RRFRRF commited on
Commit
bdcbfca
·
1 Parent(s): 364a6fb

add gitigore

Browse files
Files changed (2) hide show
  1. .gitignore +1 -0
  2. test_save.py +0 -114
.gitignore ADDED
@@ -0,0 +1 @@
 
 
1
+ test_save.py
test_save.py DELETED
@@ -1,114 +0,0 @@
1
- import os
2
- import numpy as np
3
- import torch
4
- from pathlib import Path
5
-
6
- def test_saved_files(content_path, num_epochs=3):
7
- """测试保存的文件是否符合要求
8
-
9
- Args:
10
- content_path: 训练过程的根目录
11
- num_epochs: 要测试的epoch数量
12
- """
13
- # 检查目录结构
14
- required_dirs = [
15
- 'model',
16
- 'dataset/representation',
17
- 'dataset/prediction',
18
- 'dataset/label'
19
- ]
20
-
21
- for dir_path in required_dirs:
22
- full_path = os.path.join(content_path, dir_path)
23
- if not os.path.exists(full_path):
24
- print(f"错误: 目录不存在: {full_path}")
25
- return False
26
-
27
- # 检查模型文件
28
- print("\n检查模型文件...")
29
- for epoch in range(1, num_epochs + 1):
30
- model_path = os.path.join(content_path, 'model', f'{epoch}.pth')
31
- if not os.path.exists(model_path):
32
- print(f"错误: 模型文件不存在: {model_path}")
33
- return False
34
- try:
35
- # 尝试加载模型文件以验证其有效性
36
- state_dict = torch.load(model_path, map_location='cpu')
37
- print(f"✓ {epoch}.pth 格式正确")
38
- except Exception as e:
39
- print(f"错误: 无法加载模型文件 {model_path}: {str(e)}")
40
- return False
41
-
42
- # 检查特征向量文件
43
- print("\n检查特征向量文件...")
44
- prev_samples = None
45
- for epoch in range(1, num_epochs + 1):
46
- repr_path = os.path.join(content_path, 'dataset', 'representation', f'{epoch}.npy')
47
- if not os.path.exists(repr_path):
48
- print(f"错误: 特征向量文件不存在: {repr_path}")
49
- return False
50
- try:
51
- features = np.load(repr_path)
52
- samples, dim = features.shape
53
- if not (512 <= dim <= 1024):
54
- print(f"警告: 特征维度 {dim} 不在预期范围[512, 1024]内")
55
- if prev_samples is not None and samples != prev_samples:
56
- print(f"错误: epoch {epoch} 的样本数量与之前不一致")
57
- return False
58
- prev_samples = samples
59
- print(f"✓ {epoch}.npy 格式正确 [样本数: {samples}, 特征维度: {dim}]")
60
- except Exception as e:
61
- print(f"错误: 无法加载特征向量文件 {repr_path}: {str(e)}")
62
- return False
63
-
64
- # 检查预测结果文件
65
- print("\n检查预测结果文件...")
66
- for epoch in range(1, num_epochs + 1):
67
- pred_path = os.path.join(content_path, 'dataset', 'prediction', f'{epoch}.npy')
68
- if not os.path.exists(pred_path):
69
- print(f"错误: 预测结果文件不存在: {pred_path}")
70
- return False
71
- try:
72
- predictions = np.load(pred_path)
73
- samples, classes = predictions.shape
74
- if samples != prev_samples:
75
- print(f"错误: 预测结果的样本数量与特征向量不一致")
76
- return False
77
- if classes != 10: # CIFAR-10 有10个类别
78
- print(f"警告: 类别数量 {classes} 不等于10")
79
- print(f"✓ {epoch}.npy 格式正确 [样本数: {samples}, 类别数: {classes}]")
80
- except Exception as e:
81
- print(f"错误: 无法加载预测结果文件 {pred_path}: {str(e)}")
82
- return False
83
-
84
- # 检查标签文件
85
- print("\n检查标签文件...")
86
- label_path = os.path.join(content_path, 'dataset', 'label', 'labels.npy')
87
- if not os.path.exists(label_path):
88
- print(f"错误: 标签文件不存在: {label_path}")
89
- return False
90
- try:
91
- labels = np.load(label_path)
92
- if len(labels.shape) != 1:
93
- print(f"错误: 标签文件维度不正确,应为1维数组,实际为{len(labels.shape)}维")
94
- return False
95
- if labels.shape[0] != prev_samples:
96
- print(f"错误: 标签数量与样本数量不一致")
97
- return False
98
- if not np.all((labels >= 0) & (labels < 10)): # CIFAR-10 的标签范围是0-9
99
- print("错误: 存在超出范围的标签值")
100
- return False
101
- print(f"✓ labels.npy 格式正确 [样本数: {labels.shape[0]}]")
102
- except Exception as e:
103
- print(f"错误: 无法加载标签文件 {label_path}: {str(e)}")
104
- return False
105
-
106
- print("\n✓ 所有文件格式检查通过!")
107
- return True
108
-
109
- if __name__ == "__main__":
110
- # 设置要测试的目录路径
111
- content_path = "/home/ruofei/RRF/ttvnet/Image/AlexNet/model/0"
112
-
113
- # 运行测试
114
- test_saved_files(content_path, num_epochs=44)