = 3 highest = 4 def __str__(self) -> str: return self.name class ContentFilter(Enum, comparable=True): disabled = 0 no_role = 1 all_members = 2 def __str__(self) -> str: return self.name class Status(Enum): online = 'online' offline = 'offline' idle = 'idle' dnd = 'dnd' do_not_disturb = 'dnd' invisible = 'invisible' def __str__(self) -> str: return self.value class DefaultAvatar(Enum): blurple = 0 grey = 1 gray = 1 green = 2 orange = 3 red = 4 def __str__(self) -> str: return self.name class NotificationLevel(Enum, comparable=True): all_messages = 0 only_mentions = 1 class AuditLogActionCategory(Enum): create = 1 delete = 2 update = 3 class AuditLogAction(Enum): # fmt: off guild_update = 1 channel_create = 10 channel_update = 11 channel_delete = 12 overwrite_create = 13 overwrite_update = 14 overwrite_delete = 15 kick = 20 member_prune = 21 ban = 22 unban = 23 member_update = 24 member_role_update = 25 member_move = 26 member_disconnect = 27 bot_add = 28 role_create = 30 role_update = 31 role_delete = 32 invite_create = 40 invite_update = 41 invite_delete = 42 webhook_create = 50 webhook_update = 51 webhook_delete = 52 emoji_create = 60 emoji_update = 61 emoji_delete = 62 message_delete = 72 message_bulk_delete = 73 message_pin = 74 message_unpin = 75 integration_create = 80 integration_update = 81 integration_delete = 82 stage_instance_create = 83 stage_instance_update = 84 stage_instance_delete = 85 sticker_create = 90 sticker_update = 91 sticker_delete = 92 scheduled_event_create = 100 scheduled_event_update = 101 scheduled_event_delete = 102 thread_create = 110 thread_update = 111 thread_delete = 112 app_command_permission_update = 121 automod_rule_create = 140 automod_rule_update = 141 automod_rule_delete = 142 automod_block_message = 143 automod_flag_message = 144 automod_timeout_member = 145 # fmt: on @property def category(self) -> Optional[AuditLogActionCategory]: # fmt: off lookup: Dict[AuditLogAction, Optional[AuditLogActionCategory]] = { AuditLogAction.guild_update: AuditLogActionCategory.update, AuditLogAction.channel_create: AuditLogActionCategory.create, AuditLogAction.channel_update: AuditLogActionCategory.update, AuditLogAction.channel_delete: AuditLogActionCategory.delete, AuditLogAction.overwrite_create: AuditLogActionCategory.create, AuditLogAction.overwrite_update: AuditLogActionCategory.update, AuditLogAction.overwrite_delete: AuditLogActionCategory.delete, AuditLogAction.kick: None, AuditLogAction.member_prune: None, AuditLogAction.ban: None, AuditLogAction.unban: None, AuditLogAction.member_update: AuditLogActionCategory.update, AuditLogAction.member_role_update: AuditLogActionCategory.update, AuditLogAction.member_move: None, AuditLogAction.member_disconnect: None, AuditLogAction.bot_add: None, AuditLogAction.role_create: AuditLogActionCategory.create, AuditLogAction.role_update: AuditLogActionCategory.update, AuditLogAction.role_delete: AuditLogActionCategory.delete, AuditLogAction.invite_create: AuditLogActionCategory.create, AuditLogAction.invite_update: AuditLogActionCategory.update, AuditLogAction.invite_delete: AuditLogActionCategory.delete, AuditLogAction.webhook_create: AuditLogActionCategory.create, AuditLogAction.webhook_update: AuditLogActionCategory.update, AuditLogAction.webhook_delete: AuditLogActionCategory.delete, AuditLogAction.emoji_create: AuditLogActionCategory.create, AuditLogAction.emoji_update: AuditLogActionCategory.update, AuditLogAction.emoji_delete: AuditLogActionCategory.delete, AuditLogAction.message_delete: AuditLogActionCategory.delete, AuditLogAction.message_bulk_delete: AuditLogActionCategory.delete, AuditLogAction.message_pin: None, AuditLogAction.message_unpin: None, AuditLogAction.integration_create: AuditLogActionCategory.create, AuditLogAction.integration_update: AuditLogActionCategory.update, AuditLogAction.integration_delete: AuditLogActionCategory.delete, AuditLogAction.stage_instance_create: AuditLogActionCategory.create, AuditLogAction.stage_instance_update: AuditLogActionCategory.update, AuditLogAction.stage_instance_delete: AuditLogActionCategory.delete, AuditLogAction.sticker_create: AuditLogActionCategory.create, AuditLogAction.sticker_update: AuditLogActionCategory.update, AuditLogAction.sticker_delete: AuditLogActionCategory.delete, AuditLogAction.scheduled_event_create: AuditLogActionCategory.create, AuditLogAction.scheduled_event_update: AuditLogActionCategory.update, AuditLogAction.scheduled_event_delete: AuditLogActionCategory.delete, AuditLogAction.thread_create: AuditLogActionCategory.create, AuditLogAction.thread_delete: AuditLogActionCategory.delete, AuditLogAction.thread_update: AuditLogActionCategory.update, AuditLogAction.app_command_permission_update: AuditLogActionCategory.update, AuditLogAction.automod_rule_create: AuditLogActionCategory.create, AuditLogAction.automod_rule_update: AuditLogActionCategory.update, AuditLogAction.automod_rule_delete: AuditLogActionCategory.delete, AuditLogAction.automod_block_message: None, AuditLogAction.automod_flag_message: None, AuditLogAction.automod_timeout_member: None, } # fmt: on return lookup[self] @property def target_type(self) -> Optional[str]: v = self.value if v == -1: return 'all' elif v < 10: return 'guild' elif v < 20: return 'channel' elif v < 30: return 'user' elif v < 40: return 'role' elif v < 50: return 'invite' elif v < 60: return 'webhook' elif v < 70: return 'emoji' elif v == 73: return 'channel' elif v < 80: return 'message' elif v < 83: return 'integration' elif v < 90: return 'stage_instance' elif v < 93: return 'sticker' elif v < 103: return 'guild_scheduled_event' elif v < 113: return 'thread' elif v < 122: return 'integration_or_app_command' elif v < 143: return 'auto_moderation' elif v < 146: return 'user' class UserFlags(Enum): staff = 1 partner = 2 hypesquad = 4 bug_hunter = 8 mfa_sms = 16 premium_promo_dismissed = 32 hypesquad_bravery = 64 hypesquad_brilliance = 128 hypesquad_balance = 256 early_supporter = 512 team_user = 1024 system = 4096 has_unread_urgent_messages = 8192 bug_hunter_level_2 = 16384 verified_bot = 65536 verified_bot_developer = 131072 discord_certified_moderator = 262144 bot_http_interactions = 524288 spammer = 1048576 class ActivityType(Enum): unknown = -1 playing = 0 streaming = 1 listening = 2 watching = 3 custom = 4 competing = 5 def __int__(self) -> int: return self.value class TeamMembershipState(Enum): invited = 1 accepted = 2 class WebhookType(Enum): incoming = 1 channel_follower = 2 application = 3 class ExpireBehaviour(Enum): remove_role = 0 kick = 1 ExpireBehavior = ExpireBehaviour class StickerType(Enum): standard = 1 guild = 2 class StickerFormatType(Enum): png = 1 apng = 2 lottie = 3 @property def file_extension(self) -> str: # fmt: off lookup: Dict[StickerFormatType, str] = { StickerFormatType.png: 'png', StickerFormatType.apng: 'png', StickerFormatType.lottie: 'json', } # fmt: on return lookup[self] class InviteTarget(Enum): unknown = 0 stream = 1 embedded_application = 2 class InteractionType(Enum): ping = 1 application_command = 2 component = 3 autocomplete = 4 modal_submit = 5 class InteractionResponseType(Enum): pong = 1 # ack = 2 (deprecated) # channel_message = 3 (deprecated) channel_message = 4 # (with source) deferred_channel_message = 5 # (with source) deferred_message_update = 6 # for components message_update = 7 # for components autocomplete_result = 8 modal = 9 # for modals class VideoQualityMode(Enum): auto = 1 full = 2 def __int__(self) -> int: return self.value class ComponentType(Enum): action_row = 1 button = 2 select = 3 text_input = 4 def __int__(self) -> int: return self.value class ButtonStyle(Enum): primary = 1 secondary = 2 success = 3 danger = 4 link = 5 # Aliases blurple = 1 grey = 2 gray = 2 green = 3 red = 4 url = 5 def __int__(self) -> int: return self.value class TextStyle(Enum): short = 1 paragraph = 2 # Aliases long = 2 def __int__(self) -> int: return self.value class PrivacyLevel(Enum): guild_only = 2 class NSFWLevel(Enum, comparable=True): default = 0 explicit = 1 safe = 2 age_restricted = 3 class MFALevel(Enum, comparable=True): disabled = 0 require_2fa = 1 class Locale(Enum): american_english = 'en-US' british_english = 'en-GB' bulgarian = 'bg' chinese = 'zh-CN' taiwan_chinese = 'zh-TW' croatian = 'hr' czech = 'cs' danish = 'da' dutch = 'nl' finnish = 'fi' french = 'fr' german = 'de' greek = 'el' hindi = 'hi' hungarian = 'hu' italian = 'it' japanese = 'ja' korean = 'ko' lithuanian = 'lt' norwegian = 'no' polish = 'pl' brazil_portuguese = 'pt-BR' romanian = 'ro' russian = 'ru' spain_spanish = 'es-ES' swedish = 'sv-SE' thai = 'th' turkish = 'tr' ukrainian = 'uk' vietnamese = 'vi' def __str__(self) -> str: return self.value E = TypeVar('E', bound='Enum') class EntityType(Enum): stage_instance = 1 voice = 2 external = 3 class EventStatus(Enum): scheduled = 1 active = 2 completed = 3 canceled = 4 ended = 3 cancelled = 4 class AppCommandOptionType(Enum): subcommand = 1 subcommand_group = 2 string = 3 integer = 4 boolean = 5 user = 6 channel = 7 role = 8 mentionable = 9 number = 10 attachment = 11 class AppCommandType(Enum): chat_input = 1 user = 2 message = 3 class AppCommandPermissionType(Enum): role = 1 user = 2 channel = 3 class AutoModRuleTriggerType(Enum): keyword = 1 harmful_link = 2 spam = 3 keyword_preset = 4 mention_spam = 5 class AutoModRuleEventType(Enum): message_send = 1 class AutoModRuleActionType(Enum): block_message = 1 send_alert_message = 2 timeout = 3 def create_unknown_value(cls: Type[E], val: Any) -> E: value_cls = cls._enum_value_cls_ # type: ignore # This is narrowed below name = f'unknown_{val}' return value_cls(name=name, value=val) def try_enum(cls: Type[E], val: Any) -> E: """A function that tries to turn the value into enum ``cls``. If it fails it returns a proxy invalid value instead. """ try: return cls._enum_value_map_[val] # type: ignore # All errors are caught below except (KeyError, TypeError, AttributeError): return create_unknown_value(cls, val)
{ "content_hash": "6d3862ea09b384986574a0c9fe03612b", "timestamp": "", "source": "github", "line_count": 745, "max_line_length": 120, "avg_line_length": 28.94228187919463, "alnum_prop": 0.5781003617475188, "repo_name": "rapptz/discord.py", "id": "3465250a1a09d37d1b6d3049cce8cbea5eecb0c0", "size": "21562", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "discord/enums.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "2453404" } ], "symlink_target": "" }
"""This example updates the given client user's status.""" import argparse import pprint import os import sys sys.path.insert(0, os.path.abspath('..')) from googleapiclient.errors import HttpError import samples_util DEFAULT_ACCOUNT_ID = 'ENTER_ACCOUNT_ID_HERE' DEFAULT_CLIENT_BUYER_ID = 'ENTER_CLIENT_BUYER_ID_HERE' DEFAULT_USER_ID = 'ENTER_USER_ID_HERE' VALID_STATUS = ('ACTIVE', 'DISABLED') def main(ad_exchange_buyer, account_id, client_account_id, user_id, body): try: user = ad_exchange_buyer.accounts().clients().users().update( accountId=account_id, clientAccountId=client_account_id, userId=user_id, body=body).execute() print(f'User for Account ID "{account_id}" and Client Account Id: ' f'"{client_account_id}" has been updated.') pprint.pprint(user) except HttpError as e: print(e) if __name__ == '__main__': def status(s): if s not in VALID_STATUS: raise argparse.ArgumentTypeError('Invalid value "%s".' % s) return s # Optional arguments; overrides default values if set. parser = argparse.ArgumentParser(description='Updates the status of a ' 'client user.') parser.add_argument( '-a', '--account_id', default=DEFAULT_ACCOUNT_ID, type=int, help='The integer id of the Authorized Buyers account.') parser.add_argument( '-c', '--client_buyer_id', default=DEFAULT_CLIENT_BUYER_ID, type=int, help='The integer id of the client buyer.') parser.add_argument( '-u', '--user_id', default=DEFAULT_USER_ID, type=int, help='The integer id of the client user.') parser.add_argument( '-s', '--status', default='DISABLED', type=status, help=('The desired update to the client user\'s status. This can be ' 'set to any of the following: %s' % str(VALID_STATUS))) args = parser.parse_args() # Create a body containing the fields to be updated. # For this resource, only the "status" field can be modified. BODY = {'status': args.status} try: service = samples_util.GetService('v2beta1') except IOError as ex: print(f'Unable to create adexchangebuyer service - {ex}') print('Did you specify the key file in samples_util.py?') sys.exit(1) main(service, args.account_id, args.client_buyer_id, args.user_id, BODY)
{ "content_hash": "64e787498729aa38f251444f3419a282", "timestamp": "", "source": "github", "line_count": 69, "max_line_length": 75, "avg_line_length": 33.84057971014493, "alnum_prop": 0.6625267665952891, "repo_name": "googleads/googleads-adxbuyer-examples", "id": "4bc45bd3bb393e2c2028a8a01ad3becc3bd42d45", "size": "2953", "binary": false, "copies": "1", "ref": "refs/heads/main", "path": "python/samples/v2_x/update_client_user.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "C#", "bytes": "95365" }, { "name": "CSS", "bytes": "637" }, { "name": "Java", "bytes": "94253" }, { "name": "PHP", "bytes": "57301" }, { "name": "Python", "bytes": "71471" }, { "name": "Ruby", "bytes": "87018" } ], "symlink_target": "" }
from __future__ import unicode_literals, absolute_import from os.path import abspath, join, dirname from preggy import expect from thumbor.context import ServerParameters, RequestParameters from thumbor.config import Config from thumbor.engines.gif import Engine from thumbor.utils import which from thumbor.importer import Importer from tests.base import TestCase STORAGE_PATH = abspath(join(dirname(__file__), '../fixtures/images/')) class GitEngineTestCase(TestCase): def get_config(self): return Config( SECURITY_KEY='ACME-SEC', ENGINE='thumbor.engines.gif', IMAGE_METADATA_READ_FORMATS='exif,xmp', LOADER="thumbor.loaders.file_loader", FILE_LOADER_ROOT_PATH=STORAGE_PATH, STORAGE='thumbor.storages.no_storage', USE_GIFSICLE_ENGINE=True, RESPECT_ORIENTATION=True, ) def get_importer(self): return Importer(self.config) def get_server(self): server = ServerParameters(8889, 'localhost', 'thumbor.conf', None, 'info', None) server.security_key = 'ACME-SEC' server.gifsicle_path = which('gifsicle') return server def get_context(self, *args, **kwargs): context = super(GitEngineTestCase, self).get_context(*args, **kwargs) req = RequestParameters(url='/foo/bar.gif') context.request = req return context def test_create_engine(self): engine = Engine(self.context) expect(engine).to_be_instance_of(Engine) def test_load_image(self): engine = Engine(self.context) with open(join(STORAGE_PATH, 'animated.gif'), 'r') as im: buffer = im.read() image = engine.create_image(buffer) expect(image.format).to_equal('GIF') def test_errors_on_gifsicle_should_not_raises_errors_when_output(self): engine = Engine(self.context) with open(join(STORAGE_PATH, 'SmallFullColourGIF.gif'), 'r') as im: buffer = im.read() engine.load(buffer, '.gif') result = engine.run_gifsicle('--some-invalid-opt') expect(result).Not.to_be_null() def test_is_multiple_should_returns_true_if_gif_has_many_frames(self): engine = Engine(self.context) with open(join(STORAGE_PATH, 'animated.gif'), 'r') as im: buffer = im.read() engine.load(buffer, '.gif') expect(engine.is_multiple()).to_be_true() def test_is_multiple_should_returns_false_if_gif_has_one_frame(self): engine = Engine(self.context) with open(join(STORAGE_PATH, 'animated-one-frame.gif'), 'r') as im: buffer = im.read() engine.load(buffer, '.gif') expect(engine.is_multiple()).to_be_false() def test_convert_to_grayscale_should_update_image(self): engine = Engine(self.context) with open(join(STORAGE_PATH, 'animated.gif'), 'r') as im: buffer = im.read() engine.load(buffer, '.gif') buffer = engine.read() engine.convert_to_grayscale() expect(buffer).not_to_equal(engine.read()) def test_convert_to_grayscale_should_not_update_image(self): engine = Engine(self.context) with open(join(STORAGE_PATH, 'animated.gif'), 'r') as im: buffer = im.read() engine.load(buffer, '.gif') buffer = engine.read() engine.convert_to_grayscale(False) expect(buffer).to_equal(engine.read())
{ "content_hash": "85f8e9a914d3fb5b738361b48c93e896", "timestamp": "", "source": "github", "line_count": 102, "max_line_length": 88, "avg_line_length": 34.03921568627451, "alnum_prop": 0.6287442396313364, "repo_name": "okor/thumbor", "id": "c0c8430439afbb0b9655cb6cf3b44b36f2b2be27", "size": "3724", "binary": false, "copies": "3", "ref": "refs/heads/master", "path": "tests/engines/test_gif.py", "mode": "33188", "license": "mit", "language": [ { "name": "C", "bytes": "62441" }, { "name": "JavaScript", "bytes": "409" }, { "name": "Makefile", "bytes": "10255" }, { "name": "Python", "bytes": "594069" } ], "symlink_target": "" }
from __future__ import absolute_import, division, print_function, unicode_literals from .common import BaseTest, TestConfig as Config class Kinesis(BaseTest): def test_stream_query(self): factory = self.replay_flight_data("test_kinesis_stream_query") p = self.load_policy( { "name": "kstream", "resource": "kinesis", "filters": [ {"type": "value", "value_type": "size", "value": 3, "key": "Shards"} ], }, config=Config.empty(), session_factory=factory, ) resources = p.run() self.assertEqual(len(resources), 1) self.assertEqual(resources[0]["Tags"], [{"Key": "Origin", "Value": "home"}]) self.assertEqual(resources[0]["StreamStatus"], "ACTIVE") def test_stream_delete(self): factory = self.replay_flight_data("test_kinesis_stream_delete") p = self.load_policy( { "name": "kstream", "resource": "kinesis", "filters": [{"StreamName": "sock-drawer"}], "actions": ["delete"], }, session_factory=factory, ) resources = p.run() self.assertEqual(len(resources), 1) stream = factory().client("kinesis").describe_stream(StreamName="sock-drawer")[ "StreamDescription" ] self.assertEqual(stream["StreamStatus"], "DELETING") def test_stream_encrypt(self): factory = self.replay_flight_data("test_kinesis_encrypt") p = self.load_policy( { "name": "kstream", "resource": "kinesis", "filters": [{"StreamName": "sock-drawer"}], "actions": [{"type": "encrypt", "key": "aws/kinesis"}], }, session_factory=factory, ) p.run() stream = factory().client("kinesis").describe_stream(StreamName="sock-drawer")[ "StreamDescription" ] self.assertEqual(stream["EncryptionType"], "KMS") def test_hose_query(self): factory = self.replay_flight_data("test_kinesis_hose_query") p = self.load_policy( { "name": "khole", "resource": "firehose", "filters": [{"DeliveryStreamName": "sock-index-hose"}], }, session_factory=factory, ) resources = p.run() self.assertEqual(len(resources), 1) self.assertEqual(resources[0]["DeliveryStreamStatus"], "ACTIVE") def test_firehose_delete(self): factory = self.replay_flight_data("test_kinesis_hose_delete") p = self.load_policy( { "name": "khole", "resource": "firehose", "filters": [{"DeliveryStreamName": "sock-index-hose"}], "actions": ["delete"] }, session_factory=factory, ) resources = p.run() self.assertEqual(len(resources), 1) self.assertEqual( factory().client("firehose").describe_delivery_stream( DeliveryStreamName="sock-index-hose" )[ "DeliveryStreamDescription" ][ "DeliveryStreamStatus" ], "DELETING", ) def test_firehose_extended_s3_encrypt_s3_destination(self): factory = self.replay_flight_data("test_firehose_ext_s3_encrypt_s3_destination") p = self.load_policy( { "name": "khole", "resource": "firehose", "filters": [{"type": "value", "key": "Destinations[0].S3DestinationDescription.EncryptionConfiguration.NoEncryptionConfig", # noqa: E501 "value": "present"}], "actions": [{"type": "encrypt-s3-destination", "key_arn": "arn:aws:kms:us-east-1:123456789:alias/aws/s3"}], }, session_factory=factory, ) resources = p.run() self.assertEqual(len(resources), 1) s = factory().client("firehose").describe_delivery_stream( DeliveryStreamName="firehose-s3" )['DeliveryStreamDescription']['Destinations'][0] assert 'KMSEncryptionConfig' in s['S3DestinationDescription']['EncryptionConfiguration'].keys() # noqa: E501 def test_firehose_splunk_encrypt_s3_destination(self): factory = self.replay_flight_data("test_firehose_splunk_encrypt_s3_destination") p = self.load_policy( { "name": "khole", "resource": "firehose", "filters": [{"type": "value", "key": "Destinations[0].SplunkDestinationDescription.S3DestinationDescription.EncryptionConfiguration.NoEncryptionConfig", # noqa: E501 "value": "present"}], "actions": [{"type": "encrypt-s3-destination", "key_arn": "arn:aws:kms:us-east-1:123456789:alias/aws/s3"}], }, session_factory=factory, ) resources = p.run() self.assertEqual(len(resources), 1) s = factory().client("firehose").describe_delivery_stream( DeliveryStreamName="firehose-splunk" )['DeliveryStreamDescription']['Destinations'][0]['SplunkDestinationDescription'] assert 'KMSEncryptionConfig' in \ s['S3DestinationDescription']['EncryptionConfiguration'].keys() def test_firehose_elasticsearch_encrypt_s3_destination(self): factory = self.replay_flight_data("test_firehose_elasticsearch_encrypt_s3_destination") p = self.load_policy( { "name": "khole", "resource": "firehose", "filters": [{"type": "value", "key": "Destinations[0].ElasticsearchDestinationDescription.S3DestinationDescription.EncryptionConfiguration.NoEncryptionConfig", # noqa: E501 "value": "present"}], "actions": [{"type": "encrypt-s3-destination", "key_arn": "arn:aws:kms:us-east-1:123456789:alias/aws/s3"}], }, session_factory=factory, ) resources = p.run() self.assertEqual(len(resources), 1) s = factory().client("firehose").describe_delivery_stream( DeliveryStreamName="firehose-splunk" )['DeliveryStreamDescription']['Destinations'][0]['ElasticsearchDestinationDescription'] assert 'KMSEncryptionConfig' in \ s['S3DestinationDescription']['EncryptionConfiguration'].keys() def test_firehose_redshift_encrypt_s3_destination(self): factory = self.replay_flight_data("test_firehose_redshift_encrypt_s3_destination") p = self.load_policy( { "name": "khole", "resource": "firehose", "filters": [{"type": "value", "key": "Destinations[0].RedshiftDestinationDescription.S3DestinationDescription.EncryptionConfiguration.NoEncryptionConfig", # noqa: E501 "value": "present"}], "actions": [{"type": "encrypt-s3-destination", "key_arn": "arn:aws:kms:us-east-1:123456789:alias/aws/s3"}], }, session_factory=factory, ) resources = p.run() self.assertEqual(len(resources), 1) s = factory().client("firehose").describe_delivery_stream( DeliveryStreamName="firehose-redshift" )['DeliveryStreamDescription']['Destinations'][0]['RedshiftDestinationDescription'] assert 'KMSEncryptionConfig' in \ s['S3DestinationDescription']['EncryptionConfiguration'].keys() def test_app_query(self): factory = self.replay_flight_data("test_kinesis_analytics_query") p = self.load_policy( { "name": "kapp", "resource": "kinesis-analytics", "filters": [{"ApplicationStatus": "RUNNING"}], }, session_factory=factory, ) resources = p.run() self.assertEqual(len(resources), 1) self.assertEqual(resources[0]["ApplicationName"], "sock-app") def test_app_delete(self): factory = self.replay_flight_data("test_kinesis_analytics_delete") p = self.load_policy( { "name": "kapp", "resource": "kinesis-analytics", "filters": [{"ApplicationName": "sock-app"}], "actions": ["delete"], }, session_factory=factory, ) resources = p.run() self.assertEqual(len(resources), 1) self.assertEqual( factory().client("kinesisanalytics").describe_application( ApplicationName="sock-app" )[ "ApplicationDetail" ][ "ApplicationStatus" ], "DELETING", )
{ "content_hash": "2a9514fabaa4b05708058ea2d0e33f57", "timestamp": "", "source": "github", "line_count": 222, "max_line_length": 163, "avg_line_length": 41.16216216216216, "alnum_prop": 0.5383015977237907, "repo_name": "Sutto/cloud-custodian", "id": "e8259895a72382b8cef2e84d889b91dde6479b7c", "size": "9728", "binary": false, "copies": "4", "ref": "refs/heads/master", "path": "tests/test_kinesis.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Dockerfile", "bytes": "7986" }, { "name": "Go", "bytes": "146630" }, { "name": "HTML", "bytes": "31" }, { "name": "Makefile", "bytes": "9971" }, { "name": "PowerShell", "bytes": "1804" }, { "name": "Python", "bytes": "5283859" }, { "name": "Shell", "bytes": "12627" }, { "name": "Smarty", "bytes": "359" } ], "symlink_target": "" }
import struct from collections import OrderedDict import numpy as np import scipy.stats REVISION_STATEPOINT = 12 filter_types = {1: 'universe', 2: 'material', 3: 'cell', 4: 'cellborn', 5: 'surface', 6: 'mesh', 7: 'energyin', 8: 'energyout'} score_types = {-1: 'flux', -2: 'total', -3: 'scatter', -4: 'nu-scatter', -5: 'scatter-n', -6: 'scatter-pn', -7: 'nu-scatter-n', -8: 'nu-scatter-pn', -9: 'transport', -10: 'n1n', -11: 'absorption', -12: 'fission', -13: 'nu-fission', -14: 'kappa-fission', -15: 'current', -16: 'flux-yn', -17: 'total-yn', -18: 'scatter-yn', -19: 'nu-scatter-yn', -20: 'events', 1: '(n,total)', 2: '(n,elastic)', 4: '(n,level)', 11: '(n,2nd)', 16: '(n,2n)', 17: '(n,3n)', 18: '(n,fission)', 19: '(n,f)', 20: '(n,nf)', 21: '(n,2nf)', 22: '(n,na)', 23: '(n,n3a)', 24: '(n,2na)', 25: '(n,3na)', 28: '(n,np)', 29: '(n,n2a)', 30: '(n,2n2a)', 32: '(n,nd)', 33: '(n,nt)', 34: '(n,nHe-3)', 35: '(n,nd2a)', 36: '(n,nt2a)', 37: '(n,4n)', 38: '(n,3nf)', 41: '(n,2np)', 42: '(n,3np)', 44: '(n,n2p)', 45: '(n,npa)', 91: '(n,nc)', 101: '(n,disappear)', 102: '(n,gamma)', 103: '(n,p)', 104: '(n,d)', 105: '(n,t)', 106: '(n,3He)', 107: '(n,a)', 108: '(n,2a)', 109: '(n,3a)', 111: '(n,2p)', 112: '(n,pa)', 113: '(n,t2a)', 114: '(n,d2a)', 115: '(n,pd)', 116: '(n,pt)', 117: '(n,da)', 201: '(n,Xn)', 202: '(n,Xgamma)', 203: '(n,Xp)', 204: '(n,Xd)', 205: '(n,Xt)', 206: '(n,X3He)', 207: '(n,Xa)', 444: '(damage)', 649: '(n,pc)', 699: '(n,dc)', 749: '(n,tc)', 799: '(n,3Hec)', 849: '(n,tc)'} score_types.update({MT: '(n,n' + str(MT-50) + ')' for MT in range(51,91)}) score_types.update({MT: '(n,p' + str(MT-600) + ')' for MT in range(600,649)}) score_types.update({MT: '(n,d' + str(MT-650) + ')' for MT in range(650,699)}) score_types.update({MT: '(n,t' + str(MT-700) + ')' for MT in range(700,749)}) score_types.update({MT: '(n,3He' + str(MT-750) + ')' for MT in range(750,649)}) score_types.update({MT: '(n,a' + str(MT-800) + ')' for MT in range(800,849)}) class Mesh(object): def __init__(self): pass def __repr__(self): if hasattr(self, "dimension"): return "<Mesh: {0}>".format(tuple(self.dimension)) else: return "<Mesh>" class Filter(object): def __init__(self): self.type = 0 self.bins = [] def __repr__(self): return "<Filter: {0}>".format(self.type) class Tally(object): def __init__(self): self.filters = OrderedDict() class SourceSite(object): def __init__(self): self.weight = None self.xyz = None self.uvw = None self.E = None def __repr__(self): return "<SourceSite: xyz={0} at E={1}>".format(self.xyz, self.E) class StatePoint(object): def __init__(self, filename): if filename.endswith('.h5'): import h5py self._f = h5py.File(filename, 'r') self._hdf5 = True else: self._f = open(filename, 'rb') self._hdf5 = False # Set flags for what data was read self._metadata = False self._results = False self._source = False # Initialize arrays for meshes and tallies self.meshes = [] self.tallies = [] self.source = [] # Read all metadata self._read_metadata() def _read_metadata(self): # Read filetype self.filetype = self._get_int(path='filetype')[0] # Read statepoint revision self.revision = self._get_int(path='revision')[0] if self.revision != REVISION_STATEPOINT: raise Exception('Statepoint Revision is not consistent.') # Read OpenMC version if self._hdf5: self.version = [self._get_int(path='version_major')[0], self._get_int(path='version_minor')[0], self._get_int(path='version_release')[0]] else: self.version = self._get_int(3) # Read date and time self.date_and_time = self._get_string(19, path='date_and_time') # Read path self.path = self._get_string(255, path='path').strip() # Read random number seed self.seed = self._get_long(path='seed')[0] # Read run information self.run_mode = self._get_int(path='run_mode')[0] self.n_particles = self._get_long(path='n_particles')[0] self.n_batches = self._get_int(path='n_batches')[0] # Read current batch self.current_batch = self._get_int(path='current_batch')[0] # Read criticality information if self.run_mode == 2: self.n_inactive = self._get_int(path='n_inactive')[0] self.gen_per_batch = self._get_int(path='gen_per_batch')[0] self.k_batch = self._get_double( self.current_batch*self.gen_per_batch, path='k_generation') self.entropy = self._get_double( self.current_batch*self.gen_per_batch, path='entropy') self.k_col_abs = self._get_double(path='k_col_abs')[0] self.k_col_tra = self._get_double(path='k_col_tra')[0] self.k_abs_tra = self._get_double(path='k_abs_tra')[0] self.k_combined = self._get_double(2, path='k_combined') # Read CMFD information cmfd_present = self._get_int(path='cmfd_on')[0] if cmfd_present == 1: self.cmfd_indices = self._get_int(4, path='cmfd/indices') self.k_cmfd = self._get_double(self.current_batch, path='cmfd/k_cmfd') self.cmfd_src = self._get_double_array(np.product(self.cmfd_indices), path='cmfd/cmfd_src') self.cmfd_src = np.reshape(self.cmfd_src, tuple(self.cmfd_indices), order='F') self.cmfd_entropy = self._get_double(self.current_batch, path='cmfd/cmfd_entropy') self.cmfd_balance = self._get_double(self.current_batch, path='cmfd/cmfd_balance') self.cmfd_dominance = self._get_double(self.current_batch, path='cmfd/cmfd_dominance') self.cmfd_srccmp = self._get_double(self.current_batch, path='cmfd/cmfd_srccmp') # Read number of meshes n_meshes = self._get_int(path='tallies/n_meshes')[0] # Read meshes for i in range(n_meshes): m = Mesh() self.meshes.append(m) base = 'tallies/mesh' + str(i+1) + '/' # Read id, mesh type, and number of dimensions m.id = self._get_int(path=base+'id')[0] m.type = self._get_int(path=base+'type')[0] n = self._get_int(path=base+'n_dimension')[0] # Read mesh size, lower-left coordinates, upper-right coordinates, # and width of each mesh cell m.dimension = self._get_int(n, path=base+'dimension') m.lower_left = self._get_double(n, path=base+'lower_left') m.upper_right = self._get_double(n, path=base+'upper_right') m.width = self._get_double(n, path=base+'width') # Read number of tallies n_tallies = self._get_int(path='tallies/n_tallies')[0] for i in range(n_tallies): # Create Tally object and add to list of tallies t = Tally() self.tallies.append(t) base = 'tallies/tally' + str(i+1) + '/' # Read id and number of realizations t.id = self._get_int(path=base+'id')[0] t.n_realizations = self._get_int(path=base+'n_realizations')[0] # Read sizes of tallies t.total_score_bins = self._get_int(path=base+'total_score_bins')[0] t.total_filter_bins = self._get_int(path=base+'total_filter_bins')[0] # Read number of filters n_filters = self._get_int(path=base+'n_filters')[0] for j in range(n_filters): # Create Filter object f = Filter() base = 'tallies/tally{0}/filter{1}/'.format(i+1, j+1) # Get type of filter f.type = filter_types[self._get_int(path=base+'type')[0]] # Add to filter dictionary t.filters[f.type] = f # Determine how many bins are in this filter f.length = self._get_int(path=base+'n_bins')[0] assert f.length > 0 if f.type == 'energyin' or f.type == 'energyout': f.bins = self._get_double(f.length + 1, path=base+'bins') elif f.type == 'mesh': f.bins = self._get_int(path=base+'bins') else: f.bins = self._get_int(f.length, path=base+'bins') base = 'tallies/tally' + str(i+1) + '/' # Read nuclide bins n_nuclides = self._get_int(path=base+'n_nuclide_bins')[0] t.n_nuclides = n_nuclides t.nuclides = self._get_int(n_nuclides, path=base+'nuclide_bins') # Read score bins and scattering order t.n_scores = self._get_int(path=base+'n_score_bins')[0] t.scores = [score_types[j] for j in self._get_int( t.n_scores, path=base+'score_bins')] t.moment_order = self._get_int(t.n_scores, path=base+'moment_order') # Read number of user score bins t.n_user_scores = self._get_int(path=base+'n_user_score_bins')[0] # Set up stride stride = 1 for f in list(t.filters.values())[::-1]: f.stride = stride stride *= f.length # Source bank present source_present = self._get_int(path='source_present')[0] if source_present == 1: self.source_present = True else: self.source_present = False # Set flag indicating metadata has already been read self._metadata = True def read_results(self): # Check whether metadata has been read if not self._metadata: self._read_metadata() # Number of realizations for global tallies self.n_realizations = self._get_int(path='n_realizations')[0] # Read global tallies n_global_tallies = self._get_int(path='n_global_tallies')[0] if self._hdf5: data = self._f['global_tallies'].value self.global_tallies = np.column_stack((data['sum'], data['sum_sq'])) else: self.global_tallies = np.array(self._get_double(2*n_global_tallies)) self.global_tallies.shape = (n_global_tallies, 2) # Flag indicating if tallies are present tallies_present = self._get_int(path='tallies/tallies_present')[0] # Read tally results if tallies_present: for i, t in enumerate(self.tallies): n = t.total_score_bins * t.total_filter_bins if self._hdf5: path = 'tallies/tally{0}/results'.format(i+1) data = self._f[path].value t.results = np.column_stack((data['sum'], data['sum_sq'])) t.results.shape = (t.total_filter_bins, t.total_score_bins, 2) else: t.results = np.array(self._get_double(2*n)) t.results.shape = (t.total_filter_bins, t.total_score_bins, 2) # Indicate that tally results have been read self._results = True def read_source(self): # Check whether tally results have been read if not self._results: self.read_results() # Check if source bank is in statepoint if not self.source_present: print('Source not in statepoint file.') return # For HDF5 state points, copy entire bank if self._hdf5: source_sites = self._f['source_bank'].value for i in range(self.n_particles): s = SourceSite() self.source.append(s) # Read position, angle, and energy if self._hdf5: s.weight, s.xyz, s.uvw, s.E = source_sites[i] else: s.weight = self._get_double()[0] s.xyz = self._get_double(3) s.uvw = self._get_double(3) s.E = self._get_double()[0] def generate_ci(self, confidence=0.95): """Calculates confidence intervals for each tally bin.""" # Determine number of realizations n = self.n_realizations # Determine significance level and percentile for two-sided CI alpha = 1 - confidence percentile = 1 - alpha/2 # Calculate t-value t_value = scipy.stats.t.ppf(percentile, n - 1) self.generate_stdev(t_value) def generate_stdev(self, t_value=1.0): """ Calculates the sample mean and standard deviation of the mean for each tally bin. """ # Determine number of realizations n = self.n_realizations # Global tallies for i in range(len(self.global_tallies)): # Get sum and sum of squares s, s2 = self.global_tallies[i] # Calculate sample mean and replace value s /= n self.global_tallies[i,0] = s # Calculate standard deviation if s != 0.0: self.global_tallies[i,1] = t_value*np.sqrt((s2/n - s*s)/(n-1)) # Regular tallies for t in self.tallies: for i in range(t.results.shape[0]): for j in range(t.results.shape[1]): # Get sum and sum of squares s, s2 = t.results[i,j] # Calculate sample mean and replace value s /= n t.results[i,j,0] = s # Calculate standard deviation if s != 0.0: t.results[i,j,1] = t_value*np.sqrt((s2/n - s*s)/(n-1)) def get_value(self, tally_index, spec_list, score_index): """Returns a tally score given a list of filters to satisfy. Parameters ---------- tally_index : int Index for tally in StatePoint.tallies list spec_list : list A list of tuples where the first value in each tuple is the filter type, e.g. 'cell', and the second value is the desired index. If the first value in the tuple is 'mesh', the second value should be a tuple with three integers specifying the mesh indices. Example: [('cell', 1), ('mesh', (14,17,20)), ('energyin', 2)] score_index : int Index corresponding to score for tally, i.e. the second index in Tally.results[:,:,:]. """ # Get Tally object given the index t = self.tallies[tally_index] # Initialize index for filter in Tally.results[:,:,:] filter_index = 0 # Loop over specified filters in spec_list for f_type, f_index in spec_list: # Treat mesh filter separately if f_type == 'mesh': # Get index in StatePoint.meshes mesh_index = t.filters['mesh'].bins[0] - 1 # Get dimensions of corresponding mesh nx, ny, nz = self.meshes[mesh_index].dimension # Convert (x,y,z) to a single bin -- this is similar to # subroutine mesh_indices_to_bin in openmc/src/mesh.F90. value = ((f_index[0] - 1)*ny*nz + (f_index[1] - 1)*nz + (f_index[2] - 1)) filter_index += value*t.filters[f_type].stride else: filter_index += f_index*t.filters[f_type].stride # Return the desired result from Tally.results. This could be the sum and # sum of squares, or it could be mean and stdev if self.generate_stdev() # has been called already. return t.results[filter_index, score_index] def extract_results(self, tally_id, score_str): """Returns a tally results dictionary given a tally_id and score string. Parameters ---------- tally_id : int Index for the tally in StatePoint.tallies list score_str : string Corresponds to the string entered for a score in tallies.xml. For a flux score extraction it would be 'score' """ # get tally try: tally = self.tallies[tally_id-1] except: print('Tally does not exist') return # get the score index if it is present try: idx = tally.scores.index(score_str) except ValueError: print('Score does not exist') print(tally.scores) return # create numpy array for mean and 95% CI n_bins = len(tally.results) n_filters = len(tally.filters) n_scores = len(tally.scores) meanv = np.zeros(n_bins) unctv = np.zeros(n_bins) filters = np.zeros((n_bins,n_filters)) filtmax = np.zeros(n_filters+1) meshmax = np.zeros(4) filtmax[0] = 1 meshmax[0] = 1 # get number of realizations n = tally.n_realizations # get t-value t_value = scipy.stats.t.ppf(0.975, n - 1) # calculate mean meanv = tally.results[:,idx,0] meanv = meanv / n # calculate 95% two-sided CI unctv = tally.results[:,idx,1] unctv = t_value*np.sqrt((unctv/n - meanv*meanv)/(n-1))/meanv # create output dictionary data = {'mean':meanv,'CI95':unctv} # get bounds of filter bins for akey in tally.filters.keys(): idx = list(tally.filters.keys()).index(akey) filtmax[n_filters - idx] = tally.filters[akey].length # compute bin info for i in range(n_filters): # compute indices for filter combination filters[:,n_filters - i - 1] = np.floor((np.arange(n_bins) % np.prod(filtmax[0:i+2]))/(np.prod(filtmax[0:i+1]))) + 1 # append in dictionary bin with filter data.update({list(tally.filters.keys())[n_filters - i - 1]: filters[:,n_filters - i - 1]}) # check for mesh if list(tally.filters.keys())[n_filters - i - 1] == 'mesh': dims = list(self.meshes[tally.filters['mesh'].bins[0] - 1].dimension) dims.reverse() dims = np.asarray(dims) if score_str == 'current': dims += 1 meshmax[1:4] = dims mesh_bins = np.zeros((n_bins,3)) mesh_bins[:,2] = np.floor(((filters[:,n_filters - i - 1] - 1) % np.prod(meshmax[0:2]))/(np.prod(meshmax[0:1]))) + 1 mesh_bins[:,1] = np.floor(((filters[:,n_filters - i - 1] - 1) % np.prod(meshmax[0:3]))/(np.prod(meshmax[0:2]))) + 1 mesh_bins[:,0] = np.floor(((filters[:,n_filters - i - 1] - 1) % np.prod(meshmax[0:4]))/(np.prod(meshmax[0:3]))) + 1 data.update({'mesh': list(zip(mesh_bins[:,0], mesh_bins[:,1], mesh_bins[:,2]))}) i += 1 # add in maximum bin filters and order b = list(tally.filters.keys()) b.reverse() filtmax = list(filtmax[1:]) try: idx = b.index('mesh') filtmax[idx] = np.max(mesh_bins[:,2]) filtmax.insert(idx,np.max(mesh_bins[:,1])) filtmax.insert(idx,np.max(mesh_bins[:,0])) except ValueError: pass data.update({'bin_order':b,'bin_max':filtmax}) return data def _get_data(self, n, typeCode, size): return list(struct.unpack('={0}{1}'.format(n,typeCode), self._f.read(n*size))) def _get_int(self, n=1, path=None): if self._hdf5: return [int(v) for v in self._f[path].value] else: return [int(v) for v in self._get_data(n, 'i', 4)] def _get_long(self, n=1, path=None): if self._hdf5: return [int(v) for v in self._f[path].value] else: return [int(v) for v in self._get_data(n, 'q', 8)] def _get_float(self, n=1, path=None): if self._hdf5: return [float(v) for v in self._f[path].value] else: return [float(v) for v in self._get_data(n, 'f', 4)] def _get_double(self, n=1, path=None): if self._hdf5: return [float(v) for v in self._f[path].value] else: return [float(v) for v in self._get_data(n, 'd', 8)] def _get_double_array(self, n=1, path=None): if self._hdf5: return self._f[path].value else: return self._get_data(n, 'd', 8) def _get_string(self, n=1, path=None): if self._hdf5: return str(self._f[path].value) else: return str(self._get_data(n, 's', 1)[0])
{ "content_hash": "bb50cf274376ad33f8a0c328fb53ecb8", "timestamp": "", "source": "github", "line_count": 631, "max_line_length": 85, "avg_line_length": 35.78605388272583, "alnum_prop": 0.49112085381515436, "repo_name": "shenqicang/openmc", "id": "5a9764d92b78cc70cda36cb6d6d31ca48e99f2aa", "size": "22605", "binary": false, "copies": "2", "ref": "refs/heads/develop", "path": "src/utils/statepoint.py", "mode": "33188", "license": "mit", "language": [ { "name": "FORTRAN", "bytes": "1261313" }, { "name": "Python", "bytes": "374164" }, { "name": "Shell", "bytes": "374" } ], "symlink_target": "" }
__author__ = "Peter Shipley" __license__ = "BSD" # Simple example # # This script listens for Upnp advertisements from any local ISY # unit and prints results # from ISY.IsyDiscover import isy_discover def list_units(): fmt = "%-25s %-25s %s" print(fmt % ("Device Name", "Device Number", "URL Address" )) print(fmt % ("-" * 20, "-" * 20, "-" * 20 )) # wait upto 5 seconds or after you have discovered two unit r = isy_discover(timeout=30, count=2, debug=0) for key, unit in r.items(): print(fmt % ( unit['friendlyName'], unit['UDN'], unit['URLBase'] )) if __name__ == '__main__' : list_units() exit(0)
{ "content_hash": "3b75c93e6e84f022a59245a670efdded", "timestamp": "", "source": "github", "line_count": 28, "max_line_length": 76, "avg_line_length": 23.464285714285715, "alnum_prop": 0.5920852359208524, "repo_name": "fxstein/ISYlib-python", "id": "16e9b2003261b116411fb8d3d46f27dd9d15e123", "size": "684", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "bin/isy_find.py", "mode": "33261", "license": "bsd-2-clause", "language": [ { "name": "Makefile", "bytes": "1521" }, { "name": "Python", "bytes": "293702" } ], "symlink_target": "" }
__author__ = 'ar' import os import sys import glob import fnmatch import numpy as np import json import lmdb import matplotlib.pyplot as plt from datetime import datetime import copy import shutil import skimage.io as skio from dbhelpers import DBImageImportReader, DBImageImportReaderFromDir, DBImageImportReaderFromCSV, checkFilePath from dbconfig import DBImage2DConfig from imgproc2d import ImageTransformer2D ################################################# class Progressor: counterMax=0 counter=0 strState=None isForceStop=False def __init__(self, parCounterMax=100, parCounter=0, strState=None): self.counter = parCounter self.counterMax = parCounterMax self.strState = strState def getPercent(self): tdiv = self.counterMax if tdiv<1: tdiv = 1 return (100*self.counter)/tdiv def inc(self): self.counter+=1 def update(self): self.inc() def toString(self): tret = '[%d/%d] : %0.1f%% (%s)' % (self.counter, self.counterMax, self.getPercent(), self.strState) return tret def __str__(self): return self.toString() def __repr__(self): return self.toString() ################################################# class DBImage2DBuilder: lmdbTrain = 'train_db' lmdbVal = 'val_db' fmeanData = 'mean.binaryproto' fmeanImage = 'mean.jpg' flabels = 'labels.txt' fconfig = 'cfg.json' # wdir = None pathCfg = None # cfg2D = None imgReader2D = None # def getPathLmdbTrain(self): return os.path.join(self.wdir, self.lmdbTrain) def getPathLmdbVal(self): return os.path.join(self.wdir, self.lmdbVal) def getPathMeanBlob(self): return os.path.join(self.wdir, self.fmeanData) def getPathMeanImage(self): return os.path.join(self.wdir, self.fmeanImage) def getParhLabels(self): return os.path.join(self.wdir, self.flabels) def getPathDbConfig(self): return os.path.join(self.wdir, self.fconfig) # def isInitialized(self): return (self.cfg2D is not None) and (self.imgReader2D is not None) def __init__(self, pathCfgInp=None, pathDirOut=None): if pathCfgInp is not None: checkFilePath(pathCfgInp) self.pathCfg = pathCfgInp if pathDirOut is not None: checkFilePath(pathDirOut, isDirectory=True) self.wdir = pathDirOut if (self.wdir is not None) and (self.pathCfg is not None): pass def initializeInfo(self): self.cfg2D = DBImage2DConfig(self.pathCfg) tdatasetType = self.cfg2D.getImportDatasetType() if tdatasetType=='dir': self.imgReader2D = DBImageImportReaderFromDir(self.cfg2D) elif tdatasetType=='txt': self.imgReader2D = DBImageImportReaderFromCSV(self.cfg2D) else: raise Exception('Unknown dataset-import type: [%s]' % tdatasetType) self.imgReader2D.precalculateInfo() def toString(self): if self.isInitialized(): tret = '[DBImage2DBuilder] : %s' % self.imgReader2D.toString() return tret else: return "DBImage2DBuilder() is not initialized yet!" def __str__(self): return self.toString() def __repr__(self): return self.toString() def _buildLBDMForLists(self, pathLMDB, imageTransformer2D, listLabels, mapImgPaths, imageEncoding, progressor): tsizInBytes = 4 * (1024 ** 3) # (1) crate LMDB objet with lmdb.open(pathLMDB, map_size=tsizInBytes) as env: with env.begin(write=True) as txn: for lidx, ll in enumerate(listLabels): tlstPathImg = mapImgPaths[ll] for pp in tlstPathImg: timg = imageTransformer2D.processImageFromFile(pp, isReshapeFinal=True, isAccumulateMean=True) datum = ImageTransformer2D.cvtImage2Datum(timg, imageEncoding, lidx) str_id = '%6d%12d' % (lidx, progressor.counter) txn.put(str_id.encode('ascii'), datum.SerializeToString()) progressor.update() print (progressor) def buildDataset(self, parProgressor=None): if self.isInitialized(): timgEncoding = self.cfg2D.getImageEncoding() cntProgressMax = self.imgReader2D.numTrainImages+self.imgReader2D.numValImages if parProgressor is None: progressor = Progressor(parCounterMax=cntProgressMax) else: progressor = parProgressor progressor.counter = 0 progressor.counterMax = cntProgressMax imageTransformer2D = ImageTransformer2D(self.cfg2D) tpathLmdbTrain = self.getPathLmdbTrain() tpathLmdbVal = self.getPathLmdbVal() if os.path.isdir(tpathLmdbTrain): print ('remove existing LMDB [%s] dir...' % tpathLmdbTrain) shutil.rmtree(tpathLmdbTrain) if os.path.isdir(tpathLmdbVal): print ('remove existing LMDB [%s] dir...' % tpathLmdbVal) shutil.rmtree(tpathLmdbVal) # (1) build Training DB progressor.strState = 'train-db' self._buildLBDMForLists(tpathLmdbTrain, imageTransformer2D, self.imgReader2D.listLabels, self.imgReader2D.listTrainPath, timgEncoding, progressor) # (2) build Validation DB progressor.strState = 'val-db' self._buildLBDMForLists(tpathLmdbVal, imageTransformer2D, self.imgReader2D.listLabels, self.imgReader2D.listValPath, timgEncoding, progressor) timgMeanBlob = imageTransformer2D.getMeanImage(outType=np.float) timgMeanImage = imageTransformer2D.getMeanImage() tpathMeanBlob = self.getPathMeanBlob() tpathMeanImage = self.getPathMeanImage() # (3) save mean binary-proto ImageTransformer2D.saveImage2BinaryBlob(timgMeanBlob, tpathMeanBlob) if timgMeanImage.shape[0]==1: timgMeanImage = timgMeanImage.reshape(tuple(timgMeanImage.shape[1:])) else: timgMeanImage = timgMeanImage.transpose((1,2,0)) # (4) save mean preview image skio.imsave(tpathMeanImage, timgMeanImage) tpathLabels = self.getParhLabels() # (5) save labels to file with open(tpathLabels, 'w') as f: tmp = self.imgReader2D.listLabels for ll in tmp: f.write('%s\n' % ll) # (6) save DB-config tpathCfg = self.getPathDbConfig() newCfg = copy.copy(self.cfg2D.cfg) newCfg['dbType']='image2d' tdateTime=datetime.now() strDate=tdateTime.strftime('%Y.%m.%d') strTime=tdateTime.strftime('%H:%M:%S') # prepare histograms tretLabels=self.imgReader2D.listLabels tretLabelHistTrain = [(ll, len(self.imgReader2D.listTrainPath[ll])) for ll in tretLabels] tretLabelHistVal = [(ll, len(self.imgReader2D.listValPath[ll] )) for ll in tretLabels] # prepare date & time tretDate={ 'str': strDate, 'year': tdateTime.strftime('%Y'), 'month': tdateTime.strftime('%m'), 'day': tdateTime.strftime('%m') } tretTime={ 'str': strTime, 'hour': tdateTime.strftime('%H'), 'min': tdateTime.strftime('%M'), 'sec': tdateTime.strftime('%S'), } dbStats={ 'numLabels' : self.imgReader2D.numLabels, 'numTrain' : self.imgReader2D.numTrainImages, 'numVal' : self.imgReader2D.numValImages, 'numTotal' : (self.imgReader2D.numTrainImages + self.imgReader2D.numValImages), 'date' : tretDate, 'time' : tretTime } dbHists={ 'labels': tretLabels, 'histTrain': tretLabelHistTrain, 'histVal': tretLabelHistVal } newCfg['dbinfo'] = dbStats newCfg['dbhist'] = dbHists with open(tpathCfg,'w') as f: f.write(json.dumps(newCfg, indent=4)) #generate preview ImageTransformer2D.generateImagePreview(tpathLmdbTrain,nr=3,nc=5,fdirOut=self.wdir) else: raise Exception("Cant build dataset, DBImage2DBuilder() is not initialized yet!") ################################################# if __name__ == '__main__': pass
{ "content_hash": "a2d9aa237a24a48134ce0913e54f8f10", "timestamp": "", "source": "github", "line_count": 224, "max_line_length": 118, "avg_line_length": 41.08482142857143, "alnum_prop": 0.5598174508312507, "repo_name": "SummaLabs/DLS", "id": "64e7a98f1729663d5d0ea644f1a76aa747664588", "size": "9245", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "app/backend/core/datasets/dbbuilder.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "28477" }, { "name": "HTML", "bytes": "146817" }, { "name": "JavaScript", "bytes": "491364" }, { "name": "Jupyter Notebook", "bytes": "10111" }, { "name": "Protocol Buffer", "bytes": "115393" }, { "name": "Python", "bytes": "877535" }, { "name": "Shell", "bytes": "7969" } ], "symlink_target": "" }
""" Simulated annealing fitting routine. Complete rebuild of the original SA fitting module written by Mark A. Zentile, now using lmfit Last updated 2018-07-12 MAZ """ # py 2.7 compatibility from __future__ import (division, print_function, absolute_import) import numpy as np import matplotlib.pyplot as plt import warnings import sys import copy import time import pickle as pickle import psutil from multiprocessing import Pool from . import MLFittingRoutine as ML import lmfit as lm from .spectra import get_spectra p_dict_bounds_default = {'lcell':1e-3,'Bfield':100., 'T':20., 'GammaBuf':20., 'shift':100., # Polarisation of light 'theta0':10., 'E_x':0.05, 'E_y':0.05, 'E_phase':0.01, # B-field angle w.r.t. light k-vector 'Btheta':10*3.14/180, 'Bphi':10*3.14/180, 'DoppTemp':20., 'rb85frac':1, 'K40frac':1, 'K41frac':1, } def chisq(yo,ye,err=None): """ Evaluate the chi-squared value of a given data/theory combination Inputs: yo : observed data ye : expected (theory) data err : Optional, error bars - array of length(x) Returns: float of chi-squared value """ if err is None: err = np.ones_like(yo) return (((yo-ye)/err)**2).sum() def evaluate(args): """ Evaluate chi-squared value for a given set of parameters """ warnings.simplefilter("ignore") data = args[0] p_dict = args[2] E_in = np.array([p_dict['E_x'],p_dict['E_y']*np.exp(1.j*p_dict['E_phase']),0.]) p_dict_bools = args[3] data_type = args[4] theory_vals = get_spectra(data[0],E_in,p_dict,outputs=[data_type])[0].real chisq_val = chisq(data[1],theory_vals) return chisq_val, p_dict def SA_fit(data,E_in,p_dict,p_dict_bools,p_dict_bounds=None,no_evals=None,data_type='S0',verbose=False): """ Simulated annealing fitting method. Before simulated annealing starts, the parameter space is randomly sampled to find good starting conditions for the SA fit. data: an Nx2 iterable for the x and y data to be fitted E_in: the initial electric field input. See docstring for the spectra.py module for details. no_evals: The number of randomly-selected start points for downhill fitting. Defaults to 2**(3+2*nFitParams) where nFitParams is the number of varying fit parameters p_dict: dictionary containing all the calculation (initial) parameters p_dict_bools: dictionary with the same keys as p_dict, with Boolean values representing each parameter that is to be varied in the fitting p_dict_bounds: dictionary with the same keys as p_dict, with values that represent the deviation each parameter can take in the initial parameter search NOTE: this works slightly differently to p_dict_bounds in the ML fitting methods. In RR and SA fitting, the bounds select the range in parameter space that is randomly explored to find good starting parameters for the SA routine, rather than being strict bounds on the fit parameters. data_type: Data type to fit experimental data to. Can be one of: 'S0', 'S1', 'S2', 'S3', 'Ix', 'Iy', ... verbose: Boolean - more print statements provided as the program progresses """ if p_dict_bounds is None: p_dict_bounds = p_dict_bounds_default print('Starting Simulated Annealing Fitting Routine') x = np.array(data[0]) y = np.array(data[1]) p_dict['E_x'] = E_in[0] p_dict['E_y'] = E_in[1][0] p_dict['E_phase'] = E_in[1][1] E_in_vector = np.array([p_dict['E_x'],p_dict['E_y']*np.exp(1.j*p_dict['E_phase']),0.]) # count number of fit parameters nFitParams = 0 for key in p_dict_bools: if p_dict_bools[key]: nFitParams += 1 # default number of iterations based on number of fit parameters if no_evals == None: no_evals = 2**(8+2*nFitParams) # Create random array of starting parameters based on parameter ranges given in p_dict_bounds dictionary # Scattered uniformly over the parameter space #clone the parameter dictionary p_dict_list = [] for i in range(no_evals): p_dict_list.append(copy.deepcopy(p_dict)) for key in p_dict_bools: if p_dict_bools[key]==True: start_vals = p_dict[key] #print start_vals for i in range(len(p_dict_list)): p_dict_list[i][key] = start_vals + np.random.uniform(-1,1) * p_dict_bounds[key] if verbose: print('List of initial parameter dictionaries:') for pd in p_dict_list: print(pd) #print p_dict_list print('\n\n') #Do parallel ML fitting by utilising multiple cores po = Pool() # Pool() uses all cores, Pool(3) uses 3 cores for example. ## use lower process priority so computer is still responsive while calculating!! parent = psutil.Process() parent.nice(psutil.BELOW_NORMAL_PRIORITY_CLASS) for child in parent.children(): child.nice(psutil.IDLE_PRIORITY_CLASS) args_list = [(data, E_in, p_dict_list[k], p_dict_bools, data_type) for k in range(no_evals)] Res = po.map_async(evaluate,args_list) result = Res.get() po.close() po.join() result = np.array(result) lineMin = np.argmin(result[:,0]) # position of lowest chi-squared value from initial guesses SA_params = result[lineMin][1] # parameter dictionary associated with lowest chi-squared best_chi_sq = result[lineMin][0] # lowest chi-squared value current_chi_sq = best_chi_sq current_params = copy.deepcopy(SA_params) print('\n\n Initial parameter space evaluations completed...') # Measure of how much the chi-squared values change over the parameter space spread = np.std(result[:,0]) # Initial 'temperature' for the annealing T = 1500. # Cold temperature extreme where the algorithm will stop searching minimum_T = 50. # sets the effective range of a given temperature range_scaling = 3 k = abs(spread)/T / range_scaling # Cooling rate - how much the temperature decreases on each run. cooling_rate = 7e-6 # Number of times a jump uphill is rejected before switching to ML fit. uphill_escape_chance = 0 uphill_escape_threshold = 300 # Number of iterations to investigate a plateau in parameter space (i.e. chi-squared does not change) plateau_escape_chance = 0 plateau_escape_threshold = 300 trial_params = copy.deepcopy(current_params) best_params = copy.deepcopy(current_params) best_chi_sq = current_chi_sq #print trial_params ## testing - log algorithm path chi_sq_log = [current_chi_sq] T_log = [trial_params['T']] B_log = [trial_params['Bfield']] hot_iterations = 250 iteration = 0 while T > minimum_T: # Generate a new set of parameters that are close to the last evaluated parameters for key in p_dict_bools: if p_dict_bools[key]==True: # (extra check) ## parameters varied over 10% of range specified before... trial_params[key] = copy.deepcopy(current_params[key]) + np.random.normal(0,p_dict_bounds[key]) # * p_dict_bounds[key] #* 0.1 print('Before calculation:') print(('Trial: ', trial_params['T'], trial_params['Bfield'])) print(('Current: ', current_params['T'], current_params['Bfield'])) trial_theory = get_spectra(x,E_in_vector,trial_params,outputs=[data_type])[0].real trial_chi_sq = chisq(data[1],trial_theory) # log best chi_squared values and parameters if trial_chi_sq < best_chi_sq: best_chi_sq = trial_chi_sq best_params = copy.deepcopy(trial_params) # Calculate energy difference delta_chi_sq = trial_chi_sq - current_chi_sq # and convert to probability of acceptance if delta_chi_sq < 1e-5: # if there's no change in chi-squared (i.e. parameter space is locally flat), accept with small (5%) probability print('WARNING - no change in chi-squared - probably due to plateau in parameter space!') prob = 0.05 plateau_escape_chance += 1 else: prob = np.exp(-delta_chi_sq/(k*T)) if verbose: print(('\n\tBest chi-squared so far:', best_chi_sq)) print(('\tBest Parameters so far (T, B): ', best_params['T'], best_params['Bfield'])) print(('\tCurrent Parameters (T, B): ', current_params['T'], current_params['Bfield'])) print(('\tTrial Parameters (T, B): ', trial_params['T'], trial_params['Bfield'])) print(('\n\tCurrent chi-squared:', current_chi_sq)) print(('\tTrial chi-squared:', trial_chi_sq)) print(('\tChange in chi-squared from previous:', delta_chi_sq)) print(('\tTemperature parameter: ', T)) print(('\tProbability that new parameters will be accepted (>1 == 1):', prob)) if (delta_chi_sq < 0) or (prob > np.random.random()): # accept downhill movement, or uphill movement with probability prob - update chi_squared and parameters current_chi_sq = trial_chi_sq current_params = copy.deepcopy(trial_params) chi_sq_log.append(trial_chi_sq) ## keep log of chi-squared values (on succesful iterations only) T_log.append(trial_params['T']) B_log.append(trial_params['Bfield']) print('\t...Values accepted. Current parameters updated.') print('\n') # reset escape chance uphill_escape_chance = 0 else: print(('\t...Values rejected. Escape threshold:', uphill_escape_chance, ' / ', uphill_escape_threshold)) print('\n') uphill_escape_chance += 1 # Cool system # Hold T constant for first N iterations if iteration > hot_iterations: T = T/(1 + (cooling_rate*T)) #Lundy's Method (http://link.springer.com/article/10.1007/BF01582166) iteration += 1 # Exit annealing loop if conditions are correct if (uphill_escape_chance > uphill_escape_threshold): print(('Simulated annealing completed ( No improvement found after {:d} iterations)'.format(uphill_escape_threshold))) print('Switching to downhill fit using best found parameters...\n') break if (T < minimum_T): #No jumps up hill for a while, or minimum temperature reached print('Simulated annealing completed ( Temperature reached minimum threshold )') print('Switching to downhill fit using best found parameters...\n') break if (plateau_escape_chance > plateau_escape_threshold): print('!!!\n\tCAUTION :: Annealing has not converged.') print('\tAnnealing algorithm found plateau in parameter space') print('\tSwitching to downhill fit using best found parameters...\n!!!') break #### Marquardt-Levenberg fit ##### try: print(('Downhill fit with initial parameters: (T,B) ', best_params['T'], best_params['Bfield'])) ML_best_params, result = ML.ML_fit(data, E_in, best_params, p_dict_bools, data_type) MLchi_sq = result.chisqr if MLchi_sq <= best_chi_sq: best_params = ML_best_params final_result = result success = True print('Downhill fit converged successfully.\n') else: print('Downhill fit did not find further improvement. Continuing with simulated annealing result.\n') success = False final_result = 1 except: print('Downhill fit failed to converge. Continuing with simulated annealing result.\n') success = False final_result = 1 return best_params, final_result #, chi_sq_log, T_log, B_log, success def test_fit(calc=False): p_dict = {'elem':'Rb','Dline':'D2','T':80.,'lcell':2e-3,'Bfield':600.,'Btheta':0., 'Bphi':0.,'GammaBuf':0.,'shift':0.} # only need to specify parameters that are varied p_dict_bools = {'T':True,'Bfield':True} p_dict_bounds = {'T':20,'Bfield':200} E_in = np.array([0.7,0.7,0]) E_in_angle = [E_in[0].real,[abs(E_in[1]),np.angle(E_in[1])]] print(E_in_angle) x = np.linspace(-10000,10000,200) if calc: [y] = get_spectra(x,E_in,p_dict,outputs=['S1']) + np.random.randn(len(x))*0.01 pickle.dump([x,y],open('pickle_xydata.pkl','wb')) else: x,y = pickle.load(open('pickle_xydata.pkl','rb')) data = [x,y.real] # Map chi-squared surface: Tvals = np.linspace(60,100,200) Bvals = np.linspace(400,800,220) T2D, B2D = np.meshgrid(Tvals,Bvals) CSQ_map = np.zeros((len(Tvals),len(Bvals))) if calc: for i,TT in enumerate(Tvals): print((i, len(Tvals))) for j, BB in enumerate(Bvals): p_dict['T'] = TT p_dict['Bfield'] = BB [ye] = get_spectra(x,E_in,p_dict,outputs=['S1']) CSQ_map[i,j] = chisq(y,ye) pickle.dump([T2D,B2D,CSQ_map],open('pickle_CSQmap.pkl','wb')) else: T2D, B2D, CSQ_map = pickle.load(open('pickle_CSQmap.pkl','rb')) fig_map = plt.figure() ax = fig_map.add_subplot(111) ax.imshow(CSQ_map.T,origin='lower',aspect='auto', extent=(Tvals[0],Tvals[-1],Bvals[0],Bvals[-1]), cmap=plt.cm.jet,alpha=0.7) ax.contour(T2D, B2D, CSQ_map.T,7,lw=2,color='k') #plt.show() ## Do SA fitting best_params, result, chi_sq_log, T_log, B_log = SA_fit(data, E_in_angle, p_dict, p_dict_bools, p_dict_bounds, no_evals = 4, data_type='S1') report = result.fit_report() fit = result.best_fit fig_data = plt.figure() print(report) plt.plot(x,y,'ko') plt.plot(x,fit,'r-',lw=2) # Chi-squared log with iteration number fig_chisqlog = plt.figure() plt.plot(chi_sq_log) plt.ylabel('Chi_squared value') plt.xlabel('Iteration') #plt.show() ax.plot(T_log, B_log, 'ko', ms=1) plt.show() def test_fit2(calc=False): """ Alternate data set to test """ p_dict = {'elem':'Rb','Dline':'D2','T':80.,'lcell':2e-3,'Bfield':250.,'Btheta':0., 'Bphi':0.,'GammaBuf':0.,'shift':0.} # only need to specify parameters that are varied p_dict_bools = {'T':True,'Bfield':True} p_dict_bounds = {'T':15,'Bfield':100} E_in = np.array([1.0,0.0,0.0]) E_in_angle = [E_in[0].real,[abs(E_in[1]),np.angle(E_in[1])]] print(E_in_angle) x = np.linspace(-7000,8000,200) if calc: [y] = get_spectra(x,E_in,p_dict,outputs=['S0']) + np.random.randn(len(x))*0.02 pickle.dump([x,y],open('pickle_xydata.pkl','wb')) else: x,y = pickle.load(open('pickle_xydata.pkl','rb')) data = [x,y.real] # Map chi-squared surface: Tvals = np.linspace(40,120,300) Bvals = np.linspace(0,500,250) T2D, B2D = np.meshgrid(Tvals,Bvals) CSQ_map = np.zeros((len(Tvals),len(Bvals))) if calc: for i,TT in enumerate(Tvals): print((i, len(Tvals))) for j, BB in enumerate(Bvals): p_dict['T'] = TT p_dict['Bfield'] = BB [ye] = get_spectra(x,E_in,p_dict,outputs=['S0']) CSQ_map[i,j] = chisq(y,ye) pickle.dump([T2D,B2D,CSQ_map],open('pickle_CSQmap.pkl','wb')) else: T2D, B2D, CSQ_map = pickle.load(open('pickle_CSQmap.pkl','rb')) fig_map = plt.figure() ax = plt.subplot2grid((1,14),(0,0),colspan=13) ax_cb = plt.subplot2grid((1,14),(0,13),colspan=1) im = ax.imshow(CSQ_map.T,origin='lower',aspect='auto', extent=(Tvals[0],Tvals[-1],Bvals[0],Bvals[-1]), cmap=plt.cm.jet,alpha=0.7) ax.contour(T2D, B2D, CSQ_map.T,7,lw=2,color='k') cb = fig_map.colorbar(im,cax=ax_cb) #plt.show() ## Do SA fitting best_params, result, chi_sq_log, T_log, B_log = SA_fit(data, E_in_angle, p_dict, p_dict_bools, p_dict_bounds, no_evals = 2, data_type='S0') report = result.fit_report() fit = result.best_fit fig_data = plt.figure() print(report) plt.plot(x,y,'ko') plt.plot(x,fit,'r-',lw=2) # Chi-squared log with iteration number fig_chisqlog = plt.figure() plt.plot(chi_sq_log) plt.ylabel('Chi_squared value') plt.xlabel('Iteration') #plt.show() ax.plot(T_log, B_log, 'ko', ms=1) ax.plot(T_log[0], B_log[0], 'rs', ms=6) ax.plot(T_log[-1], B_log[-1], 'bs', ms=6) plt.show() def test_fit3(calc=False): """ Alternate data set to test """ p_dict = {'elem':'Rb','Dline':'D2','T':155.,'lcell':5e-3,'Bfield':1100.,'Btheta':0., 'Bphi':0.,'GammaBuf':0.,'shift':0.} # only need to specify parameters that are varied p_dict_bools = {'T':True,'Bfield':True} p_dict_bounds = {'T':25,'Bfield':300} E_in = np.array([1.0,0.0,0.0]) E_in_angle = [E_in[0].real,[abs(E_in[1]),np.angle(E_in[1])]] print(E_in_angle) x = np.linspace(-13000,-6000,150) if calc: [y] = get_spectra(x,E_in,p_dict,outputs=['S1']) + np.random.randn(len(x))*0.02 pickle.dump([x,y],open('pickle_xydata.pkl','wb')) else: x,y = pickle.load(open('pickle_xydata.pkl','rb')) data = [x,y.real] # Map chi-squared surface: #Tvals = np.linspace(p_dict['T']-p_dict_bounds['T'],p_dict['T']+p_dict_bounds['T'],150) #Bvals = np.linspace(p_dict['Bfield']-p_dict_bounds['Bfield'],p_dict['Bfield']+p_dict_bounds['Bfield'],125) Tvals = np.linspace(80,250,450) Bvals = np.linspace(0,2500,300) T2D, B2D = np.meshgrid(Tvals,Bvals) CSQ_map = np.zeros((len(Tvals),len(Bvals))) if calc: for i,TT in enumerate(Tvals): print((i, len(Tvals))) for j, BB in enumerate(Bvals): p_dict['T'] = TT p_dict['Bfield'] = BB [ye] = get_spectra(x,E_in,p_dict,outputs=['S1']) CSQ_map[i,j] = chisq(y,ye) pickle.dump([T2D,B2D,CSQ_map],open('pickle_CSQmap.pkl','wb')) else: T2D, B2D, CSQ_map = pickle.load(open('pickle_CSQmap.pkl','rb')) print(T2D) print(B2D) fig_map = plt.figure() ax = plt.subplot2grid((1,14),(0,0),colspan=13) ax_cb = plt.subplot2grid((1,14),(0,13),colspan=1) im = ax.imshow(CSQ_map.T,origin='lower',aspect='auto', extent=(T2D[0][0],T2D[-1][-1],B2D[0][0],B2D[-1][-1]), cmap=plt.cm.jet,alpha=0.7) ax.contour(T2D, B2D, CSQ_map.T,9,lw=2,color='k') cb = fig_map.colorbar(im,cax=ax_cb) #plt.show() ## Do SA fitting best_params, result, chi_sq_log, T_log, B_log, success = SA_fit(data, E_in_angle, p_dict, p_dict_bools, p_dict_bounds, no_evals = 32, data_type='S1') if success: report = result.fit_report() fit = result.best_fit print(report) fig_data = plt.figure() plt.plot(x,y,'ko') if success: plt.plot(x,fit,'r-',lw=2) # Chi-squared log with iteration number fig_chisqlog = plt.figure() plt.plot(chi_sq_log) plt.ylabel('Chi_squared value') plt.xlabel('Iteration') #plt.show() ax.plot(T_log, B_log, 'ko', ms=1) ax.plot(T_log, B_log, 'k--', lw=1.5) ax.plot(T_log[0], B_log[0], 'rs', ms=6) ax.plot(T_log[-1], B_log[-1], 'bs', ms=6) plt.show() def test_fit4(calc=False): """ Alternate data set to test """ #actual params 110 / 7000 p_dict = {'elem':'Rb','Dline':'D2','T':100.,'lcell':5e-3,'Bfield':6100.,'Btheta':0., 'Bphi':0.,'GammaBuf':0.,'shift':0.,'rb85frac':1.0} # only need to specify parameters that are varied p_dict_bools = {'T':True,'Bfield':True} p_dict_bounds = {'T':5,'Bfield':400} E_in = np.array([1.0,0.0,0.0]) E_in_angle = [E_in[0].real,[abs(E_in[1]),np.angle(E_in[1])]] print(E_in_angle) x = np.linspace(-21000,-13000,150) if calc: [y] = get_spectra(x,E_in,p_dict,outputs=['S0']) + np.random.randn(len(x))*0.02 pickle.dump([x,y],open('pickle_xydata.pkl','wb')) else: x,y = pickle.load(open('pickle_xydata.pkl','rb')) data = [x,y.real] # Map chi-squared surface: #Tvals = np.linspace(p_dict['T']-p_dict_bounds['T'],p_dict['T']+p_dict_bounds['T'],150) #Bvals = np.linspace(p_dict['Bfield']-p_dict_bounds['Bfield'],p_dict['Bfield']+p_dict_bounds['Bfield'],125) Tvals = np.linspace(70,150,350) Bvals = np.linspace(5000,10000,300) T2D, B2D = np.meshgrid(Tvals,Bvals) CSQ_map = np.zeros((len(Tvals),len(Bvals))) if calc: for i,TT in enumerate(Tvals): print((i, len(Tvals))) for j, BB in enumerate(Bvals): p_dict['T'] = TT p_dict['Bfield'] = BB [ye] = get_spectra(x,E_in,p_dict,outputs=['S0']) CSQ_map[i,j] = chisq(y,ye) pickle.dump([T2D,B2D,CSQ_map],open('pickle_CSQmap.pkl','wb')) else: T2D, B2D, CSQ_map = pickle.load(open('pickle_CSQmap.pkl','rb')) print(T2D) print(B2D) fig_map = plt.figure() ax = plt.subplot2grid((1,14),(0,0),colspan=13) ax_cb = plt.subplot2grid((1,14),(0,13),colspan=1) im = ax.imshow(CSQ_map.T,origin='lower',aspect='auto', extent=(T2D[0][0],T2D[-1][-1],B2D[0][0],B2D[-1][-1]), cmap=plt.cm.jet,alpha=0.7) ax.contour(T2D, B2D, CSQ_map.T,9,lw=2,color='k') cb = fig_map.colorbar(im,cax=ax_cb) #plt.show() ## Do SA fitting best_params, result, chi_sq_log, T_log, B_log, success = SA_fit(data, E_in_angle, p_dict, p_dict_bools, p_dict_bounds, no_evals = 32, data_type='S0') fig_data = plt.figure() plt.plot(x,y,'ko') if success: report = result.fit_report() fit = result.best_fit print(report) else: print(best_params) fit = get_spectra(x,E_in,best_params,outputs=['S0'])[0].real plt.plot(x,fit,'r-',lw=2) # Chi-squared log with iteration number fig_chisqlog = plt.figure() plt.plot(chi_sq_log) plt.ylabel('Chi_squared value') plt.xlabel('Iteration') #plt.show() ax.plot(T_log, B_log, 'ko', ms=1) ax.plot(T_log, B_log, 'k--', lw=1.5) ax.plot(T_log[0], B_log[0], 'rs', ms=6) ax.plot(T_log[-1], B_log[-1], 'bs', ms=6) plt.show() if __name__ == '__main__': test_fit4(False)
{ "content_hash": "6a5b8c63f396b184fcd23fc8bfed0a7d", "timestamp": "", "source": "github", "line_count": 650, "max_line_length": 153, "avg_line_length": 31.435384615384617, "alnum_prop": 0.653746390642588, "repo_name": "jameskeaveney/ElecSus", "id": "8bed4c5d7a0017b31430e73a782c9be7c365770a", "size": "21074", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "elecsus/libs/SAFittingRoutine.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Python", "bytes": "371112" } ], "symlink_target": "" }
from oslo.concurrency import lockutils from oslo.config import cfg import stevedore from ironic.common import exception dhcp_provider_opts = [ cfg.StrOpt('dhcp_provider', default='neutron', help='DHCP provider to use. "neutron" uses Neutron, and ' '"none" uses a no-op provider.' ), ] CONF = cfg.CONF CONF.register_opts(dhcp_provider_opts, group='dhcp') _dhcp_provider = None EM_SEMAPHORE = 'dhcp_provider' class DHCPFactory(object): # NOTE(lucasagomes): Instantiate a stevedore.driver.DriverManager # only once, the first time DHCPFactory.__init__ # is called. _dhcp_provider = None def __init__(self, **kwargs): if not DHCPFactory._dhcp_provider: DHCPFactory._set_dhcp_provider(**kwargs) # NOTE(lucasagomes): Use lockutils to avoid a potential race in eventlet # that might try to create two dhcp factories. @classmethod @lockutils.synchronized(EM_SEMAPHORE, 'ironic-') def _set_dhcp_provider(cls, **kwargs): """Initialize the dhcp provider :raises: DHCPNotFound if the dhcp_provider cannot be loaded. """ # NOTE(lucasagomes): In case multiple greenthreads queue up on # this lock before _dhcp_provider is initialized, # prevent creation of multiple DriverManager. if cls._dhcp_provider: return dhcp_provider_name = CONF.dhcp.dhcp_provider try: _extension_manager = stevedore.driver.DriverManager( 'ironic.dhcp', dhcp_provider_name, invoke_kwds=kwargs, invoke_on_load=True) except RuntimeError: raise exception.DHCPNotFound(dhcp_provider_name=dhcp_provider_name) cls._dhcp_provider = _extension_manager.driver def update_dhcp(self, task, dhcp_opts): """Send or update the DHCP BOOT options for this node. :param task: A TaskManager instance. :param dhcp_opts: this will be a list of dicts, e.g. :: [{'opt_name': 'bootfile-name', 'opt_value': 'pxelinux.0'}, {'opt_name': 'server-ip-address', 'opt_value': '123.123.123.456'}, {'opt_name': 'tftp-server', 'opt_value': '123.123.123.123'}] """ self.provider.update_dhcp_opts(task, dhcp_opts) @property def provider(self): return self._dhcp_provider
{ "content_hash": "fad1fd515624fad00b4eb89d6c631b54", "timestamp": "", "source": "github", "line_count": 82, "max_line_length": 79, "avg_line_length": 32.670731707317074, "alnum_prop": 0.561030235162374, "repo_name": "Tehsmash/ironic", "id": "c6848c6d01dbc78e0df7ed675fa8c6d7e31777b1", "size": "3287", "binary": false, "copies": "1", "ref": "refs/heads/staging/kiloplus", "path": "ironic/common/dhcp_factory.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Python", "bytes": "2250030" } ], "symlink_target": "" }
from examples_common import * from connectors import * # default configuration # DEFAULT_JDBC_CONFIG = JdbcConnectorConfig(host='localhost', port='5555', db_name='db_samples', user_name='test', user_pass='test') DEFAULT_ES_CONFIG = ElasticConnectorConfig(host='localhost', port=9200) # individual examples # class TestExample1(TestSingleExampleDb2Es): """ Example1 test case description: - ingest records from a single database source and store them in ElasticSearch """ def __init__(self, examples_path, *args, **kwargs): super(TestExample1, self).__init__(source_conn_conf=DEFAULT_JDBC_CONFIG, source_table_name='observations_view', es_conn_conf=DEFAULT_ES_CONFIG, es_index_name='sample_observations_view', example_path=os.path.join(examples_path, "example1"), *args, **kwargs) class TestExample2(TestSingleExampleDb2Es): """ Example2 test case description: - ingest records from a single database source and store them in ElasticSearch - used in Quickstart """ def __init__(self, examples_path, *args, **kwargs): super(TestExample2, self).__init__(source_conn_conf=DEFAULT_JDBC_CONFIG, source_table_name='observations_view', es_conn_conf=DEFAULT_ES_CONFIG, es_index_name='sample_observations_view', example_path=os.path.join(examples_path, "example2"), *args, **kwargs) class TestExample3(TestSingleExampleDb2Es): """ Example3 test case description: - ingest records from a single database source and store them in ElasticSearch (syntetic) - ingest records from a single database source and store them in ElasticSearch (mtsamples) """ def __init__(self, examples_path, *args, **kwargs): super(TestExample3, self).__init__(source_conn_conf=DEFAULT_JDBC_CONFIG, source_table_name='observations_view', es_conn_conf=DEFAULT_ES_CONFIG, es_index_name='sample_observations_view', example_path=os.path.join(examples_path, "example3"), *args, **kwargs) self.source_conn_conf_mt = JdbcConnectorConfig(host='localhost', port='5556', db_name='db_samples', user_name='test', user_pass='test') self.source_table_name_mt = 'mtsamples' self.es_index_name_mt = 'sample_mt' def test_source_target_mapping_mt(self): # test the MTSamples mapping self.log.info("Waiting for source/sink to become ready ...") time.sleep(self.wait_for_souce_ready_s) source_conn_mt = JdbcConnector(self.source_conn_conf_mt) es_conn = ElasticConnector(self.es_conn_conf) self.log.info("Waiting for cogstack pipeline to process records ...") #time.sleep(self.wait_for_sink_ready_s) self.waitForTargetEsReady(es_conn.connector, self.es_index_name, self.wait_for_sink_ready_max_s) recs_in = self.getRecordsCountFromTargetDb(source_conn_mt.connector, self.source_table_name_mt) recs_out = self.getRecordsCountFromTargetEs(es_conn.connector, self.es_index_name_mt) self.assertEqual(recs_out, recs_in, "There are less MTSamples records stored in sink (%s) than in source (%s)." % (recs_out, recs_in)) class TestExample4(TestSingleExampleDb2Es): """ Example4 test case description: - ingest records from a single database source, run through Tika and store them in ElasticSearch - using only 'docx' sub-case testing raw text extraction using Tika """ def __init__(self, examples_path, *args, **kwargs): super(TestExample4, self).__init__(source_conn_conf=DEFAULT_JDBC_CONFIG, source_table_name='observations_view', es_conn_conf=DEFAULT_ES_CONFIG, es_index_name='sample_observations_view', example_path=os.path.join(examples_path, "example4"), sub_case='docx', *args, **kwargs) class TestExample5s1(TestSingleExampleDb2Db): """ Example5-stage1 test case description: - ingest records from a single database source, run through Tika and store them in output database - using only 'docx' sub-case testing raw text extraction using Tika """ def __init__(self, examples_path, *args, **kwargs): super(TestExample5s1, self).__init__(source_conn_conf=DEFAULT_JDBC_CONFIG, source_table_name='medical_reports', sink_conn_conf=DEFAULT_JDBC_CONFIG, sink_table_name='medical_reports_processed', example_path=os.path.join(examples_path, "example5"), sub_case='docx', *args, **kwargs) class TestExample5s2(TestSingleExampleDb2Es): """ Example5-stage2 test case description: - ingest records from a single database source and store them in ElasticSearch """ def __init__(self, examples_path, *args, **kwargs): super(TestExample5s2, self).__init__(source_conn_conf=DEFAULT_JDBC_CONFIG, source_table_name='observations_view', es_conn_conf=DEFAULT_ES_CONFIG, es_index_name='sample_observations_view', example_path=os.path.join(examples_path, "example5"), sub_case='docx', *args, **kwargs) class TestExample6(TestSingleExampleDb2Es): def __init__(self, examples_path, *args, **kwargs): """ Example6 test case description: - ingest records from a single database source and store them in ElasticSearch - using NGINX as a proxy """ super(TestExample6, self).__init__(source_conn_conf=DEFAULT_JDBC_CONFIG, source_table_name='observations_view', es_conn_conf=ElasticConnectorConfig(host='localhost', port='9200', http_auth_pass='test', http_auth_user='test'), es_index_name='sample_observations_view', example_path=os.path.join(examples_path, "example6"), *args, **kwargs) class TestExample7(TestSingleExampleDb2Es): def __init__(self, examples_path, *args, **kwargs): """ Example7 test case description: - ingest records from a single database source and store them in ElasticSearch - using Fluentd logging driver - using NGINX as a proxy """ super(TestExample7, self).__init__(source_conn_conf=DEFAULT_JDBC_CONFIG, source_table_name='observations_view', es_conn_conf=ElasticConnectorConfig(host='localhost', port='9200', http_auth_pass='test', http_auth_user='test'), es_index_name='sample_observations_view', example_path=os.path.join(examples_path, "example7"), *args, **kwargs) class TestExample8(TestSingleExampleDb2Es): def __init__(self, examples_path, *args, **kwargs): """ Example8 test case description: - ingest records from a single database source, run NLP and store them in ElasticSearch - running a custom GATE NLP application to extract annotations """ super(TestExample8, self).__init__(source_conn_conf=DEFAULT_JDBC_CONFIG, source_table_name='observations_view', es_conn_conf=DEFAULT_ES_CONFIG, es_index_name='sample_observations_view', example_path=os.path.join(examples_path, "example8"), image_build_rel_dir="../../../dockerfiles/gate", *args, **kwargs) class TestExample9(TestSingleExampleDb2Es): def __init__(self, examples_path, *args, **kwargs): """ Example9 test case description: - ingest records from a single database source, run Tika+NLP and store them in ElasticSearch - running Tika on the binary documents - running a custom GATE NLP application to extract annotations """ super(TestExample9, self).__init__(source_conn_conf=DEFAULT_JDBC_CONFIG, source_table_name='observations_view', es_conn_conf=DEFAULT_ES_CONFIG, es_index_name='sample_observations_view', example_path=os.path.join(examples_path, "example9"), image_build_rel_dir="../../../dockerfiles/gate", *args, **kwargs)
{ "content_hash": "162923f8084a51add4e3a8d922007401", "timestamp": "", "source": "github", "line_count": 200, "max_line_length": 123, "avg_line_length": 54.065, "alnum_prop": 0.4893184130213632, "repo_name": "CogStack/cogstack", "id": "504ece59bf755c9d6c654962fde8db37e5273867", "size": "10832", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "test/examples/examples_tests.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Groovy", "bytes": "2090" }, { "name": "HTML", "bytes": "2995818" }, { "name": "Java", "bytes": "460672" }, { "name": "Shell", "bytes": "8261" } ], "symlink_target": "" }
version_info = (2, 4, 0, 'final', 0) def _get_version(): " Returns a PEP 386-compliant version number from version_info. " assert len(version_info) == 5 assert version_info[3] in ('alpha', 'beta', 'rc', 'final') parts = 2 if version_info[2] == 0 else 3 main = '.'.join(map(str, version_info[:parts])) sub = '' if version_info[3] == 'alpha' and version_info[4] == 0: # TODO: maybe append some sort of git info here?? sub = '.dev' elif version_info[3] != 'final': mapping = {'alpha': 'a', 'beta': 'b', 'rc': 'c'} sub = mapping[version_info[3]] + str(version_info[4]) return str(main + sub) version = _get_version()
{ "content_hash": "ef4689a678838e4cfbac6eae5303dcb7", "timestamp": "", "source": "github", "line_count": 21, "max_line_length": 69, "avg_line_length": 33.666666666666664, "alnum_prop": 0.5502121640735502, "repo_name": "brian-yang/mozillians", "id": "65edeeddbe2024b9e9a9513b5ec0deaec794cfdb", "size": "907", "binary": false, "copies": "11", "ref": "refs/heads/master", "path": "vendor-local/lib/python/markdown/__version__.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "ApacheConf", "bytes": "1986" }, { "name": "CSS", "bytes": "210671" }, { "name": "HTML", "bytes": "184994" }, { "name": "JavaScript", "bytes": "154038" }, { "name": "Makefile", "bytes": "478" }, { "name": "Python", "bytes": "9184371" }, { "name": "Shell", "bytes": "7758" } ], "symlink_target": "" }
from osp_pipeline.core.models import FilesModel from pyspark.sql import types as T from .core import MARCModel, MARCDatafield from ..sources import marc from ...core.counters import Counters class RawMARCRecord(FilesModel): schema = T.StructType([ T.StructField('marc_id', T.StringType(), nullable=False), T.StructField('marc_source', T.StringType(), nullable=False), T.StructField('timestamp', T.StringType(), nullable=False), T.StructField('datafields', T.ArrayType(MARCDatafield), nullable=False), ]) @classmethod def iterfile(cls, fh): """yield `cls` from a compressed LOC XML file.""" fh = fh() if callable(fh) else fh for source in marc.SourceMARCRecord.iterfile(fh): yield cls( marc_id=source.marc_id, marc_source=source.marc_source, timestamp=source.timestamp, datafields=source.datafields ) # Work around ModelMeta's broken subclass handling class MARCRecordMixin(object): MARC_SOURCE = '' # default control org if not set in source FREE_TO_READ = None # default free_to_read if not set in source schema = T.StructType([ T.StructField('id', T.StringType()), T.StructField('source', T.StringType()), T.StructField('marc_id', T.StringType()), T.StructField('marc_source', T.StringType()), T.StructField('timestamp', T.StringType(), nullable=False), T.StructField('loc_control_number', T.StringType()), T.StructField('title', T.StringType()), T.StructField('subtitle', T.StringType()), T.StructField('person_name', T.ArrayType(T.StringType())), T.StructField('organization_name', T.ArrayType(T.StringType())), T.StructField('medium', T.StringType()), T.StructField('publisher', T.StringType()), T.StructField('publication_date', T.StringType()), T.StructField('series', T.StringType()), T.StructField('isbn', T.ArrayType(T.StringType())), T.StructField('issn', T.ArrayType(T.StringType())), T.StructField('subject', T.ArrayType(T.StringType())), T.StructField('free_to_read', T.BooleanType()), ]) @classmethod def from_raw(cls, raw): Counters.inc('MARCRecordMixin.raw_count') marc_source = raw.marc_source or cls.MARC_SOURCE return cls.from_marc(raw.datafields, source=cls.SOURCE, marc_id=raw.marc_id, marc_source=marc_source, free_to_read=cls.FREE_TO_READ, timestamp=raw.timestamp, # generate a unique ID for the record id="|".join((raw.marc_id, marc_source, raw.timestamp)), ) @classmethod def from_files(cls, url): return cls.build_df( RawMARCRecord .from_files(url) .rdd .map(cls.from_raw)) # Subclass b/c output destination is hardwired into Model's metaclass. Ugh. class LOCRecord(MARCRecordMixin, MARCModel): s3_key = 'loc_catalog' rows_per_output_partition = 20000 MARC_SOURCE = 'LOC' SOURCE = 'loc' class OTLRecord(MARCRecordMixin, MARCModel): s3_key = 'otl_catalog' rows_per_output_partition = 1000 MARC_SOURCE = 'OTL' FREE_TO_READ = True SOURCE = 'otl'
{ "content_hash": "d27b8bea271a497ba901ce20b9791e57", "timestamp": "", "source": "github", "line_count": 96, "max_line_length": 75, "avg_line_length": 37.46875, "alnum_prop": 0.5757575757575758, "repo_name": "opensyllabus/osp-pipeline", "id": "94185d639c832caf9b74c521b21de6e603d4619c", "size": "3597", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "osp_pipeline/catalog/models/marc.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Jupyter Notebook", "bytes": "72698" }, { "name": "Python", "bytes": "283679" }, { "name": "Shell", "bytes": "10441" } ], "symlink_target": "" }
from __future__ import print_function from __future__ import absolute_import from builtins import str from builtins import next from builtins import object import os, codecs, re from .helpers import save_json, load_json from .content import Content class Position(object): """ more than just a number of an item or index of a list we just want to hold a position and length from this we can determine the number for previous, next and provide increment and decrement options loop is tracked here error checking and representing positions """ def __init__(self, length=0, position=0, loop=True): self._index = position self._length = length self.loop = loop def __int__(self): return self.position def __str__(self): return str(self.position) def __repr__(self): return self.position def _get_length(self): return self._length def _set_length(self, l): self.change_length(l) length = property(_get_length, _set_length) def _get_index(self): return self._index def _set_index(self, p): self._index = self.check(p) position = property(_get_index, _set_index) def end(self): """ the value for the last object """ return self.length-1 def at_end(self): """ return a boolean value for if our position is equal to the end """ return self.position == self.end() def change_length(self, length): """ position needs to know how long the list is we can change that later if we don't know the length """ self._length = length #go ahead one just to make sure we weren't beyond the new length self.decrement() self.increment() def check(self, position): """ accept a vaule for a position check to make sure it falls within the range of acceptable values if greater, go to the end if less than 0, go to the beginning could consider doing a mod operation and taking the remainder as the new position. """ if position < 0: return 0 elif position >= 0 and position <= self.end(): return int(position) else: return self.end() def next(self, value=1): """ gives the position for the next item but does not actually increment the index """ if self.position+value >= self.length: if self.loop: return 0 else: #staying at the end #return self.position #return self.length-1 return self.end() else: return self.position+value def previous(self, value=1): """ gives the position for the next item but does not actually increment the index """ if self.position-value < 0: if self.loop: #return self.length-1 return self.end() else: #staying at the beginning #(should be 0 already) return 0 else: return self.position-value def increment(self, value=1): """ changes the actual index variable """ self.position = self.next(value) return self.position def decrement(self, value=1): """ changes the actual index variable """ self.position = self.previous(value) return self.position def debug(self): """ return a string representation of current state """ result = '' result += "Position index: %s\n" % self._index result += "Length: %s\n" % self._length result += "Loop: %s\n" % self.loop return result #previously: (too generic) #class Items(list): class PositionList(list): """ generic list with a position associated with it position will get updated with call to update() otherwise... changing the position is left to the caller """ def __init__(self, items=[], position=0): list.__init__(self) self.extend(items) self._position = Position(len(items), position) #quick way to access the current item directly #rather than having get return the value #if items: # self.current = self.get() #else: # #if nothing was sent, be sure to initialize current later! # self.current = None #special case for get_next... #if we're new, return 0 #otherwise... all other rules apply self.new = True #wrap position object, so that we can assign a new position to the list #as though it were an attribute. #this simplifies the interface to the list of items. def _get_position(self): return self._position def _set_position(self, p): self.go(p) position = property(_get_position, _set_position) #aka get_current? #def get(self, position=None): def current(self): """ shortcut for get() without a specific position passed in """ return self.get() def get(self, position=None): """ get calls will not change our position """ #make sure position's length is always current: self.update_length() #print "Received position: %s" % position #print "Current position: %s" % self._position #print "Length: %s" % len(self) #should we update current here? or use current? if position is None: #use our current position return self[int(self._position)] else: #checking if position is out of range here: return self[self._position.check(position)] #changing the interface to be the same as it is with Position object: #def get_previous(self): def previous(self): """ get the previous item in the list without changing position """ return self.get(self._position.previous()) #def get_next(self): def __next__(self): """ get the next item in the list without changing position """ if self.new: self.new = False return self.get() else: return self.get(next(self._position)) def go(self, position=None): """ go calls will update the local position object """ item = self.get(position) if not position is None: #whew! this is a tricky line... #setting the position object's internal position: self._position.position = position #self.current = item print(self._position.debug()) print("passed position: %s" % position) return item #changing the interface to be the same as it is with Position object: #def go_next(self): def increment(self): """ go to the next item in the list (and change our position accordingly) """ return self.go(next(self._position)) #def go_previous(self): def decrement(self): """ go to the previous item in the list (and change our position accordingly) """ return self.go(self._position.previous()) #maybe rename to update_length to avoid confusion with replace functionality #def update(self): def update_length(self): """ update the position so it knows our new length should be called any time items are added or removed to the list """ self._position.change_length(len(self)) def replace(self, item): """ replace the item in the current position with the item passed in """ self[int(self._position)] = item def clear(self): del self[:] self.update_length() #aka ## class Sources(Items): class Playlist(PositionList): """ Similar to a collection in that it holds a group of Content objects, but not geared toward a single source of content. Also, not specific to any single playlist format (e.g. M3U). Because it holds Content objects, there is much more meta data available than a typical playlist very similar concepts to old mindstream sources module: /c/medley/medley/sources.py A generic Playlist object These may help: http://docs.python.org/2/library/collections.html Previously: A collection of Source objects and a destination path for the logs generated aka Playlist, Medialist consider the best way to handle Segments in a Content object for Playlist use: Separate copies of Content in the Playlist for each Segment? -- be careful not to save that Content object back and overwrite all previous segments Playlist reorders list of Segments associated with Content -- more difficult to split segments of one piece of content in between segments of another piece of content, within a list also: when editing a segment, save changes to main json parent Content """ def __init__(self, items=[], log_path=None, debug=False): PositionList.__init__(self, items) if log_path is None: self.log_path = '/c/logs/transfer' else: self.log_path = log_path #whether or not to update a content's source json file #or just make the changes to the list locally # #generally with a playlist you don't want to update the content source #e.g. subtractively limiting content segments to only favorites... # wouldn't want to remove those segments from the content source # just from the current playlist # #this should not matter if a content object is edited directly self.sync_contents = False self.debug = debug #save and load: #use helpers #save_json(destination, self[:]) #and #Playlist(load_json(source)) #assuming json contains a list of Contents #any other format should be used def set_current(self, item): """ if we have item set the position to be that item (useful when selecting next item externally) """ self.go(self.index(item)) #no need to return anything... already have the item def add_if_new(self, source): if not self.has_path(source.path): self.append(source) return True else: print("Already have: %s" % source.path) return False def has_path(self, path): """ go through all of our items and see if we have the path """ found = False for i in self: #print "m3u path: %s" % i.path #print "chk path: %s" % path if str(i.path) == str(path): found = True break return found def save(self, destination): """ consider using ContentPointer object here.. (is it useful?) """ items = [] for content in self: json_path = os.path.join(content.path, content.json_source) items.append( [json_path, content.segment_id] ) save_json(destination, items) #def load_playlist(fname): def load(self, fname, all_contents={}): """ if you want to keep track of all contents loaded, pass in a dictionary of all_contents... load will update that with any new Content objects, and reuse any existing objects from there originally from medley.player.list_tree.load_playlist(fname) expects the playlist to hold: - the content source path - the segment id then loads the content from the source, and selects the correct segment """ self.clear() items = load_json(fname) #print items contents = [] for item in items: if self.debug: print(item) print("") (json_source, segment_id) = item if json_source in all_contents: if self.debug: print("Matched existing Content object with path: %s" % json_source) content = all_contents[json_source] else: try: if self.debug: print("loading: %s" % json_source) content = Content(json_source) all_contents[json_source] = content except: print("removing item. could not load: %s" % json_source) #print json_source try: segment = content.get_segment(segment_id) except: raise ValueError("Could not locate content... is it still available locally?") #print segment.to_dict() #print "" #print "" contents.append(segment) #return Playlist(contents) self.extend(contents) #update position_list so it knows self.update_length() def sort_path(self): #self.sort(key=lambda source: str(source.path)) self.sort(key=sorter) def log_current(self, add_tags=[]): """ log that a play was just completed this is very similar to osbrowser.node log_action? could move into moments.journal would need the log path, the file being logged (or file parent path) and the entry to use """ entry = self.now_playing() entry.tags.union(add_tags) #log in default log directory j = Journal() now = Timestamp(now=True) log_name = os.path.join(self.log_path , now.filename()) j.from_file(log_name) j.update_entry(entry) j.to_file() # log in action.txt for current media's directory cur_item = self.current() parent_path = os.path.dirname(str(cur_item.path)) action = os.path.join(parent_path, 'action.txt') j2 = Journal() j2.from_file(action) j2.update_entry(entry) j2.to_file() def now_playing(self): """ return an entry for what is playing """ cur_item = self.get() return cur_item.as_moment(new_entry=True) class ListTree(object): """ hold a hierarchy of playlists and collections """ def __init__(self): #a place to keep track of all playlists and collections #associated with the grouping #can be hierarchical self.playlists = [] #the goal is to store these for easy loading later
{ "content_hash": "2c0dc8c62c2ccf03d20e28eca69ac856", "timestamp": "", "source": "github", "line_count": 499, "max_line_length": 94, "avg_line_length": 30.064128256513026, "alnum_prop": 0.5736568457538995, "repo_name": "charlesbrandt/medley", "id": "93abd7e0dae7327195c3bfabd4492e3106ebfbc6", "size": "15002", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "medley/playlist.py", "mode": "33261", "license": "mit", "language": [ { "name": "CSS", "bytes": "19670" }, { "name": "JavaScript", "bytes": "356728" }, { "name": "Python", "bytes": "1017664" }, { "name": "Shell", "bytes": "1569" }, { "name": "Smarty", "bytes": "40284" } ], "symlink_target": "" }
import datetime class TimeBucket: def __init__(self,start_time,stop_time, datetime_format = None): if datetime_format is not None: self.datetime_format = datetime_format else: self.datetime_format = "%Y%m%d%H%M%S" if isinstance(start_time,datetime.datetime): self.start_time = start_time else: self.start_time = datetime.datetime.strptime(start_time,self.datetime_format) if isinstance(stop_time,datetime.datetime): self.stop_time = stop_time else: self.stop_time = datetime.datetime.strptime(stop_time,self.datetime_format) # sanity check assert self.stop_time > self.start_time def size(self): return self.stop_time - self.start_time def is_in_bucket(self,this_datetime): return this_datetime > self.start_time and this_datetime < self.stop_time def __repr__(self): return_str = "'{} - {}'".format(self.start_time.strftime(self.datetime_format),self.stop_time.strftime(self.datetime_format)) return return_str def __gt__(self, obj): if isinstance(obj,TimeBucket): return obj.stop_time < self.start_time else: raise NotImplemented def __lt__(self, obj): if isinstance(obj,TimeBucket): return self.stop_time < obj.start_time else: raise NotImplemented def __eq__(self, obj): if isinstance(obj,TimeBucket): return obj.start_time == self.start_time and obj.stop_time == self.stop_time else: raise NotImplemented def __ne__(self, obj): if isinstance(obj,TimeBucket): return obj.start_time != self.start_time or obj.stop_time != self.stop_time else: raise NotImplemented def __ge__(self, obj): if isinstance(obj,TimeBucket): return self.__gt__(obj) or self.__eq__(obj) else: raise NotImplemented def __le__(self, obj): if isinstance(obj,TimeBucket): return self.__lt__(obj) or self.__eq__(obj) else: raise NotImplemented def __contains__(self, obj): if isinstance(obj,TimeBucket): return obj.start_time >= self.start_time and obj.stop_time <= self.stop_time else: raise NotImplemented def lowerlaps(self,obj): if isinstance(obj,TimeBucket): cond1 = self.stop_time > obj.start_time and self.stop_time <= obj.stop_time cond2 = self.start_time < obj.start_time return cond1 and cond2 else: raise NotImplemented def upperlaps(self,obj): if isinstance(obj,TimeBucket): cond1 = self.start_time >= obj.start_time and self.start_time < obj.stop_time cond2 = self.stop_time > obj.stop_time return cond1 and cond2 else: raise NotImplemented def is_upperlapped_by(self, obj): if isinstance(obj,TimeBucket): cond1 = obj.start_time >= self.start_time and obj.start_time <= self.stop_time cond2 = obj.stop_time > self.stop_time return cond1 and cond2 else: raise NotImplemented def is_lowerlapped_by(self, obj): if isinstance(obj,TimeBucket): cond1 = obj.stop_time >= self.start_time and obj.stop_time <= self.stop_time cond2 = obj.start_time < self.start_time return cond1 and cond2 else: raise NotImplemented def intersects(self, obj): if isinstance(obj,TimeBucket): return self.lowerlaps(obj) or self.upperlaps(obj) or obj.lowerlaps(self) or obj.upperlaps(self) or self in obj or obj in self #cond1 = self.start_time >= obj.start_time and self.start_time <= obj.stop_time #cond2 = self.stop_time >= obj.start_time and self.stop_time <= obj.stop_time #cond3 = obj.start_time >= self.start_time and obj.start_time <= self.stop_time #cond4 = obj.stop_time >= self.start_time and obj.stop_time <= self.stop_time #return cond1 or cond2 or cond3 or cond4 else: raise NotImplemented def get_fraction_overlapped_by(self, obj): if self.is_lowerlapped_by(obj): overlap = obj.stop_time - self.start_time fraction = overlap.total_seconds() / self.size().total_seconds() return float(fraction) elif self.is_upperlapped_by(obj): overlap = self.stop_time - obj.start_time fraction = overlap.total_seconds() / self.size().total_seconds() return float(fraction) elif obj in self: return float(obj.size().total_seconds() / self.size().total_seconds()) else: return float(0)
{ "content_hash": "3a3b8b5fa65104be8aabbae1903cbf48", "timestamp": "", "source": "github", "line_count": 130, "max_line_length": 137, "avg_line_length": 37.715384615384615, "alnum_prop": 0.5873954721599021, "repo_name": "compston/TAP-Workshop", "id": "3615b2abaded980bedcd7450550499645b025bd4", "size": "4903", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "utilities/Gnip-Trend-Detection/gnip_trend_detection/time_bucket.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "346588" }, { "name": "Shell", "bytes": "6926" }, { "name": "TeX", "bytes": "29717" } ], "symlink_target": "" }
""" Pushover platform for notify component. For more details about this platform, please refer to the documentation at https://home-assistant.io/components/notify.pushover/ """ import logging from homeassistant.components.notify import ( ATTR_TITLE, ATTR_TARGET, ATTR_DATA, DOMAIN, BaseNotificationService) from homeassistant.const import CONF_API_KEY from homeassistant.helpers import validate_config _LOGGER = logging.getLogger(__name__) # pylint: disable=unused-variable def get_service(hass, config): """Get the Pushover notification service.""" if not validate_config({DOMAIN: config}, {DOMAIN: ['user_key', CONF_API_KEY]}, _LOGGER): return None from pushover import InitError try: return PushoverNotificationService(config['user_key'], config[CONF_API_KEY]) except InitError: _LOGGER.error( "Wrong API key supplied. " "Get it at https://pushover.net") return None # pylint: disable=too-few-public-methods class PushoverNotificationService(BaseNotificationService): """Implement the notification service for Pushover.""" def __init__(self, user_key, api_token): """Initialize the service.""" from pushover import Client self._user_key = user_key self._api_token = api_token self.pushover = Client( self._user_key, api_token=self._api_token) def send_message(self, message="", **kwargs): """Send a message to a user.""" from pushover import RequestError # Make a copy and use empty dict if necessary data = dict(kwargs.get(ATTR_DATA) or {}) data['title'] = kwargs.get(ATTR_TITLE) target = kwargs.get(ATTR_TARGET) if target is not None: data['device'] = target try: self.pushover.send_message(message, **data) except ValueError as val_err: _LOGGER.error(str(val_err)) except RequestError: _LOGGER.exception("Could not send pushover notification")
{ "content_hash": "60d301dbb60836b3159dfc1214c28bd1", "timestamp": "", "source": "github", "line_count": 67, "max_line_length": 74, "avg_line_length": 31.850746268656717, "alnum_prop": 0.626991565135895, "repo_name": "Julian/home-assistant", "id": "45a331c35857a7125fd1c6be8146e7d68064506f", "size": "2134", "binary": false, "copies": "1", "ref": "refs/heads/py2", "path": "homeassistant/components/notify/pushover.py", "mode": "33188", "license": "mit", "language": [ { "name": "HTML", "bytes": "1354942" }, { "name": "Python", "bytes": "2755966" }, { "name": "Ruby", "bytes": "379" }, { "name": "Shell", "bytes": "6430" } ], "symlink_target": "" }
from io import BytesIO from glob import glob from os.path import join, exists, dirname, abspath from subprocess import call from urllib.request import urlopen from zipfile import ZipFile import os import shutil JASMINE_REPORTER_URL='https://github.com/larrymyers/jasmine-reporters/zipball/0.2.1' BASE = abspath(dirname(__file__)) REPORT_DIR = join(BASE, 'jasmine-results') EXT_LIB = join(BASE, '..', 'ext-lib') JARDIR = join(EXT_LIB, 'jasmine-reporters', 'ext') def run_tests(): workdir = os.getcwd() os.chdir(BASE) download_jasmine_reporters() clear_reports() run() os.chdir(workdir) def run(): cmd = ['java', '-cp', '%s%s%s' % (join(JARDIR, 'js.jar'), os.pathsep, join(JARDIR, 'jline.jar')), 'org.mozilla.javascript.tools.shell.Main', '-opt', '-1', 'envjs.bootstrap.js', join(BASE, 'webcontent', 'SpecRunner.html')] call(cmd) def clear_reports(): if exists(REPORT_DIR): shutil.rmtree(REPORT_DIR) os.mkdir(REPORT_DIR) def download_jasmine_reporters(): if exists(join(EXT_LIB, 'jasmine-reporters')): return if not exists(EXT_LIB): os.mkdir(EXT_LIB) reporter = urlopen(JASMINE_REPORTER_URL) z = ZipFile(BytesIO(reporter.read())) z.extractall(EXT_LIB) extraction_dir = glob(join(EXT_LIB, 'larrymyers-jasmine-reporters*'))[0] print('Extracting Jasmine-Reporters to', extraction_dir) shutil.move(extraction_dir, join(EXT_LIB, 'jasmine-reporters')) if __name__ == '__main__': run_tests()
{ "content_hash": "0469e558577b03e29cb1744e03636d64", "timestamp": "", "source": "github", "line_count": 54, "max_line_length": 101, "avg_line_length": 28.11111111111111, "alnum_prop": 0.6613965744400527, "repo_name": "HelioGuilherme66/robotframework", "id": "a470cd84483a6e98e22973c26f642d54a0da45d4", "size": "1541", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "utest/run_jasmine.py", "mode": "33261", "license": "apache-2.0", "language": [ { "name": "CSS", "bytes": "44706" }, { "name": "HTML", "bytes": "86409" }, { "name": "JavaScript", "bytes": "162950" }, { "name": "Python", "bytes": "2671114" }, { "name": "RobotFramework", "bytes": "1231105" } ], "symlink_target": "" }
from __future__ import division import numpy as np from chainercv.utils.mask.mask_to_bbox import mask_to_bbox from chainercv.visualizations.colormap import voc_colormap from chainercv.visualizations import vis_image def vis_instance_segmentation( img, mask, label=None, score=None, label_names=None, instance_colors=None, alpha=0.7, sort_by_score=True, ax=None): """Visualize instance segmentation. Example: This example visualizes an image and an instance segmentation. >>> from chainercv.datasets import SBDInstanceSegmentationDataset >>> from chainercv.datasets \ ... import sbd_instance_segmentation_label_names >>> from chainercv.visualizations import vis_instance_segmentation >>> import matplotlib.pyplot as plt >>> dataset = SBDInstanceSegmentationDataset() >>> img, mask, label = dataset[0] >>> vis_instance_segmentation( ... img, mask, label, ... label_names=sbd_instance_segmentation_label_names) >>> plt.show() This example visualizes an image, an instance segmentation and bounding boxes. >>> from chainercv.datasets import SBDInstanceSegmentationDataset >>> from chainercv.datasets \ ... import sbd_instance_segmentation_label_names >>> from chainercv.visualizations import vis_bbox >>> from chainercv.visualizations import vis_instance_segmentation >>> from chainercv.visualizations.colormap import voc_colormap >>> from chainercv.utils import mask_to_bbox >>> import matplotlib.pyplot as plt >>> dataset = SBDInstanceSegmentationDataset() >>> img, mask, label = dataset[0] >>> bbox = mask_to_bbox(mask) >>> colors = voc_colormap(list(range(1, len(mask) + 1))) >>> ax = vis_bbox(img, bbox, label, ... label_names=sbd_instance_segmentation_label_names, ... instance_colors=colors, alpha=0.7, linewidth=0.5) >>> vis_instance_segmentation( ... None, mask, instance_colors=colors, alpha=0.7, ax=ax) >>> plt.show() Args: img (~numpy.ndarray): See the table below. If this is :obj:`None`, no image is displayed. mask (~numpy.ndarray): See the table below. label (~numpy.ndarray): See the table below. This is optional. score (~numpy.ndarray): See the table below. This is optional. label_names (iterable of strings): Name of labels ordered according to label ids. instance_colors (iterable of tuple): List of colors. Each color is RGB format and the range of its values is :math:`[0, 255]`. The :obj:`i`-th element is the color used to visualize the :obj:`i`-th instance. If :obj:`instance_colors` is :obj:`None`, the default color map is used. alpha (float): The value which determines transparency of the figure. The range of this value is :math:`[0, 1]`. If this value is :obj:`0`, the figure will be completely transparent. The default value is :obj:`0.7`. This option is useful for overlaying the label on the source image. sort_by_score (bool): When :obj:`True`, instances with high scores are always visualized in front of instances with low scores. ax (matplotlib.axes.Axis): The visualization is displayed on this axis. If this is :obj:`None` (default), a new axis is created. .. csv-table:: :header: name, shape, dtype, format :obj:`img`, ":math:`(3, H, W)`", :obj:`float32`, \ "RGB, :math:`[0, 255]`" :obj:`mask`, ":math:`(R, H, W)`", :obj:`bool`, -- :obj:`label`, ":math:`(R,)`", :obj:`int32`, \ ":math:`[0, \#fg\_class - 1]`" :obj:`score`, ":math:`(R,)`", :obj:`float32`, -- Returns: matploblib.axes.Axes: Returns :obj:`ax`. :obj:`ax` is an :class:`matploblib.axes.Axes` with the plot. """ # Returns newly instantiated matplotlib.axes.Axes object if ax is None ax = vis_image(img, ax=ax) if score is not None and len(mask) != len(score): raise ValueError('The length of score must be same as that of mask') if label is not None and len(mask) != len(label): raise ValueError('The length of label must be same as that of mask') if sort_by_score and score is not None: order = np.argsort(score) mask = mask[order] score = score[order] if label is not None: label = label[order] if instance_colors is not None: instance_colors = np.array(instance_colors)[order] bbox = mask_to_bbox(mask) n_inst = len(bbox) if instance_colors is None: instance_colors = voc_colormap(list(range(1, n_inst + 1))) instance_colors = np.array(instance_colors) _, H, W = mask.shape canvas_img = np.zeros((H, W, 4), dtype=np.uint8) for i, (bb, msk) in enumerate(zip(bbox, mask)): # The length of `colors` can be smaller than the number of instances # if a non-default `colors` is used. color = instance_colors[i % len(instance_colors)] rgba = np.append(color, alpha * 255) bb = np.round(bb).astype(np.int32) y_min, x_min, y_max, x_max = bb if y_max > y_min and x_max > x_min: canvas_img[msk] = rgba caption = [] if label is not None and label_names is not None: lb = label[i] if not (0 <= lb < len(label_names)): raise ValueError('No corresponding name is given') caption.append(label_names[lb]) if score is not None: sc = score[i] caption.append('{:.2f}'.format(sc)) if len(caption) > 0: ax.text((x_max + x_min) / 2, y_min, ': '.join(caption), style='italic', bbox={'facecolor': color / 255, 'alpha': alpha}, fontsize=8, color='white') ax.imshow(canvas_img) return ax
{ "content_hash": "35a94d39bd2d80d5a6e4ae56274e10c2", "timestamp": "", "source": "github", "line_count": 146, "max_line_length": 77, "avg_line_length": 41.92465753424658, "alnum_prop": 0.596144420846267, "repo_name": "pfnet/chainercv", "id": "c4ed265ed06cf2ff112105288e9a6a15d392b78e", "size": "6121", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "chainercv/visualizations/vis_instance_segmentation.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "317937" } ], "symlink_target": "" }
import codecs import ConfigParser import os import sys import RezzMe.config.builder onMacOSX = sys.platform == 'darwin' onLinux = sys.platform == 'linux2' onWindows = sys.platform == 'win32' # check prereqs if not os.path.exists('rezzme.cfg'): print ''' oops...you need to create rezzme.cfg first! copy rezzme.cfg.example to rezzme.cfg and adapt it to your needs, and run me again. ''' sys.exit(1) if len(sys.argv) != 3: print 'usage: expand.py in-file out-file' sys.exit(2) # read in configuration cfg = RezzMe.config.builder.buildCfg('rezzme') infile = codecs.open(sys.argv[1], 'r', 'utf8') inContent = infile.read() infile.close() outfile = codecs.open(sys.argv[2], 'w', 'utf8') outfile.write(inContent % cfg['package']) outfile.close()
{ "content_hash": "c263d43c4a89784d66349c67913dc344", "timestamp": "", "source": "github", "line_count": 36, "max_line_length": 65, "avg_line_length": 21.25, "alnum_prop": 0.6980392156862745, "repo_name": "dirkhusemann/rezzme", "id": "7a04bda4e1dbb16b1e38e3d0801160a596ad9bb2", "size": "810", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "expand.py", "mode": "33261", "license": "bsd-3-clause", "language": [ { "name": "Perl", "bytes": "2714" }, { "name": "Python", "bytes": "220677" } ], "symlink_target": "" }
from libfcg.fcg import FCG from oslo.config import cfg from virtman.utils import singleton from virtman.utils import rootwrap fcg_opts = [ cfg.StrOpt('fcg_name', default='fcg', help='The name of the Flashcache Group'), cfg.ListOpt('fcg_ssds', default=['/dev/loop0'], help='The devices of SSDs to use to create the FCG, ' 'the parameter of \'ssds\' can fill in one ' 'or more, splited by \',\''), cfg.StrOpt('fcg_blocksize', default='4k', help='The block size of the FCG'), cfg.StrOpt('fcg_pattern', default='back', help='The cache mode for the FCG'), ] CONF = cfg.CONF CONF.register_opts(fcg_opts) class FcgExecutor(FCG): def __init__(self): FCG.__init__(self, CONF.fcg_name, root_helper=rootwrap.root_helper()) fcg_executor = FcgExecutor() def is_valid(): return fcg_executor.is_valid() def create_group(): return fcg_executor.create_group(CONF.fcg_ssds, CONF.fcg_blocksize, CONF.fcg_pattern) def add_disk(disk): return fcg_executor.add_disk(disk) def rm_disk(disk): return fcg_executor.rm_disk(disk)
{ "content_hash": "785ff86aa272b81201e94261d67aeb8e", "timestamp": "", "source": "github", "line_count": 50, "max_line_length": 77, "avg_line_length": 25.24, "alnum_prop": 0.5784469096671949, "repo_name": "vmthunder/virtman", "id": "efafea50f5a2545eeecb882af8d798d796765bd3", "size": "1262", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "virtman/drivers/fcg.py", "mode": "33261", "license": "apache-2.0", "language": [ { "name": "Python", "bytes": "266703" } ], "symlink_target": "" }
""" SLA (Service-level agreement) is set of details for determining compliance with contracted values such as maximum error rate or minimum response time. """ from rally.common.i18n import _ from rally.common import streaming_algorithms from rally import consts from rally.task import sla @sla.configure(name="outliers") class Outliers(sla.SLA): """Limit the number of outliers (iterations that take too much time). The outliers are detected automatically using the computation of the mean and standard deviation (std) of the data. """ CONFIG_SCHEMA = { "type": "object", "$schema": consts.JSON_SCHEMA, "properties": { "max": {"type": "integer", "minimum": 0}, "min_iterations": {"type": "integer", "minimum": 3}, "sigmas": {"type": "number", "minimum": 0.0, "exclusiveMinimum": True} } } def __init__(self, criterion_value): super(Outliers, self).__init__(criterion_value) self.max_outliers = self.criterion_value.get("max", 0) # NOTE(msdubov): Having 3 as default is reasonable (need enough data). self.min_iterations = self.criterion_value.get("min_iterations", 3) self.sigmas = self.criterion_value.get("sigmas", 3.0) self.iterations = 0 self.outliers = 0 self.threshold = None self.mean_comp = streaming_algorithms.MeanComputation() self.std_comp = streaming_algorithms.StdDevComputation() def add_iteration(self, iteration): # NOTE(ikhudoshyn): This method can not be implemented properly. # After adding a new iteration, both mean and standard deviation # may change. Hence threshold will change as well. In this case we # should again compare durations of all accounted iterations # to the threshold. Unfortunately we can not do it since # we do not store durations. # Implementation provided here only gives rough approximation # of outliers number. if not iteration.get("error"): duration = iteration["duration"] self.iterations += 1 # NOTE(msdubov): First check if the current iteration is an outlier if ((self.iterations >= self.min_iterations and self.threshold and duration > self.threshold)): self.outliers += 1 # NOTE(msdubov): Then update the threshold value self.mean_comp.add(duration) self.std_comp.add(duration) if self.iterations >= 2: mean = self.mean_comp.result() std = self.std_comp.result() self.threshold = mean + self.sigmas * std self.success = self.outliers <= self.max_outliers return self.success def merge(self, other): # NOTE(ikhudoshyn): This method can not be implemented properly. # After merge, both mean and standard deviation may change. # Hence threshold will change as well. In this case we # should again compare durations of all accounted iterations # to the threshold. Unfortunately we can not do it since # we do not store durations. # Implementation provided here only gives rough approximation # of outliers number. self.iterations += other.iterations self.outliers += other.outliers self.mean_comp.merge(other.mean_comp) self.std_comp.merge(other.std_comp) if self.iterations >= 2: mean = self.mean_comp.result() std = self.std_comp.result() self.threshold = mean + self.sigmas * std self.success = self.outliers <= self.max_outliers return self.success def details(self): return (_("Maximum number of outliers %i <= %i - %s") % (self.outliers, self.max_outliers, self.status()))
{ "content_hash": "a3d3afc47c8bb0ecc75a65b1cfbbc8f1", "timestamp": "", "source": "github", "line_count": 95, "max_line_length": 79, "avg_line_length": 41.04210526315789, "alnum_prop": 0.6245191074634522, "repo_name": "vganapath/rally", "id": "40ae37dfa93fc13ced46a070b526742be05a5a52", "size": "4530", "binary": false, "copies": "6", "ref": "refs/heads/master", "path": "rally/plugins/common/sla/outliers.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "HTML", "bytes": "52008" }, { "name": "JavaScript", "bytes": "8550" }, { "name": "Mako", "bytes": "18645" }, { "name": "Python", "bytes": "3621510" }, { "name": "Shell", "bytes": "43808" } ], "symlink_target": "" }
extensions_list = {"application/andrew-inset":["ez"], "application/applixware":["aw"], "application/atom+xml":["atom"], "application/atomcat+xml":["atomcat"], "application/atomsvc+xml":["atomsvc"], "application/ccxml+xml":["ccxml"], "application/cdmi-capability":["cdmia"], "application/cdmi-container":["cdmic"], "application/cdmi-domain":["cdmid"], "application/cdmi-object":["cdmio"], "application/cdmi-queue":["cdmiq"], "application/cu-seeme":["cu"], "application/davmount+xml":["davmount"], "application/docbook+xml":["dbk"], "application/dssc+der":["dssc"], "application/dssc+xml":["xdssc"], "application/ecmascript":["ecma"], "application/emma+xml":["emma"], "application/epub+zip":["epub"], "application/exi":["exi"], "application/font-tdpfr":["pfr"], "application/font-woff":["woff"], "application/gml+xml":["gml"], "application/gpx+xml":["gpx"], "application/gxf":["gxf"], "application/hyperstudio":["stk"], "application/inkml+xml":["ink","inkml"], "application/ipfix":["ipfix"], "application/java-archive":["jar"], "application/java-serialized-object":["ser"], "application/java-vm":["class"], "application/javascript":["js"], "application/json":["json"], "application/jsonml+json":["jsonml"], "application/lost+xml":["lostxml"], "application/mac-binhex40":["hqx"], "application/mac-compactpro":["cpt"], "application/mads+xml":["mads"], "application/marc":["mrc"], "application/marcxml+xml":["mrcx"], "application/mathematica":["ma","nb","mb"], "application/mathml+xml":["mathml"], "application/mbox":["mbox"], "application/mediaservercontrol+xml":["mscml"], "application/metalink+xml":["metalink"], "application/metalink4+xml":["meta4"], "application/mets+xml":["mets"], "application/mods+xml":["mods"], "application/mp21":["m21","mp21"], "application/mp4":["mp4s"], "application/msword":["doc","dot"], "application/mxf":["mxf"], "application/octet-stream":["bin","dms","lrf","mar","so","dist","distz","pkg","bpk","dump","elc","deploy"], "application/oda":["oda"], "application/oebps-package+xml":["opf"], "application/ogg":["ogx"], "application/omdoc+xml":["omdoc"], "application/onenote":["onetoc","onetoc2","onetmp","onepkg"], "application/oxps":["oxps"], "application/patch-ops-error+xml":["xer"], "application/pdf":["pdf"], "application/pgp-encrypted":["pgp"], "application/pgp-signature":["asc","sig"], "application/pics-rules":["prf"], "application/pkcs10":["p10"], "application/pkcs7-mime":["p7m","p7c"], "application/pkcs7-signature":["p7s"], "application/pkcs8":["p8"], "application/pkix-attr-cert":["ac"], "application/pkix-cert":["cer"], "application/pkix-crl":["crl"], "application/pkix-pkipath":["pkipath"], "application/pkixcmp":["pki"], "application/pls+xml":["pls"], "application/postscript":["ai","eps","ps"], "application/prs.cww":["cww"], "application/pskc+xml":["pskcxml"], "application/rdf+xml":["rdf"], "application/reginfo+xml":["rif"], "application/relax-ng-compact-syntax":["rnc"], "application/resource-lists+xml":["rl"], "application/resource-lists-diff+xml":["rld"], "application/rls-services+xml":["rs"], "application/rpki-ghostbusters":["gbr"], "application/rpki-manifest":["mft"], "application/rpki-roa":["roa"], "application/rsd+xml":["rsd"], "application/rss+xml":["rss"], "application/rtf":["rtf"], "application/sbml+xml":["sbml"], "application/scvp-cv-request":["scq"], "application/scvp-cv-response":["scs"], "application/scvp-vp-request":["spq"], "application/scvp-vp-response":["spp"], "application/sdp":["sdp"], "application/set-payment-initiation":["setpay"], "application/set-registration-initiation":["setreg"], "application/shf+xml":["shf"], "application/smil+xml":["smi","smil"], "application/sparql-query":["rq"], "application/sparql-results+xml":["srx"], "application/srgs":["gram"], "application/srgs+xml":["grxml"], "application/sru+xml":["sru"], "application/ssdl+xml":["ssdl"], "application/ssml+xml":["ssml"], "application/tei+xml":["tei","teicorpus"], "application/thraud+xml":["tfi"], "application/timestamped-data":["tsd"], "application/vnd.3gpp.pic-bw-large":["plb"], "application/vnd.3gpp.pic-bw-small":["psb"], "application/vnd.3gpp.pic-bw-var":["pvb"], "application/vnd.3gpp2.tcap":["tcap"], "application/vnd.3m.post-it-notes":["pwn"], "application/vnd.accpac.simply.aso":["aso"], "application/vnd.accpac.simply.imp":["imp"], "application/vnd.acucobol":["acu"], "application/vnd.acucorp":["atc","acutc"], "application/vnd.adobe.air-application-installer-package+zip":["air"], "application/vnd.adobe.formscentral.fcdt":["fcdt"], "application/vnd.adobe.fxp":["fxp","fxpl"], "application/vnd.adobe.xdp+xml":["xdp"], "application/vnd.adobe.xfdf":["xfdf"], "application/vnd.ahead.space":["ahead"], "application/vnd.airzip.filesecure.azf":["azf"], "application/vnd.airzip.filesecure.azs":["azs"], "application/vnd.amazon.ebook":["azw"], "application/vnd.americandynamics.acc":["acc"], "application/vnd.amiga.ami":["ami"], "application/vnd.android.package-archive":["apk"], "application/vnd.anser-web-certificate-issue-initiation":["cii"], "application/vnd.anser-web-funds-transfer-initiation":["fti"], "application/vnd.antix.game-component":["atx"], "application/vnd.apple.installer+xml":["mpkg"], "application/vnd.apple.mpegurl":["m3u8"], "application/vnd.aristanetworks.swi":["swi"], "application/vnd.astraea-software.iota":["iota"], "application/vnd.audiograph":["aep"], "application/vnd.blueice.multipass":["mpm"], "application/vnd.bmi":["bmi"], "application/vnd.businessobjects":["rep"], "application/vnd.chemdraw+xml":["cdxml"], "application/vnd.chipnuts.karaoke-mmd":["mmd"], "application/vnd.cinderella":["cdy"], "application/vnd.claymore":["cla"], "application/vnd.cloanto.rp9":["rp9"], "application/vnd.clonk.c4group":["c4g","c4d","c4f","c4p","c4u"], "application/vnd.cluetrust.cartomobile-config":["c11amc"], "application/vnd.cluetrust.cartomobile-config-pkg":["c11amz"], "application/vnd.commonspace":["csp"], "application/vnd.contact.cmsg":["cdbcmsg"], "application/vnd.cosmocaller":["cmc"], "application/vnd.crick.clicker":["clkx"], "application/vnd.crick.clicker.keyboard":["clkk"], "application/vnd.crick.clicker.palette":["clkp"], "application/vnd.crick.clicker.template":["clkt"], "application/vnd.crick.clicker.wordbank":["clkw"], "application/vnd.criticaltools.wbs+xml":["wbs"], "application/vnd.ctc-posml":["pml"], "application/vnd.cups-ppd":["ppd"], "application/vnd.curl.car":["car"], "application/vnd.curl.pcurl":["pcurl"], "application/vnd.dart":["dart"], "application/vnd.data-vision.rdz":["rdz"], "application/vnd.dece.data":["uvf","uvvf","uvd","uvvd"], "application/vnd.dece.ttml+xml":["uvt","uvvt"], "application/vnd.dece.unspecified":["uvx","uvvx"], "application/vnd.dece.zip":["uvz","uvvz"], "application/vnd.denovo.fcselayout-link":["fe_launch"], "application/vnd.dna":["dna"], "application/vnd.dolby.mlp":["mlp"], "application/vnd.dpgraph":["dpg"], "application/vnd.dreamfactory":["dfac"], "application/vnd.ds-keypoint":["kpxx"], "application/vnd.dvb.ait":["ait"], "application/vnd.dvb.service":["svc"], "application/vnd.dynageo":["geo"], "application/vnd.ecowin.chart":["mag"], "application/vnd.enliven":["nml"], "application/vnd.epson.esf":["esf"], "application/vnd.epson.msf":["msf"], "application/vnd.epson.quickanime":["qam"], "application/vnd.epson.salt":["slt"], "application/vnd.epson.ssf":["ssf"], "application/vnd.eszigno3+xml":["es3","et3"], "application/vnd.ezpix-album":["ez2"], "application/vnd.ezpix-package":["ez3"], "application/vnd.fdf":["fdf"], "application/vnd.fdsn.mseed":["mseed"], "application/vnd.fdsn.seed":["seed","dataless"], "application/vnd.flographit":["gph"], "application/vnd.fluxtime.clip":["ftc"], "application/vnd.framemaker":["fm","frame","maker","book"], "application/vnd.frogans.fnc":["fnc"], "application/vnd.frogans.ltf":["ltf"], "application/vnd.fsc.weblaunch":["fsc"], "application/vnd.fujitsu.oasys":["oas"], "application/vnd.fujitsu.oasys2":["oa2"], "application/vnd.fujitsu.oasys3":["oa3"], "application/vnd.fujitsu.oasysgp":["fg5"], "application/vnd.fujitsu.oasysprs":["bh2"], "application/vnd.fujixerox.ddd":["ddd"], "application/vnd.fujixerox.docuworks":["xdw"], "application/vnd.fujixerox.docuworks.binder":["xbd"], "application/vnd.fuzzysheet":["fzs"], "application/vnd.genomatix.tuxedo":["txd"], "application/vnd.geogebra.file":["ggb"], "application/vnd.geogebra.tool":["ggt"], "application/vnd.geometry-explorer":["gex","gre"], "application/vnd.geonext":["gxt"], "application/vnd.geoplan":["g2w"], "application/vnd.geospace":["g3w"], "application/vnd.gmx":["gmx"], "application/vnd.google-earth.kml+xml":["kml"], "application/vnd.google-earth.kmz":["kmz"], "application/vnd.grafeq":["gqf","gqs"], "application/vnd.groove-account":["gac"], "application/vnd.groove-help":["ghf"], "application/vnd.groove-identity-message":["gim"], "application/vnd.groove-injector":["grv"], "application/vnd.groove-tool-message":["gtm"], "application/vnd.groove-tool-template":["tpl"], "application/vnd.groove-vcard":["vcg"], "application/vnd.hal+xml":["hal"], "application/vnd.handheld-entertainment+xml":["zmm"], "application/vnd.hbci":["hbci"], "application/vnd.hhe.lesson-player":["les"], "application/vnd.hp-hpgl":["hpgl"], "application/vnd.hp-hpid":["hpid"], "application/vnd.hp-hps":["hps"], "application/vnd.hp-jlyt":["jlt"], "application/vnd.hp-pcl":["pcl"], "application/vnd.hp-pclxl":["pclxl"], "application/vnd.hydrostatix.sof-data":["sfd-hdstx"], "application/vnd.ibm.minipay":["mpy"], "application/vnd.ibm.modcap":["afp","listafp","list3820"], "application/vnd.ibm.rights-management":["irm"], "application/vnd.ibm.secure-container":["sc"], "application/vnd.iccprofile":["icc","icm"], "application/vnd.igloader":["igl"], "application/vnd.immervision-ivp":["ivp"], "application/vnd.immervision-ivu":["ivu"], "application/vnd.insors.igm":["igm"], "application/vnd.intercon.formnet":["xpw","xpx"], "application/vnd.intergeo":["i2g"], "application/vnd.intu.qbo":["qbo"], "application/vnd.intu.qfx":["qfx"], "application/vnd.ipunplugged.rcprofile":["rcprofile"], "application/vnd.irepository.package+xml":["irp"], "application/vnd.is-xpr":["xpr"], "application/vnd.isac.fcs":["fcs"], "application/vnd.jam":["jam"], "application/vnd.jcp.javame.midlet-rms":["rms"], "application/vnd.jisp":["jisp"], "application/vnd.joost.joda-archive":["joda"], "application/vnd.kahootz":["ktz","ktr"], "application/vnd.kde.karbon":["karbon"], "application/vnd.kde.kchart":["chrt"], "application/vnd.kde.kformula":["kfo"], "application/vnd.kde.kivio":["flw"], "application/vnd.kde.kontour":["kon"], "application/vnd.kde.kpresenter":["kpr","kpt"], "application/vnd.kde.kspread":["ksp"], "application/vnd.kde.kword":["kwd","kwt"], "application/vnd.kenameaapp":["htke"], "application/vnd.kidspiration":["kia"], "application/vnd.kinar":["kne","knp"], "application/vnd.koan":["skp","skd","skt","skm"], "application/vnd.kodak-descriptor":["sse"], "application/vnd.las.las+xml":["lasxml"], "application/vnd.llamagraphics.life-balance.desktop":["lbd"], "application/vnd.llamagraphics.life-balance.exchange+xml":["lbe"], "application/vnd.lotus-1-2-3":["123"], "application/vnd.lotus-approach":["apr"], "application/vnd.lotus-freelance":["pre"], "application/vnd.lotus-notes":["nsf"], "application/vnd.lotus-organizer":["org"], "application/vnd.lotus-screencam":["scm"], "application/vnd.lotus-wordpro":["lwp"], "application/vnd.macports.portpkg":["portpkg"], "application/vnd.mcd":["mcd"], "application/vnd.medcalcdata":["mc1"], "application/vnd.mediastation.cdkey":["cdkey"], "application/vnd.mfer":["mwf"], "application/vnd.mfmp":["mfm"], "application/vnd.micrografx.flo":["flo"], "application/vnd.micrografx.igx":["igx"], "application/vnd.mif":["mif"], "application/vnd.mobius.daf":["daf"], "application/vnd.mobius.dis":["dis"], "application/vnd.mobius.mbk":["mbk"], "application/vnd.mobius.mqy":["mqy"], "application/vnd.mobius.msl":["msl"], "application/vnd.mobius.plc":["plc"], "application/vnd.mobius.txf":["txf"], "application/vnd.mophun.application":["mpn"], "application/vnd.mophun.certificate":["mpc"], "application/vnd.mozilla.xul+xml":["xul"], "application/vnd.ms-artgalry":["cil"], "application/vnd.ms-cab-compressed":["cab"], "application/vnd.ms-excel":["xls","xlm","xla","xlc","xlt","xlw"], "application/vnd.ms-excel.addin.macroenabled.12":["xlam"], "application/vnd.ms-excel.sheet.binary.macroenabled.12":["xlsb"], "application/vnd.ms-excel.sheet.macroenabled.12":["xlsm"], "application/vnd.ms-excel.template.macroenabled.12":["xltm"], "application/vnd.ms-fontobject":["eot"], "application/vnd.ms-htmlhelp":["chm"], "application/vnd.ms-ims":["ims"], "application/vnd.ms-lrm":["lrm"], "application/vnd.ms-officetheme":["thmx"], "application/vnd.ms-pki.seccat":["cat"], "application/vnd.ms-pki.stl":["stl"], "application/vnd.ms-powerpoint":["ppt","pps","pot"], "application/vnd.ms-powerpoint.addin.macroenabled.12":["ppam"], "application/vnd.ms-powerpoint.presentation.macroenabled.12":["pptm"], "application/vnd.ms-powerpoint.slide.macroenabled.12":["sldm"], "application/vnd.ms-powerpoint.slideshow.macroenabled.12":["ppsm"], "application/vnd.ms-powerpoint.template.macroenabled.12":["potm"], "application/vnd.ms-project":["mpp","mpt"], "application/vnd.ms-word.document.macroenabled.12":["docm"], "application/vnd.ms-word.template.macroenabled.12":["dotm"], "application/vnd.ms-works":["wps","wks","wcm","wdb"], "application/vnd.ms-wpl":["wpl"], "application/vnd.ms-xpsdocument":["xps"], "application/vnd.mseq":["mseq"], "application/vnd.musician":["mus"], "application/vnd.muvee.style":["msty"], "application/vnd.mynfc":["taglet"], "application/vnd.neurolanguage.nlu":["nlu"], "application/vnd.nitf":["ntf","nitf"], "application/vnd.noblenet-directory":["nnd"], "application/vnd.noblenet-sealer":["nns"], "application/vnd.noblenet-web":["nnw"], "application/vnd.nokia.n-gage.data":["ngdat"], "application/vnd.nokia.n-gage.symbian.install":["n-gage"], "application/vnd.nokia.radio-preset":["rpst"], "application/vnd.nokia.radio-presets":["rpss"], "application/vnd.novadigm.edm":["edm"], "application/vnd.novadigm.edx":["edx"], "application/vnd.novadigm.ext":["ext"], "application/vnd.oasis.opendocument.chart":["odc"], "application/vnd.oasis.opendocument.chart-template":["otc"], "application/vnd.oasis.opendocument.database":["odb"], "application/vnd.oasis.opendocument.formula":["odf"], "application/vnd.oasis.opendocument.formula-template":["odft"], "application/vnd.oasis.opendocument.graphics":["odg"], "application/vnd.oasis.opendocument.graphics-template":["otg"], "application/vnd.oasis.opendocument.image":["odi"], "application/vnd.oasis.opendocument.image-template":["oti"], "application/vnd.oasis.opendocument.presentation":["odp"], "application/vnd.oasis.opendocument.presentation-template":["otp"], "application/vnd.oasis.opendocument.spreadsheet":["ods"], "application/vnd.oasis.opendocument.spreadsheet-template":["ots"], "application/vnd.oasis.opendocument.text":["odt"], "application/vnd.oasis.opendocument.text-master":["odm"], "application/vnd.oasis.opendocument.text-template":["ott"], "application/vnd.oasis.opendocument.text-web":["oth"], "application/vnd.olpc-sugar":["xo"], "application/vnd.oma.dd2+xml":["dd2"], "application/vnd.openofficeorg.extension":["oxt"], "application/vnd.openxmlformats-officedocument.presentationml.presentation":["pptx"], "application/vnd.openxmlformats-officedocument.presentationml.slide":["sldx"], "application/vnd.openxmlformats-officedocument.presentationml.slideshow":["ppsx"], "application/vnd.openxmlformats-officedocument.presentationml.template":["potx"], "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet":["xlsx"], "application/vnd.openxmlformats-officedocument.spreadsheetml.template":["xltx"], "application/vnd.openxmlformats-officedocument.wordprocessingml.document":["docx"], "application/vnd.openxmlformats-officedocument.wordprocessingml.template":["dotx"], "application/vnd.osgeo.mapguide.package":["mgp"], "application/vnd.osgi.dp":["dp"], "application/vnd.osgi.subsystem":["esa"], "application/vnd.palm":["pdb","pqa","oprc"], "application/vnd.pawaafile":["paw"], "application/vnd.pg.format":["str"], "application/vnd.pg.osasli":["ei6"], "application/vnd.picsel":["efif"], "application/vnd.pmi.widget":["wg"], "application/vnd.pocketlearn":["plf"], "application/vnd.powerbuilder6":["pbd"], "application/vnd.previewsystems.box":["box"], "application/vnd.proteus.magazine":["mgz"], "application/vnd.publishare-delta-tree":["qps"], "application/vnd.pvi.ptid1":["ptid"], "application/vnd.quark.quarkxpress":["qxd","qxt","qwd","qwt","qxl","qxb"], "application/vnd.realvnc.bed":["bed"], "application/vnd.recordare.musicxml":["mxl"], "application/vnd.recordare.musicxml+xml":["musicxml"], "application/vnd.rig.cryptonote":["cryptonote"], "application/vnd.rim.cod":["cod"], "application/vnd.rn-realmedia":["rm"], "application/vnd.rn-realmedia-vbr":["rmvb"], "application/vnd.route66.link66+xml":["link66"], "application/vnd.sailingtracker.track":["st"], "application/vnd.seemail":["see"], "application/vnd.sema":["sema"], "application/vnd.semd":["semd"], "application/vnd.semf":["semf"], "application/vnd.shana.informed.formdata":["ifm"], "application/vnd.shana.informed.formtemplate":["itp"], "application/vnd.shana.informed.interchange":["iif"], "application/vnd.shana.informed.package":["ipk"], "application/vnd.simtech-mindmapper":["twd","twds"], "application/vnd.smaf":["mmf"], "application/vnd.smart.teacher":["teacher"], "application/vnd.solent.sdkm+xml":["sdkm","sdkd"], "application/vnd.spotfire.dxp":["dxp"], "application/vnd.spotfire.sfs":["sfs"], "application/vnd.stardivision.calc":["sdc"], "application/vnd.stardivision.draw":["sda"], "application/vnd.stardivision.impress":["sdd"], "application/vnd.stardivision.math":["smf"], "application/vnd.stardivision.writer":["sdw","vor"], "application/vnd.stardivision.writer-global":["sgl"], "application/vnd.stepmania.package":["smzip"], "application/vnd.stepmania.stepchart":["sm"], "application/vnd.sun.xml.calc":["sxc"], "application/vnd.sun.xml.calc.template":["stc"], "application/vnd.sun.xml.draw":["sxd"], "application/vnd.sun.xml.draw.template":["std"], "application/vnd.sun.xml.impress":["sxi"], "application/vnd.sun.xml.impress.template":["sti"], "application/vnd.sun.xml.math":["sxm"], "application/vnd.sun.xml.writer":["sxw"], "application/vnd.sun.xml.writer.global":["sxg"], "application/vnd.sun.xml.writer.template":["stw"], "application/vnd.sus-calendar":["sus","susp"], "application/vnd.svd":["svd"], "application/vnd.symbian.install":["sis","sisx"], "application/vnd.syncml+xml":["xsm"], "application/vnd.syncml.dm+wbxml":["bdm"], "application/vnd.syncml.dm+xml":["xdm"], "application/vnd.tao.intent-module-archive":["tao"], "application/vnd.tcpdump.pcap":["pcap","cap","dmp"], "application/vnd.tmobile-livetv":["tmo"], "application/vnd.trid.tpt":["tpt"], "application/vnd.triscape.mxs":["mxs"], "application/vnd.trueapp":["tra"], "application/vnd.ufdl":["ufd","ufdl"], "application/vnd.uiq.theme":["utz"], "application/vnd.umajin":["umj"], "application/vnd.unity":["unityweb"], "application/vnd.uoml+xml":["uoml"], "application/vnd.vcx":["vcx"], "application/vnd.visio":["vsd","vst","vss","vsw"], "application/vnd.visionary":["vis"], "application/vnd.vsf":["vsf"], "application/vnd.wap.wbxml":["wbxml"], "application/vnd.wap.wmlc":["wmlc"], "application/vnd.wap.wmlscriptc":["wmlsc"], "application/vnd.webturbo":["wtb"], "application/vnd.wolfram.player":["nbp"], "application/vnd.wordperfect":["wpd"], "application/vnd.wqd":["wqd"], "application/vnd.wt.stf":["stf"], "application/vnd.xara":["xar"], "application/vnd.xfdl":["xfdl"], "application/vnd.yamaha.hv-dic":["hvd"], "application/vnd.yamaha.hv-script":["hvs"], "application/vnd.yamaha.hv-voice":["hvp"], "application/vnd.yamaha.openscoreformat":["osf"], "application/vnd.yamaha.openscoreformat.osfpvg+xml":["osfpvg"], "application/vnd.yamaha.smaf-audio":["saf"], "application/vnd.yamaha.smaf-phrase":["spf"], "application/vnd.yellowriver-custom-menu":["cmp"], "application/vnd.zul":["zir","zirz"], "application/vnd.zzazz.deck+xml":["zaz"], "application/voicexml+xml":["vxml"], "application/widget":["wgt"], "application/winhlp":["hlp"], "application/wsdl+xml":["wsdl"], "application/wspolicy+xml":["wspolicy"], "application/x-7z-compressed":["7z"], "application/x-abiword":["abw"], "application/x-ace-compressed":["ace"], "application/x-apple-diskimage":["dmg"], "application/x-authorware-bin":["aab","x32","u32","vox"], "application/x-authorware-map":["aam"], "application/x-authorware-seg":["aas"], "application/x-bcpio":["bcpio"], "application/x-bittorrent":["torrent"], "application/x-blorb":["blb","blorb"], "application/x-bzip":["bz"], "application/x-bzip2":["bz2","boz"], "application/x-cbr":["cbr","cba","cbt","cbz","cb7"], "application/x-cdlink":["vcd"], "application/x-cfs-compressed":["cfs"], "application/x-chat":["chat"], "application/x-chess-pgn":["pgn"], "application/x-conference":["nsc"], "application/x-cpio":["cpio"], "application/x-csh":["csh"], "application/x-debian-package":["deb","udeb"], "application/x-dgc-compressed":["dgc"], "application/x-director":["dir","dcr","dxr","cst","cct","cxt","w3d","fgd","swa"], "application/x-doom":["wad"], "application/x-dtbncx+xml":["ncx"], "application/x-dtbook+xml":["dtb"], "application/x-dtbresource+xml":["res"], "application/x-dvi":["dvi"], "application/x-envoy":["evy"], "application/x-eva":["eva"], "application/x-font-bdf":["bdf"], "application/x-font-ghostscript":["gsf"], "application/x-font-linux-psf":["psf"], "application/x-font-otf":["otf"], "application/x-font-pcf":["pcf"], "application/x-font-snf":["snf"], "application/x-font-ttf":["ttf","ttc"], "application/x-font-type1":["pfa","pfb","pfm","afm"], "application/x-freearc":["arc"], "application/x-futuresplash":["spl"], "application/x-gca-compressed":["gca"], "application/x-glulx":["ulx"], "application/x-gnumeric":["gnumeric"], "application/x-gramps-xml":["gramps"], "application/x-gtar":["gtar"], "application/x-hdf":["hdf"], "application/x-install-instructions":["install"], "application/x-iso9660-image":["iso"], "application/x-java-jnlp-file":["jnlp"], "application/x-latex":["latex"], "application/x-lzh-compressed":["lzh","lha"], "application/x-mie":["mie"], "application/x-mobipocket-ebook":["prc","mobi"], "application/x-ms-application":["application"], "application/x-ms-shortcut":["lnk"], "application/x-ms-wmd":["wmd"], "application/x-ms-wmz":["wmz"], "application/x-ms-xbap":["xbap"], "application/x-msaccess":["mdb"], "application/x-msbinder":["obd"], "application/x-mscardfile":["crd"], "application/x-msclip":["clp"], "application/x-msdownload":["exe","dll","com","bat","msi"], "application/x-msmediaview":["mvb","m13","m14"], "application/x-msmetafile":["wmf","wmz","emf","emz"], "application/x-msmoney":["mny"], "application/x-mspublisher":["pub"], "application/x-msschedule":["scd"], "application/x-msterminal":["trm"], "application/x-mswrite":["wri"], "application/x-netcdf":["nc","cdf"], "application/x-nzb":["nzb"], "application/x-pkcs12":["p12","pfx"], "application/x-pkcs7-certificates":["p7b","spc"], "application/x-pkcs7-certreqresp":["p7r"], "application/x-rar-compressed":["rar"], "application/x-research-info-systems":["ris"], "application/x-sh":["sh"], "application/x-shar":["shar"], "application/x-shockwave-flash":["swf"], "application/x-silverlight-app":["xap"], "application/x-sql":["sql"], "application/x-stuffit":["sit"], "application/x-stuffitx":["sitx"], "application/x-subrip":["srt"], "application/x-sv4cpio":["sv4cpio"], "application/x-sv4crc":["sv4crc"], "application/x-t3vm-image":["t3"], "application/x-tads":["gam"], "application/x-tar":["tar"], "application/x-tcl":["tcl"], "application/x-tex":["tex"], "application/x-tex-tfm":["tfm"], "application/x-texinfo":["texinfo","texi"], "application/x-tgif":["obj"], "application/x-ustar":["ustar"], "application/x-wais-source":["src"], "application/x-x509-ca-cert":["der","crt"], "application/x-xfig":["fig"], "application/x-xliff+xml":["xlf"], "application/x-xpinstall":["xpi"], "application/x-xz":["xz"], "application/x-zmachine":["z1","z2","z3","z4","z5","z6","z7","z8"], "application/xaml+xml":["xaml"], "application/xcap-diff+xml":["xdf"], "application/xenc+xml":["xenc"], "application/xhtml+xml":["xhtml","xht"], "application/xml":["xml","xsl"], "application/xml-dtd":["dtd"], "application/xop+xml":["xop"], "application/xproc+xml":["xpl"], "application/xslt+xml":["xslt"], "application/xspf+xml":["xspf"], "application/xv+xml":["mxml","xhvml","xvml","xvm"], "application/yang":["yang"], "application/yin+xml":["yin"], "application/zip":["zip"], "audio/adpcm":["adp"], "audio/basic":["au","snd"], "audio/midi":["mid","midi","kar","rmi"], "audio/mp4":["m4a","mp4a"], "audio/mpeg":["mpga","mp2","mp2a","mp3","m2a","m3a"], "audio/ogg":["oga","ogg","spx"], "audio/s3m":["s3m"], "audio/silk":["sil"], "audio/vnd.dece.audio":["uva","uvva"], "audio/vnd.digital-winds":["eol"], "audio/vnd.dra":["dra"], "audio/vnd.dts":["dts"], "audio/vnd.dts.hd":["dtshd"], "audio/vnd.lucent.voice":["lvp"], "audio/vnd.ms-playready.media.pya":["pya"], "audio/vnd.nuera.ecelp4800":["ecelp4800"], "audio/vnd.nuera.ecelp7470":["ecelp7470"], "audio/vnd.nuera.ecelp9600":["ecelp9600"], "audio/vnd.rip":["rip"], "audio/webm":["weba"], "audio/x-aac":["aac"], "audio/x-aiff":["aif","aiff","aifc"], "audio/x-caf":["caf"], "audio/x-flac":["flac"], "audio/x-matroska":["mka"], "audio/x-mpegurl":["m3u"], "audio/x-ms-wax":["wax"], "audio/x-ms-wma":["wma"], "audio/x-pn-realaudio":["ram","ra"], "audio/x-pn-realaudio-plugin":["rmp"], "audio/x-wav":["wav"], "audio/xm":["xm"], "chemical/x-cdx":["cdx"], "chemical/x-cif":["cif"], "chemical/x-cmdf":["cmdf"], "chemical/x-cml":["cml"], "chemical/x-csml":["csml"], "chemical/x-xyz":["xyz"], "image/bmp":["bmp"], "image/cgm":["cgm"], "image/g3fax":["g3"], "image/gif":["gif"], "image/ief":["ief"], "image/jpeg":["jpeg","jpg","jpe"], "image/ktx":["ktx"], "image/png":["png"], "image/prs.btif":["btif"], "image/sgi":["sgi"], "image/svg+xml":["svg","svgz"], "image/tiff":["tiff","tif"], "image/vnd.adobe.photoshop":["psd"], "image/vnd.dece.graphic":["uvi","uvvi","uvg","uvvg"], "image/vnd.djvu":["djvu","djv"], "image/vnd.dvb.subtitle":["sub"], "image/vnd.dwg":["dwg"], "image/vnd.dxf":["dxf"], "image/vnd.fastbidsheet":["fbs"], "image/vnd.fpx":["fpx"], "image/vnd.fst":["fst"], "image/vnd.fujixerox.edmics-mmr":["mmr"], "image/vnd.fujixerox.edmics-rlc":["rlc"], "image/vnd.ms-modi":["mdi"], "image/vnd.ms-photo":["wdp"], "image/vnd.net-fpx":["npx"], "image/vnd.wap.wbmp":["wbmp"], "image/vnd.xiff":["xif"], "image/webp":["webp"], "image/x-3ds":["3ds"], "image/x-cmu-raster":["ras"], "image/x-cmx":["cmx"], "image/x-freehand":["fh","fhc","fh4","fh5","fh7"], "image/x-icon":["ico"], "image/x-mrsid-image":["sid"], "image/x-pcx":["pcx"], "image/x-pict":["pic","pct"], "image/x-portable-anymap":["pnm"], "image/x-portable-bitmap":["pbm"], "image/x-portable-graymap":["pgm"], "image/x-portable-pixmap":["ppm"], "image/x-rgb":["rgb"], "image/x-tga":["tga"], "image/x-xbitmap":["xbm"], "image/x-xpixmap":["xpm"], "image/x-xwindowdump":["xwd"], "message/rfc822":["eml","mime"], "model/iges":["igs","iges"], "model/mesh":["msh","mesh","silo"], "model/vnd.collada+xml":["dae"], "model/vnd.dwf":["dwf"], "model/vnd.gdl":["gdl"], "model/vnd.gtw":["gtw"], "model/vnd.mts":["mts"], "model/vnd.vtu":["vtu"], "model/vrml":["wrl","vrml"], "model/x3d+binary":["x3db","x3dbz"], "model/x3d+vrml":["x3dv","x3dvz"], "model/x3d+xml":["x3d","x3dz"], "text/cache-manifest":["appcache"], "text/calendar":["ics","ifb"], "text/css":["css"], "text/csv":["csv"], "text/html":["html","htm"], "text/n3":["n3"], "text/plain":["txt","text","conf","def","list","log","in"], "text/prs.lines.tag":["dsc"], "text/richtext":["rtx"], "text/sgml":["sgml","sgm"], "text/tab-separated-values":["tsv"], "text/troff":["t","tr","roff","man","me","ms"], "text/turtle":["ttl"], "text/uri-list":["uri","uris","urls"], "text/vcard":["vcard"], "text/vnd.curl":["curl"], "text/vnd.curl.dcurl":["dcurl"], "text/vnd.curl.mcurl":["mcurl"], "text/vnd.curl.scurl":["scurl"], "text/vnd.dvb.subtitle":["sub"], "text/vnd.fly":["fly"], "text/vnd.fmi.flexstor":["flx"], "text/vnd.graphviz":["gv"], "text/vnd.in3d.3dml":["3dml"], "text/vnd.in3d.spot":["spot"], "text/vnd.sun.j2me.app-descriptor":["jad"], "text/vnd.wap.wml":["wml"], "text/vnd.wap.wmlscript":["wmls"], "text/x-asm":["s","asm"], "text/x-c":["c","cc","cxx","cpp","h","hh","dic"], "text/x-fortran":["f","for","f77","f90"], "text/x-java-source":["java"], "text/x-nfo":["nfo"], "text/x-opml":["opml"], "text/x-pascal":["p","pas"], "text/x-setext":["etx"], "text/x-sfv":["sfv"], "text/x-uuencode":["uu"], "text/x-vcalendar":["vcs"], "text/x-vcard":["vcf"], "video/3gpp":["3gp"], "video/3gpp2":["3g2"], "video/h261":["h261"], "video/h263":["h263"], "video/h264":["h264"], "video/jpeg":["jpgv"], "video/jpm":["jpm","jpgm"], "video/mj2":["mj2","mjp2"], "video/mp4":["mp4","mp4v","mpg4"], "video/mpeg":["mpeg","mpg","mpe","m1v","m2v"], "video/ogg":["ogv"], "video/quicktime":["qt","mov"], "video/vnd.dece.hd":["uvh","uvvh"], "video/vnd.dece.mobile":["uvm","uvvm"], "video/vnd.dece.pd":["uvp","uvvp"], "video/vnd.dece.sd":["uvs","uvvs"], "video/vnd.dece.video":["uvv","uvvv"], "video/vnd.dvb.file":["dvb"], "video/vnd.fvt":["fvt"], "video/vnd.mpegurl":["mxu","m4u"], "video/vnd.ms-playready.media.pyv":["pyv"], "video/vnd.uvvu.mp4":["uvu","uvvu"], "video/vnd.vivo":["viv"], "video/webm":["webm"], "video/x-f4v":["f4v"], "video/x-fli":["fli"], "video/x-flv":["flv"], "video/x-m4v":["m4v"], "video/x-matroska":["mkv","mk3d","mks"], "video/x-mng":["mng"], "video/x-ms-asf":["asf","asx"], "video/x-ms-vob":["vob"], "video/x-ms-wm":["wm"], "video/x-ms-wmv":["wmv"], "video/x-ms-wmx":["wmx"], "video/x-ms-wvx":["wvx"], "video/x-msvideo":["avi"], "video/x-sgi-movie":["movie"], "video/x-smv":["smv"], "x-conference/x-cooltalk":["ice"]}
{ "content_hash": "176c3bb77cf16c319b369d6acb6f9133", "timestamp": "", "source": "github", "line_count": 765, "max_line_length": 107, "avg_line_length": 39.07843137254902, "alnum_prop": 0.6785415621341362, "repo_name": "aidatorajiro/Wiki2Epub", "id": "917704fd689c6fcf6ac8e0ed410b3d44a04a2410", "size": "29895", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "extensions.py", "mode": "33188", "license": "mit", "language": [ { "name": "HTML", "bytes": "1159" }, { "name": "Python", "bytes": "52248" } ], "symlink_target": "" }
''' RPC Dispatcher Tests -------------------- ''' import base64 import json import unittest from xml.dom.minidom import parseString from django.core.exceptions import ImproperlyConfigured try: from rpc4django.rpcdispatcher import rpcmethod, RPCMethod, RPCDispatcher except ImproperlyConfigured: # Configure Django if not already configured from django.conf import settings settings.configure(DEBUG=True) from rpc4django.rpcdispatcher import rpcmethod, RPCMethod, RPCDispatcher try: from xmlrpclib import Fault, Binary except ImportError: from xmlrpc.client import Fault, Binary BINARY_STRING = b'\x97\xd2\xab\xc8\xfc\x98\xad' # tests both the class and the decorator class TestRPCMethod(unittest.TestCase): def setUp(self): @rpcmethod(name='my.add', signature=['int', 'int', 'int']) def add(a, b): return a + b self.add = RPCMethod(add) @rpcmethod() def test1(arg1): return 4 self.test1 = RPCMethod(test1) def test_verify_creation(self): self.assertEqual(self.add.name, 'my.add') self.assertEqual(self.add.signature, ['int', 'int', 'int']) self.assertEqual(self.add.args, ['a', 'b']) self.assertEqual(self.test1.name, 'test1') self.assertEqual(self.test1.signature, ['object', 'object']) self.assertEqual(self.test1.args, ['arg1']) def test_get_retrunvalue(self): self.assertEqual(self.add.get_returnvalue(), 'int') self.assertEqual(self.test1.get_returnvalue(), 'object') def test_get_params(self): self.assertEqual(self.add.get_params(), [{'name': 'a', 'rpctype': 'int'}, {'name': 'b', 'rpctype': 'int'}]) self.assertEqual(self.test1.get_params(), [{'name': 'arg1', 'rpctype': 'object'}]) class TestRPCDispatcher(unittest.TestCase): def setUp(self): self.d = RPCDispatcher() def add(a, b): return a + b self.add = add def kwargstest(a, b, **kwargs): if kwargs.get('c', None) is not None: return True return False self.kwargstest = kwargstest def testBin(): return Binary(BINARY_STRING) self.testBin = testBin def test_rpcfault(self): try: self.d.system_methodhelp('method.DoesNotExist.AtAll') self.fail('method not exists fault expected!') except Fault: pass try: self.d.system_methodsignature('method.DoesNotExist.AtAll') self.fail('method not exists fault expected!') except Fault: pass def test_listmethods(self): resp = self.d.system_listmethods() self.assertEqual(resp, ['system.describe', 'system.listMethods', 'system.methodHelp', 'system.methodSignature']) self.d.register_method(self.add) resp = self.d.system_listmethods() self.assertEqual(resp, ['add', 'system.describe', 'system.listMethods', 'system.methodHelp', 'system.methodSignature']) def test_methodhelp(self): resp = self.d.system_methodhelp('system.methodHelp') self.assertEqual(resp, 'Returns documentation for a specified method') def test_methodsignature(self): resp = self.d.system_methodsignature('system.listMethods') self.assertEqual(resp, ['array']) resp = self.d.system_methodsignature('system.methodSignature') self.assertEqual(resp, ['array', 'string']) def test_xmlrpc_call(self): xml = '<?xml version="1.0"?><methodCall><methodName>system.listMethods</methodName><params></params></methodCall>' expresp = "<?xml version='1.0'?><methodResponse><params><param><value><array><data><value><string>system.describe</string></value><value><string>system.listMethods</string></value><value><string>system.methodHelp</string></value><value><string>system.methodSignature</string></value></data></array></value></param></params></methodResponse>" resp = self.d.xmldispatch(xml.encode('utf-8')) self.assertEqual(resp.replace('\n', ''), expresp) def test_unicode_call(self): self.d.register_method(self.add) s1 = u'は' s2 = u'じめまして' xml = u'<?xml version="1.0"?><methodCall><methodName>add</methodName><params><param><value><string>%s</string></value></param><param><value><string>%s</string></value></param></params></methodCall>' % (s1, s2) resp = self.d.xmldispatch(xml.encode('utf-8')) dom = parseString(resp) retval = dom.getElementsByTagName('string')[0].firstChild.data self.assertEqual(retval, u'はじめまして') def test_base64_call(self): self.d.register_method(self.testBin) xml = '<?xml version="1.0"?><methodCall><methodName>testBin</methodName><params></params></methodCall>' resp = self.d.xmldispatch(xml.encode('utf-8')) dom = parseString(resp) retval = dom.getElementsByTagName('base64')[0].firstChild.data self.assertEqual(base64.b64decode(retval), BINARY_STRING) def test_jsonrpc_call(self): jsontxt = '{"params":[],"method":"system.listMethods","id":1}' resp = self.d.jsondispatch(jsontxt.encode('utf-8')) jsondict = json.loads(resp) self.assertTrue(jsondict['error'] is None) self.assertEqual(jsondict['id'], 1) self.assertTrue(isinstance(jsondict['result'], list)) def test_register_method(self): self.d.register_method(self.add) jsontxt = '{"params":[1,2],"method":"add","id":1}' resp = self.d.jsondispatch(jsontxt.encode('utf-8')) jsondict = json.loads(resp) self.assertTrue(jsondict['error'] is None) self.assertEqual(jsondict['id'], 1) self.assertEqual(jsondict['result'], 3) def test_kwargs(self): self.d.register_method(self.kwargstest) jsontxt = '{"params":[1,2],"method":"kwargstest","id":1}' resp = self.d.jsondispatch(jsontxt.encode('utf-8')) jsondict = json.loads(resp) self.assertFalse(jsondict['result']) resp = self.d.jsondispatch(jsontxt.encode('utf-8'), c=1) jsondict = json.loads(resp) self.assertTrue(jsondict['result']) if __name__ == '__main__': unittest.main()
{ "content_hash": "853e029d70879a76cf9dbbae9a484e60", "timestamp": "", "source": "github", "line_count": 169, "max_line_length": 349, "avg_line_length": 37.1301775147929, "alnum_prop": 0.6328286852589642, "repo_name": "angvp/rpc4django", "id": "ae854766c6b2fbe9f04b5554ca0dee68b7d1dec8", "size": "6324", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "tests/test_rpcdispatcher.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "HTML", "bytes": "3518" }, { "name": "Python", "bytes": "62436" }, { "name": "Shell", "bytes": "341" } ], "symlink_target": "" }
from __future__ import unicode_literals from django.db import migrations import jsonfield.fields class Migration(migrations.Migration): dependencies = [ ('questions', '0013_auto_20160505_0905'), ] operations = [ migrations.AlterField( model_name='question', name='count', field=jsonfield.fields.JSONField(blank=True), ), ]
{ "content_hash": "e09964e2b253b24705b4a5a3c8e4f630", "timestamp": "", "source": "github", "line_count": 19, "max_line_length": 57, "avg_line_length": 21.263157894736842, "alnum_prop": 0.6138613861386139, "repo_name": "watchdogpolska/bliski_publikator", "id": "9bb70e2b40b4506c5be210bf3285bc7b311127df", "size": "476", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "bliski_publikator/questions/migrations/0014_auto_20160505_0941.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "38778" }, { "name": "HTML", "bytes": "109977" }, { "name": "JavaScript", "bytes": "14459" }, { "name": "Python", "bytes": "184036" }, { "name": "TypeScript", "bytes": "38566" } ], "symlink_target": "" }
import ReadConfig import Utils from FTModuleClass import * from SIL.LCModel import * from SIL.LCModel.Core.KernelInterfaces import ITsString, ITsStrBldr #---------------------------------------------------------------- # Documentation that the user sees: docs = {FTM_Name : "End Testbed", FTM_Version : "3.4.1", FTM_ModifiesDB : False, FTM_Synopsis : "Conclude a testbed log result.", FTM_Help : "", FTM_Description: """ Conclude a testbed log result.. """ } #---------------------------------------------------------------- # The main processing function def MainFunction(DB, report, modifyAllowed): # Read the configuration file which we assume is in the current directory. configMap = ReadConfig.readConfig(report) if not configMap: return # Get the synthesis file name outFileVal = ReadConfig.getConfigVal(configMap, ReadConfig.TARGET_SYNTHESIS_FILE, report) if not outFileVal: return # Open the synthesis file try: f_out = open(outFileVal, encoding='utf-8') except IOError: report.Error('There is a problem with the Synthesis Output File path: '+outFileVal+'. Please check the configuration file setting.') return # Create an object for the testbed results file and get the associated # XML object resultsFileObj = Utils.FlexTransTestbedResultsFile(report) resultsXMLObj = resultsFileObj.getResultsXMLObj() # Extract the results from the myText.syn file count = resultsXMLObj.extractResults(f_out) f_out.close() # If we were successful write the end date-time and save the file if count > 0: resultsXMLObj.endTest() resultsFileObj.write() # Let the user know how many valid/invalid test were dumped report.Info(str(count) + ' results extracted.') #---------------------------------------------------------------- # The name 'FlexToolsModule' must be defined like this: FlexToolsModule = FlexToolsModuleClass(runFunction = MainFunction, docs = docs) #--------------------------------- if __name__ == '__main__': FlexToolsModule.Help()
{ "content_hash": "07aab958ccdb13e5c2231bed3ed7bcba", "timestamp": "", "source": "github", "line_count": 68, "max_line_length": 140, "avg_line_length": 34.588235294117645, "alnum_prop": 0.5625, "repo_name": "rmlockwood/FLExTrans", "id": "02c80407247a87284e44da87c16c0556a5f97bbf", "size": "3250", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "Install2.0/FlexTools2.0-FLExTrans/FlexTools/Modules/FLExTrans/EndTestbed.py", "mode": "33188", "license": "mit", "language": [ { "name": "Batchfile", "bytes": "12781" }, { "name": "CSS", "bytes": "45823" }, { "name": "HTML", "bytes": "827329" }, { "name": "Makefile", "bytes": "7353" }, { "name": "NSIS", "bytes": "12387" }, { "name": "Python", "bytes": "4442196" }, { "name": "VBScript", "bytes": "2068" } ], "symlink_target": "" }
import httplib as http import itertools from flask import request from modularodm import Q from modularodm.exceptions import NoResultsFound from framework import status from framework.exceptions import HTTPError from framework.flask import redirect # VOL-aware redirect from framework.auth.decorators import must_be_signed from website.archiver import ARCHIVER_SUCCESS, ARCHIVER_FAILURE from website import settings from website.exceptions import NodeStateError from website.project.decorators import ( must_be_valid_project, must_be_contributor_or_public, must_have_permission, must_not_be_registration, must_be_registration, ) from website.identifiers.model import Identifier from website.identifiers.metadata import datacite_metadata_for_node from website.project.utils import serialize_node from website.util.permissions import ADMIN from website.models import MetaSchema, NodeLog from website import language from website.project import signals as project_signals from website.project.metadata.schemas import _id_to_name from website import util from website.project.metadata.utils import serialize_meta_schema from website.archiver.decorators import fail_archive_on_error from website.identifiers.client import EzidClient from .node import _view_project @must_be_valid_project @must_be_contributor_or_public def node_register_page(auth, node, **kwargs): """Display the registration metadata for a registration. :return: serialized Node """ if node.is_registration: return serialize_node(node, auth) else: status.push_status_message( 'You have been redirected to the project\'s registrations page. From here you can initiate a new Draft Registration to complete the registration process', trust=False) return redirect(node.web_url_for('node_registrations', view='draft')) @must_be_valid_project @must_have_permission(ADMIN) def node_registration_retraction_redirect(auth, node, **kwargs): return redirect(node.web_url_for('node_registration_retraction_get', _guid=True)) @must_be_valid_project @must_have_permission(ADMIN) def node_registration_retraction_get(auth, node, **kwargs): """Prepares node object for registration retraction page. :return: serialized Node to be retracted :raises: 400: BAD_REQUEST if registration already pending retraction """ if not node.is_registration: raise HTTPError(http.BAD_REQUEST, data={ 'message_short': 'Invalid Request', 'message_long': 'Withdrawal of non-registrations is not permitted.' }) if node.is_pending_retraction: raise HTTPError(http.BAD_REQUEST, data={ 'message_short': 'Invalid Request', 'message_long': 'This registration is already pending withdrawal.' }) return serialize_node(node, auth, primary=True) @must_be_valid_project @must_have_permission(ADMIN) def node_registration_retraction_post(auth, node, **kwargs): """Handles retraction of public registrations :param auth: Authentication object for User :return: Redirect URL for successful POST """ if node.is_pending_retraction: raise HTTPError(http.BAD_REQUEST, data={ 'message_short': 'Invalid Request', 'message_long': 'This registration is already pending withdrawal' }) if not node.is_registration: raise HTTPError(http.BAD_REQUEST, data={ 'message_short': 'Invalid Request', 'message_long': 'Withdrawal of non-registrations is not permitted.' }) if node.root is not node: raise HTTPError(http.BAD_REQUEST, data={ 'message_short': 'Invalid Request', 'message_long': 'Withdrawal of non-parent registrations is not permitted.' }) data = request.get_json() try: node.retract_registration(auth.user, data.get('justification', None)) node.save() node.retraction.ask(node.get_active_contributors_recursive(unique_users=True)) except NodeStateError as err: raise HTTPError(http.FORBIDDEN, data=dict(message_long=err.message)) return {'redirectUrl': node.web_url_for('view_project')} @must_be_valid_project @must_be_contributor_or_public def node_register_template_page(auth, node, metaschema_id, **kwargs): if node.is_registration and bool(node.registered_schema): try: meta_schema = MetaSchema.find_one( Q('_id', 'eq', metaschema_id) ) except NoResultsFound: # backwards compatability for old urls, lookup by name try: meta_schema = MetaSchema.find( Q('name', 'eq', _id_to_name(metaschema_id)) ).sort('-schema_version')[0] except IndexError: raise HTTPError(http.NOT_FOUND, data={ 'message_short': 'Invalid schema name', 'message_long': 'No registration schema with that name could be found.' }) if meta_schema not in node.registered_schema: raise HTTPError(http.BAD_REQUEST, data={ 'message_short': 'Invalid schema', 'message_long': 'This registration has no registration supplment with that name.' }) ret = _view_project(node, auth, primary=True) ret['node']['registered_schema'] = serialize_meta_schema(meta_schema) return ret else: status.push_status_message( 'You have been redirected to the project\'s registrations page. From here you can initiate a new Draft Registration to complete the registration process', trust=False ) return redirect(node.web_url_for('node_registrations', view=kwargs.get('template'))) @must_be_valid_project # returns project @must_have_permission(ADMIN) @must_not_be_registration def project_before_register(auth, node, **kwargs): """Returns prompt informing user that addons, if any, won't be registered.""" # TODO: Avoid generating HTML code in Python; all HTML should be in display layer messages = { 'full': { 'addons': set(), 'message': 'The content and version history of <strong>{0}</strong> will be copied to the registration.', }, 'partial': { 'addons': set(), 'message': 'The current version of the content in <strong>{0}</strong> will be copied to the registration, but version history will be lost.' }, 'none': { 'addons': set(), 'message': 'The contents of <strong>{0}</strong> cannot be registered at this time, and will not be included as part of this registration.', }, } errors = {} addon_set = [n.get_addons() for n in itertools.chain([node], node.get_descendants_recursive(lambda n: n.primary))] for addon in itertools.chain(*addon_set): if not addon.complete: continue archive_errors = getattr(addon, 'archive_errors', None) error = None if archive_errors: error = archive_errors() if error: errors[addon.config.short_name] = error continue name = addon.config.short_name if name in settings.ADDONS_ARCHIVABLE: messages[settings.ADDONS_ARCHIVABLE[name]]['addons'].add(addon.config.full_name) else: messages['none']['addons'].add(addon.config.full_name) error_messages = errors.values() prompts = [ m['message'].format(util.conjunct(m['addons'])) for m in messages.values() if m['addons'] ] if node.has_pointers_recursive: prompts.append( language.BEFORE_REGISTER_HAS_POINTERS.format( category=node.project_or_component ) ) return { 'prompts': prompts, 'errors': error_messages } def _build_ezid_metadata(node): """Build metadata for submission to EZID using the DataCite profile. See http://ezid.cdlib.org/doc/apidoc.html for details. """ doi = settings.EZID_FORMAT.format(namespace=settings.DOI_NAMESPACE, guid=node._id) metadata = { '_target': node.absolute_url, 'datacite': datacite_metadata_for_node(node=node, doi=doi) } return doi, metadata def _get_or_create_identifiers(node): """ Note: ARKs include a leading slash. This is stripped here to avoid multiple consecutive slashes in internal URLs (e.g. /ids/ark/<ark>/). Frontend code that build ARK URLs is responsible for adding the leading slash. """ doi, metadata = _build_ezid_metadata(node) client = EzidClient(settings.EZID_USERNAME, settings.EZID_PASSWORD) try: resp = client.create_identifier(doi, metadata) return dict( [each.strip('/') for each in pair.strip().split(':')] for pair in resp['success'].split('|') ) except HTTPError as error: if 'identifier already exists' not in error.message.lower(): raise resp = client.get_identifier(doi) doi = resp['success'] suffix = doi.strip(settings.DOI_NAMESPACE) return { 'doi': doi.replace('doi:', ''), 'ark': '{0}{1}'.format(settings.ARK_NAMESPACE.replace('ark:', ''), suffix), } @must_be_valid_project @must_be_contributor_or_public def node_identifiers_get(node, **kwargs): """Retrieve identifiers for a node. Node must be a public registration. """ if not node.is_registration or not node.is_public: raise HTTPError(http.BAD_REQUEST) return { 'doi': node.get_identifier_value('doi'), 'ark': node.get_identifier_value('ark'), } @must_be_valid_project @must_have_permission(ADMIN) def node_identifiers_post(auth, node, **kwargs): """Create identifier pair for a node. Node must be a public registration. """ # TODO: Fail if `node` is retracted if not node.is_registration or not node.is_public: # or node.is_retracted: raise HTTPError(http.BAD_REQUEST) if node.get_identifier('doi') or node.get_identifier('ark'): raise HTTPError(http.BAD_REQUEST) try: identifiers = _get_or_create_identifiers(node) except HTTPError: raise HTTPError(http.BAD_REQUEST) for category, value in identifiers.iteritems(): node.set_identifier_value(category, value) node.add_log( NodeLog.EXTERNAL_IDS_ADDED, params={ 'parent_node': node.parent_id, 'node': node._id, 'identifiers': identifiers, }, auth=auth, ) return identifiers, http.CREATED def get_referent_by_identifier(category, value): """Look up identifier by `category` and `value` and redirect to its referent if found. """ try: identifier = Identifier.find_one( Q('category', 'eq', category) & Q('value', 'eq', value) ) except NoResultsFound: raise HTTPError(http.NOT_FOUND) if identifier.referent.url: return redirect(identifier.referent.url) raise HTTPError(http.NOT_FOUND) @fail_archive_on_error @must_be_signed @must_be_registration def registration_callbacks(node, payload, *args, **kwargs): errors = payload.get('errors') src_provider = payload['source']['provider'] if errors: node.archive_job.update_target( src_provider, ARCHIVER_FAILURE, errors=errors, ) else: # Dataverse requires two seperate targets, one # for draft files and one for published files if src_provider == 'dataverse': src_provider += '-' + (payload['destination']['name'].split(' ')[-1].lstrip('(').rstrip(')').strip()) node.archive_job.update_target( src_provider, ARCHIVER_SUCCESS, ) project_signals.archive_callback.send(node)
{ "content_hash": "988a72acf1d8c346d49d02aebb99e272", "timestamp": "", "source": "github", "line_count": 324, "max_line_length": 166, "avg_line_length": 36.91975308641975, "alnum_prop": 0.6472161845845177, "repo_name": "TomHeatwole/osf.io", "id": "55efe7e91e3a3e224e5bc243eebca81e0c1d7d89", "size": "11986", "binary": false, "copies": "13", "ref": "refs/heads/develop", "path": "website/project/views/register.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "CSS", "bytes": "140360" }, { "name": "HTML", "bytes": "94857" }, { "name": "JavaScript", "bytes": "1561313" }, { "name": "Mako", "bytes": "659751" }, { "name": "Perl", "bytes": "13885" }, { "name": "Python", "bytes": "5250038" } ], "symlink_target": "" }
import os try : from setuptools import setup except ImportError : from distutils.core import setup readme = open(os.path.join(os.path.dirname(__file__), 'README'), 'r').read() setup( name='ACIS-pandas', author='Bill Noon', author_email='[email protected]', version='0.1.0', url='http://github.com/bnoon/acis-pandas', py_modules=['ACISLoader'], description='Access the ACIS data via a pandas Panel.', long_description=readme, zip_safe=True, classifiers=[ 'License :: OSI Approved :: MIT License', 'Programming Language :: Python' ] )
{ "content_hash": "cd2ff1211c1451d45056870a4e7356d0", "timestamp": "", "source": "github", "line_count": 23, "max_line_length": 76, "avg_line_length": 26.347826086956523, "alnum_prop": 0.636963696369637, "repo_name": "bnoon/acis-pandas", "id": "9d2652645e2ce9b606d7135d02efc4bb7caab48a", "size": "606", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "setup.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "7435" } ], "symlink_target": "" }
""" This template script should accept two arguments: the source input filename (which is expected to exist) and the target output filename (expected to be created by this script). """ import sys source = sys.argv[1] target = sys.argv[2]
{ "content_hash": "90e17e8869dc9e0f2e8165b3e42f90ed", "timestamp": "", "source": "github", "line_count": 9, "max_line_length": 75, "avg_line_length": 26.555555555555557, "alnum_prop": 0.7531380753138075, "repo_name": "daler/hubward", "id": "65960ce1271dc468feb456d1893fac1c8c49e12e", "size": "262", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "resources/process_template.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "Makefile", "bytes": "1855" }, { "name": "Python", "bytes": "59761" }, { "name": "Shell", "bytes": "3434" } ], "symlink_target": "" }
from oslo_log import log from oslo_utils import excutils from manila.i18n import _LE from manila.share.drivers.netapp.dataontap.client import api as netapp_api from manila.share.drivers.netapp import utils as na_utils LOG = log.getLogger(__name__) class NetAppBaseClient(object): def __init__(self, **kwargs): self.connection = netapp_api.NaServer( host=kwargs['hostname'], transport_type=kwargs['transport_type'], port=kwargs['port'], username=kwargs['username'], password=kwargs['password'], trace=kwargs.get('trace', False)) def get_ontapi_version(self, cached=True): """Gets the supported ontapi version.""" if cached: return self.connection.get_api_version() ontapi_version = netapp_api.NaElement('system-get-ontapi-version') res = self.connection.invoke_successfully(ontapi_version, False) major = res.get_child_content('major-version') minor = res.get_child_content('minor-version') return major, minor def _init_features(self): """Set up the repository of available Data ONTAP features.""" self.features = Features() def check_is_naelement(self, elem): """Checks if object is instance of NaElement.""" if not isinstance(elem, netapp_api.NaElement): raise ValueError('Expects NaElement') def send_request(self, api_name, api_args=None, enable_tunneling=True): """Sends request to Ontapi.""" request = netapp_api.NaElement(api_name) if api_args: request.translate_struct(api_args) return self.connection.invoke_successfully(request, enable_tunneling) @na_utils.trace def get_licenses(self): try: result = self.send_request('license-v2-list-info') except netapp_api.NaApiError as e: with excutils.save_and_reraise_exception(): LOG.error(_LE("Could not get licenses list. %s."), e) return sorted( [l.get_child_content('package').lower() for l in result.get_child_by_name('licenses').get_children()]) def send_ems_log_message(self, message_dict): """Sends a message to the Data ONTAP EMS log.""" raise NotImplementedError() class Features(object): def __init__(self): self.defined_features = set() def add_feature(self, name, supported=True): if not isinstance(supported, bool): raise TypeError("Feature value must be a bool type.") self.defined_features.add(name) setattr(self, name, supported) def __getattr__(self, name): # NOTE(cknight): Needed to keep pylint happy. raise AttributeError
{ "content_hash": "88a8ce3fc04f4cdc1c3bd8fb590ff164", "timestamp": "", "source": "github", "line_count": 81, "max_line_length": 77, "avg_line_length": 34.074074074074076, "alnum_prop": 0.6315217391304347, "repo_name": "weiting-chen/manila", "id": "45e1148aead94dace71c00aad947813f81cf6d82", "size": "3449", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "manila/share/drivers/netapp/dataontap/client/client_base.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Mako", "bytes": "953" }, { "name": "Python", "bytes": "4010933" }, { "name": "Shell", "bytes": "40516" } ], "symlink_target": "" }
import logging class BrieLogging: logger = None @staticmethod def initializeLog(): # create logger with 'spam_application' BrieLogging.logger = logging.getLogger('Brie') BrieLogging.logger.setLevel(logging.DEBUG) # create file handler which logs even debug messages fh1 = logging.FileHandler('brie.log') fh1.setLevel(logging.INFO) # create file handler which logs even debug messages fh2 = logging.FileHandler('brie_debug.log') fh2.setLevel(logging.DEBUG) # create console handler with a higher log level #ch = logging.StreamHandler() #ch.setLevel(logging.ERROR) # create formatter and add it to the handlers formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s') fh1.setFormatter(formatter) fh2.setFormatter(formatter) # add the handlers to the logger BrieLogging.logger.addHandler(fh1) BrieLogging.logger.addHandler(fh2) #end def @staticmethod def get(): if BrieLogging.logger is None: BrieLogging.initializeLog() #end if return BrieLogging.logger #end def #end class
{ "content_hash": "1858b157e790e808ee35b834b816a0da", "timestamp": "", "source": "github", "line_count": 38, "max_line_length": 82, "avg_line_length": 32.86842105263158, "alnum_prop": 0.6261008807045636, "repo_name": "Rbeuque74/brie-aurore", "id": "38deb91c857ab0fb81fb889dfe36ab37ec7ddc31", "size": "1265", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "Brie/brie/lib/log_helper.py", "mode": "33188", "license": "bsd-2-clause", "language": [ { "name": "CSS", "bytes": "7815" }, { "name": "HTML", "bytes": "91166" }, { "name": "JavaScript", "bytes": "3085" }, { "name": "Python", "bytes": "210870" } ], "symlink_target": "" }
from conjureup import controllers, juju from conjureup.app_config import app from conjureup.models.provider import load_schema class BaseRegionsController: def __init__(self): # can't just determine these during __init__ because the controller # instance is cached and the BACK button means we can get called # multiple times with different clouds selected self._regions = {} self._default_regions = {} @property def default_region(self): if app.provider.cloud not in self._default_regions: app.provider.region = None if len(app.provider.regions) == 1: app.provider.region = list(app.provider.regions)[0] if not app.provider.region: creds = juju.get_credentials().get(app.provider.cloud, {}) app.provider.region = creds.get('default-region', None) if not app.provider.region: try: schema = load_schema(app.provider.cloud) app.provider.region = schema.default_region except Exception: # if we can't find a schema for this cloud, # just assume no default pass self._default_regions[app.provider.cloud] = app.provider.region return self._default_regions[app.provider.cloud] @property def regions(self): if app.provider.cloud not in self._regions: if app.provider.cloud_type in ['maas', 'localhost']: # No regions for these providers regions = [] elif len(app.provider.regions) > 0: regions = app.provider.regions else: regions = sorted(juju.get_regions(app.provider.cloud).keys()) self._regions[app.provider.cloud] = regions return self._regions[app.provider.cloud] def finish(self, region): app.provider.region = region controllers.use('providersetup').render()
{ "content_hash": "0c99ed690ad36623e79944c47cf3aaf8", "timestamp": "", "source": "github", "line_count": 49, "max_line_length": 77, "avg_line_length": 41.40816326530612, "alnum_prop": 0.5914243469689502, "repo_name": "ubuntu/conjure-up", "id": "8672e12589300ead206576fd3f7ebbff771d06ca", "size": "2029", "binary": false, "copies": "3", "ref": "refs/heads/master", "path": "conjureup/controllers/juju/regions/common.py", "mode": "33188", "license": "mit", "language": [ { "name": "Makefile", "bytes": "2552" }, { "name": "Python", "bytes": "470520" }, { "name": "Shell", "bytes": "4588" } ], "symlink_target": "" }
import subprocess import json import math import re import lizard from jinja2 import Environment, FileSystemLoader from xml.dom import minidom from decimal import Decimal from analyzr.settings import CONFIG_PATH, PROJECT_PATH, LAMBDA XML_ILLEGAL = u'([\u0000-\u0008\u000b-\u000c\u000e-\u001f\ufffe-\uffff])|([%s-%s][^%s-%s])|([^%s-%s][%s-%s])|([%s-%s]$)|(^[%s-%s])' RE_XML_ILLEGAL = XML_ILLEGAL % ( unichr(0xd800), unichr(0xdbff), unichr(0xdc00), unichr(0xdfff), unichr(0xd800), unichr(0xdbff), unichr(0xdc00), unichr(0xdfff), unichr(0xd800), unichr(0xdbff), unichr(0xdc00), unichr(0xdfff) ) class CheckerException(Exception): def __init__(self, checker, cmd, stdout="", stderr=""): self.checker = checker self.cmd = cmd self.stdout = stdout self.stderr = stderr super(CheckerException, self).__init__() def __str__(self): value = "STDOUT:\n%s\n\nSTDERR:\n%s" % (self.stdout, self.stderr) return "%s raised an error while running command:\n\n%s\n\n%s" % ( self.checker, " ".join(self.cmd), value ) def __unicode__(self): return self.__str__() def __repr__(self): return self.__unicode__() class Checker(object): def __init__(self, config_path, result_path): self.measures = {} self.env = Environment(loader=FileSystemLoader(CONFIG_PATH)) self.config_path = config_path self.result_path = result_path self.files = [] def __str__(self): return self.__unicode__() def includes(self, filename): for f in self.files: if f.endswith(filename): return True return False def get_decimal(self, value): return Decimal("%s" % round(float(value), 2)) def execute(self, cmd): # close_fds must be true as python would otherwise reuse created # file handles. this would cause a serious memory leak. # btw: the file handles are craeted because we pipe stdout and # stderr to them. proc = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, close_fds=True) stdout, stderr = proc.communicate() if not proc.returncode == 0: raise CheckerException(self, cmd, stdout=stdout, stderr=stderr) return stdout def stub(self): return { "cyclomatic_complexity": 0, "halstead_volume": 0, "halstead_difficulty": 0, "fan_in": 0, "fan_out": 0, "sloc_absolute": 0, "sloc": 0 } def set(self, filename, key, value): if not filename in self.measures: self.measures[filename] = self.stub() self.measures[filename][key] = self.get_decimal(value) def get_value_in_range(self, value, low, high): high = high * 1.0 low = low * 1.0 if value <= low: return 3.0 if value >= high: return 0.0 return 3.0 - 3.0 * (value / high) def squale(self, marks): sum_marks = math.fsum([math.pow(LAMBDA, -1.0 * mark) for mark in marks]) return -1.0 * math.log(sum_marks / (1.0 * len(marks)), LAMBDA) def get_hv_mark(self, value): return self.get_value_in_range(value, 20, 1000) def get_hd_mark(self, value): return self.get_value_in_range(value, 10, 50) def get_cc_mark(self, value): if value <= 2: return 3.0 if value >= 20: return 0.0 return math.pow(2, (7 - value) / 3.5) def get_sloc_mark(self, value): if value <= 37: return 3.0 if value >= 162: return 0.0 return math.pow(2, (70 - value) / 21.0) def get_fan_in_mark(self, value): if value <= 19: return 3.0 if value >= 60: return 0.0 return math.pow(2, (30 - value) / 7.0) def get_fan_out_mark(self, value): if value <= 6: return 3.0 if value >= 19: return 0.0 return math.pow(2, (10 - value) / 2.0) def configure(self, files, revision, connector): raise NotImplementedError def run(self): raise NotImplementedError def parse(self, connector): raise NotImplementedError class JHawk(Checker): # determines how many files are analyzed at once # this is important as for revisions with a lot of files the # generated report might not fit into main memory or can't # be parsed. FILE_BATCH_SIZE = 50 def __init__(self, config_path, result_path): super(JHawk, self).__init__(config_path, result_path) self.name = "jhawk" self.files = [] self.configurations = [] self.results = [] def config_file(self, revision, part): return "%s/%s_%d.xml" % (self.config_path, revision.identifier, part) def result_file(self, revision, part): return "%s/%s_%d" % (self.result_path, revision.identifier, part) def configure(self, files, revision, connector): for f in files: self.files.append(f.full_path()) self.measures = {} self.configurations = [] self.results = [] template = self.env.get_template("%s.xml" % self.name) file_count = len(files) chunks = int(math.ceil(file_count / self.FILE_BATCH_SIZE)) if not file_count % self.FILE_BATCH_SIZE == 0: chunks = chunks + 1 for i in range(chunks): start = i * self.FILE_BATCH_SIZE end = min((i + 1) * self.FILE_BATCH_SIZE, file_count) chunk = files[start:end] filename = self.config_file(revision, i) result_file = self.result_file(revision, i) options = { "checker": self.name, "project_path": PROJECT_PATH, "base_path": connector.get_repo_path(), "target": result_file, "filepattern": "|".join([".*/%s" % f.name for f in chunk]) } with open(filename, "wb") as f: f.write(template.render(options)) self.configurations.append(filename) self.results.append(result_file) self.revision = revision def run(self): for configuration in self.configurations: cmd = [ "ant", "-lib", "%s/lib/%s/JHawkCommandLine.jar" % (PROJECT_PATH, self.name), "-f", configuration ] self.execute(cmd) # Don't allow multiple runs with the same configuration self.configurations = [] return True def get_metrics(self, parent): for node in parent.childNodes: if node.localName == "Metrics": return node def get_node_value(self, parent, node_name): for node in parent.childNodes: if node.localName == node_name: return node.firstChild.nodeValue def get_number(self, parent, node_name): return float(self.get_node_value(parent, node_name)) def get_name(self, parent): return self.get_node_value(parent, "Name") def get_sloc_squale(self, methods): marks = [] for method in methods: metrics = self.get_metrics(method) marks.append(self.get_sloc_mark(self.get_number(metrics, "loc"))) return self.squale(marks) def get_hv_squale(self, methods): marks = [] for method in methods: metrics = self.get_metrics(method) marks.append(self.get_hv_mark(self.get_number(metrics, "halsteadVolume"))) return self.squale(marks) def add_halstead_metrics(self, filename, methods): marks = [] for method in methods: metrics = self.get_metrics(method) volume = self.get_number(metrics, "halsteadVolume") effort = self.get_number(metrics, "halsteadEffort") difficulty = effort / volume marks.append(self.get_hd_mark(difficulty)) self.set(filename, "halstead_difficulty", self.squale(marks)) self.set(filename, "halstead_volume", self.get_hv_squale(methods)) def get_cc_squale(self, methods): marks = [] for method in methods: metrics = self.get_metrics(method) marks.append(self.get_cc_mark(self.get_number(metrics, "cyclomaticComplexity"))) return self.squale(marks) def mark_faults(self, processed): for f in self.files: found = False for p in processed: if found: continue if f.endswith(p): found = True continue if not found: # All files should have been processed but weren't must contain # some kind of error error = self.revision.get_file(f) error.faulty = True error.save() def parse(self, connector): processed = [] for result in self.results: with open("%s.xml" % result, "r") as f: content = f.read() content = re.sub(RE_XML_ILLEGAL, "?", content) xml_doc = minidom.parseString(content.encode("utf-8")) packages = xml_doc.getElementsByTagName("Package") for package in packages: name = self.get_name(package) classes = package.getElementsByTagName("Class") path = name.replace(".", "/") for cls in classes: class_metrics = self.get_metrics(cls) class_name = self.get_node_value(cls, "ClassName") if "$" in class_name: # private class inside of class # ignore! continue filename = "%s/%s.java" % (path, class_name) if not self.includes(filename): continue processed.append(filename) methods = cls.getElementsByTagName("Method") if len(methods) == 0: continue self.add_halstead_metrics(filename, methods) self.set(filename, "cyclomatic_complexity", self.get_cc_squale(methods)) self.set(filename, "sloc", self.get_sloc_squale(methods)) self.set(filename, "sloc_absolute", self.get_node_value(class_metrics, "loc")) fan_in = self.get_number(class_metrics, "fanIn") fan_out = self.get_number(class_metrics, "fanOut") self.set(filename, "fan_in", self.get_fan_in_mark(fan_in)) self.set(filename, "fan_out", self.get_fan_out_mark(fan_out)) self.mark_faults(processed) return self.measures def __unicode__(self): return "JHawk Java Checker" class ComplexityReport(Checker): def __init__(self, config_path, result_path): super(ComplexityReport, self).__init__(config_path, result_path) self.files = [] def __unicode__(self): return "Complexity Report JavaScript Checker" def result_file(self, revision): return "%s/%s" % (self.result_path, revision.identifier) def configure(self, files, revision, connector): self.result = self.result_file(revision) self.files = files self.base_path = connector.get_repo_path() def get_file_path(self, f): return "%s/%s" % (self.base_path, f.full_path()) def run(self): self.failed = [] for f in self.files: path = self.get_file_path(f) result = "%s_%s.json" % (self.result, f.get_identifier()) cmd = ["cr", "-f", "json", "-o", result, path] try: self.execute(cmd) except CheckerException, e: if not e.stdout.startswith("Fatal error") and not e.stderr.startswith("Fatal error"): raise e # Ignore syntax errors in checked files self.failed.append(f.get_identifier()) # mark file as faulty f.faulty = True f.save() return True def get_cc_squale(self, functions): marks = [] for function in functions: marks.append(self.get_cc_mark(function["cyclomatic"])) return self.squale(marks) def get_hv_squale(self, functions): marks = [] for function in functions: marks.append(self.get_hv_mark(function["halstead"]["volume"])) return self.squale(marks) def get_hd_squale(self, functions): marks = [] for function in functions: marks.append(self.get_hd_mark(function["halstead"]["difficulty"])) return self.squale(marks) def get_sloc_squale(self, functions): marks = [] for function in functions: marks.append(self.get_sloc_mark(function["sloc"]["logical"])) return self.squale(marks) def parse(self, connector): for f in self.files: identifier = f.get_identifier() if identifier in self.failed: continue path = "%s_%s.json" % (self.result, identifier) with open(path) as result: contents = json.load(result) if not contents or not "reports" in contents or not contents["reports"]: continue data = contents["reports"][0] if len(data["functions"]) == 0: continue filename = f.full_path() functions = data["functions"] self.set(filename, "cyclomatic_complexity", self.get_cc_squale(functions)) self.set(filename, "halstead_volume", self.get_hv_squale(functions)) self.set(filename, "halstead_difficulty", self.get_hd_squale(functions)) self.set(filename, "sloc", self.get_sloc_squale(functions)) self.set(filename, "sloc_absolute", data["aggregate"]["sloc"]["logical"]) return self.measures class Lizard(Checker): def __init__(self, config_path, result_path): self.files = [] super(Lizard, self).__init__(config_path, result_path) def configure(self, files, revision, connector): self.files = files self.path = connector.get_repo_path() def run(self): for f in self.files: result = lizard.analyze_file("%s/%s" % (self.path, f.full_path())) self.set(f.full_path(), "sloc", result.nloc) self.set(f.full_path(), "cyclomatic_complexity", result.average_CCN) def average(self, functions): if len(functions) == 0: return 0 return sum([function.cyclomatic_complexity for function in functions]) / len(functions) def parse(self, connector): return self.measures
{ "content_hash": "f7e34afa183c053360ea5efbf46c9624", "timestamp": "", "source": "github", "line_count": 535, "max_line_length": 131, "avg_line_length": 28.485981308411215, "alnum_prop": 0.5496062992125984, "repo_name": "frontendphil/analyzr", "id": "fb2baf6b6ff7eba70417004065cdde34e6f8c22c", "size": "15240", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "parsr/checkers.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "28706" }, { "name": "HTML", "bytes": "21250" }, { "name": "JavaScript", "bytes": "177454" }, { "name": "Python", "bytes": "535628" } ], "symlink_target": "" }
import json import requests import sys import time import datetime def indent(level): retval = "" for i in range(0, level): retval += " " return retval def get_most_recent_test(series): res = requests.get("http://cstar.datastax.com/api/series/{series}/{ts_start}/{ts_end}".format( series=series, ts_start=int(time.time() - 250000), ts_end=int(time.time()))) data = json.loads(res.text) if data and data['series'] and len(data['series']) > 0: return data['series'][-1] return None def generate_graphs(cached=False): compaction_operation = [ {'name': 'Initial write throughput', 'op': '1_write', 'metric': 'op_rate'}, {'name': 'Initial read throughput', 'op': '4_read', 'metric': 'op_rate'}, {'name': 'Second read throughput', 'op': '5_read', 'metric': 'op_rate'}, {'name': 'Initial write P99.9', 'op': '1_write', 'metric': '99.9th_latency'}, {'name': 'Initial read P99.9', 'op': '4_read', 'metric': '99.9th_latency'}, {'name': 'Second read P99.9', 'op': '5_read', 'metric': '99.9th_latency'}, # {'name': 'Compaction elapsed time', 'op': '3_nodetool', 'metric': 'elapsed_time'} ] simple_operation = [ {'name': 'Initial write throughput', 'op': '1_write', 'metric': 'op_rate'}, {'name': 'Initial read throughput', 'op': '2_read', 'metric': 'op_rate'}, {'name': 'Second read throughput', 'op': '3_read', 'metric': 'op_rate'}, {'name': 'Initial write P99.9', 'op': '1_write', 'metric': '99.9th_latency'}, {'name': 'Initial read P99.9', 'op': '2_read', 'metric': '99.9th_latency'}, {'name': 'Second read P99.9', 'op': '3_read', 'metric': '99.9th_latency'} ] repair_operation = [ {'name': 'Initial read throughput', 'op': '4_read', 'metric': 'op_rate'}, {'name': 'Second read throughput', 'op': '5_read', 'metric': 'op_rate'}, {'name': 'Initial read P99.9', 'op': '4_read', 'metric': '99.9th_latency'}, {'name': 'Second read P99.9', 'op': '5_read', 'metric': '99.9th_latency'}, # {'name': 'Repair elapsed time', 'op': '3_nodetool', 'metric': 'elapsed_time'} ] rolling_upgrade = [ {'name': 'Initial write throughput', 'op': '4_write', 'metric': 'op_rate'}, {'name': 'Initial read throughput', 'op': '5_read', 'metric': 'op_rate'}, {'name': 'Initial write P99.9', 'op': '4_write', 'metric': '99.9th_latency'}, {'name': 'Initial read P99.9', 'op': '5_read', 'metric': '99.9th_latency'} ] mv_operation = [ {'name': 'write', 'op': '1_user', 'metric': 'op_rate'} ] series_list = { 'daily_regressions_trunk-compaction': compaction_operation, 'daily_regressions_trunk-commitlog_sync': simple_operation, 'daily_regressions_trunk-read_write': simple_operation, 'daily_regressions_trunk-repair_10M': repair_operation, 'daily_regressions_trunk-compaction_lcs': compaction_operation, 'daily_regressions_trunk-compaction_stcs': compaction_operation, 'daily_regressions_trunk-compaction_dtcs': compaction_operation, 'daily_regressions_trunk-rolling_upgrade': rolling_upgrade, 'daily_regressions_trunk-materialized_views_write_3_mv': mv_operation, 'daily_regressions_trunk-materialized_views_write_1_mv': mv_operation } retval = "" retval += "<html>\n" retval += indent(1) + "<head>\n" retval += indent(2) + '<link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/bootstrap.min.css" integrity="sha384-1q8mTJOASx8j1Au+a5WDVnPi2lkFfwwEAa8hDDdjZlpLegxhjVME1fgjWPGmkzs7" crossorigin="anonymous">\n' retval += indent(2) + '<script src="https://ajax.googleapis.com/ajax/libs/jquery/1.11.3/jquery.min.js"></script>\n' retval += indent(2) + '<script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/js/bootstrap.min.js" integrity="sha384-0mSbJDEHialfmuBBQP6A4Qrprq5OVfW37PRR3j5ELqxss1yVqOtnepnHVP9aJ7xS" crossorigin="anonymous"></script>\n' retval += indent(2) + '<style>body { margin: 15px; }</style>\n' retval += indent(1) + "</head>\n" retval += indent(1) + "<body>\n" retval += indent(1) + "<h2>Daily C*Perf Regression Dashboard\n" if cached: retval += indent(1) + '<span style="color: red; font-size: 0.5em;">cached {} <a href="#" onclick="confirm(\'Loading/Updating the cached images is extremely expensive. Are you sure?\') == true ? window.location = \'dashboard_uncached.html\' : false; ">non-cached version</a></span>'.format(datetime.datetime.now().isoformat(' ')) retval += indent(1) + "</h2>\n" for series, operations in series_list.iteritems(): retval += indent(2) + "<h3>" + series + "</h3>\n" retval += indent(2) + "<h4>Most Recent Test Run: \n" id = get_most_recent_test(series) if id: retval += indent(3) + '<a href="http://cstar.datastax.com/tests/id/{id}">Details</a> \n'.format(id=id) retval += indent(3) + '<a href="http://cstar.datastax.com/tests/artifacts/{id}/graph">Graph</a></br>\n'.format(id=id) else: retval += indent(3) + ' (unavailable)</br>\n' retval += indent(2) + "</h4>\n" retval += indent(2) + '<div class="row">\n' for operation in operations: retval += indent(3) + '<div class="col-sm-6 col-md-4">\n' retval += indent(4) + '<div class="thumbnail">\n' retval += indent(5) + '<a href="#" class="popimage">\n'.format( series=series, op=operation['op'], metric=operation['metric'] ) retval += indent(6) + "<img src='http://cstar.datastax.com/api/series/" + series + "/2538000/graph/" if cached: retval += "cached/" retval += operation['op'] + "/" + operation['metric'] + ".png'/>\n" retval += indent(5) + '</a>\n' retval += indent(5) + '<div class="caption">\n' retval += indent(6) + "{}\n".format(operation['name']) retval += indent(5) + '</div>\n' retval += indent(4) + "</div>\n" retval += indent(3) + "</div>\n" retval += indent(2) + "</div>\n" retval += indent(2) + "<br/>\n" retval += indent(2) + """ <!-- Creates the bootstrap modal where the image will appear --> <div class="modal fade" id="imagemodal" tabindex="-1" role="dialog" aria-labelledby="myModalLabel" aria-hidden="true"> <div class="modal-dialog"> <div class="modal-content"> <div class="modal-header"> <button type="button" class="close" data-dismiss="modal"><span aria-hidden="true">&times;</span><span class="sr-only">Close</span></button> <h4 class="modal-title" id="myModalLabel">Full Size</h4> </div> <div class="modal-body"> <img src="" id="imagepreview"> </div> <div class="modal-footer"> <button type="button" class="btn btn-default" data-dismiss="modal">Close</button> </div> </div> </div> </div> <script> $(document).ready(function() { $(".popimage").on("click", function(e) { e.preventDefault(); $('#imagepreview').attr('src', $(this).children(":first").attr('src')); $('#imagemodal').modal('show'); }); $('#imagemodal').on('shown.bs.modal', function () { $(this).find('.modal-dialog').css({width:'945px', height:'auto', 'max-height':'100%'}); }); }); </script> """ retval += indent(1) + "</body>\n" retval += "</html>\n" return retval if __name__ == "__main__": print generate_graphs(len(sys.argv) == 2 and sys.argv[1] == 'cached') # print generate_graphs(True)
{ "content_hash": "efee413d49dfac222570e292049730e9", "timestamp": "", "source": "github", "line_count": 172, "max_line_length": 337, "avg_line_length": 46.883720930232556, "alnum_prop": 0.5525793650793651, "repo_name": "mambocab/cstar_perf", "id": "97a32979060a02fcae7dd89f390598388ff94ac7", "size": "8082", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "regression_suites/regression_html_generator.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "CSS", "bytes": "6321" }, { "name": "HTML", "bytes": "29680" }, { "name": "JavaScript", "bytes": "75081" }, { "name": "Nginx", "bytes": "5066" }, { "name": "Python", "bytes": "632311" }, { "name": "Ruby", "bytes": "2417" } ], "symlink_target": "" }
import json import numpy import time import pyspark from pyspark.ml.classification import LogisticRegression as MLLogisticRegression from pyspark.ml.regression import LinearRegression as MLLinearRegression from pyspark.mllib.classification import * from pyspark.mllib.clustering import * from pyspark.mllib.regression import * from pyspark.mllib.recommendation import * from pyspark.mllib.stat import * from mllib_data import * class PerfTest: def __init__(self, sc): self.sc = sc def initialize(self, options): self.options = options def createInputData(self): raise NotImplementedError def run(self): """ :return: List of [trainingTime, testTime, trainingMetric, testMetric] tuples, or list of [time] tuples """ raise NotImplementedError class NonPredictionTest(PerfTest): def __init__(self, sc): PerfTest.__init__(self, sc) def runTest(self): raise NotImplementedError def run(self): """ :return: List of [time] 1-element tuples """ options = self.options results = [] for i in range(options.num_trials): start = time.time() self.runTest() runtime = time.time() - start results.append([runtime]) time.sleep(options.inter_trial_wait) return results class PredictionTest(PerfTest): def __init__(self, sc): PerfTest.__init__(self, sc) def train(self, rdd): """ :return: Trained model to be passed to test. """ raise NotImplementedError def evaluate(self, model, rdd): """ :return: Evaluation metric for model on the given data. """ raise NotImplementedError def run(self): options = self.options self.trainRDD.cache() # match Scala tests for caching before computing testTime self.trainRDD.count() results = [] for i in range(options.num_trials): # Train start = time.time() model = self.train(self.trainRDD) trainingTime = time.time() - start # Measure test time on training set since it is probably larger. start = time.time() print 'computing trainingMetric...' trainingMetric = self.evaluate(model, self.trainRDD) print ' done computing trainingMetric' testTime = time.time() - start # Test print 'computing testMetric...' testMetric = self.evaluate(model, self.testRDD) print ' done computing testMetric' results.append([trainingTime, testTime, trainingMetric, testMetric]) time.sleep(options.inter_trial_wait) return results @classmethod def _evaluateAccuracy(cls, model, rdd): """ :return: 0/1 classification accuracy as percentage for model on the given data. """ acc = rdd.map(lambda lp: 1.0 if lp.label == model.predict(lp.features) else 0.0).mean() return 100.0 * acc @classmethod def _evaluateRMSE(cls, model, rdd): """ :return: root mean squared error (RMSE) for model on the given data. """ squaredError =\ rdd.map(lambda lp: numpy.square(lp.label - model.predict(lp.features))).mean() return numpy.sqrt(squaredError) class GLMTest(PredictionTest): def __init__(self, sc): PredictionTest.__init__(self, sc) def createInputData(self): options = self.options numTrain = options.num_examples numTest = int(options.num_examples * 0.2) self.trainRDD = LabeledDataGenerator.generateGLMData( self.sc, numTrain, options.num_features, options.num_partitions, options.random_seed, labelType=2) self.testRDD = LabeledDataGenerator.generateGLMData( self.sc, numTest, options.num_features, options.num_partitions, options.random_seed + 1, labelType=2) class GLMClassificationTest(GLMTest): def __init__(self, sc): GLMTest.__init__(self, sc) def train(self, rdd): """ :return: Trained model to be passed to test. """ options = self.options if options.reg_type == "elastic-net": # use spark.ml lr = MLLogisticRegression(maxIter=options.num_iterations, regParam=options.reg_param, elasticNetParam=options.elastic_net_param) # TODO: Do not include time for conversion to DataFrame (but this currently matches # the Scala tests) df = rdd.toDF() lrModel = lr.fit(df) numFeatures = len(lrModel.weights) numClasses = 2 return LogisticRegressionModel(lrModel.weights, lrModel.intercept, numFeatures, numClasses) else: if options.loss == "logistic": if options.optimizer == "sgd": return LogisticRegressionWithSGD.train(data=rdd, iterations=options.num_iterations, step=options.step_size, miniBatchFraction=1.0, regParam=options.reg_param, regType=options.reg_type) elif options.optimizer == "l-bfgs": return LogisticRegressionWithLBFGS.train(data=rdd, iterations=options.num_iterations, regParam=options.reg_param, regType=options.reg_type, tolerance=0.0) else: raise Exception("GLMClassificationTest cannot run with loss = %s," " optimizer = %s" % (options.loss, options.optimizer)) elif options.loss == "hinge": if options.optimizer == "sgd": return SVMWithSGD.train(data=rdd, iterations=options.num_iterations, step=options.step_size, regParam=options.reg_param, miniBatchFraction=1.0, regType=options.reg_type) else: raise Exception("GLMClassificationTest does not recognize loss: %s" % options.loss) def evaluate(self, model, rdd): return PredictionTest._evaluateAccuracy(model, rdd) class GLMRegressionTest(GLMTest): def __init__(self, sc): GLMTest.__init__(self, sc) def train(self, rdd): """ This ignores the optimizer parameter since it makes config difficult for Linear Regression. :return: Trained model to be passed to test. """ options = self.options if options.loss == "l2": if options.reg_type in ["none", "l1", "l2"]: return LinearRegressionWithSGD.train(data=rdd, iterations=options.num_iterations, step=options.step_size, miniBatchFraction=1.0, regParam=options.reg_param, regType=options.reg_type) elif options.reg_type == "elastic-net": # use spark.ml lr = MLLinearRegression(maxIter=options.num_iterations, regParam=options.reg_param, elasticNetParam=options.elastic_net_param) # TODO: Do not include time for conversion to DataFrame (but this currently matches # the Scala tests) df = rdd.toDF() lrModel = lr.fit(df) return LinearRegressionModel(lrModel.weights, lrModel.intercept) else: raise Exception("GLMRegressionTest cannot run with loss = %s, reg_type = %s" \ % (options.loss, options.reg_type)) else: raise Exception("GLMRegressionTest does not recognize loss: %s" % options.loss) def evaluate(self, model, rdd): return PredictionTest._evaluateRMSE(model, rdd) class NaiveBayesTest(PredictionTest): def __init__(self, sc): PredictionTest.__init__(self, sc) def createInputData(self): options = self.options numTrain = options.num_points numTest = int(options.num_points * 0.2) self.trainRDD = LabeledDataGenerator.generateGLMData( self.sc, numTrain, options.num_features, options.num_partitions, options.random_seed, labelType=2) self.testRDD = LabeledDataGenerator.generateGLMData( self.sc, numTest, options.num_features, options.num_partitions, options.random_seed + 1, labelType=2) def evaluate(self, model, rdd): return PredictionTest._evaluateAccuracy(model, rdd) def train(self, rdd): return NaiveBayes.train(rdd, lambda_=options.nb_lambda) class KMeansTest(NonPredictionTest): def __init__(self, sc): NonPredictionTest.__init__(self, sc) def createInputData(self): options = self.options self.data = FeaturesGenerator.generateContinuousData( self.sc, options.num_points, options.num_columns, options.num_partitions, options.random_seed) def runTest(self): model = KMeans.train(self.data, k=options.num_centers, maxIterations=options.num_iterations) class ALSTest(PredictionTest): def __init__(self, sc): PredictionTest.__init__(self, sc) def createInputData(self): options = self.options numTrain = options.num_ratings numTest = int(options.num_ratings * 0.2) self.trainRDD = RatingGenerator.generateRatingData( self.sc, options.num_users, options.num_products, numTrain, options.implicit_prefs, options.num_partitions, options.random_seed) self.testRDD = RatingGenerator.generateRatingData( self.sc, options.num_users, options.num_products, numTest, options.implicit_prefs, options.num_partitions, options.random_seed + 1) def evaluate(self, model, rdd): """ :return: root mean squared error (RMSE) for model on the given ratings. """ implicit_prefs = self.options.implicit_prefs predictions = model.predictAll(rdd.map(lambda r: (r[0], r[1]))) sparkVersion = float(str(sc.version)[:3]) def mapPrediction(r): if sparkVersion <= 1.1: (user, product, rating) = (r[0], r[1], r[2]) else: (user, product, rating) = (r.user, r.product, r.rating) mappedRating = max(min(rating, 1.0), 0.0) if implicit_prefs else rating return ((user, product), mappedRating) predictionsAndRatings = \ predictions.map(mapPrediction).join(rdd.map(lambda r: ((r[0], r[1]), r[2]))).values() return numpy.sqrt(predictionsAndRatings.map(lambda ab: numpy.square(ab[0] - ab[1])).mean()) def train(self, rdd): if options.implicit_prefs: model = ALS.trainImplicit(rdd, rank=options.rank, iterations=options.num_iterations, lambda_=options.reg_param, blocks=options.num_partitions) else: model = ALS.train(rdd, rank=options.rank, iterations=options.num_iterations, lambda_=options.reg_param, blocks=options.num_partitions) return model class CorrelationTest(NonPredictionTest): def __init__(self, sc): NonPredictionTest.__init__(self, sc) def createInputData(self): options = self.options self.data = FeaturesGenerator.generateContinuousData( self.sc, options.num_rows, options.num_cols, options.num_partitions, options.random_seed) class PearsonCorrelationTest(CorrelationTest): def __init__(self, sc): CorrelationTest.__init__(self, sc) def runTest(self): corr = Statistics.corr(self.data, method="pearson") class SpearmanCorrelationTest(CorrelationTest): def __init__(self, sc): CorrelationTest.__init__(self, sc) def runTest(self): corr = Statistics.corr(self.data, method="spearman") if __name__ == "__main__": import optparse parser = optparse.OptionParser(usage="Usage: %prog [options] test_names") # COMMON_OPTS parser.add_option("--num-trials", type="int", default=1) parser.add_option("--inter-trial-wait", type="int", default=3) # MLLIB_COMMON_OPTS parser.add_option("--num-partitions", type="int", default=10) parser.add_option("--random-seed", type="int", default=5) parser.add_option("--num-iterations", type="int", default=20) parser.add_option("--reg-param", type="float", default=0.1) parser.add_option("--rank", type="int", default=2) # MLLIB_REGRESSION_CLASSIFICATION_TEST_OPTS parser.add_option("--num-examples", type="int", default=1024) parser.add_option("--num-features", type="int", default=50) # MLLIB_GLM_TEST_OPTS parser.add_option("--step-size", type="float", default=0.1) parser.add_option("--reg-type", type="string", default="none") parser.add_option("--loss", type="string", default="L2") parser.add_option("--optimizer", type="string", default="sgd") parser.add_option("--elastic-net-param", type="float", default=0.0) # MLLIB_GLM_REGRESSION_TEST_OPTS parser.add_option("--intercept", type="float", default=0.0) parser.add_option("--label-noise", type="float", default=0.1) # MLLIB_CLASSIFICATION_TEST_OPTS parser.add_option("--feature-noise", type="float", default=1.0) # NAIVE_BAYES_TEST_OPTS parser.add_option("--per-negative", type="float", default=0.3) parser.add_option("--nb-lambda", type="float", default=1.0) parser.add_option("--model-type", type="string", default="multinomial") # MLLIB_DECISION_TREE_TEST_OPTS parser.add_option("--label-type", type="int", default=2) parser.add_option("--frac-categorical-features", type="float", default=0.5) parser.add_option("--frac-binary-features", type="float", default=0.5) parser.add_option("--tree-depth", type="int", default=5) parser.add_option("--max-bins", type="int", default=32) # (for Spark 1.2+ only:) parser.add_option("--ensemble-type", type="string", default="RandomForest") parser.add_option("--num-trees", type="int", default=1) parser.add_option("--feature-subset-strategy", type="string", default="auto") # MLLIB_RECOMMENDATION_TEST_OPTS parser.add_option("--num-users", type="int", default=60) parser.add_option("--num-products", type="int", default=50) parser.add_option("--num-ratings", type="int", default=500) parser.add_option("--implicit-prefs", type="int", default=0) # MLLIB_CLUSTERING_TEST_OPTS parser.add_option("--num-points", type="int", default=1000) parser.add_option("--num-columns", type="int", default=10) parser.add_option("--num-centers", type="int", default=5) # MLLIB_LINALG_TEST_OPTS + MLLIB_STATS_TEST_OPTS parser.add_option("--num-rows", type="int", default=1000) parser.add_option("--num-cols", type="int", default=10) options, cases = parser.parse_args() sc = pyspark.SparkContext(appName="MLlibTestRunner") for name in cases: test = globals()[name](sc) test.initialize(options) test.createInputData() javaSystemProperties = sc._jvm.System.getProperties() systemProperties = {} for k in javaSystemProperties.keys(): if type(javaSystemProperties[k]) != unicode: print "type(javaSystemProperties[k]) != unicode" print "\t type(javaSystemProperties[k]) = %r" % type(javaSystemProperties[k]) systemProperties[k] = javaSystemProperties[k] ts = test.run() if len(ts) != test.options.num_trials: raise Exception("mllib_tests.py FAILED (got %d results instead of %d)" % (len(ts), test.options.num_trials)) results = [] if len(ts[0]) == 1: # results include: time print "Results from each trial:" print "trial\ttime" for trial in range(test.options.num_trials): t = ts[trial] print "%d\t%.3f" % (trial, t[0]) results.append({"time": t[0]}) else: # results include: trainingTime, testTime, trainingMetric, testMetric print "Results from each trial:" print "trial\ttrainingTime\ttestTime\ttrainingMetric\ttestMetric" for trial in range(test.options.num_trials): t = ts[trial] print "%d\t%.3f\t%.3f\t%.3f\t%.3f" % (trial, t[0], t[1], t[2], t[3]) results.append({"trainingTime": t[0], "testTime": t[1], "trainingMetric": t[2], "testMetric": t[3]}) # JSON results sparkConfInfo = {} # convert to dict to match Scala JSON for (a,b) in sc._conf.getAll(): sparkConfInfo[a] = b jsonResults = json.dumps({"testName": name, "options": vars(options), "sparkConf": sparkConfInfo, "sparkVersion": sc.version, "systemProperties": systemProperties, "results": results}, separators=(',', ':')) # use separators for compact encoding print "results: " + jsonResults
{ "content_hash": "b6e7b0a17ff1a17a4130e948c7315886", "timestamp": "", "source": "github", "line_count": 425, "max_line_length": 99, "avg_line_length": 42.80235294117647, "alnum_prop": 0.5754493980539828, "repo_name": "zsxwing/spark-perf", "id": "133d7518e7002eb376ab103e535b9c21657b27fe", "size": "18191", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "pyspark-tests/mllib_tests.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Python", "bytes": "79856" }, { "name": "Scala", "bytes": "233190" }, { "name": "Shell", "bytes": "30207" } ], "symlink_target": "" }
from django.conf import settings from django.contrib import admin from django.utils.translation import ugettext_lazy as _ from .models import Lottery, LotteryParticipant, LotteryTranslation class LotteryTranslationInlineAdmin(admin.StackedInline): verbose_name = _(u'Translation') verbose_name_plural = _(u'Translations') model = LotteryTranslation max_num = len(settings.LANGUAGES) extra = 1 class LotteryAdmin(admin.ModelAdmin): inlines = [LotteryTranslationInlineAdmin] list_display = ['__unicode__', 'lan'] class LotteryParticipantAdmin(admin.ModelAdmin): model = LotteryParticipant admin.site.register(LotteryParticipant, LotteryParticipantAdmin) admin.site.register(Lottery, LotteryAdmin)
{ "content_hash": "9f96cd7fa1b8fc7dea5a602d75a18c62", "timestamp": "", "source": "github", "line_count": 26, "max_line_length": 67, "avg_line_length": 28.307692307692307, "alnum_prop": 0.7744565217391305, "repo_name": "CasualGaming/studlan", "id": "42a3963d65a8337bd43097470b54fcd318a9e614", "size": "761", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "apps/lottery/admin.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "9222" }, { "name": "Dockerfile", "bytes": "899" }, { "name": "HTML", "bytes": "144147" }, { "name": "JavaScript", "bytes": "18344" }, { "name": "Python", "bytes": "342146" }, { "name": "Shell", "bytes": "19209" } ], "symlink_target": "" }
import os from paraview import simple # ----------------------------------------------------------------------------- MODULE_PATH = os.path.dirname(os.path.abspath(__file__)) PLUGINS = [ 'parflow.py' ] FULL_PATHS = [ '/Applications/ParaView-5.6.0-1626-g52acf2f741.app/Contents/Plugins/ParFlow.so', ] # ----------------------------------------------------------------------------- # Load the plugins # ----------------------------------------------------------------------------- for plugin in PLUGINS: simple.LoadPlugin(os.path.join(MODULE_PATH, plugin)) for plugin in FULL_PATHS: simple.LoadPlugin(plugin)
{ "content_hash": "bd65570651d6239f822819dea85f0329", "timestamp": "", "source": "github", "line_count": 24, "max_line_length": 84, "avg_line_length": 26.083333333333332, "alnum_prop": 0.4440894568690096, "repo_name": "Kitware/HPCCloud", "id": "1b8e3c325a97cccaf1c8c5f4654e6b07c027e9f1", "size": "626", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "pvw-dependencies/pv-flow/flow/plugins/__init__.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "CMake", "bytes": "412" }, { "name": "HTML", "bytes": "4433" }, { "name": "JavaScript", "bytes": "688975" }, { "name": "Python", "bytes": "344597" }, { "name": "Shell", "bytes": "1993" } ], "symlink_target": "" }
__author__ = 'Sergei F. Kliver' import sys import argparse from BCBio import GFF from MACE.Parsers.VCF import CollectionVCF, ReferenceGenome parser = argparse.ArgumentParser() parser.add_argument("-i", "--input_file", action="store", dest="input", required=True, help="Input vcf file with variants.") parser.add_argument("-o", "--output_file_prefix", action="store", dest="output_prefix", required=True, help="Prefix of output files") """ parser.add_argument("-d", "--dpi", action="store", dest="dpi", type=int, default=300, help="Dpi of figure") parser.add_argument("-f", "--size_of_figure", action="store", dest="size_of_figure", type=lambda s: s.split(","), default=(40, 40), help="Size of figure in inches. X and Y values should be separated by comma. Default: 40,40") """ parser.add_argument("-e", "--output_formats", action="store", dest="output_formats", type=lambda s: s.split(","), default=("svg", "png"), help="Comma-separated list of formats (supported by matlotlib) of " "output figure.Default: svg,png") parser.add_argument("-l", "--suptitle", action="store", dest="suptitle", default="", help="Suptitle of figure. Default: ''") parser.add_argument("-g", "--max_gaps_and_masked_per_window_fraction", action="store", dest="max_gaps_and_masked_per_window_fraction", default=0.4, type=float, help="Maximum number of gaped and masked positions per window. " "Windows with higher fraction will be shown as having 0 variants." "Default: 0.4") parser.add_argument("-r", "--reference_genome", action="store", dest="reference", help="Fasta file with reference genome, required to draw gaps and chromosomes") parser.add_argument("-m", "--masked_regions", action="store", dest="masked_regions", type=lambda s: s.split(","), help="Comma-separated list of GFF files with masked regions") #parser.add_argument("-n", "--normalize", action="store_true", dest="normalize", # help="Normalize counts by effective window size, i.e. " # "divide counts by (window_size - gaps - masking. Default: False)") parser.add_argument("-u", "--per_sample_plot", action="store_true", dest="per_sample_plot", help="Separated plot per sample. Default: False") parser.add_argument("-w", "--window_size", action="store", dest="window_size", default=100000, type=int, help="Size of the windows Default: 100000") parser.add_argument("-s", "--window_step", action="store", dest="window_step", default=None, type=int, help="Step of the sliding windows. Default: window size, i.e windows are staking") parser.add_argument("-p", "--parsing_mode", action="store", dest="parsing_mode", default="parse", help="Parsing mode for input sequence file. " "Possible variants: 'index_db', 'index', 'parse'(default)") """ parser.add_argument("-a", "--scaffold_white_list", action="store", dest="scaffold_white_list", default=[], type=lambda s: s.split(","), help="Comma-separated list of the only scaffolds to draw. Default: all") parser.add_argument("-b", "--scaffold_black_list", action="store", dest="scaffold_black_list", default=[], type=lambda s: s.split(","), help="Comma-separated list of scaffolds to skip at drawing. Default: not set") parser.add_argument("-y", "--sort_scaffolds", action="store_true", dest="sort_scaffolds", default=False, help="Order scaffolds according to their names. Default: False") parser.add_argument("-z", "--scaffold_ordered_list", action="store", dest="scaffold_ordered_list", default=[], type=lambda s: s.split(","), help="Comma-separated list of scaffolds to draw first and exactly in same order. " "Scaffolds absent in this list are drawn last and in order according to vcf file . " "Default: not set") parser.add_argument("-q", "--figure_width", action="store", dest="figure_width", default=12, type=int, help="Width of figure in inches. Default: 12") parser.add_argument("-u", "--figure_height_scale_factor", action="store", dest="figure_height_scale_factor", default=0.5, type=float, help="Figure height scale factor. Figure height is calculated in inches as " "int(figure_scale_factor * scaffold_number * sample_number). Default: 0.5") """ args = parser.parse_args() variants = CollectionVCF(from_file=True, in_file=args.input, parse_only_coordinates=False) variants.draw_heterozygous_snps_histogram(args.window_size, args.window_step, args.output_prefix, args.reference, gaps_and_masked_positions_max_fraction=args.max_gaps_and_masked_per_window_fraction, masking_gff=args.masked_regions, parsing_mode=args.parsing_mode, per_sample_output=args.per_sample_plot, plot_type="concatenated", xlabel="Position in genome", ylabel="Number of SNPs", title="SNP counts in windows", suptitle=args.suptitle, extensions=args.output_formats, masked_or_gaped_region_mark=0, multiplier=1000)
{ "content_hash": "fde14e2310fa108e8e56ee589119da89", "timestamp": "", "source": "github", "line_count": 99, "max_line_length": 126, "avg_line_length": 61.84848484848485, "alnum_prop": 0.5539768087538788, "repo_name": "mahajrod/MACE", "id": "b2c0752f255a3a59bae44e2d3c02c27d19b4183d", "size": "6145", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "scripts/old/draw_heterozygous_snps.py", "mode": "33261", "license": "apache-2.0", "language": [ { "name": "Perl", "bytes": "924706" }, { "name": "Python", "bytes": "492761" }, { "name": "Shell", "bytes": "1699" }, { "name": "Terra", "bytes": "4344300" } ], "symlink_target": "" }
print "I could have code like this." # and a passive agressive little comment # like this... # you can also use comments to disable stuff. AKA "Comment it out" # you did this stuff a million times already man. print "This will run ."
{ "content_hash": "da5ed56c65e7c4ac214e2663c3375b85", "timestamp": "", "source": "github", "line_count": 8, "max_line_length": 78, "avg_line_length": 29.75, "alnum_prop": 0.7226890756302521, "repo_name": "jaredmanning/learning", "id": "0fc1c0e9597543dff2ae9f7b54325c71e93b8f1f", "size": "292", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "lpthw/ex2.py", "mode": "33188", "license": "mit", "language": [ { "name": "C", "bytes": "285" }, { "name": "Python", "bytes": "34489" }, { "name": "Scheme", "bytes": "8913" } ], "symlink_target": "" }
import euphoria as eu import part import json class Board(eu.execgroup.ExecGroup): """ Manages all the parts of the board from one location. """ def __init__(self, *boards): super().__init__(autoclean=False) for b in boards: self.add(b) def get(self, nameshort): for i in self.execs: if i.name == nameshort or i.shortcut == nameshort: return i def get_all(self): return self.execs def names(self): return [x.name for x in self.execs] def shortcuts(self): return [x.shortcut for x in self.execs] def write(self, board, text): towrite = self.get(board) if towrite is not None: towrite.write(text) def update(self): return "".join([c.update() for c in self.execs if c.update() is not None]) def get_dump(self): parts = [] for b in self.execs: parts.append({"roomname": b.roomname, "name": b.name, "shortcut": b.shortcut, "content": b.content, "delay": b.delay, "titles": b.titles, "separator": (b.separator, b.separator_multi)}) return json.dumps({"parts": parts}) def load_dump(self, dump): parts = json.loads(dump) #Load each section from the json for b in parts["parts"]: p = part.Part(b["roomname"], b["name"], b["shortcut"], b["delay"], b["separator"][0], b["separator"][1]) p.content = b["content"] p.titles = b["titles"] self.add(p)
{ "content_hash": "6c4c0a11b0546725a28883320fcc0928", "timestamp": "", "source": "github", "line_count": 56, "max_line_length": 197, "avg_line_length": 27.375, "alnum_prop": 0.5609915198956295, "repo_name": "jedevc/MusicNotice", "id": "aee2ece7274ccb7309f626307326480d969f3376", "size": "1533", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "source/board.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "7170" }, { "name": "Shell", "bytes": "73" } ], "symlink_target": "" }
from ..java import opcodes as JavaOpcodes, Classref ########################################################################## # Pseudo instructions used to flag the offset position of other # attributes of the code, especially those depened on opcode offset. ########################################################################## # A sentinel value to mark jumps that need to be resolved. # This is used to differntiate from the "none" value indicating # a currently open IF/TRY block. RESOLVE = object() class START_LOOP: """A pseudo instruction that can be used to mark the start of a loop (either a FOR or a WHILE) """ def __init__(self): # The opcode that is the first in the formal LOOP block self.start_op = None # The last operation in the LOOP block self.end_op = None # If this IF can be identified as the start of a new # line of source code, track that line. self.starts_line = None def process(self, context): # Record the start of the if block context.next_resolve_list.append((self, 'start_op')) # Record this loop. context.blocks.append(self) # This opcode isn't for the final output. return False class END_LOOP: """A no-op pseudo instruction that can be used to mark the end of a loop """ def __init__(self): # The opcode that is the first in the formal IF block self.start_op = None # The last operation in the IF-ELSE block - the target for # all if-exiting jumps. self.end_op = None # If this IF can be identified as the start of a new # line of source code, track that line. self.starts_line = None def process(self, context): # Find the most recent if block on the stack that hasn't been # ended. That's the block that the elif applies to. for loop in context.blocks[::-1]: if loop.end_op is None: loop.end_op = RESOLVE break # A jump back to the start of the loop for another iteration context.add_opcodes(jump(JavaOpcodes.GOTO(0), context, loop, Opcode.START)) # The next opcode is outside the LOOP block. context.next_resolve_list.append((loop, 'next_op')) context.next_resolve_list.append((loop, 'end_op')) # The end operation is virtual, so all markers point # to the next operation context.next_resolve_list.append((self, 'start_op')) context.next_resolve_list.append((self, 'end_op')) context.next_resolve_list.append((self, 'next_op')) # This opcode isn't for the final output. return False class IF: """Mark the start of an if-endif block. This forms the first of at least two pseudo-operations. It might be as simple as: IF([], IFOPCODE) ... END_IF() or as complex as IF([ ... # commands to prepare stack for IF opcode ], IFOPCODE ) ... ELIF([ ... # commands to prepare stack for next IF opcode ], IFOPCODE ) ... ELIF([ ... # commands to prepare stack for next IF opcode ], IFOPCODE ) ... ELSE() ... END_IF() END_IF comes *after* the last operation in the relevant block; but IF, ELIF and ELSE come *before* the first instruction. A little special handling is required to account for this. 1. When the IF is created, it is empty, and has no start_op. The empty pseudo-instruction is added to the blocks list. 2. When the instruction *after* the IF, ELIF or ELSE is processed, it is post-processed to fill in the operation marking the start of the relevant section. 3. When the first ELIF/ELSE is found, that marks the end of the IF; a new elif block is registered. A GOTO is added, with no offset, to the end of the IF block. The offset will be updated when the END_IF is found. 3. When the 2+ ELIF/ELSE is found, that marks the end of the previous ELIF; a new elif block is registered. A GOTO is added, with no offset, to the end of the previous block. The offset will be updated when the END_IF is found. 4. When an END_IF is found, that marks the end of the current IF-ELIF-ELSE block. An end_op is recorded; that means this if block is no longer current. IF-ELSE blocks can be nested, so when an ELIF, ELSE or END_IF is found, it is recorded against the last IF in the blocks list that has no end_op recorded. """ def __init__(self, commands, opcode): # The commands to prepare the stack for the IF comparison self.commands = commands if commands is not None else [] # print("CREATE IF", id(self), opcode) # The opcode class to instantiate self.opcode = opcode # The opcode that is the first in the formal IF block self.start_op = None # The instantiated opcode for the comparison self.if_op = None # The list of all ELSE blocks associated with this IF self.elifs = [] # The jump operation at the end of the IF, jumping to the # end of the IF-ELSE block. self.jump_op = None # The last operation in the IF-ELSE block - the target for # all if-exiting jumps. self.end_op = None # If this IF can be identified as the start of a new # line of source code, track that line. self.starts_line = None def process(self, context): # Record the start of the if block context.next_resolve_list.append((self, 'start_op')) # Add the stack prepration commands to the code list context.add_opcodes(*self.commands) # Create an instance of the opcode and put it on the code list self.if_op = self.opcode(0) context.add_opcodes(self.if_op) # Record this IF. context.blocks.append(self) # This opcode isn't for the final output. return False class ELIF: def __init__(self, commands, opcode): # The master IF block self.if_block = None # The commands to prepare the stack for the IF comparison self.commands = commands if commands is not None else [] # The opcode class to instantiate self.opcode = opcode # The instantiated opcode for the comparison self.elif_op = None # The jump operation at the end of the ELIF, jumping to the # end of the IF-ELSE block. self.jump_op = None # If this ELIF can be identified as the start of a new # line of source code, track that line. self.starts_line = None def process(self, context): # Find the most recent if block on the stack that hasn't been # ended. That's the block that the elif applies to. for if_block in context.blocks[::-1]: if if_block.end_op is None: if_block.end_op = RESOLVE break # If this is the first elif, add a GOTO and use it as the # jump operation at the end of the IF block. If there are # ELIFs, add the GOTO as the jump operation on the most # recent ELIF. jump_op = JavaOpcodes.GOTO(0) context.add_opcodes(jump_op) if len(if_block.elifs) == 0: if_block.jump_op = jump_op jump(if_block.if_op, context, self, Opcode.START) else: # print(" already got an endif") if_block.handlers[-1].jump_op = jump_op jump(if_block.handlers[-1].if_op, context, self, Opcode.START) # Record the start of the elif block context.next_resolve_list.append((self, 'start_op')) if self.opcode: # print(" this is an elif") # Add the stack prepration commands to the code list context.add_opcodes(*self.commands) # Create an instance of the opcode and put it on the code list self.if_op = self.opcode(0) context.add_opcodes(self.if_op) # else: # print(" this is an else") if_block.elifs.append(self) # print("IF BLOCKS: ", [(id(b), b.end_op) for b in context.blocks]) # This opcode isn't for the final output. return False class ELSE(ELIF): def __init__(self): # ELSE if an ELIF with no preparation and no comparison opcode super().__init__(None, None) class END_IF: def __init__(self): # If this IF can be identified as the start of a new # line of source code, track that line. self.starts_line = None def process(self, context): # Find the most recent if block on the stack that hasn't been # ended. That's the block that the elif applies to. for if_block in context.blocks[::-1]: if if_block.end_op is None: if_block.end_op = RESOLVE break # If there aren't any ELIF/ELSE definitions, then the # main if block jumps straight to the end. if len(if_block.elifs) == 0: jump(if_block.if_op, context, if_block, Opcode.NEXT) # Each of the 'end of block' jumps go to the end as well. if if_block.jump_op: jump(if_block.jump_op, context, if_block, Opcode.NEXT) for block in if_block.elifs: if block.jump_op: jump(block.jump_op, context, if_block, Opcode.NEXT) # The next opcode is outside the IF/ELIF/ELSE block. context.next_resolve_list.append((if_block, 'next_op')) # This opcode isn't for the final output. return False class TRY: """Mark the start of a try-catch block. This forms the first of at least three pseudo-operations: TRY() ... CATCH(['your/exception/descriptor1', 'your/exception/descriptor2']) ... CATCH('your/other/exception') ... CATCH() ... END_TRY() END_TRY come *after* the last operation in the relevant block; but TRY and CATCH come *before* the first instruction. A little special handling is required to account for this. 1. When the TRY is created, it is empty, and has no start_op. The empty pseudo-instruction is added to the exception list. 2. When the instruction *after* the TRY or CATCH is processed, it is post-processed to fill in the operation marking the start of the relevant section. 3. When a CATCH is found, that marks the end of the TRY; a new handler is registered in the current exception. If it's the first CATCH, a GOTO is added, with no offset, and recorded as the jump_op. The offset will be updated when the END is found. 4. When an END is found, that marks the end of the current exception. An end_op is recorded; that means this try block is no longer current. Exception blocks can be nested, so when a CATCH or END is found, it is recorded against the last exception in the exception list that has no end_op recorded. """ def __init__(self, else_block=None, finally_block=None): # The first command covered by the try block self.start_op = None # The last command covered by the try self.try_end_op = None # The jump at the end of the try block, after any # else and finally processing self.jump_op = None # The last command in the try/catch/else sequence self.end_op = None self.handlers = [] # The commands for the "else" block self.else_block = else_block # The commands for the "finally" block self.finally_block = finally_block # A handler for the finally block self.finally_handler = None # If this TRY can be identified as the start of a new # line of source code, track that line. self.starts_line = None def process(self, context): context.try_catches.append(self) # print(" try-catches", [(id(t), t.end_op) for t in context.try_catches]) # The next opcode is the start of the TRY block. context.next_resolve_list.append((self, 'start_op')) # This opcode isn't for the final output. return False class CATCH: def __init__(self, descriptors=None): if descriptors is None: self.descriptors = [] elif isinstance(descriptors, str): self.descriptors = [descriptors] else: self.descriptors = descriptors # If this CATCH can be identified as the start of a new # line of source code, track that line. self.starts_line = None # The last command covered by the catch self.catch_end_op = None # The jump at the end of the catch block, after any # finally processing self.jump_op = None def __len__(self): # The CATCH needs to be able to pass as an opcode under initial # post processing return 3 def process(self, context): # Find the most recent exception on the stack that hasn't been # ended. That's the block that the catch applies to. for try_catch in context.try_catches[::-1]: if try_catch.end_op is None: break # print(" current try_catch", try_catch) # print(" try-catches", [(id(t), t.end_op) for t in context.try_catches]) # If this is the first catch, insert a GOTO operation. # The jump distance will be updated when all the CATCH blocks # have been processed and the try_catch is converted. # If it isn't the first catch, then this catch concludes the # previous one. Add a goto to the end of the block, and # record the end of the block for framing purposes. end_jump = JavaOpcodes.GOTO(0) if len(try_catch.handlers) == 0: if try_catch.else_block or try_catch.finally_block: context.next_resolve_list.append((try_catch, 'try_end_op')) else: try_catch.try_end_op = end_jump if try_catch.else_block: for command in try_catch.else_block.commands: command.transpile(context) if try_catch.finally_block: for command in try_catch.finally_block.commands: command.transpile(context) try_catch.jump_op = end_jump else: if try_catch.else_block or try_catch.finally_block: context.next_resolve_list.append((try_catch.handlers[-1], 'catch_end_op')) else: try_catch.handlers[-1].catch_end_op = end_jump if try_catch.finally_block: for command in try_catch.finally_block.commands: command.transpile(context) try_catch.handlers[-1].jump_op = end_jump try_catch.handlers[-1].end_op = context.code[-1] context.add_opcodes(end_jump) jump(end_jump, context, try_catch, Opcode.NEXT) # Add this catch block as a handler try_catch.handlers.append(self) # The next opcode is the start of the catch block. context.next_resolve_list.append((self, 'start_op')) # This opcode isn't for the final output. return False class FINALLY: def __init__(self): # If this FINALLY can be identified as the start of a new # line of source code, track that line. self.starts_line = None # The last command covered by the finally self.end_op = None def __len__(self): # The FINALLY needs to be able to pass as an opcode under initial # post processing return 3 def process(self, context): # Find the most recent exception on the stack that hasn't been # ended. That's the block that the catch applies to. for try_catch in context.try_catches[::-1]: if try_catch.end_op is None: break # print(" current try_catch", try_catch) # print(" try-catches", [(id(t), t.end_op) for t in context.try_catches]) # If this is the first catch, insert a GOTO operation. # The jump distance will be updated when all the CATCH blocks # have been processed and the try_catch is converted. # If it isn't the first catch, then this catch concludes the # previous one. Add a goto to the end of the block, and # record the end of the block for framing purposes. end_jump = JavaOpcodes.GOTO(0) if len(try_catch.handlers) == 0: if try_catch.else_block or try_catch.finally_block: context.next_resolve_list.append((try_catch, 'try_end_op')) else: try_catch.try_end_op = end_jump if try_catch.else_block: for command in try_catch.else_block.commands: command.transpile(context) if try_catch.finally_block: for command in try_catch.finally_block.commands: command.transpile(context) try_catch.jump_op = end_jump else: if try_catch.else_block or try_catch.finally_block: context.next_resolve_list.append((try_catch.handlers[-1], 'catch_end_op')) else: try_catch.handlers[-1].catch_end_op = end_jump if try_catch.finally_block: for command in try_catch.finally_block.commands: command.transpile(context) try_catch.handlers[-1].jump_op = end_jump try_catch.handlers[-1].end_op = context.code[-1] context.add_opcodes(end_jump) jump(end_jump, context, try_catch, Opcode.NEXT) # Add this catch block as a handler try_catch.finally_handler = self # The next opcode is the start of the finally block. context.next_resolve_list.append((self, 'start_op')) # This opcode isn't for the final output. return False class END_TRY: def __init__(self): # If this END TRY can be identified as the start of a new # line of source code, track that line. self.starts_line = None def process(self, context): # Find the most recent exception on the stack that hasn't been # ended. That's the block we're ending. for try_catch in context.try_catches[::-1]: if try_catch.end_op is None: try_catch.end_op = RESOLVE break # print(" current try_catch", try_catch) # print(" try-catches", [(id(t), t.end_op) for t in context.try_catches]) if try_catch.finally_handler: try_catch.finally_handler.end_op = context.code[-1] elif len(try_catch.handlers) > 0: try_catch.handlers[-1].end_op = context.code[-1] try_catch.end_op = context.code[-1] # The next opcode is the end of the try-catch block. context.next_resolve_list.append((try_catch, 'next_op')) # This opcode isn't for the final output. return False ########################################################################## # Local variables are stored in a dictionary, keyed by name, # and with the value of the local variable register they are stored in. # # When a variable is deleted, a value of None is put in as the # value. ########################################################################## # A marker for deleted variable names. DELETED = object() def ALOAD_name(context, name): """Generate the opcode to load a variable with the given name onto the stack. This looks up the local variable dictionary to find which register is being used for that variable, using the optimized register operations for the first 4 local variables. """ i = context.localvars[name] if i == DELETED: raise KeyError(name) if i == 0: return JavaOpcodes.ALOAD_0() elif i == 1: return JavaOpcodes.ALOAD_1() elif i == 2: return JavaOpcodes.ALOAD_2() elif i == 3: return JavaOpcodes.ALOAD_3() else: return JavaOpcodes.ALOAD(i) def ASTORE_name(context, name): """Generate the opcode to store a variable with the given name. This looks up the local variable dictionary to find which register is being used for that variable, using the optimized register operations for the first 4 local variables. """ try: i = context.localvars[name] if i == DELETED: context.localvars[name] = i except KeyError: i = len(context.localvars) context.localvars[name] = i if i == 0: return JavaOpcodes.ASTORE_0() elif i == 1: return JavaOpcodes.ASTORE_1() elif i == 2: return JavaOpcodes.ASTORE_2() elif i == 3: return JavaOpcodes.ASTORE_3() else: return JavaOpcodes.ASTORE(i) def ADELETE_name(context, name): """Remove a name from the localvar pool """ try: value = context.localvars[name] if value == DELETED: raise KeyError("Local variable '%s' already deleted" % name) context.localvars[name] = DELETED except KeyError: raise def ICONST_val(value): """Write an integer constant onto the stack. There are a couple of opcodes that can be used to optimize the loading of small integers; use them if possible. """ if isinstance(value, bool): if value: return JavaOpcodes.ICONST_1() else: return JavaOpcodes.ICONST_0() elif isinstance(value, int): if value == 0: return JavaOpcodes.ICONST_0() elif value == 1: return JavaOpcodes.ICONST_1() elif value == 2: return JavaOpcodes.ICONST_2() elif value == 3: return JavaOpcodes.ICONST_3() elif value == 4: return JavaOpcodes.ICONST_4() elif value == 5: return JavaOpcodes.ICONST_5() elif value == -1: return JavaOpcodes.ICONST_M1() else: return JavaOpcodes.SIPUSH(value) else: raise RuntimeError("%s is not an integer constant" % value) class Ref: """A reference to an opcode by target offset""" def __init__(self, context, target): self.context = context self.target = target def __repr__(self): try: return repr(self.context.jump_targets[self.target]) except KeyError: return '<Ref: offset %s>' % self.target @property def start_op(self): return self.context.jump_targets[self.target].start_op @property def end_op(self): return self.context.jump_targets[self.target].end_op @property def next_op(self): return self.context.jump_targets[self.target].next_op def jump(opcode, context, target, position): """Define a jump operation. The specific offset will be resolved once all the Java opcodes have been instantiated """ # print(" add jump to reference %s %s %s %s..." % (opcode, id(opcode), target, position)) context.unknown_jump_targets.setdefault(target, []).append((opcode, position)) return opcode def resolve_jump(opcode, context, target, position): """Resolve a jump target in an opcode. target is the Python opcode (or a Ref instance). When Python code is converted to Java, it will turn into 0-N opcodes. We need to specify which one will be used as the Java offset: * START - the first Java opcode generated from this Python opcode * END - the last Java opcode generated from the Python opcode * NEXT - the next Java opcode added after this block. """ # print("RESOLVE %s %s to %s %s" % (opcode, id(opcode), target, position)) if position == Opcode.START: opcode.jump_op = target.start_op elif position == Opcode.END: opcode.jump_op = target.end_op elif position == Opcode.NEXT: opcode.jump_op = target.next_op else: raise Exception("Unknown opcode position") context.jumps.append(opcode) opcode.jump_op.references.append(opcode) ########################################################################## # Base classes for defining opcodes. ########################################################################## class Opcode: START = 10 END = 20 NEXT = 30 def __init__(self, python_offset, starts_line, is_jump_target): self.python_offset = python_offset self.starts_line = starts_line self.is_jump_target = is_jump_target @property def opname(self): return self.__class__.__name__ def __repr__(self): return self.opname + ': ' + self.__arg_repr__() def __arg_repr__(self): return '' def transpile(self, context, arguments): # If the Python opcode marks the start of a line of code, # transfer that relationship to the first opcode in the # generated Java code. if self.starts_line: context.next_opcode_starts_line = self.starts_line context.next_resolve_list.append((self, 'start_op')) n_ops = len(context.code) # Actually convert the opcode. This is recursive down the Command sequence. self.convert(context, arguments) if len(context.code) == n_ops: context.next_resolve_list.append((self, 'end_op')) else: self.end_op = context.code[-1] context.next_resolve_list.append((self, 'next_op')) # Save the code offset for the jump operation. context.jump_targets[self.python_offset] = self class UnaryOpcode(Opcode): @property def consume_count(self): return 1 @property def product_count(self): return 1 def convert(self, context, arguments): for argument in arguments: argument.operation.transpile(context, argument.arguments) context.add_opcodes( JavaOpcodes.INVOKEINTERFACE( 'org/python/Object', self.__method__, '()Lorg/python/Object;' ) ) class BinaryOpcode(Opcode): @property def consume_count(self): return 2 @property def product_count(self): return 1 def convert(self, context, arguments): for argument in arguments: argument.operation.transpile(context, argument.arguments) context.add_opcodes( JavaOpcodes.INVOKEINTERFACE( 'org/python/Object', self.__method__, '(Lorg/python/Object;)Lorg/python/Object;' ) ) class InplaceOpcode(Opcode): @property def consume_count(self): return 2 @property def product_count(self): return 1 def convert(self, context, arguments): arguments[0].operation.transpile(context, arguments[0].arguments) context.add_opcodes(JavaOpcodes.DUP()) for argument in arguments[1:]: argument.operation.transpile(context, argument.arguments) context.add_opcodes( JavaOpcodes.INVOKEINTERFACE( 'org/python/Object', self.__method__, '(Lorg/python/Object;)V' ) ) ########################################################################## # The actual Python opcodes ########################################################################## class POP_TOP(Opcode): @property def consume_count(self): return 1 @property def product_count(self): return 0 def convert(self, context, arguments): for argument in arguments: argument.operation.transpile(context, argument.arguments) # Ignore the top of the stack. context.add_opcodes(JavaOpcodes.POP()) class ROT_TWO(Opcode): @property def consume_count(self): return 2 @property def product_count(self): return 2 def convert(self, context, arguments): context.add_opcodes(JavaOpcodes.SWAP()) # class ROT_THREE(Opcode): class DUP_TOP(Opcode): @property def consume_count(self): return 1 @property def product_count(self): return 2 def convert(self, context, arguments): context.add_opcodes(JavaOpcodes.DUP()) class DUP_TOP_TWO(Opcode): @property def consume_count(self): return 2 @property def product_count(self): return 4 def convert(self, context, arguments): context.add_opcodes(JavaOpcodes.DUP2()) class NOP(Opcode): @property def consume_count(self): return 0 @property def product_count(self): return 0 def convert(self, context, arguments): context.add_opcodes(JavaOpcodes.NOP()) class UNARY_POSITIVE(UnaryOpcode): __method__ = '__pos__' class UNARY_NEGATIVE(UnaryOpcode): __method__ = '__neg__' class UNARY_NOT(UnaryOpcode): __method__ = '__not__' class UNARY_INVERT(UnaryOpcode): __method__ = '__invert__' class BINARY_POWER(BinaryOpcode): __method__ = '__pow__' class BINARY_MULTIPLY(BinaryOpcode): __method__ = '__mul__' class BINARY_MODULO(BinaryOpcode): __method__ = '__mod__' class BINARY_ADD(BinaryOpcode): __method__ = '__add__' class BINARY_SUBTRACT(BinaryOpcode): __method__ = '__sub__' class BINARY_SUBSCR(BinaryOpcode): __method__ = '__getitem__' class BINARY_FLOOR_DIVIDE(BinaryOpcode): __method__ = '__floordiv__' class BINARY_TRUE_DIVIDE(BinaryOpcode): __method__ = '__truediv__' class INPLACE_FLOOR_DIVIDE(InplaceOpcode): __method__ = '__ifloordiv__' class INPLACE_TRUE_DIVIDE(InplaceOpcode): __method__ = '__itruediv__' # class STORE_MAP(Opcode): class INPLACE_ADD(InplaceOpcode): __method__ = '__iadd__' class INPLACE_SUBTRACT(InplaceOpcode): __method__ = '__isub__' class INPLACE_MULTIPLY(InplaceOpcode): __method__ = '__imul__' class INPLACE_MODULO(InplaceOpcode): __method__ = '__imod__' class STORE_SUBSCR(Opcode): @property def consume_count(self): return 1 @property def product_count(self): return 1 def convert(self, context, arguments): pass # FIXME class DELETE_SUBSCR(Opcode): @property def consume_count(self): return 1 @property def product_count(self): return 1 def convert(self, context, arguments): pass # FIXME class BINARY_LSHIFT(BinaryOpcode): __method__ = '__lshift__' class BINARY_RSHIFT(BinaryOpcode): __method__ = '__rshift__' class BINARY_AND(BinaryOpcode): __method__ = '__and__' class BINARY_XOR(BinaryOpcode): __method__ = '__xor__' class BINARY_OR(BinaryOpcode): __method__ = '__or__' class INPLACE_POWER(InplaceOpcode): __method__ = '__ipow__' class GET_ITER(Opcode): @property def consume_count(self): return 1 @property def product_count(self): return 1 def convert(self, context, arguments): for argument in arguments: argument.operation.transpile(context, argument.arguments) context.add_opcodes( ASTORE_name(context, '##ITERABLE##'), JavaOpcodes.ICONST_1(), JavaOpcodes.ANEWARRAY('org/python/Object'), JavaOpcodes.DUP(), JavaOpcodes.ICONST_0(), ALOAD_name(context, '##ITERABLE##'), JavaOpcodes.AASTORE(), JavaOpcodes.NEW('java/util/Hashtable'), JavaOpcodes.DUP(), JavaOpcodes.INVOKESPECIAL('java/util/Hashtable', '<init>', '()V'), JavaOpcodes.INVOKESTATIC( 'org/Python', 'iter', '([Lorg/python/Object;Ljava/util/Hashtable;)Lorg/python/Iterable;' ), JavaOpcodes.CHECKCAST('org/python/Iterable'), ) class PRINT_EXPR(Opcode): @property def consume_count(self): return 1 @property def product_count(self): return 0 class LOAD_BUILD_CLASS(Opcode): @property def consume_count(self): return 0 @property def product_count(self): return 1 # class YIELD_FROM(Opcode): class INPLACE_LSHIFT(InplaceOpcode): __method__ = '__ilshift__' class INPLACE_RSHIFT(InplaceOpcode): __method__ = '__irshift__' class INPLACE_AND(InplaceOpcode): __method__ = '__iand__' class INPLACE_XOR(InplaceOpcode): __method__ = '__ixor__' class INPLACE_OR(InplaceOpcode): __method__ = '__ior__' # class BREAK_LOOP(Opcode): # class WITH_CLEANUP(Opcode): class RETURN_VALUE(Opcode): @property def consume_count(self): return 1 @property def product_count(self): return 0 def convert(self, context, arguments): for argument in arguments: argument.operation.transpile(context, argument.arguments) context.add_opcodes(JavaOpcodes.ARETURN()) # class IMPORT_STAR(Opcode): # class YIELD_VALUE(Opcode): class POP_BLOCK(Opcode): @property def consume_count(self): return 0 @property def product_count(self): return 0 class END_FINALLY(Opcode): @property def consume_count(self): return 2 @property def product_count(self): return 0 class POP_EXCEPT(Opcode): @property def consume_count(self): return 0 @property def product_count(self): return 0 def convert(self, context, arguments): # print("convert POP_EXCEPT", len(arguments)) for argument in arguments: argument.operation.transpile(context, argument.arguments) class STORE_NAME(Opcode): def __init__(self, name, python_offset, starts_line, is_jump_target): super().__init__(python_offset, starts_line, is_jump_target) self.name = name def __arg_repr__(self): return str(self.name) @property def consume_count(self): return 1 @property def product_count(self): return 0 def convert(self, context, arguments): for argument in arguments: argument.operation.transpile(context, argument.arguments) # Depending on context, this might mean writing to local # variables, class attributes, or to the global context. context.store_name(self.name, arguments) class DELETE_NAME(Opcode): def __init__(self, name, python_offset, starts_line, is_jump_target): super().__init__(python_offset, starts_line, is_jump_target) self.name = name def __arg_repr__(self): return str(self.name) @property def consume_count(self): return 0 @property def product_count(self): return 0 def convert(self, context, arguments): for argument in arguments: argument.operation.transpile(context, argument.arguments) # Depending on context, this might mean deleting from local # variables, class attributes, or to the global context. context.delete_name(self.name, arguments) class UNPACK_SEQUENCE(Opcode): def __init__(self, count, python_offset, starts_line, is_jump_target): super().__init__(python_offset, starts_line, is_jump_target) self.count = count def __arg_repr__(self): return str(self.count) @property def consume_count(self): return 1 @property def product_count(self): return self.count def convert(self, context, arguments): for argument in arguments: argument.operation.transpile(context, argument.arguments) context.add_opcodes( ASTORE_name(context, '##TEMP_%d##' % id(self)) ) for i in range(self.count, 0, -1): context.add_opcodes( ALOAD_name(context, '##TEMP_%d##' % id(self)), ICONST_val(i - 1), JavaOpcodes.INVOKEINTERFACE('org/python/Object', '__getitem__', '(I)Lorg/python/Object;'), ) class FOR_ITER(Opcode): def __init__(self, target, python_offset, starts_line, is_jump_target): super().__init__(python_offset, starts_line, is_jump_target) self.target = target def __arg_repr__(self): return str(self.target) @property def consume_count(self): return 1 @property def product_count(self): return 2 # class UNPACK_EX(Opcode): class STORE_ATTR(Opcode): def __init__(self, name, python_offset, starts_line, is_jump_target): super().__init__(python_offset, starts_line, is_jump_target) self.name = name def __arg_repr__(self): return str(self.name) @property def consume_count(self): return 2 @property def product_count(self): return 0 def convert(self, context, arguments): arguments[1].operation.transpile(context, arguments[1].arguments) context.add_opcodes(JavaOpcodes.LDC(self.name)) arguments[0].operation.transpile(context, arguments[0].arguments) context.add_opcodes( JavaOpcodes.INVOKEINTERFACE('org/python/Object', '__setattr__', '(Ljava/lang/String;Lorg/python/Object;)V'), ) # class DELETE_ATTR(Opcode): class STORE_GLOBAL(Opcode): def __init__(self, name, python_offset, starts_line, is_jump_target): super().__init__(python_offset, starts_line, is_jump_target) self.name = name def __arg_repr__(self): return str(self.name) @property def consume_count(self): return 1 @property def product_count(self): return 0 def convert(self, context, arguments): for argument in arguments: argument.operation.transpile(context, argument.arguments) # Depending on context, this might mean writing to local # variables, class attributes, or to the global context. context.store_name(self.name, arguments, allow_locals=False) # class DELETE_GLOBAL(Opcode): class LOAD_CONST(Opcode): def __init__(self, const, python_offset, starts_line, is_jump_target): super().__init__(python_offset, starts_line, is_jump_target) self.const = const def __arg_repr__(self): return str(self.const) @property def consume_count(self): return 0 @property def product_count(self): return 1 def _convert(self, context, arguments, const): # A None value has it's own opcode. # If the constant is a byte or a short, we can # cut a value out of the constant pool. if const is None: context.add_opcodes(JavaOpcodes.ACONST_NULL()) return else: if isinstance(const, bool): context.add_opcodes( JavaOpcodes.NEW('org/python/types/Bool'), JavaOpcodes.DUP(), ICONST_val(const), JavaOpcodes.INVOKESPECIAL('org/python/types/Bool', '<init>', '(Z)V'), ) elif isinstance(const, int): context.add_opcodes( JavaOpcodes.NEW('org/python/types/Int'), JavaOpcodes.DUP(), ICONST_val(const), JavaOpcodes.INVOKESPECIAL('org/python/types/Int', '<init>', '(I)V'), ) elif isinstance(const, float): context.add_opcodes( JavaOpcodes.NEW('org/python/types/Float'), JavaOpcodes.DUP(), JavaOpcodes.LDC2_W(const), JavaOpcodes.INVOKESPECIAL('org/python/types/Float', '<init>', '(D)V'), ) elif isinstance(const, str): context.add_opcodes( JavaOpcodes.NEW('org/python/types/Str'), JavaOpcodes.DUP(), JavaOpcodes.LDC(const), JavaOpcodes.INVOKESPECIAL('org/python/types/Str', '<init>', '(Ljava/lang/String;)V'), ) # elif isinstance(const, bytes): # context.add_opcodes( # JavaOpcodes.NEW('org/python/types/Bytes'), # JavaOpcodes.DUP(), # JavaOpcodes.LDC(const), # JavaOpcodes.INVOKESPECIAL('org/python/types/Bytes', '<init>', '(Ljava/lang/String;)V'), # ) elif isinstance(const, tuple): context.add_opcodes( JavaOpcodes.NEW('org/python/types/Tuple'), JavaOpcodes.DUP(), JavaOpcodes.NEW('java/util/ArrayList'), JavaOpcodes.DUP(), ICONST_val(len(const)), JavaOpcodes.INVOKESPECIAL('java/util/ArrayList', '<init>', '(I)V') ) for val in const: context.add_opcodes( JavaOpcodes.DUP(), ) self._convert(context, arguments, val) context.add_opcodes( JavaOpcodes.INVOKEVIRTUAL('java/util/ArrayList', 'add', '(Ljava/lang/Object;)Z'), JavaOpcodes.POP() ) context.add_opcodes( JavaOpcodes.INVOKESPECIAL('org/python/types/Tuple', '<init>', '(Ljava/util/ArrayList;)V'), ) else: raise RuntimeError("Unknown constant type %s" % type(const)) def convert(self, context, arguments): self._convert(context, arguments, self.const) class LOAD_NAME(Opcode): def __init__(self, name, python_offset, starts_line, is_jump_target): super().__init__(python_offset, starts_line, is_jump_target) self.name = name def __arg_repr__(self): return str(self.name) @property def consume_count(self): return 0 @property def product_count(self): return 1 def convert(self, context, arguments): context.load_name(self.name) class BUILD_TUPLE(Opcode): def __init__(self, count, python_offset, starts_line, is_jump_target): super().__init__(python_offset, starts_line, is_jump_target) self.count = count def __arg_repr__(self): return str(self.count) @property def consume_count(self): return self.count @property def product_count(self): return 1 def convert(self, context, arguments): context.add_opcodes( JavaOpcodes.NEW('org/python/types/Tuple'), JavaOpcodes.DUP(), JavaOpcodes.NEW('java/util/ArrayList'), JavaOpcodes.DUP(), ICONST_val(self.count), JavaOpcodes.INVOKESPECIAL('java/util/ArrayList', '<init>', '(I)V') ) for argument in arguments: context.add_opcodes( JavaOpcodes.DUP(), ) argument.operation.transpile(context, argument.arguments) context.add_opcodes( JavaOpcodes.INVOKEVIRTUAL('java/util/ArrayList', 'add', '(Ljava/lang/Object;)Z'), JavaOpcodes.POP(), ) context.add_opcodes( JavaOpcodes.INVOKESPECIAL('org/python/types/Tuple', '<init>', '(Ljava/util/ArrayList;)V') ) class BUILD_LIST(Opcode): def __init__(self, count, python_offset, starts_line, is_jump_target): super().__init__(python_offset, starts_line, is_jump_target) self.count = count def __arg_repr__(self): return str(self.count) @property def consume_count(self): return self.count @property def product_count(self): return 1 def convert(self, context, arguments): context.add_opcodes( JavaOpcodes.NEW('org/python/types/List'), JavaOpcodes.DUP(), JavaOpcodes.NEW('java/util/ArrayList'), JavaOpcodes.DUP(), ICONST_val(self.count), JavaOpcodes.INVOKESPECIAL('java/util/ArrayList', '<init>', '(I)V') ) for argument in arguments: context.add_opcodes( JavaOpcodes.DUP(), ) argument.operation.transpile(context, argument.arguments) context.add_opcodes( JavaOpcodes.INVOKEVIRTUAL('java/util/ArrayList', 'add', '(Ljava/lang/Object;)Z'), JavaOpcodes.POP(), ) context.add_opcodes( JavaOpcodes.INVOKESPECIAL('org/python/types/List', '<init>', '(Ljava/util/ArrayList;)V') ) class BUILD_SET(Opcode): def __init__(self, count, python_offset, starts_line, is_jump_target): super().__init__(python_offset, starts_line, is_jump_target) self.count = count def __arg_repr__(self): return str(self.count) @property def consume_count(self): return self.count @property def product_count(self): return 1 # def convert(self, context, arguments): # code = [] # return code class BUILD_MAP(Opcode): def __init__(self, count, python_offset, starts_line, is_jump_target): super().__init__(python_offset, starts_line, is_jump_target) self.count = count def __arg_repr__(self): return str(self.count) @property def consume_count(self): return self.count @property def product_count(self): return 1 # def convert(self, context, arguments): # code = [] # return code class LOAD_ATTR(Opcode): def __init__(self, name, python_offset, starts_line, is_jump_target): super().__init__(python_offset, starts_line, is_jump_target) self.name = name def __arg_repr__(self): return str(self.name) @property def consume_count(self): return 1 @property def product_count(self): return 1 def convert(self, context, arguments): # print("LOAD_ATTR", context, arguments) arguments[0].operation.transpile(context, arguments[0].arguments) context.add_opcodes(JavaOpcodes.LDC(self.name)) context.add_opcodes( JavaOpcodes.INVOKEINTERFACE('org/python/Object', '__getattr__', '(Ljava/lang/String;)Lorg/python/Object;'), ) class COMPARE_OP(Opcode): def __init__(self, comparison, python_offset, starts_line, is_jump_target): super().__init__(python_offset, starts_line, is_jump_target) self.comparison = comparison def __arg_repr__(self): return self.comparison @property def consume_count(self): return 2 @property def product_count(self): return 1 def convert(self, context, arguments): # Add the operand which will be the left side, and thus the # target of the comparator operator. for argument in arguments: argument.operation.transpile(context, argument.arguments) comparator = { '<': '__lt__', '<=': '__lte__', '>': '__gt__', '>=': '__gte__', '==': '__eq__', 'exception match': '__eq__', }[self.comparison] context.add_opcodes( JavaOpcodes.INVOKEINTERFACE('org/python/Object', comparator, '(Lorg/python/Object;)Lorg/python/Object;') ) class IMPORT_NAME(Opcode): def __init__(self, target, python_offset, starts_line, is_jump_target): super().__init__(python_offset, starts_line, is_jump_target) self.target = target def __arg_repr__(self): return str(self.target) @property def consume_count(self): return 2 @property def product_count(self): return 1 def convert(self, context, arguments): pass # FIXME class IMPORT_FROM(Opcode): def __init__(self, target, python_offset, starts_line, is_jump_target): super().__init__(python_offset, starts_line, is_jump_target) self.target = target def __arg_repr__(self): return str(self.target) @property def consume_count(self): return 0 @property def product_count(self): return 1 def convert(self, context, arguments): pass class JUMP_FORWARD(Opcode): def __init__(self, target, python_offset, starts_line, is_jump_target): super().__init__(python_offset, starts_line, is_jump_target) self.target = target def __arg_repr__(self): return str(self.target) @property def consume_count(self): return 0 @property def product_count(self): return 0 def convert(self, context, arguments): context.add_opcodes( jump(JavaOpcodes.GOTO(0), context, Ref(context, self.target), Opcode.START) ) # class JUMP_IF_FALSE_OR_POP(Opcode): # class JUMP_IF_TRUE_OR_POP(Opcode): class JUMP_ABSOLUTE(Opcode): def __init__(self, target, python_offset, starts_line, is_jump_target): super().__init__(python_offset, starts_line, is_jump_target) self.target = target def __arg_repr__(self): return str(self.target) @property def consume_count(self): return 0 @property def product_count(self): return 0 def convert(self, context, arguments): context.add_opcodes( jump(JavaOpcodes.GOTO(0), context, Ref(context, self.target), Opcode.START) ) class POP_JUMP_IF_FALSE(Opcode): def __init__(self, target, python_offset, starts_line, is_jump_target): super().__init__(python_offset, starts_line, is_jump_target) self.target = target def __arg_repr__(self): return str(self.target) @property def consume_count(self): return 1 @property def product_count(self): return 0 def convert(self, context, arguments): for argument in arguments: argument.operation.transpile(context, argument.arguments) context.add_opcodes( # (bool) TOS.value JavaOpcodes.INVOKEINTERFACE('org/python/Object', '__bool__', '()Lorg/python/types/Bool;'), JavaOpcodes.GETFIELD('org/python/types/Bool', 'value', 'Z'), # Jump if false jump(JavaOpcodes.IFEQ(0), context, Ref(context, self.target), Opcode.START) ) class POP_JUMP_IF_TRUE(Opcode): def __init__(self, target, python_offset, starts_line, is_jump_target): super().__init__(python_offset, starts_line, is_jump_target) self.target = target @property def consume_count(self): return 1 @property def product_count(self): return 0 def convert(self, context, arguments): for argument in arguments: argument.operation.transpile(context, argument.arguments) context.add_opcodes( # (bool) TOS.value JavaOpcodes.INVOKEINTERFACE('org/python/Object', '__bool__', '()Lorg/python/types/Bool;'), JavaOpcodes.GETFIELD('org/python/types/Bool', 'value', 'Z'), # Jump if not false jump(JavaOpcodes.IFNE(0), context, Ref(context, self.target), Opcode.START) ) class LOAD_GLOBAL(Opcode): def __init__(self, name, python_offset, starts_line, is_jump_target): super().__init__(python_offset, starts_line, is_jump_target) self.name = name def __arg_repr__(self): return str(self.name) @property def consume_count(self): return 0 @property def product_count(self): return 1 def convert(self, context, arguments): context.load_name(self.name, allow_locals=False) # class CONTINUE_LOOP(Opcode): class SETUP_LOOP(Opcode): def __init__(self, delta, python_offset, starts_line, is_jump_target): super().__init__(python_offset, starts_line, is_jump_target) self.delta = delta @property def consume_count(self): return 0 @property def product_count(self): return 0 def convert(self, context, arguments): pass class SETUP_EXCEPT(Opcode): def __init__(self, delta, python_offset, starts_line, is_jump_target): super().__init__(python_offset, starts_line, is_jump_target) self.delta = delta def __arg_repr__(self): return ' %s' % self.delta @property def consume_count(self): return 0 @property def product_count(self): return 0 class SETUP_FINALLY(Opcode): def __init__(self, delta, python_offset, starts_line, is_jump_target): super().__init__(python_offset, starts_line, is_jump_target) self.delta = delta def __arg_repr__(self): return ' %s' % self.delta @property def consume_count(self): return 0 @property def product_count(self): return 0 class LOAD_FAST(Opcode): def __init__(self, name, python_offset, starts_line, is_jump_target): super().__init__(python_offset, starts_line, is_jump_target) self.name = name def __arg_repr__(self): return str(self.name) @property def consume_count(self): return 0 @property def product_count(self): return 1 def convert(self, context, arguments): context.add_opcodes(ALOAD_name(context, self.name)) class STORE_FAST(Opcode): def __init__(self, name, python_offset, starts_line, is_jump_target): super().__init__(python_offset, starts_line, is_jump_target) self.name = name def __arg_repr__(self): return str(self.name) @property def consume_count(self): return 1 @property def product_count(self): return 0 def convert(self, context, arguments): for argument in arguments: argument.operation.transpile(context, argument.arguments) context.add_opcodes(ASTORE_name(context, self.name)) # class DELETE_FAST(Opcode): # class RAISE_VARARGS(Opcode): class CALL_FUNCTION(Opcode): def __init__(self, argc, python_offset, starts_line, is_jump_target): super().__init__(python_offset, starts_line, is_jump_target) self.args = argc & 0xff self.kwargs = ((argc >> 8) & 0xFF) def __arg_repr__(self): return '%s args, %s kwargs' % ( self.args, self.kwargs, ) @property def consume_count(self): return 1 + self.args + 2 * self.kwargs @property def product_count(self): return 1 def convert(self, context, arguments): code = [] if arguments[0].operation.opname == 'LOAD_BUILD_CLASS': # Construct a class. from .klass import Class code = arguments[1].arguments[0].operation.const class_name = arguments[1].arguments[1].operation.const if len(arguments) == 4: super_name = arguments[2].operation.const else: super_name = None klass = Class(context.parent, class_name, super_name=super_name) klass.extract(code) context.parent.classes.append(klass.transpile()) # print("DESCRIPTOR", klass.descriptor) # Push a callable onto the stack so that it can be stored # in globals and subsequently retrieved and run. context.add_opcodes( # Get a Method representing the new function TRY(), JavaOpcodes.LDC(Classref(klass.descriptor)), JavaOpcodes.ICONST_2(), JavaOpcodes.ANEWARRAY('java/lang/Class'), JavaOpcodes.DUP(), JavaOpcodes.ICONST_0(), JavaOpcodes.LDC(Classref('[Lorg/python/Object;')), JavaOpcodes.AASTORE(), JavaOpcodes.DUP(), JavaOpcodes.ICONST_1(), JavaOpcodes.LDC(Classref('java/util/Hashtable')), JavaOpcodes.AASTORE(), JavaOpcodes.INVOKEVIRTUAL( 'java/lang/Class', 'getConstructor', '([Ljava/lang/Class;)Ljava/lang/reflect/Constructor;' ), ASTORE_name(context, '#CONSTRUCTOR#'), # # Then wrap that Constructor into a Callable. JavaOpcodes.NEW('org/python/types/Constructor'), JavaOpcodes.DUP(), ALOAD_name(context, '#CONSTRUCTOR#'), JavaOpcodes.INVOKESPECIAL('org/python/types/Constructor', '<init>', '(Ljava/lang/reflect/Constructor;)V'), CATCH('java/lang/NoSuchMethodError'), ASTORE_name(context, '#EXCEPTION#'), JavaOpcodes.NEW('org/python/exceptions/RuntimeError'), JavaOpcodes.DUP(), JavaOpcodes.LDC('Unable to find class %s' % (klass.descriptor)), JavaOpcodes.INVOKESPECIAL('org/python/exceptions/RuntimeError', '<init>', '(Ljava/lang/String;)V'), JavaOpcodes.ATHROW(), END_TRY() ) else: # print("CALL_FUNCTION", context, arguments) # Retrive the function arguments[0].operation.transpile(context, arguments[0].arguments) context.add_opcodes( JavaOpcodes.CHECKCAST('org/python/Callable'), ) final_args = self.args first_arg = 0 # If the function has been retrived using LOAD_ATTR, that means # it's an instance method. We need to pass the instance itself # as the first argument, so make space for that. if arguments[0].operation.opname == 'LOAD_ATTR': final_args += 1 first_arg = 1 context.add_opcodes( # Create an array to pass in arguments to invoke() ICONST_val(final_args), JavaOpcodes.ANEWARRAY('org/python/Object'), ) # If it's an instance method, put the instance at the start of # the argument list. if arguments[0].operation.opname == 'LOAD_ATTR': context.add_opcodes( JavaOpcodes.DUP(), ICONST_val(0), ) arguments[0].arguments[0].operation.transpile(context, arguments[0].arguments[0].arguments) context.add_opcodes(JavaOpcodes.AASTORE()) # Push all the arguments into an array for i, argument in enumerate(arguments[1:self.args+1]): context.add_opcodes( JavaOpcodes.DUP(), ICONST_val(first_arg + i), ) argument.operation.transpile(context, argument.arguments) context.add_opcodes(JavaOpcodes.AASTORE()) # Create a Hashtable, and push all the kwargs into it. context.add_opcodes( JavaOpcodes.NEW('java/util/Hashtable'), JavaOpcodes.DUP(), JavaOpcodes.INVOKESPECIAL('java/util/Hashtable', '<init>', '()V') ) for name, argument in zip(arguments[self.args+1::2], arguments[self.args+2::2]): context.add_opcodes( JavaOpcodes.DUP(), JavaOpcodes.LDC(name), ) argument.operation.transpile(context, argument.arguments) context.add_opcodes( JavaOpcodes.INVOKEVIRTUAL('java/util/Hashtable', 'put', '(Ljava/lang/Object;Ljava/lang/Object;)Ljava/lang/Object;'), JavaOpcodes.POP() ) context.add_opcodes( JavaOpcodes.INVOKEINTERFACE('org/python/Callable', 'invoke', '([Lorg/python/Object;Ljava/util/Hashtable;)Lorg/python/Object;'), ) return code class MAKE_FUNCTION(Opcode): def __init__(self, argc, python_offset, starts_line, is_jump_target): super().__init__(python_offset, starts_line, is_jump_target) self.argc = argc self.default_args = argc & 0xff self.default_kwargs = ((argc >> 8) & 0xFF) self.annotations = (argc >> 16) & 0x7FFF def __arg_repr__(self): return '%d %s default args, %s default kwargs, %s annotations' % ( self.argc, self.default_args, self.default_kwargs, self.annotations, ) @property def consume_count(self): if self.annotations: return 2 + self.annotations else: return 2 + self.default_args + (2 * self.default_kwargs) @property def product_count(self): return 1 def convert(self, context, arguments): # Add a new method definition to the context class/module code = arguments[-2].operation.const full_method_name = arguments[-1].operation.const method = context.add_method(full_method_name, code) if method.is_constructor: context.add_opcodes( JavaOpcodes.ACONST_NULL() ) elif method.is_closuremethod: context.add_opcodes( JavaOpcodes.NEW(method.callable), JavaOpcodes.DUP(), JavaOpcodes.INVOKESPECIAL(method.callable, '<init>', '()V'), ) else: # Push a callable onto the stack so that it can be stored # in globals and subsequently retrieved and run. context.add_opcodes( # Get a Method representing the new function TRY(), JavaOpcodes.LDC(Classref(context.descriptor)), JavaOpcodes.LDC(method.name), JavaOpcodes.ICONST_2(), JavaOpcodes.ANEWARRAY('java/lang/Class'), JavaOpcodes.DUP(), JavaOpcodes.ICONST_0(), JavaOpcodes.LDC(Classref('[Lorg/python/Object;')), JavaOpcodes.AASTORE(), JavaOpcodes.DUP(), JavaOpcodes.ICONST_1(), JavaOpcodes.LDC(Classref('java/util/Hashtable')), JavaOpcodes.AASTORE(), JavaOpcodes.INVOKEVIRTUAL( 'java/lang/Class', 'getMethod', '(Ljava/lang/String;[Ljava/lang/Class;)Ljava/lang/reflect/Method;' ), ASTORE_name(context, '#METHOD#'), # Then wrap that Method into a Callable. JavaOpcodes.NEW(method.callable), JavaOpcodes.DUP(), ALOAD_name(context, '#METHOD#'), ICONST_val(method.static), JavaOpcodes.INVOKESPECIAL(method.callable, '<init>', '(Ljava/lang/reflect/Method;Z)V'), CATCH('java/lang/NoSuchMethodError'), ASTORE_name(context, '#EXCEPTION#'), JavaOpcodes.NEW('org/python/exceptions/RuntimeError'), JavaOpcodes.DUP(), JavaOpcodes.LDC('Unable to find MAKE_FUNCTION output %s.%s' % (context.module.descriptor, full_method_name)), JavaOpcodes.INVOKESPECIAL('org/python/exceptions/RuntimeError', '<init>', '(Ljava/lang/String;)V'), JavaOpcodes.ATHROW(), END_TRY() ) class BUILD_SLICE(Opcode): def __init__(self, argc, python_offset, starts_line, is_jump_target): super().__init__(python_offset, starts_line, is_jump_target) self.argc = argc def __arg_repr__(self): return '%s' % (self.argc) @property def consume_count(self): return self.argc @property def product_count(self): return 1 def convert(self, context, arguments): for argument in arguments: argument.operation.transpile(context, argument.arguments) class MAKE_CLOSURE(Opcode): def __init__(self, argc, python_offset, starts_line, is_jump_target): super().__init__(python_offset, starts_line, is_jump_target) self.argc = argc def __arg_repr__(self): return '%s' % (self.argc) @property def consume_count(self): return 3 + self.argc @property def product_count(self): return 1 class LOAD_CLOSURE(Opcode): def __init__(self, i, python_offset, starts_line, is_jump_target): super().__init__(python_offset, starts_line, is_jump_target) self.i = i def __arg_repr__(self): return '%s' % (self.i) @property def consume_count(self): return 0 @property def product_count(self): return 1 # def convert(self, context, arguments): # return [] # class LOAD_DEREF(Opcode): # class STORE_DEREF(Opcode): # class DELETE_DEREF(Opcode): # class CALL_FUNCTION_KW(Opcode): # class CALL_FUNCTION_VAR_KW(Opcode): # class SETUP_WITH(Opcode): class LIST_APPEND(Opcode): def __init__(self, index, python_offset, starts_line, is_jump_target): super().__init__(python_offset, starts_line, is_jump_target) self.index = index def __arg_repr__(self): return str(self.index) @property def consume_count(self): return 1 @property def product_count(self): return 0 def convert(self, context, arguments): for i in range(1, self.index): context.add_opcodes( ASTORE_name(context, '##temp-%s-%s##' % (id(self), i)) ) context.add_opcodes( JavaOpcodes.DUP(), ) for argument in arguments: argument.operation.transpile(context, argument.arguments) context.add_opcodes( JavaOpcodes.INVOKEVIRTUAL('java/util/ArrayList', 'add', '(Ljava/util/ArrayList;)Z'), JavaOpcodes.POP(), ) for i in range(self.index, 1, -1): context.add_opcodes( ALOAD_name(context, '##temp-%s-%s##' % (id(self), i - 1)) ) # class SET_ADD(Opcode): # class MAP_ADD(Opcode): # class LOAD_CLASSDEREF(Opcode):
{ "content_hash": "2d52c0b2dbb3bdc56b3ddce0fb3af894", "timestamp": "", "source": "github", "line_count": 2254, "max_line_length": 143, "avg_line_length": 29.6885536823425, "alnum_prop": 0.576347171164709, "repo_name": "chubbymaggie/voc", "id": "aa0e7504a6436576760014bcc67e9c3eabf852ff", "size": "66918", "binary": false, "copies": "6", "ref": "refs/heads/master", "path": "voc/python/opcodes.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "Java", "bytes": "227208" }, { "name": "Makefile", "bytes": "4720" }, { "name": "Python", "bytes": "640728" } ], "symlink_target": "" }
from parsetron import String, Grammar, Regex, Or, Optional, ZeroOrMore, \ OneOrMore, RobustParser __author__ = 'Xuchen Yao' def replaced_string(s, v): return String(s).replace_result_with(v) def result_sum(r): # result could either be a list or a single item try: r.set(sum(r.get())) except TypeError: # not a list r.set(r.get()) def result_mul(r): try: m = 1 for i in r.get(): if type(i) is list: i = i[0] m *= i except TypeError: # not a list m = r.get() r.set(m) class NumbersGrammar(Grammar): single_maps = [ ('zero', 0), ('o', 0), ('oh', 0), ('nada', 0), ('one', 1), ('a', 1), ('two', 2), ('three', 3), ('four', 4), ('five', 5), ('six', 6), ('seven', 7), ('eight', 8), ('nine', 9), ('ten', 10), ('eleven', 11), ('twelve', 12), ('thirteen', 13), ('fourteen', 14), ('forteen', 14), ('fifteen', 15), ('sixteen', 16), ('seventeen', 17), ('eighteen', 18), ('nineteen', 19)] ten_maps = [ ('ten', 10), ('twenty', 20), ('thirty', 30), ('forty', 40), ('fourty', 40), ('fifty', 50), ('sixty', 60), ('seventy', 70), ('eighty', 80), ('ninety', 90)] digits = Regex(r"\d+").set_result_action(lambda r: r.set(int(r.get()))) single = Or([replaced_string(s, v) for s, v in single_maps]) ten = Or([replaced_string(s, v) for s, v in ten_maps]) double = (Optional(ten) + Optional(single)).set_result_action(result_sum) \ | digits a_hundred = replaced_string('hundred', 100) zero_maps = [ ('hundred', 100), ('thousand', 1000), ('million', int(1e6)), ('billion', int(1e9)), ('trillion', int(1e12))] zero = Or([replaced_string(s, v) for s, v in zero_maps]) zeros = ZeroOrMore(zero).set_result_action(result_mul) hundred = ((double + a_hundred).set_result_action(result_mul) + Optional(double)).set_result_action(result_sum) unit = ((double | hundred) + zeros).set_result_action(result_mul) GOAL = OneOrMore(unit).set_result_action(result_sum) sents = [ ('zero', 0), ('twelve', 12), ('twenty', 20), ('twenty three', 23), ('23', 23), ('eight hundred fifty eight', 858), ('one hundred twenty five', 125), ('seventy three', 73), ('twelve hundred thirty five', 1235), ('twenty two hundred thirty five', 2235), ('two thousand', 2000), ('two thousand two hundred thirty five', 2235), ('seventy eight thousand nine hundred twenty one', 78921), ('seven hundred eighty nine thousand twenty one', 789021), ('one million sixty one', 1000061), ('1 million sixty one', 1000061), ('1 million 61', 1000061), ('twenty three million seven hundred eighty nine thousand', 23789000), ('one hundred thousand sixty one', 100061), ('one hundred thousand five hundred sixty one', 100561), ('1 hundred thousand 5 hundred 61', 100561), ] @staticmethod def test(): parser = RobustParser(NumbersGrammar()) for sent, expect in NumbersGrammar.sents: t, r = parser.parse(sent) # print(t) # print(r) assert r.get() == expect, "%s <- %s" % (str(r.get()), sent) def test(): """ Simple test method to be called by pytest """ NumbersGrammar.test() if __name__ == "__main__": test()
{ "content_hash": "208f6047fe67264f06bac247b835329a", "timestamp": "", "source": "github", "line_count": 110, "max_line_length": 79, "avg_line_length": 31.78181818181818, "alnum_prop": 0.5371853546910755, "repo_name": "Kitt-AI/parsetron", "id": "f2ad8c88bc3541137e431097f082563dddfdc80a", "size": "3496", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "parsetron/grammars/numbers.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Makefile", "bytes": "1944" }, { "name": "Python", "bytes": "145033" }, { "name": "Shell", "bytes": "493" } ], "symlink_target": "" }
from swgpy.object import * def create(kernel): result = Building() result.template = "object/building/poi/shared_naboo_tradefederationloyalist_large2.iff" result.attribute_template_id = -1 result.stfName("poi_n","base_poi_building") #### BEGIN MODIFICATIONS #### #### END MODIFICATIONS #### return result
{ "content_hash": "a5526f7328e6a73a661e39319d515c17", "timestamp": "", "source": "github", "line_count": 13, "max_line_length": 88, "avg_line_length": 24.76923076923077, "alnum_prop": 0.7080745341614907, "repo_name": "obi-two/Rebelion", "id": "a1468b2ff5678df876b0e9dd26ad9b392d2b3fb5", "size": "467", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "data/scripts/templates/object/building/poi/shared_naboo_tradefederationloyalist_large2.py", "mode": "33188", "license": "mit", "language": [ { "name": "Batchfile", "bytes": "11818" }, { "name": "C", "bytes": "7699" }, { "name": "C++", "bytes": "2293610" }, { "name": "CMake", "bytes": "39727" }, { "name": "PLSQL", "bytes": "42065" }, { "name": "Python", "bytes": "7499185" }, { "name": "SQLPL", "bytes": "41864" } ], "symlink_target": "" }
from typing import Any, Dict from django.http import HttpRequest, HttpResponse from django.utils.translation import gettext as _ from zerver.decorator import webhook_view from zerver.lib.exceptions import JsonableError from zerver.lib.request import REQ, has_request_variables from zerver.lib.response import json_success from zerver.lib.webhooks.common import check_send_webhook_message from zerver.models import UserProfile @webhook_view("IFTTT") @has_request_variables def api_iftt_app_webhook( request: HttpRequest, user_profile: UserProfile, payload: Dict[str, Any] = REQ(argument_type="body"), ) -> HttpResponse: topic = payload.get("topic") content = payload.get("content") if topic is None: topic = payload.get("subject") # Backwards-compatibility if topic is None: raise JsonableError(_("Topic can't be empty")) if content is None: raise JsonableError(_("Content can't be empty")) if not isinstance(topic, str): raise JsonableError(_("Topic must be a string")) if not isinstance(content, str): raise JsonableError(_("Content must be a string")) check_send_webhook_message(request, user_profile, topic, content) return json_success()
{ "content_hash": "7cccde6b779d286d2e24cb725356c4bb", "timestamp": "", "source": "github", "line_count": 39, "max_line_length": 69, "avg_line_length": 32, "alnum_prop": 0.7163461538461539, "repo_name": "eeshangarg/zulip", "id": "45203545d043194ad8938c3695010515529f5f56", "size": "1248", "binary": false, "copies": "1", "ref": "refs/heads/main", "path": "zerver/webhooks/ifttt/view.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "CSS", "bytes": "484233" }, { "name": "Dockerfile", "bytes": "5056" }, { "name": "Emacs Lisp", "bytes": "157" }, { "name": "HTML", "bytes": "713408" }, { "name": "Handlebars", "bytes": "343958" }, { "name": "JavaScript", "bytes": "3738321" }, { "name": "Perl", "bytes": "9884" }, { "name": "Puppet", "bytes": "106355" }, { "name": "Python", "bytes": "9442083" }, { "name": "Ruby", "bytes": "3250" }, { "name": "Shell", "bytes": "135667" }, { "name": "TypeScript", "bytes": "275302" } ], "symlink_target": "" }
"""Layout to monitor flight status.""" from makani.control import system_params from makani.gs.monitor2.apps.layout import base from makani.gs.monitor2.apps.plugins import common from makani.gs.monitor2.apps.plugins.indicators import aio_comms from makani.gs.monitor2.apps.plugins.indicators import avionics from makani.gs.monitor2.apps.plugins.indicators import batt from makani.gs.monitor2.apps.plugins.indicators import control from makani.gs.monitor2.apps.plugins.indicators import estimator from makani.gs.monitor2.apps.plugins.indicators import gps from makani.gs.monitor2.apps.plugins.indicators import ground_power from makani.gs.monitor2.apps.plugins.indicators import ground_station from makani.gs.monitor2.apps.plugins.indicators import motor from makani.gs.monitor2.apps.plugins.indicators import mvlv from makani.gs.monitor2.apps.plugins.indicators import network from makani.gs.monitor2.apps.plugins.indicators import node_status from makani.gs.monitor2.apps.plugins.indicators import servo from makani.gs.monitor2.apps.plugins.indicators import short_stack _SYSTEM_PARAMS = system_params.GetSystemParams().contents class FlightLayout(base.BaseLayout): """The flight layout.""" _NAME = 'Flight' _DESIRED_VIEW_COLS = 12 _ORDER_HORIZONTALLY = False _TOP_MOTORS = ['Pto', 'Pti', 'Sti', 'Sto'] _BOTTOM_MOTORS = ['Pbo', 'Pbi', 'Sbi', 'Sbo'] # Derived class should set the _MODE. _MODE = '<unset>' def Initialize(self): self._AddIndicators('Comms Status', [ network.TetherCommsStatusPoFIndicator('PoF', show_label=True), network.TetherCommsStatusEoPIndicator('EoP', show_label=False), network.TetherCommsStatusWifiIndicator('Wifi', show_label=False), network.JoystickRadioStatusIndicator('Joystick Radio'), network.TetherLongRangeRadioStatusIndicator('Long range'), ], properties={'cols': 3}) self._AddIndicators('AIO Update', [ aio_comms.CoreSwitchAioUpdateIndicator(), aio_comms.ControllerAioUpdateIndicator(), aio_comms.FlightComputerAioUpdateIndicator(), aio_comms.JoystickAioUpdateIndicator(), ], properties={'cols': 3}) self._AddIndicators('Control', [ control.ControllerInitStateIndicator(), control.VersionIndicator(), control.FlightPlanIndicator(), control.FlightModeIndicator(self._MODE), control.FlightModeGatesIndicator(self._MODE), control.ControlTimeIndicator(self._MODE), control.ControllerTimingIndicator(self._MODE), control.ExperimentIndicator(self._MODE), control.JoystickIndicator(), control.HoverGainRampScaleIndicator(self._MODE), control.TetherReleaseIndicator(), control.TetherReleaseReadinessIndicator( ['LoadcellPortA', 'LoadcellPortB', 'LoadcellStarboardA', 'LoadcellStarboardB']), ], properties={'cols': 3}) self._AddIndicators('Weather', [ ground_station.WindIndicator(), ground_station.WeatherSensorIndicator(), ], properties={'cols': 3}) self._AddIndicators('Ground Station', [ ground_station.PerchAzimuthIndicator(), ground_station.DetwistErrorIndicator(), ground_station.EStopStatusIndicator(), ground_station.GsCommsIndicator(), ground_station.GsArmingStatusIndicator(), ground_power.SummaryIndicator('Ground Power'), ground_power.FaultIsolationIndicator('Power Fault Isolation [V]'), ], properties={'cols': 3}) self._AddIndicators('Faults', [ control.FdAllActiveIndicator(), short_stack.ShortStackFlightIndicator(), ], properties={'cols': 3}) self._AddBreak() self._AddIndicators('Avionics', [ servo.StatusIndicator(self._MODE), motor.StackBusPowerIndicator(self._MODE, 'Wing Power (Generated)'), avionics.FpvIndicator(self._MODE, ['A', 'B', 'C'], 'Fpv Enabled'), avionics.PitotCoverIndicator(common.FULL_COMMS_MODE, ['A', 'B', 'C'], 'Pitot Cover'), ], properties={'cols': 3}) self._AddIndicators('Power System', self._GetPowerSystemIndicators(), properties={'cols': 3}) self._AddIndicators( 'Top Motors', self._GetMotorIndicators(self._TOP_MOTORS), properties={'cols': 3}) self._AddIndicators( 'Bottom Motors', self._GetMotorIndicators(self._BOTTOM_MOTORS) + [control.FlutterWarningIndicator(self._MODE)], properties={'cols': 3}) self._AddBreak() self._AddIndicators('Tail Servos', [ servo.ArmedTailIndicator(self._MODE), servo.R22TemperatureTailIndicator(self._MODE), servo.ElePosChart(self._MODE, ylim=[-30, 30]), servo.RudPosChart(self._MODE, ylim=[-90, 90]), ], properties={'cols': 3}) self._AddIndicators('Port Servos', [ servo.ArmedPortIndicator(self._MODE), servo.R22TemperaturePortIndicator(self._MODE), servo.PortPosChart(self._MODE, ylim=[-40, 20]), ], properties={'cols': 3}) self._AddIndicators('Starboard Servos', [ servo.ArmedStarboardIndicator(self._MODE), servo.R22TemperatureStarboardIndicator(self._MODE), servo.StarboardPosChart(self._MODE, ylim=[-40, 20]), ], properties={'cols': 3}) self._AddIndicators('Wing GPS', [ ], properties={'cols': 3}) self._AddIndicators('Estimator', [ estimator.EstimatorGsgBias(common.FULL_COMMS_MODE), estimator.EstimatorGpsDiff(common.FULL_COMMS_MODE), estimator.EstimatorGyroDiffIndicator(common.FULL_COMMS_MODE), estimator.EstimatorMagnetometerDiffIndicator(common.FULL_COMMS_MODE), estimator.EstimatorAttitudeDiffIndicator(common.FULL_COMMS_MODE), estimator.EstimatorGyroBiasIndicator(common.FULL_COMMS_MODE), estimator.EstimatorGyroBiasDriftIndicator(common.FULL_COMMS_MODE), estimator.EstimatorGsgDiff(common.FULL_COMMS_MODE), ], properties={'cols': 3}) self._AddIndicators('Vessel', [ gps.TetherUpGpsIndicator(name='GPS BaseStation'), control.VesselPositionIndicator(common.FULL_COMMS_MODE), control.VesselAttitudeIndicator(common.FULL_COMMS_MODE), ], properties={'cols': 3}) self._AddBreak() self._AddIndicators('Wing', [ control.HoverAnglesChart(self._MODE, ylim=[-90, 90]), control.TetherAnglesChart(ylim=[-100, 100]), control.WingPosChart(self._MODE, ylim=[-600, 500]), control.AirSpeedChart(self._MODE, ylim=[0, 80]), control.TensionChart(self._MODE), control.TensionPilotOffsetIndicator(), avionics.BridleJunctionLoadcellIndicator('Bridle Junc'), control.ImpactZoneChart(self._MODE), ], properties={'cols': 3}) def _GetPowerSystemIndicators(self): indicators = [ motor.MotorLVInputIndicator(chars_per_line=15), node_status.TetherNodePowerSummary('Power'), batt.TetherDownLvBusVoltageIndicator(), batt.StateOfChargeIndicator(['A', 'B'], 'State of Charge'), # Show both MvLv and battery warnings and errors. There can be more than # 6 warnings/errors in the worst case, but set it to 6 to save space. # This is the only place showing Mvlv errors in SN01/Gin since Mvlv # errors are excluded from TetherNodeErrorSummary for noise issue in # SN1/Gin mvlv.LvSummaryIndicator(num_lines=6), ] if _SYSTEM_PARAMS.wing_serial != system_params.kWingSerial01: indicators.insert(0, motor.MotorVoltageIndicator(chars_per_line=15)) return indicators def _GetMotorIndicators(self, motor_labels): indicators = [ motor.ArmedIndicator( self._MODE, motor_labels=motor_labels, show_label=True), motor.ErrorIndicator( self._MODE, motor_labels=motor_labels, show_label=False), motor.WarningIndicator( self._MODE, motor_labels=motor_labels, show_label=False), motor.MotorBusVoltageIndicator( self._MODE, motor_labels=motor_labels, show_label=False), motor.BoardTemperatureIndicator( self._MODE, motor_labels=motor_labels, show_label=False), motor.CapacitorTemperatureIndicator( self._MODE, motor_labels=motor_labels, show_label=False), ] if _SYSTEM_PARAMS.wing_serial in (system_params.kWingSerial04Hover, system_params.kWingSerial04Crosswind): indicators += [ motor.ModuleTemperatureIndicator( motor_labels=motor_labels, show_label=False), ] else: indicators += [ motor.HeatPlateTemperatureIndicator( self._MODE, motor_labels=motor_labels, show_label=False), ] indicators += [ motor.SpeedChart( self._MODE, 'Speed [rad/s]', motor_labels, ylim=[-250, 250], show_cmd=True), ] return indicators
{ "content_hash": "f3a9d8fdc7e04552c1a9a8f248b871f1", "timestamp": "", "source": "github", "line_count": 216, "max_line_length": 80, "avg_line_length": 41.324074074074076, "alnum_prop": 0.6757786242437822, "repo_name": "google/makani", "id": "db279945d5ae97aa17ba4829dbd9aa6a0c56eade", "size": "9515", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "gs/monitor2/apps/plugins/layouts/flight_template.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Assembly", "bytes": "119408" }, { "name": "C", "bytes": "20174258" }, { "name": "C++", "bytes": "30512322" }, { "name": "CSS", "bytes": "8921" }, { "name": "Dockerfile", "bytes": "1381" }, { "name": "Emacs Lisp", "bytes": "1134" }, { "name": "HTML", "bytes": "65745" }, { "name": "Java", "bytes": "1558475" }, { "name": "JavaScript", "bytes": "130727" }, { "name": "Jupyter Notebook", "bytes": "1154728" }, { "name": "MATLAB", "bytes": "1026162" }, { "name": "Makefile", "bytes": "2798" }, { "name": "Objective-C", "bytes": "62972" }, { "name": "Perl", "bytes": "870724" }, { "name": "Python", "bytes": "5552781" }, { "name": "RPC", "bytes": "195736" }, { "name": "Roff", "bytes": "2567875" }, { "name": "SWIG", "bytes": "8663" }, { "name": "Shell", "bytes": "297941" }, { "name": "Starlark", "bytes": "462998" }, { "name": "Vim Script", "bytes": "2281" }, { "name": "XC", "bytes": "50398" }, { "name": "XS", "bytes": "49289" } ], "symlink_target": "" }
import unittest from datetime import datetime from unittest import mock from django.test import SimpleTestCase, ignore_warnings from django.utils.datastructures import MultiValueDict from django.utils.deprecation import RemovedInDjango40Warning from django.utils.http import ( base36_to_int, escape_leading_slashes, http_date, int_to_base36, is_safe_url, is_same_domain, parse_etags, parse_http_date, quote_etag, url_has_allowed_host_and_scheme, urlencode, urlquote, urlquote_plus, urlsafe_base64_decode, urlsafe_base64_encode, urlunquote, urlunquote_plus, ) class URLEncodeTests(SimpleTestCase): cannot_encode_none_msg = ( "Cannot encode None for key 'a' in a query string. Did you mean to " "pass an empty string or omit the value?" ) def test_tuples(self): self.assertEqual(urlencode((('a', 1), ('b', 2), ('c', 3))), 'a=1&b=2&c=3') def test_dict(self): result = urlencode({'a': 1, 'b': 2, 'c': 3}) # Dictionaries are treated as unordered. self.assertIn(result, [ 'a=1&b=2&c=3', 'a=1&c=3&b=2', 'b=2&a=1&c=3', 'b=2&c=3&a=1', 'c=3&a=1&b=2', 'c=3&b=2&a=1', ]) def test_dict_containing_sequence_not_doseq(self): self.assertEqual(urlencode({'a': [1, 2]}, doseq=False), 'a=%5B1%2C+2%5D') def test_dict_containing_tuple_not_doseq(self): self.assertEqual(urlencode({'a': (1, 2)}, doseq=False), 'a=%281%2C+2%29') def test_custom_iterable_not_doseq(self): class IterableWithStr: def __str__(self): return 'custom' def __iter__(self): yield from range(0, 3) self.assertEqual(urlencode({'a': IterableWithStr()}, doseq=False), 'a=custom') def test_dict_containing_sequence_doseq(self): self.assertEqual(urlencode({'a': [1, 2]}, doseq=True), 'a=1&a=2') def test_dict_containing_empty_sequence_doseq(self): self.assertEqual(urlencode({'a': []}, doseq=True), '') def test_multivaluedict(self): result = urlencode(MultiValueDict({ 'name': ['Adrian', 'Simon'], 'position': ['Developer'], }), doseq=True) # MultiValueDicts are similarly unordered. self.assertIn(result, [ 'name=Adrian&name=Simon&position=Developer', 'position=Developer&name=Adrian&name=Simon', ]) def test_dict_with_bytes_values(self): self.assertEqual(urlencode({'a': b'abc'}, doseq=True), 'a=abc') def test_dict_with_sequence_of_bytes(self): self.assertEqual(urlencode({'a': [b'spam', b'eggs', b'bacon']}, doseq=True), 'a=spam&a=eggs&a=bacon') def test_dict_with_bytearray(self): self.assertEqual(urlencode({'a': bytearray(range(2))}, doseq=True), 'a=0&a=1') def test_generator(self): self.assertEqual(urlencode({'a': range(2)}, doseq=True), 'a=0&a=1') self.assertEqual(urlencode({'a': range(2)}, doseq=False), 'a=range%280%2C+2%29') def test_none(self): with self.assertRaisesMessage(TypeError, self.cannot_encode_none_msg): urlencode({'a': None}) def test_none_in_sequence(self): with self.assertRaisesMessage(TypeError, self.cannot_encode_none_msg): urlencode({'a': [None]}, doseq=True) def test_none_in_generator(self): def gen(): yield None with self.assertRaisesMessage(TypeError, self.cannot_encode_none_msg): urlencode({'a': gen()}, doseq=True) class Base36IntTests(SimpleTestCase): def test_roundtrip(self): for n in [0, 1, 1000, 1000000]: self.assertEqual(n, base36_to_int(int_to_base36(n))) def test_negative_input(self): with self.assertRaisesMessage(ValueError, 'Negative base36 conversion input.'): int_to_base36(-1) def test_to_base36_errors(self): for n in ['1', 'foo', {1: 2}, (1, 2, 3), 3.141]: with self.assertRaises(TypeError): int_to_base36(n) def test_invalid_literal(self): for n in ['#', ' ']: with self.assertRaisesMessage(ValueError, "invalid literal for int() with base 36: '%s'" % n): base36_to_int(n) def test_input_too_large(self): with self.assertRaisesMessage(ValueError, 'Base36 input too large'): base36_to_int('1' * 14) def test_to_int_errors(self): for n in [123, {1: 2}, (1, 2, 3), 3.141]: with self.assertRaises(TypeError): base36_to_int(n) def test_values(self): for n, b36 in [(0, '0'), (1, '1'), (42, '16'), (818469960, 'django')]: self.assertEqual(int_to_base36(n), b36) self.assertEqual(base36_to_int(b36), n) class IsSafeURLTests(SimpleTestCase): def test_bad_urls(self): bad_urls = ( 'http://example.com', 'http:///example.com', 'https://example.com', 'ftp://example.com', r'\\example.com', r'\\\example.com', r'/\\/example.com', r'\\\example.com', r'\\example.com', r'\\//example.com', r'/\/example.com', r'\/example.com', r'/\example.com', 'http:///example.com', r'http:/\//example.com', r'http:\/example.com', r'http:/\example.com', 'javascript:alert("XSS")', '\njavascript:alert(x)', '\x08//example.com', r'http://otherserver\@example.com', r'http:\\testserver\@example.com', r'http://testserver\me:[email protected]', r'http://testserver\@example.com', r'http:\\testserver\confirm\[email protected]', 'http:999999999', 'ftp:9999999999', '\n', 'http://[2001:cdba:0000:0000:0000:0000:3257:9652/', 'http://2001:cdba:0000:0000:0000:0000:3257:9652]/', ) for bad_url in bad_urls: with self.subTest(url=bad_url): self.assertIs( url_has_allowed_host_and_scheme(bad_url, allowed_hosts={'testserver', 'testserver2'}), False, ) def test_good_urls(self): good_urls = ( '/view/?param=http://example.com', '/view/?param=https://example.com', '/view?param=ftp://example.com', 'view/?param=//example.com', 'https://testserver/', 'HTTPS://testserver/', '//testserver/', 'http://testserver/[email protected]', '/url%20with%20spaces/', 'path/http:2222222222', ) for good_url in good_urls: with self.subTest(url=good_url): self.assertIs( url_has_allowed_host_and_scheme(good_url, allowed_hosts={'otherserver', 'testserver'}), True, ) def test_basic_auth(self): # Valid basic auth credentials are allowed. self.assertIs( url_has_allowed_host_and_scheme(r'http://user:pass@testserver/', allowed_hosts={'user:pass@testserver'}), True, ) def test_no_allowed_hosts(self): # A path without host is allowed. self.assertIs(url_has_allowed_host_and_scheme('/confirm/[email protected]', allowed_hosts=None), True) # Basic auth without host is not allowed. self.assertIs(url_has_allowed_host_and_scheme(r'http://testserver\@example.com', allowed_hosts=None), False) def test_allowed_hosts_str(self): self.assertIs(url_has_allowed_host_and_scheme('http://good.com/good', allowed_hosts='good.com'), True) self.assertIs(url_has_allowed_host_and_scheme('http://good.co/evil', allowed_hosts='good.com'), False) def test_secure_param_https_urls(self): secure_urls = ( 'https://example.com/p', 'HTTPS://example.com/p', '/view/?param=http://example.com', ) for url in secure_urls: with self.subTest(url=url): self.assertIs( url_has_allowed_host_and_scheme(url, allowed_hosts={'example.com'}, require_https=True), True, ) def test_secure_param_non_https_urls(self): insecure_urls = ( 'http://example.com/p', 'ftp://example.com/p', '//example.com/p', ) for url in insecure_urls: with self.subTest(url=url): self.assertIs( url_has_allowed_host_and_scheme(url, allowed_hosts={'example.com'}, require_https=True), False, ) def test_is_safe_url_deprecated(self): msg = ( 'django.utils.http.is_safe_url() is deprecated in favor of ' 'url_has_allowed_host_and_scheme().' ) with self.assertWarnsMessage(RemovedInDjango40Warning, msg): is_safe_url('https://example.com', allowed_hosts={'example.com'}) class URLSafeBase64Tests(unittest.TestCase): def test_roundtrip(self): bytestring = b'foo' encoded = urlsafe_base64_encode(bytestring) decoded = urlsafe_base64_decode(encoded) self.assertEqual(bytestring, decoded) @ignore_warnings(category=RemovedInDjango40Warning) class URLQuoteTests(unittest.TestCase): def test_quote(self): self.assertEqual(urlquote('Paris & Orl\xe9ans'), 'Paris%20%26%20Orl%C3%A9ans') self.assertEqual(urlquote('Paris & Orl\xe9ans', safe="&"), 'Paris%20&%20Orl%C3%A9ans') def test_unquote(self): self.assertEqual(urlunquote('Paris%20%26%20Orl%C3%A9ans'), 'Paris & Orl\xe9ans') self.assertEqual(urlunquote('Paris%20&%20Orl%C3%A9ans'), 'Paris & Orl\xe9ans') def test_quote_plus(self): self.assertEqual(urlquote_plus('Paris & Orl\xe9ans'), 'Paris+%26+Orl%C3%A9ans') self.assertEqual(urlquote_plus('Paris & Orl\xe9ans', safe="&"), 'Paris+&+Orl%C3%A9ans') def test_unquote_plus(self): self.assertEqual(urlunquote_plus('Paris+%26+Orl%C3%A9ans'), 'Paris & Orl\xe9ans') self.assertEqual(urlunquote_plus('Paris+&+Orl%C3%A9ans'), 'Paris & Orl\xe9ans') class IsSameDomainTests(unittest.TestCase): def test_good(self): for pair in ( ('example.com', 'example.com'), ('example.com', '.example.com'), ('foo.example.com', '.example.com'), ('example.com:8888', 'example.com:8888'), ('example.com:8888', '.example.com:8888'), ('foo.example.com:8888', '.example.com:8888'), ): self.assertIs(is_same_domain(*pair), True) def test_bad(self): for pair in ( ('example2.com', 'example.com'), ('foo.example.com', 'example.com'), ('example.com:9999', 'example.com:8888'), ('foo.example.com:8888', ''), ): self.assertIs(is_same_domain(*pair), False) class ETagProcessingTests(unittest.TestCase): def test_parsing(self): self.assertEqual( parse_etags(r'"" , "etag", "e\\tag", W/"weak"'), ['""', '"etag"', r'"e\\tag"', 'W/"weak"'] ) self.assertEqual(parse_etags('*'), ['*']) # Ignore RFC 2616 ETags that are invalid according to RFC 7232. self.assertEqual(parse_etags(r'"etag", "e\"t\"ag"'), ['"etag"']) def test_quoting(self): self.assertEqual(quote_etag('etag'), '"etag"') # unquoted self.assertEqual(quote_etag('"etag"'), '"etag"') # quoted self.assertEqual(quote_etag('W/"etag"'), 'W/"etag"') # quoted, weak class HttpDateProcessingTests(unittest.TestCase): def test_http_date(self): t = 1167616461.0 self.assertEqual(http_date(t), 'Mon, 01 Jan 2007 01:54:21 GMT') def test_parsing_rfc1123(self): parsed = parse_http_date('Sun, 06 Nov 1994 08:49:37 GMT') self.assertEqual(datetime.utcfromtimestamp(parsed), datetime(1994, 11, 6, 8, 49, 37)) @mock.patch('django.utils.http.datetime.datetime') def test_parsing_rfc850(self, mocked_datetime): mocked_datetime.side_effect = datetime mocked_datetime.utcnow = mock.Mock() utcnow_1 = datetime(2019, 11, 6, 8, 49, 37) utcnow_2 = datetime(2020, 11, 6, 8, 49, 37) utcnow_3 = datetime(2048, 11, 6, 8, 49, 37) tests = ( (utcnow_1, 'Tuesday, 31-Dec-69 08:49:37 GMT', datetime(2069, 12, 31, 8, 49, 37)), (utcnow_1, 'Tuesday, 10-Nov-70 08:49:37 GMT', datetime(1970, 11, 10, 8, 49, 37)), (utcnow_1, 'Sunday, 06-Nov-94 08:49:37 GMT', datetime(1994, 11, 6, 8, 49, 37)), (utcnow_2, 'Wednesday, 31-Dec-70 08:49:37 GMT', datetime(2070, 12, 31, 8, 49, 37)), (utcnow_2, 'Friday, 31-Dec-71 08:49:37 GMT', datetime(1971, 12, 31, 8, 49, 37)), (utcnow_3, 'Sunday, 31-Dec-00 08:49:37 GMT', datetime(2000, 12, 31, 8, 49, 37)), (utcnow_3, 'Friday, 31-Dec-99 08:49:37 GMT', datetime(1999, 12, 31, 8, 49, 37)), ) for utcnow, rfc850str, expected_date in tests: with self.subTest(rfc850str=rfc850str): mocked_datetime.utcnow.return_value = utcnow parsed = parse_http_date(rfc850str) self.assertEqual(datetime.utcfromtimestamp(parsed), expected_date) def test_parsing_asctime(self): parsed = parse_http_date('Sun Nov 6 08:49:37 1994') self.assertEqual(datetime.utcfromtimestamp(parsed), datetime(1994, 11, 6, 8, 49, 37)) def test_parsing_year_less_than_70(self): parsed = parse_http_date('Sun Nov 6 08:49:37 0037') self.assertEqual(datetime.utcfromtimestamp(parsed), datetime(2037, 11, 6, 8, 49, 37)) class EscapeLeadingSlashesTests(unittest.TestCase): def test(self): tests = ( ('//example.com', '/%2Fexample.com'), ('//', '/%2F'), ) for url, expected in tests: with self.subTest(url=url): self.assertEqual(escape_leading_slashes(url), expected)
{ "content_hash": "f935dda6d78d3918bae5786eabb9569a", "timestamp": "", "source": "github", "line_count": 359, "max_line_length": 117, "avg_line_length": 39.49860724233983, "alnum_prop": 0.5717207334273625, "repo_name": "simonw/django", "id": "ed6824429d51a5a56dc639b56c73910d5432c982", "size": "14180", "binary": false, "copies": "12", "ref": "refs/heads/master", "path": "tests/utils_tests/test_http.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "CSS", "bytes": "85351" }, { "name": "HTML", "bytes": "227641" }, { "name": "JavaScript", "bytes": "258434" }, { "name": "Makefile", "bytes": "125" }, { "name": "Python", "bytes": "13501540" }, { "name": "Shell", "bytes": "809" }, { "name": "Smarty", "bytes": "142" } ], "symlink_target": "" }
import os from PIL import Image def calcOptiFactorString(orig, new, asprocent=False,reverse=False): origlen = len(orig) newlen = len(new) factor = newlen/origlen if reverse: factor = 1 - factor if asprocent: factor *= 100 factor = round(factor) return factor def calcOptiFactorBinary(fpatho, fpathn, asprocent=False,reverse=False): byteso = os.path.getsize(fpatho) bytesn = os.path.getsize(fpathn) factor = bytesn/byteso if reverse: factor = 1 - factor if asprocent: factor *= 100 factor = round(factor) return factor def needsCompress(fpath,data): #find entry for i in range(0, len(data)): entry = data[i] if entry["fpath"] == fpath: # found it! now check exists && filemtime.. if not os.path.exists(fpath): return True if entry["ftime"] < os.path.getmtime(fpath): return True # found but file is out of date, yes compress it return False # found and hasn't changed, no and continue return True # not found so yes do compress it def openImageOpti(fpath,fext): im = Image.open(fpath) return im """ if fext==".png": return im # png is getting BIGGER when I create palette index..??!!! ignore it pass try: nrOfColors = getNumberOfColors(im) if nrOfColors>1024: return im # too many colors to just reduce to 256 or less.. elif nrOfColors > 256: print(" -> Convert to 256 colors..") cim = im.convert('P', palette=Image.ADAPTIVE, colors=256) else: print(" -> Convert to '"+ str(round(nrOfColors/2)) +"' colors..") cim = im.convert('P', palette=Image.ADAPTIVE, colors=round(nrOfColors/2)) if fext==".jpg" or fext==".jpeg": return cim.convert("RGB") # jpeg: needs mode RGB image return cim # return mode P image except ValueError: print(" -> Could not convert colors :(") return im # if all fails.. """ def getNumberOfColors(im): # prep color list to keep track colors = [] # get size imw, imh = im.size # convert to rgb (so we have all the colors even if we import indexed) rgb_im = im.convert('RGBA') # get pixeldata.. for x in range(0, imw): for y in range(0,imh): # get r g b r, g, b, a = rgb_im.getpixel((x, y)) hex = '#{:02x}{:02x}{:02x}{:02x}'.format(a, r, g, b) if not hex in colors: colors.append(hex) if len(colors)>1024: return 2056 # too many colors :S return len(colors)
{ "content_hash": "31660c2aac8568d8c03f0fcf020bb4a5", "timestamp": "", "source": "github", "line_count": 96, "max_line_length": 80, "avg_line_length": 24.25, "alnum_prop": 0.665807560137457, "repo_name": "rejhgadellaa/icerrr", "id": "5bc7df98de471ead6b5f47b45d9fb30fbbfda53b", "size": "2371", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "androidapp/py-web-optimizer/helpers.py", "mode": "33188", "license": "mit", "language": [ { "name": "Batchfile", "bytes": "8661" }, { "name": "CSS", "bytes": "53054" }, { "name": "HTML", "bytes": "69690" }, { "name": "Java", "bytes": "297316" }, { "name": "JavaScript", "bytes": "461691" }, { "name": "PHP", "bytes": "83269" }, { "name": "Python", "bytes": "9369" }, { "name": "Shell", "bytes": "5781" } ], "symlink_target": "" }
from .claripy import * from .light import * from .heavy import * from .lifter import VEXLifter
{ "content_hash": "c6c2f30621c8e9a3cf184aa8beab73e1", "timestamp": "", "source": "github", "line_count": 4, "max_line_length": 29, "avg_line_length": 23.75, "alnum_prop": 0.7578947368421053, "repo_name": "schieb/angr", "id": "45b364fd2d1de876b0ad19cced5f3a960d63326c", "size": "95", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "angr/engines/vex/__init__.py", "mode": "33188", "license": "bsd-2-clause", "language": [ { "name": "C", "bytes": "6375" }, { "name": "C++", "bytes": "39522" }, { "name": "Dockerfile", "bytes": "493" }, { "name": "Makefile", "bytes": "739" }, { "name": "Python", "bytes": "4987778" } ], "symlink_target": "" }
from __future__ import unicode_literals import sys sys.path.insert(0, "..") import webbrowser from qqweibo import OAuthHandler, API API_KEY = 'your key' API_SECRET = 'your secret' if API_KEY.startswith('your'): print ('You must fill API_KEY and API_SECRET!') webbrowser.open("http://open.t.qq.com/apps_index.php") raise RuntimeError('You must set API_KEY and API_SECRET') auth = OAuthHandler(API_KEY, API_SECRET) token = YOUR TOKEN HERE (so called consumer) tokenSecret = YOUR TOKEN_SECRET HERE (so called token) auth.setToken(token, tokenSecret) api = API(auth) """ Avaliable API: Do to refer api.doc.rst api.timeline.broadcast api.timeline.home api.timeline.mentions api.timeline.public api.timeline.special api.timeline.topic api.timeline.user """ def dumpTweet(t): try: print ("{0.nick}({0.name}) => {0.origtext} [{0.from_}]".format(t)) if t.source: print ("!Orig: {0.source.origtext}".format(t)) except UnicodeEncodeError: # NOTE: this is a very common error under win32 print ("Error: Some tweets or usernames may be outside " "your system encoding") for t in api.timeline.home(): dumpTweet(t) for retid in api.timeline.homeids(): t = api.tweet.show(retid.id) # or the magic t = retid.as_tweet() dumpTweet(t) print ("Warning: it may use up your request quota.") break for t in api.timeline.users(names=['andelf', 'karenmo']): dumpTweet(t)
{ "content_hash": "37866ebe79627660942edc4fcbbd326e", "timestamp": "", "source": "github", "line_count": 62, "max_line_length": 74, "avg_line_length": 24.677419354838708, "alnum_prop": 0.64640522875817, "repo_name": "hufei/qqweibo", "id": "11d42d5ee10044183ad4a796eb66ceb072b09d09", "size": "1883", "binary": false, "copies": "5", "ref": "refs/heads/master", "path": "examples/example-timeline.py", "mode": "33188", "license": "mit", "language": [], "symlink_target": "" }
import unittest import vsmlib import logging import vsmlib.benchmarks.similarity.similarity logging.basicConfig(level=logging.DEBUG) logger = logging.getLogger(__name__) path = "test/data/embeddings/text/plain_with_file_header" class Tests(unittest.TestCase): def test_similar(self): model = vsmlib.model.load_from_dir(path) sims = model.get_most_similar_words("apple", cnt=12) for w, s in sims: print(w, s) self.assertIsInstance(model, object) sims = model.get_most_similar_words("apple", cnt=12) model.normalize() logger.info("after normalization:") sims = model.get_most_similar_words("apple", cnt=12) for w, s in sims: print(w, s) logger.info("after normalized copy:") model = vsmlib.model.load_from_dir(path) model.cache_normalized_copy() sims = model.get_most_similar_words("apple", cnt=12) for w, s in sims: print(w, s) def test_similarity(self): path_model = "./test/data/embeddings/text/plain_with_file_header" model = vsmlib.model.load_from_dir(path_model) options = {} options["path_dataset"] = "./test/data/benchmarks/similarity/" vsmlib.benchmarks.similarity.similarity.run(model, options)
{ "content_hash": "7474f349616bd7a636bbcad738eb3180", "timestamp": "", "source": "github", "line_count": 37, "max_line_length": 73, "avg_line_length": 35.21621621621622, "alnum_prop": 0.6415963161933999, "repo_name": "undertherain/vsmlib", "id": "12703ea56643eed14e1e905db50275967548062c", "size": "1303", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "test/test_similar.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "CSS", "bytes": "123" }, { "name": "Python", "bytes": "201669" } ], "symlink_target": "" }
from .repeat import Repeat
{ "content_hash": "e6b64a3ebf6ce0cc4d49cd2fedc05ff8", "timestamp": "", "source": "github", "line_count": 1, "max_line_length": 26, "avg_line_length": 27, "alnum_prop": 0.8148148148148148, "repo_name": "interuss/dss", "id": "c738568938e87a3c66314ba65e6950db2895c0c8", "size": "27", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "monitoring/uss_qualifier/action_generators/__init__.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "CSS", "bytes": "518" }, { "name": "Dockerfile", "bytes": "6594" }, { "name": "Go", "bytes": "583387" }, { "name": "HTML", "bytes": "20494" }, { "name": "Jsonnet", "bytes": "601530" }, { "name": "Makefile", "bytes": "10609" }, { "name": "PLpgSQL", "bytes": "4759" }, { "name": "Python", "bytes": "948652" }, { "name": "Shell", "bytes": "76140" } ], "symlink_target": "" }
import smarter from .models import Page, PageFile class PageViews(smarter.GenericViews): model = Page options = { 'add': { 'redirect': lambda view, request, **kwargs: view.get_url('index') }, 'edit': { 'exclude': ('owner',), 'redirect': lambda view, request, **kwargs: kwargs['obj'].get_absolute_url() } } class PageFileViews(smarter.GenericViews): model = PageFile options = { 'edit': None, 'details': None, 'add': { 'redirect': lambda view, request, **kwargs: view.get_url('index') } }
{ "content_hash": "fe54186fe6c774522260c1d7873048c4", "timestamp": "", "source": "github", "line_count": 26, "max_line_length": 88, "avg_line_length": 24.115384615384617, "alnum_prop": 0.532695374800638, "repo_name": "fabiosantoscode/django-smarter", "id": "96309ae268b0c1bda538226449794e26916b670f", "size": "627", "binary": false, "copies": "3", "ref": "refs/heads/master", "path": "example/pages/views.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "Python", "bytes": "41211" }, { "name": "Shell", "bytes": "4527" } ], "symlink_target": "" }
from .stage01_isotopomer_spectrumAccuracy_io import stage01_isotopomer_spectrumAccuracy_io #Remove after refactor from .stage01_isotopomer_spectrumAccuracy_postgresql_models import * class stage01_isotopomer_spectrumAccuracy_execute(stage01_isotopomer_spectrumAccuracy_io): def execute_analyzeSpectrumAccuracy(self,experiment_id_I, sample_names_I = None, sample_name_abbreviations_I = None, met_ids_I = None, scan_types_I = None): '''calculate the average spectrum accuracy''' mids = mass_isotopomer_distributions(); print('execute_analyzeSpectrumAccuracy...') # get time points time_points = self.get_timePoint_experimentID_dataStage01Normalized(experiment_id_I); for tp in time_points: print('Calculating spectrum accuracy from isotopomer normalized for time-point ' + str(tp)); if sample_names_I: sample_abbreviations = []; sample_types = ['Unknown','QC']; sample_types_lst = []; for sn in sample_names_I: for st in sample_types: sample_abbreviations_tmp = []; sample_abbreviations_tmp = self.get_sampleNameAbbreviations_experimentIDAndSampleTypeAndTimePointAndSampleName_dataStage01Normalized(experiment_id_I,st,tp,sn); sample_abbreviations.extend(sample_abbreviations_tmp); sample_types_lst.extend([st for i in range(len(sample_names_tmp))]); elif sample_name_abbreviations_I: sample_abbreviations = sample_name_abbreviations_I; # query sample types from sample name abbreviations and time-point from data_stage01_isotopomer_normalized else: # get sample names and sample name abbreviations sample_abbreviations = []; sample_types = ['Unknown','QC']; sample_types_lst = []; for st in sample_types: sample_abbreviations_tmp = []; sample_abbreviations_tmp = self.get_sampleNameAbbreviations_experimentIDAndSampleTypeAndTimePoint_dataStage01Normalized(experiment_id_I,st,tp); sample_abbreviations.extend(sample_abbreviations_tmp); sample_types_lst.extend([st for i in range(len(sample_abbreviations_tmp))]); for sna_cnt,sna in enumerate(sample_abbreviations): print('Calculating spectrum accuracy from isotopomer normalized for sample name abbreviation ' + sna); # get the scan_types if scan_types_I: scan_types = []; scan_types_tmp = []; scan_types_tmp = self.get_scanTypes_experimentIDAndTimePointAndSampleAbbreviationsAndSampleType_dataStage01Normalized(experiment_id_I,tp,sna,sample_types_lst[sna_cnt]); scan_types = [st for st in scan_types_tmp if st in scan_types_I]; else: scan_types = []; scan_types = self.get_scanTypes_experimentIDAndTimePointAndSampleAbbreviationsAndSampleType_dataStage01Normalized(experiment_id_I,tp,sna,sample_types_lst[sna_cnt]); for scan_type in scan_types: print('Calculating spectrum accuracy for scan type ' + scan_type) # met_ids if not met_ids_I: met_ids = []; met_ids = self.get_metIDs_experimentIDAndSampleAbbreviationAndTimePointAndSampleTypeAndScanType_dataStage01Normalized( \ experiment_id_I,sna,tp,sample_types_lst[sna_cnt],scan_type); else: met_ids = met_ids_I; if not(met_ids): continue #no component information was found for met in met_ids: print('Calculating spectrum accuracy for metabolite ' + met); replicate_numbers = []; replicate_numbers = self.get_replicateNumbers_experimentIDAndSampleAbbreviationAndTimePointAndScanTypeAndMetID_dataStage01Normalized( \ experiment_id_I,sna,tp,scan_type,met); peakSpectrum_normalized_lst = []; for rep in replicate_numbers: print('Calculating spectrum accuracy for replicate_number ' + str(rep)); #get data peakData_I = {}; peakData_I = self.get_dataNormalized_experimentIDAndSampleAbbreviationAndTimePointAndScanTypeAndMetIDAndReplicateNumber_dataStage01Normalized( \ experiment_id_I,sna,tp,scan_type,met,rep); fragment_formulas = list(peakData_I.keys()); peakSpectrum_corrected, peakSpectrum_normalized = mids.extract_peakList_normMax(\ peakData_I, fragment_formulas, True); peakSpectrum_normalized_lst.append(peakSpectrum_normalized); peakSpectrum_accuracy = mids.calculate_fragmentSpectrumAccuracy(peakSpectrum_normalized_lst); # update data_stage01_isotopomer_spectrumAccuracy for frag,accuracy in peakSpectrum_accuracy.items(): if accuracy: row = []; row = data_stage01_isotopomer_spectrumAccuracy(experiment_id_I, sna, sample_types_lst[sna_cnt], tp, met,frag, accuracy, scan_type, True); self.session.add(row); self.session.commit(); def execute_analyzeSpectrumAccuracyNormSum(self,experiment_id_I, sample_names_I = None, sample_name_abbreviations_I = None, met_ids_I = None, scan_types_I = None): '''calculate the average spectrum accuracy''' mids = mass_isotopomer_distributions(); print('execute_analyzeSpectrumAccuracy...') # get time points time_points = self.get_timePoint_experimentID_dataStage01Normalized(experiment_id_I); for tp in time_points: print('Calculating spectrum accuracy from isotopomer normalized for time-point ' + str(tp)); if sample_names_I: sample_abbreviations = []; sample_types = ['Unknown','QC']; sample_types_lst = []; for sn in sample_names_I: for st in sample_types: sample_abbreviations_tmp = []; sample_abbreviations_tmp = self.get_sampleNameAbbreviations_experimentIDAndSampleTypeAndTimePointAndSampleName_dataStage01Normalized(experiment_id_I,st,tp,sn); sample_abbreviations.extend(sample_abbreviations_tmp); sample_types_lst.extend([st for i in range(len(sample_names_tmp))]); elif sample_name_abbreviations_I: sample_abbreviations = sample_name_abbreviations_I; # query sample types from sample name abbreviations and time-point from data_stage01_isotopomer_normalized else: # get sample names and sample name abbreviations sample_abbreviations = []; sample_types = ['Unknown','QC']; sample_types_lst = []; for st in sample_types: sample_abbreviations_tmp = []; sample_abbreviations_tmp = self.get_sampleNameAbbreviations_experimentIDAndSampleTypeAndTimePoint_dataStage01Normalized(experiment_id_I,st,tp); sample_abbreviations.extend(sample_abbreviations_tmp); sample_types_lst.extend([st for i in range(len(sample_abbreviations_tmp))]); for sna_cnt,sna in enumerate(sample_abbreviations): print('Calculating spectrum accuracy from isotopomer normalized for sample name abbreviation ' + sna); # get the scan_types if scan_types_I: scan_types = []; scan_types_tmp = []; scan_types_tmp = self.get_scanTypes_experimentIDAndTimePointAndSampleAbbreviationsAndSampleType_dataStage01Normalized(experiment_id_I,tp,sna,sample_types_lst[sna_cnt]); scan_types = [st for st in scan_types_tmp if st in scan_types_I]; else: scan_types = []; scan_types = self.get_scanTypes_experimentIDAndTimePointAndSampleAbbreviationsAndSampleType_dataStage01Normalized(experiment_id_I,tp,sna,sample_types_lst[sna_cnt]); for scan_type in scan_types: print('Calculating spectrum accuracy for scan type ' + scan_type) # met_ids if not met_ids_I: met_ids = []; met_ids = self.get_metIDs_experimentIDAndSampleAbbreviationAndTimePointAndSampleTypeAndScanType_dataStage01Normalized( \ experiment_id_I,sna,tp,sample_types_lst[sna_cnt],scan_type); else: met_ids = met_ids_I; if not(met_ids): continue #no component information was found for met in met_ids: print('Calculating spectrum accuracy for metabolite ' + met); replicate_numbers = []; replicate_numbers = self.get_replicateNumbers_experimentIDAndSampleAbbreviationAndTimePointAndScanTypeAndMetID_dataStage01Normalized( \ experiment_id_I,sna,tp,scan_type,met); peakSpectrum_normalized_lst = []; for rep in replicate_numbers: print('Calculating spectrum accuracy for replicate_number ' + str(rep)); #get data peakData_I = {}; peakData_I = self.get_dataNormalized_experimentIDAndSampleAbbreviationAndTimePointAndScanTypeAndMetIDAndReplicateNumber_dataStage01Normalized( \ experiment_id_I,sna,tp,scan_type,met,rep); fragment_formulas = list(peakData_I.keys()); peakSpectrum_corrected, peakSpectrum_normalized = mids.extract_peakList_normSum(\ peakData_I, fragment_formulas, True); peakSpectrum_normalized_lst.append(peakSpectrum_normalized); peakSpectrum_accuracy = mids.calculate_fragmentSpectrumAccuracy_normSum(peakSpectrum_normalized_lst); # update data_stage01_isotopomer_spectrumAccuracy for frag,accuracy in peakSpectrum_accuracy.items(): if accuracy: row = []; row = data_stage01_isotopomer_spectrumAccuracyNormSum(experiment_id_I, sna, sample_types_lst[sna_cnt], tp, met,frag, accuracy, scan_type, True); self.session.add(row); self.session.commit();
{ "content_hash": "03cfc0052846d8aee1dbce2813826b09", "timestamp": "", "source": "github", "line_count": 163, "max_line_length": 188, "avg_line_length": 69.31288343558282, "alnum_prop": 0.580545229244114, "repo_name": "dmccloskey/SBaaS_isotopomer", "id": "ebe1355402facffb24ba4d5d0c08f0ced172a0d2", "size": "11305", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "SBaaS_isotopomer/stage01_isotopomer_spectrumAccuracy_execute.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "544550" } ], "symlink_target": "" }
{ 'name': 'Webkit Report Engine', 'description': """ This module adds a new Report Engine based on WebKit library (wkhtmltopdf) to support reports designed in HTML + CSS. ===================================================================================================================== The module structure and some code is inspired by the report_openoffice module. The module allows: ------------------ - HTML report definition - Multi header support - Multi logo - Multi company support - HTML and CSS-3 support (In the limit of the actual WebKIT version) - JavaScript support - Raw HTML debugger - Book printing capabilities - Margins definition - Paper size definition Multiple headers and logos can be defined per company. CSS style, header and footer body are defined per company. For a sample report see also the webkit_report_sample module, and this video: http://files.me.com/nbessi/06n92k.mov Requirements and Installation: ------------------------------ This module requires the ``wkthtmltopdf`` library to render HTML documents as PDF. Version 0.9.9 or later is necessary, and can be found at http://code.google.com/p/wkhtmltopdf/ for Linux, Mac OS X (i386) and Windows (32bits). After installing the library on the OpenERP Server machine, you may need to set the path to the ``wkthtmltopdf`` executable file in a system parameter named ``webkit_path`` in Settings -> Customization -> Parameters -> System Parameters If you are experiencing missing header/footer problems on Linux, be sure to install a 'static' version of the library. The default ``wkhtmltopdf`` on Ubuntu is known to have this issue. TODO: ----- * JavaScript support activation deactivation * Collated and book format support * Zip return for separated PDF * Web client WYSIWYG """, 'version': '0.9', 'depends': ['base','report'], 'author': 'Camptocamp', 'category': 'Reporting', # i.e a technical module, not shown in Application install menu 'url': 'http://http://www.camptocamp.com/', 'data': [ 'security/ir.model.access.csv', 'data.xml', 'wizard/report_webkit_actions_view.xml', 'company_view.xml', 'header_view.xml', 'ir_report_view.xml', ], 'demo': [ "report/webkit_report_demo.xml", ], 'test': [ "test/print.yml", ], 'installable': True, 'auto_install': False, 'images': ['images/companies_webkit.jpeg','images/header_html.jpeg','images/header_img.jpeg'], } # vim:expandtab:smartindent:tabstop=4:softtabstop=4:shiftwidth=4:
{ "content_hash": "4619491e7d4b545521eb2ddfdcd93cef", "timestamp": "", "source": "github", "line_count": 73, "max_line_length": 117, "avg_line_length": 36.0958904109589, "alnum_prop": 0.6402277039848198, "repo_name": "diogocs1/comps", "id": "b8557e7747ef39ba943898ae6a3b2ec03966ebd9", "size": "4029", "binary": false, "copies": "89", "ref": "refs/heads/master", "path": "web/addons/report_webkit/__openerp__.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "ApacheConf", "bytes": "701" }, { "name": "CSS", "bytes": "856533" }, { "name": "HTML", "bytes": "299671" }, { "name": "Java", "bytes": "620166" }, { "name": "JavaScript", "bytes": "5844302" }, { "name": "Makefile", "bytes": "21002" }, { "name": "PHP", "bytes": "14259" }, { "name": "Python", "bytes": "10647376" }, { "name": "Ruby", "bytes": "220" }, { "name": "Shell", "bytes": "17746" }, { "name": "XSLT", "bytes": "120278" } ], "symlink_target": "" }
from django.contrib import admin from models import Article,TagInfo,AboutMe,Toys from common import sync_es,trans_localdate_format # Register your models here. def make_published(self, request, queryset): rows_updated = queryset.update(status='p') if rows_updated == 1: message_bit = "1 article was" else: message_bit = "%s articles were" % rows_updated self.message_user(request, "%s successfully marked as published." % message_bit) #add manual sync to es def sync_to_elasticsearch(self, request, queryset): for i in queryset: try: esinsert = {} esinsert['title'] = i.title esinsert['content'] = i.content esinsert['status'] = i.status esinsert['createtime'] = trans_localdate_format(i.timestamp) #print esinsert sync_es(esinsert,i.id) self.message_user(request, "sync to elasticsearch successfully.") except: self.message_user(request, "sync to elasticsearch happen wrong.") class ArticleAdmin(admin.ModelAdmin): list_display = ['title', 'status'] #ordering = ['title'] actions = [make_published,sync_to_elasticsearch] readonly_fields = ('last_modified','timestamp',) admin.site.register(Article,ArticleAdmin) admin.site.register(TagInfo) admin.site.register(Toys) admin.site.register(AboutMe)
{ "content_hash": "401486024752de0b0c42d396ef881188", "timestamp": "", "source": "github", "line_count": 40, "max_line_length": 84, "avg_line_length": 34.5, "alnum_prop": 0.663768115942029, "repo_name": "mnpiozhang/myblog", "id": "61dd2d4ba0e592bb95659a084b5022688e3d566f", "size": "1380", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "blogweb/admin.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "47232" }, { "name": "HTML", "bytes": "41104" }, { "name": "Python", "bytes": "53295" } ], "symlink_target": "" }
""" Google BigQuery support """ def _try_import(): # since pandas is a dependency of pandas-gbq # we need to import on first use try: import pandas_gbq except ImportError: # give a nice error message raise ImportError("Load data from Google BigQuery\n" "\n" "the pandas-gbq package is not installed\n" "see the docs: https://pandas-gbq.readthedocs.io\n" "\n" "you can install via pip or conda:\n" "pip install pandas-gbq\n" "conda install pandas-gbq -c conda-forge\n") return pandas_gbq def read_gbq(query, project_id=None, index_col=None, col_order=None, reauth=False, verbose=True, private_key=None, dialect='legacy', **kwargs): r"""Load data from Google BigQuery. The main method a user calls to execute a Query in Google BigQuery and read results into a pandas DataFrame. This function requires the `pandas-gbq package <https://pandas-gbq.readthedocs.io>`__. Authentication to the Google BigQuery service is via OAuth 2.0. - If "private_key" is not provided: By default "application default credentials" are used. If default application credentials are not found or are restrictive, user account credentials are used. In this case, you will be asked to grant permissions for product name 'pandas GBQ'. - If "private_key" is provided: Service account credentials will be used to authenticate. Parameters ---------- query : str SQL-Like Query to return data values project_id : str Google BigQuery Account project ID. index_col : str (optional) Name of result column to use for index in results DataFrame col_order : list(str) (optional) List of BigQuery column names in the desired order for results DataFrame reauth : boolean (default False) Force Google BigQuery to reauthenticate the user. This is useful if multiple accounts are used. verbose : boolean (default True) Verbose output private_key : str (optional) Service account private key in JSON format. Can be file path or string contents. This is useful for remote server authentication (eg. jupyter iPython notebook on remote host) dialect : {'legacy', 'standard'}, default 'legacy' 'legacy' : Use BigQuery's legacy SQL dialect. 'standard' : Use BigQuery's standard SQL, which is compliant with the SQL 2011 standard. For more information see `BigQuery SQL Reference <https://cloud.google.com/bigquery/sql-reference/>`__ `**kwargs` : Arbitrary keyword arguments configuration (dict): query config parameters for job processing. For example: configuration = {'query': {'useQueryCache': False}} For more information see `BigQuery SQL Reference <https://cloud.google.com/bigquery/docs/reference/rest/v2/jobs#configuration.query>`__ Returns ------- df: DataFrame DataFrame representing results of query """ pandas_gbq = _try_import() return pandas_gbq.read_gbq( query, project_id=project_id, index_col=index_col, col_order=col_order, reauth=reauth, verbose=verbose, private_key=private_key, dialect=dialect, **kwargs) def to_gbq(dataframe, destination_table, project_id, chunksize=10000, verbose=True, reauth=False, if_exists='fail', private_key=None): pandas_gbq = _try_import() pandas_gbq.to_gbq(dataframe, destination_table, project_id, chunksize=chunksize, verbose=verbose, reauth=reauth, if_exists=if_exists, private_key=private_key)
{ "content_hash": "0b9780c1778e859122718003f038a771", "timestamp": "", "source": "github", "line_count": 108, "max_line_length": 94, "avg_line_length": 36.25, "alnum_prop": 0.6286079182630907, "repo_name": "winklerand/pandas", "id": "b452b0cf5ddd4efe956c8f1ea8383ca09e28c186", "size": "3915", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "pandas/io/gbq.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "Batchfile", "bytes": "4071" }, { "name": "C", "bytes": "493226" }, { "name": "C++", "bytes": "17353" }, { "name": "HTML", "bytes": "551706" }, { "name": "Makefile", "bytes": "907" }, { "name": "PowerShell", "bytes": "2972" }, { "name": "Python", "bytes": "12249109" }, { "name": "R", "bytes": "1177" }, { "name": "Shell", "bytes": "23114" }, { "name": "Smarty", "bytes": "2045" } ], "symlink_target": "" }